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Abstract

This paper introduces a method for the substantial reduction of heading errors in inertial
navigation systems used under GPS-denied conditions. Presumably, the method is applicable
for both vehicle-based and personal navigation systems, but experiments were performed only
with a personal navigation system called ‘personal dead reckoning’ (PDR). In order to work
under GPS-denied conditions, the PDR system uses a foot-mounted inertial measurement unit
(IMU). However, gyro drift in this IMU can cause large heading errors after just a few minutes
of walking. To reduce these errors, the map-matched heuristic drift elimination (MAPHDE)
method was developed, which estimates gyro drift errors by comparing IMU-derived heading
to the direction of the nearest street segment in a database of street maps. A heuristic
component in this method provides tolerance to short deviations from walking along the street,
such as when crossing streets or intersections. MAPHDE keeps heading errors almost at zero,
and, as a result, position errors are dramatically reduced. In this paper, MAPHDE was used in
a variety of outdoor walks, without any use of GPS. This paper explains the MAPHDE method

in detail and presents experimental results.

Keywords: map-matching techniques, heuristic drift elimination, personal navigation

systems, GPS, inertial sensors

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Pedestrian tracking is the process of determining and
maintaining positional information for a person traveling
on foot. Pedestrian tracking systems (PTSs) are useful
for tracking movements of military personnel, finding and
rescuing incapacitated first responders, or for location-aware
computing and personal navigation assistance [1]. For most
PTSs, GPS is the primary source for obtaining position and
velocity data. Under ideal conditions, GPS provides long-
term accurate and absolute measurements. Outdoors, where
there is a clear line of sight to four or more satellites, GPS
provides location with accuracies ranging from tens of meters
to tens of centimeters, depending on the type of GPS receiver
[14]. However, GPS is often unavailable in urban areas, where
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the urban canyon effect may reduce the number of visible
satellites. Even when GPS is available, it is often less accurate
because of multipath effects. Alternative approaches for
absolute PTSs require active radiation sources such as infrared
light [16], ultrasound [17], magnetic fields [18], ultrawideband
(UWB) [19] or other radio frequencies [20]. Common to these
methods is that they require initial setup of the corresponding
sources. Many applications exist in which the initial setup
time is not feasible (e.g., firefighting or military) or where
the installation of such infrastructure is too costly (e.g., city
blocks).

Another approach is to use light emitting and capturing
sources such as cameras or light detection and ranging
(LIDAR) systems [21]. LIDAR suffers from disturbances
when the user walks among other pedestrians, as would be the
case in downtown areas of large cities. Another technology
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that uses cameras and/or LIDAR is simultaneous localization
and mapping (SLAM), which is based on building a map
within an unknown environment (without a priori knowledge)
or updating a map within a known environment (with a priori
knowledge from a given map) while at the same time keeping
track of the current location. SLAM systems may accumulate
errors over time and can fail when used on a busy street
with pedestrians walking by. A recent development [22] uses
head-mounted laser range and inertial sensors to localize a
person in indoor environments, without use of any a priori
building or floor map data. All LIDAR-based technologies
have the following limitations in common: have active source
of radiation which might reveal the military users’ location to
the enemy and the equipment pose is altered when firefighters
crawl on hands and knees for rescue mission. A problem
common to LIDAR and computer vision systems is that they
do not work well in smoke-filled environments, making them
unsuitable for firefighters.

There are a few other radio frequency (RF)-based
technologies, such as those using cellular telephones
(exploiting time delays) or triangulation methods based on
wireless networks for obtaining navigation parameters. The
main limitation of cellular technologies is that they are
not accurate enough for most pedestrian tracking purposes.
Wireless local area networks (WLANSs) can be used for indoor
navigation, where the location fix is determined by measuring
signal strengths from several access points [21]. However,
like GPS, this method suffers from multipath and fading
effects, and often pre-mapping of signal strength is required.
Other methods may include active badges or optical tracking
systems that employ specific markers installed in and around
the buildings and can assist in detecting the person’s current
location [23].

An entirely different approach is the use of relative
sensor modalities, predominantly IMUs. IMUs do not require
any external infrastructure and do not actively radiate. The
problem with IMUs is that the position and heading estimates
derived from the accelerometers and gyros of the IMU develop
unbounded errors. Moreover and besides their astronomical
cost, very high-end IMUs that develop errors only slowly
are typically too large and heavy to be worn by a person,
especially warfighters and first responders who already carry
a lot of heavy gear. Smaller and lighter IMUs, typically
using micro-electro-mechanical systems (MEMS) technology,
develop large position and heading errors quickly. A common
approach to making MEMS-based IMUs feasible in PTSs
applications is therefore to find ways that allow the bounding
of heading and position errors.

The main components of an IMU-based PTS algorithm are
footfall detection, step-length along with altitude estimation,
and heading estimation [2-6, 20]. Footfall detection may
be accomplished by examining accelerometer or gyroscope
variances after pre-processing (such as noise reduction by
averaging) [2, 3, 7]. The estimation of step-length can be
accomplished either by GPS updates [3] (when GPS is at
least temporarily available), as a function of step period,
acceleration magnitude or acceleration variance [6, 10], by
direct inertial sensor integration [1, 11, 12], or by other
advanced techniques [15].

One key distinction of IMU-based PTSs is whether the
IMU is located on the foot or elsewhere on the body. Location
of the IMU on the body makes system integration more
practical, but existing systems all struggle with the problem
of estimating distance traveled, especially when users apply
different gaits, as well as when walking backward or sideways.
Foot-mounted IMUs are more cumbersome to use because
there are limited options for placing the IMU on or in the
user’s footwear, and typically a cable connection to a body-
worn computer is required. However, the great advantage
of foot-mounted IMUs is that they allow compensation
for accelerometer drift and thus accurate direct step-length
measurements [7] as will be explained in section 2. In most
IMU-based systems, altitude is not measured by the IMU but
rather by barometric pressure sensors [20].

In IMU-based PTSs, the heading or direction of motion is
most commonly obtained from the gyroscopes of the IMU.
However, in MEMS-based systems bias drift of the gyros
is significant and if left uncorrected can completely mask
the navigation solution [1, 11, 12]. Therefore, alternative
equipment or additional data sources are required to achieve
reasonable accuracy. Since heading errors from inertial
sensors can grow without bound, reducing heading errors
can dramatically improve position accuracy. Another method
for obtaining heading information is by using a magnetic
compass [2, 10]. A magnetic compass offers absolute heading
information by measuring the earth’s magnetic field. However,
these measurements can be easily distorted by nearby steel
structures or electric fields. For these reasons, magnetometers
generally do not work reliably enough inside buildings and
work only marginally in urban environments [13].

Map-matching algorithms [24, 25] can also be used for
correcting heading errors in PTS. Map matching is the process
of comparing personal tracking data with the digital map
of streets to match the pedestrian’s navigation data to the
street segment on which the pedestrian is walking. There
are several map-matching algorithms such as geometric point-
to-point, geometric point-to-curve and geometric curve-to-
curve methods. These methods and their shortcomings will
be explained in section 3.2. This paper proposes a modified
geometric point-to-curve method to overcome some of the
limitations of these existing map-matching algorithms.

The work was motivated by the goal of creating a PTS
that is capable of tracking walking persons in GPS-denied
urban environments. The focus was on mitigating heading
errors by means of the so-called map-matched heuristic drift
elimination method that was developed under this study. This
method has two components: (1) obtaining the direction of
the nearest street segment through map matching and (2)
correcting the walker’s estimated heading based on the inertial
sensors and the present best estimate of the heading calculated
by the previously developed heuristic drift elimination (HDE)
technique.

It should be noted that the term ‘drift elimination’ as used
in this paper is meant to be taken figuratively, not literally. Of
course, our method cannot correct gyro drift at the core, namely
inside the gyro. A more precise but stylistically cumbersome
name for our method would be ‘heuristics-based elimination of



Meas. Sci. Technol. 22 (2011) 025205

P Aggarwal et al

(a)

(b)

Figure 1. The foot-mounted IMU of the PDR system has two mounting options: (a) side-mounted IMU (the IMU itself is covered by the
beige-colored thermal insulation), (b) in-heel IMU with temperature-controlled, shock-resistant housing.

the ill-effects of drift and of other slow-changing error sources
on heading estimation’. In the interest of brevity, we chose the
shorter term ‘heuristic drift elimination’.

The remainder of this paper is structured as follows.
Section 2 describes the earlier developed PDR system.
Section 3 describes the TIGER database and OpenStreetMaps
(OSMs), where map data are freely available, along with
previous map-matching techniques. The proposed MAPHDE
method is described in section 4 and results are presented in
section 5.

2. The personal dead reckoning system

In earlier work, the Mobile Robotics Laboratory at the
University of Michigan developed the personal dead reckoning
(PDR) system [7-9, 11]. Using only an IMU for all
measurements, the PDR system has a zero-radiation signature,
i.e. it does not emit any signals. This makes the system
‘invisible’ to sensors in hostile environments and immune to
interference or jamming.

2.1. Components of the PDR system

The PDR system uses an IMU strapped to the side of the user’s
boot or embedded in the heel of the user’s boot, as shown in
figure 1. The side-mounted IMU can be transferred among
different users while the in-heel version better protects the
IMU from damage and cannot be dislocated easily. The PDR
system’s computations are performed on a PC-104 computer
that is located inside a belt pack, together with batteries and
support electronics. The MEMS-based IMU used in the
PDR system is the nano-IMU (‘nIMU’ in short), made by
Memsense. Some key specifications for the nIMU are listed
in table 1.

The computer runs the Linux operating system patched
with a real-time extension. An IMU-based position estimation
system combines two functional components: the estimate of
distance traveled and the estimate of heading. In the PDR
system, the accuracy of both components is predominantly
affected by bias drift (‘drift’, in short). This is especially true
if a relatively low-performance MEMS-based IMU is used.

Table 1. Key specifications of the Memsense nIMU.

Size (mm) 45 x 23 x 13
Weight (g) 15
Bandwidth (Hz) 75

Gyroscope
Range (deg s™") +1200

Angle random walk (deg h=/2) 4.2
Bias drift (deg h™') 80
Accelerometer

Range (g) +10

Drift rates for both accelerometers and gyroscopes ina MEMS-
based IMU are several orders of magnitude higher than what
is found in high-grade aviation IMUs. Of course, the cost
of high-grade IMUs is also one or two orders of magnitude
higher than that of the nIMU in the PDR system. However,
the reason for using a low-grade IMU in the PDR system is
not just cost. Rather, in order to embed the IMU in the heel of
a regular firefighter or military-style boot, the device must be
very small. Because of this size limitation, the only suitable
IMU technology is that of MEMS. Another limiting factor is
the fact that the peak accelerations and rates of turn of the
foot, even at normal walking speed, are significantly higher
than those found on the torso of a person. This limits the
choice of suitable IMUs to less than a handful of models that
offer the large dynamic range required by that particular IMU
location.

A foot-mounted IMU makes wiring more difficult,
requires greater dynamic ranges of the IMU, and may add
difficulties in heading estimation. = However, there is a
compelling reason for choosing this mounting location after
all: it is the only way to reset drift of the accelerometers
almost as frequently as once every second and thereby allows
the accurate determination of step-length, as explained below.

2.2. Estimate of distance traveled

In the PDR system, the estimate of distance traveled is
based on the accelerometers of an IMU. It is well known
that measured accelerations must be integrated twice to yield
distance traveled. This double integration turns even small
amounts of drift into large position errors. In order to overcome
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this limitation, a technique known as zero velocity updates
(ZUPTs) is used. ZUPT is a well-established technique
for estimating and counteracting drift in inertial sensors.
However, ZUPT is often inconvenient because it can be applied
only while the sensor has zero velocity. A foot-mounted IMU,
on the other hand, lends itself perfectly to the application
of ZUPT because during walking and many other modes of
legged motion, the sole of the instrumented boot has zero
velocity during parts of a phase of walking called ‘midstance.’
To exploit this fact, the PDR system examines the incoming
data from the IMU and flags the instance of minimal foot
motion during the midstance phase. This flagged instance of
presumed zero velocity is called ‘footfall’ in the context of this
paper. The ZUPT method is then implemented by comparing
the accelerometer-derived velocity of the foot to the velocity
of the foot during footfall. Since at footfall the velocity should
be zero, any accelerometer-derived non-zero velocity estimate
at the instance of footfall is considered to be the result of drift
and is compensated for.

Another helpful aspect of walking is that footfalls of the
instrumented foot occur with every second step, and that
is almost as frequently as once per second. This assures
that accelerometer drift is compensated for once per second,
thereby not allowing significant drift and position errors to
accumulate. As a result, the PDR system estimates distance
traveled consistently with errors of less than 1% of distance
traveled, on almost all terrains, except for ice, sand, or other
non-solid surfaces. The ZUPT method and its application in
the PDR system are explained in more detail in the authors’
earlier papers [7-9, 11].

2.3. Estimate of change in heading

The PDR system estimates changes of heading from the IMU’s
gyro data. However, bias drift in the gyros of a MEMS-
based IMU is on the order of tens to hundreds of degrees per
hour (about 80° h~! in the case of the nIMU). Unfortunately,
a method ‘similar to the ZUPT approach’ that works so
well for the PDR system’s accelerometers cannot be used to
compensate for the gyro drift. The main difficulty is that under
realistic walk conditions the shoe heading continues to change
during the footfall; therefore, it is ‘non-zero’ and a method
such as ZUPT would not immediately be applicable.

In earlier work [8] the authors introduced a method, called
‘heuristic drift reduction’ (HDR) that partially compensates
for gyro drift by exploiting the fact that pedestrians often walk
along approximately in straight lines. This is mainly because
pedestrian routes (e.g., sidewalks in urban centers) are often
straight and because straight lines are the shortest way to get
from point A to B. The method of [8] reduced average heading
errors up to fivefold.

In subsequent work [9], the authors introduced a
significantly more effective method, called ‘heuristic drift
elimination’.  This method is applicable only in indoor
environments in which corridors and walls are straight and
intersect at right angles. In practice, this seemingly severe
limitation is met by the vast majority of all buildings. In such
indoor environments, HDE effectively compensates for gyro
drift and other slow-changing heading errors.

Similarly, the key hypothesis or heuristic assumption of
the work in this paper is that when pedestrians walk along
streets, they do so predominantly in the general direction of
these streets. Furthermore, the proposed method presumes
that these streets are mapped with good accuracy and that
the maps can be obtained in electronic form. Based on
these assumptions, the heuristic method proposed in this paper
compares the momentary heading of a walker based on gyro
estimates to the known heading of the street segment that the
walker is currently walking on. Any discrepancy is assumed
to be due to gyro drift and is compensated for.

However, these heuristic assumptions do not hold true all
the time. In reality, pedestrians do not walk on perfectly
straight lines. Pedestrians cross streets at angles, avoid
obstacles and pick occasional shortcuts. Nonetheless, this
paper argues that despite these local aberrations, streets
and walkways channel the motion of pedestrians so that on
average, the heading of a street segment is a good predictor for
the average heading of the pedestrian along that segment. The
challenge is to define a practical method that uses the known
heading of street segments to correct gyro drift, while being
tolerant to these local, temporary deviations. The remainder
of this paper introduces one such method.

3. Map matching

As a source for digital street maps, the freely available OSM
[27] database is used. This database claims a positional
accuracy range of 7.6 m or better.

3.1. The OSM database

The database of roads used in this study was obtained from
the OSM database, which is mainly populated by the Master
Address File/Topologically Integrated Geographic Encoding
and Referencing (MAF/TIGER®) database [26]. This OSM
database is a single XML file that is hierarchically composed of
ways (including streets, paths, rivers, lakes, legal boundaries,
etc), covering the entire United States.

The OSM database is collaboratively updated by
volunteers and is more inclusive and more up-to-date than
the TIGER database. In the OSM database, straight street
segments are represented by two points, while curved street
segments are represented by multiple, rather densely spaced
points, as shown in figures 2 and 3. The OSM database
contains digital vector data describing geographic features but
itdoes not include graphic images for visualization.

In preparation for this study, the latitude and longitude
of street centerline points were extracted from OSM database
and stored in the flash memory of the PDR system. These data
were parsed ahead of time to populate a SQLite database with
the required data. In doing so, streets were split into segments
of a maximum length of 100 m, to significantly cut down the
number of viable segments.
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Figure 2. Typical frequency of points used in the OSM database representation of curved street segments (overlaid over a conventional map,

for visualization).
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Figure 3. Typical OSM database representation of straight street segments, using only two points (overlaid over a conventional map, for

visualization).

3.2. Map-matching techniques and integration methods
developed by others

A map-matching algorithm identifies the street segment
that the user travels along. There are several map-
matching algorithms and some of them are briefly discussed
here [28].

3.2.1. Geometric point-to-point matching. In this approach,
the closest node in the street network database to the user is
obtained. This is the simplest, easiest to implement, and fastest
method, but the accuracy of the solution depends on the way
the street network is digitized. Streets with a greater number
of nodes are more likely to be matched with the user.

3.2.2. Geometric point-to-curve method. With this method
a street segment is identified that is closest to the user, rather
than the street nodes. From geometry, the minimum distance
between a point and a line is the perpendicular distance, and
this distance can be readily computed. One problem with this
method is illustrated in figure 4, where the trajectory is nearest

T User trajectory B

A

Figure 4. Error in the geometric point-to-curve method near
intersection.

to street A but at point Us it is equally distant to streets A
and B. In this situation the above-explained algorithm fails
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to select the correct street segment. Hence, this approach
does not work well near intersections where different streets
can be equidistant from the walker. Furthermore, the obtained
perpendicular point may be unstable, oscillating back and forth
between two closely spaced parallel streets common in urban
environment [28-31]. A single reading may be matched with
several street segments, thereby creating an ambiguity in the
solution and causes the user to drift from one parallel street to
another.

3.2.3.  Geometric curve-to-curve matching.  With this
method the previous m positions of the user are matched with
the street curve and the nearest street curve is selected as the
solution. This method is very sensitive to outliers and there is
no good way to compare curves of different lengths without
incorporation of GPS data. On connecting GPS data points,
a sequence of piecewise linear curves is formed which is then
matched with a set of possible street segments [25]. Generally,
the selected street segment will have the smallest norm distance
to the GPS curve. However, if GPS data are not accurate, this
matching method will produce a wrong match. Furthermore,
there should be a sufficient number of GPS readings to form a
linear curve for the user’s trajectory.

In this study, a modified geometric point-to-curve method
was implemented for identifying the nearest street segment
to the walker. In addition, only the direction of the nearest
street was matched to the walker’s estimated heading, since
the algorithm does not attempt to correct the walker’s position
directly.

There are many possible ways of optimally combining the
map information with other sources of position information,
such as IMU. One such method utilizes the maximum a
posteriori (MAP) estimator to optimally translate raw position
measurements of a walker onto the street network [32]. A
MAP position estimate is obtained by solving the equation

x = argmax[p(x) p(y[x)] ey

where x is the position estimate of the walker with probability
p(x), yis the available noisy measurement and p(y|x) represents
the likelihood function.

In cases where the street is a long straight line, it is
modeled by the centerline. Curved streets are modeled by
a sequence of piecewise straight-line segments, where each
piece is treated as a separate street and a locally optimum
position estimate is determined for that piece. However, it
is possible that the solution obtained by the unbiased MAP
estimator is not unique as the likelihood function may have
multiple local maxima and a wrong street may be identified.
The resolution of this problem requires other sources of
position information to be identified and incorporated into
the estimation process.

One such source is to include information contained in
the walker’s trajectory such that a probability is associated
with each street. This probability represents the likelihood
of the walker being on that particular street. The easily way
to accomplish this is by means of a Kalman filter (KF) as
it associates a probability with each street such that larger
errors produce smaller probabilities of being the selected street

segment [3]. However, this approach is not practical because
a KF assumes state variables and noises to have a Gaussian
distribution, which is not always true in a real scenario [3].

Other possible methods are to use fuzzy logic-based map-
matching and probabilistic algorithms using inertial sensors
[32, 33]. In [32], a set of eight rules is defined for obtaining
position using the map-matching algorithm, inertial sensors,
and GPS data. However, in certain cases error growth can
completely mask the true solution. A confidence region in
the shape of an ellipse or rectangle is defined around the
navigation sensor output, for the probabilistic approach [33].
This error or confidence region is then superimposed on a
map database to obtain the correct street segment. Even so,
additional knowledge may be essential to identify the correct
street segment from a number of possibilities.

The MAPHDE method uses a modified map-matching
technique, but in conjunction with the aforementioned HDE
engine, as will be explained in the following section. The
HDE technique is capable of fully compensating for all slow-
changing errors including gyro drift, thereby providing near-
zero heading errors at steady state. In the context of this study,
the steady state is typically reached within a few seconds of
walking straight along a straight street segment. HDE needs
only four pieces of information to function: distance traveled
per footfall, time elapsed since the last footfall, change in
heading since the last footfall, and the direction of the nearest
street segment [S5]. Furthermore, MAPHDE does not need any
models or model parameters, as would be required in the case
of KFs. In its simplest form, MAPHDE requires the tuning of
just three parameters, the gain i, the distance of the walker
from the nearest street segment dpiy, and a threshold v pyes,
for the difference between estimated heading from HDE and
the present best estimate of the direction of the nearest street
segment. Furthermore, HDE takes just a few lines of C-code
to implement. The MAPHDE method is explained next.

4. MAPHDE method

This paper presents a novel method for correcting heading
errors in position tracking systems based on the proposed
MAPHDE method. The required real-time input for the
proposed method is the rate of rotation about the Z-axis
or change in heading, step-length, time interval between
subsequent footfalls, and initial starting position and heading.
Of course, this system also requires its map database to
be populated with pertinent map data. Generally, on 3D
terrain, or with the foot-mounted sensor of the PDR system, a
full 6-DOF (degree-of-freedom) IMU is required to estimate
heading. Here the notion of a ‘virtual Z-axis gyro’ is
introduced to express the walker’s rate of rotation about the
navigation Z-axis. The PDR system uses the quaternion
attitude representation. The output of the virtual Z-axis gyro
may be affected by errors such as offset bias, run-to-run bias,
in-run bias, scale factor error, misalignment error, sensor drifts,
and random noises, etc, which are difficult to identify and
model or compensate. However, the HDE method treats the
combination of all these sources of error as a single error term
which overall behaves as drift and the HDE method estimates
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and compensates for it in real-time. This is the main advantage
of the HDE technique as it does not require individual error
sources to be identified and quantified.

When a person equipped with a virtual Z-axis gyro is
walking straightforward, the output of that gyro should be
exactly zero throughout the walk. However, due to a variety of
slow-changing and random errors (such as bias drift, sensitivity
to linear accelerations, scale factor nonlinearity, and with
integrated white noise), the actual output is off by some small
value ¢. For simplicity, all these errors are collectively called
‘drift’ in this paper. The total travel distance is divided into
smaller intervals, i.e. from footfall to footfall, as defined in
section 2.2.

Due to the drift error ¢, in each interval the rate of turn
computed based on the Z-axis gyro is

Wmeas,i = Wyrue,i T Ei )

where wpeqs,; 1S the rate of turn around the Z-axis during the
sampling interval i, wyye ; is true but the unknown rate of turn
around the Z-axis during the sampling interval i and ¢; is the
sum of all unknown errors during the sampling interval i.

The change of heading in the sampling interval i, denoted
as Ay;, is computed by numerically integrating Wmeas, i :

Ay = wmeas,iTi = (wtrue,i +&)T; 3)

where T; is the duration of the time interval i in seconds. As
T; is the time between footfall i—1 and footfall i, the new
estimated heading is

Vi = Yo + Ay 4)

It is apparent from equations (2) through (4) that the
estimated heading, ;, represents the true heading plus the
accumulated sum of all heading errors, v, ;.

4.1. Error correction approaches

A brute force approach to correcting heading errors from
known street segment directions is to assume that any
difference between the gyro-derived heading and the street
segment direction is due to gyro-induced errors. Consequently,
one can correct the gyro-derived heading by simply replacing
it with the appropriate street segment direction. This brute
force method will fail as soon as the walker actually deviates
from the direction of the street, for example, to cross the street
or avoid an obstacle.

In order to allow for the walker’s temporary deviations
from the direction of the street, a more subtle approach
is needed. For example, instead of completely replacing
the gyro-derived heading by the street direction in every
sampling interval, one could add a small correction to the gyro-
derived heading. This correction could be proportional to the
difference between street and gyro-derived heading. However,
this approach would still react too strongly to actual deviations.
For example, when crossing a street the difference between the
direction of the street and the gyro-derived direction can be as
large as 90°.

A more deviation-tolerant approach is to add a repetitive
and small, constant-magnitude correction to the gyro-derived
heading. As long as constant-magnitude heading corrections

accumulate faster than drift-induced heading errors, this
approach can effectively neutralize drift-induced heading
errors. Itis also apparent from this discussion that the proposed
approach will not react strongly to temporary deviations,
because corrections in response to temporary deviations cannot
accumulate significantly.

The following section formalizes this proposed approach
in the form of a feedback control system. Specifically, it will
be shown how the proposed algorithm

e models ¥, ; as a disturbance in a feedback control system;

e implements a method for accumulating small, constant
magnitude corrections by means of a so-called Binary
I-controller;

e remains largely insensitive to changes in ¥ that have large
amplitudes but short duration.

4.2. MAPHDE algorithm

The basic MAPHDE algorithm functions essentially like a
feedback control system. This is different from most other
measuring systems, where signals pass from the sensor to the
instrument’s output in open-loop fashion. Figure 5 shows
a block diagram of the feedback control system for the
MAPHDE algorithm.

The explanation of the feedback control system starts with
the signal from the gyro, which is modeled as a disturbance
in the block diagram of figure 5. Suppose the user is walking
straight, along a straight section of a linear map feature (for
simplicity, it is assumed that all linear map features are streets,
but the proposed algorithm works equally well with floor
plans of tunnels or buildings). Immediately after a footfall,
the measured rate of turn is integrated to yield the change
in heading, Av;. Avr; has two components, the true but
unknown change of heading, Aty ;, and the change of
heading error, Ay, ;. Next, Ay; is added to ¥;_; and to
the output of the binary I-controller, which is explained later
in this section. Initially, the output of the I-controller is zero.
The label ‘z!’ in the feedback loop is the common notation for
a pure delay of one sampling interval. After the first iteration,
when i > 1, the control loop can be closed by comparing
;1 to the direction of the closest map feature, ¥/ map,;i—1. The
difference between them is the error signal E.

E; = 1pmap,ifl —Yi_1. )

Unlike conventional integral (/) or proportional-integral
(PI) controllers, the binary I-controller is designed not to
respond at all to the magnitude of E; rather, it only responds
to the sign of E. If E is positive (i.e. the measured direction
of walking points to the right of the nearest street segment),
then a counter (called ‘integrator’ or ‘I’) is incremented by a
small fixed increment, i, where i, is the gain of the controller
and a tunable parameter in MAPHDE. If E is negative, then
I is decremented by i.. In this fashion, repeated instances of
E having the same sign will result in repeated increments or
decrements of /by i.. The reason for using a binary I-controller
is that E; can differ from zero by tens of degrees, for example,
when the walker is turning. In that case a conventional
I-controller would not work well, since it would respond
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Figure 5. The HDE algorithm viewed as a feedback control system

strongly to the large value of E, even though a large E is
not an indication for a large accumulated heading error. The
proposed binary I-controller, on the other hand, is insensitive
to the magnitude of E. Rather, the controller reacts, slowly, to
E having the same sign persistently.

As established by equation (5), if ¥/;_1 > Yap,i—1 (and
thus, E < 0), then v;_ is immediately to the left of ¥ yap,i—1,
and if ¥;_| < Ymap,i—1, then ¥;_ is immediately to the right
of Ymap,i—1. During straight-line walking along a street, a
heading to the left of v/ ,p ;—1 Suggests that the accumulated
heading error, ¥, ;_1, had a positive value. To counteract
this error, the binary I-controller reduces the content of the
integrator by a small value, i.. Conversely, if ;| < ¥'map,i—1,
then the integrator is increased by i.. Now the binary I-
controller can be formulated,

I — i, for E <0
I,‘ = 1571 for E=0 (60)
I +i, for E>0

where i. is the fixed increment, also considered the gain of the
binary I-controller in units of degrees.
An alternative way of writing equation (6a) is

Iy = I;—1 + SIGN(Yrmap,i—1 — Vi-1)ic (6D)

where SIGN() is a programming function that determines the
sign of a number. SIGN(x) returns ‘1’ if x is positive, ‘0’ if
x=0, and ‘—1" if xis negative. The next element in the control
loop adds the controller output to the raw measurement to give
the corrected heading:

Vi =i+ Ay + 1. @)

. The block labeled ‘Binary I-controller’ is explained in the narrative.

4.3. Discussion on the MAPHDE algorithm

As long as i, is of greater magnitude than typical increments
in gyro errors, the integrator continuously tracks the heading
error (but with an opposite sign), just like the integrator in a
conventional I-controller tracks slow-changing disturbances.
At steady state, i.e. when walking straight along a straight
street, the content of the integrator will oscillate about the
accumulated heading error, ¥, ;, with an amplitude of i, which
is typically smaller than 1°. The strength of the MAPHDE
algorithm lies in the fact that it can readily tolerate short
deviations from walking in the same direction as a street.
For example, when dodging other pedestrians on a busy city
street, when crossing a street, when turning at an intersection,
or when walking along a curving street, short deviations
from the nominal direction of the nearest street segment are
incurred. As a result, MAPHDE may increment or decrement
the integrator in the wrong direction—but only for the duration
of the maneuver. However, once motion is aligned again with
the direction of the nearest street segment, it takes just a few
steps for MAPHDE to correct the incurred error. The street
direction is obtained by the modified map-matching algorithm
as explained in the following section.

It is quite possible that other controllers or filters, such as
a finite impulse response (FIR) filter or a KF, can be designed
and tuned to act in a way similar to the binary I-controller.
However, the intention in this study was not to compare the
performance of different methods. Rather, the intention was
to demonstrate that heading errors due to gyro drift and other
slow-changing errors in a position tracking system can be
compensated for and effectively reduced to near-zero (at steady
state) from map data. The proposed MAPHDE control system
seems advantageous because it does not require the explicit
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Figure 6. Coordinates of the street segment, the walker and the
perpendicular point.

definition of a model, nor does it require the controlled process
to be linear.

4.4. Modified map-matching algorithm

This map-matching algorithm searches the on-board database
for street segments that meet two conditions.

(1) The segment lies within a pre-defined distance from the
walker (dpyin)-

(2) The segment has a direction that differs by no more than
Y nres from the walker’s heading.

Once these conditions are met, the perpendicular distance
between the selected street segments is calculated as follows:

_m(y3 — yi +mx;) +x3

X m2+1 ®)
Y=y1+m(X —x)) C)]
D =X -x3)+ (Y —y3)? (10)

where (x1, y1), (x2, ¥2) are the coordinates of the selected street
segment as illustrated in figure 6; (X,Y) is the perpendicular

Center: 42.20006,-63 71797

point coordinate on the street segment; (x3, y3) is the walker’s
present position and m is the slope of the line formed by two
((x1, 1), (x2, ¥2)) coordinates.

This map-matching algorithm selects the street segment
closest to the user’s position and corrects the estimated heading
based on the selected street direction. The estimate of heading
errors is adjusted based on a comparison between the estimated
heading from the HDE engine and the present best estimate
of the direction of the nearest street segment. This adjustment
occurs only when the estimated heading and the direction of
the street agree to a great extent, i.e. when |E;| < Yinres- ¥ thres
is a tunable parameter for the algorithm, typically between 20°
and 45°.

In the modified map-matching algorithm, only the
walker’s heading is matched to the nearest street direction,
without matching the user’s position to the street coordinates.
Also, at intersections, all HDE corrections are temporarily
suspended by setting i, to zero as the confidence drops off.

An intersection is detected by the sudden changes in the
minimum distance of the user from the nearest street. As
the user approaches an intersection, the nearest street segment
changes and so does the distance to the nearest street segment.
In figure 7, the continuous marked yellow (light-colored)
region indicates the intersection where the modified map-
matching algorithm was temporary suspended.

4.5. Initialization

The proposed method requires that users follow an
initialization —procedure that has two components:
specification of (1) an initial position and (2) an initial
heading. Initialization is a significant problem on its own
and this paper does not attempt to offer a comprehensive,
commercialization-ready solution. Nonetheless, a few
possibilities are discussed below.

4.5.1. Initial position. For a commercial position tracking
system for police or other first responders, a possible solution

et e

Figure 7. Suspension of the map-matching algorithm near an intersection, indicated by the light-yellow dots.
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Figure 8. Trajectory of eight outdoor walks. Light-magenta curve: trajectory from PDR data without MAPHDE correction. Black curve:

trajectory from PDR data with MAPHDE correction.

is to implement the tracking system in a hand-held device with
a touch screen, similar in size and appearance to a handheld
GPS device. The user then indicates his/her initial position by
tapping the starting position on the screen that displays a local
area map. Of course, it would be advised to start a walk at
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an easily identifiable landmark, such as the intersection of two
streets. If a walk started in an area where GPS was available,
but then transitioned into a GPS-denied area, then the last GPS-
based position could serve as the initial position for the IMU-
tracked portion of the walk. Conceivably, a comprehensive
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Table 2. Quantitative results for the eight test walks.

Relative RPE Relative RPE Improvement
Total Return position  for uncorrected RPE for for corrected provided by
Total travel error (RPE) for  trajectory as corrected  trajectory as MAPHDE (ratio of
duration distance for uncorrected percentage of distance trajectory percentage of distance  uncorrected to
Walks (min) (m) trajectory (m) traveled (%) (m) traveled (%) corrected RPE)
Walk 1 25.48 2197 890.77 40.6 16.10 0.7 55.3-fold
Walk2  48.12 4344 1739.75 40.1 20.29 0.5 85.7-fold
Walk 3 31.56 1814 360.77 19.9 16.51 0.9 21.9-fold
Walk4 3193 2477 133.21 54 11.73 0.5 11.3-fold
Walk 5 24.76 1724 160.25 9.3 16.61 1.0 9.6-fold
Walk 6 24.12 1575 53.46 34 21.18 1.3 2.5-fold
Walk 7 23.63 1700 43.68 2.6 10.20 0.6 4.3-fold
Walk 8 26.83 2276 148.37 6.5 10.50 0.5 14.1-fold
Average  29.55 2263 441.28 16.4 15.39 0.7 25.6-fold

tracking system could transition from GPS-based to IMU-
based tracking automatically, without user intervention.

4.5.2. Initial heading. In a similar approach, initial heading
can be indicated by tapping the same touch screen a second
time (the first time was for indicating position), at a different
point but on the same street. Since a street has only two
possible directions, the second tap would unambiguously
specify which of the two directions the user wishes to follow
initially. In addition, the user would have to take the first few
steps in that direction along the street.

S. Experimental results

This section presents the experimental results obtained with
the MAPHDE algorithm by a walking subject in real-
time. In all cases, two trajectories are shown. The light-
magenta curve shows the output of the PDR system without
MAPHDE, while the black curve represents the trajectory after
MAPHDE was applied. These results focus on experiments
consisting of a set of long, complex, closed-loop outdoor
walks.

A total of eight walks of different durations and lengths
were performed on partially sloped streets, as illustrated in
figure 8. The three tunable parameters were kept the same
for all of the walks. The walk data are shown using the GPS
visualizer toolbox [34]. Note that ground truth is not shown
in these figures due to the unavailability of accurate GPS data.
An alternative ground truth, based on the average distance
of the walker from the centerline of the streets (as could be
derived from the OSM database) was also not feasible, because
the subjects usually walked on sidewalks, typically several
meters away from the streets’ centerlines. Also, the OSM
data specify only a few fixed points to express the position
of curving streets, which is not sufficient to derive ground
truth for a curving street (figure 2). In the absence of useable
ground truth, graphical results for each of the eight walks
are provided in figure 8. A deliberate effort was made to
challenge the MAPHDE method by choosing routes with long
curving segments. For straight streets, MAPHDE would have
performed even better.
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A particular challenge in walk 3 was the routing through
a downtown area, where the risk of ‘snapping’ to the wrong
street was elevated due to the tight grid of streets. It is clearly
visible that the MAPHDE results did not oscillate back and
forth between two closely spaced parallel streets common in
this dense urban environment.

It is apparent from all these trajectories that MAPHDE
substantially improved position estimation. In order to express
the performance of MAPHDE qualitatively, a metric called
‘return position error’ (RPE) was defined which represents
the difference between the end point as estimated by the
PDR system and the starting point of the trajectory. Since
the subjects started and stopped each walk at the exact same
point, the estimated trajectories should also start and stop at
the same point. Relative RPE, which is the percentage of RPE
divided by the total traveled distance, was also calculated.
Table 2 provides quantitative result for the eight walks.
One can see from these results that the uncorrected RPEs
vary dramatically, whereas corrected RPEs are consistently
small. Other differences in the magnitude of the uncorrected
errors are due to differences in the duration of the
walks.

Although this paper focuses exclusively on the correction
of heading errors, it should be noted that the results in
figure 8 and table 2 reflect heading errors as well as errors
in step-length estimation. The latter, however, are very small
in the PDR system thanks to the foot-mounted IMU, which
allows the application of ZUPT with every footfall (as was
explained in section 2).

6. Conclusion

This paper introduced a method for using known street maps
for correcting heading errors in an IMU-based personnel
tracking system. The proposed MAPHDE method combines
a map-matching technique with a heuristics-based correction
algorithm. The strength of the heuristics algorithm is that
it is tolerant to short-term deviations from walking along
the directions of streets. Such deviations occur routinely
when the walker dodges other pedestrians, crosses streets, or
turns.
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Because of the difficulty of recording accurate ground
truth data (a high-accuracy differential GPS system would have
to be used), plots of all eight outdoor walks overlaid over a map
are provided. The plots show the uncorrected and MAPHDE-
corrected trajectories and thereby illustrate the effectiveness
of the MAPHDE method. It is also evident from the plots
that by reducing heading errors to near-zero at steady state,
position errors are reduced substantially. The quantitative
results in table 2 show that MAPHDE reduces return position
errors on average to less than 1% of distance traveled,
providing a 25-fold reduction in return position errors on
average.

Acknowledgments

This research was supported in part by the Ground Robotics
Reliability Center (GRRC) at the University of Michigan, with
funding from government contract DoD-DoA W56H2V-04-2-
0001 through the Joint Center for Robotics.

References
[1]
[2]

Foxlin E 2005 Pedestrian tracking with shoe-mounted inertial
sensors IEEE Comput. Graph. Appl. 25 38—-46

Mezentsev O, Collin J, Kuusniemi H and Lachapelle G 2004
Accuracy assessment of a high sensitivity GPS based
pedestrian navigation system aided by low-cost sensors
11th Saint Petersburg Int. Conf. on Integrated Navigation
Systems (St Petersburg, 24-26 May 2004)

Basnayake C, Mezentsev O, Lachapelle G and Cannon M E
2005 An HSGPS, inertial and map-matching integrated
portable vehicular navigation system for uninterrupted
real-time vehicular navigation Int. J. Veh. Inform. Commun.
Syst. 1 131-51

Kim J W, Jang H J, Hwang D-H and Park C 2004 A step,
stride and heading determination for the pedestrian
navigation system J. Glob. Positioning Syst.

3273-9

Ladetto Q, Gabaglio V and Meminod B 2001 Combining
gyroscopes, magnetic compass and GPS for pedestrian
navigation Int. Symp. on Kinematic Systems in Geodesy,
Geomatics and Navigation (Banff, AB, Canada, 5-8 June)

Stirling R, Collin J, Fyfe K and Lachapelle G 2003 An
innovative shoe-mounted pedestrian navigation system
CD-ROM Proc. GNSS, the European Navigation Conf.
pp 103-12

Ojeda L and Borenstein J Personal dead-reckoning system for
GPS-denied environments /EEE Int. Workshop on Safety,
Security, and Rescue Robotics (SSRR2007) (Rome, Italy,
27-29 Sept. 2007)

Borenstein J, Ojeda L and Kwanmuang S 2009 Heuristic
reduction of gyro drift in a personal dead reckoning system
J. Navig. 62 41-58

Borenstein J and Ojeda L 2010 Heuristic drift elimination for
personnel tracking systems J. Navig. 63 591-606

Judd T 1997 A personal dead reckoning module Institute of
Navigation’s ION 97 (Kansas City, MO, Sept.

1997)

Ojeda L and Borenstein J 2006 Non-GPS navigation for
emergency responders Int. Joint Topical Meeting: Sharing
Solutions for Emergencies and Hazardous Environments
(Salt Lake City, UT, 12—15 Feb.)

Brand T and Philips R 2003 Foot-to-foot measurement as an
aid to personal navigation Institute of Navigation Annual
Meeting 59th (Albuquerque, NM, 23-25 June)

(3]

(4]

[5]

[6]

[7]

[8]

(91
(10]

(1]

[12]

12

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

Stirling R, Collin J, Fyfe K and Lachapelle G 2003 An
innovative shoe-mounted pedestrian navigation system
Proc. European Navigation Conf. (Graz, Austria, 22-25
April)

Misra P and Enge P 2006 Global Positioning System, Signals,
Measurements, and Performance (Lincoln, MA:
Ganga-Jamuna Press)

Moafipoor S, Grejner-Brzezinska A D and Toth C K 2008 A
fuzzy dead reckoning algorithm for a personal navigator
Navig. ION J. 55 241-55

Butz A, Baus J and Kruger A 2000 Augmenting buildings with
infrared information Proc. Int. Symp. on Augmented Reality
(IEEE Computer Society Press) pp 93-6

Cho S Y and Park C G 2006 MEMS based pedestrian
navigation system J. Navig. 59 135-53

Newman J, Ingram D and Hopper A 2001 Augmented reality
in a wide area sentient environment Proc. IEEE and ACM
Int. Symp. on Augmented Reality pp 77-86

Saeed R A and Khatun S 2006 Performance of ultra-wideband
time-of-arrival estimation enhanced with synchronization
scheme ECTI Trans. Electr. Eng., Electron. Commun.

4 78-84

Eggert R and Raquet J 2004 Evaluating the navigation
potential of the NTSC analog television broadcast signal
Proc. ION GNSS-2004 (Long Beach, CA, Sept. 2004)
pp 243646

Jarvis A MY 2008 Integration of photogrammetric and
LiDAR data for accurate reconstruction and visualization of
urban environments MSc Thesis University of Calgary,
UCGE Report 20282

Cinaz B and Kenn H 2008 HeadSLAM—simultaneous
localization and mapping with head-mounted inertial and
laser range sensors ISWC (Pittsburgh, PA)

Retscher G 2004 Multi-sensor systems for pedestrian
navigation ION GNSS 2004 Conf. (Long Beach, CA, 21-24
Sept. 2004)

Pahlavan K, Li X and Makela J-P 2002 Indoor geolocation
science and technology IEEE Commun. Mag. 40 112-8

Bernstein D and Kornhauser A 1998 Map matching for
personal navigation assistants Proc. 77th Annual Meeting of
the Transportation Research Board (Washington DC, 11-15
Jan.)

US Census Bureau Geography 2002 TIGER page:
cartographic boundary files, available at
http://www.census.gov/geo/www/tiger (accessed 2 May
2009)

OpenStreetMap, available at http://www.openstreetmap.org
(accessed 10 July 2009)

Greenfeld J S 2002 Matching GPS observations to locations
on a digital map Proc. 81st Annual Meeting of the
Transportation Research Board (Washington, DC)

Kim W, Jee G and Lee J 2000 Efficient use of digital road map
in various positioning for ITS IEEE Symp. on Position
Location and Navigation (San Diego, CA)

Fu M, Li Jie and Wang M 2004 A hybrid map matching
algorithm based on fuzzy comprehensive Judgment /[EEE
Proc. on Intelligent Transportation Systems pp 6137

Quddus M A, Ochieng W Y, Zhao L and Noland R B 2003 A
general map matching algorithm for transport telematics
applications GPS Solut. 7 157-67

Scott C A and Drane C R 1994 Increase accuracy of motor
vehicle position estimation by utilizing map data: vehicle
dynamics and other information sources Proc. Vehicle
Navigation and Information Systems pp 585-90

Retscher G 2006 An intelligent multi-sensor system for
pedestrian navigation J. Glob. Positioning Syst., GPS Solut.
5110-8

GPS Visualizer: Do-It-Yourself Mapping 2003 Available at
http://www.gpsvisualizer.com (accessed 31 Dec. 2009)


http://dx.doi.org/10.1109/MCG.2005.140
http://dx.doi.org/10.1504/IJVICS.2005.007589
http://dx.doi.org/10.5081/jgps
http://dx.doi.org/10.1017/S0373463308005043
http://dx.doi.org/10.1017/S0373463310000184
http://dx.doi.org/10.1017/S0373463305003486
http://dx.doi.org/10.1109/35.983917
http://www.census.gov/geo/www/tiger
http://www.openstreetmap.org
http://dx.doi.org/10.1007/s10291-003-0069-z
http://dx.doi.org/10.5081/jgps
http://www.gpsvisualizer.com

	1. Introduction
	2. The personal dead reckoning system
	2.1. Components of the PDR system
	2.2. Estimate of distance traveled
	2.3. Estimate of change in heading

	3. Map matching
	3.1. The OSM database
	3.2. Map-matching techniques and integration methods developed by others

	4. MAPHDE method
	4.1. Error correction approaches
	4.2. MAPHDE algorithm
	4.3. Discussion on the MAPHDE algorithm
	4.4. Modified map-matching algorithm
	4.5. Initialization

	5. Experimental results
	6. Conclusion
	Acknowledgments
	References

