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1. Introduction

Fluorescence lifetime imaging and fluorescence life-
time imaging microscopy (FLIM) are useful molecu-
lar imaging techniques for pre-clinical and clinical
studies in living cells, tissues, small animals, and en-
doscopic samples, with fluorescence lifetime provid-
ing image contrast [1–10]. Fluorescence lifetime can
be employed as an optical sensor to indicate micro-
environmental conditions such as oxygen levels, the
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We report the first application of wavelet-based denois-
ing (noise removal) methods to time-domain box-car
fluorescence lifetime imaging microscopy (FLIM) images
and compare the results to novel total variation (TV)
denoising methods. Methods were tested first on artificial
images and then applied to low-light live-cell images. Re-
lative to undenoised images, TV methods could improve
lifetime precision up to 10-fold in artificial images, while
preserving the overall accuracy of lifetime and amplitude
values of a single-exponential decay model and improv-
ing local lifetime fitting in live-cell images. Wavelet-based
methods were at least 4-fold faster than TV methods, but
could introduce significant inaccuracies in recovered life-
time values. The denoising methods discussed can poten-
tially enhance a variety of FLIM applications, including
live-cell, in vivo animal, or endoscopic imaging studies,
especially under challenging imaging conditions such as
low-light or fast video-rate imaging.

Fluorescence lifetime map of HCT-116 live cells stained
with BCECF, constructed from itensity images denoised
with modified FWTV.
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state of endogenous/exogenous fluorophores, and
Förster resonance energy transfer in live cells [11–
18].

The interest in biological FLIM is increasing, as
commercial FLIM modules become available for con-
focal and multi-photon microscopes. However, low
fluorescence signals from biological samples can be
a challenge, causing poor lifetime precision. For en-
dogenous fluorophores, low signals could result from
low concentrations and/or unfavorable optical prop-
erties. For exogenous fluorophores, low signals could
result from low concentrations desired to minimize
the effects on sample physiology and/or low transfer
efficiency. To increase measured fluorescence signals
from biological samples, high-intensity light sources
such as lasers can be used in FLIM, but this may
cause unexpected cell responses and sample damage/
ablation [19, 20], and may also cause fluorophore
photobleaching.

Image “denoising” (noise removal) [21, 22] has
great potential to improve FLIM precision. Wavelet
analysis is a commonly used method that has been
used for restoring fluorescence microscopy images
[23, 24] and for denoising frequency-domain confo-
cal and full-field FLIM images [25, 26]. Other image
denoising methods include total variation (TV) de-
noising, Tikonov denoising, Gaussian smoothing [27],
non-parametric regression method [28], and multi-
frame SURE-LET (Stein’s unbiased risk estimate-lin-
ear expansion of thresholds) denoising [29]. Among
these techniques, TV denoising has been reported to
improve FLIM precision [30]. In this study, we re-
port the first application of wavelet-based denoising
methods to time-domain FLIM, and compare them
with previously developed TV denoising methods
[30, 31]. This is a new research area that, to our
knowledge, has not yet been explored before, poten-
tially aiding a variety of emerging in vivo and clinical
applications.

2. Methods

2.1 Time-gated FLIM system and live-cell
sample preparation

We designed and characterized a novel wide-field,
time-domain box-car FLIM system for picosecond
time-resolved biological imaging [32, 33]. A pulsed
(repetition rate ¼ 1–20 Hz) nitrogen laser (337.1 nm,
GL-3300, Photon Technology International, Lawren-
ceville, NJ) pumping a dye laser (GL-301, Photon
Technology International, Lawrenceville, NJ) for
UV-visible-NIR excitation offers a significantly less
expensive, wide-field, and potentially portable alter-
native to multi-photon excitation for sub-nanosecond

FLIM imaging of biological samples [33]. After a
sample was illuminated by an excitation pulse, the
fluorescence emission was recorded at different gate
delays. The time interval between the starting points
of two consecutive gates was denoted by “dt”. At
each gate delay, the emission intensities were inte-
grated during a gate width (denoted by “g”) con-
trolled by the intensifier of an intensified charge-
coupled device (ICCD) camera (microchannel size ¼
�10 mm, Picostar HR, LaVision, Germany). The
gain of the ICCD is controllable and the gate width
settings can vary from 200 ps to 10 ms for high-speed
imaging applications [34]. The large temporal dy-
namic range (750 ps–1 ms), the 50 ps lifetime discri-
mination, and the spatial resolution of less than
1.4 mm of the system make it suitable for studying
many endogenous and exogenous fluorophores that
may transit through cells [35–37]. To create fluores-
cence lifetime maps rapidly, a four-gate protocol,
based on single-exponential fluorescence decay, with
an analytical least squares lifetime determination al-
gorithm was used on a pixel-by-pixel basis. It is more
precise than a two-gate protocol while still being
easy to implement [38–40]. The fitting was imple-
mented without any weighting and no particular
form of variance distribution (such as Poisson distri-
bution) was assumed. This is because, as mentioned
later in Section 2.2, there was a combination of noise
distributions in our real images and this kind of
noise distribution was taken into consideration in
the denoising process. The analytical solution can be
derived by first linearizing the overdetermined sys-
tem in log domain and then solving the normal
equations, (XTX) a ¼ XTy, where a is the system
parameters we are interested in, with X and y as the
independent and dependent variables, respectively:

tp ¼ �
Nð
P

t2
i Þ � ð

P
tiÞ2

N
P

ti ln Ii;p � ð
P

tiÞð
P

ln Ii;pÞ
ð1Þ

where tp is the lifetime of pixel p, Ii,p is the intensity
of pixel p in image i, ti is the gate delay of image i,
and N is the number of images, which is four. All
sums are over i. This time-gated method is generally
inefficient in terms of signal detection as compared
to time-correlated single photon counting (TCSPC)
or even frequency-domain methods, since a large
percentage of the signal is simply discarded. How-
ever, it enables much faster and sometimes video-
rate image recording (only four intensity values are
needed for each pixel) and also very rapid lifetime
determination due to the ability to evaluate all pixels
simultaneously using the analytical solution (Eq. (1)).

HCT-116 live cells (purchased from ATCC,
CCL-247TM) were cultured with modified McCoy’s
5a medium under 5% CO2 incubation. After remov-
ing the culture media and washing 3 times using
phosphate buffered saline (PBS), cells at 80% con-
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fluence were incubated with 1 mM of the ace-
toxymethyl (AM) ester derivative of BCECF (20,70-
bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, a
widely used fluorescent indicator for intracellular
pH) (Invitrogen, CA) in PBS at 37 �C for 1 hr for
cell staining. The laser excitation wavelength was
434 nm and the fluorescence emission was collected
at 480 � 20 nm with a 40�, 1.3 NA objective. Five
images were averaged for each gate in the FLIM
imaging of the samples with dt ¼ 1 ns and g ¼ 0.2 ns.

2.2 Total variation denoising

The f-weighted TV (FWTV) model was described
previously [30, 31, 41–43]. It has been demonstrated
to have some advantages over other previously
developed TV models, which are mostly based on
the commonly known Rudin-Osher-Fatemi (ROF)
model [44]. The FWTV model keeps the major ad-
vantage of TV denoising models, which are edge-
preserving, but was specifically developed to remove
Poisson noise, an inevitable form of noise occurring
in image acquisition with photon counting devices,
while still having high flexibility to be easily adapted
for removing non-Poisson noise (described below).
In our previous studies, we have demonstrated how
the FWTV model can be used in time-gated FLIM
and time-correlated single photon counting FLIM to
improve lifetime precision [30, 31, 41–43].

The FWTV model has the following mathemati-
cal form:

E ¼
ð

W

jruj dx dyþ l

ð

W

ðf � uÞ2

f
dx dy ð2Þ

where E denotes the energy, through minimization
of which denoising was performed, W denotes the
signal domain, l is the fidelity coefficient, u repre-
sents the processed image, f represents the input or
noise-corrupted image, and the variables x and y re-
present the spatial location of the pixels. The values
of l were determined by the “discrepancy rule” [45],
which requires the fidelity term (the second term on
the right hand side of Eq. (2)) evaluated with f and
the final u to be the same as that evaluated with f
and the estimated original image without noise cor-
ruption [41]. Equation (2) was designed for remov-
ing Poisson noise, since the data variance due to
noise (the denominator of the integrand in the fide-
lity term, or, the “weighting”) is equal to the inten-
sity, f, which is a characteristic of Poisson noise.

To minimize the defined energy, E, and to imple-
ment denoising, the gradient descent of E, with re-
spect to time, t, along the direction of u was used
with iterations to achieve the final stable, denoised u.
Here, the “time” is just a dimension along the itera-

tions towards the stable u and does not involve real
time. Mathematically, u evolves from f (the input of
u) through iterations, and in this process the meas-
urement f is selectively smoothed to a denoised state:
the smoothing occurs only in the direction perpendi-
cular to, but not in parallel with, local intensity gra-
dient. This process, therefore, preserves the edges of
objects delineated by intensity contrast.

Further modification of FWTV for removing
non-Poisson noise (such as a combination of differ-
ent forms of noise at low photon counts in real imag-
ing systems) has been demonstrated to be quantita-
tively accurate when applied to FLIM [41]. In the
modified FWTV, f in the weighting of FWTV was
replaced with Gf, where G represented the ratio of
the signal variance to the mean intensity counts and
was a function of local mean intensity of the image
[41]. This modified FWTV was also used here to de-
noise live-cell FLIM images.

2.3 Wavelet-based denoising

A wavelet is a waveform of effectively limited dura-
tion with an average value of zero. A wavelet trans-
form is to describe a function by using wavelets,
which can be scaled and translated (shifted). For
example, the continuous wavelet transform (CWT)
is defined as an integral over the dimension of the
signal (a continuous, square-integrable function) mul-
tiplied by scaled, shifted versions of the wavelet func-
tion. The results of the CWT are the wavelet coeffi-
cients, which are a function of scale and position.

In this study, the first wavelet-based denoising
method was based on Discrete Wavelet Transform
(DWT). In DWT, the concept is to choose only a
subset of scales and positions for the calculations of
wavelet coefficients. Only scales and positions based
on powers of two (the dyadic scales and positions)
are chosen. To use DWT for image denoising, the
resulting wavelet coefficients from DWT decompo-
sition are thresholded before the image is recon-
structed. The thresholding can be performed with
either “hard thresholding”, which sets the coeffi-
cients that are less than or equal to the threshold to
zero, or “soft thresholding”, where, in additional to
hard thresholding, the threshold value is subtracted
from all the coefficients with their values greater
than the threshold. An efficient way to implement
DWT is to use filters. This was developed in 1988 by
Mallat [46]. In this case, each level of filtering pro-
duces approximation coefficients and detail coef-
ficients, followed by a “decimation” process, which
retains only even indexed elements. The approxima-
tion coefficients can then be further filtered into the
next level of decomposition, and thresholding can be
applied to the detail coefficients for denoising.
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The second wavelet-based denoising method was
based on Stationary Wavelet Transform (SWT). SWT
was developed to remove the disadvantage of DWT
being not time-invariant, meaning that when the in-
put signal is translated, the DWT transform is not
translated accordingly. SWT solves this problem by
averaging some slightly different DWT, called epsi-
lon-decimated DWT [47]. Epsilon-decimated DWT
is generated by the decimation that chooses either
even or odd indexed elements instead of choosing
only even indexed elements, following DWT. This
choice is involved in each level of decomposition.

DWT and SWT image denoising was imple-
mented with four levels of decomposition and soft-
thresholding, which makes smooth transitions be-
tween the values above and below the threshold,
using Matlab’s Wavelet Toolbox version 4.4. The de-
fault threshold determination method (universal
thresholding s (log (n))1/2, with n being the number
of pixels in the image and s being the median abso-
lute value of the detail wavelet coefficients divided
by 0.6745) was not used due to the fact that s would
be zero and hence no denoising would be performed
for our artificial images (possibly because there are
many zero-intensity background pixels, described in
Section 2.4) corrupted by Poisson noise. Therefore,
mean absolute value divided by 0.6745 was used as s
in the expression s (log (n))1/2. Global thresholding
(meaning the same threshold value is used for all de-
composition levels) was used for all four levels of
detail coefficients of each gate, but the threshold val-
ues were determined separately for different gates.
Fixed threshold values of 100 and 500 were also used
in SWT denoising for comparison. These values are
comparable to and enclose the “appropriate” values
(see below). The wavelet biorthogonal 3.7 (bior 3.7)
was chosen, not only because it is a commonly used
wavelet but also because it has been demonstrated
to perform well in frequency-domain FLIM for
background subtraction and denoising [26].

A more sophisticated wavelet-based algorithm
[48, 49] employed in this study (denoted as “Poisson
Wavelet” below) is a Bayesian approach to Poisson
intensity estimation based on the translation invar-
iant hereditary unnormalized Haar wavelet transform.
This type of wavelet allows a simple formulation for
Poisson data. Translation invariant Haar estimation
for Poisson data includes thresholding decisions based
not only on the magnitude of the coefficients, but
also on the coefficients of the node’s descendants.
Image estimation based on this method is near mini-
max optimal reconstruction techniques for photon-
limited images. It reduces artifacts by averaging over
all possible shifts of the underlying partition. Previous
studies improved the robustness of this technique by
including a hereditary constraint in the thresholding
rule: a coefficient can only be thresholded if all its
descendants are also thresholded [49].

Poisson Wavelet image denoising was implement-
ed by using the Matlab function provided on the
website of Dr. Rebecca Willett’s laboratory at Duke
University. The penalty values (similar to the thresh-
old values used in DWT and SWT) were determined
using the default approach of log (summation of the
values of all the pixels)/2.

The threshold values used in DWT (and SWT
with “varying threshold”, see Section 3.1.2) were
458.50 � 1.87, 319.86 � 1.42, 224.46 � 0.97, 159.04 �
0.63 (number of trials ¼ 20) for the first, second,
third, and fourth gates, respectively. These values
were not fixed and had distributions, because in each
Monte Carlo simulation (Section 2.5), noise was ran-
domly generated based on Poisson distribution. The
penalty values used in Poisson Wavelet were 8.56 �
0.079� 10�3, 8.35 � 0.093� 10�3, 8.14 � 0.17� 10�3,
7.94 � 0.18� 10�3 (number of trials ¼ 20) for the
first, second, third, and fourth gates, respectively.

2.4 Artificial images

Artificial images with predetermined parameters
were employed to evaluate fluorescence lifetime de-
termination accuracy and precision after denoising.
The fluorescence decay model was single-exponen-
tial with the intensity profile I(t) ¼ a exp (�t/t),
where t is fluorescence lifetime and a is a pre-expo-
nential term, or amplitude. Geometry that we may
encounter with live-cell FLIM was mimicked. It con-
sisted of “the ring” (the large open circle shown in
the upper-right panel of Figure 1) with t ¼ 5 ns and

Figure 1 (online color at: www.biophotonics-journal.org)
RSD (Relative Standard Deviation, in %), indicating the
precision, of the lifetime map constructed with the unde-
noised and denoised artificial images using several differ-
ent denoising methods. The precision improvement was
method- and geometry-dependent. The ring was the most
difficult to denoise. SWT with threshold ¼ 500 generally
had the best precision but it suffered from severe inaccu-
racy (see Figure 2 and Table 1).
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a ¼ 1000, “the inner circle” (the centered solid circle
inside the ring) with t ¼ 10 ns and a ¼ 1000, and
“the satellite” (the small dot to the bottom right of
the inner circle and the ring) with t ¼ 10 ns and
a ¼ 50. The image size was 128� 128 pixels. Note
that total photon counts (at) here were kept rela-
tively high, making the relative standard deviation
(Section 2.5) low, for better characterizations of the
denoising methods with minimized possible bias of
Poisson distribution at low photon counts. A combi-
nation of different forms of noise including Poisson
noise at low photon counts will be considered in live-
cell images (Section 3.2). As an example of the geo-
metry mentioned here, a cell may have some fluoro-
phores inside it with higher lifetime and others inter-
acting in its membrane with lower lifetime, while in
another smaller cell or organism the same fluoro-
phores at lower concentration are present. The opti-
mal gating scheme was determined to be g ¼ 16 ns
and dt ¼ 4 ns [41]. It was an optimal gating scheme
for a certain lifetime range in which the above set-
ting was covered.

2.5 Evaluation of accuracy and precision

To assess accuracy and precision, Monte Carlo (MC)
simulations were used, along with the artificial images
(Section 2.4), to construct the lifetime distribution
determined from Poisson-noise-corrupted intensity
images, either with or without denoising. First, the
single-exponential decay model I(t) (Section 2.4),
the correct values of lifetime t and pre-exponential
term a, gate width g, and time interval dt between
two consecutive gates were used to simulate the
noise-free time-gated fluorescence intensity images.
Then, Poisson noise was added to each pixel in each
image, and denoising was applied to each image.

The lifetime values retrieved from the denoised
images using Eq. (1) were recorded in each iteration
to build up a histogram for each pixel over a number
of iterations of noise addition, denoising, and life-
time determination. The number of simulations was
20 in each denoised or undenoised case. The mean
and standard deviation (std.) of the lifetime distribu-
tion were used for the evaluation of accuracy and
precision with RSD [relative standard deviation, in %,
defined as (std./mean) � 100, also known as coeffi-
cient of variation] and RME {relative mean error, in
%, defined as [(mean – correct value)/correct value]
� 100}. In the undenoised case (see Section 3), the
step of “denoising” was omitted.

3. Results and discussion

3.1 Artificial images

3.1.1 A comparison of DWT,
Poisson Wavelet, and FWTV

FWTV has previously been tested on the artificial
images (Section 5.2 in [41]). The results demonstrate
that after FWTV denoising, the precision of lifetime
determination was improved for all three objects
(the RSD values were 0.14, 1.43, and 4.76% for
the inner circle, the ring, and the satellite, respec-
tively), while the accuracy was preserved (the RME
values of all three objects were within 1% from
zero).

Figure 1 and Table 1 show that precision im-
provement was method- and geometry-dependent.
FWTV and Poisson Wavelet performed approxi-
mately equally well, with the ring being most diffi-
cult to denoise. In the undenoised image, the satel-

Table 1 Averaged RME and RSD (%), over the pixels in each of the three objects (the inner circle, the ring, and the
satellite) in the undenoised and denoised artificial images using several different denoising methods.

Undenoised DWT Poisson Wavelet

RSD RME RSD RME RSD RME

Inner circle 1.80 0.035 0.64 ––0.12 0.23 0.0028
Ring 1.91 ––0.020 1.75 6.34 1.64 ––0.0054
Satellite 7.90 0.031 2.49 ––11.89 4.35 0.33

SWT SWT SWT

threshold ¼ 100 varying threshold threshold ¼ 500

RSD RME RSD RME RSD RME
Inner circle 0.74 ––0.16 0.52 ––0.12 0.39 ––0.74
Ring 1.62 3.24 1.57 5.80 1.15 19.24
Satellite 2.99 ––9.19 2.23 0.62 1.64 ––11.10
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lite had a much higher RSD value due to its much
lower total photon counts. After denoising with the
three methods (DWT, Poisson Wavelet, and FWTV
[41]), all the three objects had lowered RSD and the
precision improvement was most significant in the
inner circle. However, DWT had the smallest im-
provement (averaged RSD ¼ 0.64%) and FWTV
the greatest (averaged RSD ¼ 0.14% [41], precision
improvement >10-fold when compared with the
undenoised value of 1.80%), while Poisson Wavelet
had slightly smaller improvement (averaged RSD ¼
0.23%) than FWTV. The ring was most difficult to
denoise for all the three methods, probably due to
the fact that it had an edge-rich geometry. Still,
FWTV produced the lowest RSD and improved the
precision by about 1.3-fold [41]. Interestingly, for the
satellite, DWT produced the best precision, but it
caused inaccuracy (described below).

Figure 2 and Table 1 show that both FWTV [41]
and Poisson Wavelet preserved the accuracy of life-
time determination after denoising, with Poisson Wa-
velet performing slightly better especially for the sa-
tellite. In this case, the undenoised image and its
RME values served as the accuracy standard, since
the noise was defined by Poisson random distribu-
tion. In other words, these RME values are not ex-
actly zero simply due to randomness. Compared to
the undenoised case, if denoising causes RME values
to become farther away from zero (possibly due to
unsuitable assumption of noise distribution), this is
an evidence of producing a bias and making lifetime
determination inaccurate. Our goal is therefore to
find the denoising methods that can improve the
precision to the best degree without causing inaccu-
racy.

On the other hand, DWT denoising suffered
from severe inaccuracy for the ring (averaged RME
>6%) and the satellite (averaged RME <�10%)
and even for the inner circle (negative RME on the
edge but positive RME off-edge).

3.1.2 A comparison of SWT with different
threshold values

With SWT, the RSD values for all the three objects
decreased with increasing threshold values from 100
to varying values (between 100 and 500) to 500, be-
cause higher threshold caused greater smoothing
and removed more noise. However, only SWT with
varying threshold had both the inner circle and satel-
lite accurate (absolute values of averaged RME
<1%), although the RME of the ring was still high
(5.80%), and higher than that from SWT with
threshold ¼ 100. Also, SWT with varying threshold
was better than DWT in terms of both precision and
accuracy, especially for the accuracy of the satellite.

3.1.3 Overall performance of FLIM
denoising methods

Overall, although DWT and SWT under current set-
tings improved precision, they mostly suffered from
severe inaccuracies. SWT with varying threshold
could still be a good choice except that edge-rich
objects such as the ring would have inaccurate life-
time values. Poisson Wavelet and FWTV appeared
to be better choices for both improved precision and
good accuracy. As for the running times for each
128� 128 image, wavelet-based methods were faster
(DWT, Poisson Wavelet, and SWT had running times
�0.1, �0.2, and �0.6 sec, respectively) compared to
FWTV (�2.4 sec), making Poisson Wavelet the best
choice. However, as will be demonstrated in the next
section, our FWTV could be further modified (Sec-
tion 2.2) to remove non-Poisson distributed noise
with good accuracy.

Another key point to make is that, after denois-
ing, the edge of each object may become less defi-
nite or blurred due to intensity diffusion. Therefore,
it is important to check if denoising causes any bias
for segmentation after different types of denoising.
This has been indirectly investigated with our artifi-
cial images and is presented in Figures 1, 2, and Ta-
ble 1. When evaluating the accuracy and precision of
lifetime determination of the three different objects
(the inner circle, the ring, and the satellite), the same
pixels were used for the mask for a certain object
after different kinds of denoising (or no denoising).

Figure 2 (online color at: www.biophotonics-journal.org)
RME (Relative Mean Error, in %), indicating the accu-
racy, of the lifetime map constructed with the undenoised
and denoised artificial images using several different de-
noising methods. FWTV [41] and Poisson Wavelet per-
formed equally well and preserved the accuracy of lifetime
determination after denoising.
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In other words, any denoising that caused the object
shape/size to slightly change could introduce a bias
in the averaged lifetime value, since in this case the
mask for that object could not exactly cover the en-
tire object and/or included pixels in the background
or in another object. On the other hand, further seg-
mentation analysis will be considered as one of our
future directions (Section 3.3).

3.2 Denoising live-cell FLIM images

Poisson Wavelet and a modified FWTV were used
to denoise the gated fluorescence intensity images
from our FLIM system before lifetime map construc-
tion. DWT and SWT were not used since they suf-
fered from severe inaccuracies (Section 3.1). FWTV
was modified because real imaging systems, espe-
cially at low photon counts, have forms of noise
other than Poisson distribution. The total photon
counts were around 600, which was in the appropri-
ate range (approximately 102–104) for the use of de-
noising for FLIM precision improvement [30]. Both
denoising methods could reduce the uncertainties, as
shown in Figure 3. However, the lifetime values were
different when averaged, and were compared with
the averaged undenoised lifetime value, which should
remain almost constant pre- and post-denoising,
due to the randomness of the uncertainties. Table 2
clearly demonstrates that the modified FWTV could
better preserve the overall t and a values (<3.5%
changes) while still improving local lifetime fitting
with averaged R2 increase ¼ �1.5% and averaged c2

decrease ¼ �20%. This is due to the fact that the
flexibility and modification of our FWTV rendered
it the capability of removing a combination of differ-
ent forms of noise that occur in real imaging systems.
In addition, the accurate denoising results of the
modified FWTV illustrated here are also consistent
with our previous real-image denoising results [30,
31, 41–43].

3.3 Future improvements

Future improvements of the current algorithms in-
clude local thresholding (different threshold values
can be used for different decomposition levels) and
more sophisticated approaches to threshold deter-
mination in DWT, SWT, and other wavelet-based
methods for FLIM use. Newly developed methods
for wavelet-based denoising of Poisson-corrupted
images [50] will be further considered in the future.
Also, high-speed FWTV may be developed by im-
proving the code efficiency and adopting advanced
algorithms [51, 52]. In addition, precision and accu-
racy evaluation of multi-exponential decay lifetime
determination is also an important issue and will be
investigated in combination with FLIM image denois-
ing. Finally, since precise and accurate noise removal
can enhance other image processing techniques in-
cluding deconvolution (with 3D image slicing)/de-
blurring [53], segmentation, and object tracking, the
combination of denoising and these techniques could
be employed for FLIM use, as well.

Figure 3 (online color at: www.biophotonics-journal.org) The lifetime maps (in ns) of HCT-116 live cells stained with
BCECF. Each map was constructed from four gated intensity images that were either undenoised or denoised with one of
the two methods: Poisson Wavelet and modified FWTV. Both denoising methods could reduce the uncertainties compared
to the undenoised image. However, the lifetime values within the cell regions denoised with the two methods were different.

Table 2 The averaged lifetime values (t, in ns), pre-expo-
nential terms (a), R-squared values (R2) and Chi-squared
values (c2) over the non-zero pixels in the live-cell life-
time images shown in Figure 3, and their % changes com-
pared to the undenoised image.

Undenoised Poisson
Wavelet

Modified
FWTV

t 2.38 2.08 2.30
% t change 0 ––12.61 ––3.32

a 190 183 186
% a change 0 ––3.68 ––2.11

R2 0.93 0.96 0.94
% R2 change 0 2.91 1.51

c2 1.20 0.79 0.95
% c2 change 0 ––34.31 ––20.33
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As a key future direction, we understand that seg-
mentation analysis following denoising is an impor-
tant issue. However, advanced segmentation meth-
ods need to be applied to the images for this kind of
analysis, and this will inevitably introduce more un-
certainties since the results will definitely depend on
the choice of segmentation method. In this work,
therefore, we focused more on preserving the accu-
racy of the lifetime determination while enhancing
the precision, leaving segmentation analysis as one
of our major future directions following this work.

4. Conclusions

In this study, TV-based and wavelet-based image de-
noising methods were characterized and compared
for individual strengths and weaknesses with arti-
ficial images and live-cell images acquired from a
gated time-domain FLIM system. With artificial
images, FWTV and Poisson Wavelet performed al-
most equally well (precision improvement up to 10-
fold, depending on the geometry of objects) and bet-
ter than DWT and SWT in terms of mostly accuracy
and partially precision, with wavelet-based methods
running faster. For live-cell images, the modified
FWTV better preserved the overall t and a values
(<3.5% changes compared to the undenoised im-
age) while still improving local lifetime fitting (aver-
aged R2 increase ¼ �1.5% and averaged c2 decrease
¼ �20%). The methods proposed here can enhance
both the precision and the accuracy of FLIM, espe-
cially under challenging imaging conditions, such as
low-light or fast video-rate imaging. This approach
should aid current and rapidly emerging FLIM ap-
plications, including live-cell, in vivo animal, or en-
doscopic imaging, and is potentially applicable to
other biomedical imaging systems.
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ale De Lausanne (2009).

[24] C. Vonesch and M. Unser, IEEE Trans. Image Process.
18, 509–523 (2009).

[25] B. Q. Spring and R. M. Clegg, J. Microsc. Oxford 235,
221–237 (2009).

[26] C. Buranachai, D. Kamiyama, A. Chiba, B. D. Williams,
and R. M. Clegg, J. Fluoresc. 18, 929–942 (2008).

[27] A. Buades, B. Coll, and J. M. Morel, Multiscale Model.
Simul. 4, 490–530 (2005).

[28] J. Boulanger, J. B. Sibarita, C. Kervrann, and P. Bou-
themy, 2008 IEEE Int. Symp. Biomed. Imag.: From
Nano to Macro, Vol. 1–4 (2008), pp. 748–751.

[29] S. Delpretti, F. Luisier, S. Ramani, T. Blu, and M. Unser,
2008 IEEE Int. Symp. Biomed. Imag.: From Nano to
Macro, Vol. 1–4 (2008), pp. 149–152.

[30] C. W. Chang and M. A. Mycek, Opt. Express 18, 8688–
8696 (2010).

[31] C. W. Chang and M. A. Mycek, Proc. SPIE 7370,
7370091–7370096 (2009).

[32] W. Zhong, M. Wu, C. W. Chang, K. A. Merrick, S. D.
Merajver, and M. A. Mycek, Opt. Express 15, 18220–
18235 (2007).

[33] P. Urayama, W. Zhong, J. A. Beamish, F. K. Minn,
R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and
M. A. Mycek, Appl. Phys. B-Lasers and Optics 76,
483–496 (2003).

[34] Z. Xu, M. Raghavan, T. L. Hall, C. W. Chang, M. A.
Mycek, J. B. Fowlkes, and C. A. Cain, IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 54, 2091–2101
(2007).

[35] P. K. Urayama, J. A. Beamish, F. K. Minn, E. A. Ha-
mon, and M.-A. Mycek. A UV fluorescence lifetime
imaging microscope to probe endogenous cellular
fluorescence. in Conference on Lasers and Electro-
Optics (Optical Society of America, Washington D.C.,
2002).

[36] P. K. Urayama and M. A. Mycek, in: Handbook of
Biomedical Fluorescence, M. A. Mycek and B. W. Po-
gue (Eds.) (Marcel Dekker, Inc., New York, 2003).

[37] W. Zhong, P. Urayama, and M.-A. Mycek, J. Phys. D:
Applied Physics 36, 1689–1695 (2003).

[38] I. Bugiel, K. König, and H. Wabnitz, Las. Life Sci. 3,
47–53 (1989).

[39] X. F. Wang, T. Uchida, D. M. Coleman, and S. Minami,
Appl. Spectrosc. 45, 360–366 (1991).

[40] K. K. Sharman, A. Periasamy, H. Ashworth, J. N. De-
mas, and N. H. Snow, Anal. Chem. 71, 947–952 (1999).

[41] C. W. Chang, Ph.D. thesis, University of Michigan
(http://deepblue.lib.umich.edu/bitstream/2027.42/
63765/1/chingwei_1.pdf) (2009).

[42] C. W. Chang and M. A. Mycek, Proc. SPIE 7570,
757007 (2010).

[43] C. W. Chang and M. A. Mycek, J. Biomed. Opt. 15,
056013 (2010).

[44] L. I. Rudin, S. Osher, and E. Fatemi, Physica D 60,
259–268 (1992).

[45] T. Le, R. Chartrand, and T. J. Asaki, J. Mathemat.
Imag. Vision 27, 257–263 (2007).

[46] S. Mallat, IEEE Pattern Anal. Machine Intell. 11,
674–693 (1989).

[47] R. R. Coifman and D. L. Donoho, Lect. Notes Stat.
103, 125–150 (1995).

[48] I. Rodrigues, J. Sanches, and J. Bioucas-Dias, 15th
IEEE Int. Conf. Image Process., Vol. 1–5 (2008),
pp. 1756–1759.

[49] R. M. Willett and R. D. Nowak, 2nd IEEE Int. Symp.
Biomed. Imaging: Macro to Nano, Vol. 1–2 (2004),
pp. 1192–1195.

[50] F. Luisier, C. Vonesch, T. Blu, and M. Unser, Signal
Process. 90, 415–427 (2010).

[51] A. Chambolle, Energy Minimization Methods Comput.
Vis. Pattern Recognit., Proceedings, Vol. 3757 (2005),
pp. 136–152.

[52] M. A. T. Figueiredo, J. B. Dias, J. P. Oliveira, and
R. D. Nowak, Proc. Int. Conf. Image Process., Vol. 1–7
(2006), pp. 2633–2636.

[53] F. Rooms, W. Philips, and D. S. Lidke, J. Microsc. 218,
22–36 (2005).

J. Biophotonics 5, No. 5–6 (2012) 457

FULLFULL
ARTICLEARTICLE

# 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimwww.biophotonics-journal.org


