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A random minimax

H. L. Montgomery

Abstract. Stones are placed randomly on an m×n board, one at a time,
with no more than one stone per unit cell. By means of a two-dimensional
cross-classification, a formula is derived for the probability that a row
becomes full (with n stones) at a time when there is another row that
is still entirely empty.
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1. Introduction and formulation of results. Let A be an m×n matrix whose
entries are the integers 1, . . . ,mn, each one exactly once. We suppose that each of
the (mn)! matrices of this type are equally likely to occur, and on this probability
space we consider the random variables

X = min
16i6m

max
16j6n

aij , (1)

Y = max
16i6m

min
16j6n

aij . (2)

Our object is to determine the distribution and expectation of X and of Y , and to
derive a formula for P(X < Y ).

Theorem 1. Let X be defined as in (1). Then the mass function is

pX(k) = P(X − k) =
m∑

r=1

(−1)r−1

(
m
r

)(
k−1
rn−1

)(
mn
rn

)
for 1 6 k 6 m, and

E[X] =
m! nm∏m−1

i=1 (in + 1)
= (mn + 1)

m∏
i=1

in

in + 1
.

If π is a permutation of the numbers 1, . . . ,mn, let π′ denote the associated
permutation π′(i) = mn + 1− π(i). It is easy to see that Y (π) = mn + 1−X(π′).
Hence the distribution and expectation of Y follow immediately from those of X,
which is to say we have the following theorem.

Theorem 2. Let X and Y be defined as in (1) and (2). Then

pY (k) = pX(mn + 1− k)

for 1 6 k 6 mn, and E[Y ] = mn + 1− E[X].
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Theorem 3. Let X and Y be defined as in (1) and (2). Then

P(X < Y ) = 1 +
m∑

k=0

(−1)k

(
m

k

) k∑
r=0

(
k
r

)(
kn
rn

) .

According to Doron Zeilberger (oral communication), the formula for pX in
Theorem 1 cannot be written in closed form. Also, the formula in Theorem 3 can
be written neither in closed form nor as a one-dimensional sum.

Suppose that a deck of 52 playing cards is to be placed face up in 13 rows and
4 columns, with aces in the first row, dueces in the second, and so on, and spades
in the first column, hearts in the second, diamonds in the third, and clubs in the
fourth. The deck is in random order, and the cards are placed one at a time. (This
was done for the purpose of stacking the deck in preparation for performing a magic
trick invented by J. H. Conway.) With m = 13 and n = 4 the variable X is the
index of the card that for the first time completes a row of the array. When the card
with index Y is placed, we have for the first time at least one card in each row of
the array. When this procedure was executed, it was noted empirically that often
one row is completed while there is still a row that is empty, which is to say that
X < Y . From our theorems we find that

E[X] =
68 719 476 736
2 748 462 675

=
236

3 · 52 · 72 · 17 · 29 · 37 · 41
= 25.00287792,

E[Y ] =
76 949 045 039
2 748 462 675

=
317 · 8221 · 29527

3 · 52 · 72 · 17 · 29 · 37 · 41
= 27.99712208,

P(X < Y ) =
1 309 858 309 850 791
2 149 964 274 784 935

=
709 · 250708771 · 7369

3 · 5 · 7 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47
= 0.6092465467.

It would be tempting to conjecture that the inequality E[X] < E[Y ] holds if and
only if P(X < Y ) > 1/2, but in fact this fails when m = 5, n = 21 since then

E[X] = 52.64173261,

E[Y ] = 53.35826739,

P(X < Y ) = 0.4977715896.

2. Proof of Theorem 1. Suppose that k is given. For 1 6 i 6 m let Ai denote
the event {max16j6n aij 6 k}. Thus the event {X 6 k} is

⋃m
i=1 Ai. By the

inclusion-exclusion principle it follows that

P(X > k) = 1− P
( ⋃

Ai

)
=

m∑
r=0

(−1)r
∑

16i1<···<ir6m

P(Ai1 · · ·Air
). (3)

If rn > k, then Ai1 · · ·Air
= ∅. If rn 6 k, then we construct the event Ai1 · · ·Air

by
first choosing the rn numbers not exceeding k that are to fall in the rows i1, . . . , ir
of the matrix A. This can be done in

(
k
rn

)
ways. Next we choose where each of these

rn numbers is positioned in the rn places. This can be done in (rn)! ways. The
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remaining mn − rn numbers can be assigned to the remaining mn − rn locations
in (mn− rn)! ways. Hence

P(Ai1 · · ·Air
) =

(
k
rn

)
(rn)! (mn− rn)!

(mn)!
=

(
k
rn

)(
mn
rn

) .

We note that this formula holds also when rn > k. On inserting this in (3), we
deduce that

P(X > k) =
m∑

r=0

(−1)r

(
m
r

)(
k
rn

)(
mn
rn

) .

Thus

pX(k) = P(X > k − 1)− P(X > k) =
m∑

r=0

(−1)r

(
m
r

)(
mn
rn

) [(
k − 1
rn

)
−

(
k

rn

)]
.

The difference inside the square brackets on the right vanishes when r = 0, so the
term r = 0 can be omitted. For r > 0, this difference is −

(
k−1
rn−1

)
. Thus we have

the stated value for pX(k).
To determine the expectation of X it suffices to note that

E[X] =
mn∑
k=1

kpX(k) = mn

mn∑
k=1

m∑
r=1

(−1)r−1

(
m−1
r−1

)(
k
rn

)(
mn
rn

)
= mn

m∑
r=1

(−1)r−1

(
m−1
r−1

)(
mn
rn

) mn∑
k=1

(
k

rn

)

= mn

m∑
r=1

(−1)r−1

(
m−1
r−1

)(
mn+1
rn+1

)(
mn
rn

)
= mn(mn + 1)

m−1∑
r=0

(−1)r

(
m−1

r

)
rn + n + 1

.

To complete the proof it suffices to show that

m−1∑
r=0

(−1)r

(
m−1

r

)
rn + n + 1

=
1

mn

m∏
i=1

in

in + 1
. (4)

By using the binomial theorem and integrating term-by-term it is clear that the
left-hand side above is ∫ 1

0

(1− xn)m−1xn dx.

On making the change of variable u = xn we see that this is

1
n

∫ 1

0

(1− u)m−1u1/n du.
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Here the integral is the Beta function, for which there is a simple formula (see
Theorem 1.1.4 of [1]):

B(α, β) =
∫ 1

0

uα−1(1− u)β−1 du =
Γ(α)Γ(β)
Γ(α + β)

.

By the recurrence zΓ(z) = Γ(z + 1), it follows that the expression we wish to
evaluate is

1
n

B
(

1 +
1
n

, m

)
=

Γ(1 + 1/n)Γ(m)
nΓ(m + 1 + 1/n)

=
m! Γ

(
1
n

)
1
n

mnΓ
(

1
n

)
1
n

n+1
n · · · mn+1

n

,

which gives (4).

3. Proof of Theorem 3. Fix k and ℓ with 1 6 k < ℓ 6 mn. For 1 6 i 6 m,
let Ai denote the event {max16j6n aij 6 k}, and similarly for 1 6 h 6 m, let Bh

denote the event {min16j6n ahj > ℓ}. Then A =
⋃

Ai is the event {X 6 k}, and
B =

⋃
Bi is the event {Y > ℓ}. Since AcBc = (A ∪B)c, we see that

P(X > k, Y < ℓ) = 1− P

( m⋃
i=1

Ai ∪
m⋃

h=1

Bh

)

=
m∑

r=0

m∑
s=0

(−1)r+s
∑

16i1<···<ir6m
16h1<···<hs6m

P(Ai1 · · ·Air
Bh1 · · ·Bhs

). (5)

To calculate these probabilities, we first note that AiBi = ∅, since

max
j

aij 6 k < ℓ 6 min
j

aij

is impossible. Thus we may assume that r + s 6 m. The intersection Ai1 · · ·Air

is empty if rn > k. Thus we may restrict our attention to rn 6 k. Similarly,
we may assume that sn 6 mn + 1 − ℓ. The rn integers that are to fall in rows
i1, . . . , ir can be chosen in

(
k
rn

)
ways, and there are (rn)! ways of positioning these

numbers. Similarly, the sn integers that are to fall in rows h1, . . . , hs can be chosen
in

(
mn+1−ℓ

sn

)
ways, and these sn numbers can be positioned in (sn)! ways. Finally,

the remaining (m − r − s)n numbers can be positioned in
(
(m − r − s)n

)
! ways.

Thus

P(Ai1 · · ·AirBh1 · · ·Bhs) =

(
k
rn

)
(rn)!

(
mn+1−ℓ

sn

)
(sn)!

(
(m− r − s)n

)
!

(mn)!

=

(
k
rn

)(
mn+1−ℓ

sn

)(
mn

(r+s)n

)(
(r+s)n

rn

) .



A random minimax 425

We note that this last formula also holds when rn > k or sn > mn + 1− ℓ. The r
rows iµ and the s rows hν can be chosen in

(
m

r s m−r−s

)
ways. Thus

P (X > k, Y < ℓ) =
m∑

r=0

m−r∑
s=0

(−1)r+s
( m

r s m−r−s

) (
k
rn

)(
mn+1−ℓ

sn

)(
mn

(r+s)n

)(
(r+s)n

rn

)
=

m∑
t=0

(−1)t
(
m
t

)(
mn
tn

) t∑
r=0

(
t
r

)(
k
rn

)(
mn+1−ℓ
(t−r)n

)(
tn
rn

) . (6)

We note that

P(X < Y ) = 1− P(X > Y ) = 1−
mn∑
k=1

P(X = k, Y 6 k)

= 1−
mn∑
k=1

P(X = k, Y < k + 1).

Since the event {X = k} is the event {X > k − 1} \ {X > k}, the above is

= 1−
mn∑
k=1

(
P(X > k − 1, Y < k + 1)− P(X > k, Y < k + 1)

)
.

By (6) this is

1−
mn∑
k=1

m∑
t=0

(−1)t
(
m
t

)(
mn
tn

) t∑
r=0

(
t
r

)(
mn−k
(t−r)n

)(
tn
rn

) ((
k − 1
rn

)
−

(
k

rn

))

= 1 +
m∑

t=0

(−1)t
(
m
t

)(
mn
tn

) t∑
r=0

(
t
r

)(
tn
rn

) mn∑
k=1

(
k − 1
rn− 1

)(
mn− k

(t− r)n

)
.

To complete the proof it suffices to show that

mn∑
k=1

(
k − 1
rn− 1

)(
mn− k

(t− r)n

)
=

(
mn

tn

)
. (7)

To this end we recall by the ‘negative’ binomial theorem that

1
(1− z)rn

=
∞∑

i=0

(
rn− 1 + i

rn− 1

)
zi,

1
(1− z)(t−r)n+1

=
∞∑

j=0

(
(t− r)n + j

(t− r)n

)
zj ,

1
(1− z)tn+1

=
∞∑

k=0

(
tn + k

tn

)
zk,

for |z| < 1. Here the third function is the product of the first two, and hence its
power series coefficients can be written as the Cauchy convolution of the first two
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sets of coefficients, which is to say that

k∑
i=0

(
rn− 1 + i

rn− 1

)(
(t− r)n + k − i

(t− r)n

)
=

(
tn + k

tn

)
.

In particular, when k = (m− t)n, we find that

(m−t)n∑
i=0

(
rn− 1 + i

rn− 1

)(
(m− r)n− i

(t− r)n

)
=

(
mn

tn

)
.

This is (7) apart from a change in the indexing, so the proof is complete.

It is worth noting that the identities (4) and (7), for which we provided simple
proofs, have been known for many years, perhaps for more than seven centuries,
and indeed they are both special cases of a much more general identity, which we
now describe. For |z| < 1, we define the hypergeometric function

2F1

(
a, b

c
; z

)
=

∞∑
k=0

(a)k(b)k

k! (c)k
zk,

where (x)k = x(x+1) · · · (x+k−1). If it happens that b is a negative integer, then
the sum terminates, and the Chu–Vandermonde identity (which is Corollary 2.2.3
in [1]) asserts that

2F1

(
a,−N

c
; 1

)
=

N∑
k=0

(a)k(−N)k

k! (c)k
=

(c− a)N

(c)N
.

For a discussion of the history of this identity, see Chap. 7 of [2]. Our identity (4)
is obtained by taking N = m− 1, a = 1 + 1/n, and c = 2 + 1/n, and (7) follows on
taking N = (m− t)n, a = rn, c = −(m− r)n.

The author is grateful to Richard Askey and George E. Andrews for assistance
in locating this antecedent.
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