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ABSTRACT

A basic property of objects, such as galaxies and halos that form in cosmological structure formation simulations,
is their shape. Here, we critically investigate shape determination methods that are commonly used in the literature.
It is found that using an enclosed integration volume and weight factors r~2 and r;llz (elliptical radius) for the
contribution of each particle or volume element in the shape tensor leads to biased axis ratios and smoothing of
details when calculating the local shape as a function of distance from the center. To determine the local shape of
matter distributions as a function of distance for well-resolved objects (typically more than O(10%) particles), we
advocate a method that (1) uses an ellipsoidal shell (homoeoid) as an integration volume without any weight factors

in the shape tensor and (2) removes subhalos.
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1. INTRODUCTION

Typically, the distribution of dark matter in objects that
form in cosmological structure formation simulations is crudely
described by spherically averaged density profiles (e.g., Navarro
etal. 1996; Moore et al. 1998). But real halos are not spherically
symmetric and a natural extension is to describe the iso-density
contours as surfaces of ellipsoids. There is a wealth of literature
with many different methods that are used to measure the local
shape of a mass distribution (e.g., Gerhard 1983; Frenk et al.
1988; Katz 1991; Dubinski & Carlberg 1991; Warren et al. 1992;
Cole & Lacey 1996; Jing & Suto 2002; Springel et al. 2004;
Kazantzidis et al. 2004; Bailin & Steinmetz 2004, 2005; Allgood
et al. 2006; Kuhlen et al. 2007; Bett et al. 2007; Hayashi et al.
2007; Debattista et al. 2008; Warnick et al. 2008; Kazantzidis
et al. 2010; Knebe et al. 2010; Lau et al. 2011; Vera-Ciro et al.
2011). Their common goal is to recover the iso-density surfaces
of the underlying matter distribution, which might be the rather
triaxial dark matter halo or the strongly flattened distribution of
stars and gas. Other characteristics, such as the potential, can
also be used to describe the objects (e.g., Springel et al. 2004;
Hayashi et al. 2007; Kazantzidis et al. 2010; Lau et al. 2011).

Unfortunately, the literature lacks a systematic comparison of
the different methods—especially under controlled conditions
where the exact shape is known. For some notable exceptions,
see, e.g., Allgood et al. (2006); Kazantzidis et al. (2004). But
as far as we know, there is no publication that investigates the
different methods under controlled conditions with known shape
as is done in this paper. Presumably, many of the quantitative
discrepancies in the literature originate in the various methods
that are used for determining the shape. This work is intended
to shed some light on the effects and systematics of the various
methods that are based on an iterative procedure that uses a
shape tensor with different weighting schemes and integration
volumes. The influence of the local mass density profile on the
capability of the shape finding method to recover the iso-density
contours is also investigated.

2. BACKGROUND

From classical mechanics, the relation between the angular
momentum vector L and the angular velocity vector @ of a body
is given by

L=1Iw, (D

where I is the moment of inertia tensor defined by

I= / o)’ I —rrTdV, )
|4

where the integration is over the whole volume of the body
and 1 is the identity tensor. Here, p(r) is the mass density at
the location of the volume element dV pointed by the position
vector r with respect to the center of the mass distribution. By
defining the tensor

ME/p(r)rerV, €]
%

which is the second moment of the mass distribution, it follows
that
I=tuM)I-M. 4)

Hence, the tensor M is the fundamental quantity that describes
how the matter is distributed.
We now define the shape tensor as

M [y pretdv

S = =
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where

Moy = / p(rydv (6)
\%4

is the total mass of the body. The shape tensor has units of length
squared. For a discrete set of particles with

pr) =Y md(r —ry), (7)
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we obtain for the individual elements of the shape tensor

5, = Yo mi(r)i(re); ’ @)

Dk M
where (r;); denotes the j-component of the position vector
of the kth particle and the summation is over all particles
within the integration volume V. The tensors S and M describe
how the mass is distributed, hence our choice for naming S the
shape tensor.

The tensors I and M have the same eigenvectors. If m is an
eigenvalue of M, then tr(M) — m is an eigenvalue of I. The
detailed meaning of the eigenvalues depends on the integration
volume and the mass distribution (i.e., density profile). For
example, for a thin ellipsoidal shell (a thin homoeoid) of
uniform density, the eigenvalues of M are Mgga®/3, Mgsb?/3,
and Mgsc?/3 (where Mgs is the mass in the ellipsoidal shell),
whereas for an ellipsoid of uniform density the eigenvalues are
Mga?/5, Mgh?/5 and Mgc?/5 (where Mg is the mass in the
ellipsoid).

Unfortunately, the tensor M (Equation (3)) is often inaccu-
rately denoted as the moment of inertia tensor in the astronomy
and astrophysics literature. This probably goes back to (Bin-
ney & Tremaine 1987, p. 494, Equation (8-11)), where M was
called the moment of inertia tensor. Fortunately, this was cor-
rected in the second edition (Binney & Tremaine 2008, p. 796,
Equation (D-39)).

3. METHODS

The shape tensor can be generalized by using an additional
weight function w(r)

B [y pw(@rr’dv
[y v

By setting w(r) = 1 and choosing p(r) to be the mass density
we obtain our standard definition (Equation (5)). Other choices
are also possible, for example, a weighting by number with
p(r) = Y, 8(r — ry) being the number density (which is,
of course, equivalent to the mass density weighting if all the
particles have equal mass) or p(r) = Y, 8(r — ry)/px, where
pr is the local density of the particle like in Warnick et al. (2008).
If one is interested in the shape of a matter distribution where
the particles or volume elements can have a different mass (e.g.,
for gas and stars), it is essential to use p(r) as the mass density.
Here, we only use p(r) as the mass density. Throughout the
paper, we use the elliptical radius r.; for distances from the
center for ellipsoidal shapes. The elliptical radius r¢) (see also
Equation (10)) is the semi-major axis of the local homoeoid or
ellipsoid.

We concentrate on six different methods for determining
the shape of a matter distribution (see also Table 1). These
methods differ by using a different integration volume V and
different weight functions w(r). For calculating the local shape
at a distance re, in the methods with a starting letter S,
the integration is over an ellipsoidal shell (homoeoid) volume
centered at re; (in logarithmic space). In the methods with first
letter E, the integration is over the whole enclosed ellipsoidal
volume within r.;. For the different weight functions w(r), we
use (1) w(r) = 1, ) wr) = r2, and 3) w(r) = re_uz. The
elliptical radius is given by
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Table 1
Summary of Methods

Method w(r) %
S1 1 Ellipsoidal shell
S2 r2 Ellipsoidal shell
S3 ral Ellipsoidal shell
El 1 Enclosed ellipsoid
E2 r2 Enclosed ellipsoid
E3 r;llz Enclosed ellipsoid

where (Xep1, Yell, Zent) are the coordinates of the volume element
or particle in the eigenvector coordinate system of the ellipsoid,
i.e., repp corresponds to the semi-major axis a of the ellipsoid
surface through that particle or volume element. Additionally,
we also check for the importance of the removal of subhalos.
Cases where we removed the subhalos are marked with a —,
cases where they remained by a +.

In order to calculate the local shape at a distance r¢) from the
center, we use an iteration method (e.g., Katz 1991; Dubinski &
Carlberg 1991; Warren et al. 1992) and start with a spherically
symmetric integration volume (shell or sphere). Then the shape
tensor is calculated according to the different methods. By
diagonalizing S we get the eigenvectors and eigenvalues at
distance re;. The eigenvectors give the directions of the semi-
principal axes. The eigenvalues of S for the method S1 are a?/3,
b%/3, and ¢?/3, where a, b, and ¢ are the semi-principal axes
with a > b > c—at least in the thin homoeoid approximation
where the density is uniform. Hence, the square roots of the
eigenvalues are proportional to the lengths of the semi-principal
axes for method S1 and we can readily calculate the axis
ratios b/a and c/a. For method S3 we expect to get the same
axis ratios as for method S1 since dividing by the semi-major
axis a = rey squared, which is a constant for a thin ellipsoidal
shell, just changes the geometrical meaning and normalization
of the eigenvalues but not the axis ratios.

For the other methods it is not clear what the detailed
geometrical meaning of the eigenvalues is. For the methods
that use the enclosed ellipsoidal volume, this will also depend
on the mass density profile. The r~2 weighting projects the
volume elements dV onto the unit sphere. This projection
complicates the physical interpretation of this method. It is
generally assumed though that the eigenvalues of S in these
cases are still proportional to the semi-major axes squared.
Hence, we calculate the axis ratio for the other methods the
same way as for methods S1 and S3—as it is generally done in
the literature.

We then keep the length of the semi-major axis fixed (but
the orientation can change) and calculate S again by summing
over all particles within the new deformed integration volume
(homoeoid or ellipsoid) with semi-major axis a = r¢; and
axis ratios b/a and c¢/a but with the new orientation. For the
shape determination we allow volume elements or particles to
be in several bins/shells. Of course this is naturally the case
when using an enclosed ellipsoidal volume. It is also necessary
when using an ellipsoidal shell since neighboring shells can
overlap due to slightly different orientation and axis ratios.
This iteration is repeated until convergence is reached. As a
convergence criterion we require that the fractional difference
betvgeen two iteration steps in both axis ratios is smaller than
107,

For methods using the shape tensor, it is important to use
an iteration method that allows the algorithm to adapt the
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integration volume to the a priori unknown shape of the object.
Often one also finds in the literature that no iteration procedure
is used and just a simple spherical shell or enclosed sphere is
used as the integration volume in order to calculate the shape
(e.g., Gerhard 1983; Frenk et al. 1988; Cole & Lacey 1996;
Bailin & Steinmetz 2004, 2005; Knebe et al. 2010). To us the
physical meaning of the outcome of such a procedure is unclear
and we do not further pursue it here.

A further method for calculating the shape of contours is by
selecting particles by their local density (e.g., Jing & Suto 2002;
Warnick et al. 2008; Vera-Ciro et al. 2011) or potential (e.g.,
Springel et al. 2004; Hayashi et al. 2007; Kazantzidis et al.
2010). There, no iteration procedure is needed.

Often one also finds in the literature, that the moment
of inertia tensor I (Equation (2)) in combination with an
enclosed ellipsoidal integration volume is used for calculating
the axis ratios. This procedure assumes relations between the
eigenvalues and semi-principle axes that are strictly valid only
for a uniform ellipsoid or homoeoid (e.g., Bett et al. 2007;
Warnick et al. 2008). For a thin homoeoid this is fine (under
the assumption that the local density is constant in the shell)
but for the enclosed ellipsoidal integration volume, the result is
made equivalent to the method that just uses the shape tensor by
construction.

4. CONTROLLED CONDITIONS

First, we examine the behavior of the different methods under
controlled conditions where we know the correct shape. For
this purpose, we set up various model halos that have different
density, shape, and orientation profiles with HALOGEN (Zemp
et al. 2008).

4.1. Models

HALOGEN can generate random realizations of spherical halos
with oy -profiles (Zhao 1996)

£0
(r/r)? [1 + (r/rg)*](B=p)/al

p(r) = 1)

in equilibrium, where an importance sampling method (mul-
timass technique) can be applied. Here, we just interpret the
spherical radius rin the 8y -profiles as semi-major axis a = rep
of a surface of an ellipsoid. For the generation of a uniform dis-
tribution of points on a surface of an arbitrary-shaped ellipsoid,
which is needed for setting up an ellipsoid with a given density
profile, a method as outlined in Section 2.5.5 of Rubinstein &
Kroese (2007) is used. Since we only care about the spatial dis-
tribution of the matter for our purpose, no velocities are assigned
to the sampled particles.

For the variation of the axis ratios and orientation with
distance, we use a simple parameterization of the form

12)

Here, x can be b/a, c/a, 01, 6», and 65, respectively. The angles
01, 0>, and 65 are the Euler angles of an active z—x'—z" rotation.
This allows us to twist the orientation of the principal axes as a
function of distance.

We use a generalized NFW (Navarro et al. 1996) form for the
density profile of the halos, i.e., we set @ = 1, 8 = 3, and use
three different values for the inner slope, i.e., y =0, 1, and 2.
The ellipsoidal halos are sampled with 107 particles of the same
mass within 10 ry (no multimass technique applied). For some

X(ren) = sy logo(ren/ro,x) + Xo.
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Figure 1. Measured axis ratio b/a as a function of distance for halos with
different inner slopes y = 0 (top panel), 1 (middle panel), and 2 (bottom panel).
The halos were initialized with a constant axis ratio of b/a = 0.8 (thin dashed
line). Except for the methods S2 and E2, all the other methods find the expected
value. The fluctuations in the center seen for the inner slopes y = 0 and 1
are mainly due to resolution and they decrease when increasing the sampling
resolution and using a finer binning.

(A color version of this figure is available in the online journal.)

cases also different resolution halos with up to 10% particles
within 10 r; are used. To compare to current state-of-the-art
cosmological structure formation simulations: hydrodynamical
simulations have reached O(107) particles per halo (e.g., Guedes
et al. 2011; Zemp et al. 2011), whereas halos in dissipationless
N-body simulations are even resolved with O(10°) particles
(e.g., Springel et al. 2008; Stadel et al. 2009). Beyond 10 r¢ an
exponential cut-off of the mass density profile is applied in order
to keep the total mass finite (for more details see Zemp et al.
2008). With a resolution of 10 particles, one can roughly sample
an NFW profile down to 0.1r,. The resolved scale depends on
the inner slope . For y = 2, this scale is smaller and for y = 0
it is larger (for more details see Zemp et al. 2008). Hence, for all
profiles in the following plots only the range 0.1-10r; is shown.

4.2. Constant Axis Ratios: Aligned Orientation

As a first deviation from perfect spherical symmetry, we set
up halos with constant axis ratios, while the principal axes are
kept aligned at all distances. Figure 1 shows how the six different
methods described in Section 3 perform for our three halos with
y =0, 1,and 2. In these models we setb/a = 0.8 and c/a = 0.6.
For clarity we only show the results for b/a. The findings are
similar for c¢/a.

The results for the methods S1, S3, El, and E3 agree very
well with the expected value. The small fluctuations seen in
the center are due to resolution and depend on the mass profile
as well. The fluctuations get smaller when sampling the same
halo with more particles and using a finer binning. The default
binning used in this work is 10 bins dex~!. The number of
particles in the innermost ellipsoidal shell at 0.1 7 for this
binning scheme ranges from ca. 2500 (y = 0) to around 10°
(y = 2). In the outer regions we have typically O(10°) particles
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Figure 2. Measured axis ratio b/a as a function of distance for halos with
different inner slopes y = 0 (top panel), 1 (middle panel), and 2 (bottom
panel). The halos were initialized with a changing axis ratio b/a as a function
of distance (thin dashed line). We fixed b/a = 0.8 at rg and used a slope of
Spja = —0.1 dex~!. Methods S1 and S3 give the best results, whereas methods
El and E3 start to show systematic deviations. Methods S2 and E2 give again
too high axis ratios.

(A color version of this figure is available in the online journal.)

in the ellipsoidal shells. At a given resolution, the fluctuations
are larger in regions with a flat profile (y = 0) than in regions
with a steep profile (y = 2). They also decrease in the outer
regions where the profile is even steeper. Of course, itis expected
to some degree that the shape finding algorithms will have
difficulty resolving the small density contrasts from shell to
shell in a nearly homogeneous region (y = 0), which explains
the central fluctuations seen in this case. Using the r ~2 weighting
in methods S2 and E2 leads to a significant shift of the axis ratio
toward higher values than expected.

All methods find the correct orientation of the principal axes
within the well-resolved range. For example, for method S1, the
median deviation of | cos(8,) — 1|, where §, is the angle between
the measured and the correct direction of the semi-major axis
a, is O(107°) for all three different profile types. For the other
methods, the alignment is of comparable quality.

4.3. Changing Axis Ratios: Aligned Orientation

Of course, real halos do not have a constant axis ratio as
a function of distance. Therefore, we varied the axis ratios
according to the simple parameterization given in Equation (12).
The axis ratios were fixed at rs to b/a = 0.8 and ¢/a = 0.6
and the slopes of s;/, = —0.1 dex™! and Seja = —0.15 dex!
were used. The condition b/a > c/a was assured by capping
the parameterization with minima and maxima. This is not a
problem within our range of interest between 0.1 and 10r,. The
orientation of the principal axes is kept aligned with distance.

Figure 2 shows again only the axis ratio b/a as a function
of distance. Methods S1 and S3 still give the best results. The
weighting by 2 introduces a bias toward higher values. Now,
the methods using an enclosed volume (E1 and E3) start to show
deviations as well. This is due to the enclosed integration volume

ZEMP ET AL.

picking up information from inner region of the halo, which has
a different shape. This leads to a lag in distance until the axis
ratios can adapt. For example, these deviations for methods E1
and E3 become larger if we choose the axis ratio to change
faster as a function of distance, e.g., as for the axis ratio c¢/a
with 5./, = —0.15dex".

In the case shown in Figure 2, the axis ratio decreases with
distance, which leads to too high values for methods E1 and E3.
If we choose the axis ratio to increase with distance, then the
methods E1 and E3 are giving too low values.

Even the methods S1 and S3 do not perfectly reproduce the
expected values. Similar as in the case for methods E1 and
E3, they lie above/below the expected value if the slope of the
axis ratio is an decreasing/increasing function of distance. The
deviations for methods S1 and S3 are smaller than for methods
El and E3. These systematic deviations seen for methods S1
and S3 are mainly due to the local mass density profile. In
regions with a flat local profile, the systematic offset is bigger
than in regions with a steep mass density profile. Increasing
the resolution and using a finer binning (i.e., smaller averaging
volume) only marginally decreases the offset. For regions with
a local mass density slope y ~ 1-2, the systematic deviations
in the case of a varying axis ratio are of the order of 0(0.01) for
axis ratios for methods S1 and S3.

Again, all methods find the correct orientation of the principal
axes. The directional deviations are very small and similar to
what we found in Section 4.2.

4.4. Changing Axis Ratios: Changing Orientation

In real halos, the orientation of the principal axis can change
as a function of distance as well. This is parameterized again
by using the functional form of Equation (12). The axis ratios
are kept changing as in Section 4.3. Additionally, we vary
the alignment of the principal axes by setting (6, 6,, 63) =
(0.375, 0.125, 0.25) t at ry, with T = 2m. For the slopes we use
(S0, S0, S05) = (0.05, 0.05, 0.05) T dex ",

Figure 3 shows the axis ratio b/a as a function of distance.
If the local mass density profile is well resolved, then methods
S1 and S3 are closest to the correct axis ratios. For the other
methods we see some systematic deviations which depend on
the details of the axis twist.

The findings about the axis ratios are reflected as well in the
orientation of the principal axes. In Figure 4, we show cos(é,)
as a function of distance, where §, is the angle between the
measured and the correct direction of the semi-major axis a. All
methods that use the enclosed integration volume show larger
deviations in the orientation than the methods using a homoeoid
as integration volume. The best method for recovering the local
orientation in the well-resolved region in this case is S2 tightly
followed by S1 and S3. The deviations for the semi-major
axis a, d,, are the largest. The deviations are smallest for the
semi-minor axis c, i.e., we have shown the worst case in Figure 4.

4.5. First Conclusions

We have experimented with many more mass density, shape,
and orientation profiles as well as different resolutions than
shown here (e.g., more flattened shapes or increasing axis ratios
as a function of radius). The findings are always the same: using
an ellipsoidal shell as an integration volume without or with rgnz
weighting (methods S1 and S3) gives results that are closest to
the expected value under controlled conditions in regions where
the mass distribution is well resolved and the density contrast is
high enough (i.e., no flat mass density profiles).
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Figure 3. Measured axis ratio b/a as a function of distance for halos with
different inner slopes y = 0 (top panel), 1 (middle panel), and 2 (bottom panel).
The halos were initialized with a changing axis ratio b/a as in Section 4.3 (thin
dashed line), but we varied the orientation of the principal axes as a function of
distance as described in the main text. Methods S1 and S3 give again the best
results, whereas the other methods show systematic deviations.

(A color version of this figure is available in the online journal.)

Methods S1 and S3 agree, since the weighting by r;llz in
each shell is like dividing by a different constant in each shell,
which does not affect the axis ratios. The absolute values of
the eigenvalues of the shape tensor for method S3 change, of
course. Hence, our preferred method is the pure form without
any weighting, i.e., method S1. All other methods lead to
significant deviations that in detail depend on the mass density,
shape, and orientation profile. This also makes it impossible to
come up with a correction scheme that works in all cases that
would allow the conversion of the measured axis ratios between
different methods.

5. HALOS FROM COSMOLOGICAL STRUCTURE
FORMATION SIMULATIONS

Now we turn to a study of halos in cosmological structure
formation simulations. In these halos, in addition to the change
of the axis ratios and the orientation of the principal axes as a
function of distance, we also have subhalos.

The data are from a cosmological structure formation sim-
ulation, where we simulated several objects that will end up
as Milky-Way-sized objects at redshift z = 0. The simula-
tions were run with the latest version of the gas dynamics and
N-body adaptive refinement tree (ART) code (Kravtsov et al.
1997, 2002; Kravtsov 1999; Rudd et al. 2008). ART includes
three-dimensional radiative transfer of ultraviolet (UV) radia-
tion from individual stellar particles using the optically thin
variable Eddington tensor (OTVET) approximation (Gnedin &
Abel 2001). It includes a non-equilibrium chemical network of
hydrogen (H 1, H 11, and H;) and helium (He 1, He 11, and He 111)
as well as non-equilibrium cooling and heating rates, which use
the local abundances of atomic, molecular, and ionic species
as well as the local UV intensity (Gnedin & Kravtsov 2011).
All these properties are followed self-consistently during the
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Figure 4. Cosine of the alignment angle §,, the angle between the measured and
the correct direction of the semi-major axis a, as a function of distance for halos
of Figure 3. The methods that use an ellipsoidal shell as an integration volume
are much better in recovering the local orientation of the matter distribution.

(A color version of this figure is available in the online journal.)

course of a simulation. An empirical model for the formation
and shielding of molecular hydrogen on the interstellar dust al-
lows for more realistic star formation recipes based on the local
density of molecular hydrogen (Gnedin & Kravtsov 2011). Also
included in ART is metal enrichment and thermal feedback due
to the Type II and Type Ia supernovae (Kravtsov 2003), as well
as stellar feedback (Kravtsov & Gnedin 2005). Here, we use
data from a simulation that includes cooling and star formation
(simulation series A) that ran until z ~ 2 and we use the lat-
est snapshot for our analysis. Further details are presented in a
related paper (Zemp et al. 2011).

Figure 5 shows the shape of the total matter distribution of a
massive halo at z & 2. The distance is normalized by rypp, =
101 kpc, the radius that encloses a spherical volume such that the
average enclosed density is 200 times the background density at
that epoch. The halo has a total mass Mg, = 1.13 x 10> Mg
and contains 6.71 x 10° gas volume elements, 5.38 x 10° dark
matter, and 1.39 x 10° star particles within rgp. All variants of
the methods are shown with and without the subhalos from the
resolution scale (0.003 r200p) up to 2r200p.-

Subhalos are removed by cutting out a spherical hole around
the subhalo center with radius 7ync. The spherical mass density
profile of subhalos typically shows an uprise at large distances
from their center due to the host halo. The location where the
minimum mass density is reached defines the truncation radius
T'aunc. We investigated under controlled conditions the effects
of cutting out holes of typical sizes of massive subhalos at
different distances from the host halo center. The deviations
for the measured axis ratios at the location of the subhalo can
be a few percent for methods S1 and E1 when compared to
the smooth case. Alternatively, one could only remove particles
bound to subhalos (Lau et al. 2011).

For the halo shown in Figure 5, the most massive subhalo has
amass of 9.02 x 10° Mg, Fyune = 2.77 kpc, and is located at a
distance of 10.5 kpc =~ 0.1rp00, from the host halo center. The



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 197:30 (8pp), 2011 December ZEMP ET AL.
1.0'§\~ m——— T TR
(‘“u.\\\..//f‘ T— ‘\ "’
Y 4 1 ] - g
% V4 [\ 1 [} "~
N [ W
0.8f - v (.
I
|'l
0.6 1 F 1
©
)
0.4 1 F 1
0.2} — S1- S1+|| | — El1- E1+|]
-- S2— - S2+ -- E2- --- E2+
S3-—- S3+ E3— E3+

c/a

o
L

ool ~ — sS1- si+)| | I — El- E1+]
-- 52— --- S24 -- E2-  --- E2+
S3— S3+ E3— E3+
0.0 ‘ ‘ ‘ ‘ ‘ ‘
102 10! 10° 107 10t 10°
Tei/T2000

Figure 5. Measured shape of the total matter distribution of a massive halo at z ~

the subhalos in order to calculate the local shape correctly.
(A color version of this figure is available in the online journal.)

total mass in all subhalos in this case is 3.71% and most of the
subhalos are located in the outer region of the halo.

Generally, the presence of massive subhalos leads to spikes
in the axis ratios b/a and c/a when using an ellipsoidal shell
as an integration volume (methods S1-S3). The subhalos bias
the measured axis ratios drastically at locations where they
constitute a significant fraction of the total mass in the ellipsoidal
shell. These spikes are visible for all weight functions—most
pronounced if no weighting or w(r) = r;lz is used and least
pronounced for w(r) = r~2. This effect is still present, though
weaker, when integrating over the enclosed ellipsoidal volume
without any weighting (method El) Often it is claimed in the
literature that using the weights =2 or 7, 11 in the shape tensor
reduces the influence of subhalos on the shape determination.
This is true only if an enclosed integration volume is used
(methods E2 and E3).

Again, there is nearly no difference between methods S1—,
S1+, S3—, and S3+ if there are only few or no subhalos present
at that distance (i.e., in the inner region). If we integrate over
the whole enclosed ellipsoidal volume, then the inclusion of
the weighting by r; smoothes out the detailed shape features.
Worse is using the weight r ~2, which leads again to a systematic
shift of axis ratios toward larger values in our case in addition

2 in our cosmological simulation. In the top row we plot b/a and in the bottom row
c/a as a function of distance. In the left column we show methods S1-S3 (integration over ellipsoidal shell), in the right column methods E1-E3 (integration over
enclosed ellipsoidal volume). Cases where we removed the subhalos are marked with a —, cases where they remained by a +. It is evident that it is essential to remove

to the smoothing already observed for the r_; ’ weighting (i.e.,
shapes are determined as rounder than they actually are).

The median shape of the 16 most massive halos at z ~ 2
for all methods without the subhalos is shown in Figure 6.
Taking the median is motivated by the similarity of our selected
halos (within a factor of 10 in mass; see also Zemp et al.
2011). As already observed before, the methods S1— and S3—
are nearly identical. The methods where we integrate over an
enclosed ellipsoidal volume (E1-E3) are naturally smoother
than when integrating over an ellipsoidal shell volume (S1-S3).
As a consequence, the local shapes do not react as fast to
shape changes in distance as in methods S1-S3, as seen for
example for c/a. There is a lag in distance when compared
with shapes determined by methods that use an ellipsoidal shell
as integration volume. This is also visible for our single halo
in Figure 5. For methods S2 and E2, the bias toward rounder
shapes can be around 0.1-0.3 for both axis ratios.

6. DISCUSSION

A widespread method used in the literature is method E3
(e.g., Dubinski & Carlberg 1991; Allgood et al. 2006; Kuhlen
et al. 2007). By using an enclosed integration volume, this
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Figure 6. Measured median axis ratios b/a (top panel) and c¢/a (bottom panel)

as a function of distance for the total matter distribution of the 16 halos at 7 ~ 2
for all the methods without the subhalos.

(A color version of this figure is available in the online journal.)

method picks up information from the inner regions that can
have different shapes and orientation. If one is interested in the
local shape, then we find that method S1 is clearly a better choice
than method E3.

Method E1 (e.g., Katz 1991) is doing relatively well compared
to its differential version S1. This is due to the fact that the
contribution in the shape tensor (Equation (5)) is dominated
by particles or volume elements with the largest distance from
the center. This method also shows systematic shifts (see, for
example, Figure 6) and smoothing when compared to method
S1. Therefore, the differential version S1 should be preferred
over the E1 method that uses the enclosed ellipsoidal volume.

Unfortunately, methods S1 or S3 are not yet in widespread
use in the literature. Kazantzidis et al. (2004) used method S3
and also found that using the enclosed volume is sensitive to the
distribution of particles in the enclosed region. Unfortunately,
they did not present the details of the tests in their work.
Debattista et al. (2008) and Lau et al. (2011) are also advocating
method S1. While Debattista et al. (2008) do not further motivate
their choice, Lau et al. (2011) found from visual comparison that
using a differential method in two dimensions gives reliable
ellipsoidal fits to X-ray isophotes.

7. SUMMARY

We have critically examined different methods for deter-
mining the local shape of matter distributions as a function
of distance. Using the weights 72 or r;lz in the shape tensor
(Equation (9)) does not cure the problem arising due to the pres-
ence of subhalos. In contrary, it can lead to a systematic bias for
the measured axis ratios even in smooth cases (Section 4). We
think that it is better to remove the cause of the problem (i.e., the
subhalos) than to fight the symptoms with weight factors that
make the physical meaning of the shape tensor unclear. Also
when integrating over the whole enclosed ellipsoidal volume,

ZEMP ET AL.

features get smoothed out and shape changes are lagging behind
in distance.

Therefore, our recommended method for measuring local
shapes is removing the subhalos, using ellipsoidal shells as
the integration volume, and determining the shape through an
iteration method as described in Section 3 that uses the shape
tensor as defined in Equation (5), i.e., without any weight factors.

In some cases one is interested in characterizing the shape of
an object with just one number, i.e., one is not interested in the
internal structure and the local shape as a function of distance.
Also, if the object is not well resolved (typically less than O(10%)
particles/volume elements), calculating the local shape can be
problematic. As a good practice, we recommend having at least
a few thousand particles in a bin when using ellipsoidal shells
as integration volume. Therefore, if the internal structure is not
of interest or cannot be properly resolved, we advocate method
E1 because it shows the least bias among the tested methods
that use the enclosed ellipsoidal volume.
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