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ABSTRACT

Recent observations indicate that some extrasolar planets observed in transit can experience mass loss from their
surfaces. Motivated by these findings, this paper considers outflows from hot Jupiters in the regime where the flow is
controlled by magnetic fields. Given the mass-loss rates estimated from current observations—and from theoretical
arguments—magnetic fields will dominate the flow provided that field strength near the planet is greater than ∼1
G, comparable to the surface fields of the Sun and Jupiter. The problem can be separated into an inner regime, near
the planet, where the outflow is launched, and an outer regime where the flow follows (primarily) stellar field lines
and interacts with the stellar wind. This paper concentrates on the flow in the inner regime. For a dipole planetary
field with a spatially constant background contribution, we construct a set of orthogonal coordinates that follow
the field lines and determine the corresponding differential operators. Under the assumption of isothermal flow, we
analytically find the conditions required for escaping material to pass smoothly through the sonic transition and then
estimate the mass outflow rates. These magnetically controlled outflows differ significantly from previous spherical
models. The outflow rates are somewhat smaller, typically Ṁ ∼ 109 g s−1, and the flow is launched primarily from
the polar regions of the planet. In addition, if the stellar wind is strong enough, the flow could be reversed and the
planet could gain mass from the star.

Key words: magnetohydrodynamics (MHD) – planets and satellites: atmospheres – planets and satellites:
formation – planets and satellites: magnetic fields

1. INTRODUCTION

Among hundreds of extrasolar planets discovered to date,
a substantial fraction orbit their stars with periods of 10 days
or less. These planets are thought to have formed further out
in their solar systems (e.g., Lissauer & Stevenson 2007), and
subsequently migrated inward (e.g., Papaloizou & Terquem
2006) where they become stranded at small semimajor axes,
perhaps due to disk truncation (Shu et al. 1994; Lin et al.
1996) or because the disk loses so much gas that it can no
longer move planets. After planets reach these inner orbits,
they are subjected to intense heating from their parental stars.
This heating, which is most effective for UV photons, can drive
photoevaporative flows from the planetary surfaces. In the most
extreme cases, the resulting mass loss could affect both the
final masses and densities of the planets. In other cases, the
outflows can be observable—even if their effect on the final
mass is modest—and can provide important information about
planetary properties. This paper explores outflows from hot
Jupiters in the regime where magnetic fields are strong enough
to guide the flow and thereby determine the outflow geometry.

Mass loss from hot Jupiters has been observed in association
with the transiting planet HD209458b (Vidal-Madjar et al. 2003,
2004; see also Désert et al. 2008; Sing et al. 2008; Lecavelier des
Etangs et al. 2008). A recent follow-up observation using the
Cosmic Origins Spectrograph on the Hubble Space Telescope
implies a mass outflow rate Ṁ ≈ 8 × 1010 g s−1 from
this planet (Linsky et al. 2010). In addition, signatures of
atmospheric evaporation from the extrasolar planet HD189733b
have recently been reported (Lecavelier des Etangs et al. 2010).
More examples are expected in the term future, as well as
null detections (Lecavelier des Etangs 2007). As a result, the
collection of close-in extrasolar planets provides a laboratory to
study the process of mass loss from planetary bodies.

Theoretical models of mass loss from extrasolar planets have
been considered previously. Pioneering models of outflows from
these planetary bodies have been constructed (Lammer et al.
2003; Baraffe et al. 2004, 2006) and indicate that substantial
mass loss can take place. However, related studies of the
effects of mass loss on the population of close-in extrasolar
planets show that it is difficult to explain the observed mass
distribution (Hubbard et al. 2007). In any case, a number of
open questions remain. The aforementioned studies (primarily)
use simple energy-limited outflow models (see also Watson et al.
1981), in conjunction with physically motivated scaling laws,
and produce a range of outflow rates for given planetary masses
and external UV fluxes. The next generation of theoretical
calculations considered refined treatments of the chemistry,
photoionization, and recombination (Yelle 2004; Garcı́a Muñoz
2007), as well as the effects of tidal enhancement (Murray-Clay
et al. 2009, hereafter MCM). More recently, two-dimensional
models of planetary winds have been considered (Stone & Proga
2009) and indicate that the mass loss rates can be less than
those in the spherical limit. In addition to planetary outflows,
alternative explanations of the observations have been put forth,
where the inferred excess material is due to a confined exosphere
(Trammell et al. 2011; hereafter TAL) or a mass transfer stream
(Lai et al. 2010).

This theoretical investigation into planetary outflows adopts
a new approach. As outlined below, the magnetic fields—from
both the star and the planet—are generally strong enough to
guide the flow (see also TAL). When the outflow follows the
magnetic field lines, the geometry of the flow pattern is set by
the field structure, but can be quite complicated. In particular,
the outflows depart significantly from spherical symmetry and
existing (primarily spherical) models are not applicable. In spite
of this complication, the outflow problem can be reduced to
one dimension by constructing a new orthogonal coordinate
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system where one coordinate follows the magnetic field lines.
This approach allows for the outflow properties to be determined
semi-analytically. In this context, the term “semi-analytic” refers
to models where the equations are reduced to, at most, ordinary
differential equations.

The problem of magnetically controlled outflows from plan-
ets can be divided into subproblems. Since the magnetic field
structure of the planet guides the flow—for the regime consid-
ered here—the field is independent of the outflow and can be
determined separately. Section 2 discusses the conditions re-
quired for this approach to be valid and provides an overview of
the relevant scales in the problem. This work assumes that the
planetary field has a dipole form. Near the planetary surface,
the stellar component of the magnetic field is smaller than the
planetary field and is slowly varying (spatially); as a starting
approximation, we thus assume that the stellar field provides a
constant background contribution. For this geometry, we con-
struct a set of orthogonal coordinates that follow the field lines
and hence the flow (Section 3). For a given field configuration,
the outflow problem can be separated further into two regimes:
(1) the launch of the outflow near the planetary surface; this
flow depends on the heating and cooling in the vicinity of the
planet, and the flow geometry is constrained by the magnetic
field configuration. (2) The propagation of the outflow, away
from the planet, as it enters the regime where the magnetic field
structure and gravitational forces are dominated by the star. This
paper focuses on the launch of the wind, in Section 4, and the
propagation problem is left for future work. The observational
implications of these outflows are discussed in Section 5. The
paper concludes, in Section 6, with a summary of results, a
discussion of their implications, and some directions for future
work.

2. OVERVIEW

This section defines the basic scales in the problem and
justifies our approach. After presenting an estimate for the
outflow rate, we show that the gas is well coupled to the magnetic
field and that the magnetic pressure is larger than the ram
pressure of the flow by several orders of magnitude. We also
discuss the background magnetic field provided by the star and
the effects of the stellar wind, where both of these effects limit
the sphere of influence of the planet. A background magnetic
field component (from the star) is included, whereas additional
contributions from currents are shown to be small.

We first make an order of magnitude estimate for the mass
outflow rates from hot Jupiters using a simple scaling argument:
if we assume that the outflow is limited by the rate at which the
gas gains energy from the stellar UV flux, then the mechanical
luminosity of the outflow GMP Ṁ/RP must balance the rate
of energy deposition, ηradFUVπR2

P , where the parameter ηrad
includes the efficiency of energy capture and takes into account
the fact that radiation can be absorbed above the planetary
surface (at RP). The resulting mass outflow rate Ṁ is thus given
by

Ṁ = ηrad
πR3

P FUV

GMP

, (1)

where this expression would be exact if one could determine
the correct value of ηrad. Next, we note the coincidence that a
particle of mass μ living at the surface of a Jovian planet has
potential energy εμ given by

εμ = GMP μ

RP

≈ 13.9 eV, (2)

where we have used typical values μ = mP, MP = 1MJ , and
RP = 1010 cm to evaluate the energy. This potential energy
scale is almost the same as the ionization energy for Hydrogen
atoms. As a result, we can write the mass outflow rate in the
form

Ṁ =
(

ηrad
〈hν〉
εμ

)
μ

(
πR2

P FUV

〈hν〉
)

≈ 1.5 × 1010 g s−1

(
FUV

450 erg s−1 cm−2

)
, (3)

where the first (dimensionless) term in brackets is close to unity
and the second term in brackets represents the number of UV
photons intercepted by the outflow per unit time. The UV flux is
scaled to the benchmark value FUV = 450 erg s−1 cm−2, the flux
appropriate for the quiet Sun at a distance of a = 0.05 AU (e.g.,
MCM; Woods et al. 1998). The resulting numerical estimate
for the outflow rate agrees with previous results (e.g., Garcı́a
Muñoz 2007). When the efficiency ηrad is high, the outflow rate
is thus determined by an approximate balance with one outgoing
particle per incoming UV photon.

The above estimate ignores magnetic fields, whereas this
paper considers the wind to be guided by the field. In order for
the plasma to be well coupled to the magnetic field, the cyclotron
frequency ωC must be larger than the collision frequency Γ. The
cyclotron frequency is given by ωC = Bq/(mc) and the collision
rate is given by Γ = nσv. For the parameter space of interest,
we expect the magnetic field strength near the planet to be
B ∼ 1–40 G (e.g., TAL) and the collision cross section to be
σ ∼ 2×10−13 cm2 (see Shu 1992; Spitzer 1978; Sturrock 1994).
Because the continuity equation implies that Ṁ = 4πr2ρv, we
can write the ratio of frequencies in the form

ωC

Γ
= qB

cmnσv
= 4πqBr2

cσṀ

≈ 104

(
B

1 G

) (
σ

2 × 10−13 cm2

)−1 (
Ṁ

1010 g s−1

)−1

. (4)

Although the field strength decreases with distance from the
planet, Equation (4) shows that the frequency ratio scales like
Br2. Since the dipole field strength B ∝ 1/r3, the ratio ωC/Γ
decreases as one power of the radius and hence formally exceeds
unity out to a radius rC ∼ 104RP , well beyond the launching
radius rs of the wind (where rs ≈ 3RP ; see Section 4). This
estimate for rC is much larger than the radial scale where the
stellar environment—including the stellar wind, magnetic field,
and gravity—dominates that of the planet. Although the number
density of the wind may continue to decrease in this regime, the
magnetic field strength will be larger than the scaling used here
and the wind will remain tied to the field. We thus conclude that
ωC � Γ for the regime of parameter of interest and that the
outflow is well coupled to the magnetic field.

Another necessary condition for the magnetic field to guide
the outflow is that the magnetic pressure must be larger than the
ram pressure of the flow. Here, we find the radius where the two
pressures are equal, i.e., where ρv2 ≈ B2/8π . We can write the
density in terms of the outflow rate Ṁ ≈ 4πr2ρv =Fm4πr2ρas ,
where as is the sound speed and the second equality defines the
parameter Fm. The magnetic pressure and the ram pressure are
equal when B2r2 = 2ṀasFm. After scaling the magnetic field
using the usual dipole relationship, so that B = BP (RP /r)3,
we can solve for the radius within which the magnetic field is
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dominant, i.e.,

r

RP

= (BP RP )1/2(2ṀasFm)−1/4

≈ 26

(
BP

10 G
· RP

1010 cm

)1/2 (
Ṁ

1010 g s−1
· as

10 km s−1

)−1/4

.

(5)

This equation is evaluated using the surface field BP = 10 G,
the value estimated for extrasolar planets (Christensen et al.
2009; see also TAL); for comparison, the surface field strength
for Jupiter is somewhat lower, BP = 4.2 G (Stevenson 2003).
This result implies that the magnetic pressure exceeds the ram
pressure of the outflow for radii near the planet, where “near” is
defined to be within about 26 RP. However, the stellar magnetic
field is generally stronger than the planetary field at these radii,
so that the magnetic field pressure dominates at all distances
from the planet. In addition, the sonic transitions take place at
r ∼ 3RP , well within the boundary defined by Equation (5).
Using the dipole scaling relation for the field strength, we find
that the magnetic pressure is larger than the ram pressure of the
outflow by a factor of ∼104 at the sonic surface and by a factor
of ∼106 at the planetary surface. As a result, the outflow must be
magnetically controlled. For completeness, we note that these
field configurations contain an X-point, a location where the
field vanishes in the equatorial plane and where the condition
(5) for magnetic pressure domination fails; this complication
affects only a few streamlines and reduces the overall mass
outflow rate by a small amount.

The star supports a stellar wind that also provides a ram
pressure. In order for the planet to successfully launch an outflow
under magnetically controlled conditions, the ram pressure of
the stellar wind cannot be too large. The ratio of the ram pressure
of the stellar wind to that of the planetary outflow can be written
in the form

Pram∗
PramP

= (Ṁv)∗
(Ṁv)P

( r

a

)2
, (6)

where r is the radial coordinate centered on the planet and the
stellar parameters are evaluated at the location of the planet
(a distance a from the star). If the stellar wind has an outflow
rate Ṁ∗ = 1012 g s−1 and outflow speed v∗ = 400 km s−1,
comparable to the values for the Sun, then the ratio of ram
pressure in Equation (6) is close to unity within a few planetary
radii. As shown above, B2 � ρv2 for the planetary wind,
so that the same is true for the stellar wind; as a result, the
magnetic pressure near the planet will be much larger than the
ram pressure of both the stellar wind and the planetary wind, and
the outflow will be magnetically controlled. At large distances
from the planet, as determined from Equation (5), the stellar
wind pressure will play an important role.

The star also has a magnetic field that must be taken into
account. If the surface strength of the stellar field is B∗, the
strength at the location of the planet will be B ≈ B∗(R∗/a)3,
where a is the semimajor axis of the planetary orbit. This
expression would be exact in the limiting case of a pure dipole
field with the planetary orbit in the equatorial plane of the dipole.
In practice, however, the stellar field will be more complicated
due to the stellar wind. For solar-type conditions, the field
lines are closed out to radii ∼3R∗, but they spiral outward at
larger distances. The planet radius RP ∼ 1010 cm is much
smaller than both the stellar radius R∗ ∼ 1011 cm and the
distance to the star a ∼ 1012 cm. As a result, to leading order,

the stellar contribution to the field can be considered to have
constant field strength and constant direction over the region
where the planetary outflow is launched; it is straightforward
to show that this approximation results in error terms of order
O(r/a) ∼ 10−2. At the planetary surface, the ratio of the stellar
field strength to that of the planet is given by

β ≡ B(a)

BP

≈ B∗
BP

(
R∗
a

)3

, (7)

where B∗ is the field strength on the stellar surface and B(a) is
the stellar field strength evaluated at the position of the planet.
For the regime of parameter space of interest, this field geometry
has an X-point, a location where the magnetic field vanishes
(Shu 1992). Here, the stellar field is (nearly) constant in the
vicinity of the planet, whereas the planetary field decreases as
B ∝ 1/r3. To leading order, the radius of the X-point is given
by

rX ≈ aRP

R∗

(
BP

B∗

)1/3

∼ 10RP . (8)

For comparison, note that the Hill radius is given by rH =
a(MP /3M∗)1/3. For a Jovian planet and a solar-type star,
rH ≈ 0.07a ∼ 7RP . As a result, the sphere of gravitational
influence of the planet (determined by rH) and the sphere
of magnetic influence of the planet (determined by rX) are
approximately the same.

To illustrate the magnetic field geometries that arise, we plot a
representative collection of magnetic field lines in Figure 1. This
plot uses β = 0.0014, a value that occurs (for example) when the
star and the planet have comparable surface field strengths and
the length scales R∗/RP = 10 and a/RP = 100. Magnetic field
lines that originate from small polar angles on the planet surface
curve off to large distances. These field lines will, in general,
connect up with stellar field lines, which either end on the star
or are carried out to large distances by the stellar wind. Field
lines that start at lower latitudes (closer to the planetary equator)
curve back and end on the planetary surface, i.e., they are closed.
For a given field configuration, a well-defined fraction FAP of
the planetary surface is exposed by having its field lines open
(relative to the planet). The field line that passes through the
X-point, shown by the dashed curve in Figure 1, delineates the
boundary between the closed and open field lines.

In principle, currents produced by the flow could modify
the planetary magnetic field, assumed here to have a nearly
dipole form. This effect has been extensively studied, primarily
in the context of stellar winds (e.g., Mestel 1968; Mestel &
Spruit 1987; see also TAL for an application to extrasolar
planet magnetospheres). As shown in the aforementioned work,
currents J⊥ that run perpendicular to the flow can arise from
either vorticity or the variations of the Bernoulli constant across
field lines. These currents give rise to perturbations in the
magnetic field strength, B⊥, which are of order

B⊥
B

∼ 4πρv2

B2
. (9)

As shown above, this ratio is quite small within the sonic surface,
typically less than 10−4, so that the additional fields produced
by perpendicular currents can be neglected.

Magnetic fields can also be generated by current sheets, which
arise at the interface between the field lines that carry outflowing
material and those that do not. The difference in flow velocity
across this boundary implies a pressure difference (from the
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Figure 1. Magnetic field lines centered on the planet for field configurations
with background parameter β ≈ 0.0014. The solid curves show a set of field
lines for starting values of sin θ that are evenly spaced. The dashed curve shows
the field line that passes through the X-point. The field lines near the poles are
open and join onto the background field lines provided by the star and stellar
wind. The field lines near the equator are closed and end back on the planetary
surface. In this coordinate system, distances are measured in units of the planet
radius, and the star is located at position (x, y, z) = (100, 0, 0).

Bernoulli equation) which results in a perturbation δB of the
magnetic field. Applied to the present problem, the results of
TAL imply that (δB)/B ∼ 8πP/B2, where P is the thermal
pressure and B is the dipole field of the planet. Over most of the
parameter space of interest, the field produced by current sheets
(δB) is thus the same order as that produced by perpendicular
currents (B⊥, see Equation (9)), and hence can be neglected to
leading order ([δB]/B ∼ 10−4).

Perpendicular currents and current sheets can be neglected
when the pressure P � B2/(8π ). In the case of stellar winds,
this condition is violated sufficiently far from the stellar surface;
at these large distances currents cannot be ignored, as they lead to
open field lines, which are necessary for winds to escape (Mestel
& Spruit 1987). In the present case, however, an external field
allows for open field lines (relative to the planet) even in the
absence of currents. As shown in Section 3.2, as long as the
external field is nonzero, some of the field lines will be open;
the fraction of the planetary surface that is covered by open field
lines is an increasing function of the external field strength (see
Equation (27)).

The above discussion defines the expected planet radius
RP, X-point radius rX , Hill’s radius rH , stellar radius R∗,
and semimajor axis a. The principal calculation of this paper
determines the radius rs of the sonic point, the location where
the outflow is launched and can escape the planet, and finds
rs ∼ 3 − 4RP (Section 4). The remaining length scale in the
problem is the scale height H of the planetary atmosphere, where
H = kT /(μg) = kT RP /(μGMP ). As a reference point, we
evaluate the scale height at the atmospheric level where most
of the stellar light is absorbed. At this layer, previous work
(e.g., MCM) shows that the effective temperature of the planet

T ∼ 1000 K and hence H ∼ RP /100; the scale height increases
to H ∼ RP /10 in the upper atmosphere where the UV photons
are absorbed and T ∼ 104 K. With this specification, the length
scales involved in planetary outflows obey the ordering

H � RP < rs < rH ∼ rX ∼ R∗ � a. (10)

The sphere of gravitational influence of the planet (from the
Hill radius rH) and the sphere of magnetic influence (from the
X-point radius rX) are roughly the same size, and are comparable
to the stellar radius. The sonic surface typically lies at a few
planetary radii and is thus well inside both rH and rX . On
the other hand, the sphere of influence of the planet is much
smaller than the star–planet distance (the semimajor axis a).
This separation of scales allows for the launch of the outflow to
be considered independently of the subsequent propagation of
the flow.

3. MAGNETIC FIELD GEOMETRY WITH
CONSTANT BACKGROUND

To gain further understanding of this problem and to simplify
the calculations, we use the method of matched asymptotic ex-
pansions. Specifically, we divide the problem into two regimes:
(1) the region near the planet where the outflow is launched, and
(2) the region “far” from the planet where the magnetic field
structure is determined by the field of the star (modified by the
stellar wind). In the near region, the magnetic field is primarily
determined by the dipole field of the planet, but nonetheless con-
tains a contribution from the stellar field. However, this stellar
contribution is nearly uniform. Exploiting this property, we can
model the magnetic field near the planet through the reduced
form

B = BP [ξ−3(3 cos θ r̂ − ẑ) + βẑ], (11)

where ξ = r/RP and β is defined by Equation (7). For
simplicity, we have taken the background field to point in the
ẑ-direction. Notice that this reduced field is axisymmetric, so
that the problem becomes two dimensional. In addition, the field
is antisymmetric with respect to reflections across the z = 0
plane; since the sign of the field does not affect the dynamics,
the outflow is the same for both hemispheres of the planet.

In this initial treatment, the dipole field of the planet is
augmented by a constant background field (due to the star). The
stellar field is expected to be dipolar near the stellar surface, but
will be modified by the stellar wind. This stellar wind acts to
straighten the field lines, making them more radial. In any case,
the stellar field is expected to be nearly constant, in both strength
and direction, over the region where the wind is launched.
However, the background field will not necessarily point in the
ẑ-direction of the planetary dipole (as assumed here). Notice
also that the planetary spin, and hence the planetary dipole,
does not necessarily line up with direction of the orbital angular
momentum, i.e., the dipole also has (in general) an arbitrary
direction (e.g., Fabrycky & Winn 2009). This paper considers
the simplest case where the dipole and the background field
are aligned (Equation (11)). Despite its simplicity, this ansatz
displays the key features of the expected magnetic configuration:
a dipole form near the planet, an (effectively) straight geometry
far from the planet, and some open field lines even in the absence
of currents. The more general case, where the two components
lie at an arbitrary angle, should be considered in future work. In
addition, if the star rotates more slowly than the angular velocity
of the planetary orbit, the field lines will tend to wrap up into
spiral configurations (Parker 1958); this effect should also be
included in future studies.
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3.1. Construction of the Coordinate System

With this configuration, the magnetic field is current free and
curl free, and hence can be written as the gradient of a scalar
field. We define an analogous scalar field p that serves as the
first field of the coordinate system, i.e.,

p = (βξ − ξ−2) cos θ. (12)

The gradient ∇p defines a vector field that points in the direction
of the magnetic field (and hence points in the direction of the
outflow). Next, we construct the perpendicular vector field ∇q,
where the second scalar field q provides the second coordinate
and is given by

q = (βξ 2 + 2/ξ )1/2 sin θ. (13)

The pair (p, q) thus represents a set of perpendicular coordinates
in the poloidal plane, and these can be used instead of the original
spherical coordinates (ξ, θ ) or the Cartesian coordinates (x, z).
In this version of the problem, the field is axisymmetric about
the ẑ-axis, so we can use the usual azimuthal coordinate φ as the
third scalar field of the set (the magnetic field is poloidal, with no
toroidal component). Note that both p and q are dimensionless;
one can reinsert factors of the planetary radius RP (as necessary)
to convert back to physical units. Notice also that in the limit
β → 0, one recovers the coordinates for a dipole (Radoski
1967).

The set of covariant basis vectors εj arises from the gradients
of the scalar fields that define the coordinates. If we express
these basis vectors in terms of the original spherical coordinates
(ξ, θ, φ), the basis takes the form

εp = (β + 2ξ−3) cos θ r̂ − (β − ξ−3) sin θ θ̂ , (14)

εq = (β + 2ξ−3)−1/2[(β − ξ−3) sin θ r̂ + (β + 2ξ−3) cos θ θ̂ , ],
(15)

and

εφ = 1

ξ sin θ
φ̂. (16)

The quantities (r̂ , θ̂ , φ̂) are the usual unit vectors for spherical
coordinates. However, one should keep in mind that εj are basis
vectors (not unit vectors), so that their length is not, in general,
equal to unity (for further discussion, e.g., see Weinreich 1998).
In general, the corresponding scale factors are given by the
relation

hj = |εj |−1, (17)

so that the scale factors for this coordinate system can be written
in the form

hp = [(β + 2ξ−3)2 cos2 θ + (β − ξ−3)2 sin2 θ ]−1/2, (18)

hq = (β + 2ξ−3)1/2[(β + 2ξ−3)2 cos2 θ + (β − ξ−3)2 sin2 θ ]−1/2,
(19)

and
hφ = ξ sin θ. (20)

The general form of the divergence operator is thus given by

∇ · V = 1

hphqhφ

[
∂

∂p
(hqhφVp) +

∂

∂q
(hphφVq)

]
+

1

ξ sin θ

∂Vφ

∂φ
.

(21)

In this problem, the fields are axisymmetric so that the φ
derivatives vanish. Further, for flow along field lines, the vector
fields (e.g., the velocity field) have only one component and
depend on only one coordinate, so that the divergence operator
collapses to the form

∇ · V = 1

hphqhφ

∂

∂p
(hqhφVp) = 1

hp

∂Vp

∂p
+

Vp

hphqhφ

∂

∂p
(hqhφ).

(22)
For convenience, we define the following ancillary functions:

f ≡ β +2ξ−3, g ≡ β −ξ−3, and H ≡ f 2 cos2 θ +g2 sin2 θ.
(23)

In terms of these functions, we note that (hqhφ) = qH−1/2 and
that |B|2 = HB2

P .
This specification of the divergence operator is implicit.

One could invert Equations (12) and (13), and then write
the spherical coordinates (ξ, θ ), the scale factors (hp, hq, hφ),
and the ancillary functions (f, g,H ) as functions of the new
coordinates (p, q). However, the definitions of (p, q) are cubic
functions of (ξ, θ ), so that the solutions of the cubic inversion
are complicated and unwieldy (but still can be written down
analytically). For clarity, we leave this construction in implicit
form.

3.2. Fractional Active Area of the Planetary Surface

With the field configuration of Equation (11), some fraction
FAP of the magnetic field lines that originate on the planetary
surface are open, whereas some field lines curve back onto the
planet. Using this simplified model for the magnetic field, we
can determine the fraction FAP. In this context, the open field
lines that continue to “infinity” in this reduced problem join onto
the magnetic field lines of the star and stellar wind (although
the subsequent curvature of the field lines is not captured by this
model). One can define a benchmark mass outflow rate to be
that obtained for spherical flow over the entire planetary surface.
We note that the fraction FAP of the surface that supports open
field lines is related to—but is not equivalent to—the fraction
of this benchmark outflow rate that the planet produces (see
Section 4.4).

The first step is to solve for the magnetic field lines. For this
field configuration, this construction can be done analytically.
Assume that a field line begins at coordinates (ξ = 1, θ0)
corresponding to the planetary surface. The field line can then
be represented as a curve in the plane such that

(
sin θ

sin θ0

)2

= ξ
2 + β

2 + βξ 3
. (24)

Note that this expression is equivalent to the statement q =
sin θ0(2 + β)1/2 = constant; this result must hold since the
coordinate q was constructed so that ∇q is perpendicular to
the field lines. Using this solution, we can solve for the angular
coordinate θX for the field line that goes through the X-point. In
this case, the X-point radius ξX is given by the condition

βξ 3
X = 1. (25)

Note that this result is exact for the reduced field configuration
considered here. The critical angle θX is given by

sin2 θX = 3β1/3/(2 + β), (26)
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where this expression is valid for β � 1. The field lines that
originate at small angles, 0 � θ � θX, with θX defined above,
are those that are open (reach spatial infinity) in this reduced
problem. In the full problem, these open field lines join onto the
background field lines of the star and stellar wind. The resulting
fraction FAP of the surface area of the planet that can support an
outflow is then given by

FAP = 1 −
[

1 − 3β1/3

2 + β

]1/2

. (27)

Note that for β � 1, the background (stellar) field dominates that
of the planet, field lines originating from all planetary latitudes
are open, and hence FAP = 1. In the opposite limit of small
β � 1, the fraction FAP ≈ 0.75β1/3; since β ∼ 10−3 for typical
cases, only about 10% of the planet surface can support outflow.

With this field geometry, the field lines become asymptoti-
cally straight, so that the outflow has a cylindrical form in the
limit ξ → ∞. The outer surface of the resulting outflow cavity
is delineated by the field line that passes through the X-point.
If we use Equation (24) for the critical streamline and then take
the limit ξ → ∞, we find that the radius �∞ of this cylinder is
given by

�∞ =
√

3 rX =
√

3 β−1/3RP =
√

3 (BP /B∗)1/3 (aRP /R∗) .
(28)

This cylindrical flow represents the outer limit of the inner
problem, the regime where the outflow is launched from the
planetary surface. This flow also represents the inner limit of
the outer problem, the regime where the flow follows the stellar
field lines. Note that for typical parameters �∞ ≈ 10 RP ≈ R∗.

Since the magnetic field strength vanishes along the critical
streamline, the magnetic pressure will not be strong enough to
dominate the ram pressure near the X-point. We can estimate
the fraction of streamlines that are affected by this issue:
consider the surface where ξ = ξX = β−1/3. For a given
angle θ on this surface, the magnetic field strength (from
Equation (11)) is given by B = 3BP β cos θ . For the flow
to remain magnetically controlled, the field strength must be
larger than a critical value BC determined by the ram pressure
of the outflow (B2

C = 8πρv2), where we expect BC ≈ 0.001 G
for typical cases (see Equation (5)). This condition requires
cos θ > BC/(3BP β), which in turn restricts the coordinate q
that specifies the streamlines to the range defined by

q2 <

[
1 −

(
BC

3BP β

)2
]

q2
X. (29)

Since we expect BC ∼ βBP , the range of streamlines that
are unaffected by the X-point issue is roughly given by q <

qX

√
8/3. In other words, for ∼94% of the streamlines, the flow

remains magnetically controlled over the entire space. For the
remaining ∼6%, the flow is magnetically controlled except for
a small region (of size (ΔL) ∼ rX/3) surrounding the X-point.
Note that outflow can still take place along these streamlines,
but that the flow pattern will be slightly different than that given
by the unperturbed magnetic field geometry. For the remainder
of this paper, for simplicity, we consider the flow to take place
over the full range of open streamlines q � qX, while noting
that this approximation may overestimate the outflow rates by a
few percent.

4. OUTFLOWS FROM PLANETARY SURFACES

Given the specification of the magnetic field structure and
hence the flow geometry (Sections 2 and 3), we now consider
the launch of a wind or outflow from the surface of the planet.
After writing down the full set of equations of motion, we
consider a reduced version of the problem where the flow
is taken to be isothermal. For this case, the solutions for the
dimensionless fluid fields can be found analytically, including
the required conditions for the flow to pass smoothly through the
sonic transition. In order to complete the solution, we must then
specify the values for the physical parameters, i.e., the density
ρ1 at the inner boundary and the sound speed as (taken to be
constant).

4.1. Formulation of the Wind/Outflow Problem

The equations of motion for this problem include the conti-
nuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0, (30)

the force equation

∂u
∂t

+ u · ∇u = −∇Ψ − 1

ρ
∇P +

1

4πρ
(∇ × B) × B, (31)

the energy equation

ρ

(
∂E
∂t

+ u · ∇E
)

= −P∇ · u + Γ − Λ, (32)

and the evolution equation for the magnetic field

∂B
∂t

+ ∇ × (B × u) = −∇ × (ηres∇ × B) , (33)

where ηres is the resistivity. This paper considers the magnetic
fields to be fixed and strong enough not to be changed by the
outflow. In a full treatment, however, the back-reaction of the
outflow on the magnetic field should be taken into account.

In this paper, we consider the gravitational potential Ψ to be
that of the planet, which is taken to be spherical with mass MP
and radius RP. Since the planet orbits the star, the full potential
has an additional contribution from the rotating frame of
reference. The order of this correction term is O(M∗r3/MP a3),
so that it has size ∼10−3 near the planet surface and size
∼0.03 near the sonic surface. As a result, this term does not
greatly affect the launch of the outflow and is not included here.
To consistent order, we also ignore the tidal forces from the
stellar gravitational field (note that the sonic surface is well
inside the Roche radius). We thus work in the regime where the
gravitational force is dominated by that of the planet.

In the energy Equation (32), E is the specific energy of the
fluid, Γ is the heating rate (per unit volume), and Λ is the cooling
rate. The heating is primarily due to UV flux from the central
star (e.g., see MCM and references therein) so that Γ can be
written in the form

Γ = ηabsFUVe−τ σuvn0, (34)

where ηabs is the fraction of the UV energy that is deposited
by heat, σuv is the cross section for UV photons, FUV is the
unattenuated UV flux of the star at the location of the planet,
and τ is the optical depth (from the star to the point where the
heating term is evaluated).
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The cooling process is primarily due to Lyα radiation that is
emitted by Hydrogen atoms as they are excited via collisions
(Black 1981). To leading order, the cooling term can be
represented by a function of the form

Λ ≈ Cn0n+e
−TC/T , (35)

where C = 7.5 × 10−19, TC = 118,348 K; the resulting cooling
rate has units of erg cm−3 s−1. Note that this particular form
is only valid for temperatures T < 12,000 K; at higher
temperatures the gas cools even more efficiently (Spitzer 1978).
In any case, the cooling rate is large enough that the gas
temperature never increases beyond an effective maximum
Tmax ≈ 104 K. In order for Lyα radiation to act as the primary
cooling mechanism, it must dominate over other processes and
the radiation must be able to escape; both of these conditions
are met, as shown in the appendices of MCM.

Since the heating and cooling rates depend on the state of
ionization, through the number densities of the neutrals n0 and
ions n+, we also need the equation of ionization balance:

∂n+

∂t
+ ∇ · (un+) = FUV

〈hν〉e
−τ σuvn0 − αRn2

+, (36)

where the recombination coefficient αR ≈ 2.7 × 10−13

(T/104 K)−0.9 cm3 s−1 (Storey & Hummer 1995). For the re-
maining parameters, we take σuv = 2 × 10−18 cm2 and 〈hν〉 =
2.2 × 1011 erg (e.g., Spitzer 1978).

Note that the planet is only heated on the side facing the star,
whereas cooling takes place over the entire surface of the planet.
This work implicitly assumes that the UV heating is distributed
uniformly throughout the upper atmosphere of the planet. This
approximation, in turn, is valid when zonal winds are strong
enough to provide the required redistribution. Although the
issue is not settled, current models suggest that strong winds are
present, so that uniform heating is a reasonable approximation
(for further discussion, e.g., see Batygin & Stevenson 2010;
Langton & Laughlin 2008, and references therein).

As formulated here, Equations (30)–(36) make up a compete
set that can be solved for the fluid fields. However, even if we
use a simplified magnetic field geometry, with the coordinates
constructed in Section 3, the problem remains intrinsically three
dimensional: Although the flow is axisymmetric and follows
the coordinate p defined by Equation (12), the heating comes
from the central star which lies off to one side. As a result,
the incoming photons do not follow the coordinates, and a full
solution for the heating/cooling of the outflow requires one
to solve a three-dimensional radiative transfer problem. Before
embarking on that task, it is useful to have solutions for an
approximate treatment. Toward this end, a simplified version of
the problem is formulated in the next section.

4.2. Reduced Equations of Motion

In this section, we consider steady-state solutions and assume
that the magnetic field structure due to the planet (and the star) is
strong enough to dominate the flow. As a result, in this regime,
the magnetic field is fixed and current free. The continuity, force,
and induction equations thus reduce to the forms

∇ · (ρu) = 0, u · ∇u + ∇Ψ +
1

ρ
∇P = 0, and B = ϒρu,

(37)
where the parameter ϒ is constant along streamlines (e.g., Shu
et al. 1994; Cai et al. 2008).

The velocity vector u follows the magnetic field lines, which
follow the coordinate p in the system constructed in Section 3. In
other words, the flow velocity has only one component, which
points in the direction of the magnetic field p̂ = hpεp (by
construction). Next, we assume that the flow is isothermal with
constant sound speed as and define the following dimensionless
quantities:

u = u(p) ≡ |u|
as

, α ≡ ρ

ρ1
, ξ ≡ r

RP

, and ψ ≡ Ψ
a2

s

.

(38)
Here, RP is the radius of the planet and ρ1 is the density at the
inner boundary ξ = 1. The continuity equation thus takes the
form

α
∂u

∂p
+ u

∂α

∂p
= − αu

hqhφ

∂

∂p
(hqhφ), (39)

and the force equation becomes

u
∂u

∂p
+

1

α

∂α

∂p
= −∂ψ

∂p
= −∂ψ

∂ξ

∂ξ

∂p
. (40)

These equations can be integrated immediately to obtain the
solutions

αuhqhφ = αuqH−1/2 = λ (41)

and
1

2
u2 + log α + ψ = ε. (42)

Although the potential ψ , in general, contains additional con-
tributions (e.g., tidal forces), we specialize to the case that
includes only the gravitational potential of the planet so that
ψ = −b/ξ , where b ≡ GMP /(a2

s RP ). Note that the quantity
hqhφ = qH−1/2 is proportional to the inverse of the magnetic
field strength (consistent with the third part of Equation (37)).
The parameters λ and ε are constant along streamlines, but are
not, in general, the same for all streamlines (they are functions
of q). In order for the flow to pass smoothly through the sonic
point, only particular values of the constant λ are allowed. This
constraint is considered in the following section.

The boundary conditions at the planetary surface take the
form

ξ = 1, α = 1, and u = u1 = λH
1/2
1 /q. (43)

Since λ is determined by the conditions at the sonic point, u1 is
specified. In addition, the remaining parameter ε is determined
by evaluating the force equation at the inner boundary, i.e.,

ε = 1

2
u2

1 − b = λ2H1

2q2
− b. (44)

The outflow starts with subsonic speeds so that u1 � 1 (below
we find that u1 ∼ λ/q ∼ 0.01), whereas typical planet
properties imply that b ∼ 10. As a result, one can use the
approximation ε ≈ −b with good accuracy.

4.3. Sonic Point Conditions

Critical points in the flow arise when the fluid speed is equal
to the transport speed. In general, magnetic media support three
types of MHD waves and hence allow for three types of critical
points (e.g., Shu 1992). In this case, however, the flow is confined
to follow the magnetic field lines, so that only one possible
critical point arises, in this case where the flow speed equals

7
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the sound speed. For the equations of motion (41) and (42), the
required matching conditions at the sonic point take the form

u2 = 1 and
1

hqhφ

∂

∂p
(hqhφ) = ∂Ψ

∂ξ

∂ξ

∂p
= b

ξ 2

∂ξ

∂p
. (45)

We must thus evaluate the geometrical factor G defined by

G ≡ 1

hqhφ

∂

∂p
(hqhφ). (46)

Note that in spherical coordinates, this factor would have
the usual form 2/ξ . In terms of the ancillary functions from
Equation (23), the partial derivatives can be expressed as

∂ξ

∂p
= f cos θ

H
and

∂θ

∂p
= −g cos θ

ξH
, (47)

and the geometrical factor G takes the form

G = 3 cos θ

H 2ξ 4
[2f 2 cos2 θ − g(g + 2f ) sin2 θ ]. (48)

The matching condition at the sonic point can then be written
in the form

b = 3

f Hξ 2
[2f 2 cos2 θ − g(g + 2f ) sin2 θ ]. (49)

One can eliminate the explicit angular dependence from this
expression using the result sin2 θ = q2/ξ 2f and noting that q
is a constant along the direction of the flow. The right-hand side
of the above equation (for given q) thus becomes a function of
ξ only,

b

3
= 2f 2 − (g2/f + 2g + 2f )q2/ξ 2

f 3ξ 2 + (g2 − f 2)q2
. (50)

For given planetary properties (set by the value of b), magnetic
field strength ratio (set by β), and starting angle θ0 of the
streamline (set by q), Equation (50) provides an algebraic
expression that can be solved for the value of ξ = ξs at the
sonic point. With ξs specified, the angle θ (ξs) is also specified,
and hence the value of p = ξg cos θ is determined. Finally, the
value of the parameter λ that allows for smooth flow through
the sonic point is given by

λ = λ(q) = qH−1/2
s exp

[
λ2H1

2q2
+

b

ξs

− b − 1

2

]
, (51)

where the subscript “s” (“1”) implies that the quantity is
evaluated at the sonic point (inner boundary). Equation (51)
provides an implicit solution for the parameter λ. However, the
λ2 term on the right-hand side of Equation (51) is extremely
small (it is equal to u2

1/2 � 1) and can be ignored to leading
order; doing so results in a direct expression for the parameter λ
(after Equation (50) has been solved to find the value of ξs). We
also note that one can define an alternate parameter λ̃ ≡ λ/q,
which is useful because it is easier to find solutions for λ̃ (e.g.,
when q → 0).

Figure 2 shows the sonic surface for a planet/star system
with typical properties. Here, the parameter β = 10−3, which
holds when the surface fields on the planet and the star are
equal, and the semimajor axis a = 10 R∗; the parameter b = 10,
which holds for planets with mass MP = 0.75MJ , radius RP =

0 2 4 6 8 10

Figure 2. Sonic transition surface for the planet with dimensionless gravitational
potential depth b = GMP /(a2

s RP ) = 10 and background magnetic field strength
parameter β = 10−3. The heavy solid curve near ξ = 3.3 shows the location
where the flow passes through the sonic point. The light solid curves show
the underlying (p, q) coordinate system. The Cartesian coordinates x and z are
given in units of the planetary radius.

1010 cm, and sound speed as = 10 km s−1. The sonic transition
occurs at nearly constant dimensionless radius (ξ ≈ 3.3), as
delineated by the heavy curve. The light solid curves show
the underlying coordinate system, i.e., the lines of constant p
and q. Only the streamlines (constant q) corresponding to open
magnetic field lines are shown. The last coordinate line shown
is the one passing through the X-point. For the perpendicular
coordinate, the value p = 0 corresponds to the surface passing
through the X-point, and that surface is a sphere. Negative
values of p correspond to surfaces that are more highly curved
(compared to a sphere), whereas positive values of p produce
flatter surfaces. Note that the sonic surface lies well within
the surface passing through the X-point. As a result, the flow
diverges significantly faster than that of a spherically symmetric
wind.

The right-hand side of Equation (50) is not, in general,
a monotonic function of ξ ; it reaches a maximum and then
decreases in the limit ξ → ∞. If the maximum value is too
small, then Equation (50) has no solutions, and the outflow
will not pass through the sonic point within the context of this
simplified model. One can show that the right-hand side of
Equation (50) is an increasing function of q for sufficiently
small ξ (in the regime where matching occurs). As a result, the
minimum value occurs for the smallest value of q, i.e., along the
pole where q = 0. For this streamline, the matching condition
is the most difficult to meet; the sonic point is thus given by
solutions to the cubic polynomial b = 6/f ξ 2, or, equivalently,

βξ 2 + 2/ξ = 6/b. (52)

This equation has no real solutions if either parameter β or b
is too large; solutions require βb3 � 8, or equivalently β �
βmax = 8/b3. Since b ∼ 10, the value of βmax ∼ 0.01. Only
smaller values of β < βmax allow for smooth outflow solutions.

8
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0 0.2 0.4 0.6

Figure 3. Values of the parameter λ/q that allow the outflow to pass smoothly
through the sonic point. The parameters λ are shown here as a function of
sin θ0 = q(2 + β)−1/2, which determines the starting point of the streamlines.
All cases use b = 10 (where b = GMP /(a2

s RP ) sets the depth of the gravitational
potential of the planet). Curves are shown for a range of the parameter that sets
the relative strength of the stellar and planetary magnetic fields: β = 0.008
(bottom curve), 0.004, 0.002, 0.001, and 0.0005 (top curve). For smaller values
of β, the curves converge toward a well-defined locus (although the range in
sin θ0 shrinks).

For solutions that pass through the sonic point, so that λ is
specified, Figure 3 presents the resulting values of λ/q over
the range of allowed streamlines. These results are shown for
a range of the magnetic field strength parameter β. For the
planetary properties used here, where b = 10, the maximum
allowed value of β = 0.008 is shown by the lowest curve in
Figure 3. Larger values of β do not allow for a sonic transition
over the full range of open field lines. The resulting λ/q for
smaller values of β converge toward the result for β = 0. In
addition, the range of allowed streamlines, given here by the
range of allowed starting angles θ0, decreases with decreasing
β (see Equation (26)). Notice also that λ/q is relatively slowly
varying over the range of allowed streamlines. For the largest
possible β, λ/q varies by a factor of ∼2 from the pole to the
angle of the last open field line; the results for smaller β show
much less variation.

Note that the results derived above make sense in the limits:
for flow near the planetary surface, where the magnetic field
is determined by the dipole of the planet, the sonic point
condition of Equation (50) reduces to the form b = 3ξ (along
the pole). This solution results from the continuity equation
∂ξ (ξ 3ρu) = 0, where this form for the divergence operator is
expected for flow that follows a dipole field. In the opposite
limit where ξ → ∞, the field lines and the streamlines become
asymptotically straight and point in the ẑ-direction. In this limit,
we recover the results for one-dimensional flow, where the
continuity equation has the form ∂z(ρu) = 0. The solutions
that smoothly pass through the sonic point are those where the
magnetic field of the planet dominates, so that the sonic point
ξs ≈ b/3. Using this result, we can define a fiducial value for

the parameter λ/q, i.e.,

(λ/q)0 = b3

54
exp [5/2 − b] ≈ 0.2256 b3e−b. (53)

For expected planetary properties with b ≈ 10, we find
(λ/q)0 ≈ 0.01. Notice also that λ/q sets the scale for the mass
outflow rate and that this quantity decreases exponentially with
increasing depth of the gravitational potential well of the planet
(set by b).

For solutions that smoothly pass through the sonic transition,
we can also find the asymptotic speed u∞, i.e., the value realized
in the limit ξ → ∞. In this regime, the reduced equations of
motion (41) and (42) are simplified further to take the forms

uα = λβ/q and
1

2
u2 + log α = ε, (54)

where both λ and ε are known functions of the parameter q that
specifies the streamline. The asymptotic speed u = u∞ is thus
given by the expression

u2
∞ − log u2

∞ = 2ε + 2 log(q/βλ). (55)

Note that Equation (55) has two roots whenever real solutions
exist, which requires the right-hand side to be greater than unity.
One root corresponds to u2

∞ < 1, whereas the (physical) root of
interest corresponds to u2

∞ > 1.
Figure 4 shows the dimensionless velocity and density pro-

files for outflows characterized by different values of the con-
stant λ. These profiles are shown for flow from the poles, so that
q = 0 and the flow direction is given by r̂ = ẑ. In the top panel,
the central curve shows the velocity profile for the critical value
of λ/q that allows the flow to pass smoothly through the sonic
point. If the value of λ/q is too small (bottom curve), then the
outflow speed never reaches the sound speed. Instead, the flow
velocity reaches a maximum at the radius of the sonic point and
then decreases for larger ξ . On the other hand, if the value of
λ/q is too large (top curve), the outflow cannot reach the sonic
point in a smooth manner. This plot is thus analogous to that
found for the well-known Parker wind (see Figure 1 of Parker
1965) and for Bondi–Hoyle accretion (e.g., see Shu 1992 for
further discussion).

The bottom panel of Figure 4 shows the corresponding density
profiles. Here, the solid curve shows the result for the critical
value of λ/q that allows for a smooth sonic transition. The
supercritical and subcritical cases are shown as the dashed
curves. Note that the density profile is extremely steep near
the planetary surface, and then levels out at large radii ξ . This
behavior is a reflection of the divergence operator, which follows
the magnetic field lines, which in turn spread rapidly near the
planet and become straight at large distances ξ . Notice also
that the density for the subcritical case is larger than that of
the critical case for ξ � 1. Although the mass outflow rate is
smaller for the subcritical case (which lowers the density), the
asymptotic speed (see the top panel) is much smaller and this
latter effect increases the density and produces the observed
behavior.

For completeness, we can find the values of the parameter
λ/q for field configurations where the matching condition
(Equation (49)) at the sonic point cannot be met. In this case,
the largest value of λ, and hence the largest outflow rate, occurs
when the outflow velocity approaches the sound speed in the
limit ξ → ∞. In this case, we can combine Equations (41)–(44),
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Figure 4. Top panel shows the velocity profiles for outflows from planetary
surfaces for flow with q = 0 (from the planetary pole). The three curves show
the velocity as a function of radius ξ for the critical value of λ/q (central curve),
for a subcritical case (bottom curve), and a supercritical case (top curve). These
velocity profiles were calculated using b = 10 and β = 10−3. Bottom panel
shows the corresponding density profiles. The critical case is shown as the solid
curve, whereas the dashed curves show the subcritical case (which continues to
large ξ ) and the supercritical case (which is confined to small ξ ).

while setting u → 1, and then solve for the value of the
parameter λ/q:

λ/q = β−1 exp

[
−(b + 1/2) +

λ2H1

2q2

]
≈ β−1 exp [−(b + 1/2)] .

(56)

4.4. Dimensionless Mass Outflow Rate

In this geometry, the continuity equation reduces to the form
αuqH−1/2 = λ = constant (see Equation (41)). Because the
quantity qH−1/2 does not have units of area, the constant λ
is not the mass outflow rate. As a result, we need to find the
relationship between the outflow rate and the quantities that
appear in the equations of motion.

In the limit of large ξ → ∞, the dimensionless mass outflow
rate ṁ∞ is given by the integral

ṁ∞ = 2
∫ �̃∞

0
2π�̃d�̃ (αu)∞ , (57)

where �̃ = �/RP and where the dimensionless outer radius
of the outflow �̃∞ can be determined from Equation (28).
The leading factor of two arises because the wind flows from
both the northern and southern hemispheres of the planet. From
Equation (41) we find that (αu)∞ = H 1/2u1H

−1/2
1 , where the

subscripts “1” indicate that the quantities are evaluated at the
inner boundary. In the limit ξ → ∞, f → β, g → β,
and H → β2. Using the streamline equation, the cylindrical
radius �̃ is related to the orthogonal coordinate q through

the expression �̃ 2 = q2/β. After changing variables, the
dimensionless outflow rate takes the form

ṁ∞ = 4π

∫ qX

0
u1 q dq H

−1/2
1 , (58)

where H1 is a function of q and where q2
X = 3β1/3. In general,

the starting speed u1 will not be the same for all streamlines,
i.e., it will be a function of q. If we replace u1 in the integral by
the appropriate mean value 〈u1〉, Equation (58) can be evaluated
to find

ṁ∞ = 4π〈u1〉(2 + β)2

3(1 + 2β)

{
1 −

[
1 − 9β1/3(1 + 2β)

(2 + β)3

]1/2
}

.

(59)
This expression is valid for β � 1. For larger values of β, the
stellar contribution dominates the magnetic field of the planet
over its entire surface, and the dimensionless mass outflow rate
reduces to the spherically symmetric form ṁ = 4πu1.

The mass outflow rate can also be evaluated at the inner
boundary ξ = 1. The mass outflow rate must be the same in
both limits ξ → 1 and ξ → ∞, so this calculation provides a
consistency check. In this case, the dimensionless outflow rate
is given by the expression

ṁ1 =
∫

S

(αu) · r̂dS, (60)

where the integral is taken over the entire planetary surface;
however, the outflow velocity u is only nonzero over the fraction
of the surface that supports the outflow. Notice also that the
flow is not radial, so that the velocity u points in the p̂-direction
(rather than the r̂-direction). Using the divergence theorem, the
integral can be rewritten in the form

ṁ1 =
∫

V

∇ · (αu) dV =
∫

V

1

hphqhφ

∂

∂p
(αuhqhφ)dV, (61)

where V is the volume of the planet and where u is the only
non-vanishing component of the velocity (in the p̂-direction).
Here, the volume element dV = hphqhφdpdqdφ. The integral
with respect to φ produces a factor of 2π because the system
is axisymmetric; the integral over p can be evaluated directly
and results in a surface term evaluated at the planetary surface
ξ = 1. The remaining expression becomes

ṁ1 = 4π

∫ qX

0
u1 q dq H

−1/2
1 , (62)

which has the same form as that in the limit ξ → ∞ (compare
with Equation (58)). Again we must consider flow from both
the northern and southern hemispheres of the planet.

Figure 5 shows the dimensionless mass outflow rate ṁ =
dm/dt plotted as a function of the dimensionless depth b of
the gravitational potential well of the planet. The results are
shown for a series of values of the field strength parameter β;
the curves correspond to increasing values of β from bottom to
top in the figure. Notice that the curves end at particular values
of b and that these values decrease with increasing β. For larger
values of b, only a fraction of the open streamlines allows the
flow to pass smoothly through the sonic point. The mass outflow
rates are thus diminished. In the discussion below we derive a
scaling law (see Equation (64)) that describes how the outflow
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Figure 5. Dimensionless mass outflow rate vs. dimensionless depth b of the
gravitational potential well of the planet. The curves show the results for different
values of the magnetic field strength parameter β, from β = 0.0005 (bottom
curve) to β = 0.008 (top curve).

rate ṁ depends on the variables (b, β); over the parameter space
represented in Figure 5, this scaling law holds to an accuracy
of ∼3%.

Figure 6 provides another way to view the dependence of the
dimensionless outflow rates on the underlying parameters. In
this case, we plot the outflow rate ṁ as a function of the field
strength ratio β. Each curve corresponds to a different value
of the dimensionless depth b of the gravitational potential well
of the planet. The outflow rates increase with β until a well-
defined maximum is reached; note that the parameters of this
extremum are defined by solutions to Equation (52). At this
point, further increases in β lead to straighter magnetic field
lines (and streamlines), especially along the poles of the system,
and the flow along those streamlines cannot pass smoothly
through the sonic point. As β increases, the fraction of the
open streamlines that allow for smooth flow decreases, but the
fraction of streamlines that are open increases. In addition,
the sonic point moves inward, for those streamlines where it
exists, and this effect acts to increase the outflow rate ṁ. These
competing effects thus lead to the non-monotonic behavior
shown in Figure 6.

The parameter β is typically small; for example, β ∼ 10−3

when the field strengths are equal on the stellar and planetary
surfaces and a = 10 R∗ ≈ 0.05 AU. As a result, it is useful to
find simplified results that are correct to leading order in β. If
we expand Equation (59), the leading-order term becomes

ṁ = 3π〈u1〉β1/3 + O(β2/3). (63)

Note that in the case of a spherically symmetric flow, the
dimensionless mass-loss rate would have the form ṁsph = 4πu1
in these units. The fraction of the total possible outflow rate (with
fixed u1 = 〈u1〉) is thus F ≈ 3β1/3/4. From the previous section,
the fiducial value of the parameter (λ/q)0 ∼ u1 ∼ b3 exp[−b]
(see Equation (53)). We thus except the dimensionless mass

0.0001 0.001 0.01 0.1

Figure 6. Dimensionless mass outflow rate vs. magnetic field strength parameter
β. The curves show results for different values of the dimensionless depth b of
the gravitational potential well of the planet, where b = 12 (bottom), b = 10
(middle), and b = 8 (top). Local maxima occur for the largest values of β that
allow the flow along all of the open streamlines to pass smoothly through the
sonic point (see the text).

outflow rate ṁ to obey the scaling relation

ṁ ≈ Am b3 exp[−b] β1/3, (64)

where Am is a constant of order unity. Fitting to the results
presented in Figures 5 and 6, we find Am ≈ 4.8 ± 0.13 (where
the quoted uncertainties represent the standard deviation of Am
for the parameter space depicted in the figures). This scaling law
works well as long as the flow along all of the open field lines can
pass through the sonic point. For sufficiently large β, however,
sonic transitions cannot take place in the polar direction, and
the dependence of the outflow rate ṁ on the parameters (b, β)
becomes more complicated.

In the limit of large β, sonic transitions cannot take place
along any of the directions. On the other hand, all of the field
lines from the planet must match onto stellar field lines. In this
case, the values of λ/q are given by Equation (56) for all of the
streamlines. The integral that defines the dimensionless outflow
rate can be evaluated to obtain the result

ṁ = 6πβ−2/3 exp [−(b + 1/2)] . (65)

This expression is only valid for β < 1. At larger stellar
field strengths, all of the field lines originating on the planet
surface are open, and the leading coefficient in Equation (65)
becomes 2π (1 + 2/β). In the extreme limit β � 1, the
dimensionless outflow rate thus reduces to the expression
ṁ = 2π exp[−(b + 1/2)], which is the form expected for flow
in the ẑ-direction from a disk with the radius of the planet.

4.5. Estimating the Physical Constants

The previous subsections specify the solutions for the di-
mensionless fluid fields, including the necessary conditions for
passing smoothly through the sonic point and specification of the
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dimensionless mass outflow rate ṁ. In this section, we complete
the solution by estimating values for the physical parameters ρ1
and as that determine the full mass outflow rate, where Ṁ =
ρ1asR

2
P ṁ.

We first provide order of magnitude estimates: the planetary
radius is given, with a typical value RP ≈ 1010 cm. Since these
planets are gas giants, they do not have solid surfaces. As a result,
the planetary radii measured by transits are determined by the
levels in the atmosphere that are opaque to optical photons,
typically at pressures ∼1 mbar (see, e.g., Charbonneau et al.
2007). We also note that the launching radius where ξ = 1 could
lie several scale heights above the planetary surface defined by
transit measurements (e.g., at pressures ∼1 nbar). However,
the scale height H ≈ RP /b, where b ∼ 10, or larger. As a
result, H � RP , and any departures of the launching radius
from RP are expected to be small (∼10%). The gas temperature
is expected to approach the benchmark value T ∼ 104 K, so
that sound speed as ∼ 10 km s−1. Finally, the density ρ1, or
equivalently n1 = ρ1/mP , can be estimated by using the fact
that the wind is launched near the τ = 1 surface. The optical
depth τ ∼ σuvn1H , so the number density n1 ∼ 1/(Hσuv) ≈
b/(RP σuv) ∼ 109 cm−3. With these values, the scale for the
mass outflow rate is Ṁscale = mP n1asR

2
P ∼ 1011 g s−1 (see also

MCM). Since the dimensionless factor ṁ ∼ 0.01 (see Figures 5
and 6, and Equation (64)), typical outflow rates are expected to
be Ṁ ∼ 109 g s−1.

To obtain a better estimate for the quantities (as, n1), we need
to consider heating and cooling of the gas (Equations (32), (34),
and (35)) including ionization (Equation (36)). Unlike previous
outflow studies, the geometry of the flow is determined by the
magnetic field structure. For relatively large β, the magnetic
field of the star dominates, and the streamlines become primarily
vertical. In the opposite limit of small β, only the streamlines
from the polar regions lead to outflow, and these streamlines
are also oriented mostly in the ẑ-direction (see Figure 2). In
either case, the flow is directed in the polar directions, whereas
stellar heating arrives from the equatorial direction. Because of
this configuration, the optical depth of the incoming radiation
is not directly tied to the mass outflow rate (which occurs for
spherical flow). In addition, the stellar UV photons penetrate
(from the side) into the atmospheric layers where the flow
speeds are small. Leaving a full three-dimensional treatment
of the heating/cooling problem for the future, we adopt here a
simplified approach where flow velocities are neglected. As a
further approximation, we assume that the required values of
the sound speed as and density n1 are determined at the layer
where the optical depth is unity, where n1 = ρ1/mP is the total
number density at the τ = 1 surface.

In this limit, the energy Equation (32) reduces to the condition
that heating and cooling are locally in balance, so that Λ = Γ.
Similarly, the ionization Equation (36) reduces to the statement
that the rate of ionization balances the recombination rate. These
two equations can be combined to determine the ionization
fraction as a function of temperature. With the definition
X+ ≡ n+/n0, we can write

X+(T ) = n+

n0
= C

ηabs〈hν〉αR

exp[−TC/T ]

≈ (2.5 × 105) T 0.9
4 exp[−11.8348/T4]. (66)

With the ionization fraction specified, the heating equation

determines the temperature and can be written in the form

exp[−TC/T ]
X+

1 + X+
= ηabsFUVσuv

Cn
exp[−τ ]

= ηabsFUVσuv

Ce
n−1

1 , (67)

where n = n0 + n+ is the total number density and n1 =
n(τ = 1). The left-hand side of Equation (67) is a function of
temperature, whereas the right-hand side is a function of position
only. The second equality specializes to the layer where τ = 1.
If we assume that the flow velocities are small, the optical depth
is given by

τ = n1σuvRp

b(1 + X+)
= 1, (68)

where b is the dimensionless depth of the gravitational potential
well (and note that b ∝ 1/T ). Equations (67) and (68)
provide two equations for the two unknowns n1 and T. With
these parameters specified, we can then evaluate the scale
Ṁscale = mP n1asR

2
P for the mass outflow rate. The outflow rate

itself is given by Ṁ = ṁ(mP n1asR
2
P ), where the dimensionless

outflow rate ṁ can be approximated using the scaling law from
Equation (64) or the full calculation in that section. Note that in
order to determine the value of b = GMP /a2

s RP , we need the
temperature T ∝ a2

s .
Figure 7 shows the number densities n1 and corresponding

outflow rates Ṁ as a function of the UV flux FUV for three
choices of planetary mass: MP = 0.5, 0.75, and 1.0 MJ . Keep
in mind that the dimensionless outflow rate ṁ depends on the
magnetic field strength parameter β (see Figure 6); these curves
are calculated using β = 0.001. In this approximation, the
outflow rate increases somewhat more slowly with FUV than
the linear relation of Equation (1). For sufficiently large flux
levels (not shown), the temperature approaches its effective
maximum value (just above 104 K, see Spitzer 1978); in this
regime, the outflow rates would approach a constant value, but
the assumptions of this section break down. Notice also that the
number density (dashed curves) is a slowly varying function of
both the UV flux and the planet mass, and that n1 ∼ 109 cm−3

as expected.

5. OBSERVATIONAL SIGNATURES

Observations used to infer the presence of planetary outflows
show that the transit depth is greater at UV wavelengths than in
the optical (Vidal-Madjar et al. 2003, 2004; Désert et al. 2008;
Sing et al. 2008; Lecavelier des Etangs et al. 2008; Linsky et al.
2010). As a result, we need to determine the optical depth of the
outflow to UV radiation. To start, we define the dimensionless
column density Nc according to

Nc ≡
∫ ∞

−∞
α ds , (69)

where α is the dimensionless density obtained from the flow
solution (see Section 4). The column density Nc is thus defined
for a given path and the variable s is the dimensionless distance
along the path.

Note that Equation (69) determines the total column density,
whereas the optical depth depends on the chemical species
that absorbs the UV radiation. Most observations to date are
carried out for Lyα photons, so that the column density of
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Figure 7. Mass outflow rates as a function of the UV flux from the star. The
outflow rate dM/dt = Ṁ is given in g s−1, and the UV flux is given in
erg cm−2 s−1. Solid curves show the outflow rates for three values of the
planet mass, from MP = 0.5 MJ (top curve) to MP = 1.0 MJ (bottom curve).
Dashed curves show the number density n1 (in cm−3) at the τ = 1 surface for
the same cases. The magnetic field strength parameter β = 0.001 for all cases
shown.

interest is that of neutral hydrogen. As a result, ionization
modeling is necessary to determine the optical depths and hence
the observational signatures. This present treatment assumes
isothermal flow. To consistent order of approximation, the
neutral column density is reduced from that of Equation (69)
by a factor F = (1 + X+)−1 (see Equations (67) and (68)). For
the benchmark temperature T = 104 K, X+ ≈ 1.8, so that
the neutral hydrogen column density is reduced to a fraction
F ≈ 0.36 of the total column density. However, the ionization
fraction is a sensitive function of temperature. For T = 8000 K,
X+ ≈ 0.08, and the factor F ≈ 0.93.

For the sake of definiteness, we evaluate the column density
on paths that are parallel to the star–planet direction (y = 0
in the coordinate system used here; see Figure 1) with a constant
vertical height z. Each point along the path corresponds to a
different streamline, and hence a different value of the constant
λ/q. Figure 8 shows the dimensionless column density Nc
through the outflow, as a function of z, for several typical
cases. The solid curves show the effect of varying the depth
of the gravitational potential well of the planet. The three
curves correspond to b = 8, 10, and 12, where the magnetic
field strength parameter β = 0.001, which corresponds to equal
surface fields on the star and planet (for a = 10 R∗). The dashed
curve shows the effect of doubling the field strength parameter
β (for b = 10).

The optical depth at UV wavelengths is given by τ =
Fn1σuvRP Nc. For typical cases, the quantity n1σuvRP ∼ 20.
The base density n1 = ρ1/mP is a slowly increasing function
of the incident UV flux FUV (see Figure 7), but the correction
factor F due to ionization decreases with temperature and hence
decreases with increasing FUV. The range in z for which the flow
is optically thick is thus relatively small, ranging from z/RP =
1.35 to 1.77 for the cases shown with b = 8 to 12. With these
values, the area for which the planet is apparently optically thick

0 2 4 6 8 10

Figure 8. Dimensionless column density through the outflow as a function of
vertical coordinate z (in units of the planet radius RP). Solid curves show the
column density for magnetic field parameter β = 0.001 with three values of the
dimensionless depth b of the planetary gravitational potential well: b = 8 (top),
10 (middle), and 12 (bottom). The dashed curve shows the b = 10 case with
larger field strength parameter β = 0.002. Optical depth is obtained from the
dimensionless column density through the relation τ = Fn1σuvRP Nc ∼ 20Nc.

will be 2–3 times larger at UV wavelengths than in the optical
bands. The transits for UV observations are thus predicted to be
2–3 times deeper.

The mass outflow rates are expected to vary substantially
from planet to planet. In order to illustrate this trend, in Figure 9
we plot estimates for the mass outflow rates for the collection
of extrasolar planets that are observed in transit (data from
Schneider 2010). The planetary masses, radii, and semimajor
axes are observed. In order to estimate the outflow rates, we
must also specify the UV flux FUV and the magnetic field
strength parameter β. With these quantities determined, the
results of Section 4 can be used to calculate the mass outflow
rate Ṁ . The UV fluxes from main-sequence stars vary with
spectral-type and other stellar parameters (e.g., rotation rates) in
a complicated manner (see Lecavelier des Etangs 2007; Lammer
et al. 2003, and references therein). To obtain the results shown
in Figure 9, we estimate the UV flux using a simple scaling
law that is intermediate between the scaling laws advocated
by the aforementioned authors. To specify the magnetic flux
parameter β, we assume that the stellar and planetary surface
fields are comparable, so that to leading order β ∝ a−3. Finally,
we take into account the fact that radius of the τ = 1 surface
(where the outflow is launched and the parameter b = GMP /a2

s R
is evaluated) lies above the planetary surface at RP. Using a
simple hydrostatic model for the lower layers of the outflow
region, we estimate that R1 ≈ 1.2RP , and this correction is used
here.

With the specifications described above, we obtain the mass
outflow rates shown in Figure 9 as a function of planet mass.
Several trends are clear: first, for a given planet mass, a wide
range of outflow rates are possible. Both the magnetic field
parameter β and the UV flux FUV vary with semimajor axis a, so
that closer planets are predicted to have stronger outflow rates.
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Figure 9. Rough estimates for mass outflow rates for the sample of extrasolar
planets observed in transit. Mass outflow rates dM/dt = Ṁ are given in g s−1;
planetary masses are given in Jovian masses MJ .

In addition to this dependence on a, however, both variables
(β, FUV) are expected to display substantial variation from
system to system. Next, we note that the range of outflow
rates shown in Figure 9 spans seven orders of magnitude.
Those planets with the largest outflow rates should thus have
observable transit signatures, whereas those on the other end
of the range will show little or no effect. Finally, the outflow
rates are predicted to be a steeply decreasing function of
planetary mass MP. In the isothermal limit, we obtain the nearly
exponential decrease shown in Figure 9 (see Equation (64)). If
the gas can cool substantially before it passes through the sonic
transition, this decrease could be less steep, but the overall trend
remains.

Given that two observed planets have signatures of planetary
outflows, it is useful to see how they compare with the results
shown in Figure 9. The planet HD209458b (Vidal-Madjar et al.
2003) has mass mP = 0.685 mJ , and the figure shows that the
expected outflow rates are Ṁ ∼ 1010 g s−1. Even with the
reduction due to magnetic effects, such estimated outflow rates
are large enough to account for the observations of HD209458b
(although these values are near the low end of the inferred
range). However, for the planet HD189733b (Lecavelier des
Etangs et al. 2010), the mass is larger, mP = 1.15 mJ , and the
predicted outflow rate from this theory is much lower. The values
shown in Figure 9 correspond to Ṁ ∼ 108 g s−1 with significant
scatter. The observational papers for HD189733b advocate a
large UV flux (up to 40 times the solar value), which increases
the theoretical outflow rate to Ṁ ∼ 109 g s−1 for our choice of
field strength parameter β = 10−3. To account for the inferred
outflow rate of Ṁ ∼ 1010 g s−1, one could invoke a larger
value of β for this system. Nonetheless, some tension remains
between the inferred outflow rate and that expected theoretically
from magnetically controlled models. More observations, of this
system and others with a range of masses, are needed to sort out
this comparison.

6. CONCLUSION

6.1. Summary of Results

This paper has begun a theoretical study of outflows from the
surfaces of hot Jupiters in the regime where the flow is controlled
by magnetic fields. In this case, the magnetic field structure
determines the flow geometry (whereas the field configurations
are determined by independent dynamo processes within the
planet and by the background contribution from the star).
With the magnetic field structure specified, the dimensionless
version of the outflow problem can be solved semi-analytically;
this paper carries out this calculation in the isothermal limit,
including the requirement that the flow must pass smoothly
through the sonic transition. The determination of the physical
constants represents the final piece of the calculation. The
specific results of this paper can be summarized as follows.

1. This paper considers a reduced description of the magnetic
field structure that includes the dipole field of the planet
and a constant background contribution. The reduced field
structure near the planet is modeled in Section 3 and
provides a description of the flow geometry in the region
where the outflow is launched (see Figure 2). In this section,
we construct the corresponding coordinate system and
differential operators for this flow geometry. These results
are used here to study the launch of outflows for hot Jupiters,
but can also be used in a variety of other applications.

2. A fraction FAP of the planetary surface supports magnetic
field lines that are open with respect to the planet. This area
fraction provides a constraint on the mass flow that can fully
leave the planet. The remaining fraction, 1 – FAP, defines the
region where material can leave the planetary surface but is
nonetheless confined to the immediate vicinity of the planet;
this material produces an exosphere surrounding the planet.
In the magnetically controlled regime, the outflow rate is
thus lower than estimates obtained by assuming spherical
symmetry. The fraction FAP is calculated analytically for
the reduced field configuration near the planet (Section 3).

3. Along each streamline, the dimensionless energy ε and
the flow momentum parameter λ are constant, but vary
across streamlines. These parameters are specified by
requiring that the flow pass smoothly through the sonic
point and by the boundary conditions at the planetary
surface. The resulting specification of parameters can
be found analytically (see Equations (50) and (51), and
Figure 3). The outflow rate is determined by integrating over
the surface area of the planet where the outflow is active,
where the angle of the flow direction (which is not radial)
must be included (see Equations (57)–(64)). The resulting
mass outflow rates are well-defined functions of the depth
b of the planetary potential well and the magnetic field
strength parameter β (see Figures 5 and 6). Over the regime
of parameter space where flow along all of the open field
lines can pass smoothly through the sonic point, the scaling
law of Equation (64) provides an accurate determination of
the dimensionless outflow rate ṁ.

4. This flow geometry is significantly different from previ-
ous cases that assume spherical symmetry. For magneti-
cally controlled outflows, only a fraction of the field lines
(and hence streamlines) allow outflow. In addition, pas-
sage through the sonic point depends sensitively on the
divergence operator (at the transition) which depends on
the configuration of the streamlines. As the magnetic field
strength of the background (from the star) increases relative
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to that of the planet, more of the surface has open field lines,
but not all of the streamlines allow for smooth sonic tran-
sitions. Another key difference is that spherical flows are
often taken to be “self-limiting,” where the outflow rate, in
part, determines the optical depth to the incoming photons.
In this geometry, most of the heating photons impinge upon
the system from the equatorial directions, whereas most of
the outflow is directed along the poles of the planet. This
flow geometry also changes the effect of tidal forces exerted
on the planet by the star: because mass loss occurs along the
polar directions, the tidal forces act to inhibit, rather than
enhance, the mass outflow rates (see also TAL; compare
with MCM).

6.2. Discussion

Since this problem contains a number of physical parameters,
it is useful to summarize them here and discuss which ones
are the most important. The structure of the magnetic field
requires the specification of three quantities: the surface field
strength BP, the effective planetary radius RP, and the ratio β
of the background field strength to the surface field strength.
For the cases under consideration, however, the magnetic field
is assumed to be strong enough to guide the flow, so that only
the field geometry plays a role. In this simplified treatment, the
magnetic field geometry is characterized by the single parameter
β (see Equation (11)). For purposes of launching the wind from
the planet, the main contribution of the stellar field is to provide a
nearly constant background field, taken here to lie in the vertical
direction. Since the planetary field is much stronger in the region
within the sonic surface, this assumption is valid for determining
the launch of the wind. However, the stellar field direction will
not necessarily line up with the pole of the planet, so that
more general geometries should be considered in the future.
In addition, the stellar field configuration will affect the manner
in which the outflow propagates after its launch—beyond the
sonic surface—and this problem should also be addressed in
future work.

With the flow geometry set by the magnetic field structure,
the outflow problem determines the fluid variables as a function
of the (single) coordinate p which follows the field lines
(Section 4). These quantities include the density ρ(p), flow
speed v(p), temperature T (p), and ionization fraction X+(p) =
n+/n0, and depend on the planet mass MP and radius RP, and
the stellar heating flux FUV. Under the assumption of isothermal
flow, the problem is reduced further to two dimensionless fluid
variables α = ρ/ρ1 and u = v/as , along with the dimensionless
depth of the planetary gravitational well b = GMP /(a2

s RP ).
The dimensionless problem thus has only two parameters
(b, β), and they determine the dimensionless outflow rate (see
Equations (57)–(65) and Figures 5 and 6).

The determination of physical quantities requires specifica-
tion of the density scale ρ1, the sound speed as, and the planet
radius RP. The UV flux FUV from the star determines, in part,
the sound speed as and the density ρ1 at the base of the flow.
Over the expected parameter space, the sound speed as and den-
sity scale n1 vary by only factors of 3–10. However, the outflow
rate decreases exponentially with the depth b of the potential
well and shows complicated dependence on the magnetic field
strength parameter β (see Figures 5, 6, and 7). Note that this
exponential sensitivity to the depth of the potential well is a com-
mon feature in outflow problems where the sound speed is less
than the escape speed (compare with the case of outflows from
circumstellar disks driven by external FUV radiation; Adams

et al. 2004). Since the dimensionless outflow rate displays ex-
ponential dependence on b, where b = GMP /Ra2

s , the exact
value of the temperature (or equivalently the sound speed) can
be important. In addition, the radius R in this expression corre-
sponds to the radius R1 where the outflow is launched, i.e., the
τ = 1 surface. Although the radius R1 differs from the planet
radius RP by only ∼10%, this difference can be significant for
the regime of large b where the outflow rates are exponentially
suppressed.

6.3. Future Work

This paper represents only the first step toward understanding
outflows from hot Jupiters in the regime where magnetic fields
dominate the flow geometry. This work should be carried
forward in a number of directions.

One approximation used here is the assumption of isothermal
flow. For the next stage of development, an analogous calcula-
tion can be carried out using a more general, polytropic equation
of state. However, a full treatment of the heating and cooling
should be undertaken. This calculation requires one to solve the
energy equation (32) and the ionization equation (36), where
the heating from the central star is determined through a three-
dimensional radiative transfer calculation. The chemistry of the
outflow should also be included, both to get a better description
of the heating and cooling processes and to determine observa-
tional signatures (e.g., Garcı́a Muñoz 2007). Note that one of
the intrinsic complications that arises in this problem is that the
flow configuration (determined by magnetic field lines) does not
have the same geometry as the heating and cooling processes.

This paper considers a dipole magnetic field on the planet
and a constant background field from the star; in addition, this
work specializes to the case where the stellar contribution to the
magnetic field near the planet is purely vertical. A wide range of
magnetic field configurations are possible in star/planet systems
and these possibilities should be explored further. One particular
issue arises with sufficiently strong stellar fields, which provide
a background field for purposes of launching the wind from
the planet. If the stellar field is sufficiently strong and straight,
the flow cannot pass smoothly through a sonic transition. In this
case, the sonic point is effectively removed to spatial infinity and
the outflow rates are suppressed (e.g., see Equation (65)). For the
geometry considered here this suppression arises when the field
strength parameter β � 0.01 (which requires the stellar surface
field to be ∼10 times that of the planet for a = 0.05 AU, or equal
to that of the planet for a = 0.023 AU). A more detailed study of
this regime should be undertaken, including more complicated
configurations for the background (stellar) field. Another related
effect is that the interaction between the planetary magnetic field
and the stellar magnetosphere, including the flow of material
considered here, can lead to an enhancement in stellar activity
(e.g., Cuntz et al. 2000; Cohen et al. 2009) and orbital evolution
(Chang et al. 2010). This paper also focuses on the case where
the stellar field is vertical, which would arise, e.g., from a dipole
field from the star that rotates with the same angular velocity as
the planetary orbit. Future work should relax this assumption.
In particular, the field lines could trail the planet, wrap up, and
lead to further complications.

For sufficiently strong magnetic fields and low outflow rates,
the ram pressure of the flow is not strong enough to affect
the underlying field structure. For weaker fields and/or higher
outflow rates, however, the back-reaction of the flow on the
magnetic field should be taken into account. An understanding
of this physics can be attained through the solution to the
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Grad–Shafranov equation (e.g., Shafranov 1966), which self-
consistently determines the distribution of streamlines (see also
Cai et al. 2008). Even for the strong field limit, considered
here, this back-reaction plays a role near the X-point. On a
related note, the closed field lines can also be loaded with mass
and the planet will thus develop a quasi-static exosphere (see
TAL); this exosphere can enhance the observational signature,
by increasing the transit depth at UV wavelengths, and should
thus be considered further.

Finally, we note that some of the planets observed in transit
have orbits with nonzero eccentricity. The canonical example
is the planet HD17156b (Barbieri et al. 2007), which has an
orbital eccentricity of e ≈ 0.67; in this system, the stellar flux
varies by a factor of ∼25 over the course of the planetary orbit.
The planetary outflow in this system, and others with similar
architecture, will thus be time dependent. The resulting time-
dependent outflow rates will be sensitive functions of the heating
and cooling mechanisms, as well as the (complicated and time-
dependent) magnetic field configurations. The study of such
systems will provide sensitive tests of the outflow mechanism.
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APPENDIX

EQUIVALENT SPHERICAL PROBLEM

One complication inherent in the study of magnetically
controlled outflows is that the problem is three dimensional.
Even the reduced problem considered here, with a constant
stellar field, requires two dimensions. In order to gain further
insight into the problem, this appendix develops an equivalent
spherically symmetric version of the wind problem.

The geometry of the flow pattern is specified by the divergence
operator. The quantity that appears in the conditions that match
solutions at the sonic point can be written as

Gop ≡ G
(

∂ξ

∂p

)−1

, (A1)

where the geometrical factor G is given by Equation (46) and
∂ξ/∂p is given by Equation (47). In the limit of large ξ � 1,
one can show that Gop ∼ 12/(βξ 4). In the opposite limit where
ξ ∼ 1, near the planetary surface, Gop ∼ 3/ξ . This latter form is
consistent with the result for a dipole field configuration near the
poles of the system (recall that the outflow is concentrated near
the poles). These two limiting forms can be connected through
intermediate values by adopting the form

Gop = 3

ξ (1 + βξ 3/4)
. (A2)

The integrated form of the dimensionless continuity equation
then becomes

αu
ξ 3

1 + βξ 3/4
= λ, (A3)

where λ is a (single) constant for the equivalent spherical
problem. The differential form of the continuity equation is
obtained by taking the derivative of Equation (A3). Near the
planet, we thus obtain d(αuξ 3)/dξ = 0, the form appropriate for
a dipole divergence. Far from the planet, the continuity equation
reduces to the form d(αu)/dξ = 0, which is the form applicable
to flow along a single (Cartesian) direction. The force equation
remains the same (see Equation (42)).

With this form for the divergence, the condition for flow
passing smoothly through the sonic point takes the form

b = 3ξ

1 + βξ 3/4
, (A4)

which thus specifies the radius ξs of the sonic transition
(compare with Equation (52)). In the limit β → 0, this matching
condition becomes b = 3ξ , as expected for a dipole. This
expression (A4) has no real solutions for sufficiently large b
and/or large β. The condition required for solutions to exist,
and hence for the flow to pass through the sonic point, can be
written in the form

βb3 < 16. (A5)

For cases where sonic transitions are possible, the required value
of the constant λ is thus given implicitly by the relation

1

2
λ2(1 +β/4)2 − ln λ = 1

2
+ ln(β/4 + ξ−3

s ) +b(1−1/ξs), (A6)

where ξs is given by the solution to cubic Equation (A4).
For consistency, the area subtended by the outflow must be
proportional to the function ξ 3/(1 + βξ 3/4) that appears in
the continuity Equation (A3). This quantity starts near unity
at the planet surface, grows like ξ 3 near the planet, and then
approaches a constant value in the limit ξ → ∞. This behavior is
thus analogous to that of the more physical problem considered
in the text.
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Garcı́a Muñoz, A. 2007, Planet. Space Sci., 55, 1426
Hubbard, W. B., Hattori, M. F., Burrows, A., Hubeny, I., & Sudarsky, D.

2007, Icarus, 187, 358
Lai, D., Helling, Ch., & van den Heuvel, E. P. J. 2010, ApJ, 721, 923
Lammer, H., Selsis, F., Ribas, I., Guinan, E. F., Bauer, S. J., & Weiss, W. W.

2003, ApJ, 598, 121

16

http://dx.doi.org/10.1086/421989
http://adsabs.harvard.edu/abs/2004ApJ...611..360A
http://adsabs.harvard.edu/abs/2004ApJ...611..360A
http://dx.doi.org/10.1051/0004-6361:20054040
http://adsabs.harvard.edu/abs/2006A&A...450.1221B
http://adsabs.harvard.edu/abs/2006A&A...450.1221B
http://dx.doi.org/10.1051/0004-6361:20040129
http://adsabs.harvard.edu/abs/2004A&A...419L..13B
http://adsabs.harvard.edu/abs/2004A&A...419L..13B
http://dx.doi.org/10.1051/0004-6361:20078787
http://adsabs.harvard.edu/abs/2007A&A...476L..13B
http://adsabs.harvard.edu/abs/2007A&A...476L..13B
http://dx.doi.org/10.1088/2041-8205/714/2/L238
http://adsabs.harvard.edu/abs/2010ApJ...714L.238B
http://adsabs.harvard.edu/abs/2010ApJ...714L.238B
http://adsabs.harvard.edu/abs/1981MNRAS.197..553B
http://adsabs.harvard.edu/abs/1981MNRAS.197..553B
http://dx.doi.org/10.1086/523788
http://adsabs.harvard.edu/abs/2008ApJ...672..489C
http://adsabs.harvard.edu/abs/2008ApJ...672..489C
http://dx.doi.org/10.1088/0004-637X/708/2/1692
http://adsabs.harvard.edu/abs/2010ApJ...708.1692C
http://adsabs.harvard.edu/abs/2010ApJ...708.1692C
http://adsabs.harvard.edu/abs/2007prpl.conf..701C
http://dx.doi.org/10.1038/nature07626
http://adsabs.harvard.edu/abs/2009Natur.457..167C
http://adsabs.harvard.edu/abs/2009Natur.457..167C
http://dx.doi.org/10.1088/0004-637X/704/2/L85
http://adsabs.harvard.edu/abs/2009ApJ...704L..85C
http://adsabs.harvard.edu/abs/2009ApJ...704L..85C
http://dx.doi.org/10.1086/312609
http://adsabs.harvard.edu/abs/2000ApJ...533L.151C
http://adsabs.harvard.edu/abs/2000ApJ...533L.151C
http://dx.doi.org/10.1051/0004-6361:200810355
http://adsabs.harvard.edu/abs/2008A&A...492..585D
http://adsabs.harvard.edu/abs/2008A&A...492..585D
http://dx.doi.org/10.1088/0004-637X/696/2/1230
http://adsabs.harvard.edu/abs/2009ApJ...696.1230F
http://adsabs.harvard.edu/abs/2009ApJ...696.1230F
http://dx.doi.org/10.1016/j.pss.2007.03.007
http://adsabs.harvard.edu/abs/2007P&SS...55.1426G
http://adsabs.harvard.edu/abs/2007P&SS...55.1426G
http://dx.doi.org/10.1016/j.icarus.2006.10.019
http://adsabs.harvard.edu/abs/2007Icar..187..358H
http://adsabs.harvard.edu/abs/2007Icar..187..358H
http://dx.doi.org/10.1088/0004-637X/721/2/923
http://adsabs.harvard.edu/abs/2010ApJ...721..923L
http://adsabs.harvard.edu/abs/2010ApJ...721..923L
http://dx.doi.org/10.1086/380815
http://adsabs.harvard.edu/abs/2003ApJ...598L.121L
http://adsabs.harvard.edu/abs/2003ApJ...598L.121L


The Astrophysical Journal, 730:27 (17pp), 2011 March 20 Adams

Langton, J., & Laughlin, G. 2008, ApJ, 674, 1106
Lecavelier des Etangs, A. 2007, A&A, 461, 1185
Lecavelier des Etangs, A., Vidal-Madjar, A., Désert, J.-M., & Sing, D.

2008, A&A, 485, 865
Lecavelier des Etangs, A., et al. 2010, A&A, 514, 72
Lin, D. N. C., Bodenheimer, P., & Richardson, D. C. 1996, Nature, 6575,

606
Linsky, J. L., Yang, H., France, K., Froning, C. S., Green, J. C., Stocke, J. T., &

Osterman, S. N. 2010, ApJ, 717, 1291
Lissauer, J. J., & Stevenson, D. J. 2007, in Protostars and Planets V, ed. B.

Reipurth, D. Jewitt, & K. Keil (Tuscon, AZ: Univ. Arizona Press), 591
Mestel, L. 1968, MNRAS, 138, 359
Mestel, L., & Spruit, H. C. 1987, MNRAS, 226, 57
Murray-Clay, R. A., Chiang, E. I., & Murray, N. 2009, ApJ, 693, 23 (MCM)
Papaloizou, J. C. B., & Terquem, C. 2006, Rep. Prog. Phys., 69, 119
Parker, E. N. 1958, ApJ, 128, 664
Parker, E. N. 1965, Space Sci. Rev., 4, 666
Radoski, H. R. 1967, J. Geophys. Res., 72, 418
Schneider, J. 2010, The Extrasolar Planet Encyclopedia, http://exoplanet.eu
Shafranov, V. D. 1966, Rev. Plasma Phys., 2, 103

Shu, F. H. 1992, Gas Dynamics (Mill Valley, CA: Univ. Science Books)
Shu, F. H., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., & Lizano, S. 1994, ApJ,

429, 781
Sing, D. K., Vidal-Madjar, A., Désert, J.-M., Lecavelier des Etangs, A., &

Ballester, G. 2008, ApJ, 686, 658
Spitzer, L. 1978, Physics Processes in the Interstellar Medium (New York:

Wiley)
Stevenson, D. J. 2003, Earth Planet. Sci. Lett., 208, 1
Stone, J. M., & Proga, D. 2009, ApJ, 694, 205
Storey, P. J., & Hummer, D. G. 1995, MNRAS, 272, 41
Sturrock, P. A. 1994, Plasma Physics (Cambridge: Cambridge Univ. Press)
Trammell, G. B., Arras, P., & Li, Z.-Y. 2011, ApJ, 728, 152 (TAL)
Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J.-M., Ballester, G. E.,
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