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ABSTRACT

We examine the possibility that the observed relation between black hole mass and host-galaxy stellar velocity
dispersion (the M–σ relation) is biased by an observational selection effect, the difficulty of detecting a black hole
whose sphere of influence is smaller than the telescope resolution. In particular, we critically investigate recent
claims that the M–σ relation only represents the upper limit to a broad distribution of black hole masses in galaxies
of a given velocity dispersion. We find that this hypothesis can be rejected at a high confidence level, at least for
the early-type galaxies with relatively high velocity dispersions (median 268 km s−1) that comprise most of our
sample. We also describe a general procedure for incorporating observational selection effects in estimates of the
properties of the M–σ relation. Applying this procedure we find results that are consistent with earlier estimates
that did not account for selection effects, although with larger error bars. In particular, (1) the width of the M–σ
relation is not significantly increased, (2) the slope and normalization of the M–σ relation are not significantly
changed, and (3) most or all luminous early-type galaxies contain central black holes at zero redshift. Our results
may not apply to late-type or small galaxies, which are not well represented in our sample.
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1. INTRODUCTION

The mass of a central black hole is correlated with the proper-
ties of its host galaxy, both stellar luminosity or mass (Dressler
1989; Kormendy 1993; Magorrian et al. 1998; Häring & Rix
2004) and velocity dispersion (the M–σ relation; Gebhardt et al.
2000a; Ferrarese & Merritt 2000; Gültekin et al. 2009, hereafter
G09). These correlations provide deep, but poorly understood,
insights into galaxy and black hole formation (see Section 4 for
a brief review). The radius of the sphere of influence of a central
black hole of mass M in a galaxy with velocity dispersion σ
is Rinfl ≡ GMσ−2, so at a distance D the angular size of the
sphere of influence is θinfl = Rinfl/D. An important determinant
of the reliability of dynamical detections of central black holes
is the ratio of the radius of the sphere of influence to the tele-
scope resolution. Thus, we desire θinfl � θres where θres is some
measure of the angular resolution, for example the slit width or
the full width at half-maximum (FWHM) of the telescope point-
spread function. With few exceptions, the black holes in nearby
galaxies have θinfl � 1′′ (see Table 1)—this is why most detec-
tions so far have been made with the Hubble Space Telescope
(HST), which offers higher spatial resolution (FWHM � 0.′′1)
and a more stable point-spread function than ground-based
telescopes.

At a given signal-to-noise ratio, as the ratio θinfl/θres decreases
the measurement errors in black hole mass increase until the
black hole mass becomes consistent with zero. Since θinfl is
usually not much bigger than θres, an obvious concern is that
resolution-dependent selection effects may bias the observed
correlations between black hole mass and galaxy properties.
We focus here on possible bias in the M–σ relation, although
similar considerations apply to the relations between black hole
mass and host-galaxy luminosity or mass. A number of possible
biases have been discussed in the literature. Several authors have
argued that black hole masses are systematically overestimated
when the sphere of influence is not well resolved (see Section 4.1
of G09, and references therein). This seems unlikely for the

following reasons. (1) Assuming that the experimental analyses
of black hole mass measurements are properly designed, the
model parameters derived from poor data may have large error
bars but should not be systematically biased. (2) Gebhardt et al.
(2003) analyzed 12 galaxies twice, once using both ground-
based (low-resolution) and HST (high-resolution) spectroscopy
and once using only the ground-based spectroscopy. They found
that the black hole masses determined from these two data
sets were consistent at the 1σ level, with no evidence that
the masses determined from ground-based data alone were
systematically high. (3) Kormendy (2004) has pointed out
that the black hole mass in M32 (NGC 0221) has remained
remarkably stable—within a factor of two—over the past two
decades while the spatial resolution of the spectroscopy has
increased by a factor of 30. Kormendy also argues that the mass
estimates for several black holes first marginally resolved from
the ground (e.g., NGC 3115, NGC 3377, NGC 4594) did not
systematically change when they were later observed with much
higher resolution by HST—the error bars shrank but the best-
estimate mass did not change significantly. In fact, G09 pointed
out a different and more important bias that is the opposite
of this one: excluding black hole masses from galaxies with
θinfl/θres � 1 from a mass sample systematically biases the
M–σ relation derived from that sample.

Yet another bias occurs when non-detections of black holes
(i.e., measured upper limits to the black hole mass) are not
included in the analysis: if the upper limits are not far from
the ridgeline of the M–σ relation, then analyses that exclude
them will be biased toward high mass at a given dispersion.
On the other hand, if upper limits are included, the analysis
must account for the possibility that some galaxies do not
contain black holes at all, or else a single galaxy without a
black hole could drastically alter the best-fit parameters of the
M–σ relation. Most studies have considered only measured
black hole masses and have ignored the numerous upper limits
available in the literature; for exceptions see Valluri et al. (2005)
and G09.
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Table 1
Top 50 Galaxies by Predicted Angular Sphere of Influence

Galaxy Type σ D Mpred θ
pred
infl M Ref.

(Mpc) (108 M�) (′′) (108 M�)

N0224 Sb 160 0.8 0.52 2.27 1.5 1
N4649 E2 385 16.5 22 0.79 21 2
N6861 S0 414 28.1 29 0.54 <15 3
N4486 E1 324 17.0 10 0.52 62.7 4
N3998 S0 305 14.9 8.1 0.52 2.4 5
N1399 E1 337 21.1 12 0.46 5.1 6
N4751 S0 349 23.5 14 0.44 . . . . . .

N4594 Sa 240 10.3 2.9 0.44 5.7 7
N4472 E2 294 17.0 6.9 0.42 . . . . . .

N4374 E1 296 17.0 7.1 0.42 15 8
N3115 S0 230 10.2 2.4 0.40 9.6 9
N0221 E2 75 0.9 0.02 0.39 0.03 10
N1332 S0 321 22.9 10 0.38 14.5 11
N4143 SB0 271 16.0 4.9 0.37 <1.4 12
N5128 S0/E 150 4.4 0.4 0.36 3.0 13
N1161 S0 336 27.5 12 0.35 . . . . . .

N3031 Sb 143 4.1 0.33 0.34 0.8 14
N4945 Sc 134 3.7 0.25 0.33 . . . . . .

N4552 E1 254 15.4 3.7 0.33 <19 3
N4526 SAB0 264 16.9 4.4 0.33 <3.2 3
N2787 SB0 189 7.9 1.1 0.33 0.43 15
N2293 SAB0pec 261 17.1 4.2 0.32 . . . . . .

IC1459 E4 340 30.9 13 0.32 28 16
E137−044 SAB0 489 69.3 60 0.32 . . . . . .

N3034 Irr 130 4.0 0.22 0.29 . . . . . .

E138−005 SB0pec 349 36.1 14 0.29 . . . . . .

N4055 E? 500 87.5 66 0.27 . . . . . .

N3379 E0 206 11.7 1.5 0.27 1.2 17
N4365 E3 256 20.4 3.8 0.26 . . . . . .

N4278 E1 237 16.7 2.8 0.26 <1.8 3
N1023 SB0 205 12.1 1.5 0.26 0.5 18
N5087 S0? 283 26.2 5.9 0.25 . . . . . .

N4406 E3 235 17.0 2.7 0.25 . . . . . .

N4261 E2 315 33.4 9.3 0.25 5.5 19
N2663 E 291 27.5 6.6 0.25 . . . . . .

N4621 E5 225 17.0 2.2 0.23 . . . . . .

N3923 E4–5 257 22.9 3.9 0.23 . . . . . .

N5062 S0pec 389 60.0 23 0.22 . . . . . .

N4342 S0 225 18.0 2.2 0.22 3.6 20
N4105 E3 262 26.6 4.2 0.21 . . . . . .

N1407 E0 272 28.8 4.9 0.21 . . . . . .

N1270 E? 427 76.7 34 0.21 . . . . . .

N0253 SABc 103 3.2 0.08 0.21 . . . . . .

N5838 S0 266 28.5 4.5 0.20 . . . . . .

N6587 SAB0? 333 48.9 12 0.19 . . . . . .

N1395 E2 245 24.6 3.2 0.19 <0.14 3
IC2586 E4 346 53.1 14 0.19 . . . . . .

N4291 E2 242 25.0 3 0.18 3.2 2
N2841 Sb 206 17.8 1.5 0.18 . . . . . .

N4442 SB0 187 15.3 1 0.17 . . . . . .

Notes. The 50 galaxies with the largest angular sphere of influence, as predicted
by the M–σ relation. Hubble types are mostly from NED. The velocity dispersions
come from G09 or HyperLeda, and the distances are our best estimates from
G09, Tonry et al. (2001), NED redshift-independent distances, or HyperLeda.
Predicted black hole masses are from Equation (1) and θ

pred
infl = GMpredσ−2D−1.

We also list the best black hole mass measurements for these galaxies. The final
column gives a reference code for the mass measurement or upper limit.
References. (1) Bender et al. 2005; (2) Gebhardt et al. 2003; (3) Beifiori et al.
2009; (4) Gebhardt & Thomas 2009 and Gebhardt et al. 2011; (5) de Francesco
et al. 2006; (6) Gebhardt et al. 2007; (7) Kormendy 1988; (8) Bower et al. 1998;
(9) Emsellem et al. 1999; (10) Verolme et al. 2002; (11) Rusli et al. 2011; (12)
Sarzi et al. 2002; (13) Silge et al. 2005; (14) Devereux et al. 2003; (15) Sarzi
et al. 2001; (16) Cappellari et al. 2002; (17) Gebhardt et al. 2000b; (18) Bower
et al. 2001; (19) Ferrarese et al. 1996; (20) Cretton & van den Bosch 1999.

One possibility (Ho 1999; Batcheldor 2010) is that the M–σ
relation only describes an upper limit to the black hole mass in
a host galaxy with given dispersion, that is, the black hole may
have any mass at or below the mass given by the M–σ relation.
In this view, the apparent narrow width of the relation is an
observational selection effect that arises because black holes
with much smaller masses, though common, generally cannot
be detected.

This paper has two related goals: (1) to determine quantita-
tively whether the M–σ relation is a ridgeline (i.e., most black
hole masses lie close to the relation) or an upper envelope (i.e.,
most black hole masses lie well below the relation) and (2)
to investigate whether the parameters of the M–σ relation are
biased by the inability to detect black holes when the angular
size of the sphere of influence is too small. A byproduct of the
analysis will be an estimate of the fraction of luminous galaxies
that contain black holes. In Section 2, we review the arguments
by Batcheldor (2010) in favor of the upper-envelope model. In
Section 3, we test the predictions of the upper-envelope model
and test for bias due to selection effects in the M–σ relation.
We find that we can reject upper-envelope models at very high
significance. Section 4 contains a discussion and conclusions.

2. REVIEW OF THE UPPER-ENVELOPE MODEL

We have argued that detecting black holes is difficult if θinfl �
θres. This criterion is oversimplified, since the ability to measure
black hole mass depends on a number of factors in addition to
angular resolution; some of these factors depend on the quality
of the observations (e.g., the signal-to-noise ratio) while others
depend on the properties of the galaxy (e.g., detecting black
holes in galaxies with large cores is more difficult than in
power-law galaxies)—see G09 for a more detailed discussion.
However, it is instructive to make the simplifying assumption
that a black hole can be detected only if θinfl exceeds a fixed
fraction of θres. In this case, if galaxies are uniformly distributed
in space and the number density of galaxies with given black
hole mass M and dispersion σ is n(M,σ ), the number of
detected black holes with these parameters will be proportional
to M3n(M,σ ). The additional factor of M3 can create a bias such
that galaxies of a given dispersion with low-mass black holes
are strongly underrepresented in the samples used to determine
the M–σ relation.

Batcheldor (2010) quantifies this argument using a sample
of ∼2500 galaxies with distance D < 100 Mpc and measured
velocity dispersion, taken from the HyperLeda catalog4 (Paturel
et al. 2003). He assigns a black hole to each galaxy, with
mass chosen uniformly random in log M between a lower limit
M = 10 M� and an upper limit given by the M–σ relation,
and he assumes that the black holes can be detected only
if5 θinfl > θres = 0.′′1. The resulting simulated data set of
black hole masses yields an apparent M–σ relation with scatter
comparable to the observed relation; Batcheldor thus argues that
the upper-envelope model is consistent with the data.

This argument implies that HST observations should yield
many more upper limits to black hole mass than actual detec-
tions. Consider, for example, the dispersion range 325 km s−1 <
σ < 385 km s−1, which in the sample of G09 contains four
galaxies (IC 1459, NGC 1399, NGC 4486, and NGC 4649,
measured by Cappellari et al. 2002; Gebhardt et al. 2007;
Gebhardt & Thomas 2009; Gebhardt et al. 2003, respectively).

4 See http://leda.univ-lyon1.fr.
5 This analysis is also repeated with θres = 0.′′05 and yields consistent results.
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All of these have black hole masses >5 × 108 M�. If log M
is uniformly distributed between 10 and ∼3 × 109 M� in this
dispersion range, as suggested by Batcheldor, then for every
black hole with M > 5 × 108 M� there should be roughly 10
(i.e., [log(5 × 108) − log(10)]/[log(3 × 109) − log(5 × 108)])
with smaller masses. Thus, the four galaxies in the sample of
G09 should be accompanied by ∼40 galaxies with similar dis-
persions and distances but smaller black holes. Since the obser-
vations are planned before knowing the mass of the black hole,
there should be 40 galaxies with smaller black holes that have
also been observed, for which the observations would probably
yield only upper limits. Instead of 40, there are only 3 upper
limits in that range in the literature (NGC 315, NGC 6861, and
NGC 1841; Beifiori et al. 2009). Thus published measures of
black hole masses argue against the upper-envelope model, but
the published data may not tell the whole story. Some upper
limits derived from HST observations may not be in the liter-
ature, and the observers may have had other clues leading to
an enhanced success rate (e.g., a rising dispersion curve from
ground-based observations, weak active galactic nucleus (AGN)
activity, etc.). Nevertheless, there is little or no positive evidence
that supports the notion that very small black holes are present
in galaxies with such high velocity dispersion.

3. TESTS OF THE UPPER-ENVELOPE MODEL

As we have discussed, a critical test of the upper-envelope
model is whether it correctly predicts the success rate of
detecting central black holes. The challenge in applying this
test is that we cannot model the behavior of observers and time
allocation committees, who determine which galaxies are to
be observed. However, the most promising sites to prospect
for black holes are the centers of those galaxies with the
largest values of θ

pred
infl ≡ GMpred/(σ 2D), the angular size of the

sphere of influence determined using the black hole mass Mpred

predicted by the M–σ relation. Thus, an objectively defined
sample that provides the sharpest tests of the upper-envelope
model is the set of galaxies with the largest values of θ

pred
infl —the

difference between the ridgeline model and the upper-envelope
model is maximized for this sample.

We have queried the HyperLeda catalog for all galaxies with
measured distance and central velocity dispersion. HyperLeda is
not complete in any sense, but this method mimics the approach
used by observers to identify target galaxies for black hole
searches. For each galaxy we predicted the black hole mass
using the M–σ relation in the form

Mpred(σ ) = 10α(σ/200 km s−1)β M� (1)

with α = 8.12 and β = 4.24 from G09. Using other values of β
changes the sample, but our final results are very similar when
using any β in the range 3–5 to create the initial sample. We next
computed θ

pred
infl and sorted the galaxies by this parameter. We

then found the best available distances and dispersions6 for the
galaxies near the top of the list, recomputed θ

pred
infl , and resorted.

The galaxies with the top 50 resulting values of θ
pred
infl are listed

in Table 1.
Our results will be based on a sub-sample of galaxies from

this table with the N � 50 largest predicted angular spheres of

6 Some of these dispersions seem implausible to us, e.g., 500 km s−1 for
NGC 4055, and we are engaged in a program to remeasure high-dispersion
galaxies including some from this list.
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Figure 1. Plot of the probability p of detecting 15 or more black holes in the top
30 galaxies as a function of the following upper-envelope model parameters:
(a) μmin = log10(Mmin/M�) where Mmin is the minimum black hole mass
in the upper-envelope model. Values of μmin < 3 can be rejected at the 90%
confidence level. (b) The minimum detectable angular sphere of influence θmin.
The p-values are very low for all plausible values of θmin, showing that our test
is insensitive to the exact value assumed. (c) Δ, the range of log mass in the
upper-envelope model.

influence, and we must choose N. If N is too small, the statistical
uncertainties will be unnecessarily large. If N is too large the
power of the test will be diluted by galaxies that have not been
examined for black holes. We normally work with N = 30,
but we have experimented with other values of N and find, as
described below, that our results are quite insensitive to N so
long as N � 20. Of the top 30 galaxies in Table 1, 15 have
published black hole mass determinations and 5 have published
upper limits.

We present two tests with these data. The first tests for the
probability of obtaining these data given the upper-envelope
hypothesis as presented by Batcheldor (2010). The second
examines more generally how limited resolution affects our
inferences about the M–σ relation and its properties.

3.1. Test A

We make the simplifying assumption that a black hole can be
detected if and only if its angular sphere of influence exceeds
θmin = 0.′′01, a factor of two smaller than the smallest angular
sphere of influence for a published black hole mass (NGC 2778;
Gebhardt et al. 2003). This assumption is conservative, in that
a larger value of θmin would yield results that are even harder to
reconcile with the upper-envelope model (see Figure 1(b)). For a
given galaxy, with known distance D and velocity dispersion σ ,
there is then a minimum black hole mass that can be detected,
Mlimit(σ,D) = σ 2Dθmin/G. In the upper-envelope model as
presented by Batcheldor (2010), logarithmic black hole masses
μ = log10 (M/M�) are distributed uniformly between some
upper and lower limits μmax and μmin, so the probability of
detecting a black hole in a given galaxy is

Pdetect(σ,D) = μmax(σ ) − μlimit(σ,D)

μmax(σ ) − μmin
. (2)
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Following Batcheldor (2010) we take μmin = 1 (minimum black
hole mass of 10 M�) and μmax given by Equation (1) with
α = 8.7 and β = 5.0. (The assumed values of α and β do
not strongly influence our results, and the conclusions below
are made stronger if values that more closely match the best-
fit ridgeline relation are used.) We use this model to calculate
the probability of making as many black hole detections as are
found in the top 30 galaxies of Table 1. Of these 30 galaxies, 15
have black hole mass detections and 15 have either an upper
limit or no published results from a black hole search. We
make the conservative assumption that the latter galaxies have
no published detection because their black holes are too small
(θinfl < θmin). This is unlikely to be the case; for example, some
of these are unpromising galaxies to examine for black holes on
account of their peculiar or irregular classifications.

To quantify the probability p of detecting at least 15 black
holes, we ran Monte Carlo realizations of simulated observations
of the top 30 galaxies in Table 1, using Equation (2) to calculate
detection probabilities of each galaxy. Thus, the null hypothesis
of this numerical experiment is the upper-envelope model. For
each realization we simulated an observation of each of the 30
galaxies by drawing a uniform random number in the range
[0, 1). If the random number was smaller than Pdetect(σ,D),
then the black hole was considered to be detected. If the null
hypothesis, the upper-envelope model, is incorrect, then the
numerical experiment should produce very few realizations in
which there were as many or more detections as there are
in the data. We ran 106 realizations, but only 7166 resulted
in 15 or more simulated black hole detections. The probability
(or p-value) of detecting 15 out of 30 galaxies is then p = 7.2×
10−3, allowing us to reject the null hypothesis (Batcheldor’s
version of the upper-envelope model) at the 99.3% confidence
level.

The above calculation assumes that the minimum logarithmic
black hole mass is μmin = 1, which was chosen for consistency
with Batcheldor (2010). We repeat our simulations for larger
values of μmin and plot p as a function of μmin in Figure 1(a).
Even for μmin = 3 (minimum mass of 1000 M�) we can reject
the upper envelope model at about the 90% confidence level.

We also repeat our simulations for different values of θmin.
We plot p as a function of the minimum detectable angular
sphere of influence θmin in Figure 1(b). Only at θmin <0.′′0015 is
p > 0.1; thus for all plausible values of θmin the upper-envelope
hypothesis can be rejected at high confidence.

Our results are insensitive to the number N of galaxies in our
sample (N = 30). For N = 20, N = 30, and N = 50 and
our standard parameters (μmin = 1 and θmin = 0.′′01) the upper-
envelope model is ruled out at the 99.7%, 99.3%, and 96.5%
confidence levels, respectively.

We stress again the conservative nature of the assumption that
all galaxies without published black hole mass measurements
have black holes with masses too small to be measured. If,
at the other extreme, we only considered the 20 galaxies with
published mass estimates or upper limits, then we would rule
out Batcheldor’s version of the upper-envelope model at the
99.998% confidence level or at the 90% level for μmin = 5.1.

An alternative to the assumption that μmin is constant is to
assume constant width of the M–σ relation so that μmin =
μmax − Δ with a constant value for Δ. In Figure 1(c), we plot
p as a function of Δ. The probability of finding 15 black holes
in our sample is p < 0.1 for Δ > 6. This result is sensitive
to our assumed value for the normalization parameter α of the
M–σ relation, taken to be α = 8.7 following Batcheldor. For

example, if instead we assume α = 8.12 from G09, we find the
much more stringent constraint p < 0.1 for Δ > 2.8. In order
to better constrain this alternative model as well as to determine
the extent that selection effects alter our inferences, we present
a more sophisticated test.

3.2. Test B

We construct a parameterized model for the distribution
of black hole masses and the observational constraints on
their detection. The model has seven free parameters X ≡
{α, β, b, s, Δ, xr , sr} and is based on the following assumptions.

1. The probability that a given galaxy has a central black hole
is b1. The parameter b1 is assumed to be independent of
galaxy properties. This is almost certainly an oversimplifi-
cation, but the galaxies in Table 1 are mostly luminous el-
lipticals, lenticulars, and early-type spirals and so are likely
to have similar properties.

2. The probability that a galaxy in Table 1 has been examined
carefully for evidence of a black hole is some constant
b2. Only the product b ≡ b1b2—the combined probability
that a galaxy has a black hole and has been examined for
one—can be determined from the data.

3. If a galaxy has a black hole, the probability distribution
of its logarithmic mass μ = log10 (M/M�) is determined
by the M–σ relation (Equation (1)), and takes the form
dp = p1(μ|σ,X)dμ where

p1(μ|σ,X) = g[μ − α − β log10(σ/200 km s−1)]. (3)

The parameters α and β are to be fitted from the data, and
the function g is assumed to have the form

g(x) = k

⎧⎨
⎩

exp
( − 1

2x2/s2
)
, x > 0

1, −Δ � x � 0
exp

( − 1
2 (x + Δ)2/s2

)
, x < −Δ.

(4)

The case Δ = 0 corresponds to the usual assumption of a
ridgeline M–σ relation with a Gaussian distribution of the
residuals in logarithmic mass. In the case of a large value of
Δ, the M–σ relation only defines an upper envelope to the
range of black hole masses. Since g is a probability density,
the constant k must be chosen so that

∫
g(x)dx = 1, that is,

k−1 = Δ +
√

2πs. With this parameterization the variance
in log mass is

ε2 = Δ3/12 +
√

π/8Δ2s + 2Δs2 +
√

2πs3

Δ +
√

2πs
. (5)

4. The probability that a black hole will be detected depends
only on the ratio of the angular radius of the sphere of
influence to the resolution limit of the telescope. Thus the
detection probability is

p2(μ|σ,D, θres, X) = f [log10(θinfl/θres)]. (6)

All of the detections in Table 1 are based on observations
with HST or telescopes with inferior resolution (and thus
these could easily have been detected at HST resolution);
moreover all of the upper limits are from HST. Thus, we
can assume HST resolution for all of the measurements
in this list, θres = 0.′′1, and henceforth we suppress this
argument. The value of θinfl is derived from the actual
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mass of the black hole, not the predicted mass, and is thus
independent of telescope resolution. We parameterize the
detection probability as

f (x) =
{

1, x > xr

exp
[ − 1

2 (x − xr )2/s2
r

]
, x � xr .

(7)

This equation involves two free parameters: xr is the
value of log10 (θinfl/θres) at which detection of the black
hole becomes certain and sr is a measure of the range
of logarithmic black hole mass over which detection is
possible but not certain. We restrict the ranges of these
parameters to −1 < xr < 1 and 0 < sr < 1. For example,
the restriction xr = 1 reflects the conservative assumption
that detection of a black hole should be certain if the sphere
of influence is more than 10 times the resolution of HST.
Our results are insensitive to the values chosen for the range
of xr and sr. The particular functional form in Equation (7) is
chosen so that the integral in Equation (8) below is analytic,
which greatly speeds up the time-consuming Markov Chain
Monte Carlo calculations.

Now suppose that we have a sample of N galaxies with
dispersions σi and distances Di. In K of these galaxies a black
hole has been detected with logarithmic mass μi , and in the
remaining N − K galaxies no black hole has been detected (we
ignore the extra information available from the upper limits to
the black hole mass in a galaxy). Then the posterior probability
distribution of the parameter set X is

p(X) = c Π(X)bK

K∏
i=1

p1(μi |σi,X)p2(μi |σi,Di,X)

×
N−K∏
j=1

[
1 − b

∫
dμp1(μ|σj ,X)p2(μ|σj ,Dj ,X)

]
,

(8)

where Π(X) is the prior probability distribution and the constant
c is chosen so that

∫
p(X)dX = 1. We assume that the prior

distribution is flat in all of the parameters X, with the range
restrictions on xr and sr mentioned above. We then evaluate the
probability distribution (8) using a Markov Chain Monte Carlo
simulation and the top N = 30 galaxies in Table 1. To account
for fluctuations in the best-fit parameters because of the limited
sample size, we resample the top 30 galaxies (with replacement)
100 times, run the Markov Chain Monte Carlo each time, and
average the results. The marginalized probability distributions
over the parameters α and β (the normalization and slope of the
M–σ relation), b (the combined probability that a galaxy has a
black hole and has been observed), and ε (the standard deviation
in logarithmic mass of the M–σ relation) are shown in Figure 2.

The best-fit values for the parameters of the M–σ relation (1)
are α = 8.7 ± 0.4 and β = 3.1+1.4

−1.5 (median and 68% or 1σ
confidence interval). These are consistent with the estimates
α = 8.12 ± 0.08 and β = 4.24 ± 0.41 derived by G09, but the
error bars are much larger and the medians are only consistent
at about the 10% level. Part of this difference arises because
of the different samples. The present sample contains only 15
black hole masses—less than a third of the 49 masses used
and has a larger median dispersion (268 km s−1 compared to
175 km s−1), both necessary byproducts of choosing a sample
based on θ

pred
infl (see Figure 9(b) in G09). Fitting the masses and

Figure 2. Marginalized probabilities of the parameters of the M–σ relation, as
determined by a Markov Chain Monte Carlo solution of Equation (8) for the
data in Table 1. The points with error bars denote the estimates of normalization
α and slope β from G09.

upper limits in the present sample using the methods of G09
yields α = 8.29 ± 0.13, β = 3.61 ± 0.62—thus about 30%
of the difference in the normalization α and about half of the
difference in the slope β can be attributed to changes in the
sample. A second reason for the differences is that we are fitting
a more general model—the fit in G09 assumes Δ = 0 and
ignores observational selection effects. Our results suggest that
accounting for observational selection may lower the slope and
increase the normalization of the M–σ relation from its standard
value, but this is not a secure conclusion since the changes are
less than the 1σ confidence interval.

The standard deviation in log mass from the M–σ distribution
is ε = 0.6+0.4

−0.2. This is consistent with the estimate by G09
that ε = 0.44 ± 0.06 for their entire sample and 0.31 ± 0.06
for the ellipticals in their sample (more precisely, these are
estimates of the intrinsic scatter after removing measurement
error, a correction that we do not apply in this paper). Thus,
there is no evidence that the width of the M–σ relation derived
in prior analyses has been artificially narrowed by observational
selection effects.

Batcheldor (2010) considers models in which the distribution
of logarithmic black hole mass is uniform over a range of about
6–9. These are similar to models in which the parameter Δ in
Equation (4) is between 6 and 9. Models in which Δ > 6 are
excluded at about the 99% confidence level.

The probability that a galaxy has a black hole and that it
has been examined for one is b = 0.8+0.15

−0.2 . We note that 20 of
the top 30 galaxies in Table 1 have measured masses or upper
limits, suggesting that the probability that a galaxy in this list
has been examined is b2 = 20/30 ≈ 0.67. Thus, our results
are consistent with b1 = b/b2 � 1, i.e., all galaxies in the list
contain central black holes.
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A possible concern with this analysis is that our model
contains too many variables to be constrained by the data. One
symptom of this problem would be strong covariances between
the model parameters. We find a significant correlation between
α and Δ (correlation coefficient 0.5–0.6), which presumably
arises because the mid-point of the ridgeline of the M–σ relation
at a given dispersion is determined by the combination α − 1

2 Δ
(Equations (3) and (4)). There is a strong anticorrelation between
α and s (correlation coefficient −0.6), which presumably arises
because the upper envelope of the M–σ relation at a given
dispersion is determined by α + xs where x is of order unity.
All other correlation coefficients are typically �0.3 in absolute
value. Thus, there is no strong covariance between most of the
fitted variables.

The model parameters remain stable as we vary the number
of galaxies in the sample between N = 20 and N = 50. The
normalization parameter α declines by only 3% over this range;
the width s increases by about 15%–20%; and the standard
deviation in log mass ε increases by 25%–30%.

Finally, we ask: given the error bars on the parameters of the
M–σ relation found here, should we believe the smaller error
bars from the analysis of G09? There are good reasons why
the error bars in G09 should be smaller: (1) the G09 sample
contains more than three times as many black hole masses,
including some (NGC 4258 and the Milky Way) with very small
error bars (this argument assumes, as did G09, that the M–σ
relation is the same for these Sbc spirals as it is for early-type
galaxies); (2) the G09 analysis accounts for measurement errors
in the mass determinations and for upper limits; and (3) the
G09 analysis fits only three parameters (slope, normalization,
and scatter of the M–σ relation), while the present analysis fits
seven. Given that the present analysis finds no evidence for bias
due to selection effects in the three parameters that G09 do
measure, it is plausible—though not proven—that such bias is
small enough to be negligible.

4. DISCUSSION AND CONCLUSIONS

The M–σ relation was predicted by simple theoretical models
of self-regulated black hole growth, in which the wind from an
accreting black hole ejects the gas from a galaxy and thereby
quenches further accretion. For an energy-driven wind the
predicted relation is (Silk & Rees 1998)

M = 1

2π

σT

G2mpc

fgas

fw

σ 5, (9)

where σT is the Thomson cross section, mp is the proton mass,
G is the gravitational constant, c is the speed of light, fgas is the
gas fraction of the galaxy’s total mass, and fw is the mechanical
power of a wind coming from accretion onto the black hole,
expressed as a fraction of the Eddington luminosity.7 For a
momentum-driven wind (Fabian 1999)

M = 1

2π

σT

G2mp

vw

c

fgas

fw

σ 4, (10)

where vw is the wind velocity. Again, above this mass, all gas is
expelled so that growth by accretion cannot continue unless
an additional source of gas is provided, e.g., by a merger.
Momentum-driven winds are favored because energy-driven

7 There appears to be an error of a factor of (4π )2 in this formula as given in
Silk & Rees (1998); of course, this is only an approximate result in any case.

winds appear to be too weak once cooling is accounted for
(Silk & Nusser 2010).

These theories do not, however, predict whether the growth
of black holes should inevitably continue until these limits are
reached or whether instead the black hole growth stalls in many
galaxies at smaller masses, i.e., they do not predict whether M–σ
is a ridgeline or an upper-envelope relation.

The tests described in this paper provide strong evidence that
M–σ is a ridgeline relation. In particular, Test A shows that
the upper-envelope relation advocated by Batcheldor (2010) is
ruled out because it predicts far fewer black hole detections than
are found in the literature. Quantitatively, our standard upper-
envelope model (flat distribution in log mass down to 10 M�,
minimum detectable sphere of influence 0.′′01, N = 30 galaxies)
is inconsistent with the data at the 99% level, and the upper-
envelope model is ruled out at >90% confidence for a wide
range of other assumptions. Test B shows that after accounting
for observational selection effects the rms scatter in log mass
at given dispersion σ is only ε = 0.6+0.4

−0.2, consistent with
the estimate of G09 and inconsistent with the upper-envelope
model.

The analysis in Test B also provides a framework for estimat-
ing the bias introduced into the M–σ relation by observational
selection effects. Our principal findings are that (1) the scatter
in the M–σ relation remains small after accounting for observa-
tional selection; (2) the normalization and slope of the relation
are consistent with those derived in analyses that neglect selec-
tion effects, such as G09, but with much larger uncertainties.
These uncertainties could be reduced by (1) searching carefully
for black holes in all of the high-ranked galaxies in Table 1
using HST or ground-based adaptive optics; (2) generalizing the
analysis to include the black holes in the Milky Way and those
in maser galaxies (Greene et al. 2010)—of course, a danger in
the second step is that the M–σ relation may depend on galaxy
morphology.

Finally, our analysis suggests that most galaxies in the list
in Table 1 do contain a central black hole; in particular, a
lower limit to the probability that a black hole is present—as-
suming all of the galaxies in the list have been searched—is
b = 0.8+0.15

−0.2 .
The distribution of black hole masses as a function of host-

galaxy properties is relevant to the demographics of AGNs, since
black holes are believed to be the engines that power AGNs. In
particular, the famous Sołtan (1982) argument estimates the
local mass density in black holes from the density of AGN
photons determined from quasar surveys at optical and X-ray
wavelengths. The estimate is based on an assumed radiative
efficiency ε and the ratio of bolometric radiative energy emitted
by an AGN to the rest-mass energy of fuel consumed. The
Sołtan density can be compared to the local density of black
holes determined from the density of galaxies as a function of
velocity dispersion and the M–σ relation. For plausible estimates
of the radiative efficiency (typically ε = 0.1–0.3 for thin-disk
accretion onto a black hole) these two independent estimates
for the black hole mass density agree within a factor of two
or so (Marconi et al. 2004; Yu & Lu 2008). These results
assume a ridgeline M–σ relation so the agreement suggests
that the ridgeline model is not far from correct. This is not
a strong argument because of several uncertain factors in the
Sołtan argument such as the radiative efficiency, the bolometric
corrections, and the population of black holes ejected from
galaxy centers by gravitational-wave recoil. It is also possible to
account for the agreement by invoking frequent super-Eddington
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accretion from relatively underweight black holes (King 2010),
although this hypothesis requires an active fraction of nuclei
much higher than is observed. Nevertheless, it would be a
surprising coincidence if a combination of errors accidentally
canceled in such a way that the simple estimates we have
described for the local black hole mass density agreed so
well.

Our estimate that the fraction of galaxies in our data set
containing massive black holes is consistent with unity (b1 ≈ 1)
sheds light on the process of gravitational-wave recoil in
black hole mergers. As two black holes inspiral and coalesce,
asymmetric emission of gravitational waves imparts a kick to
the merged black hole (e.g., Fitchett 1983; Baker et al. 2008;
van Meter et al. 2010). If this kick is larger than the escape
velocity at the galaxy center, as can happen for high black hole
spins and particular orientations, then the merged black hole
will be ejected. If the merging galaxies are typical gas-poor
ellipticals, there will not be enough cold gas at their centers
to fuel the growth of another black hole and reestablish the
M–σ relation. Our results therefore suggest that ejection of
black holes is rare in galaxies of this kind, a result consistent
with theoretical calculations (Schnittman 2007; Volonteri et al.
2008).

We note that because we select galaxies based on θ
pred
infl , our

sample tends to have high velocity dispersions—the median
dispersion of the top 30 galaxies in Table 1 is σ = 268 km s−1

compared to a median σ = 175 km s−1 in the sample of
G09. Thus, the conclusions that we draw may not apply to
the black holes in low-dispersion early-type galaxies, which
are still poorly understood (e.g., Volonteri et al. 2010). There
are also observational hints that late-type and/or small galaxies
such as NGC 1068, Circinus, NGC 4435, and the Milky Way lie
systematically below the M–σ relation seen in large, early-type
galaxies (e.g., G09; Greene et al. 2010; Kormendy et al. 2010,
2011).
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