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ABSTRACT

We describe the Center for Radiative Shock Hydrodynamics (CRASH) code, a block-adaptive-mesh code for
multi-material radiation hydrodynamics. The implementation solves the radiation diffusion model with a gray or
multi-group method and uses a flux-limited diffusion approximation to recover the free-streaming limit. Electrons
and ions are allowed to have different temperatures and we include flux-limited electron heat conduction. The
radiation hydrodynamic equations are solved in the Eulerian frame by means of a conservative finite-volume
discretization in either one-, two-, or three-dimensional slab geometry or in two-dimensional cylindrical symmetry.
An operator-split method is used to solve these equations in three substeps: (1) an explicit step of a shock-capturing
hydrodynamic solver; (2) a linear advection of the radiation in frequency-logarithm space; and (3) an implicit
solution of the stiff radiation diffusion, heat conduction, and energy exchange. We present a suite of verification
test problems to demonstrate the accuracy and performance of the algorithms. The applications are for astrophysics
and laboratory astrophysics. The CRASH code is an extension of the Block-Adaptive Tree Solarwind Roe Upwind
Scheme (BATS-R-US) code with a new radiation transfer and heat conduction library and equation-of-state and
multi-group opacity solvers. Both CRASH and BATS-R-US are part of the publicly available Space Weather
Modeling Framework.
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1. INTRODUCTION

As photons travel through matter, the radiation field experi-
ences changes due to net total emission, absorption, and scatter-
ing; see, for instance, Mihalas & Mihalas (1984), Pomraming
(2005), and Drake (2006). At high enough energy density the
radiation heats and accelerates the plasma. At a fundamental
level, the radiation can be described by the time evolution of
the spectral radiation intensity Iν(r, t, n, ν), which is the radi-
ation energy per unit area, per unit solid angle in the direction
of photon propagation n, per unit interval of photon frequency
ν, per unit time interval. Several methods have been devel-
oped to solve the radiation field in various degrees of physics
fidelity.

In Monte Carlo radiative transfer methods, the radiation is
statistically evaluated. Small photon packets are created with
their energy and propagation direction statistically selected.
The packets are propagated through matter using the radiation
transfer equation (Nayakshin et al. 2009; Maselli et al. 2009;
Baek et al. 2009). Characteristic methods use integration along
rays of various lengths to solve for the angular structure of the
radiation transport. A recent conservative, causal ray-tracing
method was developed and combined with a short characteris-
tic ray-tracing for the transfer calculations of ionizing radiation
(Mellema et al. 2006). Solar surface magneto-convection sim-
ulations are increasingly realistic and use a three-dimensional
(3D), non-gray, approximate local thermodynamic equilibrium
(LTE), radiative transfer for the heating and cooling of plasma.
These simulations are typically formulated for four frequency

bins in the radiative transport equation (Vögler et al. 2005; Stein
et al. 2007; Martı́nez-Sykora et al. 2009).

For some applications, simplifications to the radiation transfer
can be made by calculating moments of the radiation intensity
over the solid angle Ω. The spectral radiation energy and the
spectral radiation energy flux are defined by the 0th and 1st
moments as

Eν(r, t, ν) = 1

c

∫
4π

Iν(r, t, n, ν)dΩ,

Fν(r, t, ν) =
∫

4π

nIν(r, t, n, ν)dΩ. (1)

In addition, the spectral radiation pressure tensor Pν is defined
by the second moment

Pν(r, t, ν) = 1

c

∫
4π

nnIν(r, t, n, ν)dΩ. (2)

A whole class of radiation transfer models is based on solving
the corresponding radiation moment equations using a closure
relation between the spectral pressure tensor and the spectral
intensity (Mihalas & Mihalas 1984; Pomraming 2005; Drake
2006).

A radiation hydrodynamics code based on variable Eddington
tensor (VET) methods (Stone et al. 1992) can still capture the
angular structure of the radiation field by relating the spectral
radiation pressure tensor to the spectral radiation intensity and
the method is applicable for both the optically thin and thick
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regime. Optically thin versions of the VET method have been
used in the context of cosmological reionization (Petkova &
Springel 2009; Gneden et al. 2009). A more complete list
of radiation hydrodynamic codes for the transfer of ionizing
radiation in the context of astrophysical phenomena can be
found in the radiative transfer comparison project (Iliev et al.
2009).

Further simplification assumes that the radiation pressure is
isotropic and proportional to the radiation energy. This is the
diffusion approximation. Several codes have been developed
using this approximation. HYDRA (Marinak 2001) is an ar-
bitrary Lagrange Eulerian code for two-dimensional (2D) and
3D radiation hydrodynamics. The radiation transfer model is
based upon either flux-limited multi-group or implicit Monte
Carlo radiation transport. The Eulerian code RAGE (Gittings
et al. 2008) uses a cell-based adaptive mesh refinement (AMR)
to achieve resolved radiative hydrodynamic flows. HYADES
(Larsen & Lane 1994) solves the radiation hydrodynamic equa-
tions on a Lagrangian mesh, while CALE (Barton 1985) can use
either a fixed Eulerian mesh, an embedded Lagrangian mesh,
or a partially embedded, partially remapped mesh. Our newly
developed radiation hydrodynamic solver uses an Eulerian grid
together with a block-based AMR strategy.

We limit the discussion of the radiation hydrodynamics
implementation in CRASH (Center for Radiative Shock Hy-
drodynamics) to plasmas in the absence of magnetic fields.
Most of the description in this paper can, however, eas-
ily be extended to magnetohydrodynamic (MHD) plasmas
as well. Indeed, since the CRASH code is essentially the
MHD Block-Adaptive Tree Solarwind Roe Upwind Scheme
(BATS-R-US) code (Powell et al. 1999; Tóth et al. 2011), ex-
tended with libraries containing radiation transport, equation-
of-state (EOS), and opacity solvers, the implementation for the
coupling between the radiation field and MHD plasmas is readily
available. The CRASH code uses the recently developed Block-
Adaptive Tree Library (BATL; Tóth et al. 2011). Here we will
focus on the radiation implementation. Both the CRASH and
BATS-R-US codes are publicly available as part of the Space
Weather Modeling Framework (SWMF; Tóth et al. 2005) or can
be used as stand-alone codes.

In the following, Section 2 introduces the radiation hydrody-
namic equations for multi-material plasmas, in a form general
enough to apply at high energy density. Section 3 describes
the numerical algorithms to solve these equations. Section 4
presents verification tests for radiation and electron heat con-
duction on non-uniform meshes in one-dimensional (1D), 2D,
and 3D slab geometry and in axially symmetric (rz) geometry.
We also show a full system multi-material radiation hydrody-
namic simulation on an adaptively refined mesh and demonstrate
good scaling up to 1000 processors. The paper is summarized
in Section 5.

2. EQUATIONS OF RADIATION HYDRODYNAMICS IN
DENSE PLASMAS

The equations of radiation hydrodynamics describe the time
evolution of both matter and radiation. For the applications that
supported the work reported here, the code must be able to
model matter as a high energy density plasma that is in LTE so
that the population of all atomic and ion states can be obtained
from statistical physics (see for instance Landau & Lifshitz
1980). We allow for multiple materials throughout the spatial
domain of interest, but restrict the analysis to plasma flows
that are far from relativistic. The materials can be heated to

sufficiently high temperatures so that they can ionize and create
free electrons, introducing the need for a time evolution equation
for the electron energy density. The electrons transfer heat by
thermal heat conduction and emit and absorb photon radiation.
The radiation model discussed in this paper is non-equilibrium
diffusion, in which the electron and radiation temperature can be
different. We approximate the radiation transfer with a gray or
multi-group flux-limited diffusion (FLD). This model is also of
interest for application to a number of astrophysical problems.

In the following subsections, we will describe the radiative
transfer equations for the evolution of the multi-group radia-
tion energy densities (Section 2.1) in the FLD approximation
(Section 2.5). The coupling of the radiation field to the two
species hydrodynamic equations of electrons and ions are dis-
cussed in Section 2.2. In Section 2.3, the method for tracking
the different materials is treated, while the lookup tables used
for of the EOS and opacities are mentioned in Section 2.4.

2.1. Radiation Transport

In this section, we will build up the form of the radiation
transport in the multi-group diffusion approximation that is
used for the implementation in the CRASH code. The spectral
pressure tensor, Equation (2), is often approximated in the form
(Mihalas & Mihalas 1984)

Pν(r, t, ν) = EνTν, (3)

where

Tν(r, t, ν) = 1

2
(1 − χν)I +

1

2
(3χν − 1)

FνFν

|Fν |2 , (4)

is the spectral Eddington tensor, χν is the Eddington factor, and
I is the identity matrix. The second term on the right-hand side
is a dyad constructed from the direction of the spectral radiation
flux. The pressure tensor can be used to arrive at a time evolution
equation for the solid angle integrated spectral radiation energy
(Buchler 1983)

∂Eν

∂t
+ ∇ · (Eνu) − ν

∂

∂ν
(Pν : ∇u) = diffusion + emission

− absorption, (5)

which contains the velocity u of the background plasma. Here
the colon denotes the contraction of the two tensors Pν and ∇u.
The processes described by the symbolic terms on the right-hand
side of Equation (5) will be described below.

Setting the Eddington factor χν = 1/3 corresponds to the
radiation diffusion model. In this case the radiation is assumed
to be effectively isotropic and the spectral radiation pressure can
be described by the scalar

pν = 1

3
Eν = (γr − 1)Eν, (6)

where we have introduced the adiabatic index of the radiation
field, which in this case has the relativistic value γr = 4/3.
The time evolution for the spectral energy density can then be
simplified to

∂Eν

∂t
+ ∇ · (Eνu) − (γr − 1)(∇ · u)ν

∂Eν

∂ν
= diffusion + emission − absorption. (7)
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The second and third terms on the left-hand side of Equation (7)
express the change in the spectral energy density due to the
advection and compression of the background plasma, which
moves with the velocity u, as well as the frequency shift due
to compression. In the free-streaming limit where the radiation
hardly interacts with the matter, χν approaches 1. In this paper,
we will keep χν = 1/3 and at the same time use an FLD for the
free-streaming regime whenever needed (see Section 2.5).

The set of equations for the spectral energy density (7)
still consists of an infinite number of equations, one for each
frequency. A finite set of governing equations to describe the
radiation transport in the multi-group diffusion approximation
is obtained when we choose a set of frequency groups. Here we
enumerate groups with the index, g = 1, . . . , G. The interval
of the photon frequencies, relating to the gth group is denoted
as [νg−1/2, νg+1/2]. A discrete set of group energy densities, Eg,
is introduced in terms of the integrals of the spectral energy
density of the frequency group interval:

Eg =
∫ νg+1/2

νg−1/2

Eνdν. (8)

Now we can integrate Equation (7) to arrive at the desired set of
the multi-group equations:

∂Eg

∂t
+ ∇ · (Egu) + (γr − 1)Eg∇ · u − (γr − 1)(∇ · u)

×
∫ νg+1/2

νg−1/2

∂(νEν)

∂ν
dν

=
∫ νg+1/2

νg−1/2

(diffusion + emission − absorption) dν. (9)

The fourth term on the left-hand side is a frequency shift due to
the plasma compression. This term is essentially a conservative
advection along the frequency axis.

In the context of the multi-group radiation diffusion, a
discussion about the stimulated emission is not less important
than LTE. Excellent accounts on the stimulated emission exist in
the literature, see for instance Zel’dovich & Raizer (2002). Here
we merely summarize how the stimulated emission modifies the
absorption opacity κa

ν obtained from, e.g., opacity tables. This is
important when dealing with externally supplied opacity tables,
since the CRASH code assumes that the absorption opacities are
corrected. Integrating the total absorption and emission over all
directions and summing up the two polarizations of the photons,
the following expression can be derived for the emission and
absorption

emission − absorption = cκa
ν

′(Bν − Eν), (10)

where the effective absorption coefficient, κa
ν

′, is introduced to
account for the correction due to stimulated emission:

κa
ν

′ = κa
ν

(
1 − exp

[
− ε

kBTe

])
, (11)

in which ε = hν is the photon energy, kB is the Boltzmann con-
stant, and Te is the electron temperature. We also introduced the
spectral energy density distribution of the blackbody radiation
(the Planckian)

Bν = 8π

h3c3

ε3

exp[ε/(kBTe)] − 1
. (12)

The total energy density in the Planck spectrum equals B =∫ ∞
0 dνBν = aT 4

e , where a = 8π5k4
B/(15h3c3) is the radiation

constant.
We use the standard definition of the group Planck mean

opacity κPg and group Rosseland mean opacity κRg (Mihalas &
Mihalas 1984)

κPg =
∫ νg+1/2

νg−1/2
dνκa

ν
′Bν

Bg

, κRg =
∂Bg

∂Te∫ νg+1/2

νg−1/2
dν 1

κt
ν

∂Bν

∂Te

,

Bg =
∫ νg+1/2

νg−1/2

dνBν (13)

in which κt
ν is the spectral total opacity. The right-hand side of

Equation (9) can now be written as (see for instance Mihalas &
Mihalas 1984; Pomraming 2005)

∂Eg

∂t
+ ∇ · (Egu) + (γr − 1)Eg∇ · u − (γr − 1)∇ · u

×
∫ νg+1/2

νg−1/2

∂(νEν)

∂ν
dν

= ∇ · (Dg∇Eg) + σg(Bg − Eg), (14)

where Dg = c/(3κRg) is the radiation diffusion coefficient for
radiation group g in the diffusion limit. The absorption and
emission uses the coefficient σg = cκPg . These group mean
opacities are either supplied by lookup tables or by an opacity
solver.

In a single group approximation (gray diffusion), the spectral
energy density is integrated over all photon frequencies and the
total radiation energy density is obtained by

Er (r, t) =
∫ ∞

0
Eνdν. (15)

This amounts to summing up all groups Er = ∑
g Eg . The gray

radiation diffusion equation can be derived as (see for instance
Mihalas & Mihalas 1984; Pomraming 2005; Drake 2006)

∂Er

∂t
+∇ · (Eru)+ (γr −1)Er∇ ·u = ∇ · (Dr∇Er )+σr (B −Er ),

(16)
where the diffusion coefficient Dr in the diffusion limit is now
defined by the single group Rosseland mean opacity κR as
Dr = c/(3κR), and the absorption coefficient σr is defined in
terms of the single group Planck mean opacity κP as σr = cκP .

2.2. Hydrodynamics

In the CRASH code, a single fluid description is used so that
all of the atomic and ionic species as well as the electrons move
with the same bulk velocity u. The conservation of mass

∂ρ

∂t
+ ∇ · (ρu) = 0 (17)

provides the time evolution of the mass density ρ of all the
materials in the simulation. The plasma velocity is obtained
from the conservation of momentum

∂ρu
∂t

+ ∇ · [ρuu + I (p + pr )] = 0. (18)

The total plasma pressure is the sum of the ion and electron
pressures: p = pi + pe. The net force of the radiation on the
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plasma is given by the gradient of the total radiation pressure
−∇pr , where the total radiation pressure is obtained from the
group radiation energies: pr = (γr − 1)

∑
Eg .

In a high density plasma, the electrons are very strongly cou-
pled to the ions by collisions. However, for higher temperatures,
the electrons and ions get increasingly decoupled. At a shock
front, where ions are preferentially heated by the shock wave,
the electrons and ions are no longer in temperature equilibrium.
Ion energy is transferred to the electrons by collisions, while
the electrons in turn radiate energy. We therefore solve separate
equations for the ion/atomic internal energy density Ei and the
electron internal energy density Ee:

∂Ei

∂t
+ ∇ · (Eiu) + pi∇ · u = σie(Te − Ti), (19)

∂Ee

∂t
+ ∇ · (Eeu) + pe∇ · u = ∇ · (Ce∇Te) + σie(Ti − Te)

+
G∑

g=1

σg(Eg − Bg). (20)

The coupling coefficient σie = nakB/τie in the collisional en-
ergy exchange between the electrons and ions depends on the
ion–electron relaxation time τie(Te, na,m) and the atomic num-
ber density na. Energy transfer depends also on the difference
between ion temperature Ti and electron temperature Te. In
Equation (20), we have included electron thermal heat conduc-
tion with conductivity Ce(Te, na,m). Since electrons are the
species that are responsible for radiation emission and absorp-
tion, the energy exchange between the electrons and the radia-
tion groups is added to Equation (20).

For the development of the numerical schemes in Section 3,
we will use an equation for the conservation of the total energy
density

e = ρu2

2
+ Ei + Ee +

G∑
g=1

Eg, (21)

instead of the equation for ion internal energy (19). This is
especially important in regions of the computational domain
where hydrodynamic shocks can occur, so that we can recover
the correct jump conditions. Conservation of total energy can
be derived from Equations (14) and (17)–(20) as

∂e

∂t
+∇ · [(e+p+pr )u] = ∇ · (Ce∇Te)+

G∑
g=1

∇ · (Dg∇Eg). (22)

The frequency shift term in Equation (14), due to the plasma
compression, does not show up in the conservation of total
energy if we use energy conserving boundary conditions at the
end points of the frequency domain, i.e., at ν = 0 and ν = ∞ in
the analytical description or at the end points of the numerically
truncated finite domain.

2.3. Level Sets and Material Identification

In many CRASH applications, we need a procedure to
distinguish between different materials that may be present.
We assume that materials do not mix, but differ from each
other by their properties such as the EOS and opacities. If we
use M different materials, then we can define for each material
m = 1, . . . ,M the level set function dm(r, t) (see for instance
Kreiss & Olsson 2005; Olsson et al. 2007; Sussman & Pucket

2000) which is initially set to zero at the material interface,
positive inside the material region, and negative outside the
material region. Generally, we use a smooth and signed distance
function in the initial state. At later times, the location of material
m is obtained by means of a simple advection equation

∂dm

∂t
+ ∇ · (dmu) = dm∇ · u. (23)

For any given point in space and time, we can determine what the
material is since analytically only one of the level set functions
dm can be positive at any given point. Numerical errors will
create regions where this is not true in solutions to the discretized
form of Equation (23). Whenever this happens, the material
having the largest dm is assigned as the material in that region.
This is a simple approximation, and we may explore more
sophisticated approaches in the future. The number of material
levels M is configured at compile time.

2.4. Equation of State and Opacities

We have implemented EOS solvers and a code to calcu-
late the frequency-averaged group opacities. This implemen-
tation will be reported elsewhere, but it is important to note
that in the EOS and opacity solver, the temperature is as-
sumed to be well below relativistic values: T � 105 eV. A
non-relativistic speed of motion is also assumed, which sim-
plifies the radiation transport equation and allows neglect of
relativistic corrections for opacities. In this paper, we will as-
sume that all necessary quantities are calculated and stored in
lookup tables. Our EOS solver assumes that the corrections as-
sociated with ionization, excitation, and Coulomb interactions
of partially ionized ion–electron plasma are all added to the
energy of the electron gas and to the electron pressure. This is
possible since these corrections are controlled by the electron
temperature. The ion internal energy density, ion pressure, and
ion specific heat in an isochoric process per unit of volume are
simply

pi = nakBTi, Ei = pi

γ − 1
, CV i =

(
∂Ei

∂Ti

)
ρ

= nakB

γ − 1
,

(24)
which are due to the contributions from ion translational
motions, for which γ = 5/3.

The relations among electron internal energy density, pres-
sure, density, and temperature are known as the EOS. To solve
these relations is usually complex and time consuming. We
therefore store these relations in invertible lookup tables. For
each material m, our EOS tables have logarithmic lookup argu-
ments (log Te, log na). The list of quantities stored in these tables
is indicated in Table 1. These lookup tables are populated with
quantities that are needed for both single- and two-temperature
simulations. For two-temperature plasma simulations, we need
pe, Ee, the electron specific heat CVe, and the electron-speed-
of-sound gamma γSe

. For convenience, we add the total pres-
sure p = pe + pi , total internal energy density E = Ei + Ee,
single-temperature specific heat CV , and the single-temperature
speed-of-sound gamma γS , which can be used in single-
temperature simulations. We use high enough table resolutions
so that it is sufficient to use a bilinear interpolation in the lookup
arguments. If pe or Ee (or p and E in single temperature mode)
are known upon entry to the lookup instead of Te, we do a
binary search in the table to find the appropriate electron tem-
perature. The latter works only if the necessary thermodynamic
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Table 1
Quantities Stored in the EOS Tables as a
Function of log Te[eV] and log na[m−3]

Quantity Stored Quantity Units
Total pressure p p/na eV
Total internal energy density E E/na eV
Electron pressure pe pe/na eV
Electron internal energy density Ee Ee/na eV
Specific heat CV CV /(nakB )
Electron specific heat CVe CV e/(nakB )
Speed of sound gamma γS

Electron speed of sound gamma γSe

Inverse of ion–electron interaction time 1/τie s−1

Electron conductivity Ce J m−1 s−1 K−1

Mean ionization Z

Mean square ionization Z2

Table 2
Quantities Stored in the Opacity Tables as a
Function of log ρ[kg m−3] and log Te[eV]

Quantity Symbol Units
Specific group Rosseland mean opacities κRg/ρ kg−1 m2

Specific group Planck mean opacities κPg/ρ kg−1 m2

derivatives are sign definite, i.e., the table is invertible. Other
thermodynamic quantities that are needed, but not stored in
these lookup tables, can be derived. For example, the electron
density can be obtained from the mean ionization ne = naZ.

In addition, we have lookup tables for the averaged multi-
group opacities. These tables are either constructed internally
for a given frequency range, number of groups, and selected ma-
terials or externally supplied. For any material m, the logarithmic
lookup arguments are (log ρ, log Te). The stored quantities (see
Table 2) are the specific Rosseland mean opacity κRg/ρ and spe-
cific Planck mean opacity κPg/ρ for all groups g = 1, . . . ,G
used during a simulation. Planck opacities are assumed to be
corrected for stimulated emission, as discussed in Section 2.1.
The groups are always assumed to be logarithmically distributed
in frequency space.

2.5. Flux-limited Diffusion

Radiation diffusion, if uncorrected, can transport energy too
efficiently in the optically thin free-streaming limit. In the
diffusion limit, the radiation diffusion flux for each group
follows Fick’s law Fg = −Dg∇Eg , where the diffusion
coefficient Dg depends on the Rosseland mean opacity κRg

for the group g via Dg = c/(3κRg). However, this flux is
potentially unbounded. In the optically thin free-streaming limit,
the magnitude of the radiation flux can be at most cEg in
order to maintain causality. Various flux limiters exist in the
literature (see, for instance, Minerbo 1978; Lund & Wilson
1980; and Levermore & Pomraming 1981) that ensure that the
diffusion flux is limited by this free-streaming flux. We have
implemented the so-called square-root flux limiter to obtain the
correct propagation speed in the optically thin regime (Morel
2000). For this flux limiter, the diffusion coefficient is rewritten
as

Dg = c√
(3κRg)2 + |∇Eg |2

E2
g

. (25)

In the limit that the radiation length scale LR = Eg/|∇Eg|
is large, the diffusive limit is recovered. For a small radiation

length scale, Dg = c|Eg|/|∇Eg| and the radiation propagates
with the speed of light.

Similarly, we have implemented the option to limit the
electron thermal heat flux (see Drake 2006 for more details on
electron flux limiters). The classical Spitzer–Harm formula for
the collisional electron conductivity is proportional to T

5/2
e /Z2,

where Z2 is the mean square ionization of the used material.
The collisional model is only valid when the temperature scale
length LT = Te/|∇Te| is much larger than the collisional
mean free path of the electrons λmfp. When the temperature
scale length is only a few λmfp or smaller, this description
breaks down. This may for instance happen in laser-irradiated
plasmas. In such a case, one could determine the heat flux
by solving the Fokker–Planck equation for the electrons, but
this is computationally expensive. Instead, we use a simplified
model to limit the electron heat flux. A free-streaming heat flux
can be defined as the thermal energy density in the plasma
transported at some characteristic thermal velocity: FFS =
nekBTevth, where vth = √

kBTe/me. For practical applications,
the maximum heat transport is usually only a fraction of this
free-streaming flux: F = −(f FFS/|∇Te|)∇T e, where f is the
so-called flux limiter. This heat flux model is the threshold model
and is also used in other radiation hydrodynamics packages,
such as HYADES (Larsen & Lane 1994). The flux-limited heat
flux can now be defined as

F = − min

(
Ce,

f FFS

|∇Te|
)

∇Te. (26)

The flux limiter f is an adjustable input parameter and can be
tuned to let the simulated results better fit reality.

3. THE NUMERICAL METHOD

In this section, we describe the discretization of the set
of multi-material, radiation hydrodynamic equations for the
density (17), momentum (18), total energy (22), electron internal
energies (20), radiation group energy (14), and material level-
set functions (23). The equations are time integrated using
an operator-split method to solve the equations in substeps.
Formally, we may write this system as

∂U
∂t

= Rhydro(U) + Rfrequency(U) + Rdiffusion(U), (27)

where U is the vector of state variables. We have split the
right-hand sides of the equations into three parts and time
advance the equations with an operator splitting method in
the following order. (1) The right-hand side Rhydro describes
the advection and pressure contributions (Section 3.1). This
part is essentially the ideal hydrodynamic equations augmented
with the advection and compression of the radiation energy,
the electron internal energy, and the material level sets. (2)
The right-hand side Rfrequency is the advection of the radiation
field in frequency space (Section 3.2). (3) The right-hand side
Rdiffusion takes care of the diffusion and energy exchange terms,
which we will solve with an implicit scheme (Section 3.3). This
choice of operator splitting is not unique. Instead of splitting
the hydrodynamic advection operator and the extra advance
operator for the frequency advection, one could attempt to
discretize the frequency advection flux as an extra flux for
the control volume of the four-dimensional (x, y, z, ν) space.
However, since the CRASH code is built around the existing
BATS-R-US code in 1D, 2D, and 3D, we opted for splitting
the frequency advection from the hydro update. Boundary
conditions are treated in Section 3.4.
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3.1. Hydro Solve

The first step of the operator splitting is an update of the
hydrodynamic equations, including the advection and compres-
sion of the radiation energy density, electron internal energy
density, and the level sets. We have implemented two variants
to solve the hydrodynamic equations: using (1) conservation
of the total energy (Section 3.1.1) and (2) a non-conservative
pressure formulation (Section 3.1.2). We can also combine the
two discretizations in a hybrid manner within a multi-material
simulation (Karni 1996).

3.1.1. Conservative

We have implemented several hydrodynamic shock-capturing
schemes in the CRASH code: the HLLE scheme (Harten et al.
1983; Einfeldt et al. 1991), the Rusanov scheme (Yee 1989),
and a Godunov scheme (Godunov 1959) with an exact Riemann
solver. In this section, we will explain how we generalized
the HLLE scheme for our system of equations that includes
radiation, level sets, and an EOS. The other hydrodynamic
schemes can be generalized in a similar fashion.

Typical hydrodynamic solvers in the literature assume con-
stant γ . Our problem is to generalize the constant γ hydro
solvers for the case of a spatially varying polytropic index, γe,
which varies due to ionization, excitation, and Coulomb inter-
actions. A method that is applicable to all the aforementioned,
constant-γ , hydrodynamic shock-capturing schemes is one of
splitting the electron internal energy Ee density into the sum
of an ideal (translational) energy part pe/(γ − 1) and an extra
internal energy density EX . Similarly, we can define an ideal
total energy density

eI = ρu2

2
+

pi + pe

γ − 1
+

G∑
g=1

Eg, (28)

which is related to the total energy density by e = eI + EX.
We time advance pe with the ideal electron pressure equation
and EX by a conservative advection equation, and then apply a
correction step as described below.

The time update with the operator Rhydro solves the following
equations:

∂ρ

∂t
+ ∇ · (ρu) = 0, (29)

∂ρu
∂t

+ ∇ · [ρuu + I (p + pr )] = 0, (30)

∂eI

∂t
+ ∇ · [(eI + p + pr )u] = 0, (31)

1

γ − 1

∂pe

∂t
+

1

γ − 1
∇ · (peu) + pe∇ · u = 0, (32)

∂EX

∂t
+ ∇ · [EXu] = 0, (33)

∂Eg

∂t
+ ∇ · (Egu) + (γr − 1)Eg∇ · u = 0, (34)

∂dm

∂t
+ ∇ · (dmu) − dm∇ · u = 0, (35)

where the frequency advection, diffusion, and energy exchange
terms are omitted in this first operator step. After each time

advance from time tn to time tn+1, we have to correct e, eI , pe,
and EX . We denote the uncorrected variables with a superscript
∗, then we recover at time level n + 1 the true electron internal
energy En+1

e and the true total energy density en+1 by

En+1
e = p∗

e

γ − 1
+ E∗

X, (36)

en+1 = e∗
I + E∗

X. (37)

Since both eI and EX follow a conservation law, the total
energy density e is also conserved. The true electron pressure is
recovered from the updated electron internal energy and mass
density by means of the EOS:

pn+1
e = pEOS

(
ρn+1, En+1

e , m
)
, (38)

where the function pEOS can be either a calculated EOS or an
EOS lookup table for material m, determined by the level set
functions dn+1

m (Section 2.3). The extra internal energy EX is
reset as the difference between the true electron internal energy
and the ideal electron internal energy for γ = 5/3:

En+1
X = En+1

e − pn+1
e

γ − 1
. (39)

This is positive because the EOS state pEOS satisfies Ee−pe/(γ−
1) � 0 at all times. The ideal part of the total energy density at
time level n + 1 can now be updated as

en+1
I = en+1 − En+1

X . (40)

We have now recovered en+1, eI
n+1, pn+1

e , and En+1
X at time tn+1.

We time advance the hydrodynamic equations to the time
level ∗ with a shock-capturing scheme with a constant γ = 5/3.
For an ideal EOS, the speed of sound of Equations (29)–(34)
can be derived as

cs =
√

γ (pi + pe) + γrpr

ρ
, (41)

which includes modifications due to the presence of the total
radiation pressure. This speed of sound will be used in the hydro
scheme below. Since the CRASH EOS solver always satisfies
EX � 0 and γe � 5/3, the speed of sound for the ideal EOS is
always an upper bound for the true speed of sound.

We use shock-capturing schemes to advance Equations (29)–
(35). In the following, we denote the (near) conservative
variables by U = (ρ, ρu, eI , pe, EX,Eg, dm) and let U be grid
cell averages in the standard finite volume sense. If we assume
for the moment a 1D grid with spacing Δx, cell center index i,
and cell face between cell i and i + 1 identified by half indices
i + 1/2, then we can write the two-stage Runge–Kutta hydro
update as

U
n+1/2
i = Un

i − Δt

2Δx

(
f n

i+1/2 − f n
i−1/2

)
, (42)

Un+1
i = Un

i − Δt

Δx

(
f

n+1/2
i+1/2 − f

n+1/2
i−1/2

)
, (43)

where f is the numerical flux. In particular, the HLLE flux f
equals the physical flux F (UR

i+1/2) when c+
s = ui + cs � 0,
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F (UL
i+1/2) when c−

s = ui − cs � 0, and in all other cases it uses
the weighted flux

fi+1/2 = c+
s F

(
UL

i+1/2

) − c−
s F

(
UR

i+1/2

)
+ c+

s c
−
s

(
UR

i+1/2 − UL
i+1/2

)
c+
s − c−

s

.

(44)
Here the left and right cell face states are

UL
i+1/2 = Ui +

1

2
Δ̄LUi, (45)

UR
i+1/2 = Ui+1 − 1

2
Δ̄RUi+1. (46)

We use the generalized Koren limiter and define the limited
slopes as

Δ̄LUi =
minmod

[
β(Ui+1 − Ui), β(Ui − Ui−1),

2Ui+1 − Ui − Ui−1

3

]
,

(47)

Δ̄RUi =
minmod

[
β(Ui+1 − Ui), β(Ui − Ui−1),

Ui+1 − Ui − 2Ui−1

3

]
,

(48)

for the extrapolations from the left and right. This reconstruction
can be third order in smooth regions away from extrema (Koren
1993; Tóth et al. 2008). The parameter β can be changed
between 1 and 2, but in simulations with AMR we have
best experience with β = 3/2. We generally apply the slope
limiters on the primitive variables (ρ, u, pi, pe, EX/ρ,Eg, dm),
instead of the conservative variables. We apply the slope
limiter on EX/ρ, instead of EX , since EX/ρ is smoother at
shocks and across material interfaces. A multi-dimensional
update is obtained by adding the fluxes for each direction in
a dimensionally unsplit manner.

After each stage of the two step Runge–Kutta, we correct
for the EOS effects via the update procedure outlined in
Equations (36)–(40).

3.1.2. Non-conservative Pressure Equations

In regions away from shocks, it is sometimes more important
to preserve pressure balance than to have a shock-capturing
scheme that recovers the correct jump conditions. This is
especially important at material interfaces. We therefore have
implemented the option to solve the hydro part of the pressure
equations

∂pi

∂t
+ ∇ · (piu) + (γ − 1)pi∇ · u = 0, (49)

∂pe

∂t
+ ∇ · (peu) + (γSe − 1)pe∇ · u = 0, (50)

instead of the equations for the total energy (31) and the electron
internal energy (32). As long as the speed-of-sound gamma for
the electrons

γSe
= ρ

pe

(
∂pe

∂ρ

)
Se

(51)

is smaller than γ = 5/3, the numerical scheme is stable.
Contrary to the energy conserving scheme, the pressure-based
scheme can directly include the EOS and we no longer need
the time evolution of the extra internal energy density (33).
The EOS contribution in the electron-pressure Equation (50) is
implemented as a source term −(γSe − γ )pe∇ · u added to the
ideal electron pressure equation.

To facilitate using both the shock-capturing properties and
the pressure balance at the material interfaces during CRASH
simulations, we have several criteria to switch between them
automatically. One of the criteria, for instance, uses a detection
of steep pressure gradients as a shock identification. The user
can select the magnitude of the pressure gradient above which
the scheme switches to the conservative energy equations.

3.2. Frequency Advection

The set of multi-group Equation (14) contains an integral
over the group photon frequencies. Performing this integration,
the frequency advection update by the Rfrequency operator can be
written as

∂Eg

∂t
−(γr −1)(∇·u)

[
νg+1/2Eν(νg+1/2)−νg−1/2Eν(νg−1/2)

] = 0.

(52)
These equations, however, still depend on the, as yet, unassigned
photon group frequencies νg and the spectral radiation energy
density Eν . We will now restrict the analysis to a frequency grid
that is uniformly spaced in the frequency logarithm, i.e.,

ln(νg+1/2) − ln(νg−1/2) = Δ(ln ν) = constant. (53)

For a large enough number of frequency groups G, the group
energy Eg can then be approximated as the product of the photon
frequency, spectral radiation energy Eν , and the logarithmic
group spacing Δ(ln ν):

Eg =
∫ νg+1/2

νg−1/2

Eνdν =
∫ ln νg+1/2

ln νg−1/2

Eννd(ln ν) ≈ EννΔ(ln ν).

(54)
Using this approximation in Equation (52), we obtain our final
form of the frequency advection

∂Eg

∂t
+ uν

Eg+1/2 − Eg−1/2

Δ(ln ν)
= 0, (55)

where uν = −(γr − 1)∇ · u is the frequency advection speed.
The values Eg±1/2 are to be interpolated from the mesh-centered
values Eg toward the group boundaries.

The frequency advection is a conservative linear advection
in the log-frequency coordinate, for which the physical flux is
defined as Fg−1/2 = uνEg−1/2. For the boundary conditions in
the frequency domain we assume zero radiation flux so that
no radiation can leak at the edges of the frequency domain.
Equation (55) can be discretized with the one-stage second-
order upwind scheme

En+1
g = E∗

g − Δt
fg+1/2 − fg−1/2

Δ(ln ν)
, (56)

where time level ∗ is now the state after the hydro update and
the numerical flux is

7
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fg−1/2 = uν

[
Eg − 1 − C

2
Δ̄(Eg+1 − Eg,Eg − Eg−1)

]
,

uν � 0,

fg−1/2 = uν

[
Eg−1 +

1 − C

2
Δ̄(Eg − Eg−1, Eg−1 − Eg−2)

]
,

uν � 0, (57)

and we use the superbee limiter (Roe 1986) for the limited
slope Δ̄. The Courant–Friedrichs–Lewy (CFL) number C =
|uν |Δt/Δ(ln ν) depends on the hydrodynamic time step Δt . If C
is larger than 1, the frequency advection is sub-cycled with the
number of steps equal to the smallest integer value larger than
C.

3.3. Implicit Diffusion and Energy Exchange

The stiff parts of the radio hydrodynamic equations are solved
implicitly in an operator-split fashion. These stiff parts are the
radiation energy diffusion, electron heat conduction, and the
energy exchange between the electrons and each energy group
g and between the electrons and ions. In this section, we will
describe two implicit schemes that are implemented: (1) solving
all radiation groups, together with electron and ion temperatures
in a coupled manner (Section 3.3.1) and (2) solving each radi-
ation group energy and the electron temperature independently
(Section 3.3.2). Our strategy for resolution changes is described
in Appendix A, while the modifications for the rz-geometry are
explained in Appendix B.

3.3.1. Coupled Implicit Scheme

Discretizing the diffusion and energy exchange terms of
Equations (19)–(20), and (14) implicitly in time leads to

En+1
i − E∗

i

Δt
= σ ∗

ie

(
T n+1

e − T n+1
i

)
, (58)

En+1
e − E∗

e

Δt
= σ ∗

ie

(
T n+1

i − T n+1
e

)
+ ∇ · C∗

e ∇T n+1
e

+
G∑

g=1

σ ∗
g

(
En+1

g − Bn+1
g

)
, (59)

En+1
g − E∗

g

Δt
= σ ∗

g

(
Bn+1

g − En+1
g

)
+ ∇ · D∗

g∇En+1
g , (60)

where time level ∗ now corresponds to the state after the hydro
update and the frequency advection. The coupling coefficients
σ ∗

ie and σ ∗
g and the diffusion coefficients C∗

e and D∗
g are taken

at time level ∗ (frozen coefficients). One can either (1) solve
the coupled system of G + 2 Equations (58)–(60) implicitly
or (2) solve Equation (58) for the ion internal energy En+1

i ,
substitute the solution back into Equation (59), and solve the
resulting reduced set of G + 1 Equations (59)–(60) implicitly.
Here we describe the second scheme, because it is more efficient,
especially for a small number of groups, e.g., for gray radiation
diffusion. Note that if we had included ion heat conduction in
Equation (60), then we would have to solve the entire coupled
system of equations.

First, we introduce the ion Planck function Bi = aT 4
i as a

new variable similar to the electron Planck function B = aT 4
e ,

and replace Ei and Ee with these variables using the chain rule

∂Ei

∂t
= ∂Ei

∂Ti

∂Ti

∂Bi

∂Bi

∂t
= CV i

4aT 3
i

∂Bi

∂t
,

∂Ee

∂t
= CV e

4aT 3
e

∂B

∂t
,

(61)
where CVi and CVe are the specific heats of the ions and electrons,
respectively. Now Equation (58) can be replaced with

Bn+1
i = B∗

i + Δtσ ′
ie

(
Bn+1 − Bn+1

i

)
, (62)

where

σ ′
ie = σ ∗

ie

4aT 3
i

CV i

1

a(Te + Ti)
(
T 2

e + T 2
i

) (63)

is again taken at time level ∗. The numerator comes from
(T 4

e − T 4
i )/(Te − Ti). Equation (62) can be solved for Bn+1

i .
This result can be substituted into the electron internal energy
Equation (59) to obtain

C ′
V e

Δt
(Bn+1 − B∗) = σ ′′

ie(B∗
i − Bn+1) + ∇ · C ′

e∇Bn+1

+
G∑

g=1

σ ∗
g

(
En+1

g − w∗
gB

n+1
)
, (64)

where we have introduced new coefficients at time level ∗:

σ ′′
ie = CV i

4aT 3
i

σ ′
ie

1 + Δtσ ′
ie

, C ′
e = C∗

e

4aT 3
e

, C ′
V e = C∗

V e

4aT 3
e

. (65)

The Planck weights w∗
g = B∗

g/B∗ satisfy
∑

g wg = 1. It is
convenient to introduce the changes ΔB = Bn+1 − B∗ and
ΔEg = En+1

g − E∗
g to arrive at

[
C ′

V e

Δt
+ σ ′′

ie − ∇ · C ′
e∇

]
ΔB −

G∑
g=1

σ ∗
g

(
ΔEg − w∗

gΔB
)

= σ ′′
ie

(
B∗

i − B∗) + ∇ · C ′
e∇B∗ +

G∑
g=1

σ ∗
g

(
E∗

g − w∗
gB

∗), (66)

[
1

Δt
− ∇ · D∗

g∇
]

ΔEg − σ ∗
g

(
w∗

gΔB − ΔEg

)
= σ ∗

g

(
w∗

gB
∗ − E∗

g

)
+ ∇ · D∗

g∇E∗
g . (67)

This is a coupled system of G + 1 linearized equations for
the changes ΔB and ΔEg . The right-hand sides are all at time
level *.

A discrete set of equations is obtained by applying the
standard finite volume method to Equations (66) and (67)
and partitioning the domain in a set of control volumes Vi,
enumerated by a single index i = 1, . . . , I . As an example, the
fluxes Fgij associated with the radiation diffusion operator may
be obtained by approximating the gradient of the group energy
density with a simple central difference in the uniform part of
the mesh:

−
∫

Vi

∇ · (Dg∇Eg)dV =
∑

j

Fgij =
∑

j

SijDgij
Egi − Egj

|xi − xj | ,

(68)
where the index j enumerates the control volumes which have a
common face with the control volume i, the face area being Sij,
and the distance between cell centers is |xi − xj |. Note that we
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assumed here an orthogonal mesh. Generalization to curvilinear
grids can be done as shown in Tóth et al. (2008). The diffusion
coefficients at a face are obtained by simple averaging of the
cell centered diffusion coefficient: Dgij = (Dgi + Dgj )/2. The
discretization of the diffusion operator at resolution changes is
described in Appendix A.

The linear system (66)–(67) can be written in a more compact
form as the linearized implicit backward Euler scheme(

I − Δt
∂R
∂U

)
ΔU = ΔtR(U∗), (69)

where U are the I × (G + 1) state variables B and Eg for
all I control volumes and ΔU = Un+1 − U∗. R is defined
by the spatially discretized version of the right-hand side of
Equations (66) and (67). The matrix A = I − Δt∂R/∂U is a
I × I block matrix consisting of (G+ 1)× (G+ 1) sub-matrices.
This matrix A is in general non-symmetric due to the Planck
weight w∗

g in the energy exchange between the radiation and
electrons. To solve this system we use Krylov sub-space type
iterative solvers, like GMRES (Saad & Schultz 1986) or Bi-
CGSTAB (van der Vorst 1992). To accelerate the convergence
of the iterative scheme, we use a preconditioner. In the current
implementation of CRASH, we use the Block Incomplete
Lower-Upper decomposition (BILU) preconditioner, which is
applied for each adaptive mesh refinement block independently.
For gray radiation diffusion the Planck weight is one, and the
matrix A can be proven to be symmetric positive definite (SPD)
for commonly used boundary conditions (see, for example,
Edwards 1996). In that case, we can use a preconditioned
conjugate gradient (PCG) scheme (see, for instance, Eisenstat
1981).

For some verification tests, we can attempt to go second order
in time under the assumption of temporally constant coefficients
using the Crank–Nicolson scheme

Un+1 − U∗

Δt
= (1 − α)R(U∗) + αR(Un+1), (70)

with α = 1/2. The implicit residual can again be linearized
R(Un+1) = R(U∗) + (∂R/∂U)∗ΔU to obtain the linear system of
equations (

I − αΔt
∂R
∂U

)
ΔU = ΔtR(U∗). (71)

We use the same iterative solvers as for the backward Euler
scheme.

Finally, we show how we use the solution ΔB and ΔEg for
g = 1, . . . , G from the non-conservative Equations (66) and
(67) to advance the solution of the original Equations (58)–(60)
and still conserve the total energy. One needs to express the
fluxes and energies on the right-hand side in the latter equations
in terms of Bn+1 and En+1

g while still keeping the coefficients
frozen. After some algebra we obtain

En+1
i = E∗

i + Δtσ ′′
ie

(
Bn+1 − B∗

i

)
, (72)

En+1
e = E∗

e + C ′
V e(Bn+1 − B∗), (73)

En+1
g = E∗

g + ΔEg. (74)

This update conserves the total energy to round-off error. Note
that at this final stage, taking too large time step may result in

negative ion internal energy En+1
i if Bn+1 � B∗

i and negative
electron internal energy En+1

e if Bn+1 � B∗. If this happens,
the advance might be redone with a smaller time step, to limit
the drop in B, or by some other time step control scheme. A
generalization of the conservative update to the Crank–Nicolson
scheme is also implemented for verification tests with time
constant coefficients.

For completeness, we mention that in the absence of radiation
we solve during the implicit step for the temperatures Te and Ti
instead of the radiation-energy-like variables aT 4

e and aT 4
i . In

that case the corresponding matrix A is always SPD. In principle,
the formulation in temperatures can be generalized to radiation
as well. In Landau & Lifshitz (1980), a spectral temperature
Tν(Eν, ν) is defined, such that the spectral energy density is
locally equal to the spectral Planckian energy density at the
temperature Tν : Eν = Bν(Tν, ν). This relationship is a one-to-
one map. A group temperature, Tg, can also be introduced as
the discrete analog such that the group energy density can be
obtained by

Eg(Tg) =
∫ νg+1/2

νg−1/2

Bν(Tg, ν)dν. (75)

Equation (60) can be recast as equation for the group tempera-
ture Tg. This introduces the group specific heat of the radiation
Cg = dEg/dTg . The set of Equations (58)–(60) reformulated
as an implicit backward Euler scheme for the temperatures
Ti, Te, and Tg can in a similar way as in Edwards (1996) be
proven to be SPD. While this scheme has the advantage of be-
ing SPD, the conservative update of the group energy density
En+1

g = E∗
g + C∗

gΔTg might result in negative energy density
En+1

g for time steps that are too large.

3.3.2. Decoupled Implicit Scheme

The coupled implicit scheme of Section 3.3.1 requires solu-
tion of a large system of equations (G + 1 variables per mesh
cell). The preconditioning of such a system can be computa-
tionally expensive and requires overall a lot of memory. We
therefore also implemented a decoupled implicit scheme that
solves each equation independently.

For some applications, the electron temperature does not
change much in exchanging energy with the radiation. This
is typically so if the electrons have a much larger energy density
than the radiation, so that Te changes little due to interaction with
the radiation in a single time step. In that case, we first solve
for the electron and ion temperatures without the contributions
from the radiation-electron energy exchange. Let again time
level ∗ indicate the state after the hydro update and frequency
advection, and again freeze C∗

e , D∗
g , σ ∗

ie, σ ∗
g at time level ∗.

Discretization in time now leads to

En+1
i − E∗

i

Δt
= σ ∗

ie

(
T ∗∗

e − T n+1
i

)
, (76)

E∗∗
e − E∗

e

Δt
= σ ∗

ie

(
T n+1

i − T ∗∗
e

)
+ ∇ · C∗

e ∇T ∗∗
e , (77)

where the time level ∗∗ of Ee indicates that we still have to
perform an extra update to time level n + 1 with the radiation-
electron energy exchange. Each radiation group energy density
is solved independently using time level ∗ for the electron
temperature in B∗

g :

En+1
g − E∗

g

Δt
= σ ∗

g

(
B∗

g − En+1
g

)
+ ∇ · D∗

g∇En+1
g , (78)
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where we have exploited the assumption that B∗
g is not stiff.

Equations (76)–(78) can be recast in equations for the G + 1
independent changes ΔB = B∗∗ − B∗ and ΔEg = En+1

g − E∗
g :[

C ′
V e

Δt
+ σ ′′

ie − ∇ · C ′
e∇

]
ΔB = σ ′′

ie

(
B∗

i − B∗) + ∇ · C ′
e∇B∗,

(79)

[
1

Δt
+ σ ∗

g − ∇ · D∗
g∇

]
ΔEg = σ ∗

g

(
w∗

gB
∗ − E∗

g

)
+ ∇ · D∗

g∇E∗
g .

(80)

where we have used the definitions (61), (63), and (65) of the
coefficients, frozen at time level ∗. Each equation for the changes
is in the form of the linearized implicit backward Euler scheme
(69) and can be solved independently with iterative solvers like
GMRES and Bi-CGSTAB using a BILU preconditioner. As
long as the boundary conditions are such that the matrices are
symmetric and positive definite, a PCG method might also be
used.

In a manner similar to the coupled implicit scheme, a
conservative update for the energy densities can be derived as

En+1
g = E∗

g + ΔEg, (81)

En+1
i = E∗

i + Δtσ ′′
ie

(
B∗∗ − B∗

i

)
, (82)

En+1
e = E∗

e +C ′
V e(B∗∗ −B∗)+Δt

G∑
g=1

σ ∗
g

(
En+1

g −w∗
gB

∗), (83)

which preserves the total energy to round-off errors. The main
difference between the conservative update in the coupled and
decoupled schemes is that here the energy exchange between
the radiation and electrons is added afterward as the last term in
Equation (83).

This scheme requires less computational time for precon-
ditioning and for the Krylov solver than the coupled implicit
algorithm. However, it generally needs more message passing
in parallel computations. It is therefore not always guaranteed
that the decoupled scheme is faster. The memory usage is always
smaller.

3.4. Boundary Conditions

The CRASH code allows for any user specified type of bound-
ary conditions. Several commonly used boundary conditions are
readily available in the main code for convenience, e.g., fixed,
extrapolation with zero gradient, periodic, and reflective.

For the radiation field, we have implemented a zero or fixed
incoming flux boundary condition that is used instead of the ex-
trapolation with zero gradient. This type of boundary condition
is useful if there are no sources of radiation outside the compu-
tational domain and we assume that outflowing radiation does
not return back into the computational domain (zero albedo).
Note that simple extrapolation with zero gradient can make the
radiation diffusion problem ill-posed. The boundary condition
is derived as follows. Radiation diffusion approximation corre-
sponds to a linear-in-angle intensity distribution

Ig = c

4π
Eg +

3

4π
Fg · n, (84)

so we can calculate the radiation flux through a boundary
surface. If we define the outward pointing normal vector of the

boundary as nb, the net flux of radiation energy inward through
this boundary is

F in
g = −

∫
n·nb<0

nb · nIgdΩ = cEg

4
− 1

2
nb · Fg, (85)

where the closure (84) is used. In the radiation diffusion model,
the flux is written as Fg = −Dg∇Eg , where the diffusion
coefficient Dg is a non-linear function of Eg and ∇Eg in an
FLD model. The boundary condition satisfies

Eg +
2Dg

c
nb · ∇Eg = 4

c
F in

g . (86)

For the left boundary in the x-direction, for instance, this can be
discretized as

Eg0 + Eg1

2
− 2Dg

c

Eg1 − Eg0

Δx
= 4

c
F in

g , (87)

where the index 1 corresponds to the last physical cell and 0
to the ghost cell. This equation can be solved for the ghost cell
value. For zero incoming radiation flux boundary conditions we
set F in

g = 0.

4. CODE VERIFICATION

To test the CRASH as well as the BATS-R-US and SWMF
codes, we have implemented numerous tests. These tests are
subdivided in two categories: functionality tests and verification
tests. Both test suites are performed automatically and return
pass or fail messages depending on whether or not certain
predefined tolerance criteria are met. This automated testing
process provides software quality confidence especially when
used in combination with a software version control system
like Concurrent Versions System to recover previous correctly
performing code.

The functionality tests are performed nightly on several
computer platforms with different compilers and numbers of
processors. They consist of unit tests and full system tests.
Unit tests are designed to test a particular unit, for example,
a linear equation solver. The full system tests, on the other
hand, exercise the code in the way end-users will use it for their
research applications. We always try to cover as much code as
possible with these tests so that we can discover bugs and other
unwanted side effects early on.

To test the correctness of the implemented algorithms we have
also constructed a suite of verification tests. This suite is exe-
cuted daily on a dedicated parallel computer and runs specific
simulations to quantify against analytic and semi-analytic solu-
tions, whenever possible. The CRASH test repository currently
covers a wide range of tests for hydrodynamics, multi-material
advection methods, gray and multi-group radiation diffusion,
and heat conduction, to mention a few. These are performed to
test for grid and/or time convergence, as deemed necessary. We
also simulate full system laboratory experiment configurations
in various geometries, dimensionalities, and physics fidelities.
The results are either validated against laboratory experiments
or simply used to check that the code keeps performing these
simulations as expected. Once a week, we also perform a paral-
lel scalability test on a large parallel computer to verify that the
code does not degrade in performance during further develop-
ment of the software.

In the following sub-sections, we highlight some specific
verification tests related to the implicit radiation (Section 4.2)
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Figure 1. Material (Tmat) and radiation (Trad) temperature solution of the Su
& Olson (1996) non-equilibrium Marshak radiation diffusion problem obtained
with the CRASH code on a non-uniform grid. The reference temperatures of
the analytical method of Su & Olson (1996) are shown as lines.

and heat conduction (Section 4.3) solver. These tests cover both
Cartesian and rz-geometry, and some of them also involve the
hydrodynamic solver. We demonstrate a 3D full system test in
Section 4.4 and describe the parallel scalability in Section 4.5.

4.1. Error Assessment

For assessment of the accuracy of the solutions in the test
suites, an appropriate definition of the numerical errors has to
be defined. We use two types of errors to quantify the verification
analysis. The relative L1 error is defined as

EL1 =
N∑

α=1

∑I
i=1 |Uαi − Vαi |∑I

i=1 |Vαi |
, (88)

where α = 1, . . . , N indexes the state variables of numerical
solution vector U and the reference solution V, and i = 1, . . . , I
indexes the grid cells of the entire computational domain. For
test problems with smooth solutions, we will also use the relative
maximum error defined by

EL∞ =
N∑

α=1

maxi=1,...,I |Uαi − Vαi |
maxi=1,...,I |Vαi | . (89)

Quite often, the reference solution is defined on a grid with
higher resolution than that of the numerical solution. In that
case, we first coarsen the reference solution to the resolution of
the numerical solution.

4.2. Radiation Tests

4.2.1. Su–Olson Test

Su & Olson (1996) developed a 1D Marshak wave test, to
check the accuracy of the scheme and the correctness of the
implementation of the time-dependent non-equilibrium gray
radiation diffusion model. In this test, radiation propagates
through a cold medium that is initially absent of radiation.
The equations are linearized by the choice of the specific
heat of the material CV = 4aT 3 as well as by setting the
Rosseland and Planck opacities to the same uniform and time-
independent constant κR = κP = κ . The cold medium is defined
on a half-space of the slab geometry 0 � x < ∞. At the
boundary on the left, a radiative source is specified, creating
an incident radiation flux of F in = aT 4

in, where Tin = 1 keV.
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Figure 2. Relative L1 error for the Su–Olson test on a non-uniform grid.

As time progresses, the radiation diffuses through the initially
cold medium and by energy exchange between radiation and
matter, the material temperature rises. In Su & Olson (1996), a
semi-analytical solution is derived for the time evolution of the
radiation energy and material temperature. We use this solution
for our verification test.

For convenience, we locate the right boundary at a finite
distance x = 5 cm and impose a zero incoming radiation flux
on that boundary. We decompose the computational domain into
6 grid blocks at the base level with 10 cells per block. Between
x = 5/6 cm and x = 5/3 cm, the domain is refined by one
level of AMR. During the time evolution, radiation diffuses to
the right through the resolution changes. The system is time-
evolved with the implicit radiation diffusion solver by using
a PCG method until the final time 0.02 ns. The solver steps
through a series of fixed time steps of 5 × 10−4 ns and we use
a Crank–Nicolson approach to achieve second-order accurate
time integration. Note that this is possible because coefficients
of the matrix to be solved are not time-dependent. The computed
radiation and material temperatures at the final time are shown
in Figure 1 and agree well with the semi-analytical solution.

Figure 2 shows the relative L1 error of the radiation and
material temperatures versus increasing grid resolution of the
base level grid. We did not use the semi-analytical solution
as the reference, since it is difficult to get an accurate enough
solution with the quadrature method as mentioned by Su &
Olson (1996). Instead, we use a very high resolution (1920
cells) numerical reference solution obtained with the CRASH
code. Four different base level resolutions with 60, 120, 240, and
480 cells are used to demonstrate the second-order convergence.
The time step is proportional to the cell size Δx.

4.2.2. Lowrie’s Non-equilibrium Radiation Hydrodynamic Solutions

Lowrie & Edwards (2008) designed several shock tube prob-
lems for the non-equilibrium gray radiation diffusion coupled
to the hydrodynamic equations that can be used for code verifi-
cation. These solutions are planar radiative shock waves where
the material and radiation temperatures are out of equilibrium
near the shock, but are assumed to be in radiative equilibrium
far from the shock. Depending on the Mach number of the pre-
shock state, a wide range of shock behavior can occur. For the
CRASH test suite, we selected a few of the semi-analytic so-
lutions from Lowrie & Edwards (2008). In this section we will
describe the Mach 1.05 flow with uniform opacities as an exam-
ple. Here the shock is smoothed by energy exchange with the
diffusive radiation. Another more challenging Mach 5 problem
with non-uniform opacities will be described in Section 4.3.3.
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Figure 3. Rotated shock-tube test on a 2D AMR grid based on the Mach number
1.05 non-equilibrium gray radiation hydrodynamic test in Lowrie & Edwards
(2008). Shown is the radiation temperature in color contour at the initial (top
panel) and final (bottom panel) times. Black crosses indicate cell centers.

(A color version of this figure is available in the online journal.)

The Mach 1.05 test is performed on a 2D non-uniform
grid. The initial condition is taken to be the same as the
original steady state reference solution. Since the system of
equations is Galilean invariant, we can add an additional velocity
−1.05 so that the velocity on the left boundary is zero while
the smoothed shock will now move to the left. This new
initial condition as well as the velocity vector are rotated by
tan−1(1/2) ≈ 26.◦56. This means that there is a translational
symmetry in the (−1, 2) direction of the xy-plane as shown
in Figure 3. The computational domain is −0.12 < x < 0.12
by −0.02 < y < 0.02 decomposed in 3 × 3 grid blocks of
24 × 4 cells each. We apply one level of refinement inside
the region −0.04 < x < 0.04 by −0.02/3 < y < 0.02/3.
The initial smoothed shock starts at the right boundary of the
refined grid and we time-evolve the solution until it reaches
the resolution change on the left as shown in Figure 3. For the
boundary conditions in the x-direction, we use zero radiation
influx conditions for the radiation field, while a zero gradient is
applied to the remaining state variables. On the y boundaries,
we apply a sheared zero gradient in the (−1, 2) direction for all
variables.

The hydrodynamic equations are time-evolved with the
HLLE scheme with a CFL number 0.8. We use the generalized
Koren limiter with β = 3/2 for the slope reconstruction. For the
implicit radiation diffusion solver, we use the GMRES iterative
solver in combination with a BILU preconditioner. The specific
heat is time-dependent since it depends on the density, therefore
the implicit scheme is only first-order accurate in time. To enable
second-order grid convergence for this smooth test problem, we
compensate for this by reducing the CFL number proportional
to the grid cell size, in other words Δt ∝ Δx2, so that second-
order accuracy with respect to Δx can be achieved. We increase
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Figure 5. Relative L1 error for the Mach 1.05 non-equilibrium radiation
diffusion test on a non-uniform grid. Both non-conservative and conservative
hydrodynamic schemes are tested.

the spatial resolution by each time doubling the number of grid
blocks at the base level in both the x- and y-directions.

The convergence of the numerically obtained material and
radiation temperatures along the y = 0 cut at the final time
t = 0.07 is shown in Figure 4. The solid, dotted, and dashed lines
correspond to the solutions with the 3×3, 6×6, and 12×12 base
level grid blocks, respectively. The advected semi-analytical
reference solution is shown as a blue line for comparison.

To assess the order of accuracy, the grid convergence is
shown in Figure 5 for the three resolutions. The relative L1
error is calculated using the density, velocity components,
and both the material and radiation temperatures. We obtain
second-order convergence for both the conservative and the
non-conservative (using the pressure equation instead of the
total energy) hydrodynamic schemes. The latter scheme can be
used because in the Mach 1.05 test the hydro shock is smoothed
out by the interaction with the radiation.

4.2.3. Double Light Front

As a test for the multi-group radiation diffusion model we
developed a double light front test problem. This test is used to
verify the implementation of both the group diffusion and flux
limiters. At the light front, the discontinuity in the radiation field
switches on the flux limiter. This limiter is used to correct the
radiation propagation speed in the optically thin free-streaming
regime. With the light front test we can then check that we
obtain the speed of light propagation of the front and that the
front maintains as much as possible the initial discontinuity.
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Figure 4. Material (left panel) and radiation (right panel) temperatures for the Mach 1.05 radiative shock tube problem at the final time are shown in the x-direction.
The solid, dotted, and dashed lines correspond to three different grid resolutions, respectively. The blue line is the semi-analytical reference solution of Lowrie &
Edwards (2008).

(A color version of this figure is available in the online journal.)
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Figure 6. Solutions for the 1D double light front test for four different non-uniform grid resolutions. The radiation energy for group 1 (left panel) enters from the left
boundary, for group 2 (right panel) it enters from the right boundary. The symbols for base resolution 80 show one level of grid refinement for 0.1 < x < 0.2 and
0.8 < x < 0.9.
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Figure 7. Relative L1 error for the double light front test on a non-uniform grid.
The test is performed for the x-, y-, and z-directions.

This test is constructed as follows. We use a 1D computational
domain of the size of 1 m in the x-direction. On this domain, we
initialize the two radiation group energy densities Eg (g = 1, 2)
with a very small, positive number to avoid division by zero
in the flux limiter. Also the Rosseland mean opacities are set
to a small number corresponding to strong radiation diffusion,
while the Planck mean opacities are set to zero corresponding
to an optically thin medium. The radiation energy density of
the first group enters from the left boundary by applying a fixed
boundary condition with value one in arbitrary units. On the
right boundary this group is extrapolated with zero gradient.
Note that these are the proper boundary conditions in the free-
streaming limit and not the diffusive flux boundary conditions
described in Section 3.4. The second radiation group enters
from the right boundary with density 1, and it is extrapolated
with zero gradient at the left boundary. We time-evolve both
groups for 0.5 m/c seconds. The analytic solution is then two
discontinuities that have reached x = 0.5 m, since both fronts
propagate with the speed of light c.

The computational domain is non-uniform. In the coarsest
resolution, there are 10 grid blocks of 4 cells each at the base
level. Inside the regions 0.1 < x < 0.2 and 0.8 < x < 0.9, we
use one level of refinement. The total time evolution is divided
into 400 fixed time steps. We use GMRES for the radiation
diffusion solver in combination with a BILU preconditioner. For
the grid convergence, we reduce the fixed time step quadratically
with grid resolution. This time step reduction mimics second-
order discretization in time. In Figure 6, the two group energy
densities are shown for the base level grid resolutions 40, 80,
160, and 320. Clearly, with increasing number of cells, the
solution converges toward the reference discontinuous fronts at
x = 0.5.

In Figure 7, the grid convergence is shown for the four
resolutions. The relative L1 error is calculated using both

radiation group energy densities and compared to the analytical
reference solution with the discontinuities at x = 0.5. In Gittings
et al. (2008), it was stated that for a second-order difference
scheme the convergence rate for a contact discontinuity is 2/3.
Indeed, we find this type of convergence rate, due to numerical
diffusion of the discontinuities, for the light front test. We have
also performed the tests in the y- and z-directions to further
verify the implementation.

4.2.4. Relaxation of Radiation Energy Test

This test is designed to check the relaxation rate between
material and radiation. The energy exchange between the
material and radiation groups can be written as

CV

∂T

∂t
=

G∑
g=1

σg(Eg − Bg), (90)

∂Eg

∂t
= σg(Bg − Eg). (91)

For a single radiation group, an analytic expression can be
found to describe the relaxation in time. However, for an
arbitrary number of groups, a time-dependent analytic solution
is less obvious, except for some rather artificial cases. Here
we assume an extremely large value of the specific heat CV
to make analysis more tractable. In this case, the material
temperature is time-independent, so that Bg is likewise time
independent. The solution is then Eg = Bg(1− e−σgt ) assuming
Eg(t = 0) = 0 initially. At time t = 1/σg , the group radiation
energy density is Eg = Bg(1 − 1/e). Note that this test only
needs one computational mesh cell in the spatial domain. We
set T = 1 keV and the resulting Planckian spectrum, defined
by Bg, is depicted by the dotted line in the left panel of
Figure 8. We use 80 groups logarithmically distributed over
the photon energy domain in the range of 0.1 eV to 20 keV.
The computed Eg at time t = 1/σg are shown as + points.
For the simulation we used the GMRES iterative solver and the
Crank–Nicolson scheme. To assess the error, we repeated the
test with time steps of 1/20, 1/40, and 1/80 of the simulation
time. The second-order convergence rate is demonstrated in the
right panel of Figure 8.

4.3. Heat Conduction Tests

4.3.1. Uniform Heat Conduction in rz-geometry

This test is designed to verify the implicit heat conduction
solver in rz-geometry. It tests the time evolution of the temper-
ature profile using uniform and time-independent heat conduc-
tivity. In rz-geometry, the equation of the electron temperature
for purely heat conductive plasma follows

CV e

∂Te

∂t
= 1

r

∂

∂r

(
rCe

∂Te

∂r

)
+

∂

∂z

(
Ce

∂Te

∂z

)
. (92)
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Figure 8. Relaxation of radiation energy test for 80 groups. Left panel is for the time-independent spectrum Bg (dotted line) and the group radiation energy solution Eg
at time 1/σg (+ points) vs. the photon energies after 80 time steps. The analytical reference solution is shown as a solid line. Right panel shows the relative maximum
error for 20, 40, and 80 time steps demonstrating second-order convergence rate.
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Figure 9. Electron temperature for the uniform heat conduction test on a non-
uniform grid in rz-geometry. The top panel shows the electron temperature in
the initial condition while the bottom panel is the electron temperature at the
final time. The black box indicates the region within which the grid is refined
by one level.

(A color version of this figure is available in the online journal.)

We set the electron specific heat CV e = 1 and assume electron
conductivity Ce to be constant. In this case, a solution can be
written as a product of a Gaussian profile in the z-direction and
an elevated Bessel function J0 in the r-direction (Arfken 1985):

Te = Tmin + T0
1√

4πCet
e− z2

4Cet J0(br)e−b2Cet , (93)

where b ≈ 3.8317 is the first root of the derivative of J0(r). We
select the following values for the input parameters: Tmin = 3,
T0 = 10, and Ce = 0.1 in dimensionless units.

The computational domain is −3 < z < 3 and 0 < r < 1
discretized with 3 × 3 grid blocks of 30 × 30 cells each. In the
region −1 < z < 1 and 1/3 < r < 2/3, we apply one level
of mesh refinement. We impose a symmetry condition for the
electron temperature on the axis. On all other boundaries the
electron temperature is fixed to the time-dependent reference
solution. We time-evolve this heat conduction problem with a
PCG method from time t = 1 to the final time at t = 1.5.
The Crank–Nicolson approach is used to achieve second-order
accurate time integration.

The initial and final solutions for the electron temperature
are shown in Figure 9 in color contour in the rz-plane. The
heat conduction has diffused the temperature in time to a more
uniform state. The black line indicates the region in which
the mesh refinement was applied. The relative maximum error
of the numerically obtained electron temperature versus the
analytical solution is shown in Figure 10. Here we used the
non-uniform grid with base resolutions of 902, 1802, 3602, and
7202 cells and set the time step proportional to the cell size to
demonstrate a second-order convergence rate.
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Figure 10. Relative maximum error for the uniform heat conduction test on a
non-uniform grid in the rz-geometry.

4.3.2. Reinicke–Meyer-ter Vehn Test

The Reinicke & Meyer-ter-Vehn (1991) problem tests both
the hydrodynamic and heat conduction implementations. This
test generalizes the well-known Sedov–Taylor strong point
explosion in single-temperature hydrodynamics by including
the heat conduction. The heat conductivity is parameterized as
a non-linear function of the density and material temperature:
Ce = ρaT b. We select the spherically symmetric self-similar
solution of Reinicke & Meyer-ter-Vehn (1991) with coefficients
a = −2 and b = 13/2 and the adiabatic index is γ = 5/4. This
solution produces, similar to the Sedov–Taylor blast-wave, an
expanding shock front through an ambient medium. However,
at very high temperatures, thermal heat conduction dominates
the fluid flows, so that a thermal front precedes the shock front.
With the selected parameters, the heat front is always at twice
the distance from the origin of the explosion as is the shock
front.

We perform the test in rz-geometry. The computational
domain is divided in 200 × 200 cells. The boundary conditions
along the r and z axes are reflective. The two other boundaries,
away from explosion, are prescribed by the self-similar solution.
The time evolution is numerically performed as follows. For the
hydrodynamics, we use the HLLE scheme with the CFL number
set to 0.8. Since this test is performed on a uniform grid without
AMR, we can use the generalized Koren limiter with β = 2.
This is the same as the original Koren (1993) slope limiter. The
heat conduction is solved implicitly with the PCG method. The
test is initialized with the spherical self-similar solution with the
shock front located at the spherical radius 0.225 and the heat
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Figure 11. Density (top panel), temperature (middle panel), and radial velocity
(bottom panel) along the z = 0 cut for the Reinicke–Meyer-ter Vehn test in
rz-geometry. The numerical solution (+ symbols) is at the final time compared
to the self-similar analytical reference solution (solid lines).

front is at 0.45. The simulation is stopped once the shock front
has reached 0.45 and the heat front is at 0.9.

A 1D slice along the r-axis of the solution at the final time is
shown in Figure 11. We normalize the output similar to Reinicke
& Meyer-ter-Vehn (1991). The temperature is normalized by the
central temperature, while the density and radial velocity are
normalized by their values of the post-shock state at the shock.
The numerical solution obtained by the CRASH code is shown
as + symbols and is close to the self-similar reference solution,
shown as solid lines. Note that the temperature is smooth due
to the heat conduction, except for the discontinuous derivative
at the heat front. The wiggle at r = 0.3 in the density and
radial velocity is due to the diffusion of the analytical shock
discontinuity in the initial condition during the first few time
steps. In the left panel of Figure 12, the spherical expansion of
temperature at the final time is shown. Clearly, the Cartesian grid
with the rz-geometry does not significantly distort the spherical
symmetry of the solution. The spatial distribution of the error in

the temperature is shown in the right panel. The errors are largest
at the discontinuities of the shock and heat fronts as expected.

A grid convergence study is performed with resolutions of
2002, 4002, and 8002 cells. The relative L1 error in Figure 13
is calculated using the density, velocity components, and the
material temperature. The convergence rate is first-order due to
the shock and heat front.

4.3.3. Heat Conduction Version of Lowrie’s Test

Any of the verification tests for non-equilibrium gray diffu-
sion coupled to the single temperature hydrodynamics can be
reworked as a test for the hydrodynamic equations for the ions
coupled to the electron pressure equation with electron heat con-
duction and energy exchange between the electrons and ions.
As an example, we transform one of the non-equilibrium gray
diffusion tests of Lowrie & Edwards (2008) to verify the heat
conduction implementation.

The electron energy density Equation (20) without the radia-
tion interaction can be written as

∂Ee

∂t
+ ∇ · [Eeu] + pe∇ · u = ∇ · [Ce∇Te] + σie(Ti − Te), (94)

where the heat conduction and energy exchange terms on the
right-hand side depend on the gradients and differences of the
temperatures. The equation for the gray radiation energy density
(16) on the other hand depends on the gradients and differences
of energy densities. By defining the radiation temperature Tr by
Er = aT 4

r and using the definition of the Planckian B = aT 4
e ,

we can rewrite the energy density equation for the radiation as

∂Er

∂t
+ ∇ · [Eru] +

1

3
Er∇ · u = ∇ · [Dr∇Er ]+ cκP (aT 4 − Er)

= ∇ · [Dr∇Tr ] + cκP (T − Tr ),

(95)

where Dr = Dr4aT 3
r and cκP = cκP a(T 2 + T 2

r )(T + Tr )
are the new coefficients that appear due to this transformation.
Equations (94) and (95) are now of the same form. To translate
a gray diffusion test to a heat conduction test, we reinterpret
Dr as the heat conductivity Ce and cκP as the relaxation
coefficient σie in the ion–electron energy exchange. In addition,
the material temperature T and radiation temperature Tr have
to be reinterpreted as the ion temperature Ti and electron
temperature Te, respectively. Note that we also have to relate
the electron pressure and internal energy by pe = Ee/3 similar
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Figure 12. Temperature (left panel) and temperature error compared to the reference solution (right panel) for the Reinicke–Meyer-ter Vehn test in rz-geometry.

(A color version of this figure is available in the online journal.)
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Figure 13. Relative L1 error for the Reinicke–Meyer-ter Vehn test in rz-
geometry.

to the radiation field corresponding to γe = 4/3, and let the
electron internal energy and electron specific heat depend on
the electron temperature as Ee = aT 4

e and CV e = 4aT 3
e ,

respectively.
As an example, we transform the Mach 5 non-equilibrium

gray diffusion shock tube problem of Lowrie & Edwards
(2008). It uses non-uniform opacities that depend on the
density and temperature defined by Dr = 0.0175(γ T )7/2/ρ
and cκP = 106/Dr . The above described procedure is used
to translate this problem to an electron heat conduction test
with energy exchange between the electron and ions. The heat
conductivity for this test is Ce = 4aT 3

e 0.0175(γ Ti)7/2/ρ and
the relaxation coefficient between the electron and ions is
σie = a(T 2

i + T 2
e )(Ti + Te)4aT 3

e 106/Ce.
We perform this Mach 5 heat conduction test on a 2D non-

uniform grid. For the initial condition, the 1D semi-analytical
steady state reference solution of Lowrie & Edwards (2008)
is used. There is a Mach 5 pre-shock flow on the left side of
the tube resulting in an embedded hydro shock as well as a
steep thermal front (a look at Figure 14 will help to understand
this shock tube problem). We add an additional velocity of
Mach −5 so that the pre-shock velocity is zero and the shock
is no longer steady, but instead will move to the left with a
velocity −5 (in units in which the pre-shock speed of sound
is 1). The problem is rotated counterclockwise on the grid by
tan−1(1/2). The translational symmetry is now in the (−1, 2)
direction in the xy-plane similar to the Mach 1.05 shock tube
problem described in Section 4.2.2. The computational domain

is −0.0384 < x < 0.0384 by −0.0048 < y < 0.0048. Inside
the area −0.0128 < x < 0.0128 and −0.0016 < y < 0.0016,
we apply one level of refinement. This refinement is set up such
that both the heat front as well as the shock front propagate
through the resolution change on the left (from fine to coarse)
and right (from coarse to fine), respectively. For the boundary
conditions in the x-direction, we fix the state on the right side
with the semi-analytical solution, but for the left side we use
zero gradient. On the y boundaries, we apply a sheared zero
gradient in the (−1, 2) direction.

For the evolution until the final time t = 0.0025, we use the
HLLE scheme together with the generalized Koren limiter with
β = 3/2 to solve the hydrodynamic equations. The CFL number
is set to 0.8. The heat conduction and energy exchange between
electrons and ions are solved implicitly with the backward Euler
scheme using the GMRES iterative solver in combination with
a BILU preconditioner.

In Figure 14, the electron (right panel) and ion (left panel)
temperatures are shown at the final time along the x-axis.
The semi-analytical reference solution is shown as a blue
line, while the numerical solution is shown with + symbols
for a simulation with 192 × 24 cells at the base level in
the x- and y-directions. The hydro shock is located near
x ≈ 0.0085 and shows up in the ion temperature as a jump
in the temperature, followed directly behind the shock by a
strong relaxation due to the energy exchange between the ions
and electrons. The electron temperature stays smooth due to
strong heat conduction. The heat front is seen with a steep foot
at x ≈ −0.022. This front corresponds to the radiative precursor
in the non-equilibirum gray diffusion tests of Lowrie & Edwards
(2008). We repeat the test with four different resolutions at the
base level: 192 × 24, 384 × 48, 768 × 96, and 1536 × 192 cells
in the x- and y-directions. The insets in both panels of Figure 14
show the four resolutions as solid, dotted, dashed, dash-dotted
lines, respectively. In the left panel, the zoom-in shows the
convergence of the ion temperature toward the embedded hydro
shock and the temperature relaxation. In the right panel, the
blow-up shows the convergence toward the reference precursor
front. Note that no spurious oscillations appear near the shock
or near the precursor.

Due to the discontinuity in both the shock and heat precursor,
the convergence rate can be at most first-order. Indeed, in
Figure 15 the relative L1 error shows first-order accuracy. The
error is calculated using all the density, velocity components,
and both temperatures. Note that the spike in the ion temperature
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Figure 14. Mach 5 shock tube problem of Lowrie & Edwards (2008) transformed to a non-uniform heat conduction and ion–electron collision frequency test and
rotated on a 2D non-uniform grid. Ion (left panel) and electron (right panel) temperatures at the final time are shown in the x-direction. The blue line is the reference
solution. In the left panel, the grid convergence near the shock is shown in the inset. In the right panel, a blow-up of the grid convergence to the reference heat front is
shown.

(A color version of this figure is available in the online journal.)
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Figure 15. Relative L1 error for the Mach 5 non-equilibrium heat conduction
test on a non-uniform grid.

is spatially so small that a huge number of grid cells are needed
to get a fully resolved shock and relaxation state.

4.4. Full System Tests

The CRASH test repository contains a range of full system
configurations to be used for validation with future laboratory
experiments. In Figure 16, we show the configuration of a 3D
elliptical nozzle through which a fast shock of the order of
150 km s−1 will be launched, which is still significantly slower
than the speed of light. The shock wave is produced by a 1.1 ns
laser pulse from the left with 4 kJ of energy irradiating a 20 μm
thick beryllium disk, initially located at x = 0. A layer of gold
is glued to the plastic tube to protect the outside of the tube from
the laser-driven shock. The plastic (polyimide) tube is circular
for x < 500 μm with a radius of 600 μm. Beyond x = 750 μm
the tube is made elliptical by flattening the tube in the y-direction
by a factor two.

A laser energy deposition library is currently under construc-
tion and the implemented will be reported elsewhere. For this
paper, we will instead perform the first part of the simula-
tion with the 2D, Lagrangian, radiation hydrodynamics code
HYADES (Larsen & Lane 1994) to time advance the heating
due to the irradiation by the laser beams and the response of
the plasma until 1.1 ns. This laser pulse first shocks and then
accelerates the beryllium to the right. After 1.1 ns, the out-
put of HYADES is used as an initial condition of the CRASH
code.

This simulation is performed for a two-temperature, electron
and ion, plasma. For the radiation, we use the FLD approxi-
mation with 30 groups. The photon energy is in the range of
0.1 eV to 20 keV, logarithmically distributed over the groups.

Due to the symmetry in the problem we only simulate one
quadrant (y > 0 and z > 0), with reflective boundary con-
ditions at y = 0 and z = 0. At all other boundaries we use
an extrapolation with zero gradient for the plasma and a zero
incoming flux boundary for the radiation. The domain size is
[−150, 3900] × [0, 900] × [0, 900] microns for the x, y, z co-
ordinates. The base level grid consists of 120 × 20 × 20 blocks
of 4 × 4 × 4 mesh cells. One level of dynamic mesh refine-
ment is used at material interfaces and the shock front. Overall,
the effective resolution is 960 × 160 × 160 cells and there are
approximately 4.5 million finite volume cells. The hydrody-
namic equations are solved with the HLLE scheme with a CFL
number 0.8 together with the generalized Koren limiter with
β = 3/2. The diffusion and energy exchange of the radiation
groups as well as the heat conduction are solved with the de-
coupled implicit scheme using a Bi-CGSTAB iterative solver.
The simulation from 1.1 ns to 13 ns physical time took 1 hr
and 55 minutes on 480 cores of the FLUX supercomputer at the
University of Michigan.

In Figure 17, we show the shock structure at 13 ns. The
accelerated beryllium compresses the xenon directly to the right
of the interface, which is seen as a high density plasma near
x = 1700 μm in the top right panel of Figure 17. This drives a
primary shock and the velocity jump at x ≈ 1700 μm is seen in
the middle left panel. Behind the shock front, the ions are heated
as depicted from the middle right panel, followed directly behind
the shock by cooling due to the energy exchange between ions
and electrons. Early on, electron heating produces ionization
and emission of radiation, and the radiation in turn heats and
ionizes the material ahead of the primary shock. The radiation
temperature, as measured by the total radiation energy density,
is shown in the bottom left panel. The photons will interact
again with the matter, sometimes after traveling some distance.
This is the source of the wall shock seen ahead of the primary
shock (Doss et al. 2009, 2011): photons traveling ahead of the
shock interact with the plastic wall, heat it, and in turn drive
a shock off the wall into the xenon. The ablation of plastic
is depicted in the top left panel as a radially inward moving
polyimide (in green color) near and even ahead of the primary
shock. The compressed xenon due to plastic ablation is seen in
the top right panel as a faint density feature that is ahead of the
primary shock front, between x = 1700 μm and x = 2000 μm.
Interaction between the photons and matter is also seen by the
radiative precursor to the right of the radiative shock elevating
the electron temperature ahead of the shock in the bottom
right panel. This is due to the strong coupling between the
electrons and radiation field. The reader is referred to Drake et al.
(2011) for more details on radiative effects in radiative shock
tubes.
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Figure 16. Geometry of the 3D elliptic nozzle experiment after 1.1 ns, consisting of 5 materials: beryllium (blue), xenon (black), polyimide (green), gold (yellow),
and acrylic (red) in both panels. The radius of the inside of the polyimide tube is 600 μm in the y = 0 plane (left panel). In the z = 0 plane (right panel), the radius of
the inner tube is 600 μm for x < 500 μm, but shrinks to 300 μm beyond x = 750 μm. The lines represent the mesh refinement at material interfaces and shock fronts.

(A color version of this figure is available in the online journal.)
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Figure 17. Simulated radiative shock structure at 13ns in a 3D elliptic nozzle consisting of the five materials indicated in Figure 16. The plots show in the xy-plane in
color contour the variables indicated in the plot title. The primary shock is at x ≈ 1700.

(A color version of this figure is available in the online journal.)

4.5. Parallel Performance

We present parallel scaling studies on the Pleiades supercom-
puter at NASA Ames. This computer is an SGI ICE cluster
connected with InfiniBand. Figure 18 shows strong scaling for
a problem size that is independent of the number of processors.
This 3D simulation is a circular tube version of the full system
test described in Section 4.4. It uses five materials, 30 radia-
tion groups, and separate electron and ion temperatures. The
grid contains 80 × 8 × 8 blocks of 4 × 4 × 4 cells each at the
base level and in addition two time-dependent refinement levels.
There are overall approximately 2.6 million cells in this prob-
lem. We use lookup tables for the EOS and opacities, so that the
computational time for that is negligible. For the hydrodynamic
equations, we use the HLLE scheme together with the gener-
alized Koren limiter with β = 3/2. The radiation diffusion,
electron heat conduction, and energy exchange terms are solved
implicitly with the decoupled scheme, using the Bi-CGSTAB
iterative solver. This simulation is performed for 20 time steps
for the number of cores varying from 128 to 2048, but excludes
file I/O to measure the performance of the implicit solver. Up
to 1024 cores, we get good scaling. However, for more cores we
observe saturation in the performance.

5. SUMMARY

We have extended the BATS-R-US code (Powell et al.
1999; Tóth et al. 2011) with a new radiation transfer and
heat conduction library. This new combination, together with
the EOS and multi-group opacity solver, is called the CRASH
code. This code uses the recently developed parallel BATL (Tóth
et al. 2011) to enable highly resolved radiation hydrodynamic
solutions. The implemented radiation hydrodynamic schemes
solve for gray or multi-group radiation diffusion models in the
FLD approximation.

In high-energy-density plasmas, the electrons are most of the
time strongly coupled to the ions by collisions. An important
exception is at hydrodynamic shocks, where the ions are heated
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Figure 18. Strong scaling of the CRASH code, running a 3D CRASH application
with five material level sets, electron and ion temperature, 30 radiation groups,
and two levels of time-dependent mesh refinement.

by the shock wave and the electrons and ions are out of tempera-
ture equilibrium. Since radiative shocks are the main application
for CRASH, we have implemented a separate electron pressure
equation with the electron thermal heat conduction. For the elec-
tron heat conduction, we have added the option of a flux limiter
to limit the thermal flux with the free-streaming heat flux.

The multi-material radiation hydrodynamic equations are
solved with an operator-split method that consists of three
substeps: (1) solving the hydrodynamic equations with standard
finite volume shock-capturing schemes, (2) the linear advection
of the radiation in frequency-logarithm space, and (3) the
implicit solution of the radiation, heat conduction, and energy
exchanges. For the implicit solver, standard Krylov solvers are
used together with a BILU preconditioner. This preconditioner
scales well up to 1000 processors on present-day parallel
computers. For future work, we may explore for the implicit
multi-group diffusion a multi-level preconditioner to better scale
the radiation solver beyond 1000 processors.
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Figure 19. Cell and face centers at the adaptive interface in 2D.

We have presented a suite of verification tests that benchmark
the performance. These tests verify the correctness and accuracy
of our implementation of the gray and multi-group radiation
diffusion algorithm and the heat conduction in 1D, 2D, and 3D
slab and 2D rz geometry. To demonstrate the full capability
of the implementation, we have presented a 3D multi-material
simulation of a radiative shock wave propagating through an
elliptical nozzle. This configuration will be used in future
validation studies.

We caution the reader that another CRASH code has already
been discussed in the literature (Ciardi et al. 2001; Maselli et al.
2003, 2009; Pierleoni et al. 2009). This code is used for cos-
mological reionization around the first stars using Monte Carlo
radiative transfer methods. Our code is different and uses multi-
group radiation diffusion models in the FLD approximation. The
applications are for astrophysics and laboratory astrophysics.

The authors express their gratitude to M. J. Grosskopf and
E. Rutter for providing HYADES output. Discussions with B.
Torralva and C. C. Chou are gratefully acknowledged. This
work was funded by the Predictive Sciences Academic Alliances
Program in DOE/NNSA-ASC via grant DEFC52-08NA28616
and by the University of Michigan. The simulations were
performed on the NASA Advanced Supercomputing system
Pleiades.

APPENDIX A

DISCRETIZATION OF THE DIFFUSION OPERATOR AT
RESOLUTION CHANGES

In Sections 3.3.1 and 3.3.2, the diffusion operator is dis-
cretized on a uniform mesh with a standard finite volume method
in combination with a central difference approximation for the
gradient in the flux calculation as in Equation (68). The diffusion
coefficient needed at the face is obtained by simple arithmetic
averaging of the left and right cell center diffusion coefficients.
The generalization to resolution changes as in Figure 19 is less
straightforward. In the following, we denote the fine cell cen-
ters by a and b, the coarse cell center by c. The flux densities at
resolution changes in the direction orthogonal to the interface
are denoted by F1 and F2 at the fine faces, and F3 at the coarse
face.

In Edwards (1996), a strategy was developed to discretize the
diffusion operator on an adaptive mesh in the context of reservoir
simulations. The main ingredients of the method are (1) require
the continuity of the flux at the resolution change in the strong
sense, i.e., F1 = F2 = F3 and (2) discretize the gradient in
the diffusion flux by a one-sided difference. An expression was
found for the diffusion flux F = −D∇E in which the diffusion
coefficient is replaced by a weighted harmonic average of the
cell centered values Da, Db, Dc. In Gittings et al. (2008), it was
argued that this discretization does not properly propagate the

self-similar Marshak waves of the radiation diffusion model,
unless the cell centered diffusion coefficients are calculated on
a common face temperature.

In the code discussed in this paper, we follow a different
approach that replaces the harmonic average of the diffusion
coefficient in Edwards (1996) with an arithmetic average and
for the flux densities normal to the resolution change interface
we obtain

F1 = F2 = F3 = − 2D

3Δx
[Ec − (Ea + Eb)/2] , (A1)

where Δx is the fine cell size and the diffusion coefficient at the
face is averaged as

D3 = [Dc + (Da + Db)]/3. (A2)

We have demonstrated with verification tests including those
discussed above that this change produces properly propagating
radiative precursor and shock fronts. Generalizations to 1D and
3D are straightforward.

APPENDIX B

rz-GEOMETRY

Incorporating rz-geometry in a finite volume formulation is
as follows: the radial cell face area and the cell volume must be
made proportional to the distance r from the symmetry axis. In
addition, the r component of the momentum Equation (18) is
modified as

∂ρur

∂t
+ ∇ · [ρuur + r̂(p + pr )] = p + pr

r
, (B1)

where r̂ is the unit vector in the r-direction and ur = u · r̂.
This correction reflects that the pressure term is a gradient, not
a divergence.
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Vögler, A., Shelyag, S., Schüssler, M., Cattaneo, F., Emonet, T., & Linde, T.

2005, A&A, 429, 335
Yee, H. C. 1989, NASA TM-101088
Zel’dovich, Ya. B., & Raizer, Yu. P. 2002, Physics of Shock Waves and High-

Temperature Hydrodynamic Phenomena (Mineola, NY: Dover)

20

http://dx.doi.org/10.1007/s00193-008-0143-0
http://adsabs.harvard.edu/abs/2008ShWav..18..129L
http://adsabs.harvard.edu/abs/2008ShWav..18..129L
http://dx.doi.org/10.1063/1.1356740
http://adsabs.harvard.edu/abs/2001PhPl....8.2275M
http://adsabs.harvard.edu/abs/2001PhPl....8.2275M
http://dx.doi.org/10.1088/0004-637X/701/2/1569
http://adsabs.harvard.edu/abs/2009ApJ...701.1569M
http://adsabs.harvard.edu/abs/2009ApJ...701.1569M
http://dx.doi.org/10.1046/j.1365-8711.2003.06979.x
http://adsabs.harvard.edu/abs/2003MNRAS.345..379M
http://adsabs.harvard.edu/abs/2003MNRAS.345..379M
http://dx.doi.org/10.1111/j.1365-2966.2009.14699.x
http://adsabs.harvard.edu/abs/2009MNRAS.395.1925M
http://adsabs.harvard.edu/abs/2009MNRAS.395.1925M
http://dx.doi.org/10.1016/j.newast.2005.09.004
http://adsabs.harvard.edu/abs/2006NewA...11..374M
http://adsabs.harvard.edu/abs/2006NewA...11..374M
http://dx.doi.org/10.1016/0022-4073(78)90024-9
http://adsabs.harvard.edu/abs/1978JQSRT..20..541M
http://adsabs.harvard.edu/abs/1978JQSRT..20..541M
http://dx.doi.org/10.1016/S0022-4073(99)00148-X
http://adsabs.harvard.edu/abs/2000JQSRT..65..769M
http://adsabs.harvard.edu/abs/2000JQSRT..65..769M
http://dx.doi.org/10.1111/j.1365-2966.2009.15091.x
http://adsabs.harvard.edu/abs/2009MNRAS.397.1314N
http://adsabs.harvard.edu/abs/2009MNRAS.397.1314N
http://dx.doi.org/10.1016/j.jcp.2006.12.027
http://adsabs.harvard.edu/abs/2007JCoPh.225..785O
http://adsabs.harvard.edu/abs/2007JCoPh.225..785O
http://dx.doi.org/10.1111/j.1365-2966.2009.14843.x
http://adsabs.harvard.edu/abs/2009MNRAS.396.1383P
http://adsabs.harvard.edu/abs/2009MNRAS.396.1383P
http://dx.doi.org/10.1111/j.1365-2966.2008.13874.x
http://adsabs.harvard.edu/abs/2009MNRAS.393..872P
http://adsabs.harvard.edu/abs/2009MNRAS.393..872P
http://dx.doi.org/10.1006/jcph.1999.6299
http://dx.doi.org/10.1006/jcph.1999.6299
http://adsabs.harvard.edu/abs/1999JCoPh.154..284P
http://adsabs.harvard.edu/abs/1999JCoPh.154..284P
http://dx.doi.org/10.1063/1.857961
http://adsabs.harvard.edu/abs/1991PhFl....3.1807R
http://adsabs.harvard.edu/abs/1991PhFl....3.1807R
http://dx.doi.org/10.1146/annurev.fl.18.010186.002005
http://adsabs.harvard.edu/abs/1986AnRFM..18..337R
http://adsabs.harvard.edu/abs/1986AnRFM..18..337R
http://dx.doi.org/10.1137/0907058
http://adsabs.harvard.edu/abs/2007ASPC..369...87S
http://dx.doi.org/10.1086/191682
http://adsabs.harvard.edu/abs/1992ApJS...80..819S
http://adsabs.harvard.edu/abs/1992ApJS...80..819S
http://dx.doi.org/10.1016/0022-4073(96)84524-9
http://adsabs.harvard.edu/abs/1996JQSRT..56..337S
http://adsabs.harvard.edu/abs/1996JQSRT..56..337S
http://dx.doi.org/10.1006/jcph.2000.6537
http://adsabs.harvard.edu/abs/2000JCoPh.162..301S
http://adsabs.harvard.edu/abs/2000JCoPh.162..301S
http://dx.doi.org/10.1016/j.jcp.2008.04.010
http://adsabs.harvard.edu/abs/2008JCoPh.227.6967T
http://adsabs.harvard.edu/abs/2008JCoPh.227.6967T
http://dx.doi.org/10.1029/2005JA011126
http://dx.doi.org/10.1016/j.jcp.2011.02.006
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1051/0004-6361:20041507
http://adsabs.harvard.edu/abs/2005A&A...429..335V
http://adsabs.harvard.edu/abs/2005A&A...429..335V

	1. INTRODUCTION
	2. EQUATIONS OF RADIATION HYDRODYNAMICS IN DENSE PLASMAS
	2.1. Radiation Transport
	2.2. Hydrodynamics
	2.3. Level Sets and Material Identification
	2.4. Equation of State and Opacities
	2.5. Flux-limited Diffusion

	3. THE NUMERICAL METHOD
	3.1. Hydro Solve
	3.2. Frequency Advection
	3.3. Implicit Diffusion and Energy Exchange
	3.4. Boundary Conditions

	4. CODE VERIFICATION
	4.1. Error Assessment
	4.2. Radiation Tests
	4.3. Heat Conduction Tests
	4.4. Full System Tests
	4.5. Parallel Performance

	5. SUMMARY
	APPENDIX A. DISCRETIZATION OF THE DIFFUSION OPERATOR AT RESOLUTION CHANGES
	APPENDIX B. rz-GEOMETRY
	REFERENCES

