UMTRI-86-32

FILTER CHARACTERISTICS FOR PROCESSING BIOMECHANICAL SIGNALS FROM IMPACT TESTS

Nabih M. Alem

The University of Michigan Transportation Research Institute Ann Arbor, Michigan 48109

FILTER STUDY FINAL REPORT

July 1986

Prepared under Contract No. DTNH22-83-C-0-7005

The Engineering Design, Development, Testing, and Evaluation of an Advanced Anthropomorphic Test Device

> National Highway Traffic Safety Administration Department of Transportation Washington, D.C. 20590

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or the use thereof.

Technical Report Documentation Page

1. Report No.	2. Government Acces	ssion Ne. 3.	Recipient's Catalog i	No.			
4. Title and Subtitle FILTER CHARACTERISTIC	4. Title and Subtitle FILTER CHARACTERISTICS FOR PROCESSING			5. Report Date July 1986			
BIOMECHANICAL SIGNALS	HANICAL SIGNALS FROM IMPACT TESTS						
7. Author's) Nabih M. Alem		8. P	/erforming Organizat JMTR I – 86 – 32	ion Report No.			
9. Performing Organization Name and Add The University of Mic	9. Performing Organization Name and Address The University of Michigan						
2901 Baxter Road Ann Arbor, Michigan 4	ch Institute 8109		11. Contract or Grant No. DTNH22-83-C-07005				
12. Sponsoring Agency Name and Address			Type of Report and I	Period Covered			
U.S. Department of Tr National Highway Traf	ansportation	ministration	FINAL REPOR	Γ			
Washington, D.C. 2059	0		Sponsoring Agency (Code			
15. Supplementary Notes				9 - 1 P - 1 P - 1 P - 1 P - 2			
This work, initially Anthropomorphic Test	started in 19 Device Projec	83 as part of the transformed to the second	e Advanced in April-Jι	ine 1986.			
16. Abstract							
head and chest, and for specifying filters for the data acquisition ar analysis of such signals. Spectral analysis of about 450 signals resulted in some 23 approximate characterizations that were further combined into three final recommendations. Each recommended filter is a low-pass Butterworth filter specified by its -3 dB corner (Hertz) and the slope of its rolloff asymptote (dB/decade). The three recommended filters are:				sition and nals urther filter r (Hertz) e			
HEAD signals: CHEST (anti-alias): CHEST (analysis):	Corner = 55 Corner = 50 Corner = 17	r = 550 Hz, Slope = -26 dB/dec. r = 500 Hz, Slope = -27 dB/dec. r = 177 Hz, Slope = -15 dB/dec.					
The use of a sir 800 Hz and a slope of at 8000 Hz would pres chest signals, and wo of the recommended fi	gle analog Bu -30 dB/decad erve signific uld allow fur lters.	tterworth filter e for anti-alias ant frequencies ther digital fil	with corne: ing with sam in both head tering using	r at mpling 1 and g one			
17. Key Words		18, Distribution Statement					
Butterworth Filters Biomechanical Signal System Parameter Ider Frequency Response	Processing tification	g Unlimited n					
19. Security Classif. (of this report)	20. Security Class	sif. (of this page)	21. No. of Pages	22. Price			
None	N	one	191				

CONTENTS

Page
List of Figuresv
List of Tables vi
Summary 1
Introduction2
Data Base 2
Spectral Analysis 3
Butterworth Filters
Impact Frequency Response
Grouping of Signals
Discussion and Recommendations 10
Filter Implementation 10

Appendices:

A.	Characterization of Frequency Response	26
B.	Detailed Output of Characterization	64
C.	Samples of Signals and Power Density Spectra 1	.01

LIST OF FIGURES

	Page
1.	Listing of BUTTER subroutine
2.	Squared magnitude response of Butterworth filters
3.	Magnitude response of Butterworth filters15
4.	Log magnitude responses of Butterworth filters
5.	Traditional gain-frequency plots of filters
6.	Characterization of power density spectrum
7.	Recommended filter for HEAD signals19
8.	Recommended data acquisition filters for CHEST signals
9.	Recommended data analysis filter for CHEST signals21
10.	Over-plot of recommended filters
11.	Listing of FILTER subroutine to apply a Butterworth filter

LIST OF TABLES

		Page
1.	Impact Tests Used in Filter Study	24
2.	Frequency Response Summary (Non-Fracture)	25
3.	Frequency Response Summary (Fractures)	26

•

SUMMARY

Digital signals generated during head and chest impact tests were used as the basis for characterizing the frequency response of the human head and chest and to specify filters to be used during the data acquisition and analyses phases in biomechanical impact tests. About 450 signals were used in this *filter study*. These were combined into 35 different groups to produce different frequency response characterizations.

The grouping was based on several considerations. Those included whether the signal resulted from a head or a chest impact, the type of impacting surface, the direction of impact, the proximity of the sensor to the impact site, and whether a fracture occurred at or near the transducer mount. The sensitive axis of the sensor and the severity of impact were not considered as key factors in the grouping. No fractures occurred in only 23 groups, and these groups were eventually combined to produce the specifications for head and chest filters.

A low-pass Butterworth filter, specified by its -3 dB corner frequency (Hertz) and its rolloff slope (dB/decade), was used as a model to describe the frequency responses of the analyzed signals. An approximation procedure was developed and applied to estimate these two system parameters, given the limited information about the signals available for analysis.

Analysis of frequency responses of head signals indicated that a single filter may be used for data acquisition and/or analysis. For chest signals, it was not possible to specify a single filter. Instead, the analysis indicated that anti-alias filtering for data acquisition should use one filter, and filtering for biomechanical data analyses may use a lower-frequency filter. The three recommended Butterworth filters are:

	Corner (Hertz)	Rolloff (dB/dec)
HEAD	550	-26
CHEST (anti-alias)	500	-27
CHEST (analysis)	177	-15

It was also concluded that a single analog Butterworth filter with a corner at 800 Hz and a rolloff slope of -30 dB/decade may be used as an anti-alias filter for both head and chest signals with a sampling rate not below 8000 Hz, provided that signals are filtered further using the recommended filters.

INTRODUCTION

As part of the biomechanical data analysis task of the AATD program, a comprehensive filter study was undertaken to provide a rational basis for filtering biomechanical signals prior to their analysis and their use for specifying response characteristics of an advanced anthropomorphic test device.

The filter study used the biomechanical data base that was consolidated from various sources and experiments conducted over the past ten years. The objectives of this study were:

- A. To conduct a spectral analysis on all appropriate biomechanical signals in order to document their frequency contents.
- B. To use the spectral analysis to characterize the mechanical systems that produced them.
- C. Based on this characterization, to recommend specifications of the filters to be applied prior to analyzing biomechanical signals, and to extend these recommendations to the data acquisition instruments used during biomechanical testing.

The purpose of this document is to describe the methodology followed in the *filter study*, the rationales and justifications for their adoption, and the results and recommendations of the study.

DATA BASE

The complete data base that was available for the filter study consisted of over 5000 signals, not all of which were of practical use. After careful examination of these signals, only about 450 of them were finally selected as a basis for the study. There were several reasons for eliminating many signals from consideration, and for setting criteria for inclusion of others in the subset of the data base.

First of all, many signals contained in the complete data base do not pertain to biomechanical response *per se*, but are time-base, velocity, and other event-timing signals. Along with these signals were those that are "external" to the surrogate being tested, such as sled pulses, vehicle acceleration, and externally measured impactor accelerations and forces. This class of signals would (and should) not be used for characterization of the frequency response of human surrogates in biomechanical tests.

Second, a large number of signals were measured as responses of anthropomorphic dummies. Accelerometers and other transducers mounted on dummies provide response of the mechanical hardware of the dummy, and not of the skeletal or muscular structure of cadavers. Since the objective of this study was to characterize human frequency response, and not that of a mechanical dummy, all signals generated from transducers mounted on dummies were eliminated from consideration for the filter study. This left only those signals generated in cadaver tests, from transducers (primarily accelerometers) mounted on cadavers.

A third reason for eliminating further cadaver signals was the low sampling rate of a large number of them. An objective study of frequency response should not be limited to low-frequency ranges, since many "events" could be happening near the higher end of the frequency spectrum. The NHTSA Biomechanics Data tape format requires that all signals be filtered at SAE Channel Class 1000, that has a corner frequency at 1650 Hz. Since the theoretical sampling rate which would preserve this frequency must be greater than twice the highest frequency in the signal, all signals that were sampled at rates less than 3200 Hz were eliminated from consideration in the filter study.

The resulting "pool" of acceptable tests was reduced to the 60 tests listed in Table 1. Signals from these tests had been digitized at different sampling rates that were chosen by the organizations who conducted the tests and/or digitized the analog signals. The majority of these were sampled at 6400 Hz, others at 8000, 10000, and 13333 Hz, and some at 25000 Hz.

Finally, signals that met all of the above criteria were further examined to determine their "quality," and to eliminate those that clearly did not represent cadaver response. These "rejects" were primarily "dead channels" and "broken cables," as indicated in the data base coding or determined from visual examinations. The remaining signals were assumed to be accurate and reliable responses of the tested cadavers at the indicated attachment sites.

SPECTRAL ANALYSIS

The following discussion is not intended to be a rigorous presentation, but is included here in order to define the terminology used in the study. For a complete presentation, the reader is referred to the textbook by A. V. Oppenheim and R. W. Shafer, *Digital Signal Processing*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.

A time signal x(t) may be represented in the time domain as a finite sequence of N samples taken at a constant sampling rate, S, usually expressed in Hertz or samples per second. By assuming that this finite record represents one cycle in a periodic phenomenon, it is possible to express x(t) in terms of a Fourier series consisting of a sum of sine and cosine terms at frequencies that are integer multiples of the fundamental frequency S/N associated with the periodic phenomenon:

$$x(t) = \sum_{k=0}^{N/2} A_k \cos [k(S/N)t] + B_k \sin [k(S/N)t]$$

This is known as the discrete Fourier series of the signal. The coefficients A_k and B_k may efficiently be computed using Fast Fourier Transform (FFT) algorithms.

Since both sine and cosine terms are at the same frequency, another form of the same equation is:

$$x(t) = \sum\limits_{k=0}^{N/2} \ M_k \sin \left[k(S/N)t + \varphi_k\right]$$

where
$$M_{k}^{2} = A_{k}^{2} + B_{k}^{2}$$
, and $\phi_{k} = \arctan(B_{k}/A_{k})$.

The term M_k is the magnitude of the k-th frequency component, and ϕ_k is its phase angle. Both magnitude and phase may be plotted against frequency, and study of these responses is generally referred to as *spectral analysis*. Because the power of a signal is proportional to the square of its magnitude, sometimes the squared magnitude is plotted against the frequency. And depending on the units chosen for expressing this squared function, it is possible to consider its plot as the power function, usually referred to as the *power spectral density*, or PSD for short.

The discrete Fourier series states that any finite segment of a time signal is composed of pure sinusoidal components at frequencies ranging from zero (the D.C. term) up to the Nyquist frequency, which equals half the sampling rate. The number of components is limited to N/2, half of the number of time samples. This is a direct result of the *Sampling Theorem*. Another result is that frequencies above the Nyquist rate will be *folded* about this frequency and will *appear* in the digital signal as lower-frequency components that do not, in reality, exist in the analog signal. Since these *aliased* frequencies cannot be distinguished from *real* ones in the digital signal, it is necessary to filter out all components above the Nyquist frequency prior to digitizing, using low-pass filters. These filters are referred to as *anti-aliasing* filters.

While the phase response of a system is just as important as its magnitude response for its characterization, spectral analysis practices usually emphasize the study of the magnitude response. In this filter study, the focus will also be on the magnitude, since study of the phase requires more controlled data acquisition procedures than were documented in the available data base.

Most mechanical systems respond to external excitations by vibrations that can be monitored. When the excitation is a steady sinusoidal signal of a certain magnitude and phase angle, the system response is another sinusoidal motion at the same excitation frequency, but with a different magnitude and phase shift. When the excitation is impulsive, such as a short-lived impact, the response of the system appears to be random, and continues well after the excitation is removed, and eventually dies out because of the damping that may exist in the system. It is from this type of excitation that most biomechanical signals are generated.

Frequency responses of most biomechanical systems, i.e., the plots of magnitude versus frequency, exhibit common features. Thus, there is always a D.C. term at zero frequency which, depending on the data acquisition equipment, may be the most prominent feature in the frequency spectrum. This occurs when the zero-bias in the signal amplifier is not removed. It could also occur when most of the signal lies on one side of the time axis, as in the case of contact forces. For most signals, however, this term is small and represents the mean of all the samples in the signal. Although the D.C. term is necessary for faithful reproduction of the original time signal, it may be ignored (i.e., assumed zero) for the purpose of characterizing the biomechanical system that generated the signal.

The response over the remainder of the spectrum, which extends to the Nyquist rate, typically decreases with frequency; that is, low-frequency components are more dominant than high-frequency ones. This behavior, characteristic of low-pass transfer functions, is typical of most mechanical systems, and may be explained in two ways.

Consider a signal that has been sampled at 8000 Hz. Spectral analysis of this signal extends to the Nyquist rate of 4000 Hz. Assume that, prior to digitizing, an SAE Channel Class 1000 was used as an anti-alias filter. Such a filter has a cutoff frequency of 1000 Hz and a corner of 1650 Hz. Because of the use of this anti-alias filter, all frequencies above the cutoff point of 1000 Hz have been gradually attenuated. Therefore, when examining the spectrum between 1000 and 4000 Hz, which *will* necessarily exhibit a "roll-off," it is not immediately obvious whether this attenuation is a characteristic of the mechanical system or is due to the anti-alias filter.

Assuming that the low-pass, anti-aliasing filter has a "flat" response up to its cutoff frequency, then any roll-off that is observed below this frequency may confidently be attributed to the mechanical system being measured. Of course, this further assumes that the instrumentation (transducers, conditioners, recorders, digitizers) does not alter the true response of the signal being monitored. It is this explanation that will enable us to characterize the biomechanical systems under consideration.

The approach taken in this study was simple but effective. Since most signals in the data base exhibited (as expected) a "low-pass" system behavior, a simple low-pass filter was used as a model to characterize specific groups of signals generated at various body parts. Because of the availability of the data, only responses of the head and chest were considered. The limitation imposed by the use of Channel Class 1000 as an anti-alias filter did not hinder the overall characterization, since most signals exhibited their roll-off behavior inside the useful range below 1000 Hz.

BUTTERWORTH FILTERS

One of the simplest low-pass filters that may be adopted as a model is the Butterworth filter, whose squared magnitude response function is given by:

 $|G(\omega)|^2 = 1 / [1 + (\omega/\omega_c)^{2n}]$

where $G(\omega)$ is the filter's gain as a function of frequency, ω_c is the corner frequency, and n is the order of the filter. The appeal of the Butterworth filter lies in the simplicity and flexibility of its definition and digital simulation, as well as in its properties. The most distinctive property of these filters is that they are *maximally flat* in the passband. This and other properties are explored in the following paragraphs.

A simple computer program to simulate the frequency response of a Butterworth filter is listed in Figure 1. The filter is specified by its corner and rolloff slope from which its order may be derived. The number of samples and sampling rate are used only as a guideline to define the number of frequencies at which the filter gain is computed, as well as the interval between adjacent frequencies. In the version listed in Figure 1, the returned GAIN was set equal to the squared magnitude, SMAG, but could easily be modified to return the magnitude itself, GMAG, or its value in deciBels, DBEL. This is precisely what was done to generate the frequency responses shown in Figures 2, 3, and 4. Typically, however, the frequency response is displayed, as shown in Figure 5, on a semi-logarithmic paper, where the gain (deciBels) is plotted along the vertical linear axis, against the frequency (Hertz) along the horizontal logarithmic axis.

It is clear that, as the order of the Butterworth filter increases, its characteristics become sharper but the gain at the corner frequency remains the same. Because the power of a sinusoidal signal is proportional to its squared magnitude, and since the square magnitude function at the corner is equal to one-half regardless of the order, the corner frequency is usually referred to as the *half-power* point of the filter, where the gain is -3dB. In other words, frequencies passed by the filter that are below the corner will retain at least half of their power, while those that are above the corner will lose at least half of their power.

Another important property of Butterworth filters, which may be observed in Figure 5, is that the frequency response in the rolloff region is asymptotic to a straight line when the frequency is plotted along a logarithmic axis. The straightline asymptote always intercepts the 0-dB line at the corner frequency, but its slope (in dB/decade or dB/octave) is proportional to the order n of the filter. Thus, the slope is -20 dB/decade for n=1, -40 dB/decade for n=2, and so on.

Unless the Butterworth filter is intended for analog implementation, there is no reason to restrict the order n to an integer. Thus, a rolloff slope of -50 dB/decade may be achieved by specifying n=2.5 for the order. This provides an appealing flexibility in the digital simulation of the Butterworth filter, especially

when it is used as a model for unknown frequency responses. Consequently, it is more appropriate (as was done in the coding of BUTTER program, Figure 1) to specify the filter by its corner frequency and its rolloff slope, which may not necessarily be an integer multiple of 20 dB/decade. The parameter n, required for computing $G(\omega)$, is then simply derived from the specified slope as the ratio of slope over the 1st-order slope of 20 dB/decade.

Finally, since the asymptote always intercepts the 0-dB line at the corner frequency, a quick sketch of the actual response of the filter is possible, without elaborate computations, given only the corner and slope. Note, however, that the vertical separation between the actual curve and the asymptote, for frequencies above the corner, cannot exceed 3 dB, with the largest deviation (3 dB) always occurring at the corner, and decreasing as the frequency increases.

These properties allow the identification of the two filter parameters, given an experimentally measured frequency response curve of the filter. To do this, one would locate on the actual curve the frequency where the gain crosses the -3 dB level. This is the corner frequency of the filter, which also identifies the 0-dB intercept point of the asymptote. By drawing a straight line that passes through this point asymptotically to the rolloff portion of the given curve, the slope and, consequently, the order of the filter may be determined. This graphic identification procedure was the basis for the algorithm that was developed and used in the filter study.

IMPACT FREQUENCY RESPONSE

A linear and stable system being excited with a random white noise produces a response. Under some conditions, the squared magnitude response may be considered an adequate approximation of the power density spectrum (PDS), especially when the PDS is smooth and approaches zero at finite frequencies. Since the biomechanical signals were produced from an impulsive (non-white) input, the resulting PDS is "noisy" and must be smoothed prior to any further analysis. Therefore, approximation techniques were developed in this study to characterize the frequency response of the impact signals and to identify the parameters of the biomechanical systems in question.

The PDS of a typical biomechanical impact signal generally exhibits a roll-off characteristic at high frequencies and a noisy response over the entire spectrum. It is more convenient to base the system identification procedure on a smoother distribution derived from the experimentally generated PDS curve. Such a smooth distribution is the integral of the PDS, which may be shown to be also proportional to the power content in the signal over the frequency interval of integration.

The approximation procedure followed in this study may be illustrated by applying it to a well-understood system. Thus, consider the already-smooth PDS of a Butterworth filter whose corner is 500 Hz and rolloff is -20 dB/decade. The

PDS of this (500/-20) filter is shown in Figure 6 along with its cumulative PDS function. The frequencies of five landmarks on the cumulative PDS are then identified to serve as the basis for estimating the corner and rolloff slope of a low-pass system. These landmarks correspond to the 50, 75, 90, 95, and 99% levels of the cumulative PDS, which may be considered, for the purpose of approximation, as the 50, 25, 10, 5, and 1% respective power points in the low-pass system. In terms of deciBels, these translate into -3, -6, -10, -13, and -20 dB gains of the desired characterization.

Once these five landmarks have been identified, they may be used in an algorithm that corrects for deviations from a hypothetical asymptote (as discussed earlier) to produce approximate points on the asymptote. These corrected points are then fitted to a straight line whose intersection with the 0-dB line is the corner, and slope is the rolloff of the approximated low-pass Butterworth characterization. For the (500/-20) filter, this produced the approximation (549/-21) that is shown in Figure 6 as the dashed curve. Of course, for actual signals, the approximation may not be as close to the unknown characteristics as shown in the example, depending on the smoothness of the PDS curve, and on the order (rolloff) of the unknown system. However, given the information available for this study, it was felt that this procedure is adequate if care is exercised in interpreting the results.

This simple system parameter identification procedure may be repeated for several signals that were produced under similar test conditions of the same mechanical system. Then the resulting corners and rolloffs are averaged to obtain better estimates of the system parameters. Alternatively, the five landmarks obtained from different signals may be averaged first. Then an approximate filter may be derived from the five averaged landmarks. In this study, the 450 signals were first analyzed to extract the five landmarks, combined into 35 different groups of compatible signals, then averaged to produce 35 different sets of five landmarks.

Because of statistical variations of the landmark frequencies in each group, and since the resulting characterization was intended to preserve significant frequency components in current and future biomechanical signals, the straight-line fitting procedure was applied, not to the average landmark frequencies, but to frequencies that were *one standard deviation above the average*. This ensured that significant frequencies which were present in the signals would fall in the passband, and allowed for uncertainties and errors during the data acquisition and analysis phases of the signals. The resulting 35 low-pass filter characterizations are, therefore, *conservative estimates* that are not likely to filter out significant frequencies.

GROUPING OF SIGNALS

The system parameter identification procedure outlined in the previous sections was applied to the appropriate signals available in the data base. First,

the selected signals were grouped by test type, restraint conditions and/or impact surface, and by transducer attachment location. A list of the sixty (60) tests from which these signals were obtained is given in Table 1. The results of the analysis of 35 groups of signals are presented in Appendices A and B, and are summarized in Tables 2 and 3.

In combining the available signals in the 35 groups, several factors were taken into account. First, the head and chest signals were separated to produce characterization of two physically separate body parts. Another consideration was the type of impact surface that produced the response. This is defined by the restraint system that was in contact with the chest during the tests, or by the padding, if any, that was added to the impactor in head and chest pendulum impacts. The velocity of impact, which affects the magnitude of the response but not its frequency content, was not considered as a factor in grouping the various signals. Similarly, the direction of the sensitive axis of the transducer was ignored in the grouping, since the vibration of the sensor reflects the underlying bony structure and would contain the same frequency information regardless of the sensing direction.

The third consideration was the proximity of the transducer mounting location to the impact site. It may be argued that, as the sensor is located farther away from the impact site, the response is attenuated but its frequency content should remain unchanged. While this may be true for a rigid or nearly-rigid body such as the head, the thorax is much more complicated and contains structures that may respond differently. Therefore, the chest signals were grouped by whether they were near the impact site, at the far and opposite side of the chest, or at midrange between these two extremes. This necessitated dividing the tests into lateral (left-side) and frontal impacts, then grouping the signals as follows:

	Near Side	Mid Range	Far Side
LATERAL	LLR, LUR	LST, UST T01, T12	RLR, RUR
FRONTAL	LST, UST	LLR, LUR RLR, RUR	T01, T12

The last factor that was taken into account was whether a bone fracture occured at or near the transducer mount. This is an important consideration because, when the integrity of the bony structure is violated by a fracture, the response of the system becomes erratic and can no longer be attributed solely to the structural vibration of the biomechanical system. These groups are included in the results to demonstrate the frequency characteristics of fractured systems, but should not (and were not) used to draw conclusions about the chest or head frequency response.

This grouping scheme resulted in 35 separate characterizations of the available signals, of which 12 groups were ignored because they consisted of signals where fractures occurred. The remaining 23 "filters" are listed in Table 2 and

are presented as six chest groups and one head group. The weighted logarithmic average of the corner frequencies in each group, as well as the weighted arithmetic average of the rolloff slopes, are also given. Those "filters" marked with an asterisk (*) were not included in the averaging because they were clearly low extremes and because their omission would not adversly affect the intended goal of preserving the high frequency components in signals. The averaging process reduced the number of filters to six for the chest, and one for the head. The average corners and slopes are shown in Table 2, in parenthesis, at the bottom of each group.

DISCUSSION AND RECOMMENDATIONS

An examination of the six Butterworth filter characterization of chest frequency response reveals that five of them are clustered near the (200/-15) filter, while one is near (500/-25) filter. Further reduction of the number of chest filters is obtained by an additional weighted averaging of the five-filter cluster to produce the (177/-15) filter. Note that the 177 Hz is a corner frequency at which the filter gain is -3 dB, and should not be confused with the SAE J211 Channel Class 180, which has its corner frequency at 300 Hz. Note also that, in obtaining the (177/-15) average, only five filters were used and did not include the (493/-27) filter. Even when this filter is included in the averaging, the result is a (186/-16) sixfilter average that is not much higher than the five-filter average.

It is tempting to specify the overall average of (186/-16) as a do-it-all filter to be used during the data acquisition and analyses phases of all thoracic signals. It is more prudent, however, to allow for uncertainties in these phases and specify a filter that would preserve the highest frequency which may occur, without imposing unrealistic and unfounded restrictions. Therefore, the (500/-27) filter, i.e., the Butterwoth filter whose corner frequency is 500 Hertz and whose rolloff slope is -27 dB/decade, should be used during the instrumentation and data acquisition phases of biomechanical testing of the thorax. Once the data have been digitized, additional filtering using the (180/-15) filter may be applied to the thoracic signals when warranted. For head signals, a (550/-26) filter, which is almost identical to the one specified for chest signals, should be used during both the data acquisition and analyses phases. The frequency responses of these filters are given in Figures 7, 8, and 9. For convenience, these are overplotted in Figure 10.

FILTER IMPLEMENTATION

The two head and chest filters recommended for anti-aliasing during data acquisition are almost identical with corner frequencies near 500 Hz and rolloff slopes near -27 dB/decade. While such a filter may easily be realized in a digital simulation, it cannot be designed as an analog Butterworth filter since its order (27/20 or 1.35) requires 2.7 poles in the realization. The nearest analog filter that would have 3 poles for a rolloff slope of -30 dB/decade. If the (800/-30) filter were used as anti-alias filter, and if the sampling rate were 8000 Hz, as recom-

mended in the SAE J211 instrumentation guideline, then the gain of frequencies above the Nyquist rate of 4000 Hz would be no higher than -20 dB, an adequate anti-aliasing attenuation. Higher sampling rates would, of course, produce additional anti-aliasing attenuation when the (500/-30) filter is used.

Digital implementation of any Butterworth filter is simple but requires that the filtering be done in the frequency domain. A Fast Fourier Transform (FFT) algorithm must therefore be available, in hardware or software, before filtering can be done. Using the FFT, the frequency spectrum of the time signal is first obtained. The gain of the desired filter is then computed at every frequency in the spectrum, then multiplied by the magnitude of corresponding signal component. The inverse FFT is then applied to the modified signal component to return to the time domain.

A listing of the Fortran subroutine FILTER is given in Figure 11. The program requires an algorithm (FFT) that performs the direct and inverse Fourier transforms. Input to this routine are the time signal (SIG) to be filtered, the number of samples (NPT), the sampling rate (SHZ), as well as the corner (CORN) and rolloff (ROLL) of the desired filter. The gain of the Butterworth filter is computed as filtering is performed. The routine returns, in the SIG array, the filtered time signal. Note that, in this simple implementation, the phase response is not applied to the signal but may, in a more sophisticated implementation, be applied by modifying differently the sine and cosine terms of the Fourier series. Other implementations may include a section where the signal is extended at either end to eliminate possible distortions, then "return" only the original time segment.

SUBROUTINE BUTTER (NPT, SHZ, CORN, ROLL, GAIN, NFRQ)

С	Frequency response of a Butterworth filter
С С С С	Input: NPT Number of samples in signal SHZ Sampling rate (Hertz) CORN Corner frequency (Hertz) ROLL Roll-off slope (dB/decade)
C C	Output: GAIN Magnitude response of filter NFRQ Number of frequencies
	REAL*4 GAIN(1)
	<pre>FUNHZ = SHZ / NPT ORDER = ABS(ROLL / 20) POWER = 2 * ORDER WFUND = FUNHZ / CORN NHALF = NPT / 2 NFRQ = NHALF + 1 DO 10 K = 1, NFRO</pre>
C C	W = (K-1) * WFUND DENOM = 1. + W ** POWER SMAG = 1. / DENOM GMAG = SQRT (SMAG) DBEL = 20. * ALOG10 (GMAG) GAIN (K) = SMAG GAIN (K) = GMAG GAIN (K) = DBEL
10	CONTINUE
	RETURN END

Figure 1 - Listing of BUTTER subroutine to compute filter gain.

Figure 6 - Characterization of the power density spectrum.

Figure 7 - Recommended filter for HEAD signals.

Figure 9 - Recommended data analysis filter for CHEST signals

Figure 10 - Summary of recommended filters.

SUBROUTINE FILTER (SIG, NPT, SHZ, CORN, ROLL) С Purpose: Apply a Butterworth filter to signal. SIG ... Time signal before/after filtering NPT ... Number of points (samples) in signal С С SHZ ... Sampling rate of signal, (Hertz) С С CORN ... -3dB corner of desired filter, (Hertz) С ROLL ... Rolloff slope of filter, (dB/decade) REAL*4 SIG(1) FUNHZ = SHZ / NPT WFUND = FUNHZ / CORN ORDER = ABS (ROLL / 20)POWER = 2 * ORDER NFREQ = NPT / 2С Transform signal to frequency domain CALL FFT (NPT, SIG, +1) С Compute filter gain, then apply to signal DO 100 K = 1, NFREQ IB = 2 * KIA = IB - 1 $W = (K-1) \times WFUND$ $GINV = 1 + W \star POWER$ GAIN = 1 / SQRT (GINV) SIG (IA) = GAIN * SIG (IA)SIG (IB) = GAIN * SIG (IB) 100 CONTINUE С Transform signal back to time domain CALL FFT (NPT, SIG, -1) RETURN END

Figure 11 - Listing of FILTER subroutine to apply a Butterworth filter.

Table 1 - Pool of Impact Tests Used in Filter Study

Tape No. File No. Signals	Test ID	Test: Type Direction Restraint	Subject: Age Height Weight	Performer Test Date	Test Description
2.1021 22 2.1050 22 1.2154 20 1.2175 20 1.2214 11 1.2233 19 1.2253 10 1.2272 22 2.0570 22 2.0570 22 2.0570 22 2.0570 22 1.2317 20 1.2338 20 2.0620 24 1.2359 20 2.0694 23 2.0694 23 2.0001 10 1.3423 11	B 82-04 B 82-05 D A-877 D A-887 D A-883 B A-883 B A-883 B A-883 B A-923 1 A-923 1 A-924 4 A-925 4 A-925 4 A-925 0 A-927 D A-9334 D A-9337 3 A-9338 D MS 91 D MS 92 2 75A113 2 75A116 75A116	OCC 999 3PT DCC 999 3PT SLD O 3PT SLD O 3PT SLD O 3PT SLD O LAP SLD O LAP SLD O ABG SLD O ABG SLD 999 3PT SLD O ABG SLD O ABG SLD O ABG SLD O ABG SLD O LAP SLD O ABG SLD O LAP GAN	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HDL 01/13/82 HDL 12/03/82 HSR 06/20/75 HSR 06/27/75 HSR 07/07/75 HSR 07/10/75 HSR 07/22/75 HSR 09/17/75 HSR 10/01/75 HSR 09/26/75 HSR 09/26/75 HSR 10/08/75 HSR 10/09/75 HSR 12/11/75 HSR 12/15/75 APR 07/16/76 HSR 11/08/75 HSR 12/10/75	FAT PROGRAM FAT PROGRAM EA COLUMN, LAP BELT PROD. EA COLUMN, LAP BELT PROD. EA COLUMN, LAP BELT PROD. EA COLMN, PAD INSRT&LAP BEL EA COL, AIRBAG INSRT, LAP BL EA COL, AIRBAG INSRT, LAP BL WBR-7 EA COL, AIRBAG INSRT, LAP BL WBR-7 EA COL, SOFT INSRT, LAP BL WBR-8 EA COL, SOFT INSRT, LAP BL WBR-9 FACE DROP M PAD AIS=4 F PAD AIS=0
1.3436 1: 1.3449 1 1.3461 1 1.3473 1 1.3485 1: 1.3510 1: 1.3523 1: 1.3536 1: 2.0718 2: 1.2380 1:	2 76A126 1 76A133 1 76A133 1 76A135 2 76A136 2 76A136 2 76A144 2 76A145 2 76A152 3 76B001 7 76T003	CAN 0 999 CAN 0 999 CAN 90 999 CAN 180 999 CAN 0 999 CAN 0 999 CAN 0 999 CAN 90 999 CAN 90 999 SLD 999 3PT SLD 270 RIG	65 71 179 54 69 179 72 67 104 68 63 140 88 67 168 45 66 166 78 63 177 66 63 99 99 69 138 60 71 225	HSR 02/27/76 HSR 03/03/76 HSR 03/12/76 HSR 03/17/76 HSR 03/27/76 HSR 04/29/76 HSR 05/06/76 HSR 05/11/76 HSR 12/13/76 HSR 01/27/76	M PAD AIS=0 M PAD AIS=3 F PAD AIS=2 F PAD AIS=0 M PAD AIS=3 M RIG AIS=3 M RIG AIS=5 F RIG AIS=5 WBR-10 LAT IMPACT RIG SURF
1.2398 22 1.2424 20 1.2445 20 1.2466 20 1.2487 22 1.2513 1 1.2525 1 1.2537 1 1.2537 1 1.2549 1 1.2561 10	5 76T008 76T009 76T010 76T011 5 76T020 1 76T021 1 76T022 1 76T024 1 76T025 6 76T029	SLD 0 3PT SLD 270 RIG SLD 270 RIG SLD 270 RIG SLD 0 ABG CAN 0 NON CAN 0 NON CAN 0 NON CAN 0 NON SLD 270 MCI	74 64 156 75 61 97 84 63 193 69 67 165 78 62 140 55 63 95 85 64 132 75 66 167 66 68 153 67 65 137	HSR 03/25/76 HSR 04/06/76 HSR 04/15/76 HSR 04/23/76 HSR 06/03/76 HSR 06/14/76 HSR 06/22/76 HSR 06/25/76 HSR 06/30/76 HSR 07/28/76	3PT INFLAT.BELT, FRNT SLED LAT IMPACT RIG SURF LAT IMPACT RIG SURF LAT IMPACT RIG SURF FRNT SLED, EA COLMN, AIRBAG THORACIC IMPACT, CANNON THORACIC IMPACT, CANNON THORACIC IMPACT, CANNON SLED, SIDE DOOR IMPCT
1.2578 1 1.2597 1 1.2196 1 1.2615 1 1.2628 1 1.2624 1 1.2661 1 1.2667 1 1.2677 1 1.2693 1 1.2709 1	8 76T034 7 76T039 7 76T042 2 76T050 5 76T053 6 76T056 5 76T052 5 76T062 5 76T065 6 77T068	SLD 270 MCI SLD 270 MCI SLD 270 MCI PEN 0 NON PEN 0 NON PEN 0 NON PEN 270 NON PEN 270 NON PEN 270 NON	62 72 130 72 73 162 58 70 142 61 69 184 63 68 231 40 99 154 76 99 194 69 68 110 63 99 209 52 68 136	HSR 08/12/76 HSR 08/19/76 HSR 08/23/76 HSR 10/28/76 HSR 11/11/76 HSR 12/03/76 HSR 12/07/76 HSR 12/16/76 HSR 12/176 HSR 07/08/77	SLED, SIDE DOOR IMPACT SLED, SIDE DOOR IMPACT SLED, SIDE DOOR IMPACT PENDULUM, 14FT/SEC FRNT IMP PENDULUM 14FT/SEC FRNT IMP PENDULUM 14FT/SEC FRNT IMP PENDULUM 14FT/SEC SIDE IMP PENDULUM 14FT/SEC SIDE IMP PENDULUM 14.33FT/S FRNT IMP
1.2726 10 1.2743 10 1.2760 10 1.2777 10 1.2794 10 1.2812 10 1.2829 10 1.2848 10 1.2848 10 1.2867 10 1.2886 10	6 77T071 6 77T074 6 77T077 6 77T080 7 77T083 6 77T083 6 77T086 8 77T089 8 77T092 8 77T095 8 77T098	PEN 270 NON PEN 270 NON PEN 270 NON PEN 270 NON PEN 0 NON SLD 270 RIG SLD 270 RIG SLD 270 MCI SLD 270 MCI	60 67 176 60 69 119 79 69 162 64 67 89 60 61 140 54 64 172 66 68 121 45 69 128 77 72 204 71 66 130	HSR 07/13/77 HSR 07/18/77 HSR 07/22/77 HSR 08/10/77 HSR 08/30/77 HSR 09/08/77 HSR 09/19/77 HSR 09/28/77 HSR 10/11/77 HSR 10/27/77	PENDULUM 14.3FT/S SIDE IMP PENDULM 14.32FT/S SIDE IMP PENDULUM 19.9FT/S SIDE IMP PENDULUM 20FT/S SIDE IMP PENDULUM 20FT/S FRNT IMP SLED RIG WALL SIDE IMP SLED RIG WALL SIDE IMP SLED PADDED WALL(REPORT) SLED PADDED WALL(REPORT)

,

Filter Number	Corner (Hz)	Slope (dB/dec) Sensors Locations Test		Test Types
LP01	641.	-33.7	3 LLR	SLD/MCI
LP05	510.	-23.1	4 LLR	SLD/RIG
LP09	422.	-26.1	6 LUR LLR	PEN/L-R
Avg. =	(493.	/ -26.9)	(Near-side)	(Lateral)
LP11	200.	-13.6	34 UST LST T01 T12	SLD/MCI
LP12	208.	-16.9	39 UST LST TO1 T12	SLD/RIG
LP13	106.	-13.4	44 UST LST T01 T12	PEN/L-R
Avg. =	(160.	/ -14.6)	(Mid-range)	(Lateral)
LP02	151.	-15.0	6 RUR RLR	SLD/MCI
LP06	257.	-17.7	9 RUR RLR	SLD/RIG
LP10 *	62.	-9.6	12 RUR RLR	PEN/L-R
Avg. =	(208.	/ -16.6)	(Far-side)	(Lateral)
LP16 *	15.	-8.6	9 UST LST	SLD/ABG
LP22	155.	-15.1	8 UST LST	SLD/LAP
LP28	158.	-15.7	11 UST LST	PEN/A-P
Avg. =	(157.	/ -15.4)	(Near-side)	(Frontal)
LP14	143.	-13.6	18 LUR LLR RUR RLR	SLD/ABG
LP18 *	21.	-6.6	2 LUR LLR	SLD/3PT
LP21	271.	-16.2	23 LUR LLR RUR RLR	SLD/LAP
LP26	492.	-26.9	6 LUR LLR RUR RLR	PEN/A-P
Avg. =	(229.	/ -16.6)	(Mid-range)	(Frontal)
LP17	159.	-16.2	20 T01 T12	SLD/ABG
LP20 *	23.	-7.5	4 TO1 T12	SLD/3PT
LP24	172.	-14.7	20 TO1 T12	SLD/LAP
LP30	234.	-14.3	13 TO1 T12	PEN/A-P
Avg. =	(180.	/ -15.2)	(Far-side)	(Frontal)
LP33	547.	-25.7	33 HD1 HD2 HD3 HED	DIR NOPAD
LP34 *	49.	-11.8	18 HD1 HD2 HD3 HED	DIR W/PAD
LP35 *	17.	-14.1	15 HD1 HD2 HD3 HED	NO DIRECT IMPACT
Avg. =	(547.	/ -25.7)		

Table 2 - Summary of Butterworth Characterization: Non-Fracture Signals

Filter Number	Corner (Hz)	Slope (dB/dec)	Sens	sors Locations	Test Types
2003	C11	20 4			
LP03	611.	-30.4	/	LOR LLR	SLD/MC1
LP04	212.	-13.6	4	RUR RLR	SLD/MCI
LP07	496.	-25.1	8	LUR LLR	SLD/RIG
LP08	658.	-31.0	3	RUR RLR	SLD/RIG
LP15	1012.	-46.6	2	RUR LUR	SLD/ABG
LP19	316.	-23.1	2	RUR RLR	SLD/3PT
LP23	74.	-8.7	3	UST	SLD/LAP
LP25	60.	-11.6	2	Т01	SLD/LAP
LP27	658.	-31.4	2	RUR	PEN/A-P
LP29	65.	-14.2	3	LST UST	PEN/A-P
LP31	1303.	-19.9	28	HED HD1 HD2 HD3	DIR NOPAD
LP32	85.	-11.7	10	HD1 HD2 HD3 HED	DIR W/PAD

Table 3 - Frequency	Response o	f Signals	Where	Fractures	Occurred

Appendix A

CHARACTERIZATION OF FREQUENCY RESPONSE

In this Appendix, the 35 low-pass Butterworth filter characterization of biomechanical signals from chest and head accelerometers are presented in graphical form. The information displayed on each figure documents the source of the signals, their group type and location, and the resulting system parameters. These are identified by boxed numbers on the LEGEND given on the next page.

- (1) Filter designation in this series, LP01 through LP35.
- (2) Test conditions and type codes:

SLD	Sled tests
PEN	Pendulum and/or Cannon tests
DIR	Direct head impacts
NO DIR	Indirect head impact tests
MCI	Padded side impact
RIG	Rigid side impact
ABG	Airbag frontal impact
3PT	3-Point restraint frontal test
LAP	Lap belt only frontal impact
A-P	Frontal pendulum/cannon impact
L-R	Lateral pendulum/cannon impact
W/PAD	Padded head impact
NOPAD	Rigid head impact
FRAC	Fracture at/near transducer location
NOFX	No fracture at/near transducer

(3) Transducer location:

LUR	Left upper rib
LLR	Left lower rib
RUR	Right upper rib
RLR	Right lower rib
UST	Upper sternum
LST	Lower sternum
T01	Spinal vertebra T1
	Others: T06, T12, etc.
HED	Head accelerometer
HD1	Head triax or biaxial number 1
HD2	Head traix or biaxial number 2
HD3	Head triax or biaxial number 3

- (4) Number of signals in the group
- (5) Corner frequency of resulting filter approximation
- (6) Rolloff slope of the resulting filter approximation
- (7) Average frequency of landmarks at a given PDS level
- (8) Average PLUS one standard deviation of landmarks
- (9) Landmark corrected for deviation from asymptote
- (10) Asymptote which best fits the 5 corrected landmarks
- (11) Frequency response curve of approximate filter

)

.

•

.

Tr

•

Appendix B

DETAILED OUTPUT OF CHARACTERIZATION

This Appendix is included to present the entire data used for characterizing the frequency response of the signals, as well as the intermediate and final results of the analysis. These are presented in 35 separate pages corresponding to the 35 analyzed groups of signals.

SUMMARY OF CHARACTERIZATIONS

Filter Number	Corner (Hz)	Slope (dB/dec)	Senso:	cs			Test	Туре	
LP01	641.	-33.7	3 LI	LR			SLD/	MCI	NOFX
LP02	151.	-15.0	6 RI	JR RLR			SLD/	MCI	NOFX
LP03	611.	-30.4	7 LU	JR LLR			SLD/	MCI	FRAC
LP04	212.	-13.6	4 RI	JR RLR			SLD/	MCI	FRAC
LP05	510.	-23.1	4 L1	LR			SLD/	RIG	NOFX
LP06	257.	-17.7	9 RI	JR RLR			SLD/	RIG	NOFX
LP07	496.	-25.1	8 LU	JR LLR			SLD/	RIG	FRAC
LP08	658.	-31.0	3 RI	JR RLR			SLD/	RIG	FRAC
LP09	422.	-26.1	6 LI	JR LLR			PEN/	L-R	NOFX
LP10	62.	-9.6	12 RI	JR RLR			PEN/	L-R	NOFX
LP11	200.	-13.6	34 U	ST LST	T01	T12	SLD/	MCI	NOFX
LP12	208.	-16.9	39 U	ST LST	т01	т12	SLD/	RIG	NOFX
LP13	106.	-13.4	44 U	ST LST	т01	T12	PEN/	L-R	NOFX
LP14	143.	-13.6	18 LU	JR LLR	RUR	RLR	SLD/	ABG	NOFX
LP15	1012.	-46.6	2 RI	JR LUR			SLD/	ABG	FRAC
LP16	15.	-8.6	9 U.	ST LST			SLD/	ABG	NOFX
LP17	159.	-16.2	20 T	D1 T12			SLD/	ABG	NOFX
LP18	21.	-6.6	2 LU	JR LLR			SLD/	3pt	NOFX
LP19	316.	-23.1	2 RI	JR RLR			SLD/	Зрт	FRAC
LP20	23.	-7.5	4 T(D1 T12			SLD/	3pt	NOFX
LP21	271.	-16.2	23 LU	JR LLR	RUR	RLR	SLD/	LAP	NOFX
LP22	155.	-15.1	8 U	ST LST			SLD/	LAP	NOFX
LP23	74.	-8.7	3 U.	ST			SLD/	LAP	FRAC
LP24	172.	-14.7	20 T	D1 T12			SLD/	LAP	NOFX
LP25	60.	-11.6	2 T	01			SLD/	LAP	FRAC
LP26	492.	-26.9	6 LU	JR LLR	RUR	RLR	PEN/	A-P	NOFX
LP27	658.	-31.4	2 RI	JR			PEN/	A-P	FRAC
LP28	158.	-15.7	11 U:	ST LST			PEN/	A-P	NOFX
LP29	65.	-14.2	3 L:	ST UST			PEN/	A-P	FRAC
LP30	234.	-14.3	13 T(D1 T12			PEN/	A-P	NOFX
LP31	1303.	-19.9	28 HI	ED HD1	HD2	HD3	DIR	NOP	AD FRAC
LP32	85.	-11.7	10 HI	D1 HD2	HD3	HED	DIR	W/PI	AD FRAC
LP33	547.	-25.7	33 HI	D1 HD2	HD3	HED	DIR	NOP	AD NOFX
LP34	49.	-11.8	18 HI	D1 HD2	HD3	HED	DIR	W/P/	AD NOFX
LP35	17.	-14.1	15 HI	D1 HD2	HD3	HED	NO D	IREC	T IMPACT

.

Tests =	SLD	/MCI	NOF	X	Sensors				LLR						
FILTER ESTIMATION				3 Signals				SUMMA	RY OF	SPECTR	AL AN	ALYSIS			
					Cumulativ	re P.S.D.	(%)	=	50	75	90	95	99		
					% of Sign	nal Passe	1 (%)	=	71	50	32	22	10		
Best ME	AN+1S	D fi	t		-										
			,		Equivaler	nt Filter	(dB)	=	-3	-6	-10	-13	-20		
CORNER	@ ROL	L-OF	F		MEAN LOG	Frequency	y (Hz)	=	230	589	926	1114	1517		
(Hz)	(dB	/dec	<u>)</u>		MEAN+1SD	Frequency	y (Hz)	=	550	962	1353	1558	2031		
641.	-3	3.7	<	-	Adjusted	Asymptote	e (Hz)	H	788	967	1269	1559	2511		
					Best-Fit	Filter	(Hz)	=	641	888	1230	1535	2504		
T-File	Ch		Signa	1	Test	ID Sam	oling		Freq.	(Hz)	@ Cum.	PSD 1	Levels		
1-2563	02.	AC :	LLR X	G'	S 76T029	9 1792	6410		121	360	648	798	1033		
1-2599	02.	AC 1	LLR X	G'	S 76T039	1760	6410		789	1149	1565	1764	2092		
1-2889	03.	AC 1	LLR X	G'	S 77T098	3 1856	6410		128	495	784	981	1617		
Tests =	SLD/	/MCI	אכ	OFX				Ser	nsors	=	RUR RI	R			<u>LP02</u>
----------	-------------	------	-----	-----	-----	---------	-------	--------	-------	---	--------	-------	--------	--------	-------------
FILTER E	STIM	TIC	ON			6 9	Signa	als			SUMMAF	RY OF	SPECTR	AL ANA	ALYSIS
					Cur	nulativ	ve P.	S.D.	(%)	=	50	75	90	95	99
					8 (of Sigr	nal F	Passed	(%)	Ħ	71	50	32	22	10
Best MEA	N+1SI) fi	.t												
					Equ	ivaler	nt Fi	ilter	(dB)	=	-3	-6	-10	-13	-20
CORNER @	ROLI	-0F	F		ME	AN LOG	Freq	quency	(Hz)	=	41	101	345	532	1385
(Hz)	<u>(dB/</u>	/dec	:)		ME	AN+1SD	Freq	luency	(Hz)	=	120	308	987	1273	1614
151.	-15	5.0	<		Ad	justed	Asyn	nptote	(Hz)	=	240	382	705	1119	3279
					Be	st-Fit	Filt	ler	(Hz)	=	151	315	657	1081	3257
T-File	<u>Ch</u>		Sig	nal		Test :	ID	Sampl	ling		Freq.	(Hz)	@ Cum.	PSD I	Levels
1-2566	05.	AC	RUR	Y	G'S	76T029	9	1792	6410		9	19	53	100	1391
1-2602	05.	AC	RUR	Y	G'S	76T039	9	1760	6410		72	362	1361	1551	1883
1-2565	04.	AC	RLR	X	G'S	76T029	9	1792	6410		58	81	200	358	1279
1-2582	04.	AC	RLR	X	G'S	761034	4	1522	6410		257	454	574	700	1307
1-2601	04.	AC	RLR	X	G'S	76T039	9	1760	6410		20	97	756	984	1407
1-2872	05.	AC	RLR	X	G'S	77T095	5	1904	6410		25	44	271	595	1144

Tests =	SLD	MC:	I Fl	RA(2			Sei	nsors	=	LUR L	LR			<u>LP03</u>
FILTER	ESTIM		NC				7 Sig	nals			SUMMA	RY OF	SPECTR	AL ANA	LYSIS
						Cu	mulative 1	P.S.D.	(%)	=	50	75	90	95	99
						8	of Signal	Passed	(%)	=	71	50	32	22	10
Best ME	AN+1S	D fi	it				-								
						Eq	uivalent 1	Filter	(dB)	=	-3	-6	-10	-13	-20
CORNER	@ ROL	L-OI	FF			ME.	AN LOG Fr	equency	(Hz)	=	313	784	1237	1476	1889
(Hz)	<u>(d</u> B	/dec	<u>;)</u>			ME.	AN+1SD Fr	equency	(Hz)	=	510	1020	1434	1650	2018
611.	-3	0.4	<		-	Ad	justed Asy	ymptote	(Hz)	=	767	964	1303	1637	2780
						Be	st-Fit Fi	lter	(Hz)	=	611	876	1258	1609	2771
T-File	Ch		Sig	na	1		Test ID	Samp	ling		Freq.	(Hz)	@ Cum.	PSD 1	evels
1-2564	03.	AC	LUR	Y	G'	s	76T029	1792	6410		304	646	983	1252	1809
1-2581	03.	AC	LUR	Y	G'	S	76T034	1522	6410		199	1158	1516	1706	2044
1-2600	03.	AC	LUR	Y	G'	S	76T039	1760	6410		715	1160	1393	1573	1886
1-2869	02.	AC	LUR	Y	G'	S	77T095	1904	6410		363	751	1272	1613	2080
1-2888	02.	AC	LUR	Y	G'	S	77T098	1856	6410		136	556	1016	1255	1701
1-2580	02.	AC	LLR	X	G'	S	76T034	1522	6410		365	698	1327	1516	1809
1-2870	03	20	TID	Y	C'	c	777005	1001	6410		377	720	1215	1177	1022

Tests =	: SLI	MC:	I Fl	RA(2				Ser	isors	=	RUR R	LR			LP04
FILTER	ESTIM	ATIC	N				4	Sig	nals			SUMMA	RY OF	SPECTR	AL AN	ALYSIS
						Cun	nulati	ve	P.S.D.	(%)	=	50	75	90	95	99
						% (of Sign	nal	Passed	(%)	=	71	50	32	22	10
Best ME	AN+15	D fi	it													
						Equ	ivale	nt	Filter	(dB)	=	-3	-6	-10	-13	-20
CORNER	@ ROL	L-01	FF			MEA	N LOG	Fr	equency	(Hz)	=	60	271	608	893	1438
(Hz)	(dI	/dec	<u>c)</u>			MEA	N+1SD	Fr	equency	(Hz)	=	165	1048	1589	1649	1783
212.	-1	.3.6	<		-	Ad	justed	As	ymptote	(Hz)	=	353	588	1154	1920	6271
						Bes	st-Fit	Fi	lter	(Hz)	=	212	476	1068	1849	6225
T-File	Ch		Sig	na	1		Test	ID	Samp	ling		Freq.	(Hz)	@ Cum.	PSD 3	Levels
1-2583	05.	AC	RUR	Y	G'	s	76T03	4	1522	6410		72	837	1271	1469	1798
1-2871	04.	AC	RUR	Y	G'	S	77109	5	1904	6410		266	571	890	1105	1380
1-2890	04.	AC	RUR	Y	G'	S	77109	8	1856	6410		42	416	1034	1250	1671
1-2891	05.	AC	RLR	х	G'	S	77T09	8	1856	6410		16	27	117	313	1031

Tests = SLD/RIG NOFX Sensors = LLR LP05 SUMMARY OF SPECTRAL ANALYSIS 4 Signals Cumulative P.S.D. (%) = FILTER ESTIMATION 50 75 90 95 99 % of Signal Passed (%) = 71 50 32 22 10 Best MEAN+1SD fit Equivalent Filter (dB) = -3 -6 -10 -13 -20 MEAN LOG Frequency (Hz) = 188 423 697 931 1578 CORNER @ ROLL-OFF MEAN+1SD Frequency (Hz) = 415 1067 1745 1797 2098 (Hz) (dB/dec) 510. -23.1 <---- Adjusted Asymptote (Hz) = 689 929 1381 1864 3737 Best-Fit Filter (Hz) = 510 820 1320 1823 3720 Sampling Freq. (Hz) @ Cum. PSD Levels T-File Ch Signal Test ID 1-2384 04. AC LLR X G'S 76T003 1616 6410 61 86 144 299 966 1-2428 04. AC LLR X G'S 76T009 3568 6410 131 797 1238 1330 1862 1-2449 04. AC LLR X G'S 76T010 1496 6410 382 631 977 1268 1786 1-2470 04. AC LLR X G'S 76T011 1542 6410 410 743 1354 1487 1931

Tests =	SLD	/RIC	g no	OF	X			Sei	nsors	Ħ	RUR RI	LR			<u>LP06</u>
FILTER	ESTIM	ATI	NC				9 5	ignals			SUMMAI	RY OF	SPECTR	AL AN	ALYSIS
						Cu	nulativ	e P.S.D.	(%)	=	50	75	90	95	99
						8 (of Sign	al Passed	(%)	=	71	50	32	22	10
Best ME	AN+1S	D f:	it												
						Eq	uivalen	t Filter	(dB)	=	-3	-6	-10	-13	-20
CORNER	@ ROL	.L-01	FF			ME	AN LOG	Frequency	(Hz)	=	53	176	411	606	1382
(Hz)	(dB	3/dec	<u>=)</u>			ME	AN+1SD	Frequency	(Hz)	=	189	622	1141	1396	1983
257.	-1	7.7	<			Ad	justed	Asymptote	(Hz)	=	381	563	946	1399	3474
						Be	st-Fit	Filter	(Hz)	=	257	478	891	1359	3454
T-File	Ch		Sig	na	1		Test I	D Samp	ling		Freq.	(Hz)	e Cum.	PSD	Levels
1-2387	07.	AC	RUR	Y	G	s	76T003	1616	6410		11	22	86	155	589
1-2452	07.	AC	RUR	Y	Gʻ	S	76T010	1496	6410		264	728	1211	1521	2080
1-2833	04.	AC	RUR	Y	G'	S	77T089	1422	6410		22	39	103	203	1194
1-2852	04.	AC	RUR	Y	G٢	S	771092	1872	6410		25	249	801	1081	1704
1-2386	06.	AC	RLR	X	G١	S	76T003	1616	6410		19	58	167	271	919
1-2451	06.	AC	RLR	X	G	S	76T010	1496	6410		20	106	244	487	1149
1-2472	06.	AC	RLR	X	Gʻ	S	76T011	1542	6410		377	660	956	1218	2081
1-2834	05.	AC	RLR	X	Gʻ	S	77T089	1422	6410		233	664	1064	1282	1649
1-2853	05.	AC	RLR	Х	G'	S	77T092	1872	6410		64	385	945	1033	1746

Tests =	SLD	/RIG	FF	RAC				Sei	nsors	Ξ	RUR R	LR			LP08
FILTER	ESTIM	ATIO	N			3 9	Sign	als			SUMMA	RY OF	SPECTR	AL AN	ALYSIS
						Cumulativ	re F	.S.D.	(%)	Ħ	50	75	90	95	99
						% of Sign	nal	Passed	(%)	=	71	50	32	22	10
Best ME.	AN+15	D fi	t												
						Equivaler	it F	ilter	(dB)	=	-3	-б	-10	-13	-20
CORNER	a ROL	L-OF	F			MEAN LOG	Fre	quency	(Hz)	=	271	727	1286	1510	1886
(Hz)	(dB	/dec)			MEAN+1SD	Fre	quency	(Hz)	Ħ	553	1100	1552	1741	2048
658.	-3	1.0	<		•	Adjusted	Asy	mptote	(Hz)	=	823	1029	1383	1729	2905
						Best-Fit	Fil	ter	(Hz)	=	658	938	1336	1701	2895
T-File	Ch		Sigr	al		Test	D	Samp	ling		Freq.	(Hz)	@ Cum.	PSD 1	Levels
1-2431	07.	AC	RUR	Y	G'	S 76T009)	3568	6410		146	435	986	1235	1679
1-2473	07.	AC	RUR	Y	G'	S 76T011	_	1542	6410		737	1196	1493	1651	1977
1-2430	06.	AC	RLR	Х	G'	S 76T009	;	3568	6410		185	740	1444	1689	2020

Tests =	PEN	/L-H	R N(ΟFΣ	K			Se	nsors	=	LUR LI	LR			LP09
FILTER 1	ESTIM	ATI	NC			6 9	Signa	15			SUMMAL	RY OF	SPECTR	AL ANA	ALYSIS
					ō	umulativ	ve P.	S.D.	(%)	=	50	75	90	95	99
					શ્ર	of Sign	hal P	assed	(%)	=	71	50	32	22	10
Best MEA	AN+1S	D fi	it												
					Ē	quivaler	nt Fi	lter	(dB)	=	-3	-6	-10	-13	-20
CORNER	a ROL	L-OI	FF		М	IEAN LOG	Freq	luency	(Hz)	=	97	182	405	540	1385
(Hz)	(dB	/dec	<u>=)</u>		М	EAN+1SD	Freq	luency	(Hz)	=	366	622	1142	1304	1999
422.	-2	6.1	<		- A	djusted	Asyn	ptote	(Hz)	8	550	718	1019	1329	2462
					B	est-Fit	Filt	er	(Hz)	=	422	643	979	1303	2452
<u>T-File</u>	Ch		Sig	nal	1	Test 1	<u>ID</u>	Samp	ling		Freq.	(Hz)	@ Cum.	PSD I	Levels
1-2695	02.	AC	LUR	Y	G'S	76T065	5	1376	6410		34	58	131	191	961
1-2728	02.	AC	LUR	Y	G'S	77T071	L	1232	6410		23	44	135	211	961
1-2696	03.	AC	LLR	Х	G'S	76T065	5	1376	6410		72	110	172	297	961
1-2736	10.	AC	LLR	X	G'S	77T071	L	1232	6410		41	149	961	964	2133
1-2746	03.	AC	LLR	X	G'S	771074	1	1216	6410		718	1144	1388	1567	1948
1-2763	03.	AC	LLR	Х	G'S	771077	7	1232	6410		493	764	1086	1374	1915

Tests =	= PEN	/L-F	r no)F2	ĸ				Ser	isors	=	RUR R	LR			<u>LP10</u>
FILTER	ESTIM	ATIC	<u>N</u>				12 9	Sigr	nals			SUMMA	RY OF	SPECTR	AL AN	ALYSIS
						Cun	ulativ	7e I	P.S.D.	(%)	=	50	75	90	95	5 99
						8 (of Sigr	nal	Passed	(%)	=	71	50	32	22	2 10
Best MB	EAN+15	D fi	.t													
						Equ	ivaler	nt F	Filter	(dB)	=	-3	-6	-10	-13	3 -20
CORNER	@ ROL	L-OF	F			MĒA	IN LOG	Fre	equency	(Hz)	=	22	102	295	664	1492
(Hz)	(dB	/dec	:)			MEA	N+1SD	Fre	equency	(Hz)	=	38	323	864	1884	1942
62.	-	9.6	<			Ad	justed	Asy	mptote	(Hz)	=	127	261	677	1392	2 7420
						Bes	st-Fit	Fil	lter	(Hz)	=	62	193	606	1319	7342
<u> </u>			<u>.</u>										·····			
T-File	<u>Ch</u>		Sigi	1a.	L		Test 1	D	Samp	ling		Freq.	(Hz)	e Cum.	PSD	Levels
1-2681	04.	AC	RUR	Y	G'	s	76T062	2	1456	6410		17	49	125	961	1554
1-2697	04.	AC	RUR	Y	G'	S	761065	5	1376	6410		16	30	58	75	962
1-2729	03.	AC	RUR	Y	G'	S	771071		1232	6410		22	959	964	1225	2662
1-2747	04.	AC	RUR	Y	G'	S	771074	L	1216	6410		25	52	454	1171	1617
1-2764	04.	AC	RUR	Y	G'	S	771077	7	1232	6410		16	80	513	909	1443
1-2781	04.	AC	RUR	Y	G'	S	771080)	1232	6410		78	693	1399	1609	1939
1-2682	05.	AC	RLR	X	G'	s	761062	2	1456	6410		16	72	211	842	1307
1-2698	05.	AC	RLR	Х	G'	S	76T065	5	1376	6410		20	56	254	961	1383
1-2730	04.	AC	RLR	Х	G'	S	77T071	-	1232	6410		14	20	38	59	962
1-2748	05.	AC	RLR	х	G'	S	771074		1216	6410		14	92	182	958	1518
1-2765	05.	AC	RLR	Х	G':	s	771077	,	1232	6410		61	363	628	973	1574
1-2782	05.	AC	RLR	Х	G'	S	771080)	1232	6410		17	113	814	1089	1628

Tests :	= SLD	/MC1	I NO	ΟFΣ	K			Ser	sors	=	UST LS	ST TO	T12		<u>LP11</u>
FILTER	ESTIM	ATIC	אכ			34	Sig	nals			SUMMAI	RY OF	SPECTR	AL AN	ALYSIS
					i	Cumulati	ve	P.S.D.	(%)	=	50	75	90	95	99
_		_				% of Sig	mal	Passed	(%)	=	71	50	32	22	10
Best M	EAN+1S	D fi	Lt						<		-	-			
	•					Equivale	ent i	Filter	(dB)	=	-3	-6	-10	-13	-20
CORNER	e ROL	L-01	FF		1	MEAN LOG	3 Fr	equency	(Hz)	=	4/	152	431	/34	1294
(HZ)	(dB	/dec	<u>=)</u>]	MEAN+1SI) Fr	equency	(HZ)	=	139	572	1437	1991	2723
200.	-1	3.6	<		-	Adjusted	As	ymptote	(Hz)	=	334	557	1094	1822	5966
						Best-Fit	: Fi	lter	(Hz)	=	200	450	1012	1754	5922
T-File	Ch		Sig	na.	1	Test	ID	Sampl	ing		Freg.	(Hz)	@ Cum.	PSD	Levels

1-2575	14.	AC	UST	X	G'	S 76T02	29	1790	6410		72	385	961	1050	1335
1-2592	14.	AC	UST	Х	G'	S 76T03	34	1760	6410		174	1080	1496	1689	2413
1-2611	14.	AC	UST	X	G'	S 76T03	39	1760	6410		102	557	1120	1529	1883
1-2873	06.	AC	UST	X	G'	S 77T09	95	1904	6410		70	299	1031	1182	1588
1-2892	06.	AC	UST	X	G'	S 77T09	98	1856	6410		92	362	875	1003	1685
1-2576	15.	AC	LST	X	G'	S 76T02	29	1790	6410		31	69	793	1235	1689
1-2593	15.	AC	LST	X	G'	S 76T03	34	1760	6410		33	127	767	1216	1754
1-2612	15.	AC	LST	X	G'	S 76T03	39	1760	6410		5	9	14	17	27
1-2874	07.	AC	LST	X	G'	S 77T09	95	1904	6410		42	1055	1397	1559	1797
1-2893	07.	AC	LST	X	G'	S 77T09	98	1856	6410		41	72	516	706	1560
1-2567	06.	AC	T01	X	G'	S 76T02	29	1792	6410		44	582	1019	1200	1629
1-2568	07.	AC	T01	Z	G'	S 76T02	29	1792	6410		77	150	701	1185	1588
1-2584	06.	AC	T01	X	G'	S 76T03	34	1522	6410		593	975	1344	1444	1850
1-2585	07.	AC	T01	Z	G'	S 76T03	34	1522	6410		136	778	1027	1479	1736
1-2603	06.	AC	T01	X	G'	S 76T03	39	1760	6410		167	471	798	1208	1621
1-2604	07.	AC	T01	Z	G'	S 76T03	39	1760	6410		27	49	136	437	1013
1-2875	08.	AC	TOl	Х	G'	S 77T09	95	1904	6410		438	994	1452	1742	2105
1-2876	09.	AC	T01	Y	G'	S 77T09	95	1904	6410		20	149	363	833	1338
1-2877	10.	AC	T01	Ζ	G'	S 77T09	95	1904	6410		147	410	948	1074	1570
1-2894	08.	AC	T01	X	G'	S 77T09	98	1856	6410		83	222	653	1186	1515
1-2895	09.	AC	T01	Y	G'	S 77T09	98	1856	6410		19	56	114	269	856
1-2896	10.	AC	T01	Z	G'	S 77T09	98	1856	6410		95	177	499	983	1421
1-2569	08.	AC	T12	X	G'	S 76T02	29	1792	5410		41	78	351	808	1393
1-2570	09.	AC	T12	Y	G'	S 76T02	29	1792	6410		19	44	230	610	1282
1-2586	08.	AC	T12	Х	G'	S 76T03	34	1522	6410		80	271	1131	1404	1892
1-2587	09.	AC	T12	Y	G'	S 76T03	34	1522	6410		17	44	64	136	812
1-2605	08.	AC	T12	X	G'	S 76T03	39	1760	6410		8	13	28	64	437
1-2606	09.	AC	T12	Y	G'	S 76T03	39	1760	6410		9	17	55	480	1505
1-2879	12.	AC	T12	x	G'	S 77TO	95	1902	6410		41	102	746	1156	1740
1-2880	13.	AC	T12	Y	G'	S 77TO	95	1902	6410		8	16	72	153	948
1-2881	14.	AC	T12	z	G'	S 77TO	95	1902	6410		22	78	460	961	1567
1-2898	12.	AC	T12	x	G'	S 77TO	98	1856	6410		83	141	676	1171	1786
1-2899	13.	AC	T12	Y	G'	S 77TO	98	1856	6410		17	50	144	554	1078
1-2900	14.	AC	T12	z	G'	S 77T09	98	1856	6410		50	559	962	1203	1740

Tests =	SLD,	/RI(g no	OF	X			Ser	isor s	=	UST LS	T TO	L T12		LP12
FILTER	ESTIM	ATIC	<u>NC</u>				39 Sign	als			SUMMAR	Y OF	SPECTR	AL AN	ALYSIS
						Cu	mulative P	.S.D.	(%)	=	50	75	90	95	99
						z	of Signal	Passed	(%)	=	71	50	32	22	10
Best ME	AN+1SI	D fi	it			_		· • •	< 3 - \		•	-			
						EC	uivalent F	ilter	(dB)	=	-3	-6	-10	-13	-20
CORNER	e ROLI	L-01	FF			ME	AN LOG Fre	quency	(HZ)	=	62	178	486	738	1355
(Hz)	<u>(dB</u> ,	/dec	<u>;)</u>			ME	AN+15D Fre	quency	(Hz)	=	164	399	1020	1372	1871
208.	-10	5.9	<		-	Ad	ljusted Asy	mptote	(Hz)	=	314	474	816	1231	3200
						Be	st-Fit Fil	ter	(Hz)	=	208	399	767	1194	3180
T-File	Ch		Sim		1		Test TD	Samo	ling		Fred	(H7)	G Cum	ו האם	lovals
<u>+ + + + + E</u>			21.91	10.			TESC ID		LING_		11641	(114)	e cum.	1 30 1	164612
1-2382	02.	AC	UST	X	G'	S	76T003	1616	6410		78	678	1017	1247	1840
1-2447	02.	AC	UST	X	G'	S	76T010	1496	6410		52	257	981	1449	2027
1-2468	02.	AC	UST	Х	G'	S	76T011	1542	6410		50	89	427	729	1327
1-2835	06.	AC	UST	X	G	S	77T089	1422	6410		183	484	1063	1540	2052
1-2854	06.	AC	UST	Х	G'	S	77T092	1872	6410		47	75	429	909	1613
1-2383	03.	AC	LST	X	G'	S	76T003	1616	6410		30	52	113	233	1216
1-2427	03.	AC	LST	X	G'	S	76T009	3568	6410		59	119	958	1077	1387
1-2448	03.	AC	LST	X	G'	S	76T010	1496	6410		28	81	285	825	1538
1-2469	03.	AC	LST	X	G'	s	76T011	1542	6410		41	70	103	180	1066
1-2836	07.	AC	LST	X	G'	S	771089	1422	6410		45	103	424	931	1429
1-2855	07.	AC	LST	x	G	s	77T092	1872	6410		45	166	507	681	1338
1-2388	08.	AC	T01	x	G	S	767003	1616	6410		45	108	158	219	764
1-2389	09.	AC	T01	Z	G	'S	76T003	1616	6410		110	156	199	255	454
1-2432	08.	AC	T01	x	ים	S	767009	3568	6410		183	321	911	1006	1670
1-2433	09.	AC	TO1	7.	G	ŝ	767009	3568	6410		67	178	858	994	1676
1-2453	08.	AC	TO1	x	יה	ις.	767010	1496	6410		45	85	213	693	1268
1-2454	<u>00.</u>	20	m01	7	م	i c	761010	1496	6410		74	105	266	405	961
1-2474	08	20	TO1	Y	ں ت		761010	1542	6410		125	236	387	203	1307
1-2475	00.	AC	TO1	7	c'	2	767011	1542	6410		00	368	757	955	1407
1-2837	09.	20	TO1	24 12	6		777022	1422	6410		471	275	1000	1300	1756
1_2828	00.		TO1	v	6	3	771009	1422	6410		192	675	1220	1042	1650
1-2030	10		TOT	7	3	5	771089	1422	6410		253	761	1102	1243	1700
1-2055	10.	AC	101	4	6	2	771009	1922	6410		352	101	1103	1010	1/21
1 2057	00.	AC	TOI	A V	G	2	771092	10/2	6410		332	270	951	1210	1/21
1-2057	09.	AC	TUL	1	G	2	771092	1072	0410		44	239	512	629	1147
1-2858	10.	AC	TUL	2	6	5	771092	18/2	6410		238	321	435	692	1092
1-2390	10.	AC	TIZ	X	G	S	767003	1616	6410		٦	24/	962	1031	2349
1-2391	11.	AC	T12	Y	G	S	76T003	1616	6410		9	219	961	1041	1737
1-2434	10.	AC	T12	X	G	5	76T009	3568	6410		135	379	961	1039	1454
1-2435	11.	AC	T12	Y	G	S	76 T 009	3568	6410		47	92	275	604	1225
1-2455	10.	AC	T12	X	G'	S	76T010	1496	6410		53	91	958	1211	1634
1-2456	11.	AC	T12	Y	G'	S	76T010	1496	6410		34	94	601	1238	1958
1-2476	10.	AC	T12	X	G'	S	76T011	1542	6410		110	296	920	1224	1443
1-2477	11.	AC	T12	Y	G'	S	76T011	1542	6410		64	194	476	829	1319
1-2841	12.	AC	T12	X	G'	S	77T089	1232	6410		81	119	424	737	1254
1-2842	13.	AC	T12	Y	G'	S	77T089	1232	6410		17	53	153	275	961
1-2843	14.	AC	T12	Z	G'	S	77T089	1232	6410		56	405	820	1042	1487
1-2860	12.	AC	T12	X	G'	S	77T092	1872	6410		41	88	141	228	962
1-2861	13.	AC	T12	Y	G'	S	77T092	1872	6410		13	33	119	191	595
1-2862	14.	AC	T12	z	G'	S	77T092	1872	6410		45	196	654	995	1413

Tests =	PEN/	L-F	r no)F}	ζ.			Ser	isors	=	UST LS	ST TOI	. T12		<u>LP13</u>
FILTER I	ESTIM	TIC	אכ				44 Sig	hals			SUMMA	RY OF	SPECTR	AL ANA	ALYSIS
						Cur	nulative 1	P.S.D.	(%)	=	50	75	90	95	99
						8 (of Signal	Passed	(%)	=	71	50	32	22	10
Best ME	AN+1SI) fi	i t			•			(-)						
			- •			Eai	vivalent 1	Filter	(dB)	Ξ	-3	-6	-10	-13	-20
CORNER		OF	चर			ME	AN LOG Fri	onency	(H_{Z})	=	33	91	252	600	1219
(17)		100	• •			ME	NILLO Fr	an operation of the second sec	(III) (II-7)	-	75	261	720	1178	1615
(112)	(0.0/	uei	-/			1.1.44		equency	(111)		70	201	120	11/0	1013
106	_13		1	_	_	1.4	incted Act	mototo	(11-)	-	777	205	596	083	3250
100.	-13	.4	<		-	AU. Do	Justed As	Amprore	(ΠZ)	_	106	290	500	903	2227
						ве	St-Fit Fi.	lter	(nz)	-	100	239	542	940	3234
<u></u>	<u></u>		<u></u>				Test TD	C `	11			(11-)	a c		
<u>T-File</u>	<u>Cn</u>		Sig	la.			Test 1D	Samp.	ling		Freq.	(HZ)	e Cum.	PSD 1	Jevels
1-2683	06.	AC	UST	х	G'	s	76T062	1456	6410		44	74	172	455	1648
1-2699	06.	AC	UST	х	G'	S	76T065	1376	6410		30	44	58	72	394
1-2731	05.	AC	UST	х	G'	S	77T071	1232	6410		16	44	203	961	1449
1-2749	06.	AC	UST	х	G'	s	77T074	1216	6410		42	59	88	465	1207
1-2766	06.	AC	UST	x	G'	s	771077	1232	6410		45	167	369	959	1505
1-2783	06	AC	UST	x	۔ י ی	ς	777080	1232	6410		106	125	199	319	964
1-2684	07	20	LST	Y	ים	5	767062	1456	6410		42	67	225	500	1269
1-2732	06	AC	ידכת	v	ט כי	c	777071	1232	6410		30	10	75	20	061
1-2752	00.		1001	v	d ci	с С	77071	1222	6410		50	224	100	954	1226
1.2704	07.	AC	100	A V	G	2	771077	1232	6410		04	171	499	610	1022
1-2/04	07.	AC	LOI	А 	G	2	7/1080	1232	0410		29	114	299	010	1022
1-2085	08.	AC	TUL	X	G	5	761062	1450	6410		2	30	2/4	034	1400
1-2701	08.	AC	TOL	X	G	S	76T065	1376	6410		14	16	11/	950	1346
1-2702	09.	AC	T01	Z	G'	S	76T065	1376	6410		25	202	956	980	1603
1-2703	10.	AC	TOL	Y	G'	S	76T065	1376	6410		13	20	38	218	1013
1-2733	07.	AC	TOL	Х	G'	S	77T071	1232	6410		34	63	562	867	1268
1-2734	08.	AC	T01	Y	G'	S	77T071	1232	6410		23	116	959	962	1779
1-2735	09.	AC	T01	Z	G'	S	77T071	1232	6410		9	17	39	883	1141
1-2751	08.	AC	T01	Х	G'	S	771074	1216	6410		89	186	576	964	1692
1-2752	09.	AC	T01	Y	G'	S	77T074	1216	6410		13	20	53	175	1028
1-2753	10.	AC	T01	Z	G'	S	77T074	1216	6410		38	216	297	369	1221
1-2768	08.	AC	T01	Х	G'	S	771077	1232	6410		131	186	390	959	1383
1-2769	09.	AC	TOl	Y	G'	S	771077	1232	6410		13	34	147	216	962
1-2770	10.	AC	T01	z	G'	s	771077	1232	6410		42	249	753	1036	1505
1-2785	08.	AC	T01	х	G'	s	771080	1232	6410		102	293	512	959	1496
1-2786	09.	AC	T01	Y	G'	S	777080	1232	6410		11	17	111	210	961
1-2787	10.	AC	T01	z	G'	s	77T080	1232	6410		110	221	319	393	962
1-2689	12.	AC	T12	x	G'	S	76T062	1456	6410		28	39	260	931	1191
1-2690	13.	AC	T12	7.	G'	Ś	76T062	1456	6410		63	178	505	851	983
1-2691	14	20	m12	v	ں م	c	761062	1456	6410		25	£3	116	315	964
1-2705	12		m12	ÿ	2	ç	761065	1374	6410		25	38	144	961	1448
1-2705	12.		m12	7	G	с С	761065	1274	6410		20	50	144	901	1610
1-2700	14	AC	m10	2 V	G	э с	761065	1074	6410		22	27	901	904	1010
1-2707	14.	AC	T12	1	6	2	701005	13/4	6410		19	33	20	959	1025
1-2/38	12.	AC	T12	X 	G.	5	771071	1232	6410		23	16	44	490	966
1-2/39	13.	AC	T12	Y	G	S	77T071	1232	6410		16	23	36	790	966
1-2740	14.	AC	T12	Z	G	S	771071	1232	6410		28	66	823	962	1599
1-2755	12.	AC	T12	X	G'	S	771074	1214	6410		14	23	63	293	961
1-2756	13.	AC	T12	Y	G'	S	77T074	1214	6410		45	808	962	966	2111
1-2757	14.	AC	T12	Z	G'	S	77T074	1214	6410		45	80	441	815	1122
1-2772	12.	AC	T12	Х	G'	s	77T077	1232	6410		222	405	648	761	983
1-2773	13.	AC	T12	Y	G'	S	77T077	1232	6410		56	950	964	1064	2108
1-2774	14.	AC	T12	Z	G'	S	77T077	1232	6410		49	213	808	962	1302
1-2789	12.	AC	T12	Х	G'	S ·	77T080	1232	6410		55	202	782	966	1369
1-2790	13.	AC	T12	Y	G'	S	77T080	1232	6410		27	407	568	762	1023
1-2791	14.	AC	T12	Z	G'	S	77T080	1232	6410		47	396	814	962	1297

•

Tests =	SLD	/ABC	G N	OF:	X				Se	nsors	=	LUR LI	LR RUI	R RLR		<u>LP14</u>
FILTER	ESTIM	ATI	<u>NC</u>				18 :	Signa	als			SUMMA	RY OF	SPECTR	AL AN	<u>ALYSIS</u>
						Cur	nulativ	ve P	.S.D.	(%)	×	50	75	90	95	99
						8 (of Sign	nal 1	Passed	(%)	=	71	50	32	22	. 10
Best ME	AN+1S	D f:	it													
						Εqu	livale	nt F:	ilter	(dB)	=	-3	-б	-10	-13	-20
CORNER	@ ROL	L-01	FF			ME	AN LOG	Fre	quency	(Hz)	×	23	82	222	441	1183
(Hz)	<u>(dB</u>	/dec	<u>=)</u>			ME	AN+1SD	Fre	quency	(Hz)	=	102	408	939	1633	1741
143.	1	3.6	<		-	Ad	justed	Asyı	nptote	(Hz)	=	237	395	775	1291	4215
						Be	st-Fit	Filt	ter	(Hz)	Ξ	143	320	717	1243	4184
T-File	Ch		Sig	na	1		Test	ID	Samp	ling		Freq.	(Hz)	@ Cum.	PSD	Levels
1-2258	05.	AC	LUR	Y	G'	S	A-887		1958	6410		6	9	59	826	1110
1-2277	05.	AC	LUR	Y	G'	S	A-923		1796	6410		34	78	208	421	970
1-2300	05.	AC	LUR	Y	G'	S	A-924		1648	6410		188	900	1102	1277	1717
1-2322	05.	AC	LUR	Y	G'	S	A-927		1648	6410		662	1047	1372	1545	1837
1-2257	04.	AC	LLR	X	G'	S	A-887		1958	6410		6	13	19	27	961
1-2276	04.	AC	LLR	X	G'	S	A-923		1796	6410		20	33	58	116	513
1-2299	04.	AC	LLR	Х	G'	S	A-924		1648	6410		13	164	551	1318	1715
1-2321	04.	AC	LLR	Х	G'	S	A-927		1648	6410		31	189	884	1128	1471
1-2495	08.	AC	LLR	Х	G'	S	76T02	0	1600	6410		8	34	725	1156	1679
1-2260	07.	AC	RUR	Y	G'	S	A-887		1958	6410		6	11	59	826	1277
1-2279	07.	AC	RUR	Y	G'	S	A-923		1796	6410		33	75	110	182	822
1-2302	07.	AC	RUR	Y	G'	S	A-924		1648	6410		11	609	1124	1282	1653
1-2498	11.	AC	RUR	Y	G'	S	76T02	0	1600	6410		712	1080	1372	1543	1864
1-2259	06.	AC	RLR	X	G'	S	A-887		1958	6410		6	13	19	23	961
1-2278	06.	AC	RLR	X	G'	S	A-923		1796	6410		19	45	75	114	521
1-2301	06.	AC	RLR	X	G'	S	A-924		1648	6410		6	41	371	621	1366
1-2323	06.	AC	RLR	Х	G'	S	A-927		1648	6410		36	352	593	823	1369
1-2497	10.	AC	RLR	X	G'	S	767020	0	1600	6410		6	22	77	268	964

Tests =	SLD	/ABG	FF	RAC				Sei	nsors	=	RUR L	UR			<u>LP15</u>
FILTER H	STIM	ATIC	N			2 9	Signa	als			SUMMA	RY OF	SPECTR	AL AN	ALYSIS
					ē	umulativ	ve P	.S.D.	(%)	=	50	75	90	95	99
					8	of Sign	hal 1	Passed	(%)	=	71	50	32	22	10
Best MEA	N+1S	D fi	.t												
					E	quivaler	nt F:	ilter	(dB)	=	-3	-6	-10	-13	-20
CORNER (ROL	L-OF	F		М	EAN LOG	Fre	quency	(Hz)	=	896	1325	1683	1880	2326
(Hz)	(dB	/dec	:)		М	EAN+1SD	Fre	quency	(Hz)	=	917	1326	1687	1903	2452
1012.	-4	6.6	<		A	djusted	Asyı	mptote	(Hz)	=	1174	1362	1658	1924	2717
					В	est-Fit	Fil	ter	(Hz)	=	1012	1280	1621	1903	2711
T-File	Ch		Sig	hal		Test	ID	Samp	ling		Freq.	(Hz)	@ Cum.	PSD	Levels
1-2324	07.	AC	RUR	Y	G'S	A-927		1648	6410		876	1324	1679	1858	2207
1-2496	09	AC	LIP	v	G'5	767020	n	1600	6410		917	1326	1687	1903	2452

Tests =	SL	D/ABC	; NC)FX			Sei	nsors	Ξ	UST LST	•			LP16
FILTER	ESTI	MATIC	N		_	9 9	Signals			SUMMARY	OF	SPECTR	AL AN	ALYSIS
					ō	umulativ	ve P.S.D.	(%)	=	50	75	90	95	99
					ę	of Sign	nal Passed	(%)	=	71	50	32	22	10
Best ME	AN+1	SD fi	.t											
					E	quivaler	nt Filter	(dB)	=	-3	-6	-10	-13	-20
CORNER	@ R0	LL-OF	F		М	EAN LOG	Frequency	(Hz)	=	9	21	75	136	737
(Hz)	(d	B/dec	:)		Μ	IEAN+1SD	Frequency	(Hz)	=	12	35	274	510	1901
15.		-8.6	<		A	djusted	Asymptote	(Hz)	=	33	75	217	486	3168
					В	est-Fit	Filter	(Hz)	=	15	53	191	458	3131
T-File	Ch		Sign	al		Test	ID Samp.	ling		Freq. (Hz)	@ Cum.	PSD 1	Levels
1-2255	02.	AC	UST	X (G'S	A-887	1958	6410		6	9	16	22	961
1-2274	02.	AC	UST	X (G'S	A-923	1796	6410		6	17	44	55	153
1-2319	02.	AC	UST	X (G'S	A-927	1648	6410		9	22	67	266	1311
1-2493	06.	AC	UST	X (G'S	76T020) 1600	6410		11	36	953	1352	1958
1-2256	.03.	AC	LST	X (G'S	A-887	1958	6410		9	17	38	56	961
1-2275	03.	AC	LST	X (G'S	A-923	1796	6410		6	20	33	38	114
1-2298	03.	AC	LST	X (G'S	A-924	1648	6410		13	53	598	786	1416
1-2320	03.	AC	LST	X (G'S	A-927	1648	6410		14	30	59	106	959
1-2404	07	20	LCT	Y (210	767020	1600	6410		9	14	20	212	7787

Tests =	SLD,	/ABC	g no	OF2	K				Ser	isors	H	TO1 TI	.2			<u>LP17</u>
FILTER	ESTIM	ATIC	<u>N</u>				20	Sign	als			SUMMAR	RY OF	SPECTR	AL AN	ALYSIS
						Cur	nulativ	ve F	.S.D.	(%)	=	50	75	90	95	99
						8 (of Sign	nal	Passed	(%)	=	71	50	32	22	10
Best ME	AN+1S	D fi	Lt													
						Equ	livale	nt F	ilter	(dB)	=	-3	-6	-10	-13	-20
CORNER	@ ROL	L-01	FF			ME	AN LOG	Fre	quency	(Hz)	=	25	75	238	403	1029
(Hz)	(dB	/dec	<u>;)</u>			ME	AN+1SD	Fre	quency	(Hz)	Ξ	127	298	770	1125	1759
	_							_		()						
159.	-1	6.2	<		-	Ad	justed	Asy	mptote	(Hz)	=	244	375	660	1012	2731
						Be	st-Fit	Fil	ter	(Hz)	=	159	314	618	980	2714
T-File	Ch		Sig	na	1		Test	ID	Samp	ling		Freq.	(Hz)	e Cum.	PSD	Levels
													(00-7			
1-2265	12.	AC	TOl	Х	G'	S	A-887		1536	6410		959	962	1509	1912	2886
1-2266	13.	AC	T01	Z	G'	S	A-887		1536	6410		8	25	63	235	1117
1-2285	13.	AC	T01	Х	G'	S	A-923		1648	6410		8	22	58	89	419
1-2286	14.	AC	TOl	Z	G'	S	A-923		1648	6410		19	50	205	230	419
1-2308	13.	AC	T01	Х	G'	S	A-924		1648	6410		169	279	463	823	1509
1-2309	14.	AC	T01	Z	G'	S	A-924		1648	6410		17	200	283	377	898
1-2330	13.	AC	TOl	Х	G'	S	A-927		1648	6410		25	122	222	376	1019
1-2331	14.	AC	TOl	Z	G'	S	A-927		1648	6410		6	22	102	260	682
1-2489	02.	AC	T01	Х	G'	S	76T02	0	1600	6410		5	17	160	493	1019
1-2490	03.	AC	T01	Z	G'	S	76T02	0 ·	1600	6410		50	221	343	668	1164
1-2267	14.	AC	T12	Х	G'	S	A-887		1536	6410		5	11	22	52	967
1-2268	15.	AC	T12	Y	G'	S	A-887		1536	6410		58	88	718	962	1659
1-2287	15.	AC	T12	Х	G'	S	A-923		1648	6410		5	13	30	42	341
1-2288	16.	AC	T12	Y	G'	S	A-923		1648	6410		31	39	106	177	584
1-2310	15.	AC	T12	Х	G'	S	A-924		1648	6410		3	23	147	408	962
1-2311	16.	AC	T12	Y	G'	S	A-924		1648	6410		58	257	670	967	1981
1-2332	15.	AC	T12	X	G'	S	A-927		1648	6410		294	626	1019	1183	1466
1-2333	16.	AC	T12	Y	G'	S	A-927		1648	6410		172	219	556	862	1527
1-2491	04.	AC	T12	X	G'	S	76T02	D	1600	6410		3	14	732	959	1374
1-2492	05.	AC	T12	Y	G'	S	76T02	n	1600	6410		81	365	875	967	1504

Tests =	SL	D/3P	r n(OFX	K				Ser	sors	=	LUR LI	AR			<u>LP18</u>
FILTER B	STI	MATI	<u>NC</u>				2	Sig	nals			SUMMAR	RY OF	SPECTR	AL AN	ALYSIS
						Cum	ulati	ve	P.S.D.	(%)	=	50	75	90	95	99
						8 01	f Sig	nal	Passed	(%)	=	71	50	32	22	10
Best MEA	N+1	SD f:	it													
						Equ:	ivale	nt	Filter	(dB)	=	-3	-6	-10	-13	-20
CORNER @	RO	LL-OI	FF			MEAL	N LOG	Fr	equency	(Hz)	=	6	67	135	178	1296
(Hz)	<u>(d</u>	B/dea	<u>;)</u>			MEAI	N+1SD	Fr	equency	(Hz)	=	13	746	1077	1271	1745
21.		-6.6	<		•	Adju	usted	As	ymptote	(Hz)	=	60	172	690	1970	22550
						Best	t-Fit	Fi	lter	(Hz)	=	21	111	588	1823	22210
<u>T-File</u>	Ch		Sig	nal			ſest	ID	Sampl	ling		Freq.	(Hz)	@ Cum.	PSD 1	Levels
1-2407	09.	AC	LUR	Y	G'	s :	76T00	8	1488	6410		13	746	1077	1271	1745
1-2406	08.	AC	LLR	X	G'	s :	76T00	8	1488	6410		3	6	17	25	962

Tests =	SLD)/3PT	FRA	С		Sei	nsors	=	RUR RLI	R			<u>LP19</u>
FILTER	ESTIM		И		2 Sigr	als			SUMMAR	Y OF	SPECTR	AL ANF	LYSIS
				Č	Cumulative H	P.S.D.	(%)	=	50	75	90	95	99
				9	s of Signal	Passed	(%)	Ξ	71	50	32	22	10
Best ME	AN+1S	D fi	t										
				F	Equivalent H	Filter	(dB)	=	-3	-6	-10	-13	-20
CORNER	@ ROL	L-OF	2	Ň	EAN LOG Fre	equency	(Hz)	H	28	64	863	1107	1618
(Hz)	(dB	/dec	<u>)</u>	ŀ	MEAN+1SD Fre	equency	(Hz)	Ξ	263	518	897	1189	1831
316.	-2	3.1	<	- 7	djusted Asy	mptote	(Hz)	=	426	576	856	1155	2318
				E	Best-Fit Fil	ter	(Hz)	=	316	508	817	1130	2307
<u>T-File</u>	Ch		Signa	1	Test ID	Samp	ling		Freq.	(Hz)	@ Cum.	PSD I	evels
1-2409	11.	AC 1	RUR Y	G'S	5 76T008	1488	6410		263	518	897	1031	1430
1-2408	10.	AC I	RLR X	G'S	5 76T008	1488	6410		3	8	831	1189	1831

,

Tests = SLD/3PT NOFX Sensors = TO1 T12 LP20 $\frac{4 \text{ Signals}}{\text{Cumulative P.S.D. (\%)}} = \frac{\text{SUMMARY OF SPECTRAL ANALYSIS}}{50 \quad 75 \quad 90 \quad 95 \quad 99}$ FILTER ESTIMATION % of Signal Passed (%) = 71 50 32 22 10 Best MEAN+1SD fit Equivalent Filter (dB) = -3 -6 -10 -13 -20 MEAN LOG Frequency (Hz) = 6 19 164 307 1255 CORNER @ ROLL-OFF MEAN+1SD Frequency (Hz) = 18 84 981 2107 1599 (Hz) (dB/dec) 23. -7.5 <---- Adjusted Asymptote (Hz) = 57 143 484 1216 10340 Best-Fit Filter (Hz) = 23 98 420 1136 10202 Signal Test ID Sampling Freq. (Hz) @ Cum. PSD Levels T-File Ch 1-240002.AC TO1 X G'S76T008148864102928580314211-240103.AC TO1 Z G'S76T00814886410934385102514291-240204.AC T12 X G'S76T0081488641023811825 1-2403 05. AC T12 Y G'S 76T008 1488 6410 30 153 829 986 1479

Tests =	SLD	/LAI	P NO	OF	ĸ				Ser	sors	=	LUR L	LR RUI	R RLR		LP21
FILTER	ESTIM	ATI	אכ				23	Sig	nals			SUMMA	RY OF	SPECTR	AL AN	ALYSIS
						Cu	nulati	ve	P.S.D.	(%)	=	50	75	90	95	99
						%	of Sig	nal	Passed	(%)	=	71	50	32	22	10
Best ME	AN+1S	Df:	it													
						Eq	uivale	nt	Filter	(dB)	Ξ	-3	-6	-10	-13	-20
CORNER	@ ROL	L-01	FF			ME.	AN LOG	Fr	equency	(Hz)	=	47	176	468	798	1541
(Hz)	<u>(dB</u>	/de	<u>=)</u>			ME.	AN+1SD	Fr	equency	(Hz)	=	201	765	1376	1904	1995
271.	-1	6.2	<		-	Ad	iusted	As	vmptote	(Hz)	=	415	636	1118	1713	4614
						Be	st-Fit	Fi	lter	(Hz)	æ	271	533	1048	1660	4586
										()						
T-File	Ch		Sig	na	1		Test	ID	Samp	Ling		Freq.	(Hz)	@ Cum.	PSD 3	Levels
1-2159	05.	AC	LUR	Y	G'	S	A-877		2462	6410		50	186	490	923	1679
1-2180	05.	AC	LUR	Y	G'	S	A-880		1588	6410		86	462	890	1150	1598
1-2237	04.	AC	LUR	Y	G'	S	A-884		1760	6410		454	951	1335	1567	1961
1-2343	05.	AC	LUR	Y	G'	S	A-928		1648	6410		50	288	962	1161	1998
1-2364	05.	AC	LUR	Y	G'	S	A-937		1616	6410		94	473	1038	1474	1905
1-2158	04.	AC	LLR	Х	G'	S	A-877		2462	6410		11	22	97	388	1072
1-2179	04.	AC	LLR	Х	G'	S	A-880		1588	6410		94	562	1222	1379	1715
1-2218	04.	AC	LLR	X	G '	S	A-883		2016	6410		16	236	706	1023	1582
1-2236	03.	AC	LLR	Х	G '	S	A-884		1760	6410		3	14	338	900	1404
1-2342	04.	AC	LLR	Х	G'	S	A-928		1648	6410		27	41	50	67	962
1-2363	04.	AC	LLR	Х	G'	S	A-937		1616	6410		36	55	169	565	1308
1-2161	07.	AC	RUR	Y	G'	S	A-877		2462	6410		424	1016	1404	1637	2230
1-2182	07.	AC	RUR	Y	G'	S	A-880		1588	6410		139	207	588	809	1247
1-2221	07.	AC	RUR	Y	G'	S	A-883		2016	6410		1002	1341	1646	1828	2258
1-2239	06.	AC	RUR	Y	G'	S	A-884		1760	6410		352	808	1158	1521	2089
1-2345	07.	AC	RUR	Y	G '	S	A-928		1648	6410		20	34	175	961	1354
1-2366	07.	AC	RUR	Y	G'	S	A-937		1616	6410		16	883	1358	1538	1887
1-2160	06.	AC	RLR	X	G'	S	A-877		2462	6410		8	16	88	166	962
1-2181	06.	AC	RLR	Х	G'	S	A-880		1588	6410		169	1086	1368	1504	1717
1-2220	06.	AC	RLR	Х	G'	S	A-883		2016	6410		17	66	324	621	1404
1-2238	05.	AC	RLR	Х	G'	S	A-884		1760	6410		11	290	937	1172	1681
1-2344	06.	AC	RLR	Х	G'	S	A-928		1648	6410		28	42	85	111	961
1-2365	06.	AC	RLR	x	G'	S	A-937		1616	6410		13	44	158	970	1621

Tests =	SLD	/LAP	NO	FX					Ser	nsors	=	UST LS	ST			LP22
FILTER	ESTIM	ATIO	N				8 9	Signa	als			SUMMAI	RY OF	SPECTR	AL AN	ALYSIS
			-			Cumu	lativ	ve P.	S.D.	(%)	=	50	75	90	95	99
						% of	Sig	hal F	Passed	(%)	Ξ	71	50	32	22	10
Best ME	AN+1S	D fit	t				5									
						Equi	vale	nt Fi	llter	(dB)	=	-3	-6	-10	-13	-20
CORNER	@ ROL	L-OFI	F		1	MEAN	LOG	Freq	quency	(Hz)	=	28	92	223	408	1103
(Hz)	(dB	/dec)	<u>)</u>			MEAN	+1SD	Freq	luency	(Hz)	=	121	316	766	1418	1870
155.	-1	5.1	<			Adiu	sted	Asvn	nptote	(Hz)	=	245	387	709	1120	3241
						Best	-Fit	Filt	ter	(Hz)	=	155	320	661	1082	3219
T-File	Ch		Sign	al		_ 1	est	ID	Samp	ling		Freq.	(Hz)	@ Cum.	PSD	Levels
1-2156	02.	AC I	UST	X	G'	S A	-877		2462	6410		19	182	613	945	1432
1-2361	02.	AC I	UST	X	G'	S A	-937		1616	6410		19	41	50	69	341
1-2157	03.	AC I	LST	Х	G'	S A	-877		2462	6410		41	189	573	961	1573
1-2178	03.	AC I	LST	Х	G'	S A	-880		1588	6410		27	56	271	815	1437
1-2217	03.	AC 1	LST	Х	G'	S A	-883		2016	6410		9	25	39	66	804
1-2235	02.	AC 1	LST	Х	G'	S A	-884		1760	6410		1020	1341	1621	1853	2147
1-2341	03.	AC 1	LST	Х	G'	S A	-928		1648	6410		16	67	249	879	1243
1-2362	03.	AC 1	LST	Х	G'	S A	-937		1616	6410		6	30	83	139	925

Tests = SLD/LAP FRACSensors = USTLP23FILTER ESTIMATION3 Signals
Cumulative P.S.D. (%) =SUMMARY OF SPECTRAL ANALYSIS
50 75 90 95 99
71 50 32 22 10Best MEAN+1SD fitEquivalent Filter (dB) =<math>-3 -6 -10 -13 -20
(Hz) =CORNER @ ROLL-OFFMEAN LOG Frequency (Hz) =23 185 407 598 1511
407 598 1511
(Hz)(Hz)(dB/dec)MEAN+1SD Frequency (Hz) =48 732 1802 2091 213474.-8.7 < ----Adjusted Asymptote (Hz) =164 363 1038 2298 14535
Best-Fit Filter (Hz) =164 363 1038 2298 14535
Frequency (Hz) =T-FileChSignalTest IDSamplingFreq. (Hz) @ Cum. PSD Levels1-2177O2.AC UST X G'S A-880 1588 6410
1-221664 371 1000 1351 1615
17 629 1349 1552 2222
1-234011 27 50 102 962

Tests =	SLD	/LAI	? N(ĴΕΣ	ĸ				Sei	nsors	=	T01 T	12			<u>LP24</u>
FILTER	ESTIM	ATI	<u>N</u>				20	Sign	als			SUMMAI	RY OF	SPECTR	AL AN	ALYSIS
						Cu	mulati	ve P	.S.D.	(%)	Ξ	50	75	90	95	99
						90	of Sig	nal	Passed	(%)	Ξ	71	50	32	22	10
Best ME	AN+1S	D fi	it													
						Εq	uivale	nt F	ilter	(dB)	Ξ	-3	-6	-10	-13	-20
CORNER	@ ROL	L-OI	FF			ME.	AN LOG	Fre	quency	(Hz)	=	32	134	371	559	1287
(Hz)	(dB	/dec	<u>=)</u>			ME.	AN+1SD	Fre	quency	(Hz)	=	125	454	1092	1496	1757
172.	-1	4.7	<		-	Ad	iusted	Asv	mptote	(Hz)	=	275	442	826	1325	3972
						Be	st-Fit	Fil	ter	(Hz)	=	172	363	768	1279	3944
T-File	Ch		Sig	na:	1		Test	ID	Samp	ling		Freq.	(Hz)	@ Cum.	PSD	Levels
1-2167	13.	AC	T01	X	G	'S	A-877		2064	6410		16	25	246	427	854
1-2168	14.	AC	T01	Z	G	'S	A-877		2064	6410		69	239	426	668	1038
1-2245	12.	AC	T01	X	G	'S	A-884		1472	6410		13	269	905	1191	. 1631
1-2246	13.	AC	T01	Z	G	S	A-884		1472	6410		8	254	941	1211	. 1678
1-2351	13.	AC	T01	X	G	'S	A-928		1630	6410		30	49	59	174	964
1-2352	14.	AC	TOl	Ζ	G	'S	A-928		1630	6410		17	27	44	56	959
1-2372	13.	AC	T01	X	G	'S	A-937		1616	6410		38	64	357	435	1042
1-2373	14.	AC	T01	Z	G	'S	A-937		1616	6410		17	41	311	421	948
1-2169	15.	AC	T12	Х	G	'S	A-877		2064	6410		33	105	214	344	964
1-2170	16.	AC	T12	Y	G	'S	A-877		2064	6410		50	318	480	919	1352
1-2190	15.	AC	T12	X	G	'S	A-880		1664	6410		16	52	397	488	950
1-2191	16.	AC	T12	Y	G	'S	A-880		1664	6410		124	402	596	809	1233
1-2227	13.	AC	T12	Х	G	'S	A-883		1660	6410		9	205	326	565	1341
1-2228	14.	AC	T12	Y	G	'S	A-883		1660	6410		36	316	895	1125	1718
1-2247	14.	AC	T12	Х	G	'S	A-884		1472	6410		5	286	939	1208	1648
1-2248	15.	AC	T12	Y	G	'S	A-884		1472	6410		277	779	1213	1443	1894
1-2353	15.	AC	T12	X	G	'S	A-928		1630	6410		11	19	25	44	962
1-2354	16.	AC	T12	Y	G	'S	A-928		1630	6410		959	962	1462	1989	2887
1-2374	15.	AC	T12	X	G	'S	A-937		1616	6410		9	23	394	967	1399
1 - 2375	16.	AC	T12	Y	G	S	A-937		1616	6410		308	552	829	1016	1654

Tests =	SLD	/LAP	FRA	C				Sei	nsors	=	T01				<u>LP25</u>
FILTER	ESTIM	ATION	¥			2 9	Signa	als			SUMMAR	Y OF	SPECTR	AL AN	ALYSIS
			-		Cu	mulativ	ve P	.S.D.	(%)	=	50	75	90	95	99
					010	of Sign	hal 1	Passed	(%)	=	71	50	32	22	10
Best ME	AN+15	D fit	t												
					Εq	uivale	nt F:	ilter	(dB)	=	-3	-6	-10	-13	-20
CORNER	@ ROL	L-OFI	F		ME	AN LOG	Fre	quency	(Hz)	=	27	137	461	780	1362
(Hz)	(dB	/dec))		ME.	AN+1SD	Fre	quency	(Hz)	=	39	200	601	831	1410
60.	-1	1.6	<		Ad	justed	Asyı	nptote	(Hz)	=	110	199	439	797	3184
					Ве	st-Fit	Filt	ter	(Hz)	=	60	155	400	762	3156
T-File	Ch		Signa	1		Test	ID	Samp	ling		Freq.	(Hz)	@ Cum.	PSD	Levels
1-2188	13.	AC 3	r01 }	G	'S	A-880		1664	6410		39	94	354	732	1410
1-2189	14.	AC 1	rol z	G	' S	A-880		1664	6410		19	200	601	831	1316

Tests =	PEN	/A-P	NO	FX			S	ensors	=	LUR LI	LR RUI	R RLR		<u>LP26</u>
FILTER	ESTIM	ATIO	N			6 S	ignals			SUMMAJ	RY OF	SPECTR	AL ANA	ALYSIS
					Ci	umulativ	e P.S.D.	(%)	=	50	75	90	95	99
					8	of Sign	al Passe	d (%)	=	71	50	32	22	10
Best ME	AN+1S	D fi	t			-								
					E	quivalen	t Filter	(dB)	=	-3	-6	-10	-13	-20
CORNER	@ ROL	L-OF	F		M	EAN LOG	Frequenc	y (Hz)	=	124	290	637	972	1484
(Hz)	(dB	/dec	<u>)</u>		M	EAN+1SD	Frequenc	y (Hz)	=	400	886	1259	1511	1924
492.	-2	6.9	<		A	djusted	Asymptot	e (Hz)	=	636	823	1157	1496	2719
					В	est-Fit	Filter	(Hz)	=	492	740	1112	1467	2708
T-File	Ch		Sign	al		Test I	D Sam	pling		Freq.	(Hz)	@ Cum.	PSD 1	Levels
1-2520	07.	AC	LUR	Y	G'S	76T021	1440	6410		449	1144	1545	1767	2167
1-2532	07.	AC	LUR	Y	G'S	76T022	1824	6410		401	748	1106	1277	1560
1-2544	07.	AC	LUR	Y	G'S	76T024	1952	6410		42	99	246	455	898
1-2556	07.	AC	LUR	Y	G'S	76T025	1568	6410		347	687	1041	1221	1480
1-2617	02.	AC	LUR	Y	G'S	76T050	2144	6410		44	59	322	961	1606
1-2630	02	AC	LUR	v	GIS	767053	1402	6410		31	74 ا	473	700	1480

Sensors = RUR Tests = PEN/A-P FRAC LP27 $\frac{2 \text{ Signals}}{\text{Cumulative P.S.D. (\%)}} = \frac{\text{SUMMARY OF SPECTRAL ANALYSIS}}{50 \quad 75 \quad 90 \quad 95 \quad 99}$ FILTER ESTIMATION 95 99 % of Signal Passed (%) = 71 50 32 22 10 Best MEAN+1SD fit Equivalent Filter (dB) = -3 -6 -10 -13 -20 MEAN LOG Frequency (Hz) = 172 308 831 1280 1679 CORNER @ ROLL-OFF MEAN+1SD Frequency (Hz) = 556 1041 1531 1706 2146 (Hz) (dB/dec) 658. -31.4 <---- Adjusted Asymptote (Hz) = 821 1024 1371 1711 2858 Best-Fit Filter (Hz) = 658 934 1326 1683 2849 Signal Test ID Sampling Freq. (Hz) @ Cum. PSD Levels T-File Ch 1-253409. AC RUR Y G'S76T02218246410539145196113131-281604. AC RUR Y G'S77T086124664105561041153117062146

Tests =	PEN	/A-I	P NO	DF	K				Sei	nsors	=	UST L	ST			<u>LP28</u>
FILTER	ESTIM	ATIC	N				11 9	Signa	ls			SUMMA	RY OF	SPECTR	AL AN	ALYSIS
						Cu	mulativ	ve P.	S.D.	(%)	=	50	75	90	95	99
						010	of Sigr	nal P	assed	(%)	=	71	50	32	22	10
Best ME	AN+1S	D fi	Lt				-									
						Εq	uivaler	nt Fi	lter	(dB)	=	-3	-6	-10	-13	-20
CORNER	@ ROL	L-OF	FF			ME	AN LOG	Freq	uency	(Hz)	=	59	132	314	464	1248
(Hz)	(dB	/dec	-)			ME	AN+1SD	Freq	uency	(Hz)	=	115	363	846	1090	1755
		/						1	· - 4	```						
158.	-1	5.7	<		_	Ad	justed	Asvm	ptote	(Hz)	=	246	382	685	1066	2973
	_					Be	st-Fit	Filt	er	(Hz)	=	158	318	640	1032	2954
										()				• • •		
T-File	Ch		Sig	na	1		Test 1	<u>ID</u>	Samp	ling		Freq.	(Hz)	@ Cum.	PSD	Levels
1-2621	06.	AC	UST	x	G	's	76T050)	2144	6410		22	42	961	962	1920
1-2634	06.	AC	UST	X	G	'S	76T053	3	1402	6410		307	1690	1923	1925	1934
1-2650	06.	AC	UST	X	G	' S	76T056	5	1246	6410		53	97	186	426	970
1-2667	06.	AC	UST	X	G	' S	76T059	9	1312	6410		36	64	158	290	961
1-2800	06.	AC	UST	X	G	'S	77T083	3	1232	6410		41	80	131	418	1078
1-2818	06.	AC	UST	X	G	'S	77T086	5	1246	6410		45	80	122	150	800
1-2635	07.	AC	LST	X	G	'S	76T053	3	1402	6410		50	91	128	161	962
1-2651	07.	AC	LST	X	G	'S	76T056	5	1246	6410		49	97	185	272	881
1-2668	07.	AC	LST	X	G	'S	76T059	9	1312	6410		66	130	1014	1488	2130
1-2715	06.	AC	LST	X	G	'S	77T068	3	1232	6410		128	573	853	1034	1626
1-2819	07.	AC	LST	Х	G	'S	77T086	5	1246	6410		66	110	164	221	1310

Sensors = LST UST Tests = PEN/A-P FRAC LP29 $\frac{3 \text{ Signals}}{\text{Cumulative P.S.D. (\%)}} = \frac{\text{SUMMARY OF SPECTRAL ANALYSIS}}{50 \quad 75 \quad 90 \quad 95 \quad 99}$ FILTER ESTIMATION 22 10 % of Signal Passed (%) = 71 50 32 Best MEAN+1SD fit Equivalent Filter (dB) = -3 -6 -10 -13 -20CORNER @ ROLL-OFF MEAN LOG Frequency (Hz) = 52 102 239 460 1181 MEAN+1SD Frequency (Hz) = 58 107 337 611 1237 (Hz) (dB/dec) 65. -14.2 <---- Adjusted Asymptote (Hz) = 106 173 329 537 1670 Best-Fit Filter (Hz) = 65 141 305 518 1658 Freq. (Hz) @ Cum. PSD Levels T-File Ch _____Signal Test ID Sampling 1-2622 07. AC LST X G'S 76T050 2144 6410 55 108 205 338 1160 172 430 1258 1-2801 07. AC LST X G'S 77T083 1232 6410 58 103 45 95 385 670 1128 1-2714 05. AC UST X G'S 77T068 1232 6410

Tests = PEN/A-P NOFX Sensors = T01 T12 LP30 $\frac{13 \text{ Signals}}{\text{Cumulative P.S.D. (\%)}} = \frac{\text{SUMMARY OF SPECTRAL ANALYSIS}}{50 \quad 75 \quad 90 \quad 95 \quad 99}$ FILTER ESTIMATION 99 % of Signal Passed (%) = 71 50 32 22 10 Best MEAN+1SD fit Equivalent Filter (dB) = -3 -6 -10 -13 -20 MEAN LOG Frequency (Hz) = 46 235 479 742 1541 CORNER @ ROLL-OFF (Hz) (dB/dec) MEAN+1SD Frequency (Hz) = 167 975 1509 1703 2169 234. -14.3 <---- Adjusted Asymptote (Hz) = 379 616 1170 1899 5855 Best-Fit Filter (Hz) = 234 504 1086 1832 5814 Signal Test ID Sampling Freq. (Hz) @ Cum. PSD Levels T-File Ch 1-2515 02. AC TOL X G'S 76T021 1440 6410 105 598 962 1105 1762 196 582 962 1033 1444 1-2516 03. AC TOL Z G'S 76T021 1440 6410

 1-2516
 03.
 AC
 T01
 Z
 G'S
 76T021
 1440
 6410
 196
 582
 962
 1033
 1444

 1-2527
 02.
 AC
 T01
 X
 G'S
 76T022
 1824
 6410
 17
 961
 962
 1028
 2421

 1-2528
 03.
 AC
 T01
 Z
 G'S
 76T022
 1824
 6410
 17
 825
 962
 967
 2297

 1-2539
 02.
 AC
 T01
 X
 G'S
 76T024
 1952
 6410
 2
 6
 16
 58
 776

 1-2540
 03.
 AC
 T01
 Z
 G'S
 76T024
 1952
 6410
 45
 236
 601
 787
 1149

 1-2551
 02.
 AC
 T01
 X
 G'S
 76T025
 1568
 6410
 41
 64
 279
 962
 1601

 1-2552
 03.
 AC
 T01
 Z
 G'S
 76T025
 1568
 6410
 280
 623
 1305
 1407
 1662

 < 1-263608.ACTO1XG'S76T0531402641019881892719641-263709.ACTO1ZG'S76T05314026410306124979712881-263810.ACTO1YG'S76T053140264105325896210751905

Tests =	DIR	NC	OPAD]	FRAC	2	S	ensors	=	HED H	Dl HD	2 HD3		LP31
FILTER	ESTIM	ATI	N			28 5	Signals			SUMMA	RY OF	SPECTR	AL AN	ALYSIS
					Č	Lumulativ	ve P.S.D.	(%)	=	50	75	90	95	99
					ę	s of Sign	al Passe	d (%)	=	71	50	32	22	10
Best ME	AN+1S	D fi	it											
					Ε	quivaler	nt Filter	(dB)	=	-3	-6	-10	-13	-20
CORNER	@ ROL	L-01	FF		М	IEAN LOG	Frequency	y (Hz)	=	199	595	1110	1569	3053
(Hz)	<u>(dB</u>	/dec	<u>;)</u>		М	EAN+1SD	Frequenc	y (Hz)	=	985	3043	4645	6072	7690
1303.	-1	9.9	<		- A	djusted	Asymptot	e (Hz)	=	1846	2615	4145	5874	13191
					E	Best-Fit	Filter	(Hz)	=	1303	2263	3931	5724	13124
T-File	Ch		Sig	na	1	Test I	ID Sam	oling		Freq.	(Hz)	@ Cum.	PSD 1	Levels
						-								
2-1068	18.	AC	HED	Y	G'S	82-05	5 2500	10000		5	12	32	76	728
2-1069	19.	AC	HED	Z	G'S	82-05	5 2500	10000		17	24	49	66	288
2-1068	18.	AC	HED	Y	G'S	82-05	5 2500	10000		5	12	32	76	728
2-1069	19.	AC	HED	Z	G'S	82-05	5 2500	10000		17	24	49	66	288
1-2438	14.	AC	HED	Х	G'S	5 76T009) 1376	6410		537	844	1139	1305	1609
1-2439	15.	AC	HED	Z	G'S	5 76T009	9 1376	6410		210	834	1164	1545	1930
1-2440	16.	AC	HED	Y	G'S	5 76T009	9 1376	6410		111	466	942	1164	1626
1-2479	13.	AC	HED	Х	G'S	5 76T011	1520	6410		504	1607	1934	1995	2086
1-2480	14.	AC	HED	Z	G'S	5 76T011	L 1520	6410		243	393	1199	1715	1994
1-2481	15.	AC	HED	Y	G'S	5 76T011	L 1520	6410		58	136	861	1310	2002
1-3525	02.	AC	HDl	Х	G'S	5 76A145	5 2560	25000		488	729	1993	2478	5276
1-3526	03.	AC	HD1	Y	G'S	76A145	5 2560	25000		391	684	1355	1642	4642
1-3527	04.	AC	HDl	Z	G'S	5 76A145	5 2560	25000		739	1364	2170	3809	5060
1-3538	02.	AC	HDl	Х	G'S	5 76A152	2 2560	25000		165	1266	2255	250 9	4257
1-3539	03.	AC	HDl	Y	G'S	76A152	2 2560	25000		259	2194	2707	4004	6375
1-3540	04.	AC	HDl	Ζ	G'S	76A152	2560	25000		134	1395	2142	3299	5927
1-3528	05.	AC	HD2	Z	G'S	76A145	5 2560	25000		55	1593	2676	4263	5795
1-3529	06.	AC	HD2	Х	G'S	76A145	5 2560	25000		76	183	1138	1306	3467
1-3530	07.	AC	HD2	Y	G'S	76A145	5 2560	25000		1898	2521	4062	4807	6290
1-3541	05.	AC	HD2	Z	G'S	76A152	2 2560	25000		253	2441	3430	4843	7999
1-3542	06.	AC	HD2	Х	G'S	76A152	2560	25000		1501	2136	2505	3409	4846
1-3543	07.	AC	HD2	Y	G'S	76A152	2560	25000		638	2945	3644	5484	7425
1-3531	08.	AC	HD3	Y	G'S	76A145	5 2560	25000		833	1074	1334	1965	4593
1-3532	09.	AC	HD3	Z	G'S	76A145	5 2560	25000		958	1212	1379	1501	4041
1-3533	10.	AC	HD3	Х	G'S	76A145	5 2560	25000		1108	1273	1529	2463	4703
1-3544	08.	AC	HD3	Y	G'S	76A152	2560	25000		131	2371	4749	5164	6863
1-3545	09.	AC	HD3	Z	G'S	76A152	2560	25000		1633	2557	3241	5042	6146
1-3546	10.	AC	HD3	Х	G'S	76A152	2560	25000		119	693	2338	4794	7587

Tests =	DIR	W/	'PAD	F	RA	С		Se	nsors	=	HD1 HD	2 HD3	B HED		<u>LP32</u>
FILTER	ESTIM	ATIC	אס				10 Si	gnals			SUMMAR	Y OF	SPECTR	AL ANA	LYSIS
						Cumu	lative	P.S.D.	(%)	=	50	75	90	95	99
						% of	Signa	l Passed	(%)	=	71	50	32	22	10
Best ME	AN+1SI) fi	Lt												
						Equi	valent	: Filter	(dB)	=	-3	-6	-10	-13	-20
CORNER	@ ROLI	L-OF	FF			MEAN	LOG F	requency	(Hz)	=	29	92	294	673	1562
(Hz)	(dB,	/dec	2)			MEAN	+1SD F	requency	(Hz)	=	64	201	813	1445	1878
85.	-1	1.7	<		-	Adju	sted A	Asymptote	(Hz)	=	154	278	609	1099	4339
						Best	-Fit F	Filter	(Hz)	=	85	217	55 6	1052	4301
Contraction of the local division of the loc															
T-File	<u>Ch</u>		Sig	ıa.	L	T	est II) Samp	ling		Freq.	(Hz)	@ Cum.	PSD I	Levels
T-File	<u>Ch</u>		Sig	ıa.	1	<u> </u>	est II	Samp	ling		Freq.	(Hz)	@ Cum.	PSD I	vevels
<u>T-File</u> 1-3438	<u>Ch</u> 02.	AC	Sign HDl	na X	L G'	<u>T</u> S 7	est II 6Al26	<u>Samp</u> 1024	<u>ling</u> 10000		Freq. 29	(Hz) 66	@ Cum. 103	PSD I 144	evels 950
<u>T-File</u> 1-3438 1-3439	<u>Ch</u> 02. 03.	AC AC	Sign HDl HDl	na X Y	G' G'	<u>T</u> S 7 S 7	est II 6A126 6A126) <u>Samp</u> 1024 1024	ling 10000 10000		Freq. 29 12	(Hz) 66 24	@ Cum. 103 117	PSD I 144 732	<u>evels</u> 950 1677
<u>T-File</u> 1-3438 1-3439 1-3440	<u>Ch</u> 02. 03. 04.	AC AC AC	Sign HDl HDl HDl	na X Y Z	G' G' G'	<u>T</u> S 7 S 7 S 7	est II 6Al26 6Al26 6Al26) Samp 1024 1024 1024	01ing 10000 10000 10000		Freq. 29 12 12	(Hz) 66 24 98	@ Cum. 103 117 818	PSD I 144 732 1145	950 950 1677 1799
T-File 1-3438 1-3439 1-3440 1-3441	<u>Ch</u> 02. 03. 04. 05.	AC AC AC AC	Sign HD1 HD1 HD1 HD2	X Y Z Z	G' G' G'	<u>T</u> S 7 S 7 S 7 S 7 S 7	est II 6A126 6A126 6A126 6A126 6A126	2 Samp 1024 1024 1024 1024	10000 10000 10000 10000		Freq. 29 12 12 42	(Hz) 66 24 98 76	@ Cum. 103 117 818 132	PSD I 144 732 1145 217	950 950 1677 1799 1523
T-File 1-3438 1-3439 1-3440 1-3441 1-3442	<u>Ch</u> 02. 03. 04. 05. 06.	AC AC AC AC AC	Sign HD1 HD1 HD2 HD2	na X Y Z Z X	G' G' G' G'	<u>T</u> S 7 S 7 S 7 S 7 S 7 S 7	est II 6Al26 6Al26 6Al26 6Al26 6Al26 6Al26	2 Samp 1024 1024 1024 1024 1024	10000 10000 10000 10000 10000		Freq. 29 12 12 42 17	(Hz) 66 24 98 76 59	@ Cum. 103 117 818 132 120	PSD I 144 732 1145 217 425	950 950 1677 1799 1523 1533
T-File 1-3438 1-3439 1-3440 1-3441 1-3442 1-3443	<u>Ch</u> 02. 03. 04. 05. 06. 07.	AC AC AC AC AC AC	Sign HD1 HD1 HD2 HD2 HD2 HD2	X Y Z Z X Y	G'G'G'G'G'G'	S 7 S 7 S 7 S 7 S 7 S 7 S 7 S 7 S 7	est II 6A126 6A126 6A126 6A126 6A126 6A126	D Samp 1024 1024 1024 1024 1024 1024 1024	10000 10000 10000 10000 10000 10000		Freq. 29 12 12 42 17 54	(Hz) 66 24 98 76 59 139	@ Cum. 103 117 818 132 120 1060	PSD I 144 732 1145 217 425 1436	950 1677 1799 1523 1533 1885
T-File 1-3438 1-3439 1-3440 1-3441 1-3442 1-3443 1-3445	<u>Ch</u> 02. 03. 04. 05. 06. 07. 09.	AC AC AC AC AC AC AC	Sign HD1 HD1 HD2 HD2 HD2 HD2 HD3	X Y Z Z X Y Z	G'G'G'G'G'G'G'G'	S 7 S 7 S 7 S 7 S 7 S 7 S 7 S 7 S 7 S 7	est II 6A126 6A126 6A126 6A126 6A126 6A126 6A126	2 Samp 1024 1024 1024 1024 1024 1024 1024	10000 10000 10000 10000 10000 10000 10000		Freq. 29 12 12 42 17 54 15	(Hz) 66 24 98 76 59 139 49	@ Cum. 103 117 818 132 120 1060 122	PSD I 144 732 1145 217 425 1436 796	950 1677 1799 1523 1533 1885 1477
T-File 1-3438 1-3439 1-3440 1-3441 1-3442 1-3443 1-3445 1-3446	Ch 02. 03. 04. 05. 06. 07. 09. 10.	AC AC AC AC AC AC AC AC	Sign HD1 HD1 HD2 HD2 HD2 HD3 HD3	X Y Z Z X Y Z X X X	G' G' G' G' G' G' G'	S 7 S 7 S 7 S 7 S 7 S 7 S 7 S 7 S 7 S 7	est II 6A126 6A126 6A126 6A126 6A126 6A126 6A126 6A126	2 Samp 1024 1024 1024 1024 1024 1024 1024 1024	ling 10000 10000 10000 10000 10000 10000 10000		Freq. 29 12 12 42 17 54 15 17	(Hz) 66 24 98 76 59 139 49 81	@ Cum. 103 117 818 132 120 1060 122 215	PSD 1 144 732 1145 217 425 1436 796 820	950 1677 1799 1523 1533 1885 1477 1538
T-File 1-3438 1-3439 1-3440 1-3441 1-3442 1-3443 1-3445 1-3446 1-2212	Ch 02. 03. 04. 05. 06. 07. 09. 10. 16.	AC AC AC AC AC AC AC AC	HD1 HD1 HD1 HD2 HD2 HD2 HD3 HD3 HED	X Y Z Z X Y Z X X X X	G' G' G' G' G' G' G' G' G'	T S 7 S 7	est II 6A126 6A126 6A126 6A126 6A126 6A126 6A126 6A126 6A126 6A126	2 Samp 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024	ling 10000 10000 10000 10000 10000 10000 10000 6410		Freq. 29 12 12 42 17 54 15 17 69	(Hz) 66 24 98 76 59 139 49 81 315	@ Cum. 103 117 818 132 120 1060 122 215 1351	PSD 1 144 732 1145 217 425 1436 796 820 1579	950 1677 1799 1523 1533 1885 1477 1538 1828

•

Tests =	DIR	N	OPAD]	NOF	Х			Se	ensors	=	HD1 H	D2 HD	3 HED		<u>LP33</u>	
FILTER	ESTIMA	ATI(NC			33 Signals						SUMMARY OF SPECTRAL ANALYS					
						Cui	mulativ	e P.	.S.D.	(%)	=	50	75	90	95	99	
						8 (of Sign	al F	Passed	(%) E	=	71	50	32	22	10	
Best ME	AN+1SE) f:	it				-										
						Equivalent Filter (dB)					=	-3	-6	-10	-13	-20	
CORNER	@ ROLI	-01	FF			MĒ	AN LOG	Fred	Juency	(Hz)	=	137	349	723	986	1649	
(Hz) (dB/dec)							AN+1SD	Fred	Juency	(Hz)	=	463	847	1475	1814	2508	
										• • •							
547.	-25	5.7	<-		-	Ad	justed	Asyr	nptote	e (Hz)	=	716	937	1338	1752	3275	
						Be	st-Fit	Filt	ter	(Hz)	=	547	838	1284	1717	3262	
T-File	Ch		Sig	na	1		Test I	D	Sam	oling		Freq.	(Hz)	@ Cum.	PSD 1	Levels	
*********								-								*****	
1-3512	02.	AC	HDl	Х	G'	S	76A144		1024	10000		156	408	828	1340	2178	
1-3513	03.	AC	HDl	Y	G'	S	76A144	•	1024	10000		227	491	2043	2383	2754	
1-3514	04.	AC	HD1	Z	G'	S	76A144		1024	10000		269	518	1858	2212	2581	
2-0002	01.	AC	HDl	Х	G'	S	MS 91		640	10000		66	239	432	652	1182	
2-0003	02.	AC	HDl	Y	G'	s	MS 91		640	10000		49	93	183	266	974	
2-0004	03.	AC	HDl	Z	G'	s	MS 91		640	10000		745	1006	1250	1487	1980	
2-0013	01.	AC	HD1	X	G'	S	MS 92		640	10000		117	171	249	383	835	
2-0014	02.	AC	HD1	Y	G'	S	MS 92		640	10000		98	164	232	493	1917	
2-0015	03.	AC	HDl	z	G'	S	MS 92		640	10000		669	1008	1179	1509	2715	
1-3515	05.	AC	HD2	Z	G'	S	76A144		1024	10000		212	410	784	1096	2212	
1-3516	06.	AC	HD2	X	G'	S	76A144		1024	10000		105	552	1321	1902	2095	
1-3517	07.	AC	HD2	Y	G'	ŝ	76A144		1024	10000		596	2039	2268	2432	3245	
2-0005	04.	AC	HD2	X	G'	s	MS 91		640	10000		44	73	159	242	503	
2-0006	05.	AC	HD2	Y	G'	S	MS 91		640	10000		63	266	425	576	1472	
2-0007	06.	AC	HD2	Z	G'	S	MS 91		640	10000		730	933	1106	1292	2173	
2-0016	04.	AC	HD2	х	G'	S	MS 92		640	10000		105	173	339	444	820	
2-0017	05.	AC	HD2	Y	G'	S	MS 92		640	10000		120	164	549	725	1377	
2-0018	06.	AC	HD2	Z	G'	S	MS 92		640	10000		178	818	1003	1216	1687	
1-3519	09.	AC	HD3	Z	G'	S	76A144		1024	10000		686	874	1099	1719	2051	
1-3520	10.	AC	HD3	X	G'	S	76A144		1024	10000		798	991	1467	1565	1826	
2-0008	07.	AC	HD3	х	G'	S	MS 91		640	10000		49	100	369	745	1265	
2-0009	08.	AC	HD3	Y	G'	S	MS 91		640	10000		315	586	1138	1497	1873	
2-0010	09.	AC	HD3	Z	G'	S	MS 91		640	10000		66	352	474	579	713	
2-0019	07.	AC	HD3	x	G'	S	MS 92		640	10000		85	2.4.4	033	1211	2527	
2-0020	08.	AC	HD3	Y	G'	S	MS 92		640	10000		391	693	1174	1411	2239	
2-0021	09.	AC	HD3	z	G'	S	MS 92		640	10000		39	139	398	581	2024	
1-2458	13.	AC	HED	X	G'	S	76T010		1536	6410		1590	1673	1811	1847	2080	
1-2459	14.	AĊ	HED	Z	G'	S	76T010		1536	6410		228	659	1435	1840	2127	
1-2460	15.	AC	HED	Y	G'	S	76T010		1536	6410		89	332	695	992	1854	
2-1039	18.	AĊ	HED	Ŷ	G'	S	82-04		2500	10000		12	208	952	1206	1528	
2-1040	19.	AC	HED	Z	G'	S	82-04		2500	10000		29	100	374	632	1226	
2-1039	18.	AC	HED	Y	G'	S	82-04		2500	10000		12	208	952	1206	1528	
2-1040	19.	AC	HED	Z	G'	S	82-04		2500	10000		29	100	374	632	1226	

Tests =	DIR	W/	/PAD	1	10F	X			Se	ensors	Ξ	HD1 HD	2 HD3	B HED		<u>LP34</u>
FILTER ESTIMATION						18 Signals							Y OF	SPECTR	AL ANZ	ALYSIS
						Cu	mulativ	ve P	.S.D.	(%)	=	50	75	90	95	99
						00	of Sigr	nal	Passed	l (%)	=	71	50	32	22	10
Best ME	AN+1S	D fi	it													
						Eq	uivaler	nt F	llter	(dB)	Ξ	-3	-6	-10	-13	-20
CORNER @ ROLL-OFF (Hz) (dB/dec)						MĒ	AN LOG	Fre	quency	(Hz)	=	26	64	145	222	942
						MEAN+1SD Frequency (Hz) =						42	99	345	598	2017
49.	-1	1.8	<-		-	Ad	justed	Asy	mptote	e (Hz)	=	88	159	347	625	2459
						Be	st-Fit	Fil	ter	(Hz)	=	49	124	317	598	2438
T-File	Ch		Sig	na	1		Test 1	<u>ID</u>	Samp	ling		Freq.	(Hz)	@ Cum.	PSD 2	Levels
1-2425	02	۸ С	וחט	v	~ '	c	וואשר		2560	25000		21	61	110	146	2072
1-3425	02.	AC AC	וחם	^ v		5	758116	5	2560	25000		40	73	113	156	3287
1-3420	04	AC AC	HDI	17	ט כי	2	758116	;	2560	25000		18	58	1382	3751	5185
1-3412	02.		HDI	x	ט כי	c	758113	2	1024	10000		34	61	1002 QA	112	801
1-3413	02.		HDI	v	ט י ה	5	756113	2	1024	10000		34	63	90	115	715
1-3414	04		HDI	7	ים	S	754113	2	1024	10000		7	27	83	186	957
1-3451	02.	AC	HDI	x	י קי	S	764133	3	1024	10000		44	93	273	378	491
1-3452	03.	AC	HDI	v	G'	S	768133	3	1024	10000		12	212	1033	1189	1326
1-3453	04.	AC	HD1	7.	G'	S	76A13	3	1024	10000		22	115	447	928	1274
1-3463	02.	AC	HD1	x	G'	S	76A134	1	1024	10000		22	63	103	127	740
1-3464	03.	AC	HD1	Y	G'	S	76A134	1	1024	10000		39	68	100	125	654
1-3465	04.	AC	HD1	z	G'	S	76A134	1	1024	10000		22	42	81	122	1160
1-3475	02.	AC	HD1	x	G'	S	76A135	5	1024	10000		34	54	73	95	759
1-3476	03.	AC	HDl	Y	G'	S	76A135	5	1024	10000		34	54	81	100	347
1-3477	04.	AC	HD1	Z	G.'	S	76A135	5	1024	10000		15	37	76	90	232
1-3487	02.	AC	HDl	Х	G'	S	76A136	5	1024	10000		46	83	127	217	718
1-3488	03.	AC	HDl	Y	G'	S	76A136	5	1024	10000		32	66	117	305	1289
1-3489	04.	AC	HDJ	7.	G'	ς	764136	5	1024	10000		24	51	98	181	466

Tests = NO DIRECT IMPACT Sensors = HD1 HD2 HD3 HED LP35 $\frac{15 \text{ Signals}}{\text{Cumulative P.S.D. (\%)}} = \frac{\text{SUMMARY OF SPECTRAL ANALYSIS}}{50 \quad 75 \quad 90 \quad 95 \quad 99}$ FILTER ESTIMATION % of Signal Passed (%) = 71 50 32 22 10 Best MEAN+1SD fit Equivalent Filter (dB) = -3 -6 -10 -13MEAN LOG Frequency (Hz) = 12 20 35 47 -20 CORNER @ ROLL-OFF 35 47 175 (Hz) (dB/dec) MEAN+1SD Frequency (Hz) = 20 35 59 88 537 17. -14.1 <---- Adjusted Asymptote (Hz) = 28 45 86 441 141 37 80 135 Best-Fit Filter (Hz) = 17 437 Signal Test ID Sampling Freq. (Hz) @ Cum. PSD Levels T-File Ch 2048800041721192542048800014202529204880006182735 2-0572 02. AC HD1 X G'S A-925 760 2-0573 03. AC HD1 Y G'S A-925 137 2-0574 04. AC HD1 Z G'S A-925 156 2-0597 02. AC HD1 X G'S A-926 2048 8000 10 16 31 57 977

 2-0597
 02.
 AC
 HD1
 X
 G'S
 A-926
 2048
 8000
 10
 16
 31
 57

 2-0598
 03.
 AC
 HD1
 Y
 G'S
 A-926
 2048
 8000
 16
 21
 31
 45

 2-0599
 04.
 AC
 HD1
 Z
 G'S
 A-926
 2048
 8000
 10
 21
 37
 51

 2-0622
 02.
 AC
 HD1
 X
 G'S
 A-934
 2048
 8000
 6
 16
 23
 27

 2-0623
 03.
 AC
 HD1
 Y
 G'S
 A-934
 2048
 8000
 8
 14
 27
 33

 2-0624
 04.
 AC
 HD1
 Z
 G'S
 A-934
 2048
 8000
 8
 14
 21
 25

 2-0696
 02.
 AC
 HD1
 X
 G'S
 A-938
 2048
 8000
 12
 21
 27
 33

 2-0697
 03.
 AC
 HD1
 X
 G'S
 A-938
 2048
 8 852 854 37 8 14 27 33 119
 8
 14
 21
 25
 31

 12
 21
 27
 33
 59
 63 86

 2-0720
 02.
 AC
 HD1
 X
 G'S
 76B001
 2048
 8000
 6
 6
 27
 45

 2-0721
 03.
 AC
 HD1
 Y
 G'S
 76B001
 2048
 8000
 23
 35
 86
 107

 2-0722
 04.
 AC
 HD1
 Z
 G'S
 76B001
 2048
 8000
 20
 37
 86
 105

143 264

238

Appendix C

SAMPLES OF SIGNALS AND POWER DENSITY SPECTRA

This Appendix is included to provide samples of the biomechanical signals used in the filter study, and to show their power density spectra as well as the cumulative PDS functions. The label P.S.D. was inadvertantly used to refer to the PDS. To conserve space, not all 450 signals and spectra are included. Those that are included are most typical of all biomechanical signals, and demonstrate the variety of responses that may be found.

The following contains a LEGEND of the features and information found on each of the subsequent graphs. The keys to these information are the circled numbers which correspond to the following.

- (1) Tape number (1 or 2) where the raw signal may be found. The data base from which these signals were obtained consisted of two magnetic tapes that are formatted in the NHTSA Biomechanics Tape Format (old version).
- (2) File number on that tape which contains the sensor data.
- (3) Channel number, i.e., the sequential order of the sensor data in the digitized and formatted test.
- (4) Test ID or reference number to which the signal belongs.
- (5) Sensor type. Here, all are accelerometer (AC) signals.
- (6) Sensor attachment location. See Appendix A for a list of these codes, or consult the NHTSA Biomechanics Tape Format guideline.
- (7) Direction of sensitive axis of the sensor.
- (8) Peak-to-peak range and units of the signal. The signal is always scaled to fit this range over the entire vertical scale.
- (9) Duration of the signal in milliseconds. The signal is always scaled to fit this duration over the entire time axis.

- (10) Number of samples in the signal.
- (11) Sampling rate, in Hertz, of the signal.
- (12) Peak value of the PDS which is used to normalized the PDS curve.
- (13) Last value of the cumulative PDS curve that occurs at the Nyquist rate or half the sapmling rate described in (10) above. Note that the maximum frequency on the plots vary but are not necessarily equal to the Nyquist rate. This is done to expand the curves at low frequencies where most of the "action" takes place.
- (14) Vertical scale for both the normalized PDS and its cumulative function, which ranges from 0 to 100 percent. Note that the 50, 75, 90, and 95% levels are shown, but not the 99% level.
- (15) Frequencies at which the cumulative PDS curve crosses the four indicated levels. The fifth landmark (at 99%) is not shown for clarity, but was is listed in Appendix B.
- (16) Gains (in deciBels) corresponding to the 4 levels of the cumulative PDS.
- (17) Time history of the raw signal, which has been scaled vertically and horizontally to fit the entire plotting region. Generally, this signal would have been filtered with SAE Channel Class 1000 filter before being digitized, but is considered "unfiltered" for the purposes of this study.
- (18) The power density spectrum, obtained by normalizing the squared magnitude of the signal which, in turn, was obtained from the FFT of the signal. Note that the peak occurs, in general, at a low frequency, and that the PDS is a noisy curve which does not necessarily approach zero at high frequencies.
- (19) The cumulative PDS curve, obtained at each frequency by simple summation of the PDS values of all previous frequencies, then normalized to 100% at the last accumulated value. Note that this curve will always be positive, increasing, and monotonous, which allows successfull detection of the 5 landmark levels.

Ł

.

