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1 Introduction

Primordial non-Gaussianity provides cosmology one of the precious few connections between
primordial physics and the present-day universe. Standard inflationary theory, with a single
slowly rolling scalar field, predicts that the spatial distribution of structures in the universe
today is very nearly Gaussian random (e.g. [1–5]; for excellent recent reviews, see [6, 7]).
Departures from Gaussianity, barring contamination from systematic errors or late-time non-
Gaussianity due to secondary processes, would be a violation of this standard inflationary
assumption. Constraining or detecting primordial non-Gaussianity is therefore an important
basic test of the standard cosmological model.

Most of the study of non-Gaussianity in the literature to date has been carried out
assuming the magnitude of departure from Gaussianity is scale-independent (e.g. [8–10]).
However, the assumption that fNL is constant for a wide range of scales could be an over-
simplification, since the primordial cosmic perturbations were presumably produced from the
time-dependent dynamics in the early universe. In particular, single-field inflationary models
with interactions, along with most multi-field models, generically produce scale-dependent
non-Gaussianity. It is therefore not surprising that scale-dependence of non-Gaussianity has
been discussed in the community in recent years [11–29]. Notably, the parameterization of
the scale-dependent non-Gaussianity in our analysis is applicable to the curvaton [30–34] and
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the modulated reheating scenarios [35, 36], which are of great interest for their potentially
observable scale-dependent non-Gaussianity.1

Motivated by such inflationary models that predict detectable scale-dependent non-
Gaussianity, as well as a desire to have an easily usable basis for studying those models,
we present a novel scale-dependent ansatz for primordial non-Gaussianity: we promote the
parameter fNL to a free function of wavenumber fNL(k). We define our model (section 2),
predict clustering bias of dark matter halos in our model (section 3), obtain an upper bound
on the accuracy with which these new parameters could be measured with a future large-
scale structure survey (section 4), and compare our model with other parameterizations of
non-Gaussianity in the literature (section 5).

2 Scale dependent non-Gaussianity

The most commonly discussed model of non-Gaussianity, often referred to as the local model,
is defined via [8]

Φ(x) = φG(x) + fNL(φG(x)2 − 〈φG(x)2〉) . (2.1)

Here, Φ denotes the primordial curvature perturbations (Bardeen’s gauge-invariant poten-
tial), φG(x) is a Gaussian random field, and the constant fNL is the non-Gaussianity param-
eter. The local model has been much studied, in part because it is the first two terms of the
most general local form of non-Gaussianity [40].

In Fourier space, eq. (2.1) becomes

Φ(k) = φG(k) + fNL

∫
d3k′

(2π)3
φG(k′)φG(k − k′) . (2.2)

(Hereafter, we omit the subscript G on the Gaussian distribution when it is clear from
context.) In this paper, we study a model that generalizes eq. (2.2) — we allow fNL to
vary with k as well, while assuming isotropy and homogeneity (so fNL(k) = fNL(k)). The
gravitational potential in the new model is defined via

Φ(k) = φ(k) + fNL(k)
∫

d3k′

(2π)3
φ(k′)φ(k − k′) . (2.3)

As mentioned above, this form of non-Gaussianity is expected in curvaton or modulated
reheating scenarios (see e.g. ref. [37], where this form explicitly appears in the study of
these models).

Note that this new ansatz is not local, which is clear when we transform back into
real space:

Φ(x) = φ+ fNL(x) ∗ (φ(x)2 − 〈φ(x)2〉) , (2.4)

where ∗ represents convolution and x denotes a three-dimensional spatial coordinate. These
primordial perturbations Φ(k) are related to the present-time (z=0) smoothed linear over-
density δR by the Poisson equation:

δR(k) =
2
3
k2T (k)
H2

0 Ωm
W̃R(k)Φ(k) ≡MR(k)Φ(k) ; (2.5)

1For instance, when the observed perturbations originate from the single curvaton field, the “running”
(with scale) of the non-Gaussianity parameter is proportional to the third derivative of the curvaton potential,
V ′′′ [37–39]. Given that this third derivative is not tightly constrained from the observed power spectrum, it
can potentially lead to observable and scale-dependent non-Gaussianity. Therefore, constraints on the running
of non-Gaussianity can be a powerful probe of the origin of the primordial curvature perturbations.
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where T (k) is the matter transfer function, H0 is the Hubble constant, Ωm is the matter
density relative to critical today, and W̃R(k) is the Fourier transform of the top-hat filter
with radius R. The smoothing spatial scale R is related to the smoothing mass scale M via

M =
4
3
πR3ρm,0 , (2.6)

where ρm,0 is the matter energy density today. The choice of mass scale is discussed further
in section 4.1.

The bispectrum in our generalized model becomes

Bφ(k1, k2, k3) = 2[fNL(k1)Pφ(k2)Pφ(k3) + perm.] , (2.7)

where Pφ is the power spectrum of potential fluctuations. This reduces to the familiar
expression B(k1, k2, k3) = 2fNL(Pφ(k1)Pφ(k2) + perm.) when fNL is a constant.

Notice the difference between our ansatz for the scale-dependent fNL(k) (which has
the corresponding bispectrum eq. (2.7)) and the particular form of scale-dependent non-
Gaussianity, discussed elsewhere in the literature, which is defined as fNL(k1, k2, k3) ≡
Bφ(k1, k2, k3)/[2Pφ(k1)Pφ(k2) + perm.] ([25–27]). The two forms are inequivalent, and ei-
ther form can be borne out in realistic inflationary models; however, given that our form
lives in a lower-dimensional k-space, it is easier to simulate it numerically [41] or treat it
with the Fisher matrix analysis, as we do in this paper.

3 Non-Gaussianity and bias

3.1 The effect of a non-vanishing bispectrum on bias

Dalal et al. [42] found, analytically and numerically, that the bias of dark matter halos
acquires strong scale dependence if fNL 6= 0:

b(k) = b0 + fNL(b0 − 1)δc
3ΩmH

2
0

a g(a)T (k)c2k2
. (3.1)

Here, b0 is the usual Gaussian bias (on large scales, where it is constant), δc ≈ 1.686 is the
collapse threshold, a is the scale factor, Ωm is the matter density relative to the critical den-
sity, H0 is the Hubble constant, k is the wavenumber, T (k) is the transfer function, and g(a)
is the growth suppression factor.2 This result has been confirmed by other researchers using
a variety of methods, including the peak-background split [43–46], perturbation theory [47–
49], and numerical (N-body) simulations [50–52]. Astrophysical measurements of the scale
dependence of the large-scale bias, using galaxy and quasar clustering as well as the cross-
correlation between the galaxy density and CMB anisotropy, have recently been used to im-
pose constraints on fNL already comparable to those from the cosmic microwave background
(CMB) anisotropy [43, 45], giving fNL = 28±23 (1σ), with some dependence on the assump-
tions made in the analysis [45]. In the future, constraints on fNL are expected to be on the
order of a few [42, 53–55]. The sensitivity of the large-scale bias to other models of primordial
non-Gaussianity has not yet been investigated much (though see analyses in e.g. [56, 57]).

2The usual linear growth D(a), normalized to be equal to a in the matter-dominated epoch, is related
to the suppression factor g(a) via D(a) = ag(a), where g(a) is normalized to be equal to unity deep in the
matter-dominated epoch.
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Following the MLB formula [58, 59], one can express the two point correlation function
of dark matter halos, ξh(x1,x2), in terms of certain configurations of the correlation functions
of the underlying density field, ξ(N)

R . In the high-threshold limit (ν � 1), this becomes:

ξh(x1,x2) = ξh(x12)

= −1 + exp

 ∞∑
N=2

N−1∑
j=1

νN

σNR

1
j!(N − j)!

ξ
(N)
R

[
x1, . . . ,x1, x2, . . . ,x2

j times (N − j) times

] ; (3.2)

where xij = |xi − xj |, ν = δc/σR represents the peak height, and ξR
(n)(r) is the n-point

correlation function of the underlying matter density smoothed with a top-hat filter of radius
R. Keeping the terms up to the three-point correlation function, which would be reasonable
for the observationally allowed range of fNL, the expansion series gives us the halo correlation
function in terms of the field correlation functions:

ξh(x12) =
ν2

σ2
R

ξ
(2)
R (x1,x2) +

ν3

σ3
R

ξ
(3)
R (x1,x1,x2) . (3.3)

The Fourier transform of the real-space correlation function — the power spectrum —
is given, to the same expansion order as eq. (3.3), by

Ph(k) =
ν2

σ2
R

PR(k) +
ν3

σ3
R

∫
d3q

(2π)3
BR(k, q, |k − q|) + . . . (3.4)

The first term on the right-hand side includes the familiar (Gaussian) bias b = ν/σR (in
the high-peak limit for which the MLB formula is valid) for the Gaussian fluctuations. The
effects of non-Gaussianity on the galaxy bias are represented by the second term, including
the bispectrum BR, which vanishes for the Gaussian fluctuations.

3.2 From the bispectrum to bias

If we denote the full bias of dark matter halos by b+ ∆b, where b represents the bias for the
Gaussian fluctuations and ∆b is the non-Gaussian correction, then

Ph
PR

= b2
(

1 +
∆b
b

)2

, (3.5)

where Ph and PR are the power spectra of halos and dark matter, respectively. The non-
Gaussian correction to the linear peak bias to the leading order becomes

∆b
b

(k) =
ν

σR

1
2PR(k)

∫
d3q

(2π)3
BR(k, q, |k − q|) , (3.6)

where BR is the matter bispectrum on scale R. Hence, the non-Gaussian correction ∆b(k)
can be expressed in terms of the primordial potential fluctuations as ([44]):

∆b
b

(k) =
δc

D(z)
1

8π2σ2
RMR(k)

∫ ∞
0

dk1k
2
1MR(k1)

∫ 1

−1
dµMR(k2)

Bφ(k1, k2, k)
Pφ(k)

. (3.7)

We perform the integration over all triangles. The triangles’ sides are k1, k2, and k; the
cosine of the angle opposite k2 is µ, so k2

2 = k2
1 + k2 + 2k1kµ. MR(k) is the same function

defined in eq. (2.5), and the time dependence of the critical threshold for collapse is given as
δc(z) = δc/D(z), with δc = 1.686.
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3.2.1 Constant fNL

Eq. (3.7) leads to the famous scale-dependent bias formula in the case of a constant fNL. For
this model, the bispectrum is

Bφ(k1, k2, k3) = 2fNL [Pφ(k1)Pφ(k2) + perm.] . (3.8)

Through eq. (3.7), this leads to the result

∆b
b

(k) =
δc

D(z)
2fNL

8π2σ2
RMR(k)

∫
dk1k

2
1MR(k1)Pφ(k1)

∫
dµMR(k2)

[
Pφ(k2)
Pφ(k)

+ 2
]

≡ 2fNLδc
D(z)

F(k)
MR(k)

, (3.9)

where

F(k) ≡ 1
8π2σ2

R

∫
dk1k

2
1MR(k1)Pφ(k1)

∫
dµMR(k2)

[
Pφ(k2)
Pφ(k)

+ 2
]
. (3.10)

Note that there is a factor of 2 in eq. (3.9) because we can exchange the order of integration
of terms corresponding to k1 and k2.

Finally, we rewrite eq. (3.9) by defining

F1(k) ≡ 1
8π2σ2

RMR(k)Pφ(k)

∫
dk1k

2
1MR(k1)Pφ(k1)

∫
dµMR(k2)Pφ(k2) (3.11)

F2(k) ≡ 2
8π2σ2

RMR(k)

∫
dk1k

2
1MR(k1)Pφ(k1)

∫
dµMR(k2) . (3.12)

Then, for constant fNL,
∆b
b

(k) =
2fNLδc
D(z)

[F1(k) + F2(k)] , (3.13)

and the derivative with respect to fNL is

∂

∂fNL

[
∆b
b

(k)
]

=
2δc
D(z)

[F1(k) + F2(k)] . (3.14)

3.2.2 Scale-dependent fNL

Now we repeat the analysis of the previous section, but we allow fNL(k) to be an arbitrary
function of scale, adopting the ansatz in eq. (2.3). We still assume homogeneity, so fNL(~k) =
fNL(k). The bispectrum is given by

Bφ(k1, k2, k3) = 2[fNL(k1)Pφ(k2)Pφ(k3) + perm.] . (3.15)

Here, the triangle condition always holds, so that (for example) k1 = | ~k2 + ~k3|. Following
eq. (3.7), we get

∆b
b

(k) =
δc

D(z)
2

8π2σ2
RMR(k)

∫
dk1k

2
1MR(k1)Pφ(k1)

×
∫
dµMR(k2)

[
fNL(k)

Pφ(k2)
Pφ(k)

+ 2fNL(k2)
]
. (3.16)

This looks like eq. (3.9) — but this time, fNL(k) is a function, not a constant. Thus, to
find the derivative of ∆b/b(k) with respect to the relevant parameters, we must parametrize
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fNL(k) in a way that is valid for any general form of fNL(k). We consider the piecewise-
constant (in wavenumber) parametrization where fNL(k) is equal to f iNL in the ith wave-
number bin:

f iNL ≡ fNL(ki) . (3.17)

The derivative of ∆b/b(k) with respect to these f iNL is:

∂

∂f jNL

[
∆b
b

(ki)
]

=
δc

D(z)
2

8π2σ2
RMR(k)

×

[
δij

1
Pφ(k)

∫
dk1k

2
1MR(k1)Pφ(k1)

∫
dµMR(k2)Pφ(k2) (3.18)

+2
∫
k2∈kj

dk1k
2
1MR(k1)Pφ(k1)

∫
dµMR(k2)

]
,

where δij is the Kronecker delta function. Note that the last integral over k2 only goes over
the jth wavenumber bin.

This derivative can be rewritten more concisely as

∂

∂f jNL

[
∆b
b

(ki)
]

=
2δc
D(z)

[
δijF1(k) + F j2(k)

]
. (3.19)

The functions F1 and F2 are defined as in eqs. (3.11) and (3.12), except that the superscript
in F j2 indicates that the integral over k2 is to be executed only over the jth wavenumber bin.

4 Forecasted measurements of the scale-dependent nongaussianity

4.1 Fisher matrix analysis

With an expression for ∂/∂f jNL[(∆b/b)(ki)] in hand (eq. (3.19)), we can calculate the Fisher
information matrix for the parameters f jNL that describe the piecewise-constant fNL(k). The
Fisher matrix, in turn, allows us to forecast the extent to which the scale-dependent non-
Gaussianity could be measured in future galaxy surveys.

We consider measurements of the power spectrum Ph(k) of dark matter halos (galaxies
or clusters, for example) averaged over thin spherical shells in k-space. The variance of
Ph(k) ≡ Ph in each shell is [60]

σ2
Ph

=
2P 2

h

Vshell Vsurvey

(
1 + nPh
nPh

)2

=
(2πPh)2

k2dk Vsurvey

(
1 + nPh
nPh

)2

, (4.1)

where Vshell = 4πk2dk/(2π)3 is the volume of the shell in Fourier space (we are ignoring
redshift distortion effects for simplicity here). Therefore, the Fisher matrix for measurements
of Ph(k, z) is [61]

Fij =
∑
m

Vm

∫ kmax

kmin

∂Ph(k, zm)
∂pi

∂Ph(k, zm)
∂pj

1[
Ph(k, zm) +

1
n

]2

k2dk

(2π)2
, (4.2)

where Vm is the comoving volume of the m-th redshift bin, each redshift bin is centered on
zm, and we have summed over all redshift bins. We adopt kmin = 10−4 h−1 Mpc, and we
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choose kmax as a function of z so that σ(π/(2kmax), z) = 0.5 [62], which leads to kmax(z =
0) ≈ 0.1hMpc−1. Finally, pi are the parameters of interest; in our case, these are the f iNL.

We assume a flat universe and a fiducial model of zero non-Gaussianity: fNL(k) = 0 =
f iNL. We include six cosmological parameters in our Fisher matrix aside from the f iNL: Hub-
ble’s constant H0; physical dark matter and baryon densities Ωcdmh

2 and Ωbh
2; equation of

state of dark energy w; the log of the scalar amplitude of the matter power spectrum, logAs;
and the spectral index of the matter power spectrum, ns. Fiducial values of these parameters
correspond to their best-fit WMAP7 values [63]. We also added the forecasted cosmological
parameter constraints from the CMB experiment Planck by adding its Fisher matrix as a prior
(W. Hu, private communication). Note that the CMB prior does not include CMB constraints
on non-Gaussianity; the CMB constraints on fNL(k) will be separately studied in a future
work. Finally, in addition to the cosmological parameters and the f iNL, we include five Gaus-
sian bias parameters in our Fisher matrix — one b0(z) for each redshift bin. The fiducial val-
ues of these parameters are set by the relations b0(z = 0) = 2.2, and b0(z) = b0(z = 0)/D(z).

We already have the derivatives of b(k) with respect to each of the f iNL, so the derivative
of Ph(k) with respect to the f iNL is just

∂Ph(k)
∂f iNL

= 2
∂b(k)
∂f iNL

b(k)Pmat(k) ; (4.3)

Pmat(k) is the ΛCDM matter power spectrum, easily obtained from a numerical code such
as CAMB. Since we only consider information from large scales (k ≤ kmax ≈ 0.1hMpc−1),
we do not model the small amount of nonlinearity present at the high-k end of these scales.

We assume a future survey covering one-quarter of the sky (about 10,000 square degrees)
out to z = 1, and find constraints for a set of 20 f iNL uniformly spaced in log k in the range
10−4 ≤ k/(hMpc−1) ≤ 1, with a smoothing scale of Msmooth = 1014M�. Figure 1 shows the
resulting unmarginalized (left panel) and marginalized (right panel) constraints on the pa-
rameters f iNL. For both sets of constraints, we first marginalized over the other cosmological
parameters.3 The f iNL have most of their degeneracy among themselves; a plot showing the
fully unmarginalized constraints on the f iNL would not look much different than the left panel
of figure 1. Note that, while some of the f iNL have support at k > kmax(z = 1) ≈ 0.2hMpc−1,
we only use information about those (and other) parameters coming from k < kmax. The con-
straints vary considerably as a function of the k at which these parameters are defined. The
best-constrained f iNL corresponds to the 10−0.8 < k < 10−0.6 bin, and it has an estimated un-
marginalized error of σ(f16

NL) = 7.3; for comparison, the worst-constrained f iNL, which corre-
sponds to the largest scale (smallest k) bin, has an unmarginalized error well over one billion.

As expected, the marginalized constraints for the best-constrained parameters are much
weaker than the unmarginalized constraints — even the best-measured f iNL has an estimated
marginalized error of 6× 102. In general, dependence of the constraints on the value of k is
determined by two competing factors: as k increases, there is a larger number of modes, each
with a smaller signal (given by the smaller nongaussian bias ∆b). The best-constrained k is
also affected by the fact that only information out to k = kmax = 0.1hMpc−1 is assumed from
the galaxy survey. In particular, we have checked that if we unrealistically assume information
to be available at all k (instead of at k < kmax) without modeling the nonlinearities, the
unmarginalized constraints on f iNL improve monotonically with increasing k. Therefore, the

3Using six cosmological parameters along with five b0(z) and 20 f i
NL led us into some issues with floating-

point errors and numerical precision. The 31 × 31 Fisher matrix we obtained was rather ill-conditioned and
difficult to invert reliably using 64-bit precision; we were eventually forced to move to 128-bit precision in
order to accurately marginalize over the cosmological parameters.
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Figure 1. Estimated unmarginalized (left panel) and marginalized (right panel) constraints on
piecewise-constant parameters f i

NL assuming a future galaxy survey covering one-quarter of the sky
out to z = 1, with average number density of 2×10−4 gal/Mpc3. For comparison, the green line is the
constraint found for a constant fNL using the same survey assumptions, and the red histograms are
the constraints found with a lower kmax (see text for details). While the individual parameters f i

NL

are poorly constrained as expected, their few best linear combinations — the principal components –
are well measured; see the next section and text for details.

raw signal-to-noise ratio in f iNL increases with k. To further demonstrate the effect of the
choice of kmax(z), we also plotted the errors obtained with the condition σ(π/(2kmax), z) =
0.15, which yields kmax(z = 0) ≈ 0.03.

The smoothing mass scale chosen for this analysis (see eq. (2.5)) has a small but notice-
able effect on the constraints yielded. Figure 2 shows that, in the case of the unmarginalized
errors, the k at which non-Gaussianity is best constrained decreases as the smoothing mass
scale increases. (The behavior of the marginalized errors is more complicated due to cor-
relations in errors between neighboring f iNL.) Since the mass scale is proportional to the
physical scale (to the third power), this means that best-constrained k decreases with in-
creasing smoothing scale R, which is exactly what we should expect. We remind the reader
that while a survey filtered at some scale Msmooth contains objects roughly more massive than
this scale, in practice the near-exponentially falling mass function implies that the number
density is dominated with M 'Msmooth halos.

5 Projection and principal components

5.1 Constraining other fNL(k) models

Once the Fisher matrix F has been obtained for the set of parameters f iNL, it is quite simple
to find the best possible constraints on the f iNL that could be obtained from a future galaxy
redshift survey. By projecting this Fisher matrix into another basis (see appendix A), it is
also possible to find the constraints on any arbitrary fNL(k) without calculating a new Fisher
matrix from scratch. A trivial example can be found in appendix A, where we find that the
estimated error on a constant fNL, assuming the same future survey as in the previous section,
is σ(fNL) = 2.1. (Note that this forecasted constraint is on a par with the error expected
from Planck, where σ(fNL) ∼ 5.)
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(a) Unmarginalized errors

10-4 10-3 10-2 10-1 100

k (h/Mpc)
100

101

102

103

104

105

106

107

108

109

Fo
re

ca
st

e
d
 E

rr
o
r 

in
 f
i N
L

M=1012M¯

M=1014M¯

M=1016M¯

(b) Marginalized errors

Figure 2. Estimated constraints obtained from future surveys with the same parameters as the
previous figure at different mass smoothing scales Msmooth (labeled as M in the legend). In other
words, these are errors for a survey with halos of M & Msmooth.

For another, scale-dependent example, consider the simple form of non-Gaussianity
analogous to the conventional parameterization of the power spectrum

fNL(k) = f∗NL

(
k

k∗

)nNG

, (5.1)

where k∗ is an arbitrary fixed parameter, leaving f∗NL and nNG as the parameters of interest
in this model. (k∗ is generally chosen to minimize degeneracy between f∗NL and nNG for the
observable of interest. We have set k∗ = 0.165hMpc−1, close to the optimal value in our case;
in CMB analysis, the optimal value is lower, around 0.06hMpc−1.) The partial derivatives
of our basis of f iNL with respect to these parameters are:

∂f iNL

∂f∗NL

=
(
k

k∗

)nNG

; (5.2)

∂f iNL

∂nNG
= f∗NL

(
k

k∗

)nNG

log
(
k

k∗

)
. (5.3)

Starting in a basis of 20 f iNL evenly spaced in log k, we project down to a basis of f∗NL

and nNG in order to forecast constraints on the two new parameters from a survey covering
one-quarter of the sky out to z = 1. We are using the same limits of integration as in
section 4.1, along with the fiducial values f∗NL = 50 and nNG = 0. The forecasted constraints
on these parameters, marginalized over each other, are σf∗NL

= 1.7 and σnNG = 0.58. Despite
a superficial similarity between this model and the model used by Sefusatti et al. in [23], the
two models are quite different, and our results cannot be compared. The model used in [23]
is a function of three arguments, k1, k2, and k3:

fNL(k1, k2, k3) = f∗NL

(
K

k∗

)nNG

, (5.4)

where K = (k1k2k3)1/3. This leads to a bispectrum of the form found in eq. (3.8), but with
fNL(k1, k2, k3) in place of fNL, whereas our bispectrum is of the less-factorizable form eq. (2.7).
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Figure 3. The first four principal components of fNL(k). The PCs, e(j)(k), are eigenvectors of the
Fisher matrix for the f i

NL, and are ordered from the best-measured one (j = 0) to the worst-measured
one (j = 19) for the assumed fiducial survey.

Another example we consider is the form of non-Gaussianity in which the running on
fNL itself has running; that is, the case in which nNG is a function of k. A simple case of this
would be fNL of the form4

fNL(k) = eAk
B
. (5.5)

Projecting the Fisher matrix down from the original basis f iNL to the parameters A and B,
with fiducial values of A = log 50 and B = 0, we obtain forecasted constraints of σA = 1.0
and σB = 0.15. (In this case, the survey characteristics and bounds of integration are the
same as in the previous example.)

5.2 Principal components and relation to local and equilateral models

We now represent a general function fNL(k) in terms of principal components (PCs). In this
approach, the data determine which particular modes of fNL(k) are best or worst measured.
The PCs also constitute a useful form of data compression, so that one can keep only a few
of the best-measured modes to make inferences about the function fNL(k). Finally, the PCs
will also enable us to measure the degree of similarity between our scale-dependent ansatz
and the local and equilateral forms of non-Gaussianity.

It is rather straightforward to start from the covariance matrix for the piecewise constant
parameters f iNL and obtain the PCs of fNL(k). The PCs are weights in wavenumber with am-

4Analogous parameterization for the power spectrum and its motivations are discussed in [64].
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Figure 4. RMS error on each principal component, along with the cumulative error.

plitudes that are uncorrelated by construction, and they are ordered from the best-measured
(i = 0) to the worst-measured (i = 19) for the assumed fiducial survey. The construction of
the PCs is described in appendix B. A few of these PCs of fNL(k) are shown in figure 3. For
example, the best-measured PC has most of its weight around k = 10−0.4 hMpc−1, which
agrees with sensitivities of piecewise-constant parameters shown in figure 1. The sensitivity
is not greatest at the largest value of k (1hMpc−1) because we assumed cosmological infor-
mation from k ≤ kmax = 0.1hMpc−1. We checked that information available at a higher
kmax would shift the “sweet spot” of sensitivity to higher wavenumbers.

The error in the best-measured PC is 4.8; however, the error in the next-best measured
PCs are 18.3 and 27.4, and the accuracy rapidly drops off from there. Thus, the first three or
four PCs should be enough for any conceivable application. The error in each PC is plotted
on a logarithmic scale in figure 4, along with the cumulative error σcum, which is defined as

1
σ2

cum

=
∑
i

1
σ2
i

. (5.6)

Each PC e(j)(k) has its own associated bispectrum (see eq. (2.7)):

B(j)(k1, k2, k3) = 2[e(j)(k1)P (k2)P (k3) + e(j)(k3)P (k1)P (k2) + e(j)(k2)P (k3)P (k1)] . (5.7)

(As always, k1, k2, and k3 have a triangle relation: k3 = | ~k2− ~k1|.) We would like to test the
similarity of these bispectra to those that have already been discussed in the literature. We
can do this by using a distance measure between bispectra, defined by ‘cosines’ developed
in [40]. A cosine near unity implies that the two bispectra have very similar shapes, and a
cosine near zero implies the opposite. The cosine is defined as

cos(B1, B2) =
B1 ·B2√

(B1 ·B1) (B2 ·B2)
, (5.8)

where the inner product between two bispectra, B1 ·B2, is [23]

B1 ·B2 =
∑

k1,k2,k3

B1(k1, k2, k3)B2(k1, k2, k3)
∆2B(k1, k2, k3)

. (5.9)
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Local cosine Equilateral cosine
B(0) 0.669 0.074
B(1) 0.040 0.000
B(2) 0.099 0.030
B(3) 0.189 0.037

Table 1. Cosines of the first four principal-component derived bispectra with the local bispectrum
and the equilateral bispectrum. A cosine near unity implies that the two bispectra have very similar
shapes, and a cosine near zero implies the opposite. Note that the zeroth PC, which is by far the best
measured (see figure 4), has a much larger overlap with the local model than with the equilateral, as
expected.

The (Gaussian) variance of the bispectrum is

∆2B(k1, k2, k3) =
1
NT

P (k1)P (k2)P (k3) ∼ 1
NT

(k1k2k3)−3 , (5.10)

where NT is the number of distinct triangular configurations of k1,2,3, and P (k) ∼ k−3 is the
primordial curvature perturbation power spectrum. (The overall constant is irrelevant, since
it cancels out in eq. (5.8).)

We first compare our bispectra eq. (5.7) to the local model with a constant fNL, whose
bispectrum is (see eqs. (2.1) and (3.8))

Blocal(k1, k2, k3) ∝ 1
k3

1k
3
2

+
1

k3
1k

3
3

+
1

k3
2k

3
3

. (5.11)

Most of the power of Blocal is in so-called “squeezed” triangles, in which one side is much
smaller than the other two (comparable) sides, k1 � k2 ≈ k3.

Another form for the bispectrum much discussed in the literature is the “equilateral”
bispectrum

Bequi(k1, k2, k3) = − 2
(k2k1k3)2

−Blocal(k1, k2, k3)+
1

k1k2
2k

3
3

+
1

k3k2
1k

3
2

+permutations . (5.12)

In contrast with Blocal, most of the power of Bequi is in triangles where k1 ≈ k2 ≈ k3; hence
the name “equilateral”.

Table 1 lists the cosines of the first few principal-component derived bispectra with
the local bispectrum and the equilateral bispectrum. The form of eq. (5.7) suggests that
the PC-derived bispectra B(j) will have more in common with the local bispectrum than
the equilateral one. However, it is initially conceivable that some e(j)(k) might exist which
would yield a bispectrum of the form in eq. (5.12) when substituted into eq. (5.7) — but
in appendix C, we prove that no such function exists. Thus, the only guarantees for the
cosines of the B(j) are that the cosine of B(0) — the bispectrum corresponding to the best-
measured PC — will be large with the local model, and that none of the B(j) have a very
large cosine with the equilateral model. We expect the former because our model looks like
the local model; we expect the latter because of the proof in appendix C. Table 1 bears out
this expectation. The small cosines with the equilateral form of non-Gaussianity are also
unsurprising because equilateral non-Gaussianity is expected to have a strongly suppressed
signal in the non-Gaussian halo bias [57].
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6 Conclusions

In this paper we have suggested a new phenomenological model of primordial nongaussianity
by generalizing the local model (parametrized with a constant parameter fNL) to a scale-
dependent, non-local class of models. There are multiple ways to do this, and our choice was
to write the Newtonian potential as

Φ(x) = φG(x) + fNL(x) ∗ (φG(x)2 − 〈φG(x)2〉) , (6.1)

where the convolution in real space corresponds to multiplication in k-space, featuring an
arbitrary function fNL(k). Explicit calculations show that such a form of the scale dependent
fNL is borne out in inflationary models [11, 14, 37–39].

We calculated the bispectrum and bias of dark matter halos in this class of models,
following the formalism valid for high peaks [58, 59]. We then specialized in the piecewise-
constant (in wavenumber) parametrization of fNL(k) which, for the case of narrow enough
k-bins, recovers any arbitrary function. We used forecasted constraints from an intermediate-
future galaxy survey to calculate errors on individual parameters f iNL (see figure 1) and briefly
studied dependence on the smoothing scale (figure 2).

We further calculated the principal components of fNL(k), and thus identified the best-
measured configurations (in wavenumber) of this function (see figure 3). While the sensitivity
increases with increasing k, restricting the survey information to scales where linear pertur-
bation theory is valid imposes a “sweet spot” in sensitivity of k ∼ 0.1hMpc−1. We then
calculated the overlap of the best-measured principal components with two familiar classes
of non-Gaussian models: local (fNL = const) and equilateral models, using a cosine measure
between the bispectra suggested in [40]. We found the expected result: the best measured
component overlaps much more with the local model (which our model generalizes) than
with the equilateral one.

One immediate utility of our results is an easy adaptation to specific models of non-
Gaussianity predicted by classes of inflationary models. If one wants to forecast the accuracy
with which parameters of a specific model of fNL(k)-style non-Gaussianity will be measured,
neither the halo bias nor the Fisher matrix needs to be calculated from scratch. Instead, our
formalism makes it possible to obtain these forecasts by performing a simple linear projection
to our piecewise-constant model; this procedure is described in appendix A and illustrated
with a few examples.

In future investigations, it will be interesting to consider specific inflationary models,
projecting down to specific forms for fNL(k). It will also be important to test how well
the observable effects of scale-dependent non-Gaussianity, studied here using the theoretical
ansatz from eq. (3.2), agree with numerical simulations; the first such investigations, for
select specific forms of fNL(k), are now being done [41]. Finally, it will be interesting to see
how one can optimally select objects in the universe (i.e. their mass) to probe information
about scale-dependence of non-Gaussianity. While in figure 2 we showed scaling of the best-
determined scale of fNL(k) with the smoothing mass scale applied to the density field, a more
complete analysis might use the Halo Occupation Distribution (HOD) approach to relate the
content of dark matter halos to their mass.
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A Calculating the error on an arbitrary parametrized fNL(k)

Projecting the constraints from an old set of parameters f iNL ≡ fNL(ki) (i = 1, 2, . . . , N) to
new parameters (which we can call q; j = 1, 2, . . . ,M for some M) is in principle straightfor-
ward. The Fisher matrix in the new parameters, F new, is given by

F new
i,j =

N∑
k,l=1

∂pk

∂qi
∂pl

∂qj
Fkl (A.1)

so that
F new ≡ PTF P , (A.2)

where Pij = ∂pi/∂qj is the derivative matrix of old parameters with respect to new.
Let us look at a couple of examples. Projecting to the case

fNL(k) = fNL = const (A.3)

is particularly easy, since P is the column vector with Pi1 = df iNL/dfNL = 1. Then F new
ij is a

1× 1 matrix that quantifies information on fNL, given by

F new
11 =

∑
k,l

Fkl . (A.4)

The error on fNL is of course given simply by σ(fNL) = 1/
√
F new

11 .
Another example is given by the function

fNL(k) =
(
k

k0

)nNG

, (A.5)

with two parameters, k0 and nNG. Then one can show that (labeling k0 ≡ q1 and nNG ≡ q2):

Pi1 = −nNG

k0

(
ki
k0

)nNG

; (A.6)

Pi2 = ln
(
ki
k0

) (
ki
k0

)nNG

. (A.7)

Then, using eq. (A.2), one can simply obtain the 2× 2 Fisher matrix in k0 and nNG.

B Principal Components of fNL(k)

We now show how to decompose the measurement of fNL(k) in principal components, which
are essentially the eigenmodes of the covariance matrix for the aforementioned parame-
ters fNL(ki). This method has been widely used in cosmology, including applications to
parametrizing and describing dark energy [65, 66]. It allows us to order the best-to-worst
measured weights in wavenumber of the function fNL(k).
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Let the function fNL(k) be described in terms of piecewise constant parameters f iNL ≡
fNL(ki), where

fNL(k) =
N∑
i=1

piΘi(k) . (B.1)

Here, Θ(k) ≡
[
H(k − klower

i )−H(k − kupper
i )

]
is the top-hat function of unit height over the

ith wavenumber bin, and we assume a total of N bins. klower
i and kupper

i are the wavenumber
bin boundaries, and H is the Heaviside step function. We have effectively expanded the
function around the zero value, though this is not crucial: the left-hand side could be fNL(k)−
ffid

NL(k), for any fiducial ffid
NL(k), and the formalism still follows.

The Fisher matrix F is the inverse covariance matrix in the original piecewise-constant
parameters pi, so that F−1

ij = 〈pipj〉 − 〈pi〉〈pj〉. We first diagonalize the Fisher matrix F :

F = W TDW , (B.2)

where D is diagonal and W is some orthogonal matrix. The vector of uncorrelated parame-
ters, q, is related to the vector of original parameters p via

q = Wp , (B.3)

and it is easy to check that the q are uncorrelated; that is, 〈q qT 〉 = D−1. The rows of W
are therefore the new parameters.

Thus, to calculate the principal components:

1. Obtain the full Fisher matrix for N parameters pi, plus the cosmological parameters
Ωbh

2,ΩCDMh
2, H0, w, log As, and ns.

2. Marginalize over the cosmological parameters by inverting this larger Fisher matrix,
taking the N × N submatrix, then inverting back to get the Fisher matrix of the pi;
we call this Fisher matrix F .

3. Diagonalize F as in eq. (B.2).

4. The rows of W are the principal components. More precisely, qa =
∑

iWaipi, and qa
are the PCs.

Let us now change notation slightly (to agree with the commonly used one, e.g. [65]), and
define the shape of the a-th principal component in i-th redshift bin as α(a)

i , so that α(a)
i ≡

Wai. Then we can represent the a-th principal component, e(a)(k), in terms of the original
parameters pi as5

e(a)(k) =
N∑
i=1

α
(a)
i pi Θi(k) . (B.4)

The PCs are obviously uncorrelated, and their eigenvalues λa, so that

〈e(a)e(b)〉 ≡
N∑

i,j=1

α
(a)
i α

(b)
j 〈pipj〉 =

δab
λa

. (B.5)

where, recall, λa ≡ Daa.
5This is basically the continuous version of the relation qa =

P
i Waipi.
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Finally, let us calculate the coefficients c(a) in the expansion in principal components of
an arbitrary fNL(k)

fNL(k) =
N∑
a=1

cae
(a)(k) . (B.6)

Let coefficients f iNL describe fNL(k) in our original basis, so that fNL(k) = const ≡∑
i f

i
NLpiΘi(k), with f iNL being left arbitrary for now. Then, taking the expectation value of

the product with e(b), we get

〈fNL(k)e(b)〉 ≡ cb
λb

=

〈(
N∑
i=1

f iNL pi

)
×

 N∑
j=1

α
(a)
j pj

〉 (B.7)

=
N∑

i,j=1

f iNL α
(a)
j (F−1)ij , (B.8)

so that

ca = λa

N∑
i,j=1

f iNL α
(a)
j (F−1)ij . (B.9)

For example, in the simplest case of constant fNL(k), where f iNL = const ≡ fNL, the coeffi-
cients of the principal components in the expansion of fNL(k) are

ca = λa fNL

∑
ij

α
(a)
j (F−1)ij (for fNL(k) ≡ fNL = const) . (B.10)

C Generalized local ansatz does not recover the equilateral case

Here, we prove that our ansatz cannot perfectly mimic the equilateral bispectrum for any
choice of fNL(k). The generalized local form of the bispectrum that we considered in this
paper is

Bgener(k1, k2, k3) = 2[fNL(k1)P (k2)P (k3) + permutations] ∝ fNL(k1)
k3

2k
3
3

+ perm. (C.1)

The equilateral bispectrum is

Bequi(k1, k2, k3) ∝
[

1
k1k2

2k
3
3

+ perm.
]
− 2

(k2k1k3)2
−
[

1
k3

2k
3
3

+ perm.
]
. (C.2)

The claim is that there is no fNL(k) such that Bgener = Bequi for all k1, k2, k3. To show this,
we define a new function h(k) ≡ fNL(k)+1. If there is some fNL(k) such that Bgener = Bequi,
then we have:

h(k1)
k3

2k
3
3

+ perm. ∝
[

1
k1k2

2k
3
3

+ perm.
]
− 2

(k2k1k3)2
.

We can go from a proportionality to an equality by defining a new function g(k) that is
simply h(k) with the appropriate constant out in front. Next, multiply both sides by k3

1k
3
2k

3
3

to get
k3

1g(k1) + k3
2g(k2) + k3

3g(k3) =
[
k1k

2
2 + k2k

2
3 + perm.

]
− 2k1k2k3 . (C.3)
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Each term on the left-hand side is dependent on only one of k1, k2, or k3. However, every
term on the right-hand side depends on at least two different k; thus, there is no g(k) that
can satisfy this relation.

Alternatively, consider the case where k1 = k2 = k3 = k. Then (C.3) becomes

3k3g(k) = 4k3

which means that
g(k) = 4/3 .

This answer is wholly independent of k, so this value of g(k) must be true for all k. But this
solution for g(k) is clearly incorrect in the general case where k1 6= k2 6= k3; therefore, no
such g(k) can exist.

While this proves that there is no fNL(k) that yields an exact equality between our
ansatz and the equilateral bispectrum, the question of an approximate equality remains. Such
solutions for fNL(k) certainly exist for narrow ranges of k. For example, fNL(k) = δ(k− k∗),
where δ(k) is the Dirac delta function, yields a bispectrum that is larger for exactly one
equilateral triangle — the triangle where k1,2,3 = k∗ — than it is for any squeezed triangle.
However, no fNL(k) exists that yields a bispectrum which favors equilateral triangles over
squeezed triangles for all k. It is straightforward but tedious to prove this fact, and the
details of the proof are beyond the scope of this paper.
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