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Abstract
We consider the effect of quantum interactions on Pauli–Fierz massive
gravity. With generic graviton cubic interactions, we observe that the 1-
loop counterterms do not conform to the tree level structure of Pauli–Fierz
action, resulting in the reappearance of the sixth mode ghost. Then to explore
the quantum effects to the full extent, we calculate the resummed graviton
propagator with an arbitrary interaction and analyze its complete structure,
from which a minimal condition for the absence of the ghost is obtained.

PACS numbers: 04.50.−h, 04.50.Kd, 04.60.−m

1. Introduction

As a first step to reconcile gravity and quantum physics, or to understand the quantum nature
of gravity, quantum corrections to general relativity (GR) have been extensively studied. The
works on induced gravity [1] can be considered as an approach to matter loop corrections
to Newton’s constant, whereas 1-loop corrections to the massless graviton propagator were
obtained for various types of fields: scalars [2], gauge bosons [3], fermions [4], and even
gravitons themselves [5].

On a different front of the gravitational research, the theory of massive gravity has been
an interesting topic for both theoretical and phenomenological reasons. On the theory side,
it has been studied how to deal with the classical pathologies of massive gravity, the most
famous one being the van Dam–Veltman–Zakharov (vDVZ) discontinuity [6]: adding a mass
term to the linearized Einstein–Hilbert action seems to be a natural way of giving mass to a
graviton. But doing so breaks the general coordinate invariance (GCI) of GR, so that a massive
theory ends up with more degrees of freedom (DOFs) than the massless one. Requiring that
none of these extra DOFs have any pathology, one is forced to choose Pauli–Fierz (PF) theory
[7]. Then the coupling of the extra scalar DOF to the sources remains finite even in the limit
of vanishing graviton mass. That is, no matter how small the graviton mass is, the massive
theory is finitely different from the massless one.
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To elucidate, let us look at the linearized massive gravity action with a generic mass term
in a flat 4D background:

Smg,a =
∫

d4x

{
∂αhαμ∂βhβ

μ − 1

2
∂αhμν∂

αhμν +
1

2
∂αh∂αh − ∂αhμα∂μh − m2

g

2
(hμνhμν − ah2)

}
,

(1)

with h = ημνhμν and ημν = diag(−1, 1, 1, 1). The corresponding tree level propagator is

P(0)
mg,a

= i

k2 + m2
g

(
− I1

2
+

I2

2

)
︸ ︷︷ ︸

H2

+
i

k2 + m2
g

I1

6︸ ︷︷ ︸
H01

+
−i

k2 + 4a−1
2(1−a)

m2
g

I1

6︸ ︷︷ ︸
H02

+ · · · , (2)

where the Ii’s are a complete set of tensor bases with four indicies, whose definitions will
be given in section 2. The propagator has a GR-like helicity-2 pole(H2) and two helicity-0
ones(H01 and H02), while · · · is terms that vanish upon contraction with conserved sources.
In the mg → 0 limit, (2) becomes i

k2

(− I1
2 + I2

2

)
+· · ·, which is the same as the massless graviton

propagator of GR, and hence we do not have any discontinuity problem. But unfortunately
(1) has a ghost DOF; (2) shows that H02 has a negative coupling. In fact, it is this ghost that
cancels the other scalar in the massless limit, allowing a smooth transition to the massless
theory.

By choosing a = 1 the ghost mode decouples because its mass diverges, and we obtain
PF theory:

P(0)
mg

= i

k2 + m2
g

(
− I1

2
+

I2

2

)
+

i

k2 + m2
g

I1

6
+ · · · . (3)

But then H01 survives the mg → 0 limit, creating an untraversable gap between the massive
and the massless theories. How or if we can remove this discontinuity has been an active
subject of research [8, 9].

The phenomenological reason to study massive gravity is a possibility of solving (a part
of) the cosmological constant(�) problem by modifying gravity at large distances. Among
many proposed solutions to the � problem, the infrared(IR) modification of gravity is the
idea that gravity behaves differently at large distance scales compared to short distances.
Let us assume that by some mechanism, e.g., [10], we succeed in achieving vanishing �.
The next step is to reconcile our zero � with the small but non-zero � calculated from the
observational data. The ‘observed’ � [11] is obtained with the assumption that GR holds
at all scales. Then we can imagine that if the characteristic of the ‘real’ gravity is different
from that of GR, interpreting the data with the right gravity may give an explanation to the
accelerated expansion of the Universe without �. But this idea gets severely constrained by
experiments and observations which confirm the validity of GR from mm to the solar system
scale. Therefore, the desired modification of gravity should be consistent with GR at short
distances, while getting weaker than GR at large distances in order to mimic �. PF theory
meets our demands in the IR, but fails to satisfy the short distance criterion because of the
vDVZ discontinuity.

While interesting enough already at the classical level, not much attention has been paid
to the quantum aspects of massive gravity theories. The simplest case where we might expect
to see some quantum effects is a real massive scalar field, φ, minimally coupled to gravity:

Sφ = 1

2

∫
d4x

√−g(gμν∂μφ∂νφ + m2φ2). (4)

By expanding it in M−1
P , using gμν = ημν + hμν

MP
with MP the Planck mass, we can get the terms

describing the quantum interactions between φ and the graviton hμν . But as is well known
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[1, 12], the effective action obtained by integrating out φ (or any matter field in general) takes
the form of

∼
∫

d4x
√−g(� + aR + b1R

2 + b2RμνR
μν + · · ·). (5)

Since this result is independent of the specifics of the gravity sector, it holds for massive
gravity as well as for GR. That is, PF theory gets no more unusual or unexpected contributions
from matter loops than GR does, which leads us to considering graviton loops in order to
see something interesting. Therefore, in this paper, we will explore what the combination
of ‘quantum effects’ and ‘massive gravity’ can offer, by investigating loop corrections to PF
theory from the graviton with a generic cubic interaction (section 2) and the graviton with an
arbitrary interaction (section 3).

2. Graviton loop corrections to PF

The tree level quadratic action of PF massive gravity in a flat background is

SPF =
∫

d4x

{
∂αhαμ∂βhβ

μ − 1

2
∂αhμν∂

αhμν +
1

2
∂αh∂αh − ∂αhμα∂μh − m2

g

2
(hμνhμν − h2)

}

= 1

2

∫
d4k

(2π)4
ĥμν

{(
k2 + m2

g

) (
I1,μν;λρ − I2,μν;λρ

2

)
+

I3,μν;λρ
2

− I4,μν;λρ

}
ĥλρ, (6)

with ĥμν the Fourier transform of hμν , from which we obtain the tree level massive graviton
propagator,

P(0)

mg,μν;λρ = i

k2 + m2
g

(
− I1,μν;λρ

3
+

I2,μν;λρ
2

+
I3,μν;λρ

2m2
g

− I4,μν;λρ
3m2

g

+
2I5,μν;λρ

3m4
g

)
. (7)

Ii is a complete set with which a symmetric second rank tensor can be expanded:

I1,μν;λρ = ημνηλρ, I2,μν;λρ = ημληνρ + ημρηνλ,

I3,μν;λρ = ημλkνkρ + ημρkνkλ + (μ ↔ ν), (8)

I4,μν;λρ = I41,μν;λρ + I42,μν;λρ, I41,μν;λρ = ημνkλkρ, I42,μν;λρ = kμkνηλρ,

I5,μν;λρ = kμkνkλkρ.

Hereafter, we omit spacetime indices on Ii and Pmg
for the sake of simplicity. Note that we

do not have to worry about fixing a gauge nor introducing Faddeev–Popov ghost, because the
general covariance is explicitly broken by the graviton mass terms. To (6), we add a generic
cubic interaction:

Sint =
∫

d4x
λ

(2!)33!

m2
g

2MP

(
αhμ1

ν1
hν1

ν2
hν2

μ1
+ βhμνhμνh + γ h3), (9)

which gives a 3-graviton vertex:

V (3)
g = − iλ

(2!)33!

m2
g

2MP

(
αημ1ν3ην1μ2ην2μ3 + βημ1μ2ην1ν2ημ3ν3 + γ ημ1ν1ημ2ν2ημ3ν3

+ symmetrization in μν + permutation in 123
)
. (10)

With the necessary building blocks ready, let us calculate loops. The details are given in
appendix A. The first is the tadpole:

μν = −1

ε

5iλm4
g

192π2MP

(3α + 4β)ημν + finite, (11)
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which is non-zero for a generic choice of the interaction, and therefore would imply that we
have chosen the wrong background. But we can use the freedom of choosing α, β and γ , and

β = − 3
4α (12)

renders (11) to vanish. With this choice, vertex (10) becomes

V (3)
g = −iλ

m2
g

16MP

(αJ1 − αJ2 + 8γ J3), (13)

where J1(2, 3) is the symmetrization and permutation of ημ1ν3ην1μ2ην2μ3(ημ1μ2ην1ν2ημ3ν3 ,

ημ1ν1ημ2ν2ημ3ν3).
Without the tadpole, the only 1-loop contribution to the 2-point function is

μν λρ = 1

ε

5iλ2m2
g

13824π2M2
P

α2
{(

7k2 − m2
g

)
I1 − (

5k2 − 2m2
g

)
I2 + 18I3 − 18I4

}
+O

(
k4

M2
P

)
+ finite. (14)

We can immediately see that it does not conform to (6). Reconstructing the full counterterms
out of (14) reveals the trouble it causes:

ĥμν
{(

7k2 − m2
g

)
I1 − (

5k2 − 2m2
g

)
I2 + 18I3 − 18I4

}
ĥλρ

⇒ 7∂αh∂αh − 10∂αhμν∂
αhμν + 72∂αhαμ∂βhβ

μ − 36∂αhμα∂μh − m2
g(4hμνhμν − h2)

= − 33(ḣ00)
2 + · · · . (15)

As shown in [8] using the Arnowitt–Deser–Misner-decomposed version of (6),

SPF =
∫

d4x

{
πij ḣij −

(
π2

ij − 1

2
π2

ii

)
+ 2h0i∂jπ

ij +
1

2
h00

(
∂2
i hii − ∂i∂jhij

)
+ 3R|h2

− m2
g

4

(
h2

ij − h2
ii − 2h0i

2 + 2h00hii

)}
, (16)

with πij being the conjugate momentum to hij and 3R being the curvature scalar constructed
with hij, PF theory comes to have five healthy DOFs because among the 10 DOFs of hμν ,
h00 and h0i are non-dynamical, and furthermore the action is linear in h00. That is, being
a Lagrange multiplier, h00 provides a constraint to eliminate another DOF, the sixth ghost
mode. What we see from (15) is that quantum effects remove such a feature, incurring the
reappearance of the ghost DOF.

A similar outcome is obtained with the 3-point function:

μ  ν1   1

μ  ν2   2 μ  ν3   3

= 1

ε

5iλ3m4
g

442368π2M3
P

α2

{
13αJ1 − 1

3
(35α + 32γ )J2 + (11α + 16γ )J3

}

+ terms with external momenta + finite. (17)

No nontrivial choice of α and γ can make (17) conform to the tree level vertex (13).
If we interpret terms with derivatives in (6) as 2M2

P

√−gR
∣∣
h2 with gμν = ημν + hμν

MP
, we

might well have to consider derivative interactions such as 2M2
P

√−gR
∣∣
h3 as well as (9). The

case of a more general interaction including the cubic and quartic expansion of
√−gR is

analyzed in appendix B with the same conclusion.
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3. Resummed graviton propagator

We just saw the breakdown of PF theory at the quantum level. But since we tried only one
type of interaction, it is still possible that the situation gets better for different types of well
designed interactions. To explore the full capability of quantum effect, let us perform a general
analysis independent of the details of the interactions.

No matter what the interaction is, the one particle irreducible diagram (1PI), Π, for the
2-point function may be written as

Πμν;λρ =
5∑

j=1

bj (k)Ij , (18)

because Ij is a complete basis. In the previous section, we concentrated only on O(k2) part of
Π, but of course there are pieces of O(k4) and higher. Being generically nonrenormalizable,
the tree level PF theory cannot handle the divergences of higher powers of k. Here we take the
idea of [13] and treat the massive gravity as an effective field theory (EFT). That is, we assume
the tree level PF action gets complemented by EFT terms, which can absorb divergences
from the loops. But regardless of the EFT treatment, O(k0) and O(k2) divergences must be
absorbed by the bare theory. Then, the very first requirement for our interaction is

O(k0) and O(k2) divergences of 1PI for the 2-point function

conform to the tree level PF action. (19)

From here on, it is understood that bi’s are the finite parts of the quantum corrections with the
divergences taken care of.

To obtain the resummed graviton propagator

Pmg
= P(0)

mg
+ P(0)

mg
· Π · P(0)

mg
+ P(0)

mg
· (

Π · P(0)
mg

)2
+ · · · , (20)

we need to find
(
Π · P(0)

mg

)n
as a function of n. By writing

Π · P(0)
mg

=
∑

i

riIi , (21)

and then (
Π · P(0)

mg

)n+1 =
∑

i

a
(n)
i Ii =

∑
i

riIi ·
∑

j

a
(n−1)
j Ij , (22)

we can obtain the recurrence relations between a
(n)
i and a

(n+1)
j . Explicit solutions for a

(n)
i are

given in appendix C, and the resummed propagator is

Pmg
= P(0)

mg
+

∞∑
n=0

P(0)
mg

· (
Π · P(0)

mg

)n+1

= − i

k2 + m2
g + 2b2

I1

3
+

i

k2 + m2
g + 2b2

I2

2
− i

b5k
4 + 2(2b3 + b4)k

2 + b1 + 2b2

dmg
(k)

I1

3

+ (I3 + I4 + I5), (23)

where

dmg
(k) = 2b5k

6 − (
4b1 + 2b2 − 3m2

g

)(
2b2 + m2

g

)
+

{
8b3 + b4(4 + 3b4) − b5(3b1 + 2b2) + 2b5m

2
g

}
k4

+
{
2b1(1 − 6b3) + 4b2(1 − 2b3 − b4) + 2(4b3 − b4)m

2
g

}
k2. (24)

5
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Comparing the first two terms of (23) with the tree level propagator, (7), we can immediately
see that the tree level theory gets renormalized by b2, which is a progress over the 1-loop
analysis where it was not clear which counterterm renormalized what. Next, by rewriting (23)
as

Pmg
= i

k2 + m2
g + 2b2

(
− I1

2
+

I2

2

)
+

i

k2 + m2
g + 2b2

I1

6
+

−i

k2 + M2

I1

6

+ (I3 + I4 + I5), (25)

with

M2 = 1

2{b5k4 + 2(2b3 + b4)k2 + b1 + 2b2}
[{3b2

4 − b5
(
3b1 + 2b2 − 2m2

g

)}k4

− 2
{
6b1b3 + 2b2(2b3 + b4) − m2

g(4b3 − b4)
}
k2

− (
4b1 + 2b2 − 3m2

g

)(
2b2 + m2

g

)]
, (26)

we note that (25) takes the same form as the tree level non-PF propagator, (2), implying that a
generic interaction revives the ghost sixth mode. But (23) shows how to avoid this pathology;
the ghost pole can be removed if

b5k
4 + 2(2b3 + b4)k

2 + b1 + 2b2 = 0 . (27)

Therefore, in order to be quantum-safe, 1PI from a desirable interaction should satisfy at least
(19) and (27).

4. Discussion

Through straightforward loop calculations and the analysis on the propagator, we showed
that although loop corrections from a quantum interaction may spoil PF massive gravity by
reviving the sixth mode ghost, we may still be able to have a healthy theory by requiring the
allowed interactions to satisfy appropriate conditions.

Then the next task would be to find the right interactions. For this purpose, understanding
why the cubic interaction of section 2 failed would be useful. In fact, the results of section 2
should not be surprising, once we realize that in PF the elimination of the sixth mode is
achieved by an onshell symmetry. To identify this symmetry, we start with action, (1), with a
generic mass term. The equation of motion for the graviton, h, with a source, T, is

Tμν = ∂2hμν − ημν∂
2h − ∂μ∂αhα

ν − ∂ν∂αhα
μ + ∂μ∂νh + ημν∂α∂βhαβ − m2

g(hμν − aημνh).

(28)

On the RHS, terms with derivatives come from the Einstein tensor, and the Bianchi identity
guarantees that their contraction with ∂μ vanishes. Then for a conserved source, i.e.
∂μTμν = 0, we get the following onshell constraint:

0 = ∂μhμν − a∂νh. (29)

Next we vary (1) under the infinitesimal coordinate transformation, x → x + ξ or
hμν → h′

μν = hμν + ∂μξν + ∂νξμ. Again, terms with derivatives are
√−gR

∣∣
h2 and therefore

invariant. A remainder of the variation of the mass term is

δSmg
= m2

g

∫
d4xξν(∂μhμν − a∂νh). (30)

Then a generic massive gravity seems to have GCI if constraint (29) is imposed. Of course
this is not true, because we have yet to take into account that the transformed field should also
satisfy (29), i.e.

0 = ∂μh′
μν − a∂νh

′ = (1 − 2a)∂ν∂μξμ + ∂2ξν. (31)

6
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Decomposing ξ into a transverse vector ξT and a longitudinal scalar σ such that ξμ = ξT
μ +∂μσ ,

(31) becomes

∂2ξT
ν + 2(1 − a)∂ν∂

2σ = 0. (32)

Thus, we end up with ξT = 0 and for a 	= 1 σ should also vanish: Non-PF action has no
symmetry. But when a = 1, which is the case of PF theory, (32) can be satisfied with a
nontrivial σ , and PF theory has a residual symmetry parametrized by ξμ = ∂μσ . Since this
symmetry works under the onshell constraint (29), it may not be preserved when we go offshell
in the loop calculations.

Therefore, further efforts to find a quantum-safe theory of massive gravity can be directed
in two different ways.

(i) We may try to construct a nonlinear completion of PF where the sixth mode is removed
by a full symmetry.

(ii) We can attempt to directly find a quantum interaction whose 1PI satisfies e.g., (19) and
(27).

With various versions [14] of the completion of PF already at hand, it would be
straightforward to pursue (i), which in the end might lead us to the right interaction sought
after in (ii).
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Appendix A. Graviton loops

All the 1-loop diagrams constructed with the 3-graviton vertex V (3)
g (10) are drawn in

figure A1. Evaluating them is straightforward but laborious and tedious. The tadpole diagram,

(a) =
∫

d4p

(2π)4
V (3)

g (αβ;μ1ν1;μ2ν2)P(0)
mg

μ1ν1;μ2ν2(p),

= λm2
g

Mp

ημν

∫
ddp

(2π)d

1

p2 + m2
g

{
3α + (d + 2)β + 3dγ

9m4
gd

p4

+
(3d + 1)α + (d2 − d + 4)β − 2(d − 3)dγ

6

(
p2

m2
gd

+
1

2

)}

= −1

ε

5iλm4
g

192π2MP

(3α + 4β)ημν + finite, (A.1)

fixes β = − 3
4α. Then

(b) =
∫

d4p

(2π)4
V (3)

g (μν;μ1ν1;μ4ν4)P(0)
mg

μ1ν1;μ2ν2(p)V (3)
g (λρ;μ2ν2;μ3ν3)P(0)

mg
μ3ν3;μ4ν4(p + k)

= −λ2m4
g

M2
P

∫
dd l

(2π)d

∫ 1

0
dx

1{
l2 + m2

g + x(1 − x)k2
}2[(

7α2 + 32αγ − 128γ 2

576m2
g

(1 − 2x(1 − x))k2 +
(α − 2γ )(α + 4γ )

18

)
I1

7
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αβ αβ

μ  ν1 1

μ  ν2 2

p=

(a)

(b)

μν λρ
k k

(c)

=

μ ν2 2

μ ν3 3

μ ν1 1

μ  ν4 4

μν λρ
kk

p

k + p

μ ν1 1

μ ν2 2 μ ν3 3

p
1

p  - p
2       1

p
2

=

μ ν1 1

α β1 1 α  β6 6

p + p
         1

p  -  p
2        1

μ ν2 2

α β2   2

p + p
2

α β3   3 α β4 4

α β5 5

p

p
2

μ ν3 3

p
1

Figure A1. Graviton 1-loops.

− α2

8

(
3(1 − 2x(1 − x))

8m2
g

k2 + 1

)
I2 − α2

32m2
g

(1 − 2x(1 − x))(I3 − I4)

+

{(
(25 − 58x(1 − x))α2 − 32(5 − 7x(1 − x))αγ + 128(5 − 9x(1 − x))γ 3

1152m2
g

k2

+
(α − 2γ )(α + 4γ )

18

)
I1

− α2

8

(
5 − 16x(1 − x)

16m2
g

k2 + 1

)
I2 − α2

192m2
g

(5 − 16x(1 − x))I3

+
(15 − 56x(1 − x))α2 + 64x(1 − x)αγ

576m2
g

I4)

}
l2

m2
g

+

{(
− (17 − 50x(1 − x))α2 + 64(5 − 8x(1 − x))αγ − 1536(1 − 3x(1 − x))γ 3

3456m2
g

k2

+
19α2 − 48αγ + 192γ 2

576

)
I1

8
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+
α2

18

(
1 + 22x(1 − x)

64m2
g

k2 − 1

)
I2 − α2

576m2
g

(21 − 50x(1 − x))I3

+
(71 − 230x(1 − x))α2 − 64(1 − 10x(1 − x))αγ

1728m2
g

I4)

}
l4

m4
g

+

{(
−65(1 − 2x)2α2 − 64(11 − 45x(1 − x))αγ + 768(3 − 10x(1 − x))γ 3

6912m2
g

k2

+
5α2 − 32αγ + 128γ 2

576

)
I1

+
α2

96

(
7 + 20x(1 − x)

72m2
g

k2 − 1

)
I2 − α2

3456m2
g

(19 − 60x(1 − x))I3

+
5(7 − 36x(1 − x))α2 − 64(2 − 15x(1 − x))αγ

3456m2
g

I4)

}
l6

m6
g

− (α2 − 24αγ + 96γ 2)I1 + α2I2

864

l8

m8
g

+ O(k4)

]

= α2

ε

5iλ2m2
g

13824π2M2
P

{(
7k2 − m2

g

)
I1 − (

5k2 − 2m2
g

)
I2 + 18I3 − 18I4

}
+ O

(
k4

M2
P

)
+ finite,

(A.2)

(c) =
∫

d4p

(2π)4
V (3)

g (μ1ν1;α1β1;α6β6)P(0)
mg

α1β1;α2β2(p + p1)

V (3)
g (μ2ν2;α2β2;α3β3)P(0)

mg
α3β3;α4β4(p + p2)V

(3)
g (μ3ν3;α4β4;α5β5)P(0)

mg
α5β5;α6β6(p)

= λ3m6
g

256M3
P

∫
dd l

(2π)d

1(
l2 + m2

g

)3

{
α3J1 − α3J2 +

31α3 − 96α2γ + 768αγ 2 − 2048γ 3

27
J3

+

(
3α3

2m2
g

J1 − 3α3

2m2
g

J2 +
31α3 − 96α2γ + 768αγ 2 − 2048γ 3

18m2
g

J3

)
l2

+

(
7α3

6m4
g

J1 − 67α3 − 32α2γ

54m4
g

J2 +
21α3 + 32α2γ − 384αγ 2 + 1024γ 3

18m4
g

J3

)
l4

+

(
5α3

6m6
g

J1 − 28α3 − 44α2γ

27m6
g

J2 +
101α3 + 264α2γ − 4224αγ 2 + 11264γ 3

108m6
g

J3

)
l6

+

(
13α3

36m8
g

J1 − 181α3 − 512α2γ

324m8
g

J2 +
77α3 − 400α2γ + 1152αγ 2 − 3072γ 3

108m8
g

J3

)
l8

+

(
5α3

72m10
g

J1 − 97α3 − 416α2γ

648m10
g

J2 +
53α3 − 496α2γ + 2304αγ 2 − 6144γ 3

216m10
g

J3

)
l10

+

(
α3

162m12
g

J1 − 3α3 − 16α2γ

162m12
g

J2 +
α3 + 48α2γ − 576αγ 2 + 1536γ 3

162m12
g

J3

)
l12

}
+ terms with p1 and p2

9
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= α2

ε

5iλ3m4
g

442368π2M3
P

{
13αJ1 − 1

3
(35α + 32γ )J2 + (11α + 16γ )J3

}
+ terms with p1 and p2 + finite. (A.3)

Note that in the second equality of (A.3), instead of
(
l2 + m2

g

)−3
there should have been{

l2 + m2
g + x(1 − x)p2

1 + y(1 − y)p2
2 − 2xyp1 · p2

}−3
with the appropriate integrations over

the Feynman parameters x and y. But here we are only interested in the contribution in the
form of the tree level 3-point vertex, and take the shortcut of ignoring any dependence on the
external momenta p1 and p2.

Appendix B. Graviton loops with a more general interaction

An interaction more general than (9) may contain derivatives, and a reasonable way to introduce
such interactions is to expand

√−gR to higher orders in h. That is, we now investigate

Smg
= SPF + 2M2

P

∫
d4x

{
[
√−gR]|h3 + [

√−gR]|h4

− m2
g

4(2!)33!M3
P

(
x1h

μ
ν hν

σhσ
μ + x2hμνh

μνh + x3h
3
)

− m2
g

4(2!)44!M4
P

(
y1h

μ
ν hν

σhσ
λhλ

μ + y2(hμνh
μν)2 + y3h

μ
ν hν

σhσ
μh + y4hμνh

μνh2 + y5h
4
)}

= SPF +
∫

d4x

(
hμ1ν1hμ2ν2hμ3ν3

MP

V (3)
g μ1ν1;μ2ν2;μ3ν3

+
hμ1ν1hμ2ν2hμ3ν3hμ4ν4

M2
P

V (4)
g μ1ν1;μ2ν2;μ3ν3;μ4ν4

)
. (B.1)

Now that M−1
P plays the role of the coupling, we need the cubic and quartic vertices in order to

get loops of O
(
M−2

P

)
.
√−g R

∣∣
h3 and

√−g R
∣∣
h4 are O(h3) and O(h4) parts of

√−g R, whose
explicit form can be found at, e.g., [15], and then we obtain V (3)

g and V (4)
g straightforwardly.

To find loop corrections to SPF, we path-integrate over h, while O(h3) and O(h4) terms
provide quantum interactions:

Z[J ] =
∫

Dh exp

[
i

(
Smg

+
∫

d4xJμνhμν

)]

= N exp

[
i
∫

d4z

(
iV (3)

g

MP

δ3

δJ (z)3
+

V (4)
g

M2
P

δ4

δJ (z)4

)]

× exp

[
i

2

∫
d4xd4yJ (x)

(−iP̃(0)
mg

(x − y)
)
J (y)

]
, (B.2)

where N is a normalization constant and P̃(0)
mg

is the inverse Fourier transform of the tree level
PF graviton propagator, (7). With

P̃(0)
mg

= , i
∫

d4xJ (x)
(−iP̃(0)

mg
(x − y)

) = × , (B.3)

10



Class. Quantum Grav. 28 (2011) 105012 M Park

we can expand (B.2) diagrammatically. Up to O
(
M−3

P

)
,

3i + 6 − 1
2

18 + 18 ,

(a) (b) (c) (d)

(B.4)

where (a) ∼ (d) are the loop parts of corresponding diagrams. The linear tadpole, (a), is

(a) = 5im4
g

768π2MP ε
(−2 + 3x1 + 4x2)ηαβ + finite. (B.5)

In order not to have a tadpole, we have to fix x2 = 2−3x1
4 , which in turn makes (c) vanish. The

rest of the loops are

(b) = 5im2
g

13824π2M2
P ε

{(
18k2 + (4y1 − 4y2 + 27y3 + 36y4)m

2
g

)
I1

− (
9k2 − (9 + 19y1 + 44y2)m

2
g

)
I2 + 9I3 − 18I4

}
+ finite, (B.6)

(d) = 5im2
g

1990656π2M2
P ε

{((
600 + 312x1 + 63x2

1

)
k2 − (

376 − 348x1 + 9x2
1

)
m2

g

)
I1

− ((
272 + 456x1 + 45x2

1

)
k2 − 2

(
376 − 348x1 + 9x2

1

)
m2

g

)
I2

+ 18
(
28 + 4x1 + 9x2

1

)
I3 − 2

(
428 + 102x1 + 81x2

1

)
I4

}
+ O

(
k4

M2
P

)
+ finite. (B.7)

Applying δ2/(iδJμν)(iδJ λρ) to (B.4) gives the 1-loop correction to the 2-point 1PI:

12(b) − 18(d) = 5im2
g

110592π2M2
P ε

[{
3
(
376 − 104x1 − 21x2

1

)
k2

− (
348x1 − 9x2

1 − 8(47 + 48y1 − 48y2 + 324y3 + 432y4)
)
m2

g

}
I1

− {(
592 − 456x1 − 45x2

1

)
k2 − 2

(
56 + 348x1 − 9x2

1 + 912y1 + 2112y2
)
m2

g

}
I2

+ 18
(
20 − 4x1 − 9x2

1

)
I3 − 2

(
436 − 102x1 − 81x2

1

)
I4

]
+ O

(
k4

M2
P

)
+ finite.

(B.8)

Then,

ĥμν
{
12(b) − 18(d)

}
ĥλρ

∝ {
9(k0)2

(
40 − 81x1 + 33x2

1

) − (ki)2
(
56 − 600x1 − 27x2

1

)
+ · · · }h00

2 + · · · , (B.9)

which does not vanish for any x1.

Appendix C. Summing up 1PI’s

First of all, we need to know various contractions between Ii’s, which are worked out in
table C1. Here tensors on the leftmost column with (αβ;μν) index structure are multiplied
into those on the top row with (μν; λρ), and I41 = ηαβkμkν or ημνkλkρ , I42 = kαkβημν or
kμkνηλρ . A graviton self energy, Παβ;λρ , has the general form of

Π =
5∑

j=1

bj (k)Ij , (C.1)

because I’s are a complete basis.

11
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Table C1. Tensor multiplication table.

I1 I2 I3 I41 I42 I5

I1 4I1 2I1 4I41 4I41 k2I1 k2I41

I2 2I1 2I2 2I3 2I41 2I42 2I5

I3 4I42 2I3 2k2I3 + 8I5 4I5 4k2I42 4k2I5

I41 k2I1 2I41 4k2I41 k2I41 k4I1 k4I41

I42 4I42 2I42 4I5 4I5 k2I42 k2I5

I5 k2I42 2I5 4k2I5 k2I5 k4I42 k4I5

C.1. GR

Let us look at the case of GR first. To do the summation

P = P(0) + P(0) · Π · P(0) + P(0) · (Π · P(0))2 + · · · , (C.2)

with the graviton propagator in the de Donger gauge,

P(0) = i

k2

(
− I1

2
+

I2

2

)
, (C.3)

we should find the n-dependence of (Π · P(0))n. Using table C1, we get

Π · P(0) =
∑

i

riIi , (C.4)

with

r1 = b1 + b2

k2
+

b4

2
, r2 = −b2

k2
, r3 = −b3

k2
,

r41 = −b4

k2
, r42 = 2b3 + b4

k2
+

b5

2
, r5 = −b5

k2
. (C.5)

Then, by writing

(Π · P(0))n+1 =
∑

i

a
(n)
i Ii =

∑
i

riIi ·
∑

j

a
(n−1)
j Ij , (C.6)

we obtain the recurrence relations between a
(n)
i and a

(n+1)
j :

a
(n+1)
1 = (4r1 + 2r2 + r41k

2)a
(n)
1 + 2r1a

(n)
2 + (r1 + r41k

2)k2a
(n)
42 , (C.7)

a
(n+1)
2 = 2r2a

(n)
2 , (C.8)

a
(n+1)
3 = 2r3a

(n)
2 + 2(r2 + r3k

2)a
(n)
3 , (C.9)

a
(n+1)
41 = 2r41a

(n)
2 + 4(r1 + r41k

2)a
(n)
3 + (4r1 + 2r2 + r41k

2)a
(n)
41 + (r1 + r41k

2)k2a
(n)

5 , (C.10)

a
(n+1)
42 = (4r3 + 4r42 + r5k

2)a
(n)
1 + 2r42a

(n)
2 + (2r2 + (4r3 + r42 + r5k

2)k2)a
(n)
42 , (C.11)

a
(n+1)

5 = 2r5a
(n)
2 + 4(2r3 + r42 + r5k

2)a
(n)
3

+ (4r3 + 4r42 + r5k
2)a

(n)
41 + (2r2 + (4r3 + r42 + r5k

2)k2)a
(n)

5 . (C.12)

(C.8) and (C.9) are trivial to solve. With a
(n)
2 and a

(n)
3 determined, the remaining equations

are grouped into two sets of coupled equations: (C.7) and (C.11) and (C.10) and (C.12). Each

12
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of these sets can be solved in the same way as solving the Fibonacci sequence. The complete
answer is rather lengthy:

a
(n)
1 = γ+Y

(n)
− − γ−Y

(n)
+

γ+ − γ−
, a

(n)
2 = 1

2
(2r2)

n+1, a
(n)
3 = (2r2 + 2r3k

2)n+1 − (2r2)
n+1

2k2
,

a
(n)
41 = γ+X

(n)
− − γ−X

(n)
+

γ+ − γ−
, a

(n)
42 = Y

(n)
+ − Y

(n)
−

γ+ − γ−
, a

(n)

5 = X
(n)
+ − X

(n)
−

γ+ − γ−
, (C.13)

where

γ± = −α1 + α′
2 ± √

(α1 − α′
2)

2 + 4α′
1α2

2α′
1

, (C.14)

X
(n)
± = (r41 + γ±r5)σ

n
± + ρ1±

σn
± − (2r2)

n

σ± − 2r2
+ ρ2±

σn
± − (2r2 + 2r3k

2)n

σ± − (2r2 + 2r3k2)
, (C.15)

Y
(n)
± = (r1 + γ±r42)σ

n
± + ρ±

σn
± − (2r2)

n

σ± − 2r2
, (C.16)

with

α1 = 4r1 + 2r2 + r41k
2, α2 = (r1 + r41k

2)k2,

α′
1 = 4r3 + 4r42 + r5k

2, α′
2 = 2r2 + (4r3 + r42 + r5k

2)k2,

σ± = α1 + α′
2 ± √

(α1 − α′
2)

2 + 4α′
1α2

2
, ρ± = 2r2(r1 + γ±r42), (C.17)

ρ1± = −2r2

{
r41 + γ±r5 +

2

k2
(r1 + γ±(2r3 + r42))

}
,

ρ2± = 4
( r2

k2
+ r3

)
{r1 + r41k

2 + γ±(2r3 + r42 + r5k
2)}.

Then,

P(0) · (Π · P(0))n+1

= i

2(γ+ − γ−)k2

[
ρ+

(
2nrn

2 − σn
+

)
(2γ− − k2)

2r2 − σ+
− ρ−

(
2nrn

2 − σn
−
)
(2γ+ − k2)

2r2 − σ−

−(2r2)
n+1(γ+ − γ−) + γ n

+ (r1 + r42γ+)(2γ− − k2) − γ n
−(r1 + r42γ−)(2γ+ − k2)

]
I1

+
1

2k2
(2r2)

n+1I2 + (I3, I4, I5). (C.18)

As this is merely a geometric series, summing them up is straightforward. Plugging (C.14)
and (C.17), we finally get

P = P(0) +
∞∑

n=0

P(0) · (Π · P(0))n+1

= − i

k2 + 2b2

I1

3
+

i

k2 + 2b2

I2

2
− i

2b5k
4 + (1 + 8b3 + 4b4)k

2 + 2(b1 + 2b2)

d(k)

I1

3
+ (I3, I4, I5),

(C.19)

with

d(k) = b5k
6 +

{
2 + 4b3 − 2b4(2 − 3b4) − 2b5(3b1 + 2b2)

}
k4

− 8
{
b1(1 + 3b3) + b2(2b3 + b4)

}
k2 − 8b2(2b1 + b2). (C.20)

13
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Since GR has a full GCI, Π should be invariant under hμν → h′
μν = hμν + ∂μξν + ∂νξμ, i.e.

0 =
∫

d4x
{
Π

(
h′

μν

) − Π(hμν)
} = −2

∫
d4xξμ∂ν

δ

δhμν

Π

⇒ 0 = (b1 + k2b4)kνĥ + 2(b2 + k2b3)kρĥ
ρ
ν + (2b3 + b4 + k2b5)kνkλhρĥ

λρ, (C.21)

which gives

b1 + k2b4 = 0, b2 + k2b3 = 0, 2b3 + b4 + k2b5 = 0, (C.22)

and (C.19) turns into

P = i

k2 + 2b2

{ −k2 + b1

2k2 − 3b1 − 2b2
I1 +

I2

2
+

b2

k4
I3 − b1 + 2b2

k2(2k2 − 3b1 − 2b2)

(
I4 +

2

k2
I5

)}
.

(C.23)

In GR, the forms of the quadratic action and the corresponding propagator can vary as we
change the gauge choice, so that a difference between the resummed propagator and the tree
level one may not be a problem as long as there is a general coordinate transformation that
connects them.

C.2. PF

For PF theory, we can follow the same steps as those of the GR case. The differences are that
there is no Ward identity here and that we use P(0)

mg
instead of P(0), which changes (C.5) into

r1 = b1

3m2
g

+
2b2

3
(
k2 + m2

g

) +
b4k

2

3m2
g

, r2 = − b2

k2 + m2
g

, r3 = − b2

m2
g

(
k2 + m2

g

) − b3

m2
g

,

r41 = − 2b1

3m4
g

+
2b2

3m2
g

(
k2 + m2

g

) − b4
(
2k2 + 3m2

g

)
3m4

g

,

r42 = 2b2

3m2
g

(
k2 + m2

g

) +
4b3

3m2
g

+
b4

3m2
g

+
b5k

2

3m2
g

, (C.24)

r5 = − 4b2

3m4
g

(
k2 + m2

g

) − 8b3

3m4
g

− 2b4

3m4
g

− b5
(
2k2 + 3m2

g

)
3m4

g

.

Then, the resummed PF graviton propagator is

Pmg
= P(0)

mg
+

∞∑
n=0

P(0)
mg

· (
Π · P(0)

mg

)n+1

= −i

{
1

k2 + m2
g + 2b2

+
b5k

4 + 2(2b3 + b4)k
2 + b1 + 2b2

dmg
(k)

}
I1

3
+

i

k2 + m2
g + 2b2

I2

2

− i

2k2

(
1

k2 + m2
g + 2b2

− 1

2b3k2 + m2
g + 2b2

)
I3 +

inmg
(k)(

k2 + m2
g + 2b2

)
dmg

(k)
I4

+
i

3k4

{
2

k2 + m2
g + 2b2

− 6

2b3k2 + m2
g + 2b2

−b5k
4 − (6 − 4b3 − 8b4)k

2 + 16b1 + 8b2 − 12m2
g

dmg
(k)

}
I5, (C.25)
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where

dmg
(k) = 2b5k

6 +
(
8b3 + b4(4 + 3b4) − b5(3b1 + 2b2) + 2b5m

2
g

)
k4

+
(
2b1(1 − 6b3) + 4b2(1 − 2b3 − b4) + 2(4b3 − b4)m

2
g

)
k2

− (4b1 + 2b2 − 3m2
g)(2b2 + m2

g), (C.26)

nmg
(k) = b5k

4 +
(
4b3 + 3b4 + b2

4 − b1b5 + b5m
2
g

)
k2 + b1(2 − 4b3)

+ 2b2(1 + b4) − (1 − 4b3 − b4)m
2
g. (C.27)
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