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Chapter 1 

Background 

In recent years resin composites have been used extensively as an 

alternative to dental amalgams.  With this increase in use has come the 

desire to improve the various properties (optical, physical, mechanical, etc.) 

of resin composites.  

 One property (optical) to consider is translucency.  Translucency is a 

property of substances that permits the passage of light but disperses the 

light, so objects cannot be seen through the material1.  Tooth enamel has 

inherent translucency, thus the task in dentistry is finding an esthetic dental 

restoration that has translucency properties similar to human enamel.  The 

most common esthetic restorative material used is dental resin composite.  

The translucency of dental resin composites depends on their thickness and 

the scattering and absorption coefficients of the resin, filler particles, 

pigments, and opacifiers2-4.  Thus, the inherent translucency of the material 

may contribute to matching the shade of the underlying tooth and the tooth 

adjacent to it.   

 Translucency of esthetic materials is usually determined with the 

translucency parameter or contrast ratio5.  Translucency parameter refers to 
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the color difference between a uniform thickness of material over a black 

and white background, and corresponds directly to common visual 

assessments of translucency6, 7.  If a material is absolutely opaque then 

translucency parameter will equal zero.  Thus the higher the translucency 

parameter values, the higher the translucency of the material.  The color of 

the esthetic material is measured using a reflection spectrophotometer and 

these coordinate values are used to determine translucency parameter.  The 

coordinate values are part of a color notation system developed by 

Commission Internationale de l’Eclairage (CIE).  The CIE L*a*b* (CIE76) 

system is predominantly used in dental related studies.  The color 

coordinates are lightness/value (L*); and chromatic coordinates: green/red 

(a*) and blue/yellow (b*)8, 9.  Once these coordinates are known 

translucency parameter (TP) can be found by the following equation: 

 

TP= [(L*w-L*b)2 + (a*w-a*b)2 + (b*w-b*b)2]1/2. 

 
Translucency can also be determined by contrast ratio, which is used 

to measure the opacity of a dental material.  Opacity, represented by contrast 

ratio, is the ratio between the daylight apparent reflectance of the specimen 

when backed by a black standard and the daylight apparent reflectance of the 

specimen when backed by a white standard1.  Contrast ratio is calculated 
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using the following formula: Yb/Yw where Yb represents the luminous 

reflectance against a black background and Yw represents the luminous 

reflectance against a white background10.  In comparison, as translucency 

parameter increases contrast ratio decreases.   

 There are many variables that may affect the translucency of a 

material.  Such variables may include polymerization, shade, saliva, aging, 

and filler particle composition and size.  The size and number of internal 

filler particles affect light scattering in resin materials thus affecting the 

translucency and visual appearance of the composite in relation to the 

underlying tooth11.  

Another property to consider is the radiopacity of a composite.  

Radiopacity is important because it can be used to evaluate marginal 

adaptation, detect caries, and assess the overall quality of a restoration, such 

as interproximal contours, contacts, overhangs, and voids12-15.    

Furthermore, composites that are not adequately radiopaque have been 

confused as secondary caries in subsequent recall appointments and restored 

unnecessarily.  

One of the commonly used techniques to determine the radiopacity of 

a resin composite is the transmission densitometer. According to the 

International Standards Organization (ISO) 4049, the radiopacity of a 1.0 
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mm thick composite specimen should be equal to or greater than the same 

thickness of aluminum to be deemed radiopaque16.   According to this 

guideline a 1mm thick specimen equivalent to 1mm thick aluminum would 

have a radiopacity approximately similar to dentin12, 13.   

 

Purpose 

Determine and compare the translucency and radiopacity of five different 

composites. 

 

Hypothesis 

Primary 

Ho1 - There is no significant difference in translucency among 5 different 

composites. 

Ha1 – There is a significant difference in translucency among 5 different 

composites. 
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Secondary 

Ho2 – There is no significant difference in radiopacity among 5 different 

composites. 

Ha2 – There is a significant difference in radiopacity among 5 different 

composites. 

Tertiary 

Ho3 – There is no correlation between translucency and radiopacity. 

Ha3 – There is a correlation between translucency and radiopacity. 

 

Specific Aims 

1. Determine if there is a statistically significant difference in 

translucency among different composites. 

2. Determine if there is a statistically significant difference in 

radiopacity among different composites. 

3. Determine if there is a statistically significant difference in 

radiopacity when comparing results from a photographic 

transmission densitometer and results from visual evaluation by 

two independent examiners. 

4. Determine if there is a correlation between translucency and 

radiopacity. 
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Literature Review 

Translucency 

Thickness 

Thickness of the composite is important in determining translucency. 

Ikeda, et al17 evaluated the translucency parameter of three different 

composites based on shade (opaque A3 and A3), filler system (semi-hybrid, 

microfill, and small-particle-filled) and specimen thickness (1mm, 2mm).  

They also wanted to evaluate the ability of the composites to mask dark 

background color.  Eighty-four (42 each) 1mm and 2mm disk shaped 

specimens were fabricated by placing composite in a 10mm diameter acrylic 

mold and held in place by two glass slides on each side.  Each specimen was 

then cured 60 seconds each side.  A colorimeter was used to record color 

measurements. Measurements were taken with the specimens against a black 

and white backing and also against a backing of the composite itself.  From 

these measurements, translucency parameter (TP) was calculated and also 

E*, which was calculated from the coordinate values of the black backing 

and composite backing.  Delta E was used to determine the ability of the 

composite to mask a dark background color.  Results showed that opaque 

shades and 2mm thick specimens had lower TP values, thus less translucent, 

when compared to the regular shade composites and 1mm thick composites.  
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Also, 1mm thick specimens had a higher E* thus demonstrating a lesser 

ability to mask dark background colors.  This article is important because it 

adequately shows that there are multiple factors that affect translucency and 

all must be considered to a degree when selecting a composite. 

Kamashima, et al18 also looked at the translucency of different 

materials (composites of different shades- enamel, body, opaque) at varying 

thickness (0.5mm, 1mm, 2mm, 3mm, 4mm).  They also wanted to evaluate 

the inherent colors of composites used for the layering technique.  Acrylic 

molds 8mm in diameter and corresponding to the varying thickness were 

packed with composite, placed between glass slides, and held with finger 

pressure while cured 60 seconds on each side. Color measurements were 

taken with a colorimeter against a white and black backing and from these 

measurements translucency parameter (TP) was determined. Inherent color 

was determined by statistically analyzing (1 way ANOVA and Games-

Howell post hoc test) the L*, a*, and b* values of the 4mm thick specimens 

over white backing.  Results showed that in general as thickness increased, 

the TP values decreased regardless of shade.  Among shades, there was less 

variation as thickness increased but the enamel shade tended to be the most 

translucent followed by the body shade then the opaque shade.  Results of 

color tests showed that enamel shades were more bluish and the body and 
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opaque shades tended to exhibit brighter more yellowish characteristics with 

opaque shades having the yellowish characteristics.  A potential flaw in this 

study is the fact they placed an importance on thickness of the specimen yet 

they used finger pressure to hold the glass slides over the acrylic mold.  

Something that applied consistent pressure should have been used and also 

the authors should have stated each specimen was measured with a 

micrometer to verify thickness. 

 

Storage, Thermocycling, Aging 

 Buchalla, et al19 wanted to determine if storage of specimens in a 

solution affected the color and translucency of resin composites.  The 

purpose of this study was to determine color and translucency changes of 2 

resin composites in dry storage versus wet storage.  Ten specimens (1.2mm 

x 15.5mm) of each composite were placed in either dry storage or wet 

storage (distilled water) for 1 month.  Specimens were also subjected to 

artificial light (10 hours/day) for 1 month.  Color properties (L*, a*, b*) of 

each specimen were then recorded using a colorimeter after 1, 2, 4, 8, 16, 32, 

and 48 hours and then after 1 month.  Contrast ratio was used for 

translucency and was configured after 1 month.   Results showed wet storage 

resulted in significantly higher changes in color and contrast ratio (more 



 9

opaque) from baseline to the 1-month measurement.   Changes were greater 

in the wet storage specimens when compared to those stored in dry storage.  

Those exposed to artificial light also showed greater color changes than 

those stored in the dark.  However, even though these changes were 

significant in certain situations the authors pointed out that these changes 

would most likely not be perceptible under normal clinic conditions.  

In 2005 Lee, et al20 examined how translucency is affected by storage 

in salivary enzymes versus a phosphate buffered saline solution.  The colors 

of specimens of 3 brands of resin composites of varying shades were 

measured after immersion in a phosphate based solution or a salivary 

enzyme esterase (ETE) for 9 weeks.  From these color readings translucency 

parameter (TP) was determined and the results compared. Specimens were 

1.75mm by 8mm and 10 specimens for each shade were prepared.  Results 

showed much variation in translucency between shades of each composite 

and also among the 3 composites.  In addition, translucency tended to 

decrease after 9 weeks storage in solution, regardless if it was the saline or 

ETE.  However, there was no significant difference between translucency 

parameter whether stored in saline or the ETE solution.  This is important 

because the results show that enzymes of saliva probably have little effect on 

the translucency of composite.   
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In 2006, Lee, et al21 looked at 4 different types of materials (resin 

composite, glass ionomer, resin-modified glass ionomer, compomer) and 

examined the changes in optical properties after accelerated aging in an 

aging chamber.  Specimens were of the same A2 shade and were 1mm thick 

by 38mm in diameter.  Baseline and aging measurements were recorded 

with a reflection spectrophotometer and 2 modes (reflectance and 

illumination) of measurement were used.  After baseline measurements, 3 

specimens of each material were aged for an energy exposure of 150 kJ/m2 

(approximately 3 months clinical service) under varying conditions.  

Condition variables included lighting, humidity, and temperature.  After 

aging, the authors were looking for changes in color (E*), translucency 

parameter (TP), and opalescence parameter (O*).  Results showed that 

accelerated aging influenced all materials and all optical properties 

significantly.  Both glass ionomer materials were influenced the greatest, 

with the drop in TP being the biggest change.  The resin composite and the 

compomer were the most stable with the authors determining the compomer 

the most stable.  The biggest surprise here is the stability of the compomer 

but it would have been interesting to see if the changes would have been 

greater if the materials were aged longer. 
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As a follow up to the previous study, Lee, et al22 looked at the 

opalescence and fluorescence of only resin composites after accelerated 

aging.  The authors stated that since opalescence and fluorescence can 

influence translucency and masking effect, those properties after aging 

needed to be further investigated.  Methods were similar to the previous 

study in respect to specimen size, aging procedures, and 2 modes of 

measurement with the reflection spectrophotometer.  In this study, seven 

resin composites were used and an unfilled composite was used as a 

reference.  An additional variable added to this study was 

inclusion/exclusion of UV-light.  The authors stated that since UV light 

causes fluorescent emission in resin composites they wanted to examine 

what influence the inclusion/exclusion of UV light had on translucency 

parameter and masking effect of the composites.  Results showed that 

opalescence values did not change significantly after aging even though UV 

inclusion/exclusion affected values significantly.  Fluorescence, TP, and 

masking effect values changed significantly after aging.  For fluorescence, 

the composite material influenced the value significantly but the mode of 

measurement did not.  For translucency parameter, the composite material 

influenced the value significantly but inclusion/exclusion of UV light did not 

influence the values. The authors stated that since UV light 
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exclusion/inclusion affected values for opalescence and fluorescence 

significantly then the two variables were correlated.  The significance of this 

article demonstrates once again how much translucency decreases with 

aging and this should be taken into consideration during shade selection of a 

resin composite. 

In 2008, Lee, et al23 examined how thermocycling 8 composites of 

varying shades affected different optical parameters (TP, E*, ’s in each 

coordinate,   in chroma).  Specimens were 1mm thick by 12mm in 

diameter.  Color coordinates were determined using a reflection 

spectrophotometer.  Results showed color change was in the range of 1.1 to 

4.6 E* units and TP change was in the range of -3.8 to 0.1 which 

corresponds to a decrease in translucency.   Chroma change was -2.0 to 4.6.  

The changes for the color coordinates were as follows: -2.4 to 1.3 for L*, -

0.3 to 2.1 for a*, and -2.0 to 4.5 for b*.  Changes in all of the optical 

parameters were influenced by the brand of composite.  These changes were 

consistent even with different brands of the same shade.  Finally, the authors 

noted that b* was the most influencing factor on color change after 

thermocycling.  The importance of this study supports other studies that 

color change and other optical parameters such as translucency parameter 

tend to vary according to the individual brand of composite. 
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Curing, Polishing, Shade 

 Yu, et al5 aimed to measure and classify the translucency of varied 

brands and shades of resin composites.  Yu looked at eight different 

composites and 41 different shades among these composites.  Specimens 

were 1mm thick by 12mm in diameter.  Color coordinates were measured 

with a reflection spectrophotometer against a white and black backing and 

also against the material itself.  Translucency parameter (TP) and contrast 

ratio (CR) were calculated from the coordinate values.  The results showed a 

TP value range from 8.5 to 20.6.  This was significantly influenced by the 

shade designation of resin composite.  Within each brand, TP values varied 

by shade designation.  When comparing shades across brands there was no 

significant difference, although A1 shades had the highest mean TP values 

and A3.5 the lowest mean TP values.  When comparing TP values to CR 

values there was a Pearson correlation coefficient -0.84.  This means TP and 

CR are highly correlated and can be used interchangeably. 

 Ryan, et al24 also looked at the translucency of composites in respect 

to shade.  However, here the authors used only A2 or B2 shades and divided 

the classification of composites into opaque, dentin, body (universal), and 

enamel based on how the manufacturer classified the composite.  The 

authors tested 39 composites (9 different brands) fabricating 4 specimens for 
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each composite.  Specimens were 2mm thick by 13mm in diameter.  They 

used a chroma meter to measure the specimens.  Results showed, in general, 

opaque and dentin composites yielded relatively low TP values, body 

composites yielded intermediate values and enamel shades yielded the 

highest TP values.  However, the values were indistinct and multiple values 

overlapped.  The authors concluded that the values provided more 

information than the respective category types and thus it is best to know the 

translucency of a particular brand versus a particular category shade. 

 It is important to look at how curing and polishing affect translucency 

and color change and also what influence shade has on these optical 

parameters.  In 2004, Lee, et al25 examined all three variables when looking 

at a new nano-filled composite.  The authors examined the color change, 

translucency parameter, and contrast ratio of a nano-filled composite before 

and after curing, polishing, and thermocycling.  They used an enamel shade 

and translucent shade.  The control composite was a hybrid.  There were five 

specimens for each color measurement and all specimens were 2mm thick 

by 10mm in diameter.  After measurements for pre-cure and after-cure were 

made, specimens were polished with 1500-grit wet and dry SiC paper on 

both sides.  After measuring again, specimens were thermocycled for 2000 

cycles then measured again.  All color measurements were done with a 
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reflection spectrophotometer.  Results showed that the average color change 

after curing was greatest with the translucent shade nano-filled group and 

least with the control hybrid group.  After polishing and thermocycling there 

was no significant differences among the three groups of specimens.  

Translucency parameter increased for the enamel shade nano-filled 

specimens and control group but decreased for the translucent shade nano-

filled composite after curing.  Translucency parameter values increased for 

all groups after polishing.  After thermocycling, TP values decreased for 

enamel shades and the control group but did not significantly change for the 

translucent shade group.  Changes in contrast ratio values showed similar 

trends to the translucency parameter values.  What is important about this 

study is that the mean values of color change of all the composites after 

curing was above 3.3, which means the change, would be clinically 

perceptible1.  Therefore, composites, regardless of shade or type should be 

cured before shade selection. 

 Lee, et al10 followed this study by examining how curing (before and 

after), polishing, and thermocycling affected changes in color, translucency 

parameter, and contrast ratio of many different brands of composites of the 

same A2 shade.  Eight different brands of varying filler types were used.  

Methods and materials were the same as the previous study.  Results showed 
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that color, translucency parameter, and contrast ratio changes varied 

specifically by brand of composite.  Similar to the previous study all 

composites showed clinically perceptible color change after curing but only 

five of the eight composites showed clinically perceptible change after 

polishing and none of the composites after thermocycling.  This study 

confirms the importance of curing the composite before shade selection but 

more explanation should have been given to the variability among brands of 

composites such as filler, organic matrix, etc. 

 Sidhu, et al26 also looked at the effect curing had on the color change 

and translucency parameter of resin composites.  The study compared three 

composites (Charisma, Solare, Filtek Supreme) and two shades (A2, opaque 

A2) of each composite.  The specimens were 2mm thick by 8mm in 

diameter and color measurements were gathered using a colorimeter.  

Measurements were made before curing and after curing.  Results showed 

that all three composites regardless of shade showed an unacceptable color 

change but the newer (author description) composites (Solare, Filtek 

Supreme) changed the least.  The opaque A2 shades tended to change less 

than the A2 shade.  As for translucency parameter, TP significantly 

increased after curing with the Charisma composite regardless of shade.  In 

the other two composites, TP decreased but not significantly.   This research 
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is important because the authors used slightly different methods and a 

different mode of measurement (colorimeter) yet still came up with the same 

conclusion that composites should be cured before shade selection.  

 Del Mar Perez, et al27 evaluated the effect the method of 

polymerization had on the color and translucency of composite.  Sixteen 

shades of different composites were polymerized with either a quartz-

tungsten-halogen (QTH) light or a light-emitting diode (LED).  Color of the 

specimens was measured with a reflection spectrophotometer pre and post 

polymerization.  Specimens were 2mm thick by 6mm in diameter.  Results 

showed that polymerization dependent changes in color and translucency 

were influenced by the type of light used.  Translucency increased regardless 

of light but the changes in translucency were different for each light.  

Changes in translucency were mainly caused by a change in hue for the LED 

light and by change in chroma for the QTH light.   

 

Filler, Matrix Content 

 Recently, an effort has been made to look at the inorganic filler and 

resin matrix of resin composites and what effect these components have on 

translucency and other optical parameters.  In 2008, Lee, et al11 sought to 

determine the influence filler size had on the translucency of an 
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experimental composite.  The experimental composite had a resin matrix 

composed of a 1:1:1 mixture of BisGMA, UDMA, and TEGDMA.  Two 

different sized (0.77um, 0.50um) silanized glass fillers (LG, SG) were added 

to the resin matrix. The fillers were added at varying percentages of weight 

(10, 20, 30, 40, 50, 60, 70 for LG and 10, 20, 30, 40, 50 for SG) so each 

composite had different filler contents. Camphoroquinone, hydroxytolulene, 

and ethyl methacrylate were added to form the rest of the experimental 

composites.  Specimens were 1mm thick by 38mm in diameter.  Color was 

measured in transmission and reflectance modes with a reflection 

spectrophotometer and the resulting color coordinates were used to find 

opalescence parameter and translucency parameter.  Results showed that 

none of the experimental composites had an opalescence value higher than 

9, which is what is needed to consider a composite opalescent.  The authors 

speculated that was probably do to experimental design of the composite 

which caused the refractive index constant to be 1.03 when for a composite 

to emit opalescence the constant index must be over 1.1.  As for 

translucency parameter, results showed that as the amount of filler increased 

the translucency decreased.  There was no correlation between filler size and 

translucency in this study.  The importance of this study is that filler amount 

and possibly size has an effect on translucency and other optical parameters. 
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 Yu, et al28 evaluated the color, translucency, and fluorescence of 

flowable resin composites and compared them to the corresponding shade 

(A2) universal resin composite of the same brand.   Specimens were 2mm 

thick by 10mm in diameter and were measured against a black and white 

background and against the material itself using a reflection 

spectrophotometer.  To measure fluorescent emission, spectrophotometer 

over a white background was switched to 0% UV light inclusion for an 

additional measurement.  Results showed differences in color between the 

flowable and universal composite in a range from 1.0 and 6.0 Eab units, 

which means most of the composites had a clinically perceptible color 

difference despite being the same shade of the same brand of composite.  In 

general all of the composites showed some form of fluorescent peak but 

there was no significant difference.  As far as translucency, the mean values 

of TP for the flowable composites were higher than the universal composites 

and were significantly higher in two of the brands.  The authors concluded 

that the lower filler content of the flowable composites influenced the 

translucency and also this difference in translucency between the two 

composites influenced the color.  The experimental design of this study is 

good but the assumption that filler content, while probably correct, is the 
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only reason for the difference in translucency between the two composite is 

ignoring other variables that could be in play. 

 Azzopardi, et al29 looked at the effect of resin matrix on the 

translucency of experimental dental composite resins.  Three types of 

unfilled resin matrices (TEGDMA, UDMA, BisGMA based) were 

formulated then combined with constant filler loading to form different 

experimental composite resins.  In addition, the amount of BisGMA matrix 

added to the composite varied on some composites.  The specimens 

fabricated were 1mm thick by 15.5mm in diameter.  The specimens were 

measured with a UV/VIS spectrophotometer, which was used to measure 

total and diffuse translucency transmittance values for each sample at 

varying wavelengths.  Results showed that there was no statistical significant 

difference between the three unfilled matrices but with the addition of filler, 

the BisGMA composites showed significantly higher transmittance 

(translucency) values than the UDMA and TEGDMA based composites.  

The authors speculated this is probably because BisGMA has a refractive 

index (1.55) essentially the same as the silica filler used in the study.  

Finally, there was a linear correlation between the translucency and the 

percentage amount of BisGMA matrix added to the composite.  The authors 

concluded that translucency is significantly influenced by resin matrix 
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composition.  The experimental design of this study is different than most 

translucency studies but the conclusion that resin matrix content, especially 

BisGMA based matrices, contributes to the translucency of composites is 

important.   

 Perez, et al30 also looked at how resin matrix may affect the 

translucency of composites.  In this study, the authors looked at a newer 

silorane-based composite and compared it to six universal dimethacrylate-

based composites.  Silorane resin matrix compositions are of a higher 

molecular weight and contain a cationic ring-opening hybrid monomer 

system possessing both siloxane and oxirane structural moieties.  These 

composites were designed with the aim of diminishing polymerization 

shrinkage.  Samples were 1mm thick by 5mm in diameter and were 

measured with a reflection spectrophotometer before and after 

polymerization.  They were looking for changes in color and translucency 

parameter.  The silorane-based composite showed the lowest change in color 

post polymerization and among each color coordinate showed the least 

amount of change in the a* and b* coordinates.  This means the silorane 

composite possessed the most chromatic stability.  As far as translucency 

parameter, the change in TP corresponded with the mean changes of the 

dimethacrylate composites although the TP values of the silorane composite 
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were the lowest.  The importance of this study is that the silorane-based 

composite exhibited different optical properties than the dimethacrylate 

composites, which means resin matrix, has an influence on the color and 

translucency of resin composites. 

 

Radiopacity 

 According to the International Standards Organization (ISO) 4049, the 

radiopacity of a 1.0 mm thick composite specimen should be equal to or 

greater than the same thickness of aluminum to be deemed radiopaque.  This 

means a specimen would have a radiopacity roughly equal to dentin.   Much 

research has been done on various materials to determine if they were 

adequate to be used in different clinical situations. 

 

Optimal Level of Radiopacity 

 Goshima, et al31 wanted to evaluate what level of radiopacity is most 

compatible with radiographic diagnosis of recurrent caries.  There were two 

parts to this study.  In the first part sixteen composites were evaluated and 

divided into four groups based on their level of radiopacity compared with 

an aluminum step wedge.  The authors followed the guidelines of that time 

except instead of fabricating disc specimens composite step wedges were 
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fabricated.  Radiographs were taken and optical densities measured with a 

transmission densitometer.  In the second part, caries was simulated by 

placing grooves of increasing depth (0.5mm to 2.0mm) in aluminum blocks 

of a thickness equivalent to enamel (3.0mm) and detectability assessed 

beneath differing thicknesses of three composite resins.  Three of the four 

groups from the first part of the study had an optical density less than the 

aluminum equivalent of enamel and one composite from each of those 

groups was used in the second part.  Each one of the composite step wedges 

was superimposed over the aluminum blocks with grooves and radiographed 

similar to the first part of the study.  The optical density was then measured 

at two points:  in the groove visible through the composite and adjacent to 

the composite itself.  Results showed that the group of composites (P-30) 

that had an optical density closest to enamel also had the highest degree of 

contrast to facilitate detection of caries.  The authors concluded that 

composites should have a radiopacity similar to that of enamel.  One big 

flaw in this study is a lack of statistics to show significance.  Also, a visual 

assessment of the radiographs by blinded clinicians would have been a good 

add on to the study. 

 The purpose of the study by Tveit, et al14 was to find out if carious 

lesions and marginal defects were as easy to diagnose radiographically in 
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connection with the radiopaque composite P-30 as with amalgam.  Extracted 

premolars were used to prepare amalgam and P-30 class II restorations with 

and without secondary caries.  Before placing the restorations in the teeth 

without caries, a 0.5mm layer of Silux composite (radiolucent) was placed at 

the gingival margin to simulate a margin defect.  Radiographs were made of 

all teeth and the radiographs were then examined by 10 experienced dentists 

using a standardized illumination source and 2x magnifying lens. The 

examiners graded the radiographs on a scale of 1 to 5 as follows: 1- almost 

definitely caries or marginal defect not present, 2- caries or defect probably 

not present, 3- unsure, 4- probably present, 5- almost definitely present.  

Results showed that the diagnosis of secondary caries and margin defects 

was better with the composite than the amalgam.  The frequency of true 

positives was higher for the composite and the frequency of false positives 

was lower for the composites.  From these results the authors concluded a 

material with a moderate radiopacity allowed for easier diagnosis of 

secondary caries and marginal defects.   

 Espelid, et al15 also evaluated the optimal level of radiopacity needed 

to detect secondary caries but compared it to the optical density of a step 

wedge.  The authors selected extracted premolars and molars with 

interproximal lesions (n=49) and also teeth without any caries (n=29) to 
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serve as the control.  Class II preparations were made in all teeth, and in the 

teeth with caries, a little carious tissue was left on the gingival wall.  The 

fillings placed in the teeth were a composite (P-30), two experimental 

composites (one a combo of P-30/Valux and a composite with 80% ZrO2 

and SiO2), and an amalgam.  A filling would be placed, radiographed, and 

removed to allow placement of another filling material.  After processing, 

each film was measured with a transmission densitometer.  Eleven dentists 

using standard illumination then interpreted the radiographs.  They used a 

rating scale of 1 to 5, where 1 meant almost definitely no caries, 3 meant 

unsure, and 5 meant almost definitely caries present.  The scores were 

dichotomized as follows:  positive diagnosis= scores 4 + 5, negative 

diagnosis= 1+2+3.  The diagnoses were treated statistically according to the 

receiver operating characteristic method (ROC).  Results showed the highest 

diagnostic accuracy for detection of secondary caries was with the P-30 

composite.  Observer performance was better with this material as opposed 

to the other materials as well.  These results were statistically significant.  

The highest sensitivity was found with the P-30 composite and the highest 

specificity was with the amalgam.  Comparing this to the optical densities 

obtained, the P-30 composite was the material that had an aluminum 

thickness equivalent slightly greater than enamel.  The authors concluded 
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that a semi-radiopaque material slightly more radiopaque than enamel 

allowed for the best diagnosis of secondary caries.   

 

Experimental Design 

 Bouslicher, et al32 compared the relative radiopacity of enamel, 

dentin, and 20 resin composite materials used in posterior restorations at the 

time.  The materials used were flowable composites, compomers, 

microfilled composites, hybrid composites, and filled and unfilled adhesive 

resins.  Specimens were fabricated using a split mold 2mm thick by 5mm in 

diameter.  Specimen thickness was verified with a micrometer.  When 

necessary, specimens were sanded using a #320 carbide paper to 2.0mm.  

Enamel and dentin specimens were obtained from 2.0mm longitudinal 

sections of recently extracted third molars.  Radiographs were made 

containing one of each of the specimens of composite, enamel, dentin, and 

the aluminum step wedge.  The film used was speed E occlusal film.  Films 

were exposed for 0.4 seconds at 70kV, 10mA at a 400mm target to film 

distance. Films were processed in a standard film processor. Optical density 

for each radiograph was measured with a transmission densitometer. Three 

readings were taken for each specimen.  Al equivalent (mm) and % Al were 

calculated for each material using linear regression.  Results showed all 
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composites tested complied with ISO 4049 guidelines.  The unfilled 

adhesive was radiolucent and the filled adhesive was as radiopaque as 

dentin.  All of the composites except three flowable composites had Al 

equivalents greater than enamel.  The authors recommended based on this 

study and previous studies that even though all composites met ISO 4049 

guidelines that composites should have a radiopacity greater than enamel.  In 

this study, the authors utilized excellent experimental design except for 

using E speed film instead of D speed film and having 2mm thick 

specimens.  However, they properly compared their specimens to 2mm 

equivalent Al.  It is also possible ISO guidelines previous to the current one 

did not offer guidelines on speed of film or specimen thickness.  Previous 

guidelines were not available for review. 

 Hara, et al33 evaluated the radiopacity of thirteen restorative materials 

including conventional glass ionomer, resin-modified glass ionomer, 

compomer, and resin composites.  The materials were 2mm thick by 4.1mm 

in diameter.  They were fabricated by loading into a split mold, covered with 

a Mylar strip and glass slide and pressed with a 1000g load.  After 1 minute, 

the materials were cured for 40 seconds on each side.  The conventional 

glass ionomer was allowed to set 10 minutes before testing.  A 2mm thick 

specimen of tooth, 1mm thick enamel and 1mm thick dentin, was used as the 
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control.  Specimens were placed on E speed periapical film along with a 10-

step aluminum wedge and exposed at 60kVp, 10mA, for a time of .4 

seconds.  A transmission densitometer was then used to gather optical 

densities of the developed films.  The net radiographic density values were 

derived by subtraction of the inherent film base-plus fog density from the 

gross radiographic density.  Results showed that all materials were more 

radiopaque than tooth structure and the results were specific for each 

material not specific for the type of material.  The authors showed good 

initial experimental design, mainly in preparation of the specimens.  

However, they used the means of the optical densities to determine 

radiopacity and did not find an Al (mm) equivalent as stated in the ISO 4049 

guidelines.  Based on this, it is difficult to completely validate the results or 

conclusions. 

 Attar, et al34 looked at the mechanical properties, including 

radiopacity, of seven flowable, and 2 flowable compomers.  One universal 

composite and one universal compomer were used as controls.  For this 

study, only radiopacity will be discussed, as the other mechanical properties 

discussed are not pertinent to the study.  Specimens were prepared using a 

split ring mold to produce 5 specimens of each material 1mm thick by 6mm 

in diameter.  The specimens were clamped in the mold and cured.  The 
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specimens were then ground with 400-grit sandpaper to create a flat surface.  

Specimens were then measured with a micrometer for accuracy in thickness.  

Five specimens were then placed on an occlusal film along with an 

aluminum step wedge and longitudinal 1mm thick samples of enamel and 

dentin.  The aluminum step wedge was used to serve as an internal standard 

for each radiograph so that radiopacity of each material could be measured 

in terms of aluminum thickness.  Films were then exposed and developed. 

Optical densities were determined for each specimen and each specimen was 

read 4 times.  The Al equivalent was calculated according to ISO guidelines.  

Results showed all of the materials tested met ISO 4049 guidelines.  

Revolution was closest to not meeting the guidelines.  The experimental 

design was correct and closely followed the proper guidelines. 

 Recently, Tsuge, et al35 looked at the radiopacity of conventional 

composites, resin-modified glass ionomers, and resin-based luting materials.  

Specimens were initially 2.3mm thick by 10mm in diameter but were ground 

to 2mm thick specimens with #600 silicon-carbide paper.  A 99% pure 

aluminum step wedge was used along with human molars sliced 2mm thick.  

The sample specimens were placed on a D speed occlusal film along with 

the step wedge and tooth section.  The films were exposed for 0.6 sec at 60 

kVp, 15mA, at a target to film distance of 35cm.  After the films were 
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processed the films were read with a transmission densitometer.  The authors 

did not explain how they came up with the Al equivalent (mm) but did state 

radiopacity values were expressed in terms of the equivalent thickness of 

aluminum per 2mm thickness of material.  Results once again showed 

radiopacity was material specific and not type of material specific as some 

luting materials, composites, and glass ionomers were radiopaque and some 

were not.  One flaw in the experimental design is the authors used different 

exposure settings than recommended in the ISO guidelines.  El-Mowafy, 

et.al36 showed that changing exposure time and kVp can possibly affect 

radiopacity values.  The biggest flaw in this design was not explaining how 

they came up with the aluminum equivalent (mm).  Other statistical analysis 

was explained but this one was left unexplained.   

 Turgut, et al37 had an experimental design that best followed the ISO 

4049 guidelines.  The purpose of this study was to find the radiopacity of 21 

direct esthetic restorative materials according to ISO guidelines and compare 

them to enamel and dentin.  The materials consisted of packable composites, 

flowable composites, hybrid composites, glass ionomers, resin-modified 

glass ionomers, and compomers.  Samples were fabricated in 1mm thick by 

6mm in diameter Teflon molds and cured 30 seconds on each side.  Each 

material was polished with different grits of sandpaper and measured with a 
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micrometer to verify thickness.  There were eight samples for each material.  

One millimeter enamel and dentin slices were also prepared.  The materials 

were divided into eight groups and placed on a occlusal film along with a 

99.5% aluminum step wedge with 0.5 mm steps.  The films were exposed at 

70 kVp, 10 mA for 0.37 sec at a target distance of 40cm.  The optical 

densities were measured with a transmission densitometer.  A graph was 

plotted between the entire step wedge and its optical density values.  From 

this graph, the optical density values of the specimens were used to find the 

value of the aluminum equivalent thickness of each specimen.  Results 

showed radiopacity was material specific.  All but eight of the materials had 

radiopacity values greater than enamel (2.02mm).  Only one material did not 

meet ISO 4049 guidelines.  This study had an excellent experimental design 

because it followed ISO 4049 guidelines and thus is an excellent resource 

for future research. 

 

Shade 

 Even though ISO 4049 suggest a certain shade to test radiopacity, 

Marouf, et al38 wanted to see if shade had an effect on radiopacity.  Three 

resin-modified glass ionomers of various shades were used in the study.  

Specimens were prepared according to ISO guidelines and were 1mm thick 
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by 10mm in diameter.  The specimens were placed on an occlusal film along 

with an aluminum step wedge and exposed at 70kVp, 7mA, for 0.25 

seconds.  The films were then processed and read with a transmission 

densitometer.  Radiographic density values related to thickness of aluminum 

were then were derived according to guidelines.  Results once again showed 

radiopacity to be material specific.  In addition, there was no statistically 

significant difference among shades of the different materials.  This is 

important because it shows shade designation has no effect on how 

radiopaque a material is.  However, the study could have been more 

complete if resin composites (flowable and universal) would have been used 

as well as the resin-modified glass ionomers. 

 

Filler 

 Van Dijken, et al39 were one of the first to look at what makes a 

composite radiopaque.  The purpose of the study was to measure the 

radiopacity of eighteen brands of composites and to analyze the composition 

of the inorganic fillers of the materials.  Five specimens, 2mm thick by 

15mm in diameter, were fabricated for each composite material.  A 2mm 

thick mesiodistal slice of human molar was also tested. The author stated 

that all composites were fabricated, exposed, and tested according to the ISO 
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guidelines at the time.  Calibration curves were made for each film to enable 

transposition of the measured optical densities to an equivalent thickness of 

aluminum.  To analyze the inorganic portion, the composite materials were 

placed in a combustion oven at 575  50 C for 30 minutes.  They were then 

analyzed using optical emission spectroscopy, which is a semi quantitative 

method that can identify and roughly estimate the elemental composition of 

different filler particles.  Results showed fourteen composites showed 

radiopacity greater than an equal thickness of aluminum and twelve of the 

composites showed radiopacity greater than the thickness of an equal 

thickness of enamel which would be twice as that of an equal thickness of 

aluminum.  Analysis of the inorganic filler showed that the elements added 

to the composite to increase radiopacity were barium, strontium, zirconium, 

zinc, and ytterbium.  Of these barium displayed the highest radiopacity.   

 Toyooka, et al40 also looked at the filler particles which give 

composites their radiopacity.  The purpose of the study was to measure 

radiopacity of twelve light cured composites and to relate radiopacity of the 

composite to the chemical composition of the filler particles.  Composites 

were prepared 6mm in diameter by 1mm, 2mm, and 3mm thick.  A 1mm and 

2mm longitudinal slice of human molar was also used for comparison.  

Specimens were placed on a ultra speed occlusal film along with tooth slices 
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and an aluminum step wedge and exposed at 70kVp, 8mA, for 0.4 seconds.  

Optical densities were read with a transmission densitometer.  Radiopacity 

of the specimen was then expressed in terms of aluminum equivalent 

thickness by reference to the calibration curve for the radiographic density of 

the aluminum step wedge.  The inorganic filler content was determined by 

heating the composite at 5750 C in a thermal analyzer.  A SEM coupled with 

an energy dispersed X-ray microprobe (EDX) was used for the size 

identification and chemical analysis of the inorganic fillers extracted by 

acetone.  Results showed that six of the composites had a radiopacity value 

higher than that of enamel or twice that of the equivalent thickness of 

aluminum.  In addition, as the thickness of the most radiopaque composites 

increased so did the radiopacity.  This was not true of the most radiolucent 

composites.  Results of filler composition showed that radiopacity was 

linearly proportional to the radiopaque oxide content of the composite.  

Barium and Zirconium were the most radiopaque with zirconium 

demonstrating a slightly higher radiopacity.  The experimental design in the 

radiopacity part of the study is weak and not well explained but the filler 

part of the study has foundation and importance. 

 Hotta, et al41 also recently looked at filler content and how it related to 

radiopacity.  The purpose of this study was to determine the content and 
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constituent elements of inorganic fillers as well as the radiopacity of 15 

adhesive resins.  Three cylindrical specimens of each adhesive material were 

weighed in an analytical balance to determine the mass of the polymerized 

bonding agent (Wa).  To obtain the weight of the inorganic filler, the organic 

phase was eliminated by firing the adhesive in a furnace at 7000 C for 30 

minutes. Each sample was allowed to cool for 90 minutes.  The mass of 

inorganic fillers measured in the air was weighed in the analytical balance 

(Wb).  The percentage of the inorganic phase of each product by weight was 

calculated using the following equation:  inorganic filler percentage by 

weight= (Wb/Wa) x 100 wt%.  The inorganic fillers were then examined by 

using an energy-dispersed x-ray detection system attached to an SEM.  The 

bonding agents were then prepared for radiopacity testing.  Specimens were 

1mm thick by 15mm in diameter.  Enamel and dentin slices, 1mm thick, 

were also prepared for comparison.  After the films were exposed, optical 

density was measured with a transmission densitometer.  Aluminum 

equivalent thickness was derived according to ISO guidelines.  Results of 

radiopacity showed none of the adhesive resins were more radiopaque than 

enamel and 14 of the 15 adhesive resins were less radiopaque than dentin 

(1.0mm Al equivalent).  For the inorganic part of the study, filler content 

ranged from 0.0% to 43.5%.  Silicon and aluminum were the main 
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constituents of the fillers but there was much variation among the other 

fillers in each material.  The bonding agent that had the highest weight 

(43.5%) also had the highest radiopacity.  Finally, those materials that had 

fillers with the highest atomic numbers or highest weight had the highest 

radiopacity.  This study confirms previous studies showing materials that 

have inorganic fillers with high atomic weights (barium, strontium, zinc, 

etc.) tend to have higher radiopacity values. 

 

Alternatives to Determining Radiopacity 

 Murchison, et al42 looked at two different ways to determine 

radiopacity.  The purpose of this study was to compare radiopacity of eight 

flowable composites and to compare two different radiographic 

densitometric analyses.  Five specimens, 2mm thick by 6mm in diameter, 

were prepared for each material.  Five 2mm thick enamel/dentin tooth slices 

were also prepared.  The specimens were then placed on a size 2 film along 

with a 4mm thick piece of amalgam.  No aluminum step wedge was utilized 

with the specimens. A separate radiograph of the aluminum step wedge 

alone was taken and used as an internal standard.  The films were exposed 

then measured with a transmission densitometer to obtain optical density 

values of the specimens and step wedge.  Based on this data, using best-fit 
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logarithmic regression, equivalent aluminum thickness was determined.  To 

test the other method, the films were digitized onto a computer, analyzed for 

density with the free UTH-SCSA Image Tool program.  A calibration curve 

for gray pixel values was generated and correlated with values of optical 

density obtained from the densitometer.  Results showed that radiopacity 

was material specific and only three of the flowable composites had 

radiopacity greater than enamel.  Comparison of the methods of data 

collection showed a very high correlation (-0.98) and the authors concluded 

either method is acceptable to measure optical density.  The one big flaw in 

this study is the authors did not include the aluminum step wedge on the 

same radiograph as the specimens.  This could have likely influenced the 

results and their conclusions. 

 This study by Hara, et al43 visually compared the radiopacity of 

materials as opposed to the normal way described in the ISO 4049 

guidelines.  The purpose of this study was to visually evaluate the 

radiopacity of glass ionomers and composite resins and compare it to a 

conventional glass ionomer cement and to tooth structure.  Seven restorative 

materials were evaluated:  3 resin-modified glass ionomer cements, 3 

compomers, and the conventional glass ionomer cement.  Specimens were 

2mm thick by 4.1mm in diameter and there were 24 specimens for each 
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material.  A specimen for each of the materials was placed in random order 

on a radiograph along with the tooth structure and an aluminum step wedge.  

Three examiners, independent and blinded, viewed the 24 radiographs using 

standardized illumination and 2X magnifying lenses.  Scores from 1 to 5 

(radiolucent to radiopaque) were given to each of the materials and tooth 

structure on each radiograph by comparing them to the aluminum step 

wedge.  For example, a score of 1 meant the material was equivalent to the 

1st and 2nd step of the aluminum step wedge.  Results showed that examiners 

found two of the materials more radiolucent than the tooth structure or a 

grade of 1 on the step wedge.  All other materials were more radiopaque 

than tooth structure.  Combining this study with a study utilizing the ISO 

guidelines would be good way to evaluate two ways of determining 

radiopacity.   

 

Determining Radiopacity Digitally 

 In recent years many dentists have switched from traditional x-ray 

techniques to using digital x-ray systems.  The recent ISO 4049 guidelines 

have included a method to determine radiopacity digitally16.  For 

completeness, the following study has been included for review.   
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 Sabbagh, et al44 compared the radiopacity of 41 resin-based materials 

using conventional dental x-ray film and a digital system (Digora) based on 

storage phosphor plate technology.  Materials, 2mm thick by 6mm in 

diameter, were prepared close to ISO 4049 guidelines.  For the conventional 

film technique, optical density measurements were carried out using a 

transmission densitometer and aluminum thickness equivalent was 

calculated as previously described.  For the digital portion of the study, 

phosphor plates were used instead of film.  The plates were exposed at two 

different times (0.32 sec and 0.16 sec) to see if reducing exposure time 

affected radiopacity.  After exposure, gray values of images had to be 

calibrated, so the images were sent as TIFF files to an image processing 

software.  This software allows the transformation of pixel values directly 

from a linear scale into a scale that correlates with optical density.  A similar 

method as conventional film was then used to convert these values to 

aluminum thickness equivalent.  Results showed that regardless of the 

method of determining radiopacity, radiopacity varied among materials.  

Changing exposure time did not change the radiopacity.  Between systems, 

there was variation among radiopacity of some of the materials.  Sometimes 

the digital system measured a lower radiopacity for a material than the 

conventional system and with another material it would measure a higher 
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radiopacity.  Even though the systems showed linear correlation, the authors 

concluded the conventional x-ray technique might be slightly more accurate. 
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Chapter 2 (Pilot Study) 

Introduction 

In recent years, resin composites have been used extensively as an 

alternative to dental amalgams.  With this increase in use has come the 

desire to improve the mechanical and optical properties of resin composites.  

One property to consider is the radiopacity of a composite. 

Radiopacity is important because it can be used to evaluate marginal 

adaptation, detect caries, and assess the overall quality of a restoration, such 

as interproximal contours, contacts, overhangs, and voids [2, 3, 4, 5].  

Furthermore, composites that are not adequately radiopaque have been 

confused as recurrent caries in subsequent recall appointments and restored 

unnecessarily [2, 3, 4, 5]. 

One of the commonly used techniques to determine the radiopacity of 

a resin composite uses a transmission densitometer.  In order to make 

comparisons of radiopacity, an aluminum step wedge is used because its 

linear absorption coefficient is of the same order as enamel [4].  According 

to the International Standards Organization (ISO) 4049 specification, the 

radiopacity of a 1.0 mm thick composite specimen should be equal to or 
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greater than the same thickness of aluminum to be deemed radiopaque [1, 2, 

5]. 

 

Purpose 

Determine the radiopacity of a new flowable composite and compare 

it to the radiopacity of 4 currently available flowable composites. 

 

Specific Aims 

1. Evaluate the radiopacity of five flowable composites using a 

transmission densitometer according to ISO guideline 4049. 
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Materials and Methods 

The flowable composites used in this study are listed in Table 1. 

Table 1. Flowable Composite Material 

Composite Manufacturer 

Experimental Heraeus Kulzer LLC., Hanau, Germany  

Revolution Formula 2 Kerr Corporation, Orange, CA, USA 

X-Flow Dentsply International, York, PA, USA 

Filtek Supreme XT 3M ESPE Incorporated, St. Paul, MN, USA 

Tetric Evo-Flow Ivoclar Vivadent Inc., Amherst, NY, USA 

 

Equipment 

1. Single-phase dental X-ray unit (Kodak 2000, Kodak Dental Systems, 

Atlanta, GA, USA)- total filtration 1.5 mm aluminum, 70 kV. 

2. Dental X-ray film speed group D (Sensa, Air Techniques, Inc. 

Melville, NY, USA) as specified in ISO 3665) and film processor (Air 

Techniques A/T 2000 XR) temp 82. 

3. Aluminum Step Wedge- free standing, 99% purity. 
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Figure 1. Aluminum Step Wedge 20 mm x 50mm having a thickness range from 0.5 

mm to 5.0 mm in equally spaced steps. 

4. Sheet of lead not less than 2 mm thick 

5. Micrometer (Mitutoyo America Corporation, Aurora, IL, USA)  

6. Photographic Transmission Densitometer (Macbeth TD 502, Macbeth 

Corporation, Newburgh, NY, USA)- capable of measuring optical 

density in the range of 0.5 to 2.5 mm. 

Procedure 

Five flowable composites (Table 1), shade A3, were used in this 

study.  An aluminum mold was used to prepare 10 disk specimens 10 mm in 

diameter and 1 mm thick for each composite material.  The five flowable 

composites were flowed carefully into the lubricated aluminum mold.  After 

the mold was filled, the composite was covered with a Mylar strip and a 

microscope slide.  The microscope slide was clamped to the aluminum mold 

to ensure stability and force out excess composite. The composite materials 
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were light cured with a light-curing unit (FUSIONTM LED, DentLight, Inc., 

Richardson, TX, USA) for 60 seconds.  The top of the specimen was cured 

30 seconds, then flipped over and cured for an additional 30 seconds.  The 

intensity of the light was checked after every 10 specimens using an 

Espectro photometer (3MTM ESPETM, Minneapolis, MN) to ensure efficient 

light output.  Each specimen was then measured with a micrometer 

(Mitutoyo) to verify a thickness of 1 +/- .1 mm.  The specimens were then 

stored in 100% humidity for 24 hours. 

After 24 hours, 5 disk specimens (1 specimen for each flowable 

composite) and the aluminum step wedge were placed on an occlusal speed 

group D film (Sensa).  The specimens were placed in random order along 

the aluminum step wedge.  The X-ray film, specimens, and step wedge were 

placed on a sheet of lead.  The film, specimens, and aluminum step wedge 

were then exposed at 70kV, 7 mA, for 0.339 seconds at a target to film 

distance of 360 mm using the Kodak 2000 intraoral X-ray system.  A special 

tube was constructed to ensure the same target to film distance.  

The film was then immediately processed in an automatic processor 

(Air Techniques A/T 2000 XR) at 82 Fahrenheit.  This same procedure was 

followed until all 50 specimens had been irradiated, a total of 10 

radiographs.  All occlusal film used was from the same box.   
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Figure 2. Radiograph 1 showing step wedge and five specimens in random order. 

 

 

 

Figure 3. Radiograph 10 showing step wedge and five specimens in random order. 
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Radiographic optical densities (overall darkening of an exposed film) 

of the aluminum step wedge and specimens were then measured with a 

photographic transmission densitometer (Macbeth TD 502) with an aperture 

of 1 mm.  Three readings were made for each specimen along with three 

readings of each step of the aluminum step wedge.  The optical densities 

were recorded in this manner for all 10 occlusal films.  

 

Statistical Analysis 

The means and standard deviations for optical densities of the 

specimens and aluminum step wedge of each radiograph were calculated by 

averaging the three repeated measurements to create a single value for each 

specimen.  A linear regression analysis was calculated for each film, relating 

the OD of the steps in the wedge to the thickness of each step. The 

aluminum equivalent (Al) was then calculated for each sample by using the 

regression analysis equation of: 

y = a + bx, 

where:  

y = the optical density (OD) of the specimen; 

a = the coefficient of the regression; 
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b = the regression constant and  

x = the aluminum equivalent value for that sample.   

Solving the equation for aluminum equivalent, the final equation is as 

follows: 

 

Al= [OD - Coefficient]/ Constant 

 

One-way ANOVA was used to determine statistical significance of 

Optical Densities among the materials. The Tukey multiple comparison test 

was used to compare significant differences among the means of the 

materials. The same tests were also done to analyze the data for Aluminum 

Equivalents. 
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Results 

Table 1 illustrates the means and standard deviations of optical 

density and aluminum equivalent among the five materials.  For optical 

density, a lower number indicates a more radiopaque composite.  For 

aluminum equivalent, the higher number indicates a more radiopaque 

composite. 

Table 1.  Values for Optical Density and Aluminum Equivalents by Material; Mean (SD) 

 
Heraeus 

Kulzer 
Revolution X-Flow 

Filtek 

Supreme XT 

Tetric  

Evo-Flow 

Optical 

Density 
0.933(0.028)a 1.226(0.040)c 1.102(0.034)b 1.132(0.045)b 0.956(0.027)a 

Aluminum 

Equivalent 
3.098(0.173)d 0.619(0.387)f 1.671(0.268)e 1.415(0.358)e 2.898(0.258)d

Note: Means with same letters are not significantly different with p< 0.001 

 

According to ISO guidelines 4049, a composite material is deemed 

radiopaque if the aluminum equivalent value of the material is greater than 1 

mm.  Only Revolution did not meet this criterion (0.619 Al Eq.).  The 

experimental composite from Heraeus Kulzer had the highest radiopacity 

(3.098 Al Eq.) but was not significantly different from Tetric Evo-Flow 
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(2.898 Al Eq.). Filtek Supreme XT and X-Flow were similar but lower in 

Aluminum Equivalent values. 
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Chapter 3 

Abstract 
Objective: Determine the translucency and radiopacity of five commercially available 
composites: Aelite LS(AE), Filtek LS(FS), GC Kalore(KA), Empress Direct 
Enamel(EE), Empress Direct Dentin(ED) 
Experimental Methods:  Experiment conducted according to ISO guideline 4049.  
Five composites(n=50), shade A2, were packed into an aluminum mold(10-mm diameter, 
1-mm thick) and light cured for 80 seconds(40 sec each side).  The color of each 
specimen was measured according to the CIELAB color scale relative to the standard 
illuminant D65 against a white background and a black background using a reflection 
spectrophotometer with a 8mm (MAV) diameter target mask. Using color data, 
translucency parameter and contrast ratio were calculated for each sample. For 
radiopacity, five specimens(1 for each composite) were placed in random order with an 
aluminum step wedge(20-mm x 50-mm, 10 0.5-mm steps) on an occlusal film and 
exposed at 70kV, 7mV, 0.339sec from a target-film distance of 360-mm.  After 
immediately being processed(10 radiographs), the radiographic optical densities of the 
specimens and aluminum step wedge were read with a photographic transmission 
densitometer(aperture 1-mm).  Aluminum equivalent was calculated using regression 
analysis(mean optical density vs. mean thickness aluminum step wedge).  A visual 
analysis by two independent examiners was also done and compared to the ISO 4049 
radiographic method.  One-way ANOVA(p<0.05) and Tukey multiple comparison 
tests(p<0.05) were used for statistical analysis.  
Results: EE was the most translucent (22.089) and had the lowest contrast ratio(0.783) 
while AE was the least translucenct(11.808) and had the highest contrast ratio(0.908).  
For translucency all five composites were significantly different. For contrast ratio, 
except KA and FS, which were similar, all composites were significantly different.  There 
was a very strong inverse correlation between translucency parameter and contrast ratio(-
0.944). According to ISO guidelines 4049, a composite material is deemed radiopaque if 
the aluminum equivalent value of the material is greater than 1 mm. All five composites 
met this criteria with ED having the highest radiopacity(3.609 AlEq) and AE having the 
lowest radiopacity(1.263AlEq).  All of the composites were significantly different except 
AE and FS, which were similar. Visually, ED was deemed the most visually radiopaque 
by examiners and was significantly different than the other composites while EE/KA and 
FS/AE were not significantly different.  FS and AE were least radiopaque visually.  There 
was a strong correlation(0.938) between Al Radio Equiv and Visual Al Equiv when 
comparing the materials as a group.  There was much variation when correlating between 
each material.  There was a very weak to no correlation between radiopacity Al Equiv 
and translucency(0.084) and contrast ratio(0.053). 
Conclusions:  EE was the most translucent material. AE can be considered a very 
opaque material but was the second most radiolucent material.  ED had the highest 
radiopacity of the five composites but all five composites met ISO 4049 guidelines for 
radiopacity.  Radiopacity and translucency were not correlated. 
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Introduction 

In recent years resin composites have been used extensively as an 

alternative to dental amalgams.  With this increase in use has come the 

desire to improve the various properties (optical, physical, mechanical, etc.) 

of resin composites.  

 One property (optical) to consider is translucency.  Translucency is a 

property of substances that permits the passage of light but disperses the 

light, so objects cannot be seen through the material1.  It could better be 

described as a partial opacity or a state between complete opacity and 

complete transparency2.  Tooth enamel has inherent translucency, thus the 

difficult task in dentistry is finding an esthetic dental restoration that has 

translucency properties similar to human enamel.  The most common 

esthetic restorative material used is dental resin composite. The translucency 

of dental resin composites depends on their thickness and the scattering and 

absorption coefficients of the resin, filler particles, organic matrix, pigments, 

and opacifiers3-7.  Of these, filler composition and organic matrix seem to 

have a strong influential effect4, 5, 7. The type, size, and number of internal 

filler particles affect light scattering in resin materials thus affecting the 

translucency and visual appearance of the composite in relation to the 

underlying tooth4. Lee4 suggested there was an inverse correlation between 
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translucency and filler content thus as the amount of filler increased 

translucency decreased. There are different organic matrices that can be 

added to resin composites with the most common being BisGMA, UDMA, 

TEGDMA, and Silorane.  Recently, Azzopardi5 and Perez7 suggested there 

is a linear correlation between translucency and quantity of organic resin 

matrix.  

 Translucency of esthetic materials is usually determined with the 

translucency parameter or contrast ratio.  Translucency parameter refers to 

the color difference between a uniform thickness of material over a black 

and white background, and corresponds directly to common visual 

assessments of translucency8, 9.  If a material is absolutely opaque then the 

translucency parameter will equal zero.  Thus the higher the translucency 

parameter values, the higher the translucency of the material.  The color of 

the esthetic material is measured using a reflection spectrophotometer and 

these coordinate values are used to determine translucency parameter.  Once 

these coordinates are known translucency parameter (TP) can be found by 

the following equation: 

 

TP= [(L*w-L*b)2 + (a*w-a*b)2 + (b*w-b*b)2]1/2. 
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Translucency can also be determined by contrast ratio, which is used 

to measure the opacity of a dental material.  Opacity, represented by contrast 

ratio, is the ratio between the daylight apparent reflectance of the specimen 

when backed by a black standard and the daylight apparent reflectance of the 

specimen when backed by a white standard1.  Contrast ratio is calculated 

using the following formula: Yb/Yw where Yb represents the luminous 

reflectance against a black background and Yw represents the luminous 

reflectance against a white background10.  In comparison, as translucency 

parameter increases contrast ratio decreases2.    

Another optical property to consider is the radiopacity of a composite.  

Radiopacity is important because it can be used to evaluate marginal 

adaptation, detect caries, and assess the overall quality of a restoration, such 

as interproximal contours, contacts, overhangs, and voids11-14.    

Furthermore, composites that are not adequately radiopaque have been 

confused as secondary caries in subsequent recall appointments and restored 

unnecessarily.  

One of the commonly used techniques to determine the radiopacity of 

a resin composite is the transmission densitometer.  In order to make 

comparisons of radiopacity, an aluminum step wedge is used as an internal 

standard to allow for calculation of radiopacity.  When an aluminum step 
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wedge is used to determine radiopacity, radiopacity is described by the 

measurement aluminum equivalence (Al).  According to the International 

Standards Organization (ISO) 4049, the radiopacity of a 1.0 mm thick 

composite specimen should be equal to or greater than the same thickness of 

aluminum to be deemed radiopaque15.   According to this guideline a 1mm 

thick specimen equivalent to 1mm thick aluminum would have a radiopacity 

approximately similar to dentin11, 12.  However, some believe radiopacity 

should more approximate enamel instead of dentin16-19.  It has been 

determined the aluminum equivalence of enamel is approximately twice the 

aluminum equivalence of dentin16-18, 20.  Radiopacity is primarily influenced 

by filler composition but more importantly by compositions containing 

fillers with high atomic weights21-23.    

Therefore, this study was designed to determine the translucency 

(translucency parameter and contrast ratio) and radiopacity of five 

commercially available composites.  A spectrophotometer was used to 

determine translucency and a transmission densitometer was used to 

determine radiopacity.  In addition, a visual assessment of radiopacity by 

two examiners was done to determine if there is correlation between the 

two-radiopacity methods.  A final aim of the study was to determine if there 

is a correlation between translucency and radiopacity. 
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Methods and Materials 

The five composites tested in this study were chosen based on their 

commercial advertising as the latest product in their line.��All the materials 

differ with respect to polymeric matrices, filler particle types, and filler 

content. The filler content by weight percentage and the organic matrix as 

well as the type of composite are described in Table 1, 2, and 3. Ten 

samples of each composite material in shade A2 were used for each 

experiment. 

 

Table 1 - Descriptive table of materials used in the research. 

COMPOSITE MANUFACTURER TYPE LOT NUMBER 

Aelite LS 
Bisco Inc. 

(Schaumburg, IL) 
Microhybrid 1000011945 

Filtek LS 
3M ESPE 

(St Paul, MN) 
Microhybrid N206306 

GC Kalore 
GC Corp 

(Tokyo, Japan) 
Nanohybrid 1011112 

Empress Direct 
Dentin 

Ivoclar Vivadent 
(Amherst, NY) 

Nanohybrid 
N10129 
M68450 

Empress Direct 
Enamel 

Ivoclar Vivadent 
(Amherst, NY) 

Nanohybrid N21727 
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Table 2 – Filler compositions taken from manufacturers’ instruction and data sheet. 

COMPOSITE FILLER COMPOSITION % WEIGHT 
Aelite LS Glass filler, amorphous silica 88% 
Filtek LS Quartz, yttrium fluoride 76% 

GC Kalore 
Fluoroaluminosilicate glass, strontium glass, pre-

polymerized filler (HDR - proprietary), silicon 
dioxide 

82% 

Empress Direct 
Dentin 

Barium glass, ytterbiumtrifluoride, mixed oxide, 
silicon dioxide, prepolymer 

79% 

Empress Direct 
Enamel 

Barium glass, mixed oxide, silicon dioxide 79% 

 

 

Table 3 – Organic matrix compositions taken from manufacturers’ instruction and 
                 data sheet. 

COMPOSITE ORGANIC MATRIX % WEIGHT 
Aelite LS Ethoxylated Bis-GMA 25% 
Filtek LS Silorane 23% 

GC Kalore 
Urethane Dimethacrylate, DX - 511 (proprietary 

formula) , dimethacrylate 
18% 

Empress Direct 
Dentin 

Dimethacrylate 21% 

Empress Direct 
Enamel 

Dimethacrylate 21% 

 

 

Equipment 

1. Single-phase dental X-ray unit (Kodak 2000, Kodak Dental Systems, 
Atlanta, GA, USA) - total filtration 1.5 mm aluminum, 70 kV 

2. Dental X-ray film speed group D (Sensa, Air Techniques, Inc. 
Melville, NY, USA) as specified in ISO 3665 and film processor (Air 
Techniques A/T 2000 XR) temp 82 

3. Aluminum Step Wedge- free standing, 99% purity (Fig. 1) 
4. Sheet of lead not less than 2 mm thick 
5. Micrometer (Mitutoyo America Corporation, Aurora, IL, USA)   
6. Photographic Transmission Densitometer (Macbeth TD 502, Macbeth 

Corporation, Newburgh, NY, USA)- capable of measuring in the 
range 0.5 to 2.5 of optical density (Fig. 2) 

7. Reflection Spectrophotometer (CM-2600d, Konica Minolta, New 
Jersey, USA) (Fig. 3) 
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8. White/Black Background (Form N2A Unsealed Test Chart; The 
Leneta Company, Mahwah, NJ) (Fig. 3) 

9. Translucency/Color Software (SpectraMagicNX; Konica Minolta, 
Ramsey, New Jersey) 

 

 
Fig. 1 Aluminum Step Wedge 20 mm x 50mm having a thickness range from 0.5 mm 
to 5.0 mm in equally spaced steps. 
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Fig. 2 Photographic Transmission Densitometer 

 
 

 
Fig. 3 Reflection Spectrophotometer 
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Sample Preparation 

 An aluminum mold was used to prepare 10 disk specimens’ 10mm in 

diameter and 1 mm thick for each composite material.  The four composites 

were packed carefully into the aluminum mold.  After the mold was filled, 

the composite was covered with a Mylar strip and a microscope slide.  Each 

microscope slide was clamped to the aluminum mold to ensure stability and 

force out excess composite. (Fig. 4)  The composite materials were then 

light cured with an Optilux 501, Quartz Tungsten Halogen (QTH) light 

(Kerr Manufacturing Inc., Orange, CA) for 80 seconds.  The top of the 

specimen was cured 40 seconds, then flipped over and cured for an 

additional 40 seconds.  The intensity of the light was checked every 10 

samples using an Espectro photometer (3MTM ESPETM  St. Paul, MN) to 

ensure efficient light output.  Each specimen was then measured with a 

micrometer (Mitutoyo) to verify a thickness of 1 +/- .1 mm.  The specimens 

were then stored in 100% relative humidity for 24 hours.  
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Fig. 4 Sample Fabrication 
 

Translucency 

 After storage, the color of each specimen was measured according to 

the CIELAB color scale relative to the standard illuminant D65 against a 

white background and a black background using a reflection 

spectrophotometer. The 8mm (MAV) diameter target mask was used on the 

spectrophotometer.  The sample size was selected to ensure that the 

measuring port had a smaller diameter than the disc.  A 2-degree observer 

function was used with CIE illuminant D65.  Diffuse illumination with 8-

degree viewing was used to measure the sample. After determining the 
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color, translucency parameter (TP) was calculated from the difference 

between the color of the specimen over the white background and the color 

of the specimen over the black background using the following formula: 

 

TP= [(LB  - LW )
2 + (aB – aW)2 + (bB – bW)2]1/2 

 

In the formula, subscript B refers to the color parameters over the black 

background and subscript W refers to the color parameters over the white 

background.   

 

Radiopacity 

 After 24 hours, 5 disk specimens (1 specimen for each composite) and 

the aluminum step wedge were placed on an occlusal speed group D film 

(Sensa Air Techmiques).  The specimens were then placed in random order 

along the aluminum step wedge.  The X-ray film, specimens, and step wedge 

were then placed on a sheet of lead.  The film, specimens, and aluminum 

step wedge were exposed at 70kV, 7 mA, for 0.339 seconds at a target to 

film distance of 360 mm using a Kodak 2000 intraoral X-ray system.  A 

special tube was constructed to ensure the same target to film distance. The 

film was then immediately processed in an automatic processor (Air 
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Techniques A/T 2000 XR) at 82 Fahrenheit.  This same procedure was 

followed until all 50 specimens had been irradiated, a total of 10 

radiographs.  All occlusal films used were from the same box.  

(Fig. 5 and Fig. 6)  

 

 

Fig. 5 Radiograph 7 showing step wedge and five specimens in random order. 
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Fig. 6 Radiograph 8 showing step wedge and five specimens in random order 

 
 

Radiographic optical densities (overall darkening of an exposed film) 

of the aluminum step wedge and specimens were then measured with a 

photographic transmission densitometer (Macbeth TD 502) with an aperture 

of 1 mm.  Three readings were made for each specimen along with three 

readings of each step of the aluminum step wedge.  The optical densities 

were recorded in this manner for all 10 occlusal films. 

 Two independent examiners visually evaluated each sample on the 

radiographs and assigned it to a corresponding step on the step wedge that 

appeared similar in density. The steps were labeled 1 to 10 with 1 being the 

least radiopaque and 10 being the most radiopaque. The values assigned to 

each individual sample by the two examiners were then averaged into one 

Empress Direct Enamel 

Filtek LS

Empress Direct Dentin 

Aelite LS

GC Kalore
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number to give a Visual Average for each sample.  For example, if one 

examiner gave a sample a value of 8 and another examiner gave the same 

sample a value of 9 the Visual Average for that sample was 8.5.  The Visual 

Average was then divided in half to give the Visual Aluminum Equivalence.  

Using the previous example, the 8.5 Visual Average was divided in half to 

give 4.25 Aluminum Equivalent which was then rounded up to the nearest 

Aluminum Equivalent that corresponded to the step wedge which in this 

case was 4.5.  All light on the x-ray viewer was blocked except for where the 

radiograph was to be placed.  The examiners used no additional 

magnification or illumination (other than view box) to view the radiographs. 

 

Statistical Analysis 

Translucency 

 One-way analysis of variance (ANOVA) was used to determine 

statistical significance of translucency parameter and contrast ratio among 

the materials. The Tukey multiple comparison test was used to determine 

significant differences among the means of the five materials at 95% 

confidence (p< 0.05).  A Pearson Correlation Matrix was also calculated 

between translucency and contrast ratio. 
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Radiopacity 

 The means and standard deviations for optical densities of the 

specimens and aluminum step wedge of each radiograph were calculated by 

averaging the three repeated measurements to create a single value for each 

specimen.  A linear regression analysis was calculated for each film, relating 

the OD of the steps in the wedge to the thickness of each step. The 

aluminum equivalent (Al) was then calculated for each sample by using the 

regression analysis equation of: 

y = a + bx 

where:  

y = the optical density (OD) of the specimen; 

a = the coefficient of the regression; 

b = the regression constant and  

x = the aluminum equivalent value for that sample.   

Solving the equation for aluminum equivalent, the final equation is as 

follows: 

Al= [OD - Coefficient]/ Constant 

 

One-way analysis of variance (ANOVA) was used to determine 

statistical significance of Optical Densities among the materials. The Tukey 



 73

multiple comparison test was used to determine significant differences 

among the means of the materials at 95% confidence (p< 0.05). The same 

tests were also done to analyze the data for Aluminum Equivalents, Visual 

Average, and Visual Aluminum Equivalent.  A Pearson Correlation Matrix 

was calculated between the following: OpticalDensity/AluminumEquivalent 

(ALEquiv), AlEquiv/VisualAlEquiv, Alequiv/VisualAverage, 

Examiner1/Examiner2. 

 

Translucency vs. Radiopacity 

 A Pearson Correlation Matrix was calculated for the following:  

Translucency Parameter/Aluminum Radiopacity Equivalent, Contrast 

Ratio/Aluminum Radiopacity Equivalent. 

 

Results 

 Five commercially available resin composites Aelite LS Posterior, 

Filtek LS, GC Kalore, Empress Direct Enamel, and Empress Direct Dentin 

were evaluated for the optical properties translucency and radiopacity.  Ten 

specimens for each composite were evaluated.   
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Translucency 

 Table 4 shows the means and standard deviations of the materials in 

relation to translucency parameter and contrast ratio.  For translucency 

parameter, all materials were significantly different from each other. For 

contrast ratio all materials were significantly different except GC Kalore and 

Filtek LS, which were statistically similar.  Table 5 shows that translucency 

parameter and contrast ratio are highly correlated in an inverse relationship. 

 

Table 4 - Values for Translucency Parameter and Contrast Ratio by Material; Mean (SD) 

 Filtek LS 
Empress 
Enamel 

Empress 
Dentin 

GC Kalore Aelite LS 

Translucency 
Parameter 

17.503(0.694)a 22.089(0.790)b 14.413(0.414)c 18.394(0.418)d 11.808(0.627)e

Contrast 
Ratio 

0.805(0.008)f 0.783(0.013)g 0.885(0.005)h 0.806(0.007)f 0.908(0.004)i 

Note: Means with same letters are not significantly different with p< 0.05 

 

Table 5 - Correlation Between Contrast Ratio & Translucency 
Parameter 

Correlation = -0.944 

 

Radiopacity 

 Table 6 shows the means and standard deviations for the materials in 

relation to optical density, aluminum radiopacity equivalent, visual average 
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between two examiners, and the converted visual aluminum equivalent.  For 

optical density, all materials were significantly different except for Filtek LS 

and Aelite LS, which were similar and higher than the others.  Aluminum 

radiopacity equivalent showed the same results, except both were lower 

since there is an indirect relationship between optical density and aluminum 

equivalence.  For the visual average among the examiners, Empress Direct 

Dentin was significantly greater than all of the materials.  Filtek LS and 

Aelite LS were statistically similar, but lower.  The difference between 

Empress Direct Enamel and GC Kalore was not significant, but the values 

were the lowest.  For visual aluminum equivalent, once again Empress 

Direct Dentin was significantly greater, Filtek LS and Aelite LS were 

statistically similar and lower, and Empress Direct Enamel and GC Kalore 

were not significantly different, and lowest.  Table 7 shows that optical 

density and aluminum radiopacity equivalent are highly correlated, but 

inversely related. 
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Table 6 - Values for Optical Density and Aluminum Equivalents by Material; Mean (SD) 

 Filtek LS 
Empress 
Enamel 

Empress 
Dentin 

GC Kalore Aelite LS 

Optical 
Density 

1.175(0.076)a 1.071(0.073)b 0.902(0.065)c 0.993(0.059)b 1.181(0.071)a 

Aluminum 
Equivalent 

1.317(0.299)d 2.181(0.299)e 3.609(0.286)f 2.837(0.320)g 1.263(0.277)d 

Visual 
Average 

3.150(0.412)h 5.800(1.206)i 9.350(0.079)j 6.900(1.329)i 3.200(0.823)h 

Visual 
Aluminum 
Equivalent 

1.750(0.264)k 3.000(0.577)l 4.750(0.354)m 3.550(0.685)l 1.750(0.425)k 

Note: Means with same letters are not significantly different with p< 0.05 

 
 
Table 7 - Correlation Between Optical Density & Aluminum 

Radiopacity Equivalent 

Correlation = -0.896 

 
 
 
 Table 8 shows the correlation between aluminum radiopacity 

equivalent and visual aluminum equivalent.  When comparing all materials 

together the two are highly correlated (r= 0.938).  When comparing 

individual materials, Filtek LS iand GC Kalore are moderately correlated 

and Aelite LS is not correlated.  The rest of the materials are weakly 

correlated.  Table 9 shows the correlation between aluminum radiopacity 

equivalent and the visual average between two examiners.  Results show 

similar trends as Table 8 except values for visual average are slightly more 
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correlated.  Table 10 shows the correlation between the two independent 

examiners.  The two examiners were highly correlated (r=0.889). 

Table 8 - Correlation Between Aluminum Radiopacity Equivalent & 
Visual Aluminum Equivalent 

 Correlation 

All Materials 0.938 

Filtek LS 0.744 

Empress Enamel 0.444 

Empress Dentin 0.431 

GC Kalore 0.693 

Aelite LS 0.291 

 
 
Table 9 - Correlation Between Aluminum Radiopacity Equivalent & 

Visual Average 

 Correlation 

All Materials 0.947 

Filtek LS 0.880 

Empress Enamel 0.567 

Empress Dentin 0.582 

GC Kalore 0.650 

Aelite LS 0.373 
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Table 10 - Correlation Between Visual Examiner 1 & Visual 

Examiner 2 

Correlation = 0.889 

 
 
Translucency vs. Radiopacity 

 Table 11 shows the correlation between aluminum radiopacity 

equivalent and translucency. When comparing all materials together, the two 

are not correlated.  When comparing the individual materials, all materials, 

except Empress Direct Dentin, are weakly to moderately correlated and all 

but Filtek LS are indirectly related.  Empress Direct Dentin is not correlated.  

Table 12 shows the correlation between aluminum radiopacity equivalent 

and contrast ratio.  When compared together or individually the two are not 

correlated. 
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Table 11 - Correlation Between Aluminum Radiopacity Equivalent 
& Translucency 

 Correlation 

All Materials 0.084 

Filtek LS 0.328 

Empress Enamel -0.435 

Empress Dentin -0.038 

GC Kalore -0.488 

Aelite LS -0.600 

 

Table 12 - Correlation Between Aluminum Radiopacity Equivalent 
& Contrast Ratio 

 Correlation 

All Materials 0.053 

Filtek LS 0.225 

Empress Enamel 0.118 

Empress Dentin 0.158 

GC Kalore 0.222 

Aelite LS 0.349 
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Discussion 

Translucency 

 The primary null hypothesis was rejected because all materials were 

statistically different when comparing translucency parameter values.  This 

is not surprising, as multiple studies have shown that translucency varies by 

material and sometimes even when comparing materials within the same 

company2, 4, 6, 24, 25.  Similar results were found when comparing contrast 

ratio values. All materials were significantly different except for Kalore and 

Filtek LS, which were very similar.  The similarity between translucency 

parameter and contrast ratio is expected because previous studies2, including 

this one (r= -0.944), show that the measurements are highly correlated thus 

they can be used interchangeably when measuring translucency.  As 

translucency parameter increases, contrast ratio decreases.   

 Aelite (AE) was easily the least translucent (most opaque) of the 

composites.  Looking at filler composition (based on manufacture claims), 

AE was also the most heavily filled at 88%.  This is supported in Lee’s 

study4 where he found that as the amount of filler increased the translucency 

decreased.  In his study, he also found that the size of filler and translucency 

were not correlated. This can be weakly validated in this study in that Aelite 

(1 of 2 microhybrids) had the least translucency and Empress Dentin (1 of 3 
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nanohybrids) had the second least.  Microhybrids and nanohybrids utilize 

different size filler particles and there was variation in translucency 

regardless of type of composite in this study.  One example of where size of 

particle may have an influence is in comparison of the two Empress Direct 

composites.  According to the manufacturer, both composites have similar 

percentage filler weight yet Empress Enamel was easily the most translucent 

and Dentin was the second least translucent.  According to the manufacturer, 

the dentin shade is incorporated with larger coarser particles of barium glass 

while the enamel shade is incorporated with smaller finer particles of barium 

glass.  The larger particles could influence translucency.  However, another 

difference between the filler content of the composites leads to the same 

conclusion as Lee4.  The Empress Dentin composite has large amounts of 

prepolymer added to the filler composition and the enamel shade does not.  

From this, it is possible the two composites had similar percentage filler 

weight but different percentage volume weight (not provided).  A separate 

study breaking down the filler components of each composite by weight and 

volume would lead to possibly a more definitive answer as to a correlation 

between translucency and filler composition.   

 It has also been found that organic matrix can have an influence on 

translucency5, 7.  Azzopardi5 found that as BisGMA increased so did 
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translucency (linear correlation).  In this study, Aelite had the highest matrix 

composition (25% BisGMA by weight), yet the least translucency.  This 

contradiction to Azzopardi’s study can be explained once again by the fact 

that BisGMA is given in weight and not volume.  Both values need to be 

known before a conclusion can be drawn. Perez7 found that silorane based 

composites behaved differently than dimethacrylate based composites after 

polymerization. Filtek LS has a silorane organic matrix and was in the 

middle of the group in translucency parameter so it is difficult to make a 

conclusion on the influence of silorane matrix versus the other composites, 

which utilize dimethacrylates as organic matrices.  This study could be 

expanded in the future to compare translucency before and after 

polymerization, after water storage, and after thermocycling to better 

understand what and how much translucency is affected by these factors. 

 Using 1mm thick specimens, Yu2  provided a tentative classification 

system for translucency where low translucency has a value less than 13, 

medium translucency a value between 13 and 18, and high translucency a 

value above 18.  Based on this classification, Aelite could be used 

effectively to mask the dark background of the mouth while Empress 

Enamel could be utilized as an incisal edge composite where a blue/gray 

effect from the dark background of the mouth may be more desirable.  One 
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note of interest, it is difficult to clinically determine the actual thickness of 

composite being placed on the tooth and as the thickness of the tooth 

increases translucency decreases3, 26.   

 

Radiopacity  

 Results showed that the aluminum equivalence of all composites were 

significantly different except for Filtek LS and Aelite LS, which were 

statistically similar.  This means the secondary null hypothesis was partially 

rejected.  Tooyoka23, Hotta22, and van Dijken21 examined what fillers made 

composites radiopaque and found that heavy metal fillers such as ytterbium, 

barium, and strontium are added to resin composites to enhance radiopacity.  

A good example is the comparison of the two Empress composites. The 

dentin shade was the most radiopaque of the composites and the 

manufacturer specifically added Ytterbium in addition to Barium filler 

particles to enhance radiopacity.  Ytterbium was not added to the enamel 

shade and its aluminum equivalence was significantly lower than the dentin 

shade.  Aelite LS statistically had the lowest aluminum equivalent value and 

no high atomic weight fillers are listed as a major filler component.  A good 

future study would be to fabricate experimental composites with the same 

amount of heavy metal filler to determine the major effect on radiopacity.  
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Another useful study would be to vary the different type of heavy metal 

filler (barium, ytterbium, etc.) to see if one had a bigger influence than the 

other.  A final question to be asked is whether size of the heavy metal filler 

particle has an influence on radiopacity.  Unlike translucency I would 

anticipate the answer would be yes.    

 ISO 4049 guidelines state that a 1.0mm thick specimen must have an 

aluminum equivalence greater than 1.0mm to be deemed radiopaque.  In this 

study, all of the composites met this criterion.  However, Bouschlicher18 and 

others16, 17, 19 in their studies concluded that to best detect secondary caries 

and poor margins a composite should have a radiopacity greater than enamel 

and that enamel has aluminum equivalence approximately twice that of 

dentin.  In this study, an aluminum equivalence of 2.0mm would meet this 

criterion. However, a future study including slices of tooth containing 

enamel and dentin should be included to statistically justify this statement.  

With that being said, only Empress Enamel, Empress Dentin and GC Kalore 

met this guideline.   

 In this study, two independent examiners were used to determine if 

they viewed specimens more or less radiopaque than the transmission 

densitometer. For every composite, the examiners found the composites 

more radiopaque than the aluminum equivalent values obtained through the 
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densitometer.  This agrees with the same results from the pilot study.  From 

these results, having a composite with an aluminum equivalence greater than 

enamel may not be as important as previously described since examiners 

already tend to find composites more radiopaque than the test method 

followed in the ISO guidelines.  A high correlation (r= 0.88) between the 

examiners supports the accuracy of their interpretations. In a future study 

including tooth slices, in addition to comparing the specimens to a step on 

the step wedge, it would be interesting to have the examiners determine if 

the specimen was more radiopaque than the enamel and dentin of the tooth 

slice.   

 In this study, the visual average of the two examiners was converted 

to a visual aluminum equivalent on the step wedge for what was thought 

would be a better comparison to the radiopacity aluminum equivalent values.  

To correspond it to an actual step on the step wedge a value sometimes had 

to be rounded up to the nearest half millimeter.  In future studies, this will 

not be necessary as the visual average correlated higher to the radiopacity 

aluminum equivalent values than the visual aluminum equivalent values.  

This is likely due to the rounding of the numbers involved. Furthermore, 

there was a high correlation when comparing the materials as a group 

between visual aluminum equivalent and aluminum radiopacity equivalent 
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(r= 0.93).  However, when running a correlation between the two methods 

with each individual material, correlation ranged from 0.29 (Aelite LS) to 

0.74 (Filtek LS).  Ironically, these two composites were statistically very 

similar using the ISO guidelines method.  This variation can be explained in 

the method used to collect data.  Visual data was obtained via a ratings scale 

and aluminum radiopacity equivalent was obtained by a statistical method.  

Thus conclusions made from the correlation of the methods may be in 

question.   

Translucency vs. Radiopacity 

 The tertiary null hypothesis was accepted because results showed that 

there was no correlation (r= 0.08) between translucency and radiopacity 

when comparing the materials as a group.  When correlating the materials 

individually, correlation was a little stronger but still very weak.  Most were 

inversely weakly correlated (negative values) with the lone exception being 

Filtek LS.  The type and amount of filler particle used in the composite 

could explain this varying correlation.  A good example is the resin 

composite Aelite LS.  Aelite LS was the most opaque composite but the 

least radiopaque.  As stated earlier, Aelite LS was the highest filled 

composite tested but, according to the manufacturer listed fillers, very little 

high atomic weight filler particles were incorporated into the composite.  
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The weak correlation between translucency and radiopacity could likely 

depend on other factors besides filler composition.  For example, Empress 

Direct Dentin was the most radiopaque and second most opaque of the five 

composites yet the correlation between translucency and radiopacity with 

this composite was the lowest of all (r= -0.038). However, I suspect that if 

the only filler used in a composite was a high atomic weight filler then the 

two would be more correlated. 
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Conclusions 

 All composites were significantly different for translucency 
parameter.   

 
 Empress Direct Enamel was the most translucent material and Aelite 

LS was the least translucent (most opaque). 
 
 For contrast ratio, all composites were significantly different except 

for GC Kalore and Filtek LS, which were statistically similar. 
 

 Translucency parameter and contrast ratio were highly correlated thus 
these terms can be used interchangeably when referring to 
translucency. 

 
 All composites were significantly different except Filtek LS and 

Aelite LS, which were statistically similar for radiopacity (Al Equiv). 
 
 All of the materials tested met the International Standards 

Organization (ISO) 4049 guidelines for radiopacity with Empress 
Direct Dentin being the most radiopaque and Aelite LS being the least 
radiopaque. 

 
 Using a visual method to determine radiopacity, two independent 

examiners found all of the materials more radiopaque than the ISO 
4049 method of determining radiopacity. 

 
 There was only a very weak correlation between translucency and 

radiopacity and it was inverse for most materials. 
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