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Abstract
Increasing use of ecological models for management and policy requires robust evaluation of
model precision, accuracy, and sensitivity to ecosystem change. We conducted such an
evaluation of hypoxia models for the northern Gulf of Mexico and Chesapeake Bay using
hindcasts of historical data, comparing several approaches to model calibration. For both
systems we find that model sensitivity and precision can be optimized and model accuracy
maintained within reasonable bounds by calibrating the model to relatively short, recent 3 year
datasets. Model accuracy was higher for Chesapeake Bay than for the Gulf of Mexico,
potentially indicating the greater importance of unmodeled processes in the latter system.
Retrospective analyses demonstrate both directional and variable changes in sensitivity of
hypoxia to nutrient loads.

Keywords: model-data comparison, coastal systems, nitrogen loading, eutrophication

1. Introduction

Ecological models are increasingly moving from heuristic to
applied, and this movement requires rigorous analysis and
optimization of accuracy, precision, and sensitivity to system
change. Ecological systems are subject to sporadic changes
caused by internal dynamics (Bronmark et al 2010), shifts in
drivers (climate (Scheffer and van Nes 2007), human inputs
(Goolsby et al 2001, Rabalais et al 2002a)), invasive species
(Higgins and Zanden 2010), and other factors. Some of
these changes can be included in models explicitly, but others
are beyond the scope of most modeling activities. These
unmodeled changes and processes are generally parameterized
through key model coefficients, and because systems change,
those parameterizations are subject to change, therefore it is
important for model calibrations to reflect the current state of
the system.

Ecosystems are also subject to relatively high ‘random’
short-term variability (e.g. weather) that does not necessarily
reflect directional change. Robust model parameterization
thus also requires sufficiently long time frames to capture
the range of system variability to both detect mean behavior
and undertake reasonable uncertainty analysis. There is
a potential tension between the goals of providing high
accuracy and high precision and between the challenges of
incorporating information about both random variability and
long-term system changes. So, it is important to develop
model calibration approaches that optimize model performance
(accuracy, precision) in the face of systems that are both
undergoing directional change and are highly variable.

Models of varying degrees of complexity have been
informative tools in understanding the controls on hypoxia
occurrence in river-impacted coastal areas (Peña et al 2010).
Hypoxia, low oxygen concentrations in bottom waters, occurs
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when decomposition rates exceed those of oxygen diffusion
and mixing. Hypoxia is a widespread and increasing
phenomenon (Diaz and Rosenberg 2008, Zhang et al 2010) that
can lead to widespread ecosystem changes including altered
biogeochemical cycles (Kemp et al 2005, Turner et al 2008),
fish kills (Diaz and Rosenberg 2008), decreased or displaced
fish production (Rabalais and Turner 2001), and decreased
value to human use through recreation and fisheries harvest
losses (Renaud 1986).

Two major river-impacted coastal hypoxic areas of the
United States occur in the Gulf of Mexico (GOM) along
the Louisiana–Texas coasts and in Chesapeake Bay (CB).
Hypoxia has been heavily studied in these areas (Justić
et al 1993, Bierman et al 1994, Rabalais et al 1994, 1998,
Boesch et al 2001, Rabalais and Turner 2001, Hagy 2002,
Rabalais et al 2002a, 2002c, Childs et al 2002, Rabalais
et al 2004, Kemp et al 2005, Rabalais 2006, Walker and
Rabalais 2006, Scully 2010, etc), due in part to concern over
potential fisheries impacts (Renaud 1986, Rabalais and Turner
2001), and management goals have been set to limit hypoxia
severity. Models have been used successfully in both systems
to explore the underlining causes of hypoxia and to make
specific management recommendations (Cerco and Cole 1993,
Rabalais et al 2002b, Justić et al 2003, Scavia et al 2003, Hagy
et al 2004, Turner et al 2005, Scavia et al 2006, Turner et al
2006, Justić et al 2007, Rabalais et al 2007, Turner et al 2008,
Greene et al 2009, Penta et al 2009, Wang and Justić 2009,
Bianchi et al 2010, Liu et al 2010, Liu and Scavia 2010, Peña
et al 2010). Models and empirical data indicate that hypoxia
in these systems is caused by a combination of nutrient-driven,
mostly nitrogen, production of phytoplankton organic matter;
decomposition; freshwater-driven stratification of the water-
column; and storm mixing. Management recommendations
have generally focused on control of nitrogen loading to these
systems due to evidence that it is an important driver of hypoxia
and its susceptibility to management compared to other drivers.
However, phosphorus load control has also been addressed
(Boesch et al 2001, Environmental Protection Agency (EPA)
Science Advisory Board (SAB) 2007, Mississippi River/Gulf
of Mexico Watershed Nutrient Task Force 2008).

Both systems have also undergone significant ecosystem
changes in hypoxia sensitivity to nutrient loads over the last
30 years, such that in both systems the severity of hypoxia
for a given nitrogen load is now approximately twice what
it was in the early 1980s (Hagy et al 2004, Turner et al
2008, Liu et al 2010, Liu and Scavia 2010). Ongoing
research and management scenarios are thus complicated by
the need to account for this varying ecosystem sensitivity and
by speculation about how the systems will respond as nutrient
loads change. Shifts in system sensitivity can appear abrupt
when viewed retrospectively (Hagy et al 2004, Environmental
Protection Agency (EPA) Science Advisory Board (SAB)
2007, Turner et al 2008, Greene et al 2009, Liu et al 2010),
however, because of significant interannual variability, they
can be impossible to recognize contemporaneously. This
delayed recognition of sensitivity change is a challenge to both
short- (annual) and long- (management scenarios) term results,
and highlights the need for models and model calibration

approaches that optimize model performance in changing and
highly variable systems.

In this study we test different model calibration
approaches for fitting similar models of the GOM and
CB to subsets of historical data that include system
changes and periods of high variability. A wide range of
modeling approaches, from simple regressions to 3D coupled
hydrodynamic–biogeochemical and earth system models have
been applied to hypoxia for both management and scientific
investigation (Peña et al 2010). More complex models are
generally able to resolve finer scale ecological mechanisms
and provide process based insight. Simpler models, however,
are often better predictors of system state and have proven
very useful for management applications (Peña et al 2010).
Within this range we use a relatively simple, mechanistically
based, model that treats estuary and coastal currents as ‘rivers’
with point source organic matter loads. We selected this
model because it has proven useful for management guidance
and because the computational simplicity allows the explicit
incorporation of uncertainty analysis (Scavia et al 2003, 2004,
2006, Scavia and Donnelly 2007, Stow and Scavia 2009, Liu
et al 2010, Liu and Scavia 2010). For a description of this
model’s use in the GOM in the context of other modeling
approaches, see the recent review by Peña et al (2010).

We test for accuracy, precision, and model sensitivity to
system changes by hindcasting parts of the historical dataset.
We then compare optimal model calibrations between these
two systems and discuss its implications for both ecological
interpretation and management. Finally, we use our optimal
calibrations to forecast outcomes under different nutrient
reduction scenarios.

2. Methods

2.1. Models

We use versions of the Streeter–Phelps (SP) river model
(Chapra 1997) developed for CB and the GOM. The model
is described in greater depth and its assumptions justified in
earlier publications (Scavia et al 2003, 2004, 2006, Scavia
and Donnelly 2007, Stow and Scavia 2009, Liu et al 2010,
Liu and Scavia 2010). These models share the same basic
structure but are adapted to each system. Both models treat the
estuary or coastal current as a ‘river’ and calculate longitudinal
profiles of dissolved oxygen (DO) concentration downstream
of an organic matter (BOD) point source (described below for
each system). This organic matter point source is assumed to
be proportional to the spring total nitrogen (TN) loading to the
system with a proportionality constant equal to the product of
the Redfield carbon to nitrogen ratio, the respiration ratio of
oxygen consumption per organic carbon, and the dilution of
inputs within the receiving water body. Spring TN loads were
used because spring loads are the dominant drivers of hypoxia
in these systems (Cerco 1995, Scavia et al 2003, Hagy et al
2004, Turner et al 2006).
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DO profiles are calculated at steady state, for each location
along the profile, DO is calculated by:

DO = DOs − kdBODu F

kr − kd
(e−kd

x
v − e−kr

x
v ) − Die

−kr
x
v (1)

where: DO = dissolved oxygen (mg l−1), DOs = oxygen
saturation (mg l−1), kd = BOD decay coefficient (1/day),
kr = reaeration coefficient (1/day), BODu = initial BOD
(mg l−1), x = downstream distance (km), F = fraction
of BOD sinking below the pycnocline (unitless), Di = the
initial oxygen deficit (mg l−1), and v = net downstream
advection (km/day). While in the original SP formulation,
v represents net downstream advection, in this application it
also parameterizes the combined effect of horizontal transport
and subsequent settling of organic matter from the surface.
Therefore, it has no simple physical analog.

The length of the hypoxic zone is summed across the part
of the profile with DO at hypoxic levels and converted to a
measure of hypoxic area or volume by empirical relationships
developed from measurements of the hypoxic area or volume
in each system (see below). The model was calibrated by fitting
predicted and measured area or volume and minimizing error
terms. During calibration, each parameter can be assumed to
be either constant across all years or adjusted each year. If a
parameter is adjusted each year, we assume that its variability
includes the effects of all unmodeled processes.

As in prior applications to CB and the GOM (Stow and
Scavia 2009, Liu et al 2010, Liu and Scavia 2010), the model
was calibrated using Bayesian fitting through Markov Chain
Monte Carlo methods (Lunn et al 2000, Gill 2002, Gelman and
Hill 2007). All model calibration was conducted in WinBUGS
(version 1.4.3), called through R (version 2.6.0, R2WinBUGS,
version 2.1-8), using the same methods and inputs described
elsewhere (Stow and Scavia 2009, Liu et al 2010, Liu and
Scavia 2010). In prior applications of both models, either v or
F was allowed to vary by year, and all other parameters were
fit as constants across years or determined from empirical data
(see below).

Model application to the two systems differed in four
ways:

(1) The location of the organic matter point source was
determined by the geography and physics of each system. In
CB, summer surface waters flow seaward and bottom waters
flow landward. The primary nutrient input to the modeled
area of CB is the Susquehanna River at the head of the bay
and most hypoxia occurs in the mid-bay region. Thus, the
model origin and organic matter point source were assigned
to the lower end of the mid-bay region (220 km down bay from
the Susquehanna River mouth) and distance in the model is
following the landward flowing bottom water. Organic matter
loading was based on Susquehanna River spring TN loading.
In the GOM, hypoxia occurs below a westward flowing coastal
current along the Louisiana and Texas costs. Because there
are two main nutrient inputs to the GOM (the Mississippi
and Atchafalaya Rivers), we model two organic matter point
sources, one at the model origin (Mississippi River) and one
at 220 km down current (Atchafalaya River). Organic matter
is proportional to spring TN load with 50% of the Mississippi

River and 100% of the Atchafalaya River TN load assumed to
be entrained in the westward current.

(2) The initial oxygen deficit (Di) was assumed to be 0
in the GOM because there is little oxygen depletion in waters
east of the delta. Di in CB was estimated each year based
on measured bottom-water oxygen concentrations at the model
origin and a stochastic term based on measurement variation.

(3) In CB, the reaeration coefficient is known to vary with
distance down estuary (Hagy 2002). Our model uses this
observed variation in distance (x) and calculates krx = bx K
where bx is a location specific constant accounting for spatial
variation (Scavia et al 2006) and K is a fit model parameter
scaling reaeration.

(4) In CB, the volume of water with DO < 2 mg l−1 is
determined each year, so the model hypoxia cutoff is set to
2 mg l−1 when determining length (L), and volume (V ) is
calculated using the empirical relationship V = 0.003 91L2

(Scavia et al 2006). In the GOM, hypoxia is reported as
the area of hypoxic bottom water, with measurements taken
just above the sediment water interface. Because the model
simulates the entire sub-pycnocline layer and because available
DO profiles show that when near-bottom DO is 2 mg l−1,
average sub-pycnocline DO approaches 3 mg l−1, the GOM
model hypoxia cutoff is set to 3 mg l−1. Hypoxic area (A)
is calculated using the empirical relationship A = 38.835L
(Scavia and Donnelly 2007).

2.2. Data sources

We use spring total nitrogen (MT TN/d) loading data from the
USGS to drive both models. Average January through May
TN loads from the Susquehanna River (at Conowingo, MD
gauging station) are used for CB and May TN loads from the
Mississippi (at St Francisville) and Atchafalaya (at Melville)
Rivers are used for the GOM (USGS 2007, 2009, 2010).

Model calibrations and tests are conducted using
empirically measured hypoxic area (GOM) or volume (CB).
GOM hypoxic area has been interpolated from near-bottom
DO measurements collected by shelf-wide cruises in late July
or early August (Rabalais et al 2002b, Rabalais 2009). Cruises
have been conducted yearly since 1985 with the exception of
1989. Because the measured hypoxic area was potentially
impacted by tropical storms in 1996, 1998, 2003, and 2005, we
removed these years from both our calibration and test datasets
(see Turner et al 2008) because the model is incapable of
accounting for these extreme conditions. Such tropical storms
can disrupt water-column stratification, mixing oxygenated
water downward, and thus temporarily break the link between
production and hypoxia observed in non-storm years. CB
hypoxic volume is determined from DO profiles taken on
four cruises in July and August each year since 1984 and
sporadically before then (Hagy et al 2004, Chesapeake Bay
Program (CBP) 2008). We use the July CBP cruise data from
the consistent record since 1984 for model calibration and
testing.

Initial oxygen deficit (Di) for CB was based on average
July bottom-water oxygen concentration measured at stations
in the mid-bay region (Scavia et al 2006, Chesapeake Bay
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Program (CBP) 2008). The difference between saturated and
measured oxygen concentration was used for mean Di in
calibration years. For hindcasts and forecasts, Di was drawn
from a normal distribution with average and standard deviation
equal to that in the measured calibration data.

2.3. Hindcast and forecast tests

We tested several model calibration algorithms to optimize
model performance. Each test used a calibration dataset
and a test dataset. Model performance was measured by
assessing precision, accuracy, robustness, and sensitivity to
system change, although some tests focus on a subset of
these measures. Precision was assessed as the size of the
coefficient of variation and the 95% credible interval (CI) of
the model prediction. Accuracy was assessed as the percentage
of observations in the test dataset that fell within the 95% CI of
the model prediction. It is expected that this value could differ
from 95% because the test dataset contains observations for
years that are not included in the model calibration and thus the
model is predicting outside its statistical sample. Robustness
was based on the impact of individual years in the calibration
data set on calibrated parameter values. Sensitivity to system
change was assumed to be maximized when few, recent years
of calibration data were used because averaging across larger
numbers of data points decreases the impact of any given point
on the average.

To test the impact of increasing the number of years
in the calibration set on model precision and robustness
(Test 1), calibrations began with the first three years of data
and we progressively added years for successive calibrations
(calibration dataset). To test precision, we used each calibrated
model to predict hypoxia for each year in the full dataset (test
dataset) and the average CV and 95% CI were calculated. To
test robustness, we examined variation in parameter values
over time from each calibration test. Model accuracy was
quantified by calculating the percentage of observed hypoxic
areas or volumes that fell within the model’s 95% CI for that
year’s prediction. We repeated this test (Test 2) beginning with
the three most recent years and adding years in reverse order.

Because the above comparisons are confounded by
overlap between the calibration and test datasets, they were
used only to narrow the range of years for which a more
complete test was conducted. In these tests of accuracy,
forecasts were conducted using 3, 5, and 7 year windows of
calibration data (Test 3, range selected based on the results
of Tests 1 and 2, see below). Precision was quantified by
the CV of the hypoxia forecast in the year following each
calibration and the average of these CVs across all calibrations
using the same window size. The accuracy of these calibrations
was tested by forecasting hypoxia in the year following each
calibration window and calculating the percentage of observed
hypoxic areas or volumes that fell within the forecast’s 95% CI
across all calibrations using that window (test dataset).

To prepare for forecasts where all model coefficients are
to be held constant, we tested two methods of parameter
calibration. In prior work with this model (Liu et al 2010, Liu
and Scavia 2010), v was estimated as the year-specific term vi

and then forecasts used the mean and standard deviation of vi

through time, ignoring the Bayesian fit parameter distribution.
We compared this approach with one that estimated all
parameters (including v) as constant distributions through
time such that forecasts could be conducted directly from the
calibrated distributions (Test 4). For both methods (using vi

and v) in CB, the parameter Di, which is not calibrated but
calculated from observed values for calibration years, was
estimated using the average and variation in the previously
observed values.

2.4. Response curves

Response curves of predicted hypoxic area or volume versus
spring TN load, were constructed in the same way as hindcasts
and forecasts but using evenly spaced spring TN loads
spanning the observed range rather than exact historical loads
(Scavia et al 2006, Liu et al 2010, Liu and Scavia 2010). As
in prior publications (Liu et al 2010, Liu and Scavia 2010),
response curves were constructed using 50% CIs to better
constrain conditions in typical or average years.

3. Results

3.1. Full dataset calibration

When the model is fit to the entire CB and GOM datasets,
allowing vi to vary in each year and then averaging vi for
hindcasts, hindcasting accuracy is high (100% and 80% of
the observations are within the 95% CI of the hindcast,
respectively, see right-most symbols associated with the full
dataset in figures 1(a) and (c)). These percentages differ from
95% because of additional variability added to the model when
the parameter vi, and the parameter Di in the CB model, are
averaged across years. Model precision, as measured by the
CV of the predicted hypoxic region, is better for CB (33%) than
for the GOM (41%) (see right-most symbols associated with
the full dataset in figures 1(a) and (c)). Model parameters have
mean values of F = 0.91, kd = 0.14, K = 0.58, vA = 2.5
(where A indicates the average across years), DA = 1.2 for
CB; and F = 0.51, kd = 0.006, kr = 0.012, vA = 0.64
for the GOM (see right-most symbols associated with the full
dataset in figures 1(b) and (d)). These values are consistent
with previously published model calibrations and, as in prior
calibrations, estimated process rates based on these parameters
are consistent with observed rates (Scavia et al 2006, Scavia
and Donnelly 2007, Liu et al 2010, Liu and Scavia 2010).

3.2. Effect of number of years in the calibration

The precision and accuracy of the models calibrated to the full
datasets represent a goal for calibrations using sub-datasets.
However, they may not represent the best overall model
calibration because using the full dataset ignores temporal
trends and regime shifts within the system and thus sacrifices
model sensitivity to system change. It also confounds
calibration and test datasets, causing a possible overestimation
of model accuracy in predicting novel conditions. So, we
tested model performance by calibrating to subsets of data
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Figure 1. (Test 1) Average CV of predicted hypoxic volume or area and % observations in 95% CI using (a) a test dataset of Chesapeake Bay
hypoxic volume from 1984–2008 and calibration datasets of increasing numbers of years starting in 1984 and (c) a test dataset of Gulf of
Mexico hypoxic area from 1985–2009 and calibration datasets of increasing numbers of years starting in 1985. Parameter estimates (panels
(b) and (d); means, with 50% CI bars for vA) corresponding to the model calibrations used in panels (a) and (c). Note that results from
calibrating to the full datasets are shown as the right-most symbols in each graph.

with increasing number of years. Beginning at the start of
each dataset (Test 1), adding years causes a rapid improvement
for the CB model performance in both precision and accuracy
until about 5 years of data are used (figure 1(a)). Beyond
this point, precision and accuracy asymptote toward values of
the full dataset. Similarly, CB parameter values were highly
variable in the beginning until about 5 years of data were
used (figure 1(b)). Beyond 5 years, there was little change in
values, despite known changes in system behavior, indicating
that model calibration to long datasets loses sensitivity to
these changes. These same patterns of precision, accuracy,
and parameter variability were observed when calibration was
started using the three most recent years and adding years in
reverse order (Test 2, data not shown). Thus, using about 5
years of calibration data seems to offer an optimal combination
of model precision, accuracy, and robustness, while avoiding a
loss of sensitivity to system change in this system.

Determining optimal calibration for the GOM involves
a greater compromise between precision and sensitivity. As
in CB, adding calibration years (Test 1) causes a rapid
improvement in model precision and accuracy (figure 1(c)).
However, precision and accuracy continue to improve until
about 15 years of calibration data. The model also maintained
more sensitivity to system change with the addition of
calibration years for longer datasets than the CB model
(figure 1(d)). Parameter values, especially F and kr continue to
change as years are added up to at least 15 years of calibration
data. When calibration started using the three most recent
years and years were added in reverse order (Test 2, data not
shown), model accuracy was high (100% of observations in
the 95% CI) using even 3 years of data and remained at this
level as years were added. Model precision improved quickly
until about 5 years and then saturated, and parameter values
varied in a similar pattern. Though results were more mixed
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Figure 2. (Test 3) (a) CV of predicted hypoxic volume in CB for the year following each 3, 5, and 7 year calibration period. (b) Parameter
estimates with error bars showing the 50% CI of average v over the 3 year calibration period.

Figure 3. (Test 3) (a) CV of predicted hypoxic area in the GOM for the year following each 3, 5, and 7 year calibration period. (b) Parameter
estimates with error bars showing the 50% CI of average v over the 3 year calibration period.

for the GOM, with continued improvement in model precision
and accuracy beyond the first 5 years of calibration data in the
forward though not the backward calibration tests, we decided
to further test models using 5 years of calibration data because
using 15 or 20 years lost sensitivity to system changes which
have been observed on shorter time scales (Turner et al 2008,
Liu et al 2010).

3.3. Moving window calibrations: case 1—averaging vi

Previous applications of this model estimated vi for each year
in a calibration dataset and then averaged it for forecasts. So
we first test the moving window calibrations (Test 3) with
this method and then compare it below to the case where v

is estimated as a constant over the calibration widow period
(Test 4). Tests with 3, 5, and 7 year moving windows

showed little difference in precision (CV) when forecasting
CB (figure 2(a)) or GOM (figure 3(a)) hypoxia in the year
following the calibration window and no overall improvement
in precision using larger windows. A change in precision could
indicate over or under fitting the model, but this does not seem
to be taking place. For all window sizes, parameter values
changed over time; however, parameter variability was highest
using the smallest (3 year) window (figures 2(b) and 3(b)).
This increased variability indicates higher model sensitivity
to system state because more of the underlying variability is
reflected in the parameters. Model accuracy was high for all
window sizes in CB and decreases with window size in the
GOM. In CB the per cent of observations in the 95% CI is
100%, 95%, and 100% for the 3, 5, and 7 year calibration
periods, respectively, compared to 93%, 80%, and 73% for
these calibrations in the GOM. Thus, the results support the
use of a 3 year moving window.

6
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Figure 4. (Test 4) (a) CV of predicted hypoxic volume in CB for the year following each 3, 5, and 7 year calibration period. (b) Parameter
estimates for the 3 year calibration period. (c) Forecast hypoxic volume (black line, forecast mean; gray dotted lines, forecast 95% CI) and
observed hypoxic volume (black dots) for each forecast year using the 3 year calibration period.

Compared to using the full dataset, 3 year moving window
calibrations resulted in the same accuracy for CB (100%) and
improved accuracy for GOM (95% versus 80% of observations
within the 95% CI). Average model precision (CV) for the
3 year moving window calibration was slightly poorer in CB
(39% versus 33%), but was slightly improved in the GOM
(30% versus 41%). Using a moving window allows the
model precision to vary over time based on recent system
variability. Precision is higher (lower CV) during periods of
system stability, such as the late 1990s in the GOM, and lower
(higher CV) following regime shifts (figure 3(a)).

3.4. Moving window calibrations: case 2—constant v

Fitting vi for each year and then averaging it for forecasts
introduces arbitrary variation into the model. As an alternative,
we tested moving window calibrations of 3, 5, and 7 years
fitting all parameters, including v, as constants (Test 4).

With 3, 5, and 7 year moving window calibrations, CB
hypoxia forecast accuracy is lower than expected. Accuracy is
highest for the 3 year window and decreases with increasing

window size (82%, 70%, and 68% of observed hypoxic
volume were within the model 95% CI, figure 4(c) compares
forecast and observed hypoxia for the 3 year moving window
calibration). There was very little difference in precision (CV)
among window sizes (figure 4(a)) and no overall improvement
in precision using larger windows. For all window sizes,
parameter values changed over time; however, as in prior tests,
parameter variability was highest using the smallest (3 year)
window (figure 4(b)), indicating the highest model sensitivity
to system state.

Test for the GOM resulted in lower accuracy, with 73%,
68%, and 46% of the observed hypoxic areas within the
model’s 95% CI for 3, 5, and 7 year windows, respectively
(figure 5(c) compares forecast and observed hypoxia for the
3 year moving window calibration). There was very little
difference in precision (CV) among window sizes (figure 5(a)),
no overall improvement in precision using larger windows, and
parameter values changed over time with the highest variability
associated with the smallest (3 year) window (figure 5(b)).

The CV of predicted hypoxic area or volume varies with
time in all moving window calibrations. However, the average
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Figure 5. (Test 4) (a) CV of predicted hypoxic area in the GOM for the year following each 3, 5, and 7 year calibration period with all
parameters treated as constants. *** In 2000, CV of predicted hypoxic area was 98%, 45%, and 54% for the 3, 5, and 7 year calibration
periods, respectively, and is not graphed. (b) Parameter estimates for the 3 year calibration period. (c) Forecast hypoxic area (black line,
forecast mean; gray dotted lines, forecast 95% CI) and observed hypoxic area (black dots) for each forecast year using the 3 year calibration
period.

CV is improved by calibrating with a constant v in both
systems. Using the 3 year window, the CV for CB is improved
from 39% to 33% and for GOM from 30% to 18%, compared
to moving window tests averaging vi. This is a substantial
improvement in model precision. This increase in model
precision is accompanied by a decrease in model accuracy.
However, because the increased variability introduced into
the model by averaging year-specific vi is not related to a
specific mechanism or known ecological process, the lower
forecasting accuracy is likely a better representation of true
model performance. The SP model is a vast simplification
of nature and the accuracy cost of using this model (95% −
82% = 13% for CB and 22% for the GOM) reflect unmodeled
variation in these systems.

4. Discussion

The dataset for the GOM included years in three distinct and
previously observed system states with varying sensitivity to

hypoxia formation (Environmental Protection Agency (EPA)
Science Advisory Board (SAB) 2007, Turner et al 2008,
Greene et al 2009, Liu et al 2010). Similar changes in system
state have been observed in CB, however, data limitations
prevented us from including the historic CB system state
(Hagy et al 2004, Liu and Scavia 2010) in the current model
tests. Model accuracy was poorer for the GOM than for
CB and one of the reasons could be the attempt to calibrate
the model across multiple system states. Including multiple
states is minimized when using short calibration windows
and improved model accuracy in the shortest windows are a
result. GOM model accuracy for the 3 year moving window
calibration, fitting v as a constant, is further improved to 78%
when excluding calibrations that overlap more than one system
state. Though such exclusions can only be identified post
facto, this further supports use of shorter calibration windows
to minimize including multiple system states.

Initial comparisons, adding years to the calibration
dataset, starting from the oldest (figure 1) or most recent
(data not shown) data, indicated that 5 or more years
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Figure 6. Hypoxia response curves for CB and the GOM based on years early in the historic record and recent years. The year ranges cited in
each legend are the years in the respective calibration datasets. Solid lines show the average forecast response and dotted lines show the 50%
CI of forecast response.

of calibration data were needed to optimize precision and
accuracy. However, more extensive comparisons using 3, 5,
and 7 year calibration datasets and employing more robust
accuracy measures (by forecasting only the year following a
calibration window) show that model performance is optimized
with 3 year calibrations. These tests showed less of a tradeoff
between model precision and accuracy than was expected.
Model precision did not differ among window lengths in any
comparison and in fitting either year-specific or constant v.
Model accuracy was either higher in the shortest window or
did not change with window size. As expected, the shortest
window calibrations were the most adaptive to system change.
This responsiveness is seen in both the improved model
accuracy in the changing GOM and in increased parameter
variability in both systems.

The tradeoff between precision and accuracy existed for
both models calibrated using year-specific or constant v. We
believe that fitting and averaging year-specific vi introduces an
artifact that improves model accuracy by arbitrarily reducing
precision. Thus, we propose that the optimal calibration for
annual forecasting is to use a rather short (3 year), recent
dataset treating all parameters as constants.

4.1. Forecasts

Using the 3 year window calibrations, we developed load–
hypoxia response curves for CB and the GOM for different
periods in the historical record (figure 6). The GOM has
undergone two shifts in sensitivity between the earliest (1986–
8) and most recent (2005–7) calibration periods, and the
resulting increase in sensitivity can be seen across the TN
range.

Though the primary CB regime shift appears to have
occurred before the start of our dataset (Hagy et al 2004, Kemp
et al 2005, Scavia et al 2006, Conley et al 2009), CB appears
to be undergoing a gradual increase in sensitivity to nutrient

loads from 1983 through at least 2005 (Liu and Scavia 2010,
Scully 2010). This increasing sensitivity is reflected in our
parameter estimates (figure 4(b)) and in response curves using
1988–90 and 2002–4 calibration datasets (figure 6). Between
these periods, hypoxia sensitivity increased, especially at high
TN loads. Parameter values for recent years trend back toward,
and even beyond, those earlier in the dataset. Accordingly,
the most recent (2005–2007) response curve shows decreased
sensitivity. At high TN loads, the curve resembles the 1988–
90 ‘low sensitivity’ case, and it appears to have even lower
sensitivity at lower TN loads.

These changes are driven mostly by changes in the
parameters F , v, K , and Di. F and v increase between the first
two periods and then decrease again before the final period.
Sensitivity analyses (not shown) indicate that increases in F
tend to increase sensitivity at all TN loads while increases in
v increases sensitivity more at high TN loads. At the same
time K decreased between the first two time periods while
remaining relatively unchanged between the second and third.
Like increases in v, decreases in K tend to increase sensitivity
at high TN loads. Finally, the measured parameter Di remained
constant between the first two periods but decreased between
the second and third. Decreases in Di lead to decreases in
sensitivity at low TN loads. This measured decrease in DO
deficit in recent years may indicate a release from oxygen stress
further down bay.

Using models calibrated with the three most recent years,
or in the case of the GOM the three most recent years
that were not impacted by severe tropical storms, provides
a consistent method for annual forecasts that is relatively
robust to regime shifts and changes in system sensitivity.
However, changes in system sensitivity still pose a significant
challenge for developing long-term scenarios—that is, in
setting nutrient load targets, which response curve is most
appropriate? Such long-term forecasts require assumptions
about the future system sensitivity to hypoxia formation. Will
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the system continue to follow the most recent curve, will it
revert to a former sensitivity (as may be happening in CB), or
will it become even more sensitive? We suggest this public
policy challenge is best met with ensemble modeling using
the family of response curves with curve selection weighted
based on expert judgment and acceptable risk. For example,
if a given hypoxia level were deemed ecologically or socially
unacceptable, any response curve that predicted hypoxia above
this level at certain nutrient loadings could be weighted higher
over that loading range based on the precautionary principle.
Alternately, evidence of system recovery to a lower sensitivity
state could shift the weighting of curves toward those with
lower sensitivity while still maintaining some weight on other
observed curves.

The model presented here is primarily focused on
forecasts of interest for hypoxia management and has also been
used to explore system level trends in hypoxia sensitivity (Liu
et al 2010). Both simpler and more complex models have also
been applied to the GOM and CB systems and each model
type yields different insights into the physical, watershed,
and biological controls of hypoxia as well as its impacts on
individual organisms, food-webs, and biogeochemistry (Peña
et al 2010).

5. Conclusions

The forecasting ability of a simple hypoxia model with
Bayesian incorporation of parameter uncertainty and variabil-
ity for GOM and CB was optimized by calibration to short
(3 year), recent datasets. This calibration window approach
was used to assess the tradeoff between incorporating adequate
system variability into model parameterization and the ability
to track gradual (in CB) and abrupt (in the GOM) ecosystem
changes in hypoxia sensitivity to nutrient loads. We propose
use of this moving window calibration method for future short-
term (annual) forecasts. The underlying changes in system
sensitivity pose a great challenge to the long-term forecasting
and additional work, using Bayesian weighting among families
of models or incorporation of more complex model features,
coupled with climate models, is likely needed.
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Justić D, Rabalais N N and Turner R E 2003 Simulated responses of
the Gulf of Mexico hypoxia to variations in climate and
anthropogenic nutrient loading J. Mar. Syst. 42 115–26
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