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ABSTRACT

The intracluster medium (ICM) has been suggested to be buoyantly unstable in the presence of magnetic field
and anisotropic thermal conduction. We perform first cosmological simulations of galaxy cluster formation that
simultaneously include magnetic fields, radiative cooling, and anisotropic thermal conduction. In isolated and
idealized cluster models, the magnetothermal instability (MTI) tends to reorient the magnetic fields radially
whenever the temperature gradient points in the direction opposite to gravitational acceleration. Using cosmological
simulations of cluster formation we detect radial bias in the velocity and magnetic fields. Such radial bias is consistent
with either the inhomogeneous radial gas flows due to substructures or residual MTI-driven field rearrangements
that are expected even in the presence of turbulence. Although disentangling the two scenarios is challenging, we
do not detect excess bias in the runs that include anisotropic thermal conduction. The anisotropy effect is potentially
detectable via radio polarization measurements with LOFAR and the Square Kilometer Array and future X-ray
spectroscopic studies with the International X-ray Observatory. We demonstrate that radiative cooling boosts the
amplification of the magnetic field by about two orders of magnitude beyond what is expected in the non-radiative
cases. This effect is caused by the compression of the gas and frozen-in magnetic field as it accumulates in the
cluster center. At z = 0 the field is amplified by a factor of about 10° compared to the uniform magnetic field
that evolved due to the universal expansion alone. Interestingly, the runs that include both radiative cooling and
thermal conduction exhibit stronger magnetic field amplification than purely radiative runs. In these cases, buoyant
restoring forces depend on the temperature gradients rather than the steeper entropy gradients. Thus, the ICM
is more easily mixed and the winding up of the frozen-in magnetic field is more efficient, resulting in stronger
magnetic field amplification. We also demonstrate that thermal conduction partially reduces the gas accretion driven
by overcooling despite the fact that the effective conductivity is suppressed below the Spitzer—Braginskii value.
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1. INTRODUCTION

Thermal conduction may play an important role in the evo-
lution of the intracluster medium (ICM; e.g., Voigt & Fabian
2004). Sufficiently strong conduction can offset radiative cool-
ing losses in massive clusters and reduce the energy require-
ments on active galactic nuclei (AGNs) feedback that is required
to prevent overcooling in less massive clusters and groups (see
McNamara & Nulsen 2007 and Norman 2010 for reviews). It has
also been suggested that not only can thermal conduction serve
as a mechanism for cool core heating but that it is very impor-
tant for the stability of these systems (Ruszkowski & Begelman
2002; Guo et al. 2008; Ruszkowski & Oh 2011). It may also be
responsible for setting a critical central entropy threshold below
which star formation is possible in cluster cool cores (Voit et al.
2008). The recently discovered bimodality in the distribution of
the cluster central entropy (Cavagnolo et al. 2009; Sanderson
et al. 2009) may be due to the combination of AGN feedback
from the brightest cluster galaxies that stabilizes low entropy
clusters and a combination of mergers and thermal conduction
that stabilize higher central entropy clusters (Guo et al. 2008;
Ruszkowski & Oh 2010; Parrish et al. 2010). As such, thermal

conduction may be important for understanding of the feed-
ing of the most massive black holes in the universe. In cluster
outskirts, thermal conduction may flatten the temperature distri-
butions (Parrish et al. 2008), which may have consequences for
the cluster mass estimates. This may have a possible impact on
precision cosmology as it relies on accurate mass measurements
in the most massive clusters.

As a plasma transport process, thermal conduction is closely
linked to gas viscosity. Both types of transport processes
may explain various X-ray observations. For example, recent
Chandra observations of M87 (Werner et al. 2010) show that
the temperature in the shells centered on the cluster center is
remarkably isothermal. They suggest that such a high degree
of isothermality is consistent with effective heat conduction
in the tangential direction. Moreover, they also attribute the
presence of small-scale metallicity gradients to relatively weak
levels of small-scale turbulence, which could be consistent with
viscous damping of gas motions. AGNs are known to generate
intermittent outflows, causing weak shocks and sound waves
(e.g., Fabian et al. 2003; Forman et al. 2005; Finoguenov et al.
2008). The dissipation of the energy contained in these waves
may be sufficient to offset radiative cooling of the gas. It has
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been shown observationally (in Perseus: Fabian et al. 2003; in
Virgo: Forman et al. 2005) and using numerical simulations
(Ruszkowski et al. 2004a, 2004b; Briiggen et al. 2005a) that
Spitzer—Braginskii viscosity and/or conduction is sufficient to
dissipate such waves and heat the ICM efficiently. Moreover,
the compact morphology of buoyantly rising AGNs is consistent
with the presence of effective viscosity (Reynolds et al. 2005)
although it could also be explained by the magnetic draping
effect (Robinson et al. 2004; Ruszkowski et al. 2007, 2008;
Dursi & Pfrommer 2008; O’Neill et al. 2009). Otherwise, the
bubbles would be disrupted by Rayleigh—Taylor instabilities.
Gas viscosity has also been shown to play a role in shaping the
properties of cold fronts caused by the sloshing motion (e.g.,
ZuHone et al. 2010).

The simple picture of viscosity and conduction is complicated
by the presence of magnetic fields that are known to be
present in the ICM (Enflin & Vogt 2003; Vogt & EnfBlin
2003; Feretti & Johnston-Hollitt 2004). Magnetic fields suppress
thermal conduction in the direction perpendicular to the B-field.
However, even in the case of highly tangled magnetic fields,
the effective thermal conduction can be a substantial fraction
the Spitzer conductivity (Narayan & Medvedev 2001). The
anisotropy due to magnetic fields leads to new phenomena with
potentially important consequences for the ICM. It has been
demonstrated both analytically (Balbus 2000) and numerically
(Parrish & Stone 2005) that the ICM is unstable in the presence
of a weak magnetic field and anisotropic thermal conduction
when the temperature is increasing in the direction of gravity
(magnetothermal instability, MTI). When magnetic fields are
partially aligned with the temperature gradient, the heat flow
from hotter to cooler regions along the field lines makes such
regions more buoyant. This causes the magnetic field to become
more aligned with the temperature gradient and leads to the
instability and preferentially radial magnetic fields. A similar
instability occurs when anisotropic transport of energy via
cosmic rays takes place (Chandran & Dennis 2006; Rasera &
Chandran 2008). More recent analysis shows that the gas is
also unstable when the temperature decreases in the direction
of gravity in the presence of a background heat flux (HBI
instability; Quataert 2008) which has also been verified by
numerical simulations (Parrish & Quataert 2008). The saturated
state of the HBI corresponds to the magnetic fields oriented in
the direction perpendicular to gravity. Such a field configuration
implies effectively vanishing thermal conduction from the hotter
outer cluster layers to their cool cores. This accelerates the
effective cooling rate in the core. However, the exact topology of
the magnetic fields depends also on whether externally imposed
turbulence driving is present. This has been recently investigated
by Ruszkowski & Oh (2010) and Parrish et al. (2010), who
showed that there exists a critical level of turbulence above
which the field can be randomized and the conductive heating
to the core restored. Although this analysis was performed
for the HBI, similar arguments apply to the MTI. Cluster
turbulence may come from AGN outbursts, galaxy motions,
and structure formation (major and minor mergers). Dubois
et al. (2009) and Xu et al. (2009) performed a numerical
simulation of a magnetized galaxy cluster with AGN feedback.
These simulations did not include the effects of non-ideal
MHD.

The exact level of turbulence in the ICM is not known but
is expected to vary throughout the evolution of a cluster. How-
ever, indirect measurements (e.g., Churazov et al. 2003) and
upper limits (Sanders et al. 2010) are available. For example,
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some observational estimates put the ICM velocity at a level
of local sound speed (Markevitch et al. 2002; Mahdavi et al.
2007), while others suggest relatively “calm” ICM (Werner
et al. 2010). These levels of turbulence are expected theoret-
ically (e.g., Evrard 1990; Nagai et al. 2003; Vazza et al. 2009).
Future measurements with the International X-ray Observa-
tory (IXO) will help to determine the level of turbulence in
clusters more precisely (Heinz et al. 2011). Therefore, ideally,
we need to resort to ab initio cosmological simulations to in-
clude the effects of structure formation. Using this approach,
we can not only compute the level of the effective thermal
conduction in the presence of magnetic fields but we can also
simulate the growth of magnetic field. Both MTI and HBI are
expected to amplify the fields due to kinematic dynamo ac-
tion although the efficiency of this process is modest. However,
trapping of gravity modes may lead to vorticity growth (Lufkin
et al. 1995) and further field amplification (Ruszkowski & Oh
2011).

Here, we present first cosmological simulations of cluster
formation that simultaneously include radiative cooling, mag-
netic field, and anisotropic thermal conduction. These simu-
lations are a natural extension of our previous work on the
role of radiative cooling, magnetic fields, conduction, and vis-
cosity with the FLASH and ATHENA codes that focused on
isolated cool cores (Ruszkowski et al. 2004a, 2004b; Briiggen
et al. 2005a; Bogdanovi¢ et al. 2009; Ruszkowski & Oh 2010,
2011; Parrish et al. 2010). This work also builds on previ-
ous theoretical and numerical efforts to simulate the growth
of magnetic field in cluster formation simulations by our group
(Briiggen et al. 2005b) with the FLASH code, and other teams
(Dolag et al. 1999, 2002) with GADGET; Enzo (Collins et al.
2009), CosmoMHD (Li et al. 2008), RAMSES (Dubois &
Teyssier 2008) as well as the work by Sijacki & Springel (2006),
who considered non-MHD simulations but included viscosity,
and Jubelgas et al. (2004) and Dolag et al. (2004) who con-
sidered conduction in hydrodynamical SPH simulations. We
also note that the field amplification may result from purely
kinetic plasma processes (e.g., Schekochihin & Cowley 2007;
Schekochihin et al. 2010; Kunz et al. 2011) and that the large-
scale turbulence may serve as the energy input for these mech-
anisms. However, these processes are beyond the scope of this
investigation and are not considered here.

The paper is organized as follows. In the next section, we
discuss the methods and the code used for the simulations. In
Section 3, we discuss our results. Section 4 presents the conclu-
sions. Appendix A discusses the comparison of the anisotropic
conduction module with the linear theory predictions. In
Appendix B, we briefly discuss the tests of the implementa-
tion of the cosmological terms in the MHD equations.

2. METHODS
We solve the following set of MHD equations augmented by

the cosmological expansion terms

ap _
§+V~(pv)_0 (1)

a(pv)
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where (p) is the comoving mean density and where py, is the gas
pressure and € is the gas internal energy per unit volume. We
assume the adiabatic index y = 5/3 and the mean molecular
weight 41 = 0.5 in the equation of state. In Equation (3), C
represents the cooling rate per unit volume. We use standard
tabulated and publicly available cooling curves (Sutherland &
Dopita 1993) for metallicity Z = 0.3 Z5 (Tozzi & Norman
2001; Bohringer & Werner 2010). Our simulations do not
include star formation or AGN feedback and we set a floor
in the cooling function at 0.01 keV in physical units.

The anisotropic thermal conduction heat flux Fy, is given by

Fon = —a~ 'k (Tpn)ep(€p - V), (®)

where € is a unit vector pointing in the direction of the magnetic
field and « is the Spitzer—Braginskii conduction coefficient
givenby k(T) = 4.6x 1077 T3/? ergs~! cm™' K. In the above
equation and in all equations below all variables with the “ph”
subscript denote physical quantities. Following Cowie & McKee
(1977) we included the effect of conduction saturation whenever
the characteristic lengthscale associated with the temperature
gradient exceeds the mean free path, though in the bulk of
the ICM this effect is not significant. We also imposed an
upper limit on conduction such that K = a%/(c,p), where
c, = (¥ — Dpmyror/ kpolr, (the extra factor of a comes from the
prefactorin Equation (8)). Weset K < Kpmax = 5x102cm?s™!.
This ceiling was introduced in order to prevent extremely small
diffusive timesteps. We found that changing Ky.x to larger
values did not affect our results significantly. Only a relatively
limited volume far from the cluster center was subject to this
upper limit.

We also note that the effective conduction may be limited in
the outer regions of the cluster for physical reasons (Medvedev
2007). Moreover, around or beyond the virial radius, the
electron—proton energy equilibration timescales start to exceed
the dynamical or buoyancy timescale. In this region, the MHD
approximation starts to break down and the MTI growth rates are
reduced. However, at smaller radii, the equilibration timescale
due to Coulomb collisions is comparable to or shorter than the
buoyancy timescale, some thermal coupling between electrons
and protons begins to be possible, and the MHD analysis applies
atleast approximately (Dougal & Goldstein 1958; Padmanabhan
2000). Finally, there are independent observational arguments
for fast equilibration in the ICM. Specifically, Markevitch &
Vikhlinin (2007) detected a sharp electron temperature jump
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in the post-shock region in the Bullet Cluster and used this
observation to suggest that the electron—proton equilibration
is much shorter than the collisional timescale. The inferred
equilibration timescale in the post-shock ICM is at least five
times shorter than the Coulomb equilibration time and may
even be consistent with being instantaneous. While the issue
of equilibration is clearly an open research topic, here we
work under the simplifying assumption that equilibration is
instantaneous and that the MHD approximation is appropriate,
and then investigate the consequences of these assumptions.

The most stringent limitation on the timestep df in the
simulation was due to the diffusive process with dt ~ (Ax)*/K.
This timestep was global, i.e., it was set by the most stringent
constraint across all blocks and then used to evolve the entire
computational domain. The maximum resolution that we could
afford computationally was seven levels of refinement for blocks
consisting of 16 zones on a side. That is, the effective resolution
was ~31 h~! kpc. The strong limit imposed on the timestep can
be avoided by employing implicit integration methods. We are
now implementing such methods in the FLASH code (D. Lee
et al. 2012, in preparation). This approach will significantly
speed up the computations and will allow us to perform
simulations for a range of cluster masses (M. Ruszkowski et al.
2012, in preparation).

Equations (1) through (8) were obtained by starting from
the MHD equations and applying cosmological expansion
transformation for the spatial gradients and the following
variable transformations:

p =a ppn ©)
P = apph (10)
T =a Ty, 1D
PE = apphéph (12)
B =a'"By, (13)

where a is the cosmological expansion factor. The velocity
vector v = X, where x = a'r is the code position vector
and r is the physical position vector. These transformations
together with Equations (1)—(7) lead to correct scalings of all
quantities with the expansion factor. For example, Ty, o< a > and
Bpn o a2, which ensures the conservation of the magnetic flux.
Note that the variable transformation adopted here is somewhat
different than, e.g., that in Li et al. (2008) in the CosmoMHD
code, but the scalings of the physical quantities with redshift are
correct in both cases. The cosmological terms were included
using a method analogous to that employed by Ricker et al.
(2000). Specifically, we computed the updates to all variables
due to the cosmological expansion terms by finding the exact
solutions to a modified set of Equations (1)—(4) that retained
only the time derivative terms. Tests of the implementation of
the cosmological terms are presented in Appendix A.

We used initial conditions very similar to the publicly
available initial conditions for the Santa Barbara cluster (Frenk
et al. 1999). Santa Barbara conditions correspond to initial 3o
density perturbations spread over 10 Mpc, Hubble constant of
50 km s~! Mpc~!, and flat geometry in a matter-dominated
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universe (A = 0) in a 64 Mpc computational box, and result in
the formation of a cluster characterized by ry;; ~ 2.7 Mpc. Our
initial conditions have normalizations of the initial background
fluctuations different from those employed in the original Santa
Barbara project, which results in a slightly smaller virial mass.
However, we also performed an adiabatic test simulation with
identical initial conditions and obtained fully consistent results.
We employed periodic boundary conditions. We note that the
results are not sensitive to the initial temperature and strength
of the magnetic fields as long as they are small, which is the
case in our simulations. In particular, the final strength of the
magnetic field may be simply rescaled depending on the initial
field, as long as the initial field is weak. The initial magnetic field
was assumed to be constant in space. While in isolated cluster
simulations the initial topology of the magnetic field can affect
the instability growth rate, the frozen-in magnetic field in the
cosmological simulations is randomized by structure formation
motions well before the hot virialized and relaxed structures are
formed. Since early on thermal conduction is not expected to be
very important, the initial field topology is not expected to play a
crucial role. In fact, it has been demonstrated using cosmological
MHD simulations without transport processes that the results
were indeed not sensitive to the exact topology of the magnetic
field in the statistical sense (Dolag et al. 2002; Briiggen et al.
2005b). Therefore, for simplicity we assume an initial magnetic
field that is pointing in the same direction and is uniform. We
set the initial strength of the magnetic field to 10~'! G, i.e., the
initial physical magnetic field strength was 10~''(1 + 2)!/? G at
the initial redshift of z = 20.

The simulations were performed with the adaptive mesh
refinement (AMR) FLASH code. FLASH is a publicly avail-
able code that was developed in part by the DOE-supported
ASC/Alliance Center for Astrophysical Thermonuclear Flashes
at the University of Chicago. It is a modular, parallel simula-
tion code capable of handling general compressible flow prob-
lems found in many astrophysical environments. The code is
parallelized using the Message-Passing Interface (MPI) library
and the HDF5 or PnetCDF library for parallel I/O to achieve
portability and scalability on a variety of different parallel
computers.

The new directionally unsplit staggered mesh MHD solver
(Lee & Deane 2009; Lee et al. 2009) is based on a finite-volume,
high-order Godunov method combined with a constrained
transport scheme which ensures divergence-free magnetic fields.
Tests of the module demonstrate that it is very robust and
significantly outperforms the previously implemented MHD
eight-wave solver in FLASH.

We implemented the anisotropic conduction unit following
the approach of Sharma & Hammett (2007). More specifically,
we applied a monotonized central limiter to the conductive
fluxes. This method ensures that anisotropic conduction does
not lead to negative temperatures in the presence of steep
temperature gradients. We verified that the module predicts
correct MTI growth rates. Details of these tests are discussed in
Appendix B.

3. RESULTS
3.1. Temperature Distribution

Figure 1 shows cross sections through the temperature distri-
bution in the cluster. All panels correspond to 32/2~' Mpc on
a side. The minimum and maximum values of the temperature
are the same in all panels. The top row is for the non-conductive
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cases while the bottom row is for the runs with anisotropic ther-
mal conduction. Left columns are for non-radiative simulations
and the right one for the runs with radiative cooling. The upper
right panel clearly shows a well-developed cool core. Compari-
son of the top and bottom rows shows that conduction is efficient
in smearing out the fine structure details in the temperature dis-
tribution. The cool core in the conductive case is partially heated
by thermal conduction from the hotter outer layers of the cluster
but it does not become isothermal.

In Figure 2, we show the temperature profiles of the cluster
for all four cases shown in Figure 1. The profiles are not density-
weighted. The dashed green curve is for the non-radiative run,
solid dark blue for anisotropic conduction, dashed light blue
for radiative cooling, and solid red is for radiative cooling with
anisotropic conduction. The solid black line is for the case with
radiative cooling and isotropic conduction at the level of 1/3
of the Spitzer value. The adopted bin size was ~31 4~ kpc.
For larger bin sizes, the comparison between the temperature
profiles and the temperature maps shown in Figure 1 is more
difficult; unless stated otherwise, other one-dimensional profiles
presented below use a bin size approximately three times larger,
which is especially important for the observables inferred from
the vector quantities as they tend to exhibit larger fluctuations.
The effect of thermal conduction on the temperature profiles
is mild but noticeable. This is partially due to the fact that
magnetic fields reduce the effective level of conduction below
the Spitzer value. The effect is more pronounced in Jubelgas
et al. (2004) who use full isotropic Spitzer conductivity in
cosmological simulations. Radiative cooling has much stronger
effect on the temperature distribution. The run with cooling
and 1/3 of isotropic Spitzer conduction shows a slightly higher
central temperature than its anisotropic conduction counterpart.
This is consistent with the fact that, on average, the fields are
slightly more tangential in the center in the latter case and
tend to suppress conduction below 1/3 the Spitzer value. The
geometry of the field is discussed in more detail in Section 3.2
below. Interestingly, the cooling runs show excess temperature
at larger radii. We interpret this effect as a consequence of
the combination of the increased role of shocks in the cooling
ICM that generate entropy and “adiabatic” compression (e.g.,
Lufkin et al. 2000). Both of these effects are more important
in the presence of radiative losses in the cluster center. The
rapid cooling “pulls” the outer cluster layers toward the center
and heats up the ICM. In the presence of cooling, the shocks
are stronger and the heating of the gas more efficient. This
effect is illustrated in Figure 3 where we show the entropy
profiles. The meaning of the curves is the same as in Figure 2.
Figure 3 shows that the radiative runs exhibit elevated entropy
atr > 3004~ kpc.

We point out that the temperature profile declines with the
distance from the cluster center even in the runs that include
conduction. This is possible when the virialization shocks heat
the gas faster than conduction can remove heat.

3.2. Statistical Properties of Magnetic and
Velocity Field Orientations

In the very central parts of the cluster the suppression of
the effective conduction is further enhanced by a partially
tangential ordering of the fields. This effect is shown in the
left panel in Figure 4, where we plot the absolute value of the
radial component of the magnetic field vector (left panel) and
anisotropy parameter 8 for the magnetic field (middle panel).
This quantity is defined as B = 1 — o2 /207, where o}, and
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Figure 1. Cross sections through the temperature distribution in the cluster at z = 0. All panels correspond to 322~ Mpc on a side. The top row is for the
non-conductive cases while the bottom row is for the runs with anisotropic thermal conduction. The left column corresponds to non-radiative simulations and the right
one is for the runs with radiative cooling. The minimum and maximum values of the temperature are the same in all panels. Color bars show the logarithm of the
temperature in Kelvins. This figure illustrates the relative differences between simulations including different physics processes. Their effect is quantified in Figure 2,

which shows temperature profiles.
(A color version of this figure is available in the online journal.)

10

T [keV]

r [Mpc h™']

Figure 2. Temperature profiles of the cluster. The dashed green curve is for
the adiabatic run, solid dark blue for anisotropic conduction, dashed light blue
for radiative cooling, and solid red is for radiative cooling with anisotropic
conduction. The solid black line is for the case with radiative cooling and
isotropic conduction at the level of 1/3 of the Spitzer value. The profiles are not
density-weighted.

(A color version of this figure is available in the online journal.)

op, are the transverse and radial magnetic field dispersions,
respectively. For example, o}, = (B?)!/? and the definition of
opr 18 analogous. The meaning of the curves is the same as

10000
— 1000}
€
o
>
(V)
=
< 100 ¢
100, . ..0 R
0.1 1.0
r [Mpc h™']

Figure 3. Entropy profiles of the cluster. The meaning of the curves is the same
as in Figure 2. Entropy is defined as K = ko, T/ ng/ 3 and the plot units are
(keV cm?).

(A color version of this figure is available in the online journal.)

in Figure 2. For the absolute value of the radial component of
the magnetic field, the isotropic case corresponds to 0.5. For
magnetic anisotropy, the isotropic case corresponds to vanishing
B, and the tangential and radial cases to negative and positive
B, respectively. Horizontal dotted lines correspond to isotropic
configurations. At large radii there appears to be a slight radial
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Figure 4. Left panel: absolute value of the radial component of the unit magnetic field vector. The horizontal dashed line corresponds to the isotropic distribution of
the unit vector orientations. The middle and right panels show anisotropy parameters for the magnetic (middle panel) and velocity fields. Negative values correspond
to tangential fields; zero is for the isotropic case. Anisotropy is defined as 8§ = 1 — 0,2 /26,2, where o, and o; are the dispersions of either the magnetic field or the
velocity field. The color coding of all curves is the same as in Figure 2. Horizontal dotted lines correspond to isotropic configurations.

(A color version of this figure is available in the online journal.)

bias in the orientation of the magnetic field. This could be
attributed to the accretion along the filaments as the magnetic
fields are expected to be locally preferentially tangential to
these structures (Briiggen et al. 2005b) or to inhomogeneous
radial flows in general. The right panel of Figure 4 shows the
anisotropy parameter 8, for the velocity field. The definition of
this quantity is analogous to that for the magnetic fields with
velocity dispersions replacing the magnetic field dispersions.
However, the velocity dispersion is measured with respect to
the mean streaming velocity of the cluster. This figure bears an
interesting resemblance to its magnetic counterpart. There is
an even stronger tangential bias in the velocity field in the
radiative run with anisotropic thermal conduction than in the
magnetic anisotropy parameter for the same run. However, there
is a significant scatter in these quantities and firm conclusion
about the trend could be drawn by averaging over many clusters.
The exact values also depend on such factors such as the
definitions of the cluster center and its bulk velocity, and whether
the quantities are mass-weighted or not. Nevertheless, some
similarities in these quantities are not unexpected, due simply to
the fact that the magnetic field is frozen to the gas and follows
it. However, unlike the velocity field, the magnetic field has
a “memory” of past gas displacement, so the two anisotropy
parameters are not expected to be identical. Intermediate radii
tend to have relatively more tangential velocity field.

3.2.1. Radial Bias in the Velocity and Magnetic Fields

As argued in Sharma et al. (2009) and Ruszkowski & Oh
(2010), the ability of the MTI to reconfigure the magnetic field
depends on the level of externally-driven turbulence. In the
current case, the turbulence is driven by the structure formation
motions. Strong turbulence can significantly affect the MTI but
some residual radial bias may be present in the field. McCourt
et al. (2011) showed that even for strong turbulence driving, the
MTI operates and significantly contributes to the velocity power
spectrum on scales larger than the outer turbulence driving
scale Loy. On scales smaller than Ly, the power spectra in
the conduction and adiabatic runs are nearly identical. As these
isolated box experiments considered a relatively small outer
driving scale (Lou = hpres/16, where Ay is the pressure scale
height in a box Apes/2 high), larger outer driving scales may
reduce the parameter space where the MTI operates.

If the Froude parameter is less than unity, then the turbulence
does not reset the magnetic field configuration established
by the MTI. We define the Froude number here as Fr =

10.0 200
o
. €
a ~ Ox
£ =
=) =
< 1.0 ‘0 —200f
[} o
© [0]
g >
= S —400f
2
o
0.1 . . —-600 . .
0.1 1.0 0.1 1.0
r [Mpc h™'] r [Mpc h™']

Figure 5. Froude number Fr as a function of the distance from the cluster center
(left panel) and the radial component of the gas velocity. The radial velocity
plot shows net mass-weighted infall velocity. Both panels are plotted using 15
spherical shells of logarithmic width 0.168 in the range 15 2~ kpc < r <
5 h~! Mpc. The color coding of the curves is the same as in Figure 2. For
Fr > 1 the turbulence is expected to begin to randomize the magnetic field
configuration that would otherwise be established by the instabilities.

(A color version of this figure is available in the online journal.)

o/wgyL, where o is the gas velocity dispersion and L is
the characteristic lengthscale. Here we define it entirely for
reference purposes as the pressure scale height L = P/§P in
all runs. The characteristic frequency w of the gas perturbed
from its equilibrium state is

) , (14)

> 8 <3 ‘d InS
=2
r dlnr
where g is the total gravity and § = k, T/ n2" is the gas entropy.
The first term in brackets on the right side of Equation (14)
is for the standard Brunt—Viisild frequency while the second
term is for its MHD equivalent in the presence of anisotropic
thermal conduction. The Froude number as a function of the
distance from the cluster center is shown in the left panel in
Figure 5. The meaning of the curves is the same as in Figure 2.
For the runs without anisotropic conduction we used the stan-
dard Brunt-Viisili frequency to evaluate the Froude parameter
and for those that include anisotropic thermal conduction we
used the MHD equivalent of the Brunt—Viisila frequency (see
Equation (14) above). As can be seen in this figure, the Froude
parameter typically exceeds unity. This suggests that the in-
stabilities should be significantly affected by the turbulence.
However, the estimate of Fr is subject to uncertainties because
of the arbitrariness of the choice of the characteristic turbu-
lence scale. Therefore, the Fr parameter should only be taken

5
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as a rough guide to the impact of the turbulence. We also ex-
perimented with other definitions of L (=100 kpc, hydrostatic
pressure scale height, and o/|Vw|, where o is the velocity dis-
persion and w is the vorticity). In all cases, typical values of the
Fr number tend to exceed unity.

Despite the fact that the Froude number tends to exceed
unity, the velocity and magnetic fields indicate clear radial bias
for r > 0.8~ ' Mpc in Figure 4. At r ~ 0.8h~! Mpc the
result is consistent with no bias even though the timescales for
the MTI development are short (see the next section). Radial
bias in the magnetic field in the part of the ICM where the
temperature declines with distance from the center could be
caused by the MTIL. However, the radial bias is present at
large distances from the cluster center where the contribution of
turbulence to the pressure support is strongest, which tends to
isotropize the fields. Thus, a plausible and simple explanation
for the radial bias is that it is due to inhomogeneous radial gas
flows either in the bulk of the ICM or through the filaments
in more distant parts of the cluster. We verified that indeed
some residual net infall velocity is present at larger radii in all
four runs, i.e., independently of whether anisotropic thermal
conduction is included. This effect is shown in the right panel
of Figure 5 where the magnitude of the radial component of
the gas velocity systematically increases at large distances from
the center. The meaning of all curves is again the same as in
Figure 2. This is also consistent with the radial bias in the
velocity field that increases with the distance from the cluster
center (right panel in Figure 4 discussed above). However, there
is no excess magnetic and velocity anisotropy bias in the runs
with anisotropic thermal conduction. Nevertheless, we point out
that it is difficult to disentangle the effect of the MTI and the
inhomogeneous radial flow on the orientation of the magnetic
fields. Moreover, a definite statement about the likelihood of the
magnetic field reorientation due to the MTI in the bulk of the
cluster volume will have to await a systematic study of more
than just one cluster as the dynamical states and properties of
the ICM turbulence (such as the effective outer driving scale)
will be different in other clusters. Here we discuss the result of
a pilot study that forms the basis for future investigation in this
direction.

The radiative run without conduction (dashed light blue
line, right panel in Figure 5) exhibits net accretion even at
smaller radii which is due to the cooling flow. It is worth
noting that, in the radiative run with anisotropic conduction,
the weak net infall in the central cluster regions is still present
but it is significantly reduced compared to the cooling-only
case (see the solid dark blue line for the radiative run with
conduction and the dashed light blue line for the radiative run for
r <0.5h~" Mpc).

3.2.2. Observations of Magnetic Field Orientation in Clusters

We also note that Pfrommer & Dursi (2010) reported on radio
polarization measurements in the Virgo cluster based on the ob-
servations of magnetic field draping around the cluster galaxies.
Pfrommer & Dursi (2010) suggests that the polarization pat-
tern in the vicinity of the magnetic “tracer” galaxies interacting
with the ICM is consistent with predominantly radial fields at
large distances from the cluster center. They further pointed out
that this observation is consistent with the predictions of the
MTI. For this mechanism to work, the MTI would have to either
reestablish the radial magnetic field bias on a timescale at least
comparable to the dynamical timescale of the orbiting “tracer”
galaxies or the properties of the galaxies must be such that they
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Figure 6. Left: MTI growth rates in units of Brunt-Viisild frequency. Right:
MTI timescales. In both panels the color coding of the curves is the same as
in Figure 2. For the runs without anisotropic conduction the rates are inferred
from the density and temperature distributions via the post-processing of the
simulation data.

(A color version of this figure is available in the online journal.)

do not dramatically stir the ICM in a continuous fashion and/or
that a significant time passed since the last major merger. Such
instability growth rates may be possible but whether they are
realized depends on the details of the dynamical structure of the
ICM.

3.2.3. MTI Growth Rates and Timescales

In Figure 6 (left panel), we show the MTI growth rates in
units of the Brunt—Viisild frequency. For the runs without
anisotropic conduction, the rates shown are those that would
have been present had conduction been included. That is, in this
case the MTI rates are computed via the post processing of the
simulation data. In all cases, the growth rates were obtained
from the MTTI dispersion relation, taking into account the slope
of the temperature and entropy profiles. As by definition we
are only interested in those fields that can be reoriented in the
radial direction due to the MTI, we assumed tangential fields
when computing the MTI growth rates. For radial fields the
MTTI growth rate would be infinite. Furthermore, we considered
perturbation wavelength equal to the radius. Shorter fluctuation
wavelengths would result in somewhat faster growth rates.
The right panel in Figure 6 shows the corresponding MTI
instability growth timescales. Both panels in this figure show
that the MTT instability has had time to develop across a wide
range of distances from the cluster center in the non-radiative
case. Nevertheless, the discussion of the Froude parameter
above suggests that, at least in the cluster considered here,
the instability might have been overwhelmed by the stirring
motions in the ICM. A mild radial bias in the orientation of the
magnetic field (and velocity) is present in the simulations at large
radii but it is consistent with being due to either gas inflow or
preferentially radial substructure motions. However, we reiterate
the point made earlier that it is difficult to disentangle the
inhomogeneous radial flow from residual MTI. In the runs with
radiative cooling, the timescales in the more central parts of the
cluster are long (dashed blue line corresponds to high values of
the MTI growth timescale for r < 0.24~! Mpc and the solid
red line in the same region is not shown but corresponds to very
long timescale). This is caused by the flatness of the temperature
distribution, which makes the gas neutrally buoyant. As we
explain below, this effect leads to an enhanced magnetic field
amplification in this region when anisotropic conduction is
included in the simulation. The same stirring motions that tend
to suppress the MTI in the non-radiative case are responsible for
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Figure 7. Cross sections through the cluster center showing the distribution of the logarithm of the square of the magnetic field (proportional to the magnetic pressure).
The minimum and maximum range of magnetic field values is the same in all panels. Color bars show the logarithm of the magnetic pressure in arbitrary units. The
arrangement of the figures is the same as in Figure 1, which shows the temperature distribution: right column is for radiative runs and bottom row is for the runs with
anisotropic thermal conduction. All panels show the central region that measures 8 2~! Mpc on the side.

(A color version of this figure is available in the online journal.)

driving unimpeded stirring in the radiative one, thus amplifying
the magnetic fields. However, even in the radiative runs, the MTI
growth rates are reasonably short beyond ~0.3 A~' Mpc from
the center. We also point out that the slopes of the temperature
distribution in the runs with radiative cooling are steeper at
higher redshifts, and therefore a wider range of radii was in the
unstable regime earlier on.

3.3. Magnetic Field Amplification

Cross sections through the cluster center showing the distri-
bution of the logarithm of the square of the magnetic field (pro-
portional to the magnetic field pressure) are shown in Figure 7.
The minimum and maximum ranges of magnetic field values are
the same in all panels. The magnetic field is in Gauss. However,
which we emphasize that, technically speaking, the field values
can be arbitrarily rescaled by varying the initial magnetic field
as long as the field is weak (which is the case in our simula-
tions). The arrangement of the figures is the same as in Figure 1,
which shows the temperature distribution: right column is for
radiative runs and bottom row is for the runs with anisotropic
thermal conduction. All panels show the central region, which
measures 16 Mpc on the side. The magnetic field is clearly am-
plified in the cluster center in all four cases. The amplification
is much stronger in the radiative runs due to the compression of
the cool gas and the magnetic field that is frozen into it. This is
consistent with the findings of Dubois & Teyssier (2008) who
performed MHD simulations of cluster formation with radiative

cooling. Interestingly, the radiative cooling run with anisotropic
thermal conduction (bottom right panel) shows even stronger
magnetic field amplification than the radiative cooling run. This
result is not unexpected. The additional amplification occurs in
the region where the temperature gradient is significantly flatter
than in other runs. The temperature flattening occurs outside the
central cool core and up to ~0.5 h~! Mpc from the cluster cen-
ter. The nature of convective motions changes in the presence of
anisotropic thermal conduction. When the temperature profile
flattens, the ICM tends to become neutrally buoyant. This means
that the restoring forces in the fluid diminish and the substruc-
ture infall becomes the main engine for driving the unimpeded
mixing of the gas. Consequently, this results in more efficient
winding up and amplification of the magnetic field frozen into
the gas via the kinematic dynamo effect.

In order to better quantify the amplification of the field, we
also plot the distribution of the magnetic field along the line
passing through the cluster center. This is shown in the left panel
of Figure 8. The color coding of the curves is the same as in
Figure 2. The runs with cooling boost the field by over two orders
of magnitude beyond the amplification seen in the non-radiative
cases. The top horizontal line denotes the physical field at
the initial redshift (z = 20) and the bottom one is for the value of
the field B, that would result from cosmological expansion down
to z = 0 without any structure formation effects (the magnetic
field in this figure is dimensionless and expressed in units of B,).
These reference levels show that the magnetic field in clusters
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Figure 8. Distribution of the magnetic field along the line passing through the
cluster center (left panel). The color coding of the curves is the same as in
Figure 2. The top horizontal line denotes the physical field at the initial redshift
(z = 20) and the bottom one is for the value of the field that would result from
cosmological expansion down to z = 0 without any structure formation effects.
The right panel shows the central magnetic pressure profiles. Here, the solid red
line is for the anisotropic conduction and cooling while the dashed light blue
line is for the run that includes only radiative cooling. Only runs with cooling
are shown in this panel.

(A color version of this figure is available in the online journal.)

is boosted beyond the initial physical field by over an order of
magnitude. The boost in the strength of the magnetic field in the
adiabatic case is ~10* compared to the value a uniform magnetic
field would have at z = 0. The magnitude of this amplification
is consistent with that obtained by Dolag et al. (1999, 2002),
and in our earlier work (Briiggen et al. 2005b) where the
numerical resolution was higher. Simple scaling arguments
show that this field strength exceeds the field expected from
the magnetic flux freezing arguments. Specifically, for flux
freezing, we have for the ratio of physical field strengths
B(z = 0)/B(z = zini) = [p(z = 0)/pii]*”>. For a typical
cluster, the final overdensity is ~103 above the current critical
density. Thus, for the cosmology relevant to the Santa Barbara
run, we have B(z = 0)/B(z = zini) = [10%/(1+2i;)°1*3 ~ 0.2,
which is much smaller than the amplification factor of a few x 10
that we see in the adiabatic simulation. This shows that the final
magnetic field in the adiabatic simulation is additionally boosted
by the shearing motions during the cluster formation. We point
out that the final magnetic fields at the cluster center in the
cooling run and the run with anisotropic conduction with cooling
are boosted even further. The magnetic fields are ~3 x 103
times stronger than the physical field at the initial redshift of
z = 20 (or equivalently, over 10° stronger than a uniform field
would have at z = 0 due to the universal expansion alone, or
about a hundred times stronger than in the adiabatic run). Such
levels of magnetic field amplification are also in qualitative
agreement with the higher resolution simulations of Dubois &
Teyssier (2008), who performed adiabatic and radiative runs
without thermal conduction. Such field strengths are below the
MTTI and HBI suppression values. Thus, for the initial field
strengths considered here, the suppression of these instabilities
by magnetic tension does not play a significant role.

Outside the cluster center, the field at z = 0 is reduced
compared to its initial value. This is simply the result of the
cosmological expansion. However, the field far from the cluster
center is still somewhat higher than the uniform field evolved
down to z = 0 due to the universal expansion alone. This
could be attributed to mild amplification in filaments or smaller
gravitationally bound structures. It is interesting to note that the
runs with radiative cooling show even weaker fields far from the
cluster center. This is expected as the gas tends to cool down
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Figure 9. Left panel: magnetic field profiles for the case including anisotropic
conduction and radiative cooling (red curves), and non-radiative case with
anisotropic conduction. The solid lines are for the seven levels of refinement,
and the dashed ones for the six levels of refinement. Right panel: profiles of
magnetic field B for the seven levels of refinement. The color and symbol coding
of all thick curves are the same as in Figure 2, and thin curves correspond
to the thick curve counterparts computed under the assumption that the
amplification of the magnetic field Beomp comes entirely from gas compression
(i-e., Boomp o p*/3).

(A color version of this figure is available in the online journal.)

and move closer to the center of the cluster, filaments, and halos,
amplifying the field in these regions at the expense of the rest
of the volume.

As mentioned above, the field amplification in the cooling run
with anisotropic conduction shows stronger field amplification
compared to its non-conductive counterpart (Figure 7, compare
the top and bottom panels in the right column). In order to better
illustrate this effect, we zoom in on the central cluster regions
and show central magnetic pressure profiles in the right panel
of Figure 8. The solid red line is for the anisotropic conduction
and cooling while the dashed light blue line is for the run that
includes only radiative cooling. The solid black line is for the
cooling case with isotropic conduction at 1/3 Spitzer level. It
is clear from this figure that the magnetic field pressure in the
runs with conduction and cooling is stronger by up to ~10
times compared to the cooling-only run. This is because of
the combination of two factors: (1) the restoring forces in the
conducting fluid are proportional to the temperature gradient
rather than the entropy gradient (even if conduction is isotropic;
McCourt et al. 2011) and (2) the temperature gradients are
shallower than the entropy gradients (cf. Figures 2 and 3). Thus,
it is easier to mix the ICM, and amplify the magnetic fields, in
the presence of thermal conduction and cooling. We point out
that these differences in the level of magnetic field are not due
to the density variations between different cooling runs. With
the exception of the very central regions, the differences in the
density profiles are negligible (see Figure 9(a) below). Note also
that the inclusion of cooling steepens the entropy gradient and
flattens the temperature gradient over a range of radii, and both
of these effects act to enhance the differences in the restoring
forces in the runs with and without cooling. Thus, the differences
in the field amplification are apparent when one compares the
cooling-only run with the runs that include both cooling and
conduction. Non-radiative counterparts of these runs do not
show clear differences in the field amplification (see Figure 9(a)
below).

In Figure 9 (left panel), we show the profiles of the magnetic
field B for the same bin size as in Figure 2. The color and
symbol coding of all thick curves are the same as in Figure 2,
and the thin curves correspond to the thick curve counterparts
computed under the assumption that the amplification of the
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magnetic field Beomp comes entirely from gas compression
(i.e., Beomp o p*?), and the magnetic field is normalized
such that the relative values of all curves in the figure are
physically meaningful. While the magnetic field is in Gauss,
we emphasize again that, technically speaking, the field values
can be arbitrarily rescaled by varying the initial magnetic field
as long as the field is weak (which is the case in our simulations).
Within ryi; (~1.25 27! Mpc) in the radiative cases, B > Beomp
and the average slope of the magnetic field B very approximately
follows that of Beomp. In the non-radiative cases, the strongest
relative boost in the magnetic field amplification beyond pure
compression occurs far from the cluster center. These trends
are very similar to the ones observed by Dubois & Teyssier
(2008). The key difference is in the normalization of the actual
magnetic field B, which is higher with respect to Beomp in our
simulations than that in Dubois & Teyssier (2008). Interestingly,
Dubois & Teyssier (2008) find that the magnetic field in the
center of the cluster in the non-radiative case is weaker than its
compressional counterpart, and, quoting Roettiger et al. (1999),
attribute this effect to numerical magnetic reconnection, noting
that it is expected to be numerical scheme- and resolution-
dependent. We also observe the flattening of the magnetic field
profile in the center in the non-radiative case, and the decrease
in the ratio of B and Bcomp at small radii, but the field never
becomes weaker than Bomp. As Dolag et al. (2005) find a strong
dependence of the average magnetic field on the cluster mass
and temperature, this difference can be entirely attributed to
the fact that our cluster is hotter and more massive. Dolag
et al. (2005) show that the excess of the magnetic field beyond
that due to compression alone shows that induction/shearing
plays an important role in the field amplification, and that in the
most naive case of the amplification solely due to compression,
no scaling of the average magnetic field with cluster mass
would be present. Stronger shearing motions (and hence higher
B fields) in higher temperature clusters are likely the result of a
longer merger history. The stronger excess of the magnetic field
B beyond Bomp compared to that inferred by Dubois & Teyssier
(2008) is entirely consistent with the fact that our cluster is
over ~2 times more massive than that considered in their work.
Using an approximate scaling T M, this corresponds to
an ~1.7 change in virial temperature. Now, Dolag et al. (2002,
2005) demonstrate, albeit with different numerical technique,
that such a change in cluster temperature (from ~3.4 keV to
5.75 keV) results in up to an order of magnitude higher average
magnetic field independently of the resolution and whether the
averaging is done within 0.1r or ryi; (see Figure 2 in Dolag
et al. 2002, 2005). Thus, the fact that we find a higher magnetic
field amplification than in Dubois & Teyssier (2008) is expected
on physical grounds and is consistent with their work.

In Figure 9 (right panel), we show the magnetic field profiles
for the case including anisotropic conduction and radiative
cooling (red curves), and the non-radiative case with anisotropic
conduction. Solid lines are for the seven levels of refinement, and
dashed ones for the six levels of refinement. The bin size used in
Figure 9 (left panel) was two times bigger than that in Figure 2.
Figure 9 (left right) shows that, for the cases considered here,
the adiabatic results are robust and do not show clear resolution
trends. The magnitude of the field amplification in the adiabatic
runs is comparable to that reported by Briiggen et al. (2005b).
For cooling runs, the magnetic field increases with resolution.
In general, an increase in the field strength with resolution is
a recognized issue. Dolag et al. (2005) compared their older
non-radiative simulations (Dolag et al. 2002) with new ones
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with 20 times higher mass resolution by presenting average
magnetic fields in a sample of simulated clusters. They found
that the average field within 0. 174, is higher by up to ~5 times in
clusters with temperatures less than 10 keV in the better resolved
runs. Similar results were obtained by Dolag & Stasyszyn
(2009) who varied mass resolution by a factor of 10 and found
that the magnetic field profile values within 0.1ry; changed
by up to ~10, and that the magnetic field levels increased
with resolution. They also concluded that their profile shapes
suggest more numerical dissipation compared to the FLASH
code (Briiggen et al. 2005b) and slightly less than RAMSES
(Dubois & Teyssier 2008). However, we note that in the Briiggen
et al. (2005b) simulation the magnetic field was by design
dynamically decoupled from the gas dynamics. Dolag et al.
(2002) show that averaging within ry; rather than 0.1r; leads
to significantly lower fields. As a side note we point out that, for
radiative cooling cases, the magnetic field averaged within 7y, in
our simulations would show diminished sensitivity to resolution.
We point out that these comparisons are not perfect because
the Dolag et al. (2002, 2005) simulations were performed
with an entirely different numerical technique—smooth particle
magneto-hydrodynamics—rather than using an AMR grid code.
In any case, our radiative runs for seven levels of refinement may
represent lower limits to the magnetic field strength. Finally,
while the dependence of the magnetic field on resolution may
be stronger in the runs including radiative cooling, the highest
resolution runs at seven levels of refinement already show trends
consistent with those presented by Dolag et al. (2005) and
Dubois & Teyssier (2008) as explained above. Performing runs
at a resolution of eight levels of refinement and higher was not
feasible using the techniques considered here.

4. CONCLUSIONS

We performed first magnetohydrodynamical simulations of
cosmological galaxy cluster formation that simultaneously in-
clude magnetic fields, radiative cooling, and anisotropic thermal
conduction. The presence of anisotropic conduction changes the
properties of the ICM by making it convectively unstable inde-
pendently of the sign of the ICM temperature gradient. In our
approach, we self-consistently included the amplification of the
magnetic field due to the shearing motions, gas compression
enhanced by radiative cooling, and the kinematic dynamo as-
sociated with the anisotropic nature of conduction. Our key
findings are as follows.

1. At large distances, turbulent motions tend to reset the
(radial) orientation of the magnetic field that the MTI tries to
establish. Nevertheless, some radial bias in the orientation
of the field is seen at large radii in the runs with and
without conduction. No clear excess of directional bias in
the magnetic and velocity field is seen in the runs with
anisotropic thermal conduction. The residual bias may be
due to the infall of substructures, gas accretion along the
filaments, and the inhomogeneous radial flows in the bulk
of the ICM. However, radial bias is also expected when
the MTI operates. The degree of this bias depends on the
properties of the turbulence driven by structure formation,
and disentangling the inhomogeneous radial gas flows and
MTT scenarios is challenging. A systematic theoretical
study of a number of clusters is required to quantify the
role of MTI in shaping the magnetic field topology as the
thermal and dynamical state of the ICM in other clusters
(level of turbulent support, MTI growth rates, effective outer
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Figure 10. Evolution of physical temperature (left panel) and physical magnetic field with the cosmological expansion parameter a. Quantities on vertical axes in both
panels are in arbitrary units. The test assumes uniform magnetic field, density, and temperature and neglects any seed fluctuations in the velocity field. The results are
in perfect agreement with the theoretical scaling relations (power-law fits to the computed relations are also plotted and match these relations perfectly).

scale of turbulence driven by structure formation) will vary
across the mass spectrum of clusters. Here, we report on
the first study of the cosmological formation of one cluster
that will form the basis for further investigation to address
the above point.

. Magnetic field amplification is significantly boosted in the
presence of radiative cooling, which allows the gas to
concentrate toward the cluster center. The central mag-

netic field at z = 0 is amplified by over six orders of
magnitude over the value obtained without substructure
formation.

3. Inthe presence of thermal conduction and radiative cooling,
the magnetic field is amplified by a kinematic dynamo
process beyond the values obtained in the cooling-only
run. This additional amplification occurs over a broad
range of radii. The restoring forces in the conducting fluid
are proportional to the temperature gradient rather than
the (steeper) entropy gradient, which makes it easier to
mix the ICM and amplify the fields by the continuous
substructure infall.

. The effective heat conduction from the hotter outer layers
of the cluster to its center is reduced below the full
Braginskii—Spitzer value. However, the effective radiative
cooling driven accretion is noticeably reduced.

5. The radiative run with anisotropic thermal conduction
exhibits a tendency for a tangential bias in the velocity
and magnetic fields within the inner ~0.3/2~' Mpc that
could be associated with HBI or trapped gravity modes.
Future higher resolution cosmological cluster formation
studies will assess the robustness of this effect. Any
possible anisotropy in the magnetic field distribution may
be detectable via radio polarization measurements with the
Square Kilometer Array and LOFAR, while the bias in the
velocity field could be probed with the future International
X-ray Observatory mission.
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Figure 11. Magnetothermal instability growth rate in units of Brunt—Viisala fre-
quency as a function of x = (y — D)« (T/ P)k?/wry, where k is the wavenumber
of the velocity fluctuation and wpy is the Brunt—Viiséld frequency. Solid line
denotes the prediction from linear theory and the dots show the results obtained
with the FLASH code.
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Steve Balbus, and Fabian Heitsch for discussions.

APPENDIX A

In order to check the implementation of the cosmological
terms in the MHD equations, we evolved spatially constant
matter density and magnetic field while neglecting any velocity
perturbations. The result of this test is shown in Figure 10. In the
left panel we show the scaling of the temperature (in arbitrary
units) with the cosmological expansion factor a. Shown are
the code result for the physical temperature and the power-law
fit (solid and dashed lines are practically indistinguishable).
The slope of T(a) o< a~? agrees with the standard theoretical
expectation. The right panel shows the physical magnetic field
in arbitrary units as a function of the scaling parameter a and a
power-law fit to this relation, both as a function of the scaling
parameter a. Here again the fit is perfect, the solid and dashed
lines overlap, and the slope of the field is (B(a) o a~?2), ensuring
the conservation of the magnetic flux.

APPENDIX B

In order to test the implementation of the anisotropic thermal
conduction module we compared linear theory MTI growth rates
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Figure 12. Test of anisotropic diffusion of a passive scalar along diagonal magnetic fields. Adaptive mesh is superimposed on the fluid distribution. Each grid element
is divided into a number of individual zones. Initial and final states are shown in the left and right panels, respectively.

(A color version of this figure is available in the online journal.)

with the code results. This test is very similar to the one discussed
in Parrish & Stone (2005). That is, we set up a two-dimensional
stratified hydrostatic atmosphere with very shallow density and
temperature profiles such that

T(z) =To(1 = y/y0) (BI)

@) = po(l = y/y0)", (B2)
where T, and p, are constants. The characteristic lengthscale y,
was set to 1% of the horizontal height of the computational box.
The gravitational field was assumed constant throughout the
computational domain. We set hydrostatic boundary conditions
on the top and bottom boundaries. We also impose constant
temperature in the boundary zones to prevent the escape of
thermal energy from the simulation box via thermal conduction.
That is, the computational domain is effectively adiabatic. We
set periodic boundary conditions in the horizontal direction. The
initial magnetic field is horizontal with very high magnetic 8
parameter. In order to seed the instability, we introduce a very
small sinusoidal velocity perturbation in the vertical direction.
Specifically, the initial vertical component of the velocity field
is given by

v:(y) = v, sin2my/L). (B3)
where v, is a very small constant amplitude of the velocity
perturbation and L is the box size in the horizontal y-direction.
We evolve such initial conditions and, using the velocity field
as a function of time, we compute the instability growth rate
o following a prescription similar to that in Parrish & Stone
(2005). These results are then compared to the linear theory
prediction in the nondimensional form

; 1, dinT
o +—0"x+0 +
dinS

(B4)

X =0V,

where o is the instability growth rate in units of the
Brunt-Viisila frequency wpy and

—1

T
x=(y— l)Ksza)BV, (B3)

where k is the wavenumber of the velocity fluctuation. The result
of this test is shown in Figure 11. The growth rates predicted
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by the code are in excellent agreement with the theoretical
expectations. In Figure 12, we show the results of a test of the
anisotropic diffusion of a passive scalar. In this test, the passive
fluid evolves entirely due to the diffusion along the magnetic
field lines. That is, this test isolates the effects introduced by
the anisotropic diffusion module to demonstrate its robustness
in the presence of the AMR. The left panel shows the initial
state, and the right one the final evolved state. The adaptive grid
is superimposed on the fluid distribution. Note that each grid
element is further divided into a number of individual zones.
Magnetic fields are uniform and diagonal. This test clearly
demonstrates that the adaptive mesh follows the distribution of
the fluid and that no artifacts are introduced by the anisotropic
diffusion module at the mesh refinement interfaces.
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