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Abstract: This article examines the capacity allocation decisions in a supply chain in which a supplier sells a common product to
two retailers at a fixed wholesale price. The retailers order the supplier’s product subject to an allocation mechanism preannounced
by the supplier, and compete for the customer demand. We perform an equilibrium analysis of the retailers’ ordering decisions
under uniform and individually responsive allocations. Uniform allocation guarantees equilibrium orders, but is not necessarily
truth inducing in the presence of demand competition. Further, we find that (1) neither the supplier nor either one of the retailers
sees its profits necessarily increasing with the supplier’s capacity, and the supplier may sell more with a lower capacity level, and
(2) capacity allocation may not only affect the supply chain members’ profits but also change the supply chain structure by driving
a retailer out of the market. This article provides managerial insights on the capacity and ordering decisions for the supplier, the
retailers, and the supply chain. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59: 254–265, 2012
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1. INTRODUCTION

Capacity allocation frequently occurs in supply chains
when multiple retailers order a product from a common sup-
plier. Capacity is subject to allocation when the supplier’s
capacity is unable to meet retailer demand. Further, the retail-
ers may compete for customer demand for the product. This
work is specifically motivated by a capacity allocation prob-
lem in the automobile industry. Automobile manufacturers
often sell the same model vehicles to multiple dealers in the
same geographic region at a fixed wholesale price. The deal-
ers are allowed to determine their own retail prices, which
are typically lower than the manufacturer’s suggested retail
price. In this case, the dealers compete for both the manufac-
turer’s vehicle allocation and their customer demand. Similar
capacity allocation also occurs in the sales of office and home
supplies, electronics products, textile and apparel products,
and so forth.

This article examines the capacity allocation decisions in
a supply chain, in which a supplier sells a common product
to two retailers. The supplier charges a fixed wholesale price
and allocates his capacity based on the order sizes of the two
retailers, using a preannounced capacity allocation mecha-
nism. The retailers order from the supplier and compete for
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customer demand. We perform an equilibrium analysis of the
retailers’ ordering decisions under two types of allocation
rules. The first allocation rule is uniform allocation, where
the retailer with the smaller order size receives the minimum
of her order size and half the supplier’s capacity, whereas the
other retailer receives the minimum of her order size and the
remainder of the capacity. See [22,29], for how uniform allo-
cation applies to the case with more than two retailers. We
compare uniform allocation with the class of individually
responsive (IR) allocations, where a retailer receives alloca-
tions that strictly increase with her order size, given that the
competitor’s order remains unchanged. A broad class of allo-
cation rules are IR, such as proportional and linear allocation
rules. Proportional allocation allocates capacity in propor-
tion to order size. Linear allocation awards each retailer her
order size minus a common deduction, given that this dif-
ference is non-negative, where the deduction is computed
using the available capacity and the order sizes [4]. When
retailers face independent demand, uniform allocation has
several desirable properties. First, uniform allocation guaran-
tees equilibrium orders. Second, uniform allocation is truth
inducing in that, independent of the supplier’s capacity, each
retailer ordering her individually optimal order size forms
an equilibrium. Third, compared with IR allocation, uniform
allocation often results in higher profits for the supply chain
when the wholesale price is low, and for both the supply chain
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and the retailers when no equilibrium orders exist under IR
allocation [5].

We consider demand competition where the retail price
from each retailer is a linear function of the quantities of the
product sold by both retailers and have the following findings.
First, no equilibrium orders may exist under IR allocation;
uniform allocation guarantees equilibrium orders but is not
necessarily truth inducing. Second, IR allocation favors the
supplier in that for the same capacity size, the supplier can
expect to sell at least an equal amount of capacity using IR
allocation compared with using uniform allocation. Third,
uniform allocation coordinates the supply chain better than
IR allocation in the worst case and is most valuable in coordi-
nating the supply chain when the difference between the retail
prices of the two retailers is large, the wholesale price is low,
or the supplier’s capacity cost is low. Fourth, neither the sup-
plier nor either one of the retailers sees its profits necessarily
increasing with the supplier’s capacity, and the supplier may
sell more with a lower capacity level. Finally, capacity allo-
cation may not only affect the supply chain members’ profits
but also change the supply chain structure by driving a retailer
out of the market.

Insufficient capacity may originate from either the demand
or the supply side. On the demand side, certain industries nat-
urally experience volatile demand, such as those with a strong
fashion component or occasional demand surges [10], and
industries characterized by rapid technological development
[19]. The supply side may generate capacity allocation issues
in two respects. First, the supplier may not be able to adjust
capacity to meet changing demands, as in capital-intensive
industries [8]. Second, the supplier may strategically choose
a low capacity to stimulate competition between the retail-
ers, and thus gain more profit for himself [4], as discussed in
Section 3.

Although another way of mediating demand is through
pricing, price changes often lead to competitive moves by
other suppliers selling similar products; thus, suppliers are
often reluctant to modify the wholesale price. Capacity allo-
cation is, therefore, an important choice for suppliers facing
a demand surge. Specifically, a capacity allocation mecha-
nism allocates capacity from suppliers to retailers based on
a preannounced allocation rule, supply capacity, and order
requirements. Typically, suppliers choose a capacity alloca-
tion mechanism that optimizes their own profit. However,
a misallocation of capacity among retailers can result in
excess capacity in parts of the supply chain and deficien-
cies in others, which can affect the profits of all supply chain
members.

There is an extensive body of work on capacity alloca-
tion. Hall and Liu [12] provide a comprehensive review. It
is well known that allocating capacity in proportion to order
size induces over-ordering and contributes to the bullwhip
effect [23]. Cachon and Lariviere [3] describe a turn-and-earn

mechanism that allocates capacity based on past sales and
demonstrate that this mechanism can benefit the supplier at
the expense of the retailers and the overall supply chain. When
capacity is mildly tight, the supplier can change his wholesale
price and capacity level to compensate for retailer and over-
all supply chain profits. Cachon and Lariviere [4, 5] analyze
incentives, equilibrium ordering decisions, and supply chain
performance under a variety of capacity allocation mecha-
nisms, and demonstrate how several allocation schemes are
vulnerable to false information and show that truth inducing
schemes help allocate capacity among retailers but can dis-
tort supplier choice of total capacity. Fang and Whinston [9]
design an option contract for a supply chain where, from the
supplier’s perspective, each retailer’s marginal utility for the
capacity is either high or low. This design achieves the same
expected profit as when the supplier knows the number of
retailers of each type before investing in capacity. Ganesh
et al. [11] develop a congestion pricing mechanism for allo-
cating bandwidth in communication networks, and show that
if all users predict a particular unit price and select their trans-
mission rates accordingly, then the resulted price coincides
with the prediction. Hall and Liu [13] examine integrated
capacity allocation and production scheduling decisions and
quantify the benefits of incorporating scheduling decisions
into capacity allocation. In addition, market-based alloca-
tion mechanisms have been widely studied [14, 21, 28, 31].
Capacity allocation models with specific applications have
also been discussed, such as in semiconductor manufactur-
ing [20, 24] and network communications [25]. The most
closely related works to this study are those of [4,5]. The main
difference is that we consider demand competition between
retailers as motivated by practical applications.

All the studies mentioned above assume that each retailer
is monopolistic in her own market and that the demands of
the retailers are independent of each other. Marketing chan-
nels where a supplier sells a common product to multiple
retailers with horizontal competition have been extensively
studied. We study a specific supply chain structure where a
supplier sells through two retailers competing for customer
demand. Ingene and Parry [15] investigate channel coordina-
tion in such a setting, where the two retailers are equally
treated. In the same setting, Padmanabhan and Png [27]
examine how to achieve channel coordination via supplier
return policies, and Ingene and Parry [16] derive an optimal
wholesale pricing strategy for the supplier by simultaneously
determining the wholesale price and a fixed charge. Ingene
and Parry [17] recognize conditions under which a channel-
coordinating wholesale price strategy generates more profit
for the supplier than a sophisticated Stackelberg two-part tar-
iff. Xiao and Qi [33] study channel coordination when the
supplier’s production is disrupted. Cai [6] compares this sup-
ply chain structure with others using Pareto zone concepts in
the presence of channel coordination.
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In addition, Iyer [18] investigates channel coordination
where two retailers compete on both price and service level.
Bernstein and Federgruen [1] study the pricing and inven-
tory replenishment decisions in a two-echelon system where
a distributor sells to multiple retailers for each of which the
demand rate depends on the prices of all retailers. Further,
Bernstein and Federgruen [2] examine a stochastic general
equilibrium inventory model where a distributor sells to mul-
tiple retailers who hold inventory to meet uncertain demand
and compete on both price and service level. Raju and Zhang
[26] consider channel coordination in the presence of a dom-
inant retailer among multiple competing retailers. All these
works assume that the supplier has sufficient capacity to meet
all the retailer demand. Tsay and Agrawal [30] provide a
comprehensive review of conflict and coordination issues and
their resolutions in multichannel distribution systems.

The remainder of this article is organized as follows.
Section 2 formally defines the capacity allocation problem
and specifies how game issues arise. Section 3 analyzes
the capacity allocation game in detail. Finally, Section 4
concludes the work.

2. MODEL SETUP

Suppose that two retailers, denoted 1 and 2, order a sin-
gle product from a common supplier. The two retailers are
in the same market and thus compete for customer demand.
We consider Cournot competition, that is, the two retailers
compete on the quantity of the product they sell. We assume
that the two retailers face linear price functions and incur an
ordering cost proportional to the size of capacity received.
Specifically, each retailer i incurs a cost w in obtaining one
unit of the product, sells qi units of the product at a unit price
pi , and generates a profit πi(q1, q2) when the two retailers
sell q1 and q2 units of the product, respectively. We have

pi = zi − (q1 + q2) (1)

and

πi(q1, q2) = (pi − w)qi = (zi − (q1 + q2) − w)qi ,

for i = 1, 2, (2)

where for the same quantity sold, a retailer with a larger zi

charges a higher price for the product. Without loss of gen-
erality, we assume z1 ≥ z2. Borrowing the notations used
by Cachon and Lariviere [5], we name retailer 1 a high-type
retailer, and retailer 2 a low-type retailer. To have a positive
order size from both retailers, we assume z2 > w.

ASSUMPTION 1: z1 ≥ z2 > w.

Our analysis focuses on a pure-strategy Nash equilib-
rium. In a pair of equilibrium sales quantities, denoted by

Q∗ = (q∗
1 , q∗

2 ), quantity q∗
i is the best response, given

q∗
j , for i, j = 1, 2 and i �= j . The first-order condition

of profit functions (2) defines the unique equilibrium sales
quantities, (q∗

1 , q∗
2 ), where q∗

1 = (2z1 − z2 − w)/3 and
q∗

2 = (2z2 − z1 − w)/3, given that q∗
2 > 0. To guarantee

q∗
2 > 0, we make the following assumption.

ASSUMPTION 2: z2 > (z1 + w)/2.

Assumption 2 prevents retailer 1 from becoming a monop-
oly when capacity is unlimited. Further, we assume that both
retailers sell the entirety of their filled orders, that is, sales
quantity qi is the filled order size of retailer i. If stock with-
holding is considered, then given retailer j ’s sales quantity
qj and retailer i’s filled order size xi , retailer i’s maximum
profit is

max
0≤qi≤xi

{(zi − (qi + qj ) − w)qi − w(xi − qi)}

=
{

(zi − (xi + qj ) − w)xi , if xi ≤ (zi − qj )/2,

((zi − qj )/2)2 − wxi , if xi > (zi − qj )/2,
(3)

where qi and xi − qi are retailer i’s sales and withhold-
ing quantities, respectively. Retailer i should withhold stock
when her filled order size is greater than (zi−qj )/2. However,
each retailer’s profit function is a strictly concave function of
allocated capacity, whether or not stock is being withheld.
Therefore, managerial insights obtained without consider-
ing stock withholding do not lose qualitative generality. In
practice, the retailers may not be able to withhold stock. For
example, many automobile manufacturers have websites dis-
playing a detailed inventory of their dealers. In addition, the
assumption is consistent with the capacity allocation analysis
of [5], and thus, we can compare their results with ours.

ASSUMPTION 3: Retailers do not withhold stock.

Now, we consider the supplier’s capacity allocation. Sup-
pose the supplier has K units of capacity, with cost normal-
ized to zero. Our equilibrium analysis does not lose general-
ity, as the retailers do not need to know the supplier’s capacity
cost. We consider capacity allocations that are based on the
order sizes of the two retailers. Let R = (r1, r2) denote a pair
of order sizes where retailer i orders ri units of capacity. Let
X = (x1, x2) denote a pair of allocation sizes where retailer i

receives xi units of capacity. An allocation rule is a function
that defines X based on K and R. For example, under the
proportional allocation rule, we have

xi = min{ri , riK/(r1 + r2)}, i = 1, 2.
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Under the linear allocation rule, we have

xi =




ri , if ri + rj ≤ K ,
(ri − rj + K)/2, if ri + rj > K , |ri − rj | ≤ K ,
K , if ri + rj > K , ri − rj > K ,
0, if ri + rj > K , ri − rj < −K ,

where i, j = 1, 2 and j �= i.
Under the uniform allocation rule, we have

xi =




ri , if ri + rj ≤ K ,

min{ri , K/2}, if ri + rj > K , ri ≤ rj ,

max{K − rj , K/2}, if ri + rj > K , ri > rj ,

where i, j = 1, 2 and j �= i.
According to the definitions of [4], an allocation rule is

efficient, if r1 + r2 ≤ K implies xi = ri and r1 + r2 > K

implies x1 + x2 = K . Obviously, proportional, linear, and
uniform allocations are all efficient. Proportional and linear
allocations are also IR, but uniform allocation is not. Our
analysis applies to any IR allocation, rather than specifically
to proportional or linear allocation.

If both retailers’ orders are guaranteed to be filled by
the supplier, then obviously the equilibrium order sizes are
the same as the equilibrium sales quantities (q∗

1 , q∗
2 ). Let

K∗ = q∗
1 + q∗

2 = (z1 + z2 − 2w)/3. With demand com-
petition, we designate an allocation rule as truth inducing if
the equilibrium sales quantities are also the equilibrium order
sizes, independent of the supplier’s capacity size K .

3. CAPACITY ALLOCATION GAME

This section analyzes the capacity allocation game, specif-
ically how uniform and IR allocations affect the profits of the
supplier, the retailers, and the supply chain. Sections 3.1 and
3.2 conduct equilibrium analysis of ordering decisions under
uniform and IR allocations, respectively. Section 3.3 com-
pares uniform and IR allocations from the perspectives of the
supplier and retailers, respectively. Section 3.4 discusses the
inefficiency of capacity allocation relative to a centralized
supply chain. Section 3.5 conducts a computational study to
gain insights on how the profits of supply chain members
are affected by various factors. Finally, Section 3.6 compares
capacity allocations with and without demand competition.

3.1. Equilibrium Analysis: Uniform Allocation

Under uniform allocation, a retailer can always obtain half
of the supplier’s capacity K by ordering K/2. In this case,
when the supplier’s capacity is bounded, a retailer may be
able to increase her profit by deviating from the order pair
(q∗

1 , q∗
2 ) to gain half of the supplier’s capacity. Therefore, our

equilibrium analysis considers situations where each retailer
receives half the supplier’s capacity.

For the capacity allocation problem defined in Section 2,
let f2 = −8z2

1 + 32z1z2 − 23z2
2 − 16z1w + 14z2w + w2,

K−
2 = (z2 −w)/2−√

f2/6, and K+
2 = (z2 −w)/2+√

f2/6,
where K−

2 and K+
2 are solutions of (z2 − w − k)k/2 =

(z2−w−K∗)q∗
2 with variable k. It can be verified that f2 > 0

under Assumptions 1 and 2. By definition, retailer 2 gains the
same profit from allocation pairs (q∗

1 , q∗
2 ), (K−

2 /2, K−
2 /2),

and (K+
2 /2, K+

2 /2), and gains more profit from (K/2, K/2)

than from (q∗
1 , q∗

2 ) when K−
2 < K < K+

2 . Next, we compare
K∗, K−

2 , K+
2 , 2q∗

1 , and z2 − w. Note that by profit functions
(2), if the total size of allocated capacity is no less than z2−w,
retailer 2 gains no profit.

LEMMA 1: K−
2 ≤ K∗ ≤ K+

2 ≤ min{2q∗
1 , z2 − w}.

PROOF: First, we show K−
2 ≤ K∗ ≤ K+

2 . By the
concavity of π2(k/2, k/2), it suffices to show

π2
(
q∗

1 , q∗
2

) ≤ π2(K
∗/2, K∗/2),

which holds following the definition of q∗
1 , q∗

2 , and K∗, and
that q∗

2 ≤ K∗/2.
Second, we show K+

2 ≤ 2q∗
1 . By the concavity of

π2(k/2, k/2), it suffices to show

π2
(
q∗

1 , q∗
2

) ≥ π2
(
q∗

1 , q∗
1

)
,

which is (z1 − z2)
2 ≥ 0, which holds.

Third, we show K+
2 ≤ z2 − w. By profit functions (2),

π2((z2 − w)/2, (z2 − w)/2) = 0, and thus the inequality
holds. �

Lemma 1 indicates that there exists a capacity size K ,
K∗ < K < K+

2 , under which, given retailer 1’s order size
q∗

1 , retailer 2 can increase her order size from q∗
2 to no less than

K/2, and thus gain more profit from the resulting allocation
pair (K/2, K/2) than from (q∗

1 , q∗
2 ). Therefore, even when

K > K∗, the order pair (q∗
1 , q∗

2 ) may not be in equilibrium.

THEOREM 1: Under uniform allocation and with price
and profit functions defined by Eqs (1) and (2), respectively,
equilibrium order pairs and their resulting allocation pairs
are provided in Table 1. Furthermore, under each of the two
conditions of K , no other allocation pair can result from an
equilibrium order pair.

Table 1. Equilibrium under uniform allocation.

Capacity K Equilibrium Allocation

K < K+
2 (K , K) (K/2, K/2)

K > K+
2 (q∗

1 , q∗
2 ) (q∗

1 , q∗
2 )
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PROOF: Before proving the theorem, we need to define
and compare several values. Letf1 = −23z2

1+32z1z2−8z2
2 +

14z1w − 16z2w + w2 and let K+
1 = (z1 − w)/2 + √

f1/6,
given f1 ≥ 0, which is the largest solution, if it exists, to
(z1 − w − k)k/2 = (z1 − w − K∗)q∗

1 with variable k. By
definition, retailer 1 obtains the same profit from allocation
pairs (q∗

1 , q∗
2 ) and (K+

1 /2, K+
1 /2). Next, we show that

K+
1 ≤ K+

2 . (4)

A necessary condition for K+
1 to exist is f1 ≥ 0.

We show that f1 ≥ 0 requires z1 < (5z2 − w)/4. As
∂f1/∂z1 = −46z1 + 32z2 + 14w < 0, f1 decreases
with z1. Plugging z1 = (5z2 − w)/4 into f1, we obtain
f1 = −63(z2 − w)2/16 < 0. Therefore, it is necessary to
have z1 < (5z2 − w)/4 for K+

1 to exist. Next,

K+
1 − K+

2 = (3z1 − 3z2 + √
f1 − √

f2)/6,

and thus, it suffices to show

(3z1 − 3z2)
2 ≤ (

√
f1 − √

f2)
2,

which is

(4z1 − 5z2 + w)(−5z1 + 4z2 + w) ≥ √
f1f2,

where the left-hand side is non-negative given Assumption 1
and z1 < (5z2 − w)/4. Therefore, it suffices to show

(4z1 − 5z2 + w)2(−5z1 + 4z2 + w)2 ≥ f1f2,

which is

216(z1 − z2)
2((z1 − z2)

2 + (z1 − w)(z2 − w)) ≥ 0,

which holds under Assumption 1.
We now prove the theorem. First, when K < K+

2 , the order
pair (K , K) results in the allocation pair (K/2, K/2). By the
definition of uniform allocation, changing order size to any
value no less thanK/2 will not affect a retailer’s received allo-
cation. If a retailer reduces her order size to less than K/2,
then she will receive the quantity she orders. In this case, as
the total size of the allocated capacity will remainK ≤ z2−w,
the retailer’s profit will decrease given profit functions (2).
Therefore, the order pair (K , K) is in equilibrium.

Now, we show that no other allocation pair can result from
an equilibrium order pair. When the total size of the allo-
cated capacity is less than K , by the concavity of profit
functions (2), the only possible equilibrium order pair is
(q∗

1 , q∗
2 ), given that K > K∗. However, by Lemma 1, we

have K < 2q∗
1 , and thus, retailer 2 can gain more profit

from allocation pair (K/2, K/2) by increasing her order size
to be no less than K/2. Therefore, the order pair (q∗

1 , q∗
2 )

is not in equilibrium. When the total size of the allocated

capacity is equal to K , clearly no other allocation pair can
result from an equilibrium order pair, since whichever retailer
receiving allocation in a size less than K/2 can increase
her order size to gain more allocation and thus more profit.
Therefore, (K/2, K/2) is the unique allocation pair result-
ing from an equilibrium order pair under uniform allocation
when K < K+

2 .
Second, when K > K+

2 , clearly no retailer can gain more
profit by reducing her order size from (q∗

1 , q∗
2 ). In addition,

as q∗
1 ≥ q∗

2 , when retailer 1 increases her order size, the
received allocation of retailer 2 will not change, and thus,
ordering q∗

1 is retailer 1’s best response to retailer 2’s order
size q∗

2 . Now, consider the case where retailer 2 increases her
order size to q > q∗

2 . If q∗
1 + q ≤ K , then, by the defini-

tion of (q∗
1 , q∗

2 ), retailer 2 cannot gain more profit. Hence, we
assume q∗

1 + q > K . If K ≥ z2 − w, then retailer 2 will gain
no profit from the order pair (q∗

1 , q), so, we need consider
only the case where K < z2 − w.

1. If q∗
1 ≤ q, then the allocation pair is either

(K/2, K/2) or (q∗
1 , K − q∗

1 ), neither of which offers
retailer 2 more profit than the order pair (q∗

1 , q∗
2 ),

given K > K+
2 and the definition of (q∗

1 , q∗
2 ).

2. If q∗
1 > q, then retailer 2’s profit is maximized when

the allocation is (K/2, K/2), which is no more than
that from (q∗

1 , q∗
2 ) given K > K+

2 .

Therefore, the order pair (q∗
1 , q∗

2 ) is in equilibrium under
uniform allocation when K > K+

2 .
We now show that no other allocation pair can result from

an equilibrium order pair, by showing that no other order
pair is in equilibrium when K > K+

2 . If the total size of
the allocated capacity is less than K , then the uniqueness
of the equilibrium order pair (q∗

1 , q∗
2 ) follows the concav-

ity of profit functions (2). We assume the total size of the
allocated capacity equals K . If K < z2 − w, then the only
other possible allocation resulting from an equilibrium order
pair is (K/2, K/2), otherwise, whichever retailer receiving
allocation in a size less than K/2 can increase her order
size to gain more allocation and thus greater profit. How-
ever, under the condition K > K+

2 , we have π2(q
∗
1 , q∗

2 ) >

π2(K/2, K/2) (Lemma 1) and K > K+
1 (inequality (4)),

and thus π1(q
∗
1 , q∗

2 ) > π1(K/2, K/2). Thus, any order pair
resulting in the allocation pair (K/2, K/2) is dominated by
the order pair (q∗

1 , q∗
2 ). Therefore, the unique allocation pair

resulting from an equilibrium order pair is (q∗
1 , q∗

2 ). �

Note that when K < K+
2 , there exist other equilibrium

order pairs under uniform allocation. Specifically, any order
pair (q1, q2) is in equilibrium when

1. q1 ≥ K/2,
2. q2 ≥ K/2,

Naval Research Logistics DOI 10.1002/nav
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3. max0≤q≤K−q2{π1(q, q2)} ≤ π1(K/2, K/2),
4. max0≤q≤K−q1{π2(q1, q)} ≤ π2(K/2, K/2).

However, these order pairs all lead to the same allocation pair
(K/2, K/2), so their existence does not affect the allocation
of capacity.

Interestingly, Lemma 1 and Theorem 1 show that, for a
pair of equilibrium orders from the two retailers, with limited
capacity, the supplier can sell more units of capacity than in
the case with unlimited capacity. Theorem 1 also shows that
with demand competition, uniform allocation guarantees the
existence of an equilibrium order pair but is not necessarily
truth inducing.

3.2. Equilibrium Analysis: IR Allocation

Under IR allocation, a retailer can obtain the supplier’s
entire capacity when her order size goes to infinity, hold-
ing the order size of the other retailer constant. In this case,
with a bounded supplier’s capacity, a retailer may be able to
gain more profit by deviating from the order pair (q∗

1 , q∗
2 ) to

gain the supplier’s entire capacity. Therefore, our equilibrium
analysis considers situations where a retailer gains the entire
capacity.

For the capacity allocation problem defined in Section
2, let g1 = (7z1 − 2z2 − 5w)(−z1 + 2z2 − w), L−

1 =
(z1 −w)/2−√

g1/6, and L+
1 = (z1 −w)/2+√

g1/6, where
L−

1 and L+
1 are solutions to (z1 −w−k)k = (z1 −w−K∗)q∗

1
with variable k. Note that g1 > 0 under Assumptions 1 and
2. By definition, retailer 1 obtains the same profit from allo-
cation pairs (q∗

1 , q∗
2 ), (L−

1 , 0), and (L+
1 , 0). Next, we compare

K∗, L−
1 , L+

1 , and z2 − w.

LEMMA 2: 1) L−
1 ≤ K∗ ≤ L+

1 ; 2) L+
1 ≤ z2 − w when

4z1−5z2+w ≤ 0 and L+
1 > z2−w when 4z1−5z2+w > 0.

PROOF: First, we show L−
1 ≤ K∗ ≤ L+

1 . By the concavity
of π1(k, 0), it suffices to show

π1
(
q∗

1 , q∗
2

) ≤ π1(K
∗, 0),

which holds under the definition of q∗
1 , q∗

2 , and K∗.
Second, we compare L+

1 and z2 −w. Note that L+
1 − (z2 −

w) = (
√

g1 − (6z2 − 3z1 − 3w))/6, and thus, L+
1 ≤ z2 − w

is equivalent to

√
g1 ≤ 3(−z1 + 2z2 − w),

which is

4(4z1 − 5z2 + w)(−z1 + 2z2 − w) ≤ 0.

Therefore, under Assumption 2, we have L+
1 ≤ z2 − w

when 4z1 − 5z2 + w ≤ 0, and L+
1 > z2 − w when

4z1 − 5z2 + w > 0. �

Table 2. Equilibrium under IR allocation.

Capacity K Equilibrium Allocation

K < L+
1 None N/A

K > L+
1 (q∗

1 , q∗
2 ) (q∗

1 , q∗
2 )

Lemma 2 indicates that under IR allocation, even when the
supplier’s capacity K is larger than K∗, the order pair (q∗

1 , q∗
2 )

may not be in equilibrium, as π1(K , 0) can be larger than
π1(q

∗
1 , q∗

2 ). This finding also implies that the supplier may
have more than K∗ units of capacity sold when his capacity
size is between K∗ and L+

1 .

THEOREM 2: Under IR allocation and with price and
profit functions defined by (1) and (2), respectively, equi-
librium order pairs and their resulting allocation pairs are
provided in Table 2. Furthermore, when K > L+

1 , no other
equilibrium order pair exists.

PROOF: We first establish a preliminary result. Let g2 =
(−2z1 + 7z2 − 5w)(2z1 − z2 − w) and L+

2 = (z2 − w)/2 +√
g2/6, where L+

2 is the largest solution to (z2 − w − k)k =
(z2 − w − K∗)q∗

2 with variable k. Note that g2 > 0 under
Assumptions 1 and 2. By definition, retailer 2 gains the same
profit from the allocation pairs (q∗

1 , q∗
2 ) and (0, L+

2 ). Next, we
compare L+

1 and L+
2 . We show that

L+
1 ≥ L+

2 . (5)

Noting that L+
1 − L+

2 = (z1 − z2)/2 − (
√

g2 − √
g1)/6, we

need to show

9(z1 − z2)
2 ≥ (

√
g2 − √

g1)
2,

which is

2
√

g1g2 ≥ 10(z1 − 2z2 + w)(−2z1 + z2 + w),

which is

144(z1 − z2)
2(2z1 − z2 − w)(−z1 + 2z2 − w) ≥ 0,

which holds under Assumptions 1 and 2. Next, we prove the
theorem.

First, we show that when K < L+
1 , no order pair is in

equilibrium. First, consider the case in which the total size
of the allocated capacity is less than K . By the concavity of
profit functions (2), the only possible equilibrium order pair
is (q∗

1 , q∗
2 ). However, by Lemma 2, retailer 1 can gain more

profit by increasing her order size to be sufficiently large, and
thus (q∗

1 , q∗
2 ) is not in equilibrium. Second, consider the case

in which the total size of the allocated capacity is equal to
K . If K < z2 − w, then each retailer wants to order more to
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receive more units of capacity and thus more profit; hence, no
equilibrium order pair exists. If K ≥ z2 − w, then by profit
functions (2), retailer 2 cannot gain a positive profit, and thus
in an equilibrium order pair, her order size is zero; accord-
ingly, retailer 1’s optimal response is to order (z1 − w)/2.
However, this results in a total size (z1 − w)/2 of the allo-
cated capacity, which is less than z2 −w under Assumption 2.
Therefore, no equilibrium order pair exists when K ≥ z2−w.

Second, we show that when K > L+
1 , order pair (q∗

1 , q∗
2 )

is in equilibrium. As K > L+
1 ≥ K∗, under IR allocation,

obviously no retailer can increase her profit by reducing her
order size from the order pair (q∗

1 , q∗
2 ). If a retailer wants to

increase her profit by increasing order size, then this can be
achieved only when the total size of the allocated capacity is
K , by the concavity of profit functions (2). If the total size
of the allocated capacity is K , then, by profit functions (2),
a retailer’s profit increases with order size. However, even
when a retailer gains the entire capacity, her profit is still
no more than that from order pair (q∗

1 , q∗
2 ), as indicated by

Lemma 2 and inequality (5). Therefore, order pair (q∗
1 , q∗

2 ) is
in equilibrium.

Now, we show that when K > L+
1 , no other order pair is

in equilibrium. When the total size of the allocated capacity
is less than K , the only equilibrium order pair is (q∗

1 , q∗
2 ), fol-

lowing the concavity of profit functions (2). If the total size
of the allocated capacity is equal to K , then a retailer’s profit
increases with her order size. However, from Lemma 2 and
inequality (5), even when a retailer gains the entire capacity
K , her profit is still no more than that from order pair (q∗

1 , q∗
2 ),

and thus order pair (q∗
1 , q∗

2 ) is the unique equilibrium order
pair. �

Intuitively, an equilibrium order pair cannot exist under
IR allocation when K < L+

1 , because either retailer 1 can
gain more profit by ordering more than q∗

1 to increase her
allocated capacity and reduce retailer 2’s allocated capacity
or both retailers have incentive to gain all the capacity. By
Lemma 2, it is possible to have K∗ < K < L+

1 < z2 − w.
In this case, by the proof of Theorem 2, no equilibrium order
pair exists, but when anticipating the entire capacity is allo-
cated, each retailer has incentive to gain all the capacity, and
as a result the entire capacity is truly allocated. That is, with
limited capacity, the supplier may sell more units of capacity
than in the case with unlimited capacity.

3.3. Uniform Allocation Versus IR Allocation

Consider how the supplier’s capacity decision is affected
by the allocation rule. Under uniform allocation, the sup-
plier’s capacity can be sold up to K+

2 , as shown in Table 1.
Under IR allocation, when K < L+

1 , no equilibrium order
pair exists and we estimate the total size of the allocated

capacity as follows. When K < min{z2−w, L+
1 }, both retail-

ers have incentive to gain as much capacity as possible, and
thus it is reasonable to assume that all the capacity is allo-
cated. When z2 − w < K < L+

1 , as retailer 2 cannot gain
any profit when the total size of the allocated capacity is no
less than z2 − w, the total size of the allocated capacity can
be expected to be z2 − w. Cachon and Lariviere [5] adopt a
similar assumption when discussing the total size of the allo-
cated capacity in the case of no equilibrium order pair under
IR allocation. We next compare K+

2 with L+
1 and z2 − w.

LEMMA 3: (1) K+
2 ≤ L+

1 ; (2) K+
2 ≤ z2 − w.

PROOF: First, we show that K+
2 ≤ L+

1 . By inequality (5),
we have L+

2 ≤ L+
1 , and thus it suffices to show K+

2 ≤ L+
2 .

By definition, we have π2(K
+
2 /2, K+

2 /2) = π2(q
∗
1 , q∗

2 ) =
π2(0, L+

2 ), that is, (z2 −w−K+
2 )K+

2 /2 = (z2 −w−L+
2 )L+

2 ,
which indicates K+

2 ≤ L+
2 .

Second, we compare K+
2 and z2 − w. Noting that retailer

2 gains no profit when the total size of the allocated capac-
ity is no less than z2 − w, but obtains positive profit when
the total size of the allocated capacity is K+

2 , we have
K+

2 ≤ z2 − w. �

In view of Lemma 3, we have the following result.

REMARK 1: For the same capacity size, the supplier can
expect to sell at least an equal amount of capacity using IR
allocation compared with using uniform allocation.

Remark 1 shows that, with IR allocation, the supplier
can expect to sell at least an equal amount of capacity as
with uniform allocation. Consider a specific situation where
4z1 − 5z2 + w > 0, that is, z1 > (5z2 − w)/4. Here, we
designate retailer 1 as having significantly higher retail price
than retailer 2. In this situation, the supplier’s capacity level
can be between z2 −w and L+

1 , as indicated by Lemma 2. At
such a capacity level, retailer 1 can strategically order z2 −w,
such that retailer 2 can gain no profit.

3.4. Inefficiency of Decentralization

This work considers capacity allocation in a decentralized
supply chain. One can anticipate that strategic ordering and
allocation decisions will result in inefficiency; that is, the sup-
ply chain profit resulting from capacity allocation is lower
than that of the centralized supply chain. Unfortunately, the
inefficiency of decentralization can be significant.

REMARK 2: With price and profit functions defined by
(1) and (2), respectively, under uniform or IR allocation, the
ratio of the supply chain profit from an equilibrium order
pair to the maximum profit of the centralized supply chain
approaches zero in the worst case.
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Figure 1. Profit gain as a function of z1 − z2. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.
com.]

PROOF: Consider the case where the supplier has unlim-
ited capacity. The maximum profit of the centralized supply
chain is obtained when the supplier allocates capacity z1/2
to retailer 1 and zero to retailer 2, such that the supply
chain profit is π∗

S = z2
1/4. On the other hand, the equilib-

rium order pair (q∗
1 , q∗

2 ) results in a supply chain profit of
πL

S = (5z2
1 − 8z1z2 + 5z2

2 + z1w + z2w − 4w2)/9. Then, we
have

πL
S

π∗
S

= 4
(
5z2

1 − 8z1z2 + 5z2
2 + z1w + z2w − 4w2

)
9z2

1

,

which approaches zero when z2 → z1 and w → z2. �

The proof of Remark 2 does not involve capacity allocation
issues, as the proof uses an instance with unlimited capacity. It
is more interesting to consider the case with bounded capac-
ity. In fact, the worst case performance of a decentralized
supply chain can be improved when capacity is scarce and
uniform allocation is used.

THEOREM 3: With the price and profit functions defined
by (1) and (2), respectively, if K < min{z1/2, K+

2 }, then,
under uniform allocation, the ratio of the supply chain profit
from an equilibrium order pair over the maximum profit of
the centralized supply chain is at least 1/2.

PROOF: Under condition K < K+
2 , by Theorem 1, the

allocation pair from an equilibrium order pair is (K/2, K/2),
and thus, the supply chain profit is πL

S = (z1 + z2)K/2 −
K2. In the centralized supply chain, under condition K <

z1/2, the maximum profit of the centralized supply chain
is obtained by allocating all capacity to retailer 1, that is,
π∗

S = z1K − K2. Thus, we have

πL
S

π∗
S

= (z1 + z2)K/2 − K2

z1K − K2
= z1 + z2 − 2K

2z1 − 2K
≥ z2

z1
≥ 1

2
,

where the first inequality comes from K < z1/2 and the
second inequality holds under Assumption 2. �

IR allocation does not have a bounded worst performance
ratio, even when the supplier’s capacity is scarce, due to the
nonexistence of an equilibrium order pair when K < L+

1 .
Therefore, in the worst case, uniform allocation performs
better than IR allocation for the supply chain.

3.5. Computational Study

To investigate how capacity size, allocation rule, and
wholesale price affect profits of the supplier, the two retail-
ers, and the supply chain, we conduct a computational study.
Our earlier analysis normalizes the supplier’s capacity cost to
zero. In case there is unallocated capacity, the capacity cost
has an impact on the supplier’s profit. Therefore, we con-
sider the per unit capacity cost, denoted c, in this section. We
generate

z1 ∈ {0.05, 0.1, . . . , 1},
z2 ∈ {0.05, 0.1, . . . , 1},
w ∈ {0.05, 0.1, . . . , 0.95},
c ∈ {0.05, 0.1, . . . , 0.9},

where only combinations satisfying Assumptions 1 and 2 and
w > c are included. We generate capacity size K in multiples
of 0.01, starting from 0.01. Noting that uniform and IR alloca-
tions perform the same when K > L+

1 , we require K ≤ L+
1 .

Note that when K < L+
1 , no equilibrium order pair exists

under IR allocation, and the expected profits are reported.
Specifically, when K ≤ z2 − w, we assume capacity is allo-
cated as (x, K − x), with x evenly distributed between zero
and K; when K > z2 − w, we assume capacity is allocated
as (x, z2 − w − x), with x evenly distributed between zero
and z2 − w. The main results of the computational study are
summarized in Figs. 1–3, where the vertical axis represents
the percentage of additional profit obtained under uniform
allocation compared with that under IR allocation.

In Fig. 1, the horizontal axis represents the difference in the
two retailers’ retail prices, z1 − z2. We can see that, on aver-
age, (1) uniform allocation benefits both retailers, especially

Figure 2. Profit gain as a function of w. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.
com.]
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Figure 3. Profit gain as a function of c. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

the high-type retailer; (2) IR allocation benefits the supplier,
especially when the difference between the two retailers’
retail prices is small; and (3) uniform allocation generates
more profit to the supply chain when the difference between
the two retailers’ retail prices is not too small. In addition,
except for the low-type retailer, the relative performance of
uniform allocation increases with the difference between the
two retailers’ retail prices.

In Fig. 2, the horizontal axis represents the supplier’s
wholesale price w. The main finding is that when the whole-
sale price is low, uniform allocation is beneficial to the supply
chain, whereas when the wholesale price is high, IR allocation
generates more profit to the supply chain. For the supplier, the
wholesale price has little impact on the relative performance
of the two types of allocation rules.

In Fig. 3, the horizontal axis represents the supplier’s unit
capacity cost c. As the supplier’s cost plays no role in the
retailers’ ordering decision, it has no impact on the prof-
its of the two retailers. It is interesting to note that with
increasing capacity cost of the supplier, IR allocation can
be much more profitable for the supplier than uniform allo-
cation. When the supplier’s unit capacity cost is not very low,
IR allocation generates more profit for the supply chain than
uniform allocation.

Figure 4. Instance 1: Uniform allocation. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.
com.]

Figure 5. Instance 1: IR allocation. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

To qualitatively illustrate the ordering and capacity alloca-
tion decisions under different capacity levels and allocation
rules, we next consider two representative instances:

Instance 1. z1 = 1, z2 = 0.75, w = 0.15, c = 0.05,
Instance 2. z1 = 0.95, z2 = 0.9, w = 0.15, c = 0.05,

where in Instance 1 retailer 1’s retail price is significantly
higher than that of retailer 2, as quantified by z1 > (5z2 −
w)/4, whereas in Instance 2 we have z1 < (5z2 − w)/4.
By Theorems 1 and 2, these two instances represent the pat-
terns of how the ordering and capacity allocation decisions
change with capacity size and allocation rules. The result-
ing profits for different supply chain members in the two
instances, under the two types of allocation rules, are depicted
in Figs. 4–7.

Figures 4–7 show the profits of supply chain members
for each capacity size under a capacity allocation rule. The
expected profit is reported when an equilibrium order pair
does not exist. Following our discussions in Section 3.3 and
Figs. 4–7, we obtain the following managerial insights.

First, independent of the allocation rule used, no party in
the supply chain sees its profits necessarily increasing with
the supplier’s capacity. This phenomenon strongly encour-
ages the supplier to carefully control his capacity size rather

Figure 6. Instance 2: Uniform allocation. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.
com.]
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Figure 7. Instance 2: IR allocation. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

than simply seeking a high capacity level to meet all the
retailer demand. As depicted in Fig. 5, at certain capacity
sizes, the low-type retailer can gain no profit and the high-
type retailer can strategically order z2 − w to drive the less
competitive retailer out of the market, which, in turn, will
reduce the supplier’s sales capacity. In the two instances con-
sidered, the supplier’s profit is maximized at a capacity size
no greater than but approaching min{L+

1 , z2 − w}, indepen-
dent of the difference between the retail prices of the two
retailers and the allocation rule used. However, this capac-
ity size does not coordinate the supply chain, in that both
retailers suffer from highly competitive ordering decisions.
To better coordinate the supply chain, the supplier can reduce
his capacity size to be moderately less than min{L+

1 , z2 −w}
but no less than K∗.

Second, the supplier should carefully select an appropriate
capacity allocation rule. The choice of allocation rule relies
on supply chain configuration and the supplier’s perception of
his own profit and the supply chain profit. From our analysis in
Section 3.3 and Figs. 1–7, IR allocation stimulates competi-
tion between retailers at their own cost to benefit the supplier,
and thus, from the supplier’s perspective, IR allocation out-
performs uniform allocation. However, uniform allocation
can better coordinate the supply chain, especially, when the
difference in the two retailers’ retail prices is not too small,
the wholesale price is low, or the supplier’s capacity cost
is low. Further, under IR allocation, for a capacity size less
than L+

1 , there does not exist an equilibrium order pair, and
thus the supplier’s profit is subject to variation. In addition,
as is evident in Figs. 1, 4, and 5, whereas the two retailers
have significantly different retail prices, different allocation
rules make only a small difference in generating profit for the
supplier, and thus, the supplier may choose uniform alloca-
tion without significant profit loss. However, when the two
retailers have similar retail prices, IR allocation can bring
more profit to the supplier at both retailers’ costs. Therefore,
depending on the supply chain configuration, the supplier
may choose different allocation rules.

3.6. Impact of Demand Competition

Now, we compare capacity allocations with and without
demand competition. Note that without demand competition,
if the supplier’s capacity is no less than the sum of the optimal
sales quantities of the two retailers, then each retailer ordering
her individually optimal sales quantity constitutes an equilib-
rium ordering decision. A question that naturally arises for
capacity allocation with demand competition is whether the
order pair (q∗

1 , q∗
2 ) is always in equilibrium under uniform or

IR allocation when the capacity size is no less than K∗.

REMARK 3: With demand competition, under uniform
or IR allocation, the order pair (q∗

1 , q∗
2 ) may not be in

equilibrium when K ≥ K∗.

The validity of Remark 3 is indicated by Theorems 1 and
2. The intuition behind Remark 3 is that with demand com-
petition, when the supplier’s capacity is bounded, even at a
capacity size of no less than K∗, uniform or IR allocation can
encourage retailers to order more than in (q∗

1 , q∗
2 ) to gain half

or all the capacity, and thus more profit.
Certain properties of capacity allocation remain the same

when demand competition is involved, as follows.

1. Uniform allocation guarantees equilibrium orders,
whereas IR allocation does not (Theorems 1 and 2).

2. IR allocation benefits the supplier by selling more
capacity, at the retailers’ cost, whereas uniform allo-
cation benefits the retailers at the supplier’s cost
(Remark 1, Figs. 1–3, and [4, 5]).

3. Uniform allocation is most valuable to the supply
chain when the wholesale price is low, whereas IR
allocation is most valuable to the supply chain when
the wholesale price is high (Fig. 2 and Section 6
of [5]).

Demand competition enhances the competition for scarce
capacity between the two retailers and complicates the
ordering and capacity allocation decisions, as follows.

1. Uniform allocation is no longer truth inducing.
(Theorem 1)

2. Neither the supplier nor either one of the retailers sees
its profits necessarily increasing with the supplier’s
capacity. In addition, the supplier can sell more with
a smaller capacity size (Theorems 1 and 2).

4. CONCLUDING REMARKS

This work investigates the capacity allocation decisions in
a supply chain in which a supplier sells a single product to
two retailers at a predetermined wholesale price. The retailers
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compete for the supplier’s capacity as well as for customer
demand for the product. Such supply chain structures are
popular in the sales of automobiles, electronics products, and
textile and apparel products, among others.

We conduct an equilibrium analysis of the ordering deci-
sions of the two retailers under two types of capacity allo-
cation rules, and have the following interesting results. IR
allocation does not guarantee equilibrium orders; uniform
allocation guarantees equilibrium orders but is not necessar-
ily truth inducing. For the same capacity size, the supplier
can expect to sell at least an equal amount of capacity using
IR allocation compared with using uniform allocation. Fur-
ther, uniform allocation coordinates the supply chain better
in the worst case and is most valuable in coordinating the
supply chain when the difference between the retail prices of
the two retailers is large, the wholesale price is low, or the
supplier’s capacity cost is low. In addition, no supply chain
member sees its profits necessarily increasing with the sup-
plier’s capacity, and the supplier may sell more with a lower
capacity level. Finally, capacity allocation may change the
supply chain structure by driving a retailer out of the market.
With these results, we provide managerial insights on the
capacity and ordering decisions. Cho and Tang [7] extend
this work by considering more than two retailers.

This work considers linear price functions. Other forms
of price function can also be incorporated into the capacity
allocation game. Consider the specific case, where

pi = zi/(q1 + q2), for i = 1, 2.

We analyze the capacity allocation game with this constant
elasticity price function and find that, qualitatively, the results
are similar to the case with linear price functions. Technically,
this is due to the fact that with both types of price func-
tions, the corresponding profit functions are concave with
each retailer’s allocated capacity. One result differs from the
case with linear price functions, in that, under uniform alloca-
tion, the ratio of supply chain profit from an equilibrium order
pair to the maximum profit of the centralized supply chain
is no less than 1/2, independent of the supplier’s capacity
level.

This article considers a common product sold by two
retailers with different retail prices. It is helpful to consider
differentiated products. In the case of linear price functions,
more generally, we have

p1 = z1 − α1q1 − γ q2,

p2 = z2 − α2q2 − γ q1,

where when z1 = z2, the term γ 2/(α1α2) represents the
degree of product differentiation, ranging from zero for inde-
pendent products to one for perfect substitutes [32]. Equilib-
rium analysis of capacity allocation under such general price
functions deserves further investigation.
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