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INTRODUCTION

Despite significant effort, we still have very limited ability
to fold proteins by ab initio approaches, that is, to predict
3D structures of protein sequences without using template
structures from other experimentally solved proteins. Suc-
cessful cases have been witnessed only on small proteins
with length below 100 residues, and with a root mean
squared deviation (RMSD) typically above 2–5 Å.1–6 The
difficulty of ab initio protein structure prediction is twofold.
First, we lack decent force fields to accurately describe the
atomic interactions which can be used to guide the protein
folding simulations. Apparently, force fields with an incor-
rectly located global minimum will undoubtedly misfold
the target proteins. Although the physics-based atomic force
fields7,8 can provide a reasonable description of protein
atomic interactions in many aspects, the implementation
requests atomic-level representation which is often too slow
to fold a protein structure from scratch. The knowledge-

based potentials, which are often in reduced forms and
derived from statistical regularities of structures in the Pro-
tein Data Bank (PDB),9 have shown power in both protein
fold recognition and structure assembly simulations,10,11

where appropriate selections of reference states and struc-
tural features are proven to be of critical importance.12
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ABSTRACT

Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force

field design and conformational search. We developed a novel program, QUARK, for template-free protein structure predic-

tion. Query sequences are first broken into fragments of 1–20 residues where multiple fragment structures are retrieved at

each position from unrelated experimental structures. Full-length structure models are then assembled from fragments

using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number

of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the effi-

ciency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on

the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from ex-

perimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of

correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of

protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47%

based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding

remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem

in the field.
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Second, given the force fields, we have difficulties in

efficiently identifying the global energy minimum which

is supposed to be the protein native state in thermody-

namic hypothesis assumption,13 because most of the

composite force fields are characterized with numerous

local energy minima which can easily trap the folding

simulations. One way of speeding up the computational

search process is to reduce the size of the search space.

For example, in TOUCHSTONE,4 the authors con-

strained the conformational change of protein structure

on a lattice system. In Rosetta,14 TASSER,15 and I-

TASSER,16 fragment sequences have the structures cop-

ied from PDB templates which are kept rigid during the

simulation. Rosetta also keeps the bond lengths and

bond angles fixed which further decreases the degrees of

freedom. These techniques can help to significantly

reduce the search space because of the constraint of con-

formational movements. Nevertheless, it is essential to

have the resolution of conformational representations not

limited by the constraints. In TOUCHSTONE, the pro-

gram implemented a grid size of 0.87 Å which resulted in

an average resolution of 0.5 Å in RMSD. In Rosetta and

TASSER programs, as the fragments are off-lattice, the

conformation should have no resolution limit if the frag-

ment structures are ideally selected.

Another way of increasing the efficiency of conforma-

tional search, which is also associated with the reduction

in the size of the search space, is to reduce the level of

protein structure representation. For example, in

UNRES,17 a protein residue is represented by three units

of Ca atom, side-chain ellipsoid, and peptide group. In

I-TASSER,16,18 each residue is specified by two units of

Ca atom and side-chain center of mass. These reductions

of structure representation can dramatically reduce the

total number of conformations needed for searching.

However, although the reduced models have the gain in

conformational search, they may suffer a lower accuracy

of energy force field design. Finally, a central theme in

protein conformational search is the appropriate design

of conformational updating and optimization algorithms,

with examples including Monte Carlo and molecule dy-

namics simulations, which will essentially decide the effi-

ciency of the overall conformational search.

In this study, we develop a new algorithm, QUARK, for

ab initio protein structure prediction, with the focus on

the elaborate design of both the force field and the search

engine. To facilitate the force field development and search

engine design, QUARK takes a semi-reduced model to

represent protein residues by the full backbone atoms and

the side-chain center of mass. For a query sequence, it first

predicts a variety of carefully selected structural features by

neural network (NN). The global fold is then generated by

replica-exchange Monte Carlo (REMC) simulations by

assembling the small fragments as generated by gapless

threading through template library, an idea borrowed

from Rosetta and I-TASSER; but different from Rosetta

and I-TASSER which have the fragments in either 3/9-mer

or from threading alignments, the fragments in QUARK

have continuously multiple sizes from 1 to 20 residues.

Meanwhile, in contrast to the pure fragment substitutions

as taken by Rosetta and the fixed fragment rotation as

taken by I-TASSER, QUARK simulations contain compos-

ite movements of free-chain constructions and fragment

substitutions between decoy and fragment structures.

These techniques have significantly increased the structural

flexibility and the efficiency of conformational search while

taking the advantage of the reduction of the conforma-

tional search owing to fragment assembly.

We then conducted a systematical test and analysis of

QUARK in ab initio structure prediction on the basis of

145 small- to medium-sized globular proteins, on the

control with other top ab initio modeling methods. As

these proteins are taken from the PDB, we made a series

of stringent filters to rule out homologous information

from the template library. We also tested the method in

the ninth Critical Assessment of protein Structure Predic-

tion (CASP9) experiment. Although the blind CASP

experiment has a much smaller test set of free modeling

(FM) targets, some being nonglobular, it offers a valuable

opportunity to objectively benchmark the method in

comparison with all other state-of-the-art programs in

the field.

MATERIALS AND METHODS

Construction of benchmarking datasets

As ab initio folding methods are designed to predict

protein structures without using templates, it is impor-

tant to establish a stringent benchmarking protein set

which completely excludes global topology information

of templates. This is essential to train, test, and evaluate

the method developments, especially in the situation

where most of the top-performing methods in the field

were designed to exploit fragment structures from experi-

mental structures to assemble the models of target pro-

tein sequences.5,14 The importance and difficulty of ab

initio benchmarking were also reflected in the commu-

nity-wide blind CASP experiments,19,20 where the por-

tion of FM targets has been consistently decreasing owing

to the difficulties in collecting individual protein

domains which have different folds from the existing

proteins in the PDB. Even among the limited FM targets,

there are an increasing portion of proteins which lack of

globular compact shapes, owing to the fact that they are

often isolated from a small region of interaction com-

plexes, which can prevent them from being useful assess-

ment targets for ab initio folding methods.

We first obtain a nonredundant set of 6023 high-reso-

lution experimental structures from the PISCES server,21

which are culled from the whole PDB based on the iden-

tity cutoff 25%, resolution cutoff 1.8 Å, and R-factor cut-

D. Xu and Y. Zhang

1716 PROTEINS



off 0.25. All the statistical potentials used in the QUARK

simulation are derived from this protein set. We also use

the same template library for retrieving fragment struc-

tures of various lengths for each query sequence. As the

purpose of ab initio prediction is to handle the targets

which have no homologous templates hit by threading

algorithms and are inaccurate to predict by template-

based methods, protein sequences we choose for training

and test are the ‘‘Hard’’ targets classified by the LOcal

MEta-Threading Server (LOMETS).22 We first run

LOMETS for all the sequences in the PISCES list, where

homologous templates with sequence identities larger

than 30% to each query sequence are excluded from the

threading template library. In total, 665 sequences are

considered as ‘‘Hard’’ targets by LOMETS, where a

‘‘Hard’’ target means none of the threading algorithms

detects a template with the Z-score higher than the given

cutoff. The Z-score cutoffs of the nine threading algo-

rithms in LOMETS are determined by minimizing the

false-positive and false-negative rates.22 We manually

check the native structures of the 665 protein chains and

exclude the targets which have obvious broken chains or

incompact shapes. The remaining list contains 413 pro-

teins. To quickly train the various parameters during the

design of energy terms and movements, we randomly

selected 88 small globular proteins as the training set

from the remaining list of ‘‘Hard’’ targets. The lengths of

protein chains in the training set are in the range of

70–100 amino acids. To test the modeling accuracy of the

QUARK method, 145 globular proteins are randomly

selected as the test set from the remaining list, which is

further divided into two subsets: 51 small proteins

(70–100 amino acids) and 94 medium-sized proteins

(100–150 amino acids). The lists of the training and test

proteins are available at http://zhanglab.ccmb.med.umi-

ch.edu/QUARK/list.txt.

As two movements in QUARK use fragments from ex-

perimental structures and one energy term is derived

from the structural fragments, to avoid the potential

influence from homologous templates, we use three fil-

ters to exclude homologous templates when generating

the position-specific fragments. First, all the template

proteins whose sequence identities to the target sequence

are >30% are removed. Second, we run MUSTER

threading program through the QUARK template library.

All the templates with a template modeling score (TM-

score) of >0.3 in the MUSTER alignment are removed

from the QUARK template library. Third, we run TM-

align23 to superimpose each template to the target struc-

ture. All the templates with a TM-score of >0.5 will be

removed. We have observed that nonhomologous tem-

plates, if they have global structural similarity to the tar-

get, will have considerable impact to the fragment-based

assembly results. In the third filter, all structurally similar

templates are removed even they have low-sequence

homology to the target sequence.

Representation of protein conformations

Protein conformations in QUARK are represented by a

semi-reduced model, where each residue is specified by

full backbone atoms plus the side-chain center of mass

(SC), that is, N, Ca, C, O, Cb, H, and SC [Fig. 1(A)].

Three backbone atoms N, Ca, and C are flexible, which

have nine degrees of freedom. Bond lengths and bond

angles between these atoms are not fixed, but are re-

stricted in the physically allowed range. The other four

off-backbone atoms/units (O, Cb, H, and SC) are added

based on their relative positions to the three backbone

atoms.

Unlike the O, Cb, H atoms, which can be determined

uniquely based on the backbone atoms, the virtual atom

SC has uncertainty because of the various side-chain

rotamer conformations. We calculate the averaged SC

positions in terms of 20 different amino acids and back-

bone (u, w) torsion-angle pairs that are divided into 72

Figure 1
(A) Representation of QUARK semi-reduced model where a protein

chain conformation is specified by the full backbone atoms and the

side-chain center of mass (SC). (B) Conformations of Ni, Cai and Ci

represented in the Cartesian system. (C) Conformations of Ni, Cai, and

Ci represented in the torsion-angle system, where each atom position is

determined by the distance, inner angle, and torsion angle relationship
to the previous three atoms.

QUARK Ab initio Prediction Method
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bins with an interval p/36, summarized from the 6023

high-resolution experimental structures. The SC position

of each residue is therefore decided based on the residue

type and the backbone torsion angles, which has also

been implemented in ModRefiner24 for main-chain

energy minimization.

During the simulation, we represent each reduced

model in two coordinate systems: Cartesian system and

torsion-angle system. In the Cartesian system, backbone

atoms are represented by their 3D coordinates, whereas in

the torsion-angle system they are represented by bond

lengths, bond angles, and torsion angles [Fig. 1(B,C)].

Some movements change only 3D coordinates of the

atoms which can be easily modified in the Cartesian sys-

tem. Other movements change only the bond length,

bond angle, or torsion angle, which can be changed con-

veniently in the torsion-angle system. If the coordinates

are changed in one system, the new coordinates in the

other system are updated correspondingly as the two sys-

tems are exchangeable. The two different coordinate sys-

tems are also useful in the calculation of different energy

terms after each movement. For example, pair-wise energy

terms rely on the 3D coordinates of atoms, whereas tor-

sion-angle term is based on the backbone torsion angles.

Flowchart of QUARK prediction procedure

QUARK ab initio structure prediction procedure can

be divided into three steps, which are shown in Figure 2.

The first step is for multiple feature predictions and frag-

ment generation starting from one query sequence. The

second step is structural constructions using REMC sim-

ulation based on the semi-reduced protein model. The

third step is for decoy structure clustering and full-

atomic refinement. Here, we first give the outline of the

steps and then describe the details of force field design

and Monte Carlo movements.

Feature prediction and fragment generation

Given the amino acid sequence, multiple sequence

alignment (MSA) is generated by PSI-BLAST25 through a

nonredundant sequence database. Secondary structure (SS)

types are then predicted by Protein Secondary Structure

prediction program PSSpred (http://zhanglab.ccmb.med.u-

mich.edu/PSSpred/) based on multiple NN trainings of

sequence profiles calculated from the MSA. Solvent acces-

sibility (SA), real-value u and w angles, b-turn positions

are predicted by separate NNs based on the checkpoint

file by PSI-BLAST and SS types predicted by PSSpred. The

architectures of the four back-propagation NNs26 are

summarized in Supporting Information Table S1 in which

the features of one residue consist of 20 frequencies in the

checkpoint file and three probabilities of SS types.

Sequence profile from MSA, predicted SS types, as well as

the predicted SA and real-value torsion angles are then

used to generate structural fragments for each segment of

the query sequence. Top 200 fragments for each segment

are generated by a gapless threading method using a scor-

ing function close to that in the MUSTER27 threading

program. The position-specific fragments are used by the

fragment substitution movement to replace existing ones

in the decoy structure during the simulation. We find that

using fragments with continuous lengths from 1 to 20

amino acids for the assembly simulation can achieve better

modeling result than that with discrete lengths as the for-

mer provide smoother conformational change and more

adequate sampling. Fragments with lengths larger than 20

cannot further improve the result as long fragments can

be hardly inserted into the well-packed decoy structure

during the simulation.

Two structural features will be derived from the top

collected fragments with length 10, as we find that 10-

mer fragments can be most accurately retrieved by the

scoring function by comparing their conformations with

the native fragment structures. First, (u, w) torsion-angle

Figure 2
Flowchart of the QUARK ab initio prediction.
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pairs at each residue position are clustered by standard

clustering algorithms and at most 30 torsion-angle pairs

are selected for each residue position. The reduced num-

ber of torsion angles along with their associated bond

lengths and bond angles constitute a look-up table,

which will be efficiently used in one local movement dur-

ing the simulation. The second important feature

extracted from fragments is the distance profile, which is

a histogram distribution of pair-wise distances extracted

from unrelated experimental structures based on the

occurrence of fragments at different positions but from

the same templates. The derivation and usage of distance

profile will be described in the following section.

The predicted SA is also used in the energy term

which is represented as the difference between the pre-

dicted value and the actual value of the structural decoy.

The predicted three-state SS types will guide the simula-

tion to generate decoy structures with the similar SS

types. We do not restrict the decoy to have exactly the

same SS types as the PSSpred prediction. If one template

fragment is successfully placed into the decoy by the frag-

ment substitution movement, this segment will have the

same SS types as the fragment structure, rather than the

PSSpred prediction. The predicted probabilities of b-turn
positions will be used to guide one movement for b-turn
formation.

REMC simulation

There are in total 40 replicas implemented in the

REMC simulation. As the average energy in low-tempera-

ture replicas gets saturated in near 100 cycles for most of

our training proteins, around 200 cycles are run for each

protein by default. However, the simulation will be ter-

minated if the variation of the average energy of the 10

low-temperature replicas is smaller than 1024 times of

the average energy.

The initial structure for each replica is constructed by

randomly connecting the randomly selected fragments

with different lengths. We run 10 different REMC simula-

tions with different starting random numbers. The Lehmer

random number generator28 is used for random number

generation, which has 256 different streams with a long

period (2.15E9) in each stream. In our benchmark test,

the TM-score29 of the first model clustered from 10

REMC simulations is on average 15% better than that

from one simulation. However, there are no notable differ-

ences when more than 10 simulations are implemented.

Decoy clustering and full-atomic refinement

In total, 5000 decoys randomly selected from the last

150 cycles of the 10 low-temperature replicas in the 10

REMC simulations are gathered and clustered by the re-

vised SPICKER program.30 The mean and standard devi-

ation of RMSD for all pairs of decoys are precalculated

in the new version of SPICKER because different targets

may have different distributions of QUARK decoy struc-

tures. The minimum and maximum RMSD cutoffs in

the new SPICKER algorithm are then automatically

adjusted based on the mean and standard deviation. Five

largest cluster centers are selected as the representative

predicted models, which are the decoy conformations

closest to the cluster centroids. As the QUARK decoy

conformation contains only backbone heavy atoms, the

final full-atomic structure is constructed by ModRefiner,

which was designed to add the missing atoms in the

reduced models and refine the physical quality of both

backbone and side-chain atomic structures simultane-

ously.

Design of force fields

The total energy of the QUARK force field is the sum

of the 11 terms:

Etot ¼ Eprm þ w1Eprs þ w2Eev þ w3Ehb þ w4Esa þ w5Edh

þ w6Edp þ w7Erg þ w8Ebab þ w9Ehp þ w10Ebp ð1Þ

where w1 5 0.10, w2 5 0.03, w3 5 0.03, w4 5 4.00, w5

5 0.40, w6 5 0.60, w7 5 1.00, w8 5 1.00, w9 5 0.05,

and w10 5 0.10 are the weighting factors to balance the

energy terms, which were tuned based on the modeling

accuracy of the small proteins in the training set. We use

a super-dimensional grid-searching strategy to decide

those weighting factors, which is the same as that by

MUSTER. The pair-wise energy term Eprm is considered

as the base energy term which has the weight equal to 1.

The other weights are set to zero at the beginning and

gradually increased until they cannot improve the TM-

score of the best model in the top five cluster centers any

more. We determine those 10 weights in the first round

in the order of w1, w2–w10 and then refine them in ran-

dom orders for several iterations. In each round, we use

big intervals to update each weight in the beginning and

then try small ones when the weight is approaching the

best. The parameterization procedure by this strategy we

believe is close to the optimum, which can lead to better

modeling accuracy than using the one-round order-de-

pendent parameterization.

The 11 energy terms can be categorized into three lev-

els, that is, the atomic-level terms (Eprm, Eprs, and Eev),

the residue-level terms (Ehb, Esa, Edh, and Edp), and the

topology-level terms (Erg, Ebab, Ehp, and Ebp). All the

energy terms are knowledge based, in the sense that they

are derived from the statistics of experimental structures

although most of them have direct physical sources. In

the following, we describe in more detail of the energy

terms, with the emphases on the new design of hydro-

gen-bonding and SA potentials and the novel concept of

distance profile potential.

QUARK Ab initio Prediction Method
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1. Backbone atomic pair-wise potential

This base energy term accounts for the distance-de-

pendent contact preferences between the backbone atoms

(N, Ca, C, O, and Cb):31

Eprmði; j; rijÞ ¼ �RT log
Nobsði; j; rijÞ

raij Nobsði; j; rcutÞ

 !
ð2Þ

where R is the gas constant, T is the temperature, rij is

the distance between the ith and jth types of atoms,

rcut 515 Å is the short-range cutoff distance. We have

used a formula similar to the DFIRE32 method with

a 5 1.61, but Nobs(i,j,rij) which is the observed number

of pairs between atoms i and j with distance rij, was

recalculated on our own from the high-resolution experi-

mental structures. In Figure 3(A), we show illustrative

curves for three Ca pairs between ASP-ASP, ASP-ARG,

and ARG-ARG with distance from 0 to 15 Å.

2. Side-chain center pair-wise potentials

We extend the pair-wise atomic potential to that

between the virtual atom SC in one residue and the

real/virtual atoms N, Ca, C, O, Cb, and SC in another

residue and derive the side-chain pair-wise potential

Eprs:

Eprsði; j; rijÞ ¼ �RT log
N 0

obsði; j; rijÞ
ra

0
ij N

0
obsði; j; rcutÞ

 !
ð3Þ

For the experimental structures in the template library,

we first get the side-chain center SC for each residue,

and then calculate the observed number N0
obs(i,j,rij)

between SC and SC or other backbone atoms. Here, a0

5 1.40 is determined based on the DFIRE method. Three

curves between SC and SC of the same residue pairs are

shown in Figure 3(B). As arginine has positively charged

side-chain, whereas aspartic acid side-chain is negatively

charged, there are apparently more short-range contact

pairs between ASP-ARG owing to the Coulomb interac-

tions (see line with dot in Fig. 3(B)). From backbone

atom pairs in Figure 3(A), we cannot distinguish the

charge properties of different residues.

3. Excluded volume

The excluded volume interaction is expressed by:

Eevði; j; rijÞ ¼ ðvdwðiÞ þ vdwðjÞÞ2 � r2ij if rij < vdwðiÞ þ vdwðjÞ
0 else

�
ð4Þ

where vdw(i) is the van der Waals radius of the ith atom

type van der Waals radius. This term is used to avoid the

over-compactness of the structural model and to reduce

the search space by eliminating physically not allowed

conformations. Here, the penalty score for every pair of

atoms is in a quadratic form. Three example curves

between different atom pairs are shown in Figure 3(C).

As side-chain center is not a real atom and its position is

approximately added based on the backbone torsion

angles, we define a clash between SC and any other atom

when rij < 1 Å. Although the decoy will tend to contain

side-chain clashes, if we directly add side-chain atoms

based on its backbone structure, we can easily remove

those clashes by our refinement program ModRefiner

Figure 3
Illustrations of distance-specific contact potentials for three atom pairs. (A) Pair-wise backbone Ca–Ca potential. (B) Pair-wise SC–SC potential.

(C) Excluded volume potential.
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later. Using a big distance cutoff rij for side-chain center

definitely will help to build the full-atomic model easily,

but we found that it would worsen the backbone model-

ing accuracy. This is because the conformational search

space is narrowed if the simulation forbids any overlap

between the inaccurate side-chain centers.

4. Hydrogen bonding

Hydrogen bonds, especially those between backbone

atoms, are one of the major driven forces to form regular

SSs and stabilize the global topology of protein structures.

In the semi-reduce model, we consider only the backbone

hydrogen bonds which are between N��H in one residue

and O¼¼C in another residue (Supporting Information Fig.

S1(A)). In a-helix, the hydrogen bond (H-bond) is

between O¼¼C of residue i and N��H of residue i 1 4,

whereas in b-sheet, it can be between any pair of residues i

and j. Here, we select four geometric features to gauge the

bonding, that is, the distance between Oi and Hj, D(Oi,Hj);

the inner angle between Ci, Oi, and Hj, A(Ci,Oi,Hj); the

inner angle between Oi, Hj, and Nj, A(Oi,Hj,Nj); and the

torsion angle between Ci, Oi, Hj, and Nj, T(Ci,Oi,Hj,Nj).

In Table I, we list the mean and standard deviation of the

four features in the four types of H-bonds calculated from

the high-resolution experimental structures whose SS types

are defined by DSSP.33 In a-helix, there is no real hydrogen

bond between O¼¼C of residue i and N��H of residue i 1
3 (Supporting Information Fig. S1(B)). However, the four

features between them have even less deviations than that

between the residues with real hydrogen bond, when we

compare the second and third rows in Table I. We, there-

fore, add this in our simulation as an additional restraint of

H-bond in a-helix. In the last two rows of Table I, the

standard deviations of torsion angles in b-sheets are much

higher, which means torsion angle does not form a con-

served pattern for characterizing b-pairs in b-sheets.
The energy term for a single backbone hydrogen bond

here is given by:

Ehbði; j;TkÞ¼
Xnk
l¼1

ðflði; jÞ � lklÞ2
2d2kl

; nk ¼ 4 k ¼ 1; 2
3 k ¼ 3; 4

�
ð5Þ

where Tk denotes the kth type of H-bond restraint, fl(i,j)

is the lth feature calculated from decoy structures, and lkl

and dkl are the mean and standard deviation of the lth

feature of type k H-bond in Table I. This energy term is a

continuous function of the four geometric parameters.

When the energy value is lower, the probability of existing

hydrogen bond between residues i and j will be higher.

In the H-bonding network of experimental structures,

hydrogen bonds are arranged continuously to form a seg-

ment of a-helix or a b-sheet. If only residues i and i 1 4

form a hydrogen bond and all their neighboring residues

do not form similar hydrogen bonds, it is only an a-turn
rather than an a-helix. Therefore, we use double hydro-

gen-bonding energy terms in Eq. (5) to evaluate the sta-

bility of SSs of a-helix and b-sheet, which can also avoid

forming discontinuous H-bonding network for the

decoys during the simulation. In the decoy structure, we

count residues i to i 1 3 as a helical region only when

Ehb(i,i14,T1)1Ehb(i,i13,T2) is lower than a cutoff 16.12,

that is, a 4-mer segment forms a helical region if both

interactions between i and i 1 3, i 1 4 are well main-

tained. Based on the high-resolution structures, we con-

sider the continuous helical region output by DSSP as

the correct assignment. The cutoff value is then deter-

mined by making the coverage and accuracy of the pre-

dicted helical regions approximately equal to each other.

In a parallel b-sheet, we consider residues i and j as a

b-pair only if there are two neighboring hydrogen bonds

between them, that is, Ehb(i 2 1,j,T3) 1 Ehb(j,i11,T3) or

Ehb(j 2 1,i,T3) 1 Ehb(i,j11,T3) is lower than a cutoff of

19.11. Similarly, in an antiparallel b-sheet, Ehb(i,j,T4) 1
Ehb(j,i,T4) or Ehb(j 2 1,i11,T4) 1 Ehb(i 2 1,j11,T4)

should be smaller than a cutoff 20.72. Those four kinds

of b-pairs between residues i and j in parallel and anti-

parallel b-sheets are shown in Supporting Information

Figure S1(C–F) separately. We also use the DSSP output

to extract the correct b-pairs. The two cutoff values for

determining the b-pairs in parallel and antiparallel b-
sheets are decided by making the total number of pre-

dicted b-pairs approximately equal to that of the native

b-pairs. After the calculation of hydrogen-bonding

energy potential, the three-state SS types of the decoy

structure can be assigned, which will then affect the cal-

culation of other related energy terms such as backbone

torsion angle, helix packing, strand packing, and so on.

To test the accuracy of the hydrogen-bonding energy

for SS assignment, we selected a nonredundant set of

3881 experimental structures from PDBselect34 and used

the SS types calculated by DSSP as the correct assign-

ment. Their eight states are grouped into three states (he-

lix, strand, and coil). We extracted only the N, Ca, C
backbone atoms from each experimental structure and

added H and O atoms uniquely based on their relative

positions to the backbone atoms. We assigned four con-

secutive residues as helices and two residues as strands if

their hydrogen-bonding energy values are lower than the

three cutoffs. The assignment results of helix and strand

are summarized in Table II in which the accuracy is

Table I
Mean and Standard Deviation of Four H-Bond Features in a-Helix and

b-Sheet Structures

Acceptor i,
donor j

D(Oi,Hj)
(�)

A(Ci,Oi,Hj)
(8)

A(Oi,Hj,Nj)
(8)

T(Ci,Oi,Hj,Nj)
(8)

T1 Helix, j 5 i 1 4 2.00/0.53 147/10.58 159/11.25 160/25.36
T2 Helix, j 5 i 1 3 2.85/0.32 89/7.70 111/8.98 2160/7.93
T3 Parallel 2.00/0.30 155/11.77 164/11.29 180/68.96
T4 Antiparallel 2.00/0.26 151/12.38 163/11.02 2168/69.17
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defined as the number of correct assigned residues di-

vided by the total assigned residues and the coverage is

the number of correct assigned residues divided by the

total residues which are assigned as helix or strand by

DSSP.

As a control, we also implement an algorithm which

determines the residue SS type based on the geometry of

Ca atoms only, that is, a set of six pair-wise distances of

neighboring residues were trained to decide the SS types.

As summarized in Table II, the NHOC-based method

here is much more accurate than the method based on

Ca only, which demonstrates the benefit from adding

other backbone atoms in our model. Both the accuracy

and the coverage of the NHOC assignments are high

(>97%) for a-helix assignment. The accuracy of b-strand
determination is also high (>98%) but the coverage is

slightly lower (93.7%), partly because some b-pairs such

as b-bridges, which have only isolated hydrogen bonds,

are neglected by the method here, which evaluates two

consecutive H-bonds at a time.

5. Solvent accessibility

SA is an important attribution of different amino

acids, which potentially determines the relative positions

of the residues in the global structure. For a given full-

atomic structure, the SA of each residue can be accu-

rately calculated using, for example EDTSurf.35 However,

the calculation can be time consuming. One challenging

issue in the molecular simulation is to design an algo-

rithm that can quickly and yet reliably calculate the SA

value for each residue, especially in reduced models.

The energy accounting for the residue-specific SA here

is written as:

Esa ¼
XL
i¼1

jsi � sEi j ð6Þ

where L is the sequence length, si
E is the expected SA of

the ith residue, which is predicted by the back-propagation

NN trained from the checkpoint file by PSI-BLAST and SS

types by DSSP. si is the SA of the ith residue in the decoy

structure, which is calculated from the reduced model by:

si ¼ 1� w
X

dðGi ;GjÞ<9Å

AaaðjÞ
d2ðGi;GjÞ ð7Þ

where Aaa is the precalculated maximum solvent accessi-

ble surface area for amino acid aa. The weight w here

equals to 0.007. Gi is the geometric center of the ith resi-

due which is calculated from the coordinates of N, Ca,
C, O, Cb, and SC atoms. d(Gi,Gj) is the distance between

the ith and jth residue centers. For each residue i, we

check all its neighbors which may bury part of its sur-

face, as shown in Figure 4. The buried part contributed

by one of its neighbors is proportional to this neighbor’s

maximum surface area and in inverse ratio to the square

of their distance. We consider only the neighboring resi-

dues in a sphere with a radius of 9 Å because too distant

residues have no contribution to the burying of the tar-

get residue. si defined in Eq. (7) has the value in the

range of [0, 1], whereas 0 means it is completely buried

and 1 means it completely exposes in solution.

To evaluate the accuracy of the SA model, we compare

the SA values calculated by Eq. (7) with the accurate SA

values calculated by EDTSurf based on the full-atomic ex-

perimental structures of 145 proteins in our test set. As

summarized in Table III, the relative error is 4.32% if we

use the actual geometric centers of residues to calculate

the pair-wise distances in Eq. (7). The average CPU time

Table II
Accuracy and Coverage of SS Assignment Using Ca Trace and

Backbone Structure

Methods

a-Helix b-Strand

Accuracy
(%)

Coverage
(%)

Accuracy
(%)

Coverage
(%)

Ca only 94.9 94.3 89.2 87.1
NHOC 97.3 97.5 98.7 93.7

Figure 4
Illustration of SA estimation for a residue i based on the distances to its

neighboring residues js.

Table III
Accuracy of SA Estimation and Prediction

Methods
Relative
error (%)

Distance-based method using full-atomic model 4.32
Distance-based method using reduced model 5.10
Distance-based method using side-chain center 7.52
Ellipsoid-based method by I-TASSER 8.74
Sequence-based NN prediction 9.94
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for one test protein is 1.0 ms, which is 6000 times faster

than EDTSurf. As QUARK uses a reduced model with a

side-chain center (SC) representing each residue, if we cal-

culate the residue distance based on the center of N, Ca,
C, O and the estimated SC, the SA error is only slightly

increased (5.10%). These data demonstrate the feasibility

of the equation to quickly and reliably calculate SA values.

We attempted to use the side-chain center instead of

the geometric center in the formula, which, however,

resulted in a bigger error 7.52%. This is because the geo-

metric center of one residue is more accurate in determin-

ing the contacts with its neighbors for SA estimation. We

also implemented another faster algorithm for SA estima-

tion, which was used in TOUCHSTONE and I-TASSER.

The algorithm first builds the bounding ellipsoid for the

entire Ca trace structure based on its three principal axes.

The SA of each residue is then calculated by the square of

the ratio of the distance between the residue and the pro-

tein structure center to the distance from the protein cen-

ter to the surface of the ellipsoid which passes through the

residue. The average error for this method is 8.74%; but

the computation of the model is slightly faster with aver-

age CPU time 0.8 ms for one test protein, as it avoids the

calculation of pair-wise distances. In the QUARK simula-

tion, we choose the distance-based method owing to the

better balance between the accuracy and the speed. For

real-value SA prediction, SA values of training proteins

input for NN training are calculated by EDTSurf. In the

last row of Table III, the average error between the

sequence-based NN prediction and the native SA is 9.94%

for the test proteins, which means more effort still should

be made to improve the sequence-based prediction.

As an illustration, we show the SA results for 1bgfA

from three resources in Supporting Information Figure S2.

The blue curve shows the solvent accessibilities of all the

residues calculated by EDTSurf from the full-atomic ex-

perimental structure. The green curve is the SA predicted

by NN from amino acid sequence, which is generally con-

sistent with the experimental structure. The estimation by

using geometric centers from native full-atomic structure

and Eq. (7) is shown in the red curve. We can see that the

average error of the structure-based estimation is much

lower than that from the sequence-based NN prediction.

6. Backbone torsion potential

The dihedral-angle potential is calculated as:

Edh ¼ �
XL�1

i¼2

logðPð/i;wijaaðiÞ; ssðiÞÞÞ ð8Þ

where ui and wi are the torsion-angle pair of the ith resi-

due; P(u,w|aa,ss) is the conditional probability of u and

w at the residue type aa and the SS type ss, which are

calculated from the high-resolution experimental struc-

tures. For this purpose, 60 (520 3 3) Ramachandran

plots36 should be generated for 20 amino acids and three

SS types. In Supporting Information Figure S3, we illus-

trate four energy spectra converted from the Ramachan-

dran plots. As shown in Supporting Information Figure

S3(A–C), the energy spectra for the same residue are dif-

ferent according to different SS types. Although torsion

angles are highly conserved in helix, there is still some

difference between different residues by comparing the

blue regions in Supporting Information Figures S3(A,D).

7. Fragment-based distance profile

The distance profile energy term for each decoy is

written as:

Edp ¼ �
X

ði;jÞ2Sdp
logðNi;jðdijÞÞ ð9Þ

where dij is the distance between the ith and jth Ca
atoms in the decoy structure. Ni,j(d) is the distance pro-

file for residue i and j extracted from the 10-mer frag-

ment structures, with d divided from 0 to 9 Å in the

interval 0.5 Å. Sdp is the set of residue pairs which have

distance profiles.

We have already generated top 200 fragment structures

for each segment of the query sequence, by gapless

threading of the query segment sequence through the

template library. In the fragment file, we also recorded

the template name and residue indexes for each selected

fragment structure. We then checked all the fragments in

different positions if they come from the same template.

If there are two residues in two different fragment struc-

tures (one aligned with residue i and another with resi-

due j in the query sequence) which come from the same

template structure, we can directly calculate their Ca dis-

tance dkl (assuming the indexes of the two residues are k

and l in the template), as they are in the same coordinate

system. If the distance is <9 Å, then we consider residue

i and j in the query sequence which may also have the

same distance. A histogram of dij, Ni,j(dij) will be con-

structed for all the (i, j) residue pairs by comparing every

two fragment structures in two different positions.

Not all the residue pairs are concerned in the distance

profile because many are false-positive pairs. We filter the

residue pairs whose distance profiles are monotonically

increasing functions, as we cannot distinguish whether

those residue pairs have short-range contacts or not from

their distributions. We count only the residue pairs

which have the peaks of the histograms below 9 Å from

their distance distributions. Those residue pairs constitute

the set Sdp. We choose fragments with length 10 to

extract distance profile information because 10-mer frag-

ments can lead to the highest accuracy of distance

restraint prediction.

The concept of distance profile is different from the

traditional distance restraint energy term, where only one
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expected distance is assigned to each residue pair, which

is usually the average distance extracted from threading

alignments or sequence-based predictions. The average

distance can be incorrect if multiple distances appear

with high frequencies. The distance profile term designed

here includes frequencies of all the distance bins. There-

fore, all the distances, which have high probabilities, will

be appropriately considered in Eq. (9). The best distance

will be eventually selected by the simulations with the

competitions with other energy terms.

8. Radius of gyration

The propensity to the radius of gyration is written as:

Erg ¼
0 rmin � r � rmax

ðrmin � rÞ2 r < rmin

ðr � rmaxÞ2 r > rmax

8<
: ð10Þ

where r is the radius of gyration of the simulated decoy

structure, rmin and rmax are the minimum and maximum

of estimated radius of gyration. The expected radius gyra-

tion was estimated based on both protein length and SS

elements. Generally, longer proteins have a larger radius of

gyration; a-proteins are relative less tightly packed than a/
b-proteins especially when they contain some long helices.

The average radius and the minimum radius of proteins

with different lengths are shown in Supporting Informa-

tion Figure S4. The minimum radius fits well the equation

rmin 5 2.316L0.358 (dash line), which has a Pearson correla-

tion coefficient (PCC) of 0.991 with the actual values. The

average radius of gyration has bigger fluctuations which

are approximately fitted with ravg 5 d12.316L0.358 (solid

line) where the difference d between the minimum radius

and the average radius is 2.5 Å. If we take rmin 5
2.316L0.358 and rmax ¼ maxfrmin þ 3d; 0:7

ffiffiffiffiffiffiffiffi
3=5

p
Nmax hg

where Nmaxh is the number of residues of the longest helix

in the structure, we find that 95% of the experimental

structures in the PDB have the radius of gyration within

[rmin, rmax], that is, most of the native states have Erg 5 0

in Eq. (10).

9. Strand–helix–strand packing

As there are rarely left-handed b-a-b motifs in native

structures, we add one energy term to penalize this motif

during the simulation:

Ebab ¼ Epen left� handed

0 else

�
ð11Þ

where the penalty energy Epen equals to the negative

value of the total hydrogen bonding energy between the

two b-strands in the motif. Given the structure of each

decoy, we first scan all the SS elements which have one

helix sequentially between two b-strands. Then we check

if the two b-strands form a parallel b-sheet. The left-

handedness is determined based on the relative position

of the center of the helix to the plane formed by the two

b-strands. As the b-a-b motif has identical energy values

to its mirror image for most of the other energy terms,

Eq. (11) will help avoid the incorrect mirror image mod-

els, which have been most often encountered in ab initio

structure folding.4

10. Helix packing

The helix–helix packing energy is written as:

Ehpði; jÞ ¼ � logðPðdij ; /ijÞÞ ð12Þ

where dij is the distance between the medial axis of the

ith helix and that of the jth helix; uij is the torsion angle

of the axis vectors which are oriented from N- to C-ter-

minal. P(dij, uij) is the probability distribution calculated

from the nonredundant experimental structures, where

dij is split into 30 bins in [0, 15 Å] and uij into 36 bins

in [21808, 1808]. As shown in Supporting Information

Figure S5, most of the helix pairs fall in the region of dij
5 9.5 Å and uij 5 2160, 240 or 1408.

11. Strand packing

The b-pairing energy of the ith and jth residues in two

paired strands is written as:

Ebpði; jÞ ¼ � logðPðaaðiÞ; aaðjÞ;TijÞÞ ð13Þ

where P(A, B, T) is the probability for amino acids A

and B in the sheet type T (parallel or antiparallel), calcu-

lated from the high-resolution experimental structures.

This energy term is used to emphasize the residue types

in b-pairs which have not been considered by the hydro-

gen bonding term. As shown in Supporting Information

Figure S6, the distributions of residue types between the

residue pairs that form backbone hydrogen bonds are

highly uneven. Prolines rarely appear in a b-pair as there
is no hydrogen atom associated with the nitrogen. By

comparing Supporting Information Figure S6(A,B), there

is a slight difference between the two distributions. There

are more b-pairs between glutamic acid and arginine in

parallel b-sheets than in antiparallel b-sheets.

Design of conformational movements

Efficient conformational search is another critical com-

ponent of ab initio protein folding, where the design of

conformational movements with high acceptance rates is

essential for improving the efficiency of Monte Carlo

simulations. QUARK performs the conformational search

based on the standard REMC simulation algorithm.37 It

involves two types of conformational movements. The

global movement consists of periodically conformational

swap between neighboring replicas. The local movements

include conformational updates implemented in each
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replica, which is the major focus of discussion in this

section.

We have designed 11 local movements for QUARK,

which can also be divided into three levels: residue level

(M1–M4), segmental level (M5–M8), and topology level

(M9–M11) (Fig. 5). Seven movements in the residue level

and segmental level have also been included in the Mod-

Refiner program for structure refinement, which have

shown efficiency in removing various structural outliers.

Residue-level movements

The residue level movements change only the confor-

mation of one residue, but may still result in large con-

formational changes to the global structure. Movements

M1, M2, and M3 randomly change one bond length,

bond angle, and torsion angle of a randomly selected res-

idue. Movement M4 substitutes these three parameters in

the selected residue by the clustered values for this resi-

due which are most frequently occurred in the template

fragments at the position. This is equivalent to the frag-

ment substitution movement with fragment length equal

to 1. Although M4 can be decomposed into the combi-

nations of M1, M2, and M3, it is more efficient with

around twice higher acceptance rate than M3 because the

torsion-angle values are clustered from experimental frag-

ment structures. M4 implemented in ModRefiner is a lit-

tle different, which randomly selects one torsion-angle

pair from the allowed region in the Ramachandran plot

as it does not use fragment structures.

Segment-level movements

There are four movements which change the confor-

mations of a segment sequence. Movement M5 substi-

tutes one fragment in the decoy by another one ran-

domly selected from the position-specific fragment struc-

tures. It is one of the important local movements in

QUARK that can help reduce the conformational search

space and increase the quality of the local structures. To

minimize the conformational change of the surrounding

residues and to increase the acceptance rate, a Cyclic

Coordinate Descent38 movement is followed, which tries

to adjust the segment conformation and makes it connect

with the anchor points of the surrounding chain. How-

ever, M5 still can be hardly accepted when the fragment

is long and the decoy structure becomes compact after a

number of cycles of simulations. Hence, we try to use

more long fragments at the commencement of the simu-

lation where the decoy structure has not been well

packed. The probability of short fragment substitutions

will be gradually increased with the process of the simu-

lations. In Supporting Information Figure S7, we show

the fragment length distributions in terms of different

cycles of QUARK simulations. In each simulation cycle c,

the probability of choosing fragment length l follows the

discrete Gaussian distribution:

Figure 5
Illustration of 11 movements designed for the QUARK simulations. New conformations after movements are represented by dash lines.
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Pfragsubðl; cÞ ¼ e
�ð20�l�0:1cÞ2

2r2

P20
l¼1 e

�ð20�l�0:1cÞ2
2r2

; r ¼ 3=
ffiffiffi
2

p
; c � 200

ð14Þ

where the average length of the moved fragments

decreases with the number of the simulation cycles which

is proportional to the simulation time. We found that

the acceptance rate of M5 was increased by 1.45 times,

compared with that using the uniform distribution.

Movement M6 is an LMProt39 perturbation, which

first randomly changes the positions of backbone atoms

in a selected segment and then tries to restrict all the

bond lengths and bond angles within the physically

allowed region. Movement M7 rotates the backbone

atoms of a randomly selected segment around the axis

connecting the two ending Ca atoms. Movement M8

shifts the residue numbers in a segment forward or back-

ward by one residue, which means that the coordinates

of each residue are copied from their preceded or fol-

lowed residue in the segment. We then need to delete the

unused coordinates of one residue in one terminal and

insert new coordinates of another residue in the other

terminal. This movement can easily adjust the b-pairing
in two well-aligned b-strands.

Topology-level movements

There are three topological movements which try to

form well-packed helix pair, b-pair, and b-turn. In

movement M9, one helix is moved close to another one.

The probability of their distance and torsion-angle distri-

bution is the same as that in the helix-packing energy

term. The linkage region between the two helices will be

rebuilt to keep the backbone connectivity. In the similarly

way, one b-pair is formed in movement M10. As one b-
strand is likely to pair with another one which has simi-

lar number of residues to form a b-sheet, we precalcu-

lated the probability for every pair of residues which may

form a b-pair based on their SS types and positions in

the SS elements. A pair of residues whose predicted SS

types are strands have a higher probability than those

with SS types equal to coils and helices. During the ran-

dom b-pair formation movement M10, we select the res-

idue pair based on those precalculated probabilities. The

possibilities of forming a b-pair in antiparallel and paral-

lel sheets are 75 and 25%, respectively, based on the ob-

servation from experimental structures in the PDB.

The probabilities of b-turn positions are predicted by

NN, where the correct b-turn positions in the training

structures are assigned by PROMOTIF.40,41 Movement

M11 tries to form a b-turn motif for every 4-mer seg-

ment along the query sequence. The number of M11

attempts at each position is proportional to the predicted

b-turn probability.

The summary of the acceptance rates of all the 11

movements designed for QUARK simulations is shown

in Supporting Information Figure S8(A–D). Movements

like M1, M2, M4, M6, and M7, which change the decoy

conformation in a smaller magnitude, often have a

higher acceptance rate. On the other hand, movements

such as M3, M5, M8, M9, M10, and M11 were designed

to change the whole part of the conformation from the

selected location to the C-terminal or to change the con-

formation of one segment, or to form a given motif

structure. They often have a much larger magnitude of

conformational move and generally have a lower accep-

tance rate.

By comparing Supporting Information Figure S8(A,B),

the replicas at high temperatures have a higher accep-

tance rate than that at the low temperatures, which is

consistent with the Metropolis criterion.42 As shown in

Supporting Information Figure S8(C,D), decoy confor-

mations in the beginning of the simulation have a higher

acceptance rate than that in the end of the simulation, as

the decoy structures at the start are unpacked and have

high energies, which therefore can easily accept new

movements. But with the number of cycles increasing,

the structures become more compact and harder to

accept new movements. The average acceptance rate of

all the movements in all the replicas and all the 200

cycles is 8.5%. The proportions of these 11 movements

attempted to update the decoy structures are listed in

Supporting Information Table S2, which are determined

by trial and error with the goal to identify the lower

energy conformations in a finite simulation time.

Although the acceptance rate of fragment substitution

movement M5 is low, it still has a high probability to

attempt during the simulation, because the local segment

or the global topology of the decoy gets improved signifi-

cantly once a M5 movement is accepted.

Global movements

QUARK runs Monte Carlo simulations in 40 parallel

replicas. Although the simulation at low temperatures

will detect conformation of lower energies, it can be eas-

ily trapped at local energy basin. The replica swap move-

ment is designed to exploit the high-temperature replica

simulations to help the low-temperature replicas jump

over low-energy basins. It is, therefore, essential to keep a

high-acceptance rate for swapping each pair of neighbor-

ing replicas.

Each replica runs separately within each cycle, where

30L1/2 (L is the protein length) movements will be

attempted based on the Metropolis criterion. After a run-

ning cycle is completed, a swap movement will be

attempted between every two adjacent replicas to

exchange their decoy conformations. The swap move-

ment also follows the Metropolis rule. Supporting Infor-

mation Figure S9(A) shows the average acceptance rates
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of the swap movements for different replicas, where

high-temperature replicas have generally higher swap

rates. The minimum swap rate is >75% which indicates

that the number of replicas is higher enough to keep suf-

ficient replica exchanges. The trajectories of five replicas

at low temperatures and five replicas at high tempera-

tures are shown in Supporting Information Figure S9(B).

Indeed, the low-temperature replicas tend to search the

low-energy basin and the high-temperature ones have

higher overall energies with higher fluctuations. The

neighboring replicas have overlapped energy ranges to

ensure replica exchanges.

The temperature distribution of the 40 replicas is

shown in Supporting Information Figure S10, which fol-

lows an exponential function for the purpose of keeping

approximately equal acceptance rate for the global swap

movements. The temperature of the ith replica is given

in the following formula:

Ti ¼ Tmin

Tmax

Tmin

� �40�i
39

; 1 � i � 40 ð15Þ

where Tmax 5 2.4 1 0.016L, Tmin 5 0.6 1 0.00067L are

the temperatures for the first and last replicas. Tempera-

ture range of the replicas is larger for bigger proteins to

keep a reasonable acceptance rate of movements in all

replicas as bigger proteins have usually larger energy fluc-

tuation range.

We have also tried different numbers of replicas when

we fix the maximum and minimum temperatures. Basi-

cally, the modeling result will be better if we use more

replicas. The overall swap rate will be higher when we

use a larger number of replicas owing to the smaller tem-

perature interval between two adjacent replicas. As more

replicas also take more time for the simulation, we

decide to use 40 replicas which can achieve a reasonably

short running time, high swap rate, and high modeling

accuracy.

RESULTS AND DISCUSSION

Impact of force field to quality of final models

An accurate force field for protein folding should have

a correlation with the structure similarity of the decoy

structures to their native structure, so that the energy

function can be used to guide the folding simulations to-

ward the native state. To examine the correlation of the

QUARK force field, we generated 5000 structure decoys

which were randomly taken from the 10 low-temperature

replicas of 10 different REMC runs for each of the 145

test proteins. Homologous templates were removed base

on the three strict filters for fragment generation before

the REMC simulations. All the decoy structures are de-

posited at http://zhanglab.ccmb.med.umich.edu/decoys/

decoy3.html.

One important question is how much the structural

prediction power of QUARK is influenced by the correla-

tion of the force field to the backbone accuracy as eval-

uated by TM-score. To examine this, we cluster the struc-

ture decoys by SPICKER and plot the TM-score of the

first cluster center versus the PCC of the energy-to-TM-

score in Figure 6. As shown in Figure 6, PCC of the

QUARK energy and the TM-score of the first cluster cen-

ter are typically in the range of [20.7, 0.2]; the average

PCC is 20.185. There is a general tendency that the

well-folded targets with higher TM-score correspond to

cases with stronger correlation coefficients between TM-

score and energy of the decoys. The PCC between the

TM-score of the first cluster and the PCC of the energy-

to-TM-score is 20.469. It is, however, quite surprising

that there are several exceptional cases where QUARK

successfully folds the proteins which do not have strong

energy-to-TM-score correlation. There are also cases

where QUARK potential has a high correlation with TM-

score but the final model has a low TM-score. In the fol-

lowing, we specifically examine these cases.

Figure 7(A) shows a normal case from the arginine

repressor of Bacillus stearothermophilus (PDB ID 1b4b,

Chain A), where the QUARK force field has a strong cor-

relation with the TM-score. This correlation results in a

well-folded model of the first cluster with a TM-score 5
0.624, which is slightly better than the structure model of

the lowest total energy (TM-score 5 0.611). This repre-

Figure 6
TM-score of the first cluster center model versus the PCC of the

QUARK energy and the TM-score of decoys. In total, 5000 decoys have

been generated for each protein to calculate the PCC.
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sents a typical example of QUARK simulations where

better energy force fields lead to better modeling results.

Figure 7(B) is an example from EntA-im (PDB ID:

2bl7, Chain A). The QUARK energy has no obvious cor-

relation with the TM-score (PCC 5 20.116) but

QUARK generated a model of correct fold (TM-score 5
0.527). The major error of this model is at the loop

region (53N-67T), where the SS prediction program

incorrectly assigned the loop as b-strands. Therefore,

QUARK generated an additional b-hairpin structure in

this loop region. Nevertheless, the global fold of the

model which contains four a-helices is the same as the

experimental structure. However, many of other decoys

whose global topologies are incorrect have consistent SSs

with the predictions (including the incorrectly assigned

b-hairpin region) and therefore have a low energy in the

QUARK simulation; this resulted in the weak energy-to-

TM-score correlation coefficient for this example. Despite

of the low correlation, the conformation of the correct

fold has the largest cluster size with the lowest free

energy, which can, therefore, be picked up by the

SPICKER clustering program. One possible reason for

the low correlation but high modeling accuracy is

because of the unbalanced Monte Carlo simulation using

fragment assembly. Local segments of the generated

decoys may be biased toward the fragments retrieved

from the template library. Those fragment structures in

fact are part of the energy surface implicitly which has

not been included in the energy calculation.

Figure 7(C) is another example of exceptional energy-

to-TM-score correlation, which is from the M11L apopto-

sis inhibitor protein (PDB ID: 2o42, Chain A). Although

this protein has a strong correlation (PCC 5 20.489), all

the decoys are within the low TM-score region. The ex-

perimental structure of the protein consists of a pack of

seven short helices, but the majority of the QUARK

decoys have the topology of a bundle of two long helices,

mainly owing to the incorrect SS prediction. The

QUARK energy of the native structure is 2406.124 which

is higher than almost all that of the decoys because more

loop regions in the native structure make the torsion-

angle potential higher than that of the decoys which con-

tain more regular helical regions as predicted by PSSpred.

This target represents a typical example of the QUARK

Figure 7
Three illustrative examples for energy-to-TM-score correlations of 5000 decoys. The cluster center model (in gray) selected from the decoy set is
superimposed onto the native structure (in black). (A) 1b4bA, (B) 2bl7A, and (C) 2o42A.
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simulations which were misguided by the incorrect SS

predictions.

In Table IV, we analyze the correlation coefficient of

each energy term in Eqs. (1)–(13) to the TM-score,

which are calculated from the average of 145 targets,

each of which has 5000 structural decoys. Owing to the

penalty effect of Ebab, QUARK simulations did not gener-

ate left-handed b-a-b motifs. Hence, there is no appa-

rent correlation coefficient between TM-score and Ebab in

this calculation. The excluded volume Eev and the radius

of gyration Erg are continuous penalty scores, which were

designed to roughly control the local conflict and global

shape. Those are the two energy terms of the weakest

correlations with the TM-score to native.

The side-chain distance-specific contact potential Eprs
has the highest correlation with TM-score although the

side-chain centers are added approximately, which dem-

onstrates the usefulness of this newly designed energy

term. The backbone pair-wise contact potential Eprm and

solvation potential Esa are the other two important

potentials which contribute to the average correlation of

the total energy.

The absolute correlations of the TM-score with the

rest five energy terms are all below 0.1. Despite of the

low correlation, we find all of them are necessary to the

QUARK ab initio folding simulation and dropping off

any of them will result in degraded folding results in our

training simulations.

Benchmark results

We have collected 51 small proteins whose lengths are

in the range of [70, 100) and 94 medium-sized proteins

with lengths in the range of [100, 150] as the two test

sets. These proteins are ‘‘Hard’’ targets defined by

LOMETS as there are no significant template structures

detected from the threading template library after remov-

ing the templates which have a sequence identity >30%

to the target. We generated 5000 decoys as described in

the previous section in 10 parallel jobs for each test pro-

tein.

Rosetta14,43 is one of the best-established ab initio

protein folding methods as demonstrated in the CASP

experiments.44,45 As both QUARK and Rosetta use frag-

ment assembly, we will mainly use Rosetta as a control

to benchmark our method. Although there were different

versions of Rosetta programs available, we found in our

benchmark that the version 2.3.0 generated models with

the highest average TM-score, which is thus used in this

study. For each target, we first run the Rosetta script to

generate top 200 3/9-mer fragments which are retrieved

using features of PSI-BLAST25 checkpoint file and

PSIPRED46 SS prediction. The template library is version

2006-05-05, which contains 6025 idealized templates. Ho-

mologous templates are removed from their template

library for fragment generation using the same filters as

described for QUARK. We then run the Rosetta release

version in 50 parallel jobs, each of which starts from a

different random number and generates 100 decoys. At

last, we use the same SPICKER program as in QUARK to

cluster the entire 5000 decoys and get top five cluster

center models.

Table V shows a summary of ab initio structural pre-

diction results by Rosetta and QUARK separately, where

the structural quality of the final models is measured by

RMSD,47 TM-score,29 global distance test-total (GDT-

TS) score,48 MaxSub49 score, and backbone hydrogen-

Table IV
Average PCC between Each Energy Term and TM-Score of 5000 Decoy

Structures of 145 Testing Proteins

Energy terms
Correlation

with TM-score

Atomic level Backbone distance-specific
contact (Eprm)

20.157

Side-chain distance-specific
contact (Eprs)

20.166

Excluded volume (Eev) 20.001
Residue level Hydrogen bonding (Ehb) 20.036

Solvation (Esa) 20.137
Backbone torsion (Edh) 20.013
Fragment-based distance profile (Edp) 20.076

Topology level Radius of gyration (Erg) 20.001
Strand–helix–strand packing (Ebab) N/A
Helix–helix packing (Ehp) 20.039
Strand–strand packing (Ebp) 20.030
Total energy (Etot) 20.185

Table V
Ab initio Modeling Results by QUARK and Rosetta

First (best in top five) cluster center model

RMSD TM-score GDT-TS MaxSub HB-score Time (h)

51 small proteins with
[70–100) residues

Rosetta 10.1 � (8.5 �) 0.350 (0.393) 0.381 (0.418) 0.291 (0.337) 0.442 (0.491) 25.0
QUARK 9.1 � (7.7 �) 0.404 (0.441) 0.428 (0.466) 0.349 (0.389) 0.503 (0.538) 37.7
QUARK-ha 6.4 � (4.6 �) 0.585 (0.667) 0.602 (0.691) 0.552 (0.635) 0.610 (0.681) 37.7

94 medium proteins with
[100–150] residues

Rosetta 13.0 � (11.5 �) 0.317 (0.346) 0.293 (0.318) 0.224 (0.247) 0.410 (0.453) 63.3
QUARK 12.5 � (10.7 �) 0.334 (0.374) 0.310 (0.342) 0.237 (0.268) 0.471 (0.504) 79.5
QUARK-ha 8.6 � (6.6 �) 0.491 (0.541) 0.439 (0.483) 0.362 (0.410) 0.449 (0.503) 79.5

aQUARK simulation using fragments without removing homologous templates to the query sequence. However, the target proteins themselves, if existing in the library,

were excluded.
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bonding score (HB-score) in comparison to the native

structures. Both TM-score and MaxSub49 score evaluate

the backbone accuracy to native after the optimum

superposition, but they have different distance cutoffs

and scoring functions. GDT-TS score is a little different

to the above two scores, which counts the sum of frac-

tions of residue pairs between model and native with dis-

tances below 1, 2, 4, and 8 Å, respectively, after optimal

structural superimpositions. As models by both Rosetta

and QUARK contain full backbone atoms, it allows us to

compare their backbone H-bonding quality directly.

Here, HB-score is defined as the number of the correctly

predicted hydrogen bonds divided by the total number of

the hydrogen bonds appearing in the experimental struc-

ture as calculated by HBPLUS.50 Based on the first

QUARK models of all the 145 targets, the PCCs between

TM-score and GDT-TS, MaxSub scores are extremely

high, which are 0.968 and 0.965 separately. It reveals that

any one of the three scoring functions is adequate

enough to evaluate the backbone accuracy to native. The

PCCs are 20.783 and 0.606 between TM-score and

RMSD, HB-score, which means they are not equivalent

metrics.

Both Rosetta and QUARK programs have a slightly

better result in folding small proteins than medium-sized

proteins. Overall, one-third of the short proteins can be

correctly folded by QUARK with TM-score >0.5. A TM-

score >0.5 means the model most probably has the same

fold as the native structure.51 However, there are only 10

out of 94 medium-sized targets which QUARK can cor-

rectly predict. It is probably owing to the fact that small

proteins have usually simpler topology and smaller con-

formational search space. Therefore, it is relatively easier

for the algorithms to identify the correct fold. By com-

paring the best in top five QUARK models with the first

model, the relative TM-score differences are 9% for small

proteins and 12% for medium-sized proteins, which indi-

cate the ranking by the clustering algorithm is also better

for small proteins.

Comparing the two folding algorithms, although

QUARK outperforms Rosetta in both sets of proteins, the

TM-score difference of the final models is slightly larger

for the small proteins (15% in TM-score of the first

model) than that for the medium-sized proteins (6%).

This protein-size-dependent difference also exists for the

best in top five models, where the TM-score differences

of final models are 12 and 8%, respectively. QUARK

models also have a higher HB-score than the Rosetta

models. However, the difference does not depend on the

protein lengths. For example, the differences of HB-score

of the first models are 14 and 15% for small- and me-

dium-sized proteins, respectively. For the best in top five

models, the HB-score differences are 10 and 11% for

small- and medium-sized proteins, respectively, which are

still independent of the protein lengths but less signifi-

cant than that of the first model.

We also compare the average CPU hours per target in

the last column of Table V. Both programs are running

in the cluster with Linux 64-bit system installed. Each

cluster node is equipped with eight 2.27 GHZ Intel

E5520 Xeon processors and 24GB memory. As there are

totally 40 replicas in the QUARK REMC simulation and

only one-fourth of the 10 low-temperature replicas are

randomly selected for clustering, the running time of

QUARK is longer than that of Rosetta which runs a sin-

gle trajectory of simulated annealing algorithm. QUARK

is 1.51 times slower than Rosetta for small proteins while

the ratio becomes 1.26 for medium-sized proteins.

In Figure 8(A–C), we present a head-to-head compari-

son of the QUARK and Rosetta models in regards of

Figure 8
Comparison of the best in top five cluster center models by Rosetta and QUARK on 145 test sequences. (A) RMSD, (B) TM-score, and (C) HB-

score.
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RMSD, TM-score, and HB-score. According to the

RMSD of the best in top five models, there are 96 out of

145 targets where QUARK models are better than Rosetta

models, whereas QUARK outperforms Rosetta in 95 and

106 cases, respectively, in terms of TM-score and HB-

score. We further conduct the paired Student’s t-test to

check their difference. The P-values of the RMSD, TM-

score and HB-score between the best in top five QUARK

and Rosetta models are 1.51E24, 2.87E27, and

6.88E214 separately, which show their differences are

statistically significant.

Among all the test proteins, a large portion of them

can be modeled with an approximately correct topology

by both Rosetta and QUARK. However, QUARK models

often have better accuracy than Rosetta models for those

targets, as shown in Figure 8(B). The reason is probably

because of the more accurately designed potentials by

QUARK for the low-resolution simulations. In Figure 9,

we present four successful examples where QUARK gen-

erated improved structural models compared with

Rosetta. Figure 9(A,B) shows two a-proteins, whereas

targets in Figures 9(C,D) are a/b-proteins. Target in Fig-

ure 9(A) is the Chain T of SecM-stalled Escherichia coli

ribosome complex (PDB ID 2gyb), which has a simple to-

pology of a three-helix bundle. QUARK folds this target

with a very high accuracy (RMSD 5 1.30 Å, TM-score

5 0.90). Rosetta has the fold approximately correct but

breaks the third long helix into two which results in a

much lower TM-score (0.68). Figure 9(B) is from the

sporulation inhibitor pXO2-61 of B. anthracis (PDB ID:

1yku), an a-protein of 132 amino acids containing five

long helices. QUARK model has a TM-score 0.61 where

all the five helices are with correct orientations. Again,

Rosetta breaks two long helices into short ones and mis-

places the orientation of the third helix, which results in

a low TM-score (0.46). The high modeling accuracy of

QUARK for a-proteins in these examples is mainly

owing to the joint effect of the side-chain pair-wise

potential in Eq. (3) and the helix-packing energy term in

Eq. (12).

Figure 9
Examples of successful modeling results by QUARK in the benchmark set. Experimental structure, QUARK model, and Rosetta model are in red,

green, and blue separately. (A) 2gybT, (B) 1ykuA, (C) 2v94B, and (D) 1jo0A.
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Target 2v94B in Figure 9(C) is the mutation of ribo-

somal protein RPS24. Four long b-strands form an anti-

parallel b-sheet, which can be split into two b-hairpins.
Although both QUARK and Rosetta models have the cor-

rect topology, one a-helix and one b-hairpin in the

Rosetta model deviate from the positions in the native

structure. Target in Figure 9(D) is a hypothetical protein

from Haemophilus influenza (PDB ID: 1jo0), which con-

tains one b-hairpin and one b-a-b motif. QUARK

model has a slightly higher TM-score than the Rosetta

model mainly because it correctly predicts the two b-
strands in the b-a-b motif, which is probably attributed

to the strand-packing energy term in Eq. (13).

All the above modeling data have been generated with

analogous templates completely excluded. In the last

rows of Table V, we also show the QUARK prediction

result without removing the fragments from homologous

templates, that is, we released the three filters. Although

no global template information was directly used in the

simulation, the prediction result with homologous frag-

ments makes the average TM-score increased by more

than 45%. This is because the fragments from the ho-

mologous templates can be assembled in a more cooper-

ative manner in the fragment substitution movements,

where structures from the same (or a few) homologous

template(s) will result in lower energy basin because of

the seamless matches of all the fragments. Moreover, the

distance profile potential which is extracted from all the

selected fragments will be more accurate when homolo-

gous fragments are included. Meanwhile, those data also

highlight the ability of the QUARK algorithm in recog-

nizing global template structures, no matter they are ho-

mologous or nonhomologous. This advantage can be

useful for folding the targets in the category of hard tem-

plate-based modeling, where analogous but nonhomolo-

gous templates exist in the PDB but threading algorithms

have difficulties in detecting them. A systematic study on

folding these proteins is under progress.

CASP9 blind test

There are 26 domains/targets in the CASP9, which

were categorized by the assessors as FM targets. Most of

these targets have no structural similarity to any proteins

in the PDB, whereas few targets (e.g., T0537, T0550-D1,

T0571-D1, and T0624) have weakly homologous tem-

plates which cannot be found by threading algorithms or

threading alignments are not satisfactory.52 Structural

models of all the server and human groups were assessed

based on the GDT-TS score and then normalized accord-

ing to their mean and standard deviation to get their

corresponding Z-scores. A positively high Z-score means

the modeling accuracy is much better than the average

result. A summary of the top 20 groups, ranked by the

Z-score of GDT-TS score, from the automated server pre-

diction section is listed in Table VI, the data of

which were taken from the FM assessor’s website (http://

prodata.swmed.edu/CASP9/evaluation/domainscore_sum/

human_server-best-Z.html). As summarized in Table VI,

models generated by QUARK server have a total Z-score

of 40.6 in this blind test, which is about 18% higher

than the second best server, and 47% higher than the

third best server from other groups.

Overall, QUARK server correctly predicted 6 out of 26

targets, where QUARK models have TM-score of >0.5 to

their native structures. Five of them are small a-proteins
and one is a small a/b-protein. If we use TM-score cut-

off of 0.4, we can have additionally four meaningful pre-

dictions for medium-sized targets. In Figure 10(A–C), we

show three successful examples of QUARK modeling

results relative to other CASP9 predictors in the FM cate-

gory, which belong to the categories of a, a/b, and b
proteins. First, target T0547 is a big protein with 611

amino acids, which is divided into four domains. The

third domain T0547-D3 was considered as a FM domain

as there were no good threading alignments for this do-

main. The native structure shown in Figure 10(A) con-

tains two long helices and one short helix. QUARK server

correctly folded the domain with a TM-score of 0.653.

Comparing the cartoon representations of the QUARK

model and the native structure, the two long helices and

the coil region between them in the model are nearly

identical to that in the native structure. The RMSD in

this region is 1.26 Å to the native structure although the

overall RMSD of the model is quite high (5.88 Å).

Target T0618-D1 in Figure 10(B) is mainly an a-pro-
tein but contains a short b-hairpin. Our SS prediction

Table VI
Cumulative Z-Score of GDT-TS Score of the Top 20 Servers on the 26

FM Targets in CASP9 Ranked Based on the Best in Top Five Modelsa

Server name Z-score of GDT-TS score

QUARK 40.5894
BAKER-ROSETTASERVER 34.3905
MULTICOM-CLUSTER 27.6390
CHUNK-TASSER 27.4773
MULTICOM-REFINE 25.8908
RAPTORX-MSA 25.0199
RAPTORX 24.9208
RAPTORX-BOOST 24.7337
PRO-SP3-TASSER 24.5677
MULTICOM-NOVEL 24.3617
MULTICOM-CONSTRUCT 24.2406
PRDOS2 20.4793
GWS 19.7966
PHYRE2 19.2882
JIANG_ASSEMBLY 19.1613
MUFOLD-MD 18.7891
GSMETASERVER 17.8072
ZHOU-SPARKS-X 16.4345
PCOMB 15.8549
MUFOLD-SERVER 15.0945

aData were taken from http://prodata.swmed.edu/CASP9/evaluation/domainscor-

e_sum/human_server-best-Z.html, The Zhang-Server prediction from our lab

using a different method is not listed here.
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program predicted it as a whole a-protein, which led the

final QUARK models to contain only helices. Neverthe-

less, one QUARK model had the core region of the helix

bundle correctly constructed, which resulted in a TM-

score of 0.478 and GDT-TS score of 41.77. The modeling

error was mainly owing to the spatial shift of the third

helix which stemmed from the incorrect SS prediction in

the region of b-sheet.
T0624-D1 is a small b-protein which contains seven

b-strands. The C-terminal strand contacts with the N-

terminal strand and another strand in the middle of the

sequence to form an antiparallel b-sheet in Figure 10(C).

The QUARK model had the orders of the strands cor-

rectly packed but there was a relatively severe twist of the

N-terminal three-strand domain relative to the other

three-strand domain. Nevertheless, it had a relatively

high GDT-TS score of 44.56. The major reason for the

successful modeling of this target is that most of the b-
strands are regularly packed with low-sequence separa-

tions in the native structure where QUARK has the

advantage in folding such proteins of simple b-hairpin
topology as observed in our benchmark test.

Despite the successes in CASP9, the ability of ab initio

folding by QUARK is still quite limited as indicated by the

overall CASP9 assessments.2 Compared with the encour-

aging performance of the ab intio predictions in early

CASP experiments (e.g., CASP3-4),53,54 one reason for

the apparently low GDT-TS/TM scores in CASP9 is owing

to the lack of targets with regular globular topology. Many

FM targets have the structures dominated by irregular

shapes such as a super-long a-helix which cannot be

folded on their own (e.g., T0616-D1 and T0629-D2).

Another reason for the obviously low modeling scores is

related to the limitation of current methods on handling

large proteins. Figure 10(D) shows an example from

T0529-D1 which is 339 residues long, containing 12 short

a-helices and four b-sheets in the experimental structure.

Such topological complexity raises tremendous challenges

to the conformational sampling and force field design for

the current ab initio simulations. The QUARK model is

among those of the highest TM-score which is, however,

still close to random (0.17). These data highlight the fact

that there are so far no methods which can fold proteins

with more than 200 amino acids without using templates.

Figure 10
Examples of QUARK modeling results in CASP9. Experimental structure and QUARK model are in black and gray separately. (A) T0547-D3, (B)

T0618-D1, (C) T0624-D1, and (D) T0529-D1.
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CONCLUSIONS

We have developed a new algorithm, QUARK, for ab

initio protein structure prediction. The protein confor-

mations are specified by the full-atom of backbone (N,

Ca, C, O, Cb, H) and side-chain center of mass (SC).

Such a semi-reduced model facilitates the design of

atomic-level force fields such as H-bonding, van der

Waals, backbone torsion-angle, and atomic pair-wise

interactions, which cannot be implemented by the con-

ventional reduced models4,17 that simplify each residue

by two or three virtual points. The conformations are

represented in both Cartesian and torsion-angle coordi-

nate systems, which significantly facilitate the conforma-

tional movements and energy calculations. As the ability

of ab initio protein structure predictions is mainly barred

by the inaccurate force field and limited conformational

search power, we present an effort to attack both aspects

of the problem by the development and benchmarking of

the QUARK algorithm.

Folding a protein structure by ab initio modeling

essentially requires force fields to guide both local struc-

tural packing and global topology assembly. There have

been a number of well-developed energy terms for local

SS constructions. But the more important short-range

interactions between residues far apart in the sequence

are generally lacked. The energy force field of QUARK

covers three levels of structural packing: atom-, residue-,

and topology-level energy terms. Especially, it includes

several topology-level terms to account for the motif

packing which are essential for assembling the global to-

pology of protein structures in the template-free protein

folding. Another helpful term is the fragment-based dis-

tance profile, where distance contacts between residue

pairs with both short and long sequence separations can

be derived from unrelated experimental structures based

on the cooperative occurrence of fragment motifs in the

same templates. This is different from the traditional

contact predictions from homologous templates55,56 or

machine learning,57,58 but provides comparable accuracy

for free-modeling targets. The other energy terms from

traditional considerations including SA, hydrogen-bond-

ing, and pair-wide atomic interactions have been recon-

structed and validated which help enhance both local

and global structural packing.

To speed up the conformational search, 11 local struc-

tural movements have been designed with the major

focus on increasing the average acceptance rate. Although

the fragment substitution and rotation movements were

borrowed from Rosetta and I-TASSER programs, which

are essential for reducing the size of the conformational

search space, the composite design of local movements

helps increase the flexibility and efficiency of the confor-

mational search significantly.

Based on the benchmark test, we showed that more

than one-third of short proteins (<100 residues) could

be successfully folded by QUARK with a TM-score of

>0.5 even after a stringent exclusion of all experimental

structures which have any sequence or structure similar-

ity to the target. For proteins with lengths >100 residues,

the successful rate is lower but there are still 31% targets

for which QUARK constructed reasonable structural folds

with a TM-score of >0.4. The average TM-score of the

models by QUARK on the 145 benchmark proteins is

10% higher than that by Rosetta, one of the state-of-the-

art algorithms in ab initio protein structure prediction.

The QUARK method was also tested in the recent com-

munity-wide CASP9 experiment. The total Z-score of the

GDT-TS score is 18% higher than the second best pro-

gram and 47% higher than the third best program from

other groups. These data demonstrated new progress in

the field of ab initio protein structure predictions.

Nevertheless, we witnessed several cases where global

energy minima have not been reached in current simula-

tions. Some cases were owing to the complexity of the

structural topology such as b-proteins of complicated

strand arrangement. We are working on enumerating all

types of typical b-topologies as QUARK starting confor-

mations which hopefully can partially address this issue.

The other cases were owing to the incorrect local and

global restraints which trap the simulations to specific

topologies, which are caused apparently by the combined

effect of both force field and search engine. Therefore,

continuous efforts in both aspects of force field develop-

ment and conformational search improvement are still

required.
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