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Abstract. The coherence of electron spins can be enhanced significantly by
preparing the nuclear spin polarizations to generate an Overhauser field with
small fluctuations. We propose a theoretical model for calculating the long time
dynamics of the prepared Overhauser field under nuclear spin diffusion in a
quantum dot. We obtained a simplified diffusion equation that can be numerically
solved, and we show quantitatively how the Knight shift and the electron-
mediated nuclear spin flip-flops affect the nuclear spin diffusion. The results
explain several recent experimental observations, where the measured decay time
of the Overhauser field is dependent on the external magnetic field, electron spin
state in double quantum dots and initial nuclear spin polarization rate.
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1. Introduction

Electron spins in quantum dots are one of the most promising systems for realizing
quantum computation [1]. The spin state of a single electron in a quantum dot can be
coherently controlled either optically through fast laser pulses or electronically by tuning gate
voltages [1]–[5]. In experiments, the coherence time of the electron spin is largely limited by
its hyperfine coupling to the nuclear spin environment in the host semiconductor material. The
coupling causes spectral diffusion and gives a typical spin decoherence time of T ∗

2 ∼ 15 ns for
the electron spin qubit [6, 7]. This coherence time could be significantly prolonged with the
application of spin echo [8] or other dynamic decoupling techniques (see [9] and references
therein). However, implementation of these techniques requires the repeated application of
many laser pulses. Each pulse inevitably induces some noise by itself, which limits the practical
performance of suppressing spin noise under real environments.

Another technique for increasing the coherence time of the electron spin is dynamic
nuclear spin polarization (DNP) [10]–[20], which prepares the nuclear spin environment
into certain configurations. The nuclear spins in such configurations collectively generate an
effective magnetic field (the Overhauser field) on the electron spin with small fluctuations,
hence decreasing the spectral diffusion of the electron spin. Although nuclear spins can
be polarized by many methods such as optical pumping [10], a substantial reduction in
the fluctuation of the Overhauser field requires almost complete polarization of the nuclear
spins [21], which is hard to achieve experimentally. Recent experiments, including both
optically and electronically controlled quantum dot systems [13]–[16], however, demonstrate
surprising feedback mechanisms that can lock the Overhauser field to certain values without
significant polarization of the nuclear spins. The Overhauser field generated from such a locking
mechanism has much smaller fluctuation, which effectively increases the coherence time T ∗

2 of
the electron spin qubit by up to two orders of magnitude.

The DNP process prepares a fixed Overhauser field with small fluctuations that enables
us to perform gate experiments on the electron spins over a longer coherence time. Important
questions under this background are: How long can this fixed Overhauser field survive after
the DNP process and what factors determine/influence the relaxation time of the Overhauser
field? Recent experiments have revealed that the Overhauser field has a typical relaxation time
ranging from a few seconds to a few minutes, and even up to an hour in certain systems [22]. The
variation of this relaxation time is believed to be a result of diverse experimental configurations,
such as different applied magnetic fields [18, 19], electron spin state in double quantum dots [18]
and DNP pump time [20].

In this paper, we develop a quantitative theory for calculating the relaxation time of the
Overhauser field in the environment of quantum dots, and provide a qualitative explanation of
the dependence of the Overhauser field relaxation time on various experimental configurations
mentioned above. The relaxation of the Overhauser field is widely believed to be caused by
nuclear spin diffusion. In bulk material, nuclear spin diffusion has been well studied [23, 24]
and is caused simply by the nuclear dipole–dipole interaction. In a quantum dot, however, the
presence of the electron spin generates two new effects in the diffusion process. Firstly, the
electron spin can mediate the diffusion of nuclear spins through a virtual hyperfine process.
Secondly, the effective magnetic field generated by the polarized electron spin produces an
inhomogeneous Knight shift on the surrounding nuclear spins, and this Knight shift can suppress
the nuclear spin diffusion. The influence of the Knight shift on the nuclear spin diffusion
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coefficient has been taken into account in [25], but electron-mediated nuclear spin diffusion
was ignored there. Without considering electron-mediated diffusion, one cannot explain the
dependence of the Overhauser field relaxation time on various experimental parameters such as
the magnetic field. A more recent work [26] considers relaxation of the Overhauser field due to
the electron-mediated nuclear spin diffusion, but not including the direct nuclear dipole–dipole
interaction. Such treatment ends up with the conclusion that the Overhauser field can only decay
by less than 1%, in contrast to experimental facts of complete decay of the Overhauser field over
a long time. A quantitative theory that includes a complete description of both effects is, to our
knowledge, still lacking. In this work, we take into account both electron-mediated nuclear
spin diffusion and direct nuclear dipole–dipole diffusion, and the results are consistent with the
recent experimental observations in [18]–[20].

The paper is organized as follows. In section 2, we give a formalism for describing
relaxation of the Overhauser field that includes contributions from the nuclear dipole–dipole
interaction, the electron-mediated nuclear spin diffusion and the Knight shift. Then we derive
the effective nuclear spin diffusion equation and solve it numerically to determine the relaxation
time of the Overhauser field. In section 3, we compare our calculation results with the recent
experiments and show that they are in qualitative or semi-quantitative agreement. We summarize
our results in section 4 with brief discussions.

2. Decay of the Overhauser field through nuclear spin diffusion

We assume that an external magnetic field B0 much larger than the mean value and variance of
the local Overhauser field generated by nuclei is applied along the z-direction (perpendicular
to the quantum dot layer). In this case, we can drop the nonsecular terms in the interaction
Hamiltonian [27]. For simplification, we consider only one species of nuclei around the quantum
dot electron. The total Hamiltonian for the electron and nuclear spin systems, including both the
Fermi contact hyperfine interaction and nuclear dipole–dipole interaction, can be written as

H = He + Hn + Hen + Hnn, (1)

He = −geµB B0Sz, (2)

Hn = −gnµN B0

∑
i

I z
i , (3)

Hen =

∑
i

Ai S
z I z

i +
∑

i

Ai

2
(S+ I −

i + S− I +
i ), (4)

Hnn =

∑
i 6= j

2Bi j I z
i I z

j −

∑
i 6= j

Bi j I +
i I −

j , (5)

Bi j =
µ0

4π
(gnµN )2 R−3

i j (1 − 3 cos2 θi j), (6)

where Ai denotes the hyperfine coupling between the electron and nuclear spins at site i with
spatial coordinates (xi , yi , zi). Ri j is the distance between two nuclei at site i, j . θi j is the angle
between the line connecting sites i, j and the z-direction.

We note that for B0 ranging from a few mT to a few T, the electron’s Zeeman splitting is of
the order of 10−1–102 GHz, while the average hyperfine coupling in most quantum dot systems
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is of the order of MHz. Thus we can adiabatically eliminate the spin-flip terms in the hyperfine
interaction Hamiltonian and correspondingly modify the other terms in the Hamiltonian as [26]

He = −

(
geµB B0 +

∑
i A2

i

4geµB B0

)
Sz, (7)

Hn =

∑
i

[
−gnµN B0 + Ai

(
1 −

Ai

4geµB B0

)
Sz

]
I z

i , (8)

Hnn =

∑
i 6= j

2Bi j I z
i I z

j −

∑
i 6= j

(
Bi j +

Ai A j Sz

2geµB B0

)
I +

i I −

j , (9)

where we have introduced an electron-mediated nuclear flip-flop term in Hnn. Since we are
interested in the long time dynamics of nuclear spins, we can completely eliminate the electron
from the Hamiltonian by replacing the constant operator Sz with its expectation value. We find
that using Sz

= 1/2 or Sz
= −1/2 will yield almost the same result in the following calculations.

Therefore, we can set Sz
= 1/2 for simplicity and arrive at the following effective Hamiltonian

(neglecting constant terms):

H = H0 + H1, (10)

H0 ≈

∑
i

(−gnµN B0 + Ai/2)I z
i +

∑
i 6= j

2Bi j I z
i I z

j , (11)

H1 = −

∑
i 6= j

(
Bi j +

Ai A j

4geµB B0

)
I +

i I −

j . (12)

Here, the term proportional to Ai in H0 is the Knight shift term. For this Knight shift, we have
neglected the small term proportional to A2

i in equation (8) as it is dominated by the Ai term in
most experimental systems.

The expectation value for the z-component of nuclear spin at site k will evolve according
to the Schrödinger equation:

∂〈I z
k 〉

∂t
=

i

h̄
Tr{ρ(t)[H1, I z

k ]}, (13)

where ρ(t) is the nuclear spin density matrix at time t , which can be calculated by switching to
the interaction picture:

ρ̃(t) = ρ(0) +
i

h̄

∫ t

0
[ρ̃(t ′), H̃1(t

′)] dt ′, (14)

with H̃1(t) = exp(iH0t/h̄)H1 exp(−iH0t/h̄). Further calculation yields [23]

∂〈I z
k 〉

∂t
=

i

h̄
Tr{ρ(0)[H̃1(t), I z

k ]} +

(
i

h̄

)2 ∫ t

0
Tr{ρ(t − t ′)[H1, [H̃1(t

′), I z
k ]]} dt ′. (15)

We assume the nuclear spin (with spin-I ) density matrix to be a product state of the
following form:

ρ(t) =

⊗
k

ρk(t), ρk(t) =
1

2I + 1
+

〈I z
k (t)〉

Tr{(I z
k )2}

I z
k . (16)
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Such an approximation is valid when off-diagonal terms of the density matrix are negligible.
This is justified by the fact that fluctuations in B0 and inhomogeneous Knight shift will quickly
destroy correlation and transverse coherence between the nuclear spins [26, 28]. Besides,
calculating without this approximation will not change the physical nature of the result, as
the authors of [23] have shown that off-diagonal terms only have a minor contribution to the
diffusion coefficients.

By using the explicit form of the Hamiltonian (equations (10)–(12)) and the density matrix
(equation (16)), equation (15) reduces to

∂〈I z
k 〉

∂t
=

∑
i 6=k

Wik(〈I z
i (t)〉 − 〈I z

k (t)〉), (17)

Wki =
1

Tr{(I z
k )2}

∫ t

0
Tr{[H̃1(t), I z

k ][H̃1(t − t ′), I z
i ]} dt ′,

where Wki has a clear physical meaning as the flip-flop rate between nuclear spins at sites
i and k.

For a two-dimensional (2D) InAs/GaAs quantum dot, we take As nuclei (I = 3/2) as
an example for further calculation. The parameter Wki can be analytically calculated when
approximating the integration upper limit in the above expression for Wki from t to infinity [25].

Wik =
17

√
2π

5
C2

ik(A2
ik + gik)

−1/2 +
12

√
2π

5
C2

ik(A2
ik + 64C2

ik + gik)
−1/2

+
9
√

2π

10
C2

ik(A2
ik + 256C2

ik + gik)
−1/2, (18)

Aik = Ai − Ak, (19)

Cik = Bik +
Ai Ak

4geµB B0
, (20)

gik = 80
∑
j 6=i,k

(Ci j − Ck j)
2. (21)

The hyperfine coupling rate Ai is proportional to the square of the electron wave function in a
quantum dot. In the following calculation, we assume that the dot potential is like a square well
in the z-direction and the electron wave function takes a Gaussian shape in the x, y-plane. The
hyperfine coupling rate Ai can then be written as Ai = A0 cos2(π zi/z0)exp[ − (x2

i + y2
i )/ l2

0],
where (xi , yi , zi) are spatial coordinates of site i . l0 and z0 are, respectively, the Fock–Darwin
radius and thickness of the quantum dot, and A0 is the hyperfine coupling for the nuclear spin
at the origin (electron’s location).

The assumption that the nuclear spins follow a diffusion process requires the flip-flop rate
for two distant sites to be negligible. This requirement is satisfied by the fact that the coefficient
Cik decays to zero fast as Rik increases (Bik ∝ R−3

ik and Ai Ak 6 A0 exp[ − (R2
i + R2

k )/ l2
0)6

A0 exp(−R2
ik/ l2

0), where we ignore the diffusion in the z-direction as discussed below). If we
treat 〈I z

k (t)〉 as a continuous function of the spatial variable xα (α = x, y, z), we can then carry
out a Taylor expansion of 〈I z(t)〉 for site i around site k:

〈I z
i (t)〉 ≈ 〈I z

k (t)〉 +
∂〈I z

k (t)〉

∂xα
(xα

k − xα
i ) +

1

2

∂2
〈I z

k (t)〉

∂xα∂xβ
(xα

k − xα
i )(xβ

k − xβ

i ) + · · · , (22)
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where Einstein’s summation convention is implied for the spatial index α, β. Substituting this
into equation (17) and noting that the summation of the first-order derivative term over all sites
vanishes due to the lattice symmetry4, we have

∂〈I z
k 〉

∂t
≈

[∑
i≈k

1

2
Wik(xα

k − xα
i )(xβ

k − xβ

i )

]
∂2

〈I z
k (t)〉

∂xα∂xβ
. (23)

The
∑

i≈k notation above means summarization over the sites near k. Define the coefficient
Dαβ

=
∑

i≈k Wik(xα
k − xα

i )(xβ

k − xβ

i )/2 and similarly note that for α 6= β the summation over
all sites vanishes; we have

∂〈I z
k 〉

∂t
=

(
Dxx ∂2

∂x2
+ Dyy ∂2

∂y2
+ Dzz ∂2

∂z2

)
〈I z

k (t)〉. (24)

Equation (24) is a 3D anisotropic diffusion equation with spatially varying diffusion coefficients
(as Aik , Bik and Wik all depend on the spatial coordinates), which is not easy to solve. To
further simplify it, we note that to obtain the major feature for the full-time dynamics of the
Overhauser field 〈hz(t)〉 =

∑
k Ak〈I z

k (t)〉, it is reasonable to first ignore the diffusion in the
z-direction, because the quantum dot layer is usually a few nm thick and chemical or structural
mismatch in adjacent layers can strongly suppress diffusion in the z-direction [19]. In addition,
from symmetry in the 2D x, y-plane, we expect to have Dxx

≈ Dyy and can thus define an
average 2D diffusion coefficient D(x, y) =

∑
i≈k Wik[(xk − xi)

2 + (yk − yi)
2]/4. Now we have

a simplified 2D diffusion equation:

∂〈I z
k 〉

∂t
= D(x, y)

(
∂2

∂x2
+

∂2

∂y2

)
〈I z

k (t)〉. (25)

The above partial differential equation can be effectively solved using the finite-element method
by coarse graining a large number of nuclear spin sites to a small number of mesh nodes.
But before solving equation (25), we would like to have some discussion about the diffusion
coefficient D(x, y). For x, y � l0, the role of electrons can be neglected and a numerical
calculation of the above diffusion coefficient gives a uniform background value D ≈ 7 nm2 s−1,
consistent with previous theoretical and experimental reports on the diffusion coefficient in
bulk material [23]–[25]. In our calculation, we set the quantum dot parameters l0 = 30 nm,
z0 = 10 nm, A0 = 1 µeV ≈ 1.5 MHz,

∑
k Ak ≈ 80 µeV, the lattice constant a0 = 0.563 nm and

the number of nuclei N ≈ 9 × 105, according to typical experimental values [17]–[19].
Within the range of the Fock–Darwin radius l0, the presence of the quantum dot electron

will change the diffusion coefficient through two competing mechanisms: on the one hand, the
confined electron generates an inhomogeneous Knight shift [6], which lifts the degeneracy of
the nuclear Zeeman energy for different nuclei and prevents the spin flip-flop; on the other
hand, electron-mediated nuclear spin flip-flop enhances the nuclear spin diffusion and the
enhancement decreases from the center to the edge of the dot.

Our numerical simulation shows that whether one mechanism dominates the other is
largely determined by the external magnetic field B0. Figures 1 and 2 show the diffusion coef-
ficient D(x, y) under B0 = 0.2 T and B0 = 2 T. We can see that under a small magnetic field,
the electron-mediated flip-flop greatly enhances the nuclear spin diffusion near the center of the

4 The hyperfine coupling rate Ai , although inhomogeneous over a larger scale, only changes slightly from one
nuclear spin to its nearby spins, so in summation over the nearby lattice sites, we still have an approximate lattice
symmetry for the jump rate Wik .

New Journal of Physics 13 (2011) 033036 (http://www.njp.org/)

http://www.njp.org/


7

−100
−50

0
50

100

−100
−50

0
50

100
0

5

10

15

20

25

30

x (nm)y (nm)

D
(x

,y
) (

nm
2 /s

)

Figure 1. The diffusion coefficient D(x, y) under B0 = 0.2 T. The narrow high
peak at the center of the dot is due to electron-mediated nuclear spin flip-flop,
and the wide dip is due to inhomogeneous Knight shift.
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Figure 2. The diffusion coefficient D(x, y) under B0 = 2 T. The inhomogeneous
Knight shift dominates in this case, so diffusion is generally suppressed within
the Fock–Darwin radius.

dot, causing a sharp peak in D(x, y). In a large magnetic field, however, such enhancement is
negligible compared to the Knight shift, which suppresses the nuclear spin diffusion, yielding
a wide dip in D(x, y). The dependence on the strength of the magnetic field can be easily
explained with the effective Hamiltonian (equations (10)–(12)): the electron-mediated flip-flop
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term is inversely proportional to B0, whereas the Knight shift term is independent of B0. We
note that the reason why we have a narrower peak than the dip is because the Knight shift term
is proportional to the hyperfine coupling rate (Gaussian distribution in the x–y plane), whereas
the electron-mediated flip-flop term is proportional to the product of two nuclei’s hyperfine
coupling rates. We also note that the 2D diffusion coefficient D(x, y) in figures 1 and 2 does
not have azimuthal symmetry because in our calculation we assume that the nuclear spins are
in a square lattice with no azimuthal symmetry.

3. Comparison with experiments

To compare with experiments, we numerically solve the diffusion equation (equation (25)) under
certain initial and boundary conditions. For the initial condition, since the nuclear spins are
partially polarized through the DNP process from the hyperfine interaction with the electron
spin [13]–[16], it is reasonable to expect that right after the DNP process, the polarization
distribution 〈I z

k 〉 is proportional to the hyperfine interaction rate. So, in the following calculation,
we assume 〈I z

k 〉 ∝ Ak ∝ exp[ − (x2
i + y2

i )/ l2
0] at t = 0 for solving the diffusion equation (25).

For the boundary condition, we can assume naturally that 〈I z
k 〉 approaches zero when the radius

goes to infinity. However, in numerical calculation, we have to take a finite radius. To make
the spin diffusion possible, this finite radius has to be significantly larger than the radius of the
size l0 of the initial electron wave packet. In the calculation, we take a radius of about 300 nm
(10 times l0) so that the total number of nuclear spins inside is about 100 times the number of
initially partially polarized nuclear spins within the electron’s wave packet. With such a choice,
we expect the cutoff error to be at the per cent level.

First, to compare with the experiments in [18], we calculate the relaxation of the
Overhauser field hz(t) =

∑
k Ak〈I z

k (t)〉 under different electron states and different values of the
external magnetic field B0, and show the results in figure 3. We note that for the double quantum
dot system in [18], if the electron stays in the (2, 0) singlet state, the electron spin has Sz ≡ 0;
therefore, it basically has no influence on the nuclear spin diffusion. In this case, the nuclear
spin diffusion is merely governed by intrinsic nuclear dipole–dipole interaction. However, for
the electron in the (1, 1) state, with the magnetic field in the range of tens of mT as in this
experiment, the electron-mediated spin diffusion dominates the Knight shift and accelerates the
nuclear spin relaxation. That is why one can see two effects from figure 3: (i) electrons in the
(1, 1) state will speed up the decay of the Overhauser field compared to electrons in the (2, 0)
state; (ii) a smaller magnetic field gives a faster decay of the Overhauser field. Both these effects
agree well with the experimental observations in [18]. The decay time is also consistent in terms
of the order of magnitude.

With a much larger magnetic field (say, B0 = 2 T, as in experiments in [19]), the electron-
mediated nuclear spin diffusion is suppressed, and the Knight shift plays a more important
role. The Knight shift suppresses the nuclear spin diffusion, yielding a relaxation time of the
Overhauser field that is significantly larger than that in bulk material. Figure 4 shows the
decay of the Overhauser field in this case, and we can fit the curve with an effective constant
diffusion coefficient at about Deff ≈ 0.7 nm2 s−1. Compared with the diffusion coefficient in
the bulk material (D ≈ 7 nm2 s−1), a suppression factor of 10 is obtained by applying a strong
magnetic field. The experiments performed in [19] measured an effective diffusion coefficient
50 times smaller than the value in the bulk system. The other suppression effect of nuclear
spin diffusion involved in [19] comes from the inhomogeneous quadruple shift of nuclear spin
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Figure 3. Decay of the Overhauser field under various small magnetic fields. The
solid line refers to the case where the electron stays in the (2, 0) singlet state and
has no role in nuclear spin diffusion.

energy [22, 29]. Similar to the inhomogeneous Knight shift, the inhomogeneous quadruple shift
can also make the nuclear spin flip-flop process off-resonant and therefore suppressed. The
quadruple shift in those InGaAs quantum dot systems can have a much stronger influence on the
energy spectrum of the nuclear Hamiltonian when compared with the Knight shift. Therefore, an
intense suppression of nuclear spin diffusion can be induced by quadruple shift, and Overhauser
field relaxation time up to 1 h was seen in [22].

The experiment in [20] studies relaxation of the Overhauser field under different pumping
times for the DNP process. With a shorter DNP pumping time, the nuclear spin polarization
may have a narrower distribution in space [17]. Although we do not know the exact distribution
profile of the nuclear spin polarization from a short DNP pump process, we can assume that the
distribution of 〈I z

k 〉 is still simply a Gaussian but with radius r0 < l0, to model the experiment
qualitatively. Taking this 〈I z

k 〉 as the initial condition, we can calculate relaxation of the
corresponding Overhauser field from the same diffusion equation (25), and the result is shown
in figure 5. The result indicates that a narrower distribution of initial nuclear spin polarization
leads to a faster decay of the Overhauser field, which is consistent with the experimental result
in [17]. This effect can be explained by noting that diffusion is much stronger near the center of
the dot due to the electron-mediated diffusion peak (see figure 1), so a shorter relaxation time is
obtained if the initial polarization is more concentrated near the dot center.
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Figure 4. Decay of the Overhauser field under a strong magnetic field. The solid
line shows the dynamics of the Overhauser field under B = 2 T and the dotted
line is a fit performed using a constant diffusion coefficient.

4. Summary and discussion

In summary, we established an effective method for calculating the long time dynamics of
the Overhauser field under nuclear spin diffusion and showed that the confined electron in a
quantum dot can both enhance the decay of the Overhauser field by mediating nuclear spin
flip-flop and suppress the decay via inhomogeneous Knight shift. Which effect dominates the
other depends critically on the magnitude of the external magnetic field. With this method, we
numerically simulated the relaxation process of the Overhauser field under different electron
spin configurations, external magnetic field and initial nuclear spin polarization distribution.
The results agree reasonably well with a series of recent experimental observations.

In our calculation, we ignored the quadruple shifts of nuclear spins, which are nonexistent
in certain systems such as 13C-nanotube quantum dots [30], negligible in strain-free semicon-
ductor nanostructures such as epitaxially grown droplet quantum dots [31] and dominated by
Zeeman energy under a magnetic field B0 much larger than the equivalent quadruple magnetic
field BQ (of the order of 0.1 T for InAs quantum dots as in [22]). For quantum dots with strong
inhomogeneous strain-induced quadruple shifts, we believe that nuclear spin diffusion will be
further suppressed by them in a similar way as by the inhomogeneous Knight shift. Details
of the influence of quadruple shifts on nuclear spin dynamics can be found in [32] and are
beyond the scope of this paper. We also note that considering more than one species of nuclei
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Figure 5. Overhauser decay of the Overhauser field under various initial
distributions of the nuclear polarization. The solid line refers to the case
with a long DNP pump time that gives a Gaussian distribution with the size
characterized by the Fock–Darwin radius l0. Other lines correspond to a narrower
polarization distribution characterized by a Gaussian with size r0 < l0.

in the diffusion process, as in real experiments, should give a moderate increase of the diffusion
coefficient because more nuclear spin flip-flop channels (including those between two different
species of nuclei) will be involved, but is unlikely to alter the electron’s role in nuclear spin
diffusion we discussed above.

Our results inform researchers of ways of maintaining the DNP-generated Overhauser
field as long as possible. Firstly, one can apply a large magnetic field to effectively suppress
the electron-mediated nuclear spin diffusion. Secondly, one can choose a quantum dot system
with a large inhomogeneous Knight shift or quadruple shift to suppress the intrinsic nuclear
dipole–dipole spin diffusion. These methods together can give us a rather long relaxation time
of the Overhauser field.

In this paper, we have focused on the time dynamics of the expectation value of the
Overhauser field, since this is the quantity that has been measured in several recent experiments.
Similar methods could be applied to calculate the dynamics of the variance of the Overhauser
field, and in terms of time scale, they should be more or less the same. We also want to point out
here that during the DNP process, nuclear spin diffusion also takes place. The final distribution
of the nuclear spin polarization and its variance may depend on the balance between the DNP
pump rate and the nuclear spin diffusion rate ([13]–[16], [18]). To understand this balance, a
detailed knowledge of the specific DNP process will be required. We believe that our analysis
and calculation method that fully incorporates the electron’s role in nuclear spin diffusion can
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help achieve such an understanding and possibly further suppress the fluctuation of nuclear
spins.
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