Angewandte Chemie

Supporting Information © Wiley-VCH 2012

69451 Weinheim, Germany

6"-Thioether Tobramycin Analogues: Towards Selective Targeting of Bacterial Membranes**
Ido M. Herzog, Keith D. Green, Yifat Berkov-Zrihen, Mark Feldman, Roee R. Vidavski, Anat Eldar-Boock, Ronit Satchi-Fainaro, Avigdor Eldar, Sylvie Garneau-Tsodikova,* and Micha Fridman*

ange_201200761_sm_miscellaneous_information.pdf

Content

1. Bacterial strains, plasmids, materials, and instrumentation
2. Chemical methods
2.1. Synthesis of Boc-protected 6"-thioether TOB derivatives 3a-r
2.2. Synthesis of $\mathbf{6}^{\prime \prime}$-thioether TOB derivatives 4a-r
2.3. Oxidation of 6 "-thioether TOB derivatives $\mathbf{3 d}$-e into $6^{\prime \prime}$-sulfoxide TOB derivatives 5d-e
2.4. Oxidation of 6 "-thioether TOB derivatives 3d-e into $6 "$-sulfone TOB derivatives $\mathbf{6 d - e}$
3. Biochemical methods
3.1. Determination of MIC values of 6"-thioether TOB derivatives 4a-r
3.2. Prokaryotic protein translation inhibition test (luciferase assay system)
3.3. Time-kill kinetic study of TOB (1) and $\mathbf{4 e}$ against S. mutans UA159 and S. pyogenes serotype M12 (strain MGAS9429)
3.4. Epi-fluorescence microscopy using the 6 "-thioether TOB derivative $\mathbf{4 e}$
3.5. Determination of AME activity on the 6 "-thioether TOB derivatives 4a-r
3.6. Red blood cells (RBC) lysis assay
4. Abbreviations
5. Supporting information references
6. Supporting information Figs. S1-S45

1. Bacterial strains, plasmids, materials, and instrumentation.

The bacterial strains utilized in this study were obtained from various sources. E. coli BL21 (DE3) (M) and S. epidermidis ATCC12228 (A) were purchased from the American Type Culture Collection (ATCC) (Manassas, VA, USA). All other E. coli BL21 (DE3) strains (N-Q) were
constructed in the Garneau-Tsodikova laboratory. B. subtilis $168(\mathbf{F})$ utilized for preparation of the B. subtilis containing the $\mathrm{AAC}\left(6^{\prime}\right) / \mathrm{APH}\left(2^{\prime \prime}\right)(\mathbf{G})$ was obtained from the Bacillus Genetic Stock Center (Columbus, OH, USA). S. aureus NorA (B), methicillin-resistant S. aureus (MRSA) (C), vancomycin-resistant Enterococcus (VRE) (J), and E. coli TolC (R) were a gift from Prof. David H. Sherman (University of Michigan). S. pyogenes serotype M12 (strain MGAS9429) (D) was a gift from Prof. Itzhak Ofek (Faculty of Medicine, Tel Aviv University). S. mutans UA159 (E) was a gift from Prof. Doron Steinberg (Faculty of Dental Medicine, The Hebrew University of Jerusalem). The Shigella clinical isolate 6831 (T) was a gift from Prof. Dani Cohen (School of Public Health, Tel Aviv University). B. anthracis 34F2 Sterne strain (I) was a gift from Prof. Philip C. Hanna (University of Michigan). B. cereus ATCC1178 (H), E. faecalis ATCC29212 (K), L. monocytogenes ATCC19115 (L), E. coli MC1061 (S), and S. enterica ATCC14028 (U) were a gift from Prof. Paul J. Hergenrother (University of Illinois at Urbana-Champaign).
B. subtilis containing $\mathrm{AAC}\left(6^{\prime}\right) / \mathrm{APH}\left(2^{\prime \prime}\right)$ was prepared as previously reported. ${ }^{1}$ The $\mathrm{AAC}(3)-\mathrm{IV}^{2}$ and $\mathrm{AAC}\left(6^{\prime}\right) / \mathrm{APH}\left(2^{\prime \prime}\right),{ }^{2} \mathrm{AAC}\left(6^{\prime}\right)-\mathrm{Ib}^{\prime},{ }^{3} \mathrm{AAC}\left(6^{\prime}\right)-\mathrm{IId}$, Eis, ${ }^{4} \mathrm{AAC}\left(2^{\prime}\right)-\mathrm{Ic},{ }^{4}$ and $\mathrm{ANT}\left(4^{\prime}\right)^{5}$ enzymes were purified as previously described. 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), ATP, acetylCoA, and inorganic pyrophosphatase were bought from Sigma-Aldrich and used without any further purification. TOB was bought from Tzamal D-Chem Laboratories Ltd. All thiols were purchased from Alfa Aesar. Compound 2 was prepared as previously described by Tor and coworkers. ${ }^{6}$ MTT was purchased from TCI America (Portland, OR, USA). Spectrophotometric and colorimetric assays were performed on a multimode SpectraMax M5 plate reader using 96-well plates (Fisher Scientific). Chemical reactions were monitored by TLC (Merck, Silica gel $60 \mathrm{~F}_{254}$).

Visualization was achieved using a cerium-molybdate stain $\left(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6} \quad(5 \mathrm{~g})\right.$, $\left.\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \bullet 4 \mathrm{H}_{2} \mathrm{O}(120 \mathrm{~g}), \mathrm{H}_{2} \mathrm{SO}_{4}(80 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(720 \mathrm{~mL})\right)$. Compounds were purified by SiO_{2} flash chromatography (Merck, Kieselgel 60). ${ }^{1} \mathrm{H}$ NMR spectra (including 1D-TOCSY) and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker Avance ${ }^{\mathrm{TM}} 400$ and 500 spectrometers. Highresolution electron spray ionization (HR-ESI) mass spectra were measured on a Waters Synapt instrument.

2. Chemical methods.

2.1. Synthesis of Boc-protected 6"-thioether TOB derivatives 3a-r.

Boc-protected 6"-thioether TOB derivative 3a. To a solution of compound $2(402 \mathrm{mg}, 0.32 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(160 \mathrm{mg}, 0.49$ $\mathrm{mmol})$ in dry DMF (3 mL), 1-hexanethiol ($0.230 \mathrm{~mL}, 1.63 \mathrm{mmol}$) was added. The reaction mixture was stirred at $55^{\circ} \mathrm{C}$ overnight. Completion of the reaction was observed by TLC (EtOAc:petroleum ether/3:2, $\mathrm{R}_{f} 0.44$). The reaction mixture was diluted with EtOAc (10 mL) and the organic layer was washed twice with brine $(2 \times 5 \mathrm{~mL})$. The aqueous layer was extracted again with $\operatorname{EtOAc}(10 \mathrm{~mL})$ and the combined organic layers were dried over anhydrous MgSO_{4} and concentrated under reduced pressure. Further purification by flash column chromatography ($\mathrm{SiO}_{2}, \mathrm{EtOAc}$:petroleum ether) gave 3a $(250 \mathrm{mg}, 72 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.09$ (br s, $1 \mathrm{H}, \mathrm{H}-1$ '), 5.04 (br d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}$), 4.07 $\left(\mathrm{ddd}, J_{1}=9.2 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, J_{3}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}\right), 3.74-3.28(\mathrm{~m}, 13 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-$ 6, H-2', H-4', H-5', H-6' (2H), H-2", H-3", H-4"), 2.99 (br dd, $J_{1}=14.4 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $\left.6^{\prime \prime}\right), 2.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 "), 2.59\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right), 2.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}), 2.01(\mathrm{~m}$, 1H, H-3'eq), 1.60-1.27 (m, 55H, H-2ax, H-3'ax, $5 \mathrm{xCO}_{2} \mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right), 0.91(\mathrm{t}, J=}=$
6.6 Hz, 3H, $\left.\mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 159.5, 159.3, 157.9, 157.7 (2C), 100.0 (anomeric C), 99.6 (anomeric C), 84.3, 82.6, 80.7, 80.5, 80.4, 80.2, 77.2, 73.9, 73.5, 72.1, $66.4,57.1,51.5,51.2,51.0,41.9,35.8,34.7,34.3,34.1,33.0,32.6,31.8,30.8,30.7,30.4,29.6$, 28.8, 23.7, 14.5; HRESI-MS m/z calc'd for $\mathrm{C}_{49} \mathrm{H}_{89} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{SNa}$ 1090.5821, found 1090.5822 $[\mathrm{M}+\mathrm{Na}]^{+}$.

Boc-protected 6"-thioether TOB derivative 3b. Compound 3b was prepared as 3a using compound $2(502 \mathrm{mg}, 0.41 \mathrm{mmol})$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(200 \mathrm{mg}, 0.64 \mathrm{mmol})$, dry DMF (5 mL), and 1-octanethiol ($0.353 \mathrm{~mL}, 2.03 \mathrm{mmol}$) at rt overnight. Completion of the reaction was observed by TLC (EtOAc:petroleum ether/3:2, $\mathrm{R}_{f} 0.53$). Purification by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, EtOAc:petroleum ether) gave 3b (390 mg, 87%) as a white solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.09\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.04\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.07\left(\mathrm{ddd}, J_{1}=9.2 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, J_{3}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-5"), 3.73-3.28 (m, 13H, H-1, H-3, H-4, H-5, H-6, H-2', H-4', H-5', H-6' (2H), H-2", H-3", H4"), 2.99 (br dd, $\left.J_{1}=14.4 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 2.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 2.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}\right), 2.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}), 2.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3$ 'eq), 1.68-1.28 (m, 59H, H-2ax, H-3'ax, $\left.5 \mathrm{xCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}\right), 0.91\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 159.5,159.3,157.9,157.7$ (2C), 100.0 (anomeric C), 99.6 (anomeric C), 84.4, $82.6,80.7,80.4,80.2,77.2,73.9,73.5,72.1,66.4,57.1,51.5,51.2,51.0,42.0,35.7,34.7,34.3$, 34.1, $33.0,30.8,30.7,30.4,30.0,28.9,23.7,14.5$; HRESI-MS m / z calc'd for $\mathrm{C}_{51} \mathrm{H}_{93} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{SNa}$ 1118.6134 , found $1118.6130[\mathrm{M}+\mathrm{Na}]^{+}$.

Boc-protected 6"-thioether TOB derivative 3c. Compound 3c was prepared as 3a using compound $2(306 \mathrm{mg}, 0.25 \mathrm{mmol})$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (145 mg, 0.45 mmol), dry DMF (2 mL), and 1decanethiol ($0.360 \mathrm{~mL}, 1.74 \mathrm{mmol}$) at rt overnight. Completion of the reaction was observed by TLC (MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 0.6: 9.4, \mathrm{R}_{f} 0.42$). Purification by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 3c (262 mg, 94\%) as a white solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.09$ (br $\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.03\left(\mathrm{br} \mathrm{d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}\right), 4.07\left(\mathrm{ddd}, J_{1}=9.2 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, J_{3}=2.2 \mathrm{~Hz}\right.$, 1H, H-5"), 3.72-3.29 (m, 13H, H-1, H-3, H-4, H-5, H-6, H-2', H-4', H-5', H-6' (2H), H-2", H-3", H-4"), 2.99 (br dd, $\left.J_{1}=14.2 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 2.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 "), 2.59(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}\right), 2.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}), 2.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3$ 'eq $), 1.64\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=\right.$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}), 1.61-1.29\left(\mathrm{~m}, 62 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}, 5 \mathrm{xCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}\right), 0.91(\mathrm{t}, J=$ 6.6 Hz, 3H, $\left.\mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 159.5,159.3,157.9,157.7$ (2C), 100.1 (anomeric C), 99.6 (anomeric C), 84.4, 82.6, 80.7, 80.44, 80.37, 80.2, 77.2, 73.9, 73.6, $72.2,66.5,57.1,51.5,51.2,51.0,42.0,35.7,34.7,34.3,34.2,33.1,30.9,30.7,30.4,30.5,30.4$, 30.0, 28.87, 28.84, 28.80, 23.7, 14.5; HRESI-MS m/z calc'd for $\mathrm{C}_{53} \mathrm{H}_{97} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{SNa}$ 1146.6447, found $1146.6449[\mathrm{M}+\mathrm{Na}]^{+}$.

Boc-protected 6"-thioether TOB derivative 3d. Compound 3d was prepared as 3a using compound 2 ($303 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (144 mg, 0.44 mmol), dry DMF (2 mL), and 1dodecanethiol ($0.414 \mathrm{~mL}, 1.72 \mathrm{mmol}$) at rt overnight. Completion of the reaction was observed by TLC (MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 0.6: 9.4, \mathrm{R}_{f} 0.42$). Purification by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 3d ($260 \mathrm{mg}, 92 \%$) as a white solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.09$
 Hz, 1H, H-5"), 3.71-3.33 (m, 13H, H-1, H-3, H-4, H-5, H-6, H-2', H-4', H-5', H-6' (2H), H-2" , H$\left.3^{\prime \prime}, \mathrm{H}-4{ }^{\prime \prime}\right), 2.97\left(\mathrm{dd}, J_{1}=14.2 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}\right), 2.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 2.59(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}\right), 2.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}), 2.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}), 1.66-1.27(\mathrm{~m}, 67 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}, \mathrm{H}-$ 3'ax, $\left.5 \mathrm{xCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}\right), 0.90\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 159.5,159.2,157.9,157.7$ (2C), 100.0 (anomeric C), 99.6 (anomeric C), $84.3,82.5,80.6,80.5,80.4,80.3,80.2,77.1,73.9,73.5,72.1,66.4,57.1,51.5,51.2,51.0,41.9$, 35.7, 34.7, 34.3, 34.1, 33.0, 30.9, 30.7, 30.5, 30.4, 29.9, 28.8, 28.7, 23.7, 14.4; HRESI-MS m / z calc'd for $\mathrm{C}_{55} \mathrm{H}_{101} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{SNa} 1174.6760$, found $1174.6757[\mathrm{M}+\mathrm{Na}]^{+}$.

Boc-protected 6 "-thioether TOB derivative 3e. Compound $\mathbf{3 e}$ was prepared as 3a using compound $2(150 \mathrm{mg}, 0.12 \mathrm{mmol})$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(72 \mathrm{mg}, 0.22 \mathrm{mmol})$, dry DMF $(1 \mathrm{~mL})$, and $1-$ tetradecanethiol ($0.230 \mathrm{~mL}, 0.84 \mathrm{mmol}$) at $55{ }^{\circ} \mathrm{C}$ overnight. Completion of the reaction was observed by TLC (EtOAc:petroleum ether/3:2, $\mathrm{R}_{f} 0.53$). Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}:\right.$ petroleum ether) gave $\mathbf{3 e}(90 \mathrm{mg}$, 63%) as a white solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1$ '), 5.04 (br d, $J=2.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}\right), 4.07\left(\mathrm{ddd}, J_{1}=9.2 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}, J_{3}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}\right), 3.72-3.29(\mathrm{~m}, 13 \mathrm{H}, \mathrm{H}-$ 1, H-3, H-4, H-5, H-6, H-2', H-4', H-5', H-6' (2H), H-2", H-3", H-4"), $2.99\left(\mathrm{dd}, J_{1}=14.4 \mathrm{~Hz}, J_{2}=\right.$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "), 2.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 "), 2.59\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}\right), 2.16(\mathrm{~m}, 1 \mathrm{H}$, H-2eq), $2.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{eq}), 1.64\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{ax}\right), 1.62-1.28(\mathrm{~m}$, $\left.70 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}, 5 \mathrm{xCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}\right), 0.90\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 159.5,159.3,158.0$, 157.8 (2C), 100.0 (anomeric C), 99.6
(anomeric C), 84.3, 82.6, 80.7, 80.5, 80.4, 80.2, 77.2, 73.9, 73.6, 72.2, 66.5, 57.1, 51.5, 51.2, $51.1,42.0,35.7,34.8,34.3,34.2,33.1,30.9,30.80,30.77,30.5,30.4,30.0,28.9,28.84,28.80$, 23.7, 14.5; HRESI-MS m / z calc'd for $\mathrm{C}_{57} \mathrm{H}_{105} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{SNa} 1202.7073$, found $1202.7075[\mathrm{M}+\mathrm{Na}]^{+}$.

Boc-protected 6"-thioether TOB derivative 3f. Compound 3f was prepared as 3a using compound $2(308 \mathrm{mg}, 0.25 \mathrm{mmol})$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (105 mg, 0.30 mmol), dry DMF (2 mL), and hexadecanethiol ($0.229 \mathrm{~mL}, 0.75 \mathrm{mmol}$) at $60^{\circ} \mathrm{C}$ overnight. Completion of the reaction was observed by TLC (EtOAc:petroleum ether/3:2, $\mathrm{R}_{f} 0.61$). Purification by flash column chromatography (SiO_{2}, EtOAc:petroleum ether) gave $\mathbf{3 f}(190 \mathrm{mg}, 63 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.09$ (br s, $1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 5.04 (br s, $1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}$), 4.07 (ddd, $J_{1}=9.2 \mathrm{~Hz}$, $\left.J_{2}=6.7 \mathrm{~Hz}, J_{3}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}\right), 3.73-3.30\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-2^{\prime}, \mathrm{H}-4{ }^{\prime}, \mathrm{H}-\right.$ 5^{\prime}, H-6' (2H), H-2", H-3", H-4"), 2.99 (dd, $\left.J_{1}=14.1 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 2.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $6^{\prime \prime}$), $2.59\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{CH}_{3}\right), 2.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}), 2.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3$ 'eq), 1.64 (app. q, $\left.J_{1}=J_{2}=J_{3}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{ax}\right), 1.61-1.29\left(\mathrm{~m}, 74 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}, 5 \mathrm{xCO} \mathrm{CO}_{2}\left(\mathrm{CH}_{3}\right)_{3}\right.$, $\left.\mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{CH}_{3}\right), 0.90\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $159.4,159.2,157.8,157.6$ (2C), 100.0 (anomeric C), 99.5 (anomeric C), 84.1, 82.5, 80.6, 80.3, $80.2,77.1,73.9,73.5,72.1,66.4,57.1,51.4,51.2,50.1,42.0,35.7,34.7,34.3,34.1,33.0,30.8$, $30.4,30.0,28.89,28.86,28.82,23.7,14.5$; HRESI-MS m / z calc'd for $\mathrm{C}_{59} \mathrm{H}_{109} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{SNa}$ 1230.7386 , found $1230.7390[\mathrm{M}+\mathrm{Na}]^{+}$.

Boc-protected 6"-thioether TOB derivative 3g. Compound 3g was prepared as 3a using compound $2(150 \mathrm{mg}, 0.12 \mathrm{mmol})$,
$\mathrm{Cs}_{2} \mathrm{CO}_{3}(48 \mathrm{mg}, 0.15 \mathrm{mmol})$, dry DMF (1 mL), and 1-octadecanethiol ($105 \mathrm{mg}, 0.36 \mathrm{mmol}$) at 55 ${ }^{\circ} \mathrm{C}$ overnight. Completion of the reaction was observed by TLC (EtOAc:petroleum ether/3:2, R_{f} 0.53). Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right.$:petroleum ether) gave $\mathbf{3 g}$ (96 $\mathrm{mg}, 64 \%$) as a white solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1$ '), 5.04 (br d, $J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ " $), 4.07\left(\mathrm{ddd}, J_{1}=9.4 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, J_{3}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{\prime}\right), 3.71-3.29(\mathrm{~m}$, 13H, H-1, H-3, H-4, H-5, H-6, H-2', H-4', H-5', H-6' (2H), H-2" , H-3", H-4"), 2.99 (dd, $J_{1}=14.1$ $\left.\mathrm{Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 2.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}\right), 2.59\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{CH}_{3}\right), 2.16$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}), 2.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{eq}\right), 1.64\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{ax}\right), 1.61-1.28$ (m, $\left.78 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}, 5 \mathrm{xCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{CH}_{3}\right), 0.90\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 159.5,159.3,157.9,157.7$ (2C), 100.0 (anomeric C), 99.6 (anomeric C), 84.4, 82.6, 80.7, 80.43, 80.37, 80.2, 77.2, 73.9, 73.6, 72.2, 66.5, 57.1, 51.5, 51.2, $51.0,42.0,35.7,34.8,34.3,34.1,33.1,30.8,30.4,30.0,28.88,28.85,28.81,23.7,14.5$; HRESIMS m / z calc'd for $\mathrm{C}_{61} \mathrm{H}_{113} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{SNa} 1258.7699$, found $1258.7695[\mathrm{M}+\mathrm{Na}]^{+}$.

Boc-protected 6"-thioether TOB derivative 3h. Compound 3h was prepared as 3a using compound 2 ($330 \mathrm{mg}, 0.27 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (105 mg, 0.32 mmol), dry DMF (2 mL), and 1docosamethiol (275 mg, 0.80 mmol) at $55{ }^{\circ} \mathrm{C}$ overnight.

Completion of the reaction was observed by TLC (EtOAc:petroleum ether/3:2, $\mathrm{R}_{f} 0.62$). Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}:\right.$ petroleum ether) gave $\mathbf{3 h}(197 \mathrm{mg}$, 57%) as a white solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1$ '), 5.04 (br d, $J=3.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1 "), 4.07\left(\mathrm{ddd}, J_{1}=9.4 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}, J_{3}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{C}\right), 3.71-3.30(\mathrm{~m}, 13 \mathrm{H}, \mathrm{H}-$ 1, H-3, H-4, H-5, H-6, H-2', H-4', H-5', H-6' (2H), H-2" , H-3", H-4"), $2.99\left(\mathrm{dd}, J_{1}=13.9 \mathrm{~Hz}, J_{2}=\right.$
$\left.2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 2.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 2.59\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{20} \mathrm{CH}_{3}\right), 2.16(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-2 \mathrm{eq}), 2.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{eq}\right), 1.64\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{ax}\right), 1.61-1.26(\mathrm{~m}$, 86H, H-2ax, $\left.5 \mathrm{xCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{20} \mathrm{CH}_{3}\right), 0.90\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{20} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 159.5$, 159.3, 157.9, 157.7 (2C), 100.1 (anomeric C), 99.6 (anomeric C), 84.4, 82.6, 80.7, 80.44, 80.37, 80.2, 77.2, 73.9, 73.6, 72.2, 66.5, 57.1, 51.5, 51.2, $51.1,42.0,35.8,34.8,34.3,34.2,33.1,30.8,30.5,30.0,28.89,28.86,28.82,23.7,14.5$; HRESIMS m / z calc'd for $\mathrm{C}_{61} \mathrm{H}_{121} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{SNa}$ 1314.8325, found $1314.8319[\mathrm{M}+\mathrm{Na}]^{+}$.

Boc-protected 6"-thioether TOB derivative 3i. Compound 3i

 was prepared as 3a using compound $2(320 \mathrm{mg}, 0.26 \mathrm{mmol})$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(157 \mathrm{mg}, 0.48 \mathrm{mmol})$, dry DMF (2 mL), and 2-methyl-2propanethiol ($0.205 \mathrm{~mL}, 1.81 \mathrm{mmol}$) at rt overnight. Completion of the reaction was observed by TLC (MeOH: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / 0.6: 9.4, \mathrm{R}_{f} 0.44\right)$. Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave $\mathbf{3 i}(254 \mathrm{mg}, 94 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.11$ (br s, $1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 5.01 (br d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}$), $4.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $5^{\prime \prime}$), 3.70-3.25 (m, 13H, H-1, H-3, H-4, H-5, H-6, H-2', H-4', H-5', H-6' (2H), H-2", H-3", H-4"), $3.07\left(\mathrm{dd}, J_{1}=13.4 \mathrm{~Hz}, J_{2}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 2.62\left(\mathrm{dd}, J_{1}=13.4 \mathrm{~Hz}, J_{2}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right)$ $2.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}), 1.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{eq}), 1.65\left(\right.$ app. q, $\left.J_{1}=J_{2}=J_{3}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{Bax}^{\prime}\right)$, 1.47-1.43 (m, 46H, H-2ax, $\left.5 \mathrm{xCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.32\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 159.5,159.3,158.0,157.8(2 \mathrm{C}), 100.4$ (anomeric C), 99.5 (anomeric C), 84.7, 82.5, $80.7,80.4,80.2,77.2,74.6,73.6,72.7,72.2,66.5,57.1,51.6,51.2,43.1,42.0,35.6,35.5,34.4$, 31.5, 31.2, 30.8, 28.9, 28.8, 25.1, 23.9; HRESI-MS m / z calc'd for $\mathrm{C}_{47} \mathrm{H}_{85} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{SNa} 1062.5508$, found $1062.5505[\mathrm{M}+\mathrm{Na}]^{+}$.

Boc-protected 6"-thioether TOB derivative 3j. Compound 3j was prepared as 3a using compound $\mathbf{2}$ ($304 \mathrm{mg}, 0.25$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(144 \mathrm{mg}, 0.44 \mathrm{mmol})$, dry DMF (2 mL), and cyclohexanethiol ($0.211 \mathrm{~mL}, 1.72 \mathrm{mmol}$) at rt overnight. Completion of the reaction was observed by TLC (EtOAc:petroleum ether/3:2, $\mathrm{R}_{f} 0.36$). Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right.$:petroleum ether) gave $\mathbf{3 j}(250 \mathrm{mg}$, 95%) as a white solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.08$ (br s, $1 \mathrm{H}, \mathrm{H}-1$ '), 5.02 (br d, $J=2.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.04\left(\mathrm{br}\right.$ ddd, $\left.J_{1}=9.2 \mathrm{~Hz}, J_{2}=7.4 \mathrm{~Hz}, J_{3}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}\right), 3.71-3.27(\mathrm{~m}, 13 \mathrm{H}$, 13H, H-1, H-3, H-4, H-5, H-6, H-2', H-4', H-5', H-6' (2H), H-2", H-3", H-4"), 3.05 (dd, J $=14.2$ $\left.\mathrm{Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{C}\right), 2.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{SC}_{6} \mathrm{H}_{11}\right), 2.58\left(\mathrm{dd}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right)$, $2.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}), 2.00\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}, \mathrm{SC}_{6} \mathrm{H}_{11}\right), 1.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SC}_{6} \mathrm{H}_{11}\right), 1.69-1.25(\mathrm{~m}, 53 \mathrm{H}, \mathrm{H}-$ 2ax, H-3'ax, $\left.5 \mathrm{xCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{SC}_{6} \underline{\mathrm{H}}_{11}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 159.5$, 159.3, 158.0, 157.8, 100.3 (anomeric C), 99.7 (anomeric C), 84.6, 82.7, 80.7, 80.5, 80.4, 80.2, 77.2, 74.2, 73.6, $72.5,72.2,66.4,57.1,51.6,51.2,51.0,45.2,42.0,35.7,35.0,34.7,34.4,32.8,28.9,28.8,27.0$, 26.9; HRESI-MS m / z calc'd for $\mathrm{C}_{49} \mathrm{H}_{87} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{SNa} 1088.5665$, found 1088.5667 [M+Na] ${ }^{+}$.

Boc-protected 6"-thioether TOB derivative 3k. Compound 3k was prepared as 3a using compound 2 ($502 \mathrm{mg}, 0.41 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(200 \mathrm{mg}, 0.61 \mathrm{mmol})$, dry DMF (5 mL), and thiophenol ($0.210 \mathrm{~mL}, 2.03 \mathrm{mmol}$) at rt overnight. Completion of the reaction was observed by TLC (EtOAc:petroleum ether/3:2, $\mathrm{R}_{f} 0.36$). Purification by flash column chromatography (SiO_{2}, EtOAc:petroleum ether) gave 3k ($308 \mathrm{mg}, 71 \%$) as a white solid:
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.40\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, aromatic), $7.30\left(\right.$ app. $\mathrm{t}, J_{1}=J_{2}=6.0 \mathrm{~Hz}$, 2 H , aromatic), $7.17\left(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, aromatic), $5.07\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.02\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right)$, 4.10 (m, 1H, H-5"), 3.67-3.31 (m, 14H, H-1, H-3, H-4, H-5, H-6, H-2', H-4', H-5', H-6' (2H), H$2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}^{\prime \prime} \mathrm{C}^{\prime \prime}$), 3.00 (br dd, $\left.J_{1}=10.1 \mathrm{~Hz}, J_{2}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 2.14$ (m, 1H, H-2eq), $2.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{eq}), 1.67\left(\right.$ app. q, $\left.J_{1}=J_{2}=J_{3}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{ax}\right), 1.50-1.39(\mathrm{~m}, 46 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}$, $\left.5 \mathrm{xCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 159.5,159.3,158.0,157.8,157.7,137.9,130.1$, 129.9, 126.9, 100.3 (anomeric C), 99.6 (anomeric C), 84.6, 82.4, 80.7, 80.5, 80.4, 80.2, 77.4, $73.6,73.2,72.4,72.0,66.5,57.1,51.5,51.2,51.0,42.0,36.3,35.7,34.4,33.1,32.0,31.8,30.7$, 30.5, 28.9, 28.8; HRESI-MS m / z calc'd for $\mathrm{C}_{49} \mathrm{H}_{81} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{SNa}$ 1082.5195, found 1082.5193 $[\mathrm{M}+\mathrm{Na}]^{+}$.

Boc-protected 6"-thioether TOB derivative 31. Compound 31 was prepared as 3a using compound $2(309 \mathrm{mg}, 0.25$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(146 \mathrm{mg}, 0.45 \mathrm{mmol})$, dry DMF (2 mL), and 4-methylbenzenethiol ($218 \mathrm{mg}, 1.75 \mathrm{mmol}$) at rt overnight. Completion of the reaction was observed by TLC (MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 0.6: 9.4, \mathrm{R}_{f} 0.42$). Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave $\mathbf{3 1}(247 \mathrm{mg}, 92 \%)$ as a white solid: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.30(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $7.13(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), 5.09 (br s, $1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 5.01 (br s, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}\right), 3.64-3.31(\mathrm{~m}, 14 \mathrm{H}, \mathrm{H}-$ 1, H-3, H-4, H-5, H-6, H-2', H-4', H-5', H-6' (2H), H-2", H-3", H-4", H-6"), 2.93 (br dd, $J_{1}=10.5$ $\left.\mathrm{Hz}, J_{2}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{C}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)\right), 2.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}), 2.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 3'eq), 1.68 (app. q, $\left.J_{1}=J_{2}=J_{3}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}\right), 1.48-1.44(\mathrm{~m}, 46 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}$, $\left.5 \mathrm{xCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 159.4,159.3,158.0,157.8$ (2C), 137.1, 134.0,
130.8 (2C), 130.6 (2C), 129.1, 100.4 (anomeric C), 99.6 (anomeric C), 84.7, 82.3, 80.7, 80.5, $80.4,80.2,77.4,73.6,73.2,72.4,72.05,66.5,57.1,51.5,51.3,51.0,42.0,37.0,35.7,34.4,33.0$, 30.7, 30.4, 28.9, 28.8, 21.0; HRESI-MS m/z calc'd for $\mathrm{C}_{50} \mathrm{H}_{83} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{SNa}$ 1096.5352, found $1096.5350[\mathrm{M}+\mathrm{Na}]^{+}$.

Boc-protected 6"-thioether TOB derivative 3m. Compound $\mathbf{3 m}$ was prepared as $\mathbf{3 a}$ using compound $\mathbf{2}$ ($404 \mathrm{mg}, 0.33 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(160 \mathrm{mg}, 0.49 \mathrm{mmol})$, dry DMF (4 mL), and 2,6dimethylbenzenethiol ($0.217 \mathrm{~mL}, 1.64 \mathrm{mmol}$) at rt overnight. Completion of the reaction was observed by TLC (EtOAc:petroleum ether/3:2, $\mathrm{R}_{f} 0.44$). Purification by flash column chromatography (SiO_{2}, EtOAc:petroleum ether) gave $\mathbf{3 m}(275 \mathrm{mg}, 77 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.07\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{SC}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.13$ (br s, 1H, H-1'), 5.06 (br s, 1H, H$1^{\prime \prime}$), 4.19 (m, 1H, H-5"), 3.73-3.27 (m, 13H, H-1, H-3, H-4, H-5, H-6, H-2', H-4', H-5', H-6' (2H), H-2", H-3", H-4"), 3.05-2.91 (m, 2H, H-6"), 2.54 (s, 6H, SC $\left.\mathrm{CH}_{3}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.13$ (m, 1H, H-2eq), $1.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3\right.$ 'eq), $1.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}), 1.48-1.25\left(\mathrm{~m}, 46 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}, 5 \mathrm{xCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CD ${ }_{3}$ OD) $\delta 159.5,159.3,157.9,157.7$ (2C), 143.9, 135.8, 129.2, 129.1, 100.0 (anomeric C), 99.3 (anomeric C), 83.7, 82.3, 80.7, 80.4, 80.2, 77.3, 73.9, 73.5, 72.1, 66.5, 57.1, 51.7, 51.1, 51.0, 41.9, 39.0, 35.9, 35.5, 34.3, 33.0, 32.0, 31.8, 30.7, 30.4, 28.8, 22.6; HRESI-MS m / z calc'd for $\mathrm{C}_{51} \mathrm{H}_{85} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{SNa} 1110.5508$, found $1110.5507[\mathrm{M}+\mathrm{Na}]^{+}$.

Boc-protected 6"-thioether TOB derivative 3n. Compound 3n was prepared as $\mathbf{3 a}$ using compound $2(411 \mathrm{mg}, 0.33$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($163 \mathrm{mg}, 0.50 \mathrm{mmol}$), dry DMF (4 mL), and

2,4,6-trimethylbenzenethiol $(0.251 \mathrm{~mL}, 1.66 \mathrm{mmol})$ at rt overnight. Completion of the reaction was observed by TLC (EtOAc:petroleum ether/3:2, $\mathrm{R}_{f} 0.44$). Purification by flash column chromatography (SiO_{2}, EtOAc:petroleum ether) gave 3n (306 mg, 83\%) as a white solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 6.90$ ($\mathrm{s}, 2 \mathrm{H}$, aromatic), 5.13 (br s, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.06$ (br s, $1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}$), 4.18 (m, 1H, H-5"), 3.73-3.30 (m, 13H, H-1, H-3, H-4, H-5, H-6, H-2' H-4', H-5', H-6' (2H), H$\left.2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4 "\right), 2.98\left(\mathrm{dd}, J_{1}=12.6 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 2.92\left(\mathrm{dd}, J_{1}=12.6 \mathrm{~Hz}, J_{2}=5.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{C}), 2.50\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SC}_{6} \mathrm{H}_{2}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SC}_{6} \mathrm{H}_{2}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}), 1.99$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{eq}), 1.63\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}\right), 1.46-1.39(\mathrm{~m}, 46 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}$, $\left.5 \mathrm{xCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 159.5,159.3,158.0,157.8$ (2C), 143.8 (2C), 139.1, 132.4, 129.9 (2C), 100.4 (anomeric C), 99.3 (anomeric C), 83.9, 82.2, 80.7, 80.4, 80.2, $77.4,74.0,73.5,72.1,66.5,57.1,51.7,51.1,50.0,42.0,39.2,35.9,35.5,34.3,33.1,31.8,30.7$, 30.5, 28.9, 28.8, 28.7, 22.5, 21.0; HRESI-MS m / z calc' d for $\mathrm{C}_{52} \mathrm{H}_{87} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{SNa} 1124.5665$, found $1124.5669[\mathrm{M}+\mathrm{Na}]^{+}$.

Boc-protected 6"-thioether TOB derivative 3o. Compound 3o was prepared as 3a using compound $2(505 \mathrm{mg}, 0.41$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(200 \mathrm{mg}, 0.61 \mathrm{mmol})$, dry DMF (5 mL), and 4-tert-butylbenzenethiol ($0.344 \mathrm{~mL}, 2.04 \mathrm{mmol}$) at rt overnight. Completion of the reaction was observed by TLC (EtOAc:petroleum ether/3:2, R_{f} 0.38). Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}:\right.$ petroleum ether) gave $\mathbf{3 o}$ (410 $\mathrm{mg}, 90 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.35(\mathrm{~s}, 4 \mathrm{H}$, aromatic), $5.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, H-1'), 5.0 (br d, J = 2.2 Hz, 1H, H-1"), 4.07 (m, 1H, H-5"), 3.68-3.29 (m, 14H, H-1, H-3, H-4, H5, H-6, H-2' H-4', H-5', H-6' (2H), H-2", H-3", H-4", H-6"), 2.96 (br dd, $J_{1}=13.7 \mathrm{~Hz}, J_{2}=7.5$
$\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}), 2.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{eq}\right), 1.68\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=11.8 \mathrm{~Hz}\right.$, 1H, H-3'ax), 1.47-1.29 (m, 55H, H-2ax, $\left.5 \mathrm{xCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{SC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 159.4,159.3,158.0,157.8,157.7,150.4,134.2,130.4$ (2C), 127.1 (2C), 100.4 (anomeric C), 99.6 (anomeric C), 84.8, 82.3, 80.7, 80.44, 80.38, 80.2, 77.4, 73.6, 73.3, 72.0, $72.4,72.0,66.5,57.1,51.4,51.2,51.0,42.0,35.7,35.3,34.4,33.0,31.8,30.7,30.4,28.9,28.8 ;$ HRESI-MS m / z calc'd for $\mathrm{C}_{53} \mathrm{H}_{89} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{SNa} 1138.5821$, found $1138.5823[\mathrm{M}+\mathrm{Na}]^{+}$.

Boc-protected 6"-thioether TOB derivative 3p. Compound $\mathbf{3 p}$ was prepared as 3a using compound 2 (331 $\mathrm{mg}, 0.27 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(157 \mathrm{mg}, 0.48 \mathrm{mmol})$, dry DMF (2 mL), and 5-tert-butyl-2-methylbenzenethiol ($0.344 \mathrm{~mL}, 1.88$ $\mathrm{mmol})$ at rt overnight. Completion of the reaction was observed by TLC $\left(\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2} / 0.6: 9,4\right.$, $\mathrm{R}_{f} 0.44$). Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave $\mathbf{3 p}(284 \mathrm{mg}$, 94%) as a white solid: ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.44(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.11 (br dd, $J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.07(\mathrm{br} \mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 5.04 (br s, 2H, H-1', H-1"), 4.20 (m, 1H, H-5"), 3.74-3.29 (m, 14H, H-1, H-3, H-4, H-5, H-6, H-2' H-4', H5^{\prime}, H-6' (2H), H-2", H-3", H-4", H-6"), 3.06 (dd, $\left.J_{1}=12.9 \mathrm{~Hz}, J_{2}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}\right), 2.33(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}), 2.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq}), 1.64\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 3'ax), 1.46-1.29 (m, 55H, H-2ax, $\left.5 \mathrm{xCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $159.5,159.3,158.0,157.7$ (2C), 150.6, 136.6, 135.6, 130.7, 126.7, 123.9, 100.3 (anomeric C), 99.8 (anomeric C), $84.5,82.8,80.7,80.4,80.2,77.2,73.7,72.2,72.0,66.4,57.1,51.5,51.3$, $51.1,41.9,36.3,35.5,34.3,31.9,31.8,28.9,28.8,20.3$; HRESI-MS m / z calc'd for $\mathrm{C}_{54} \mathrm{H}_{91} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{SNa} 1152.5978$, found $1152.5970[\mathrm{M}+\mathrm{Na}]^{+}$.

Boc-protected 6"-thioether TOB derivative 3q. Compound $\mathbf{3 q}$ was prepared as $\mathbf{3 a}$ using compound 2 (406 $\mathrm{mg}, 0.33 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(160 \mathrm{mg}, 0.49 \mathrm{mmol})$, dry DMF (4 mL), and 2-naphthalenethiol ($263 \mathrm{mg}, 1.64 \mathrm{mmol}$) at rt overnight. Completion of the reaction was observed by TLC (EtOAc:petroleum ether/3:2, R_{f} 0.38). Purification by flash column chromatography (SiO_{2}, EtOAc :petroleum ether) gave $\mathbf{3 q}(347$ $\mathrm{mg}, 95 \%$) as a white solid: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.85-7.77(\mathrm{~m}, 4 \mathrm{H}$, aromatic), 7.487.39 (m, 3H, aromatic), 5.03 (br s, 2H, H-1', H-1"), 4.28 (m, 1H, H-5"), 3.72-3.29 (m, 14H, H-1, H-3, H-4, H-5, H-6, H-2', H-4', H-5', H-6' (2H), H-2", H-3", H-4", H-6"), 3.12 (br dd, $J_{1}=12.9$ $\left.\mathrm{Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime}\right), 2.15-2.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}, \mathrm{H}-3 ' \mathrm{eq}), 1.69\left(\mathrm{br} \mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=11.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}, 3 \mathrm{ax}$), 1.60-1.36 (m, 46H, H-2ax, $\left.5 \mathrm{xCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CD ${ }_{3} \mathrm{OD}$) δ $159.5,159.3,157.9,157.7,135.3,133.1,129.5,128.7,128.2,127.7,127.2,126.6,100.2$ (anomeric C), 99.7 (anomeric C), 84.5, 82.6, 80.7, 80.5, 80.4, 80.2, 77.3, 73.6, 73.2, 72.4, 72.0, $66.4,57.1,551.3,51.1,41.9,35.9,35.7,34.4,33.1,31.8,30.7,30.5,28.9,28.8$; HRESI-MS m / z calc'd for $\mathrm{C}_{53} \mathrm{H}_{83} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{SNa} 1132.5352$, found $1132.5354[\mathrm{M}+\mathrm{Na}]^{+}$.

Boc-protected 6"-thioether TOB derivative 3r. Compound $\mathbf{3 r}$ was prepared as $\mathbf{3 a}$ using compound $\mathbf{2}(222 \mathrm{mg}, 0.18$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(70 \mathrm{mg}, 0.21 \mathrm{mmol})$, dry DMF $(2 \mathrm{~mL})$, and 7-mercapto-4-methylcoumarin ($104 \mathrm{mg}, 0.54 \mathrm{mmol}$) at 55 ${ }^{\circ} \mathrm{C}$ overnight. Completion of the reaction was observed by TLC (EtOAc:petroleum ether/7:3, R_{f} 0.33). Purification by flash column chromatography ($\mathrm{SiO}_{2}, \mathrm{EtOAc}$:petroleum ether) gave $\mathbf{3 r}$ (136
$\mathrm{mg}, 66 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, coumarin ring), $7.36(\mathrm{~s}, 1 \mathrm{H}$, coumarin ring), $7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, coumarin ring), $6.25(\mathrm{~s}, 1 \mathrm{H}$, coumarin ring), 5.07 (br s, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.89$ (br s, $1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}$), 4.26 (m, 1H, H-5"), 3.73-3.30 (m, 14H, H-1, H-3, H-4, H-5, H-6, H-2', H-4', H-5', H-6' (2H), H-2", H-3", H-4", H-6"), 3.13 (m, 1H, H-6"), $2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of coumarin), $2.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}, \mathrm{H}-3\right.$ 'eq), $1.65\left(\mathrm{br} \mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=11.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3$ 'ax $), 1.60-1.25\left(\mathrm{~m}, 46 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}, 5 \mathrm{xCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $162.9,159.5,159.4,157.9,157.7,155.3,155.0,145.2,126.4,124.5,118.4,115.1,114.2,99.7$ (anomeric C), 99.4 (anomeric C), 83.1, 82.3, 80.7, 80.5, 80.4, 80.2, 77.1, 73.5, 72.8, 72.4, 71.9, $66.5,57.1,52.1,51.5,51.1,51.0,42.0,35.9,34.8,34.3,33.1,30.8,30.5,28.9,28.8,18.7$; HRESI-MS m / z calc'd for $\mathrm{C}_{53} \mathrm{H}_{83} \mathrm{~N}_{5} \mathrm{O}_{20} \mathrm{SNa} 1164.5250$, found $1164.5251[\mathrm{M}+\mathrm{Na}]^{+}$.

2.2. Synthesis of 6 "-thioether TOB derivatives 4a-r.

6"-thioether TOB derivative 4a. Compound 3a (70 mg, 0.07 mmol) was treated at rt with $95 \% \mathrm{TFA}(1 \mathrm{~mL})$ for 3 min . The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford 4a (68 mg, 91\%) as a white foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S1) $\delta 5.60(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$, H-1'), 4.94 (d, $\left.J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}\right)$, 3.89-3.77 (m, 4H, H-4, H-5', H-2", H-5"), 3.74 (app. t, $J_{1}=$ $\left.J_{2}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.63\left(\right.$ app. $\left.\mathrm{t}, J_{1}=J_{2}=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.60-3.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3, \mathrm{H}-$ 2', H-4', H-4"), 3.34-3.25 (m, 2H, H-6', H-3'), 3.11 (dd, $\left.J_{1}=13.6 \mathrm{~Hz}, J_{2}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.89$ $\left(\mathrm{dd}, J_{1}=14.1 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 2.62\left(\mathrm{dd}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 2.47$ $\left(\right.$ app. t, $\left.J_{1}=J_{2}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right), 2.41\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.6 \mathrm{~Hz}, J_{2}=J_{3}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-2eq), $2.15\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.1 \mathrm{~Hz}, J_{2}=J_{3}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{eq}\right), 1.88\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.2\right.$
$\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}), 1.79$ (app. q, $\left.J_{1}=J_{2}=J_{3}=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}\right), 1.47-1.39(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right), 1.26-1.07\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right), 0.70\left(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right)\left(\right.$ Fig. S2) $\delta 162.3\left(\mathrm{q}, J=35 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 116.3(\mathrm{q}, J=290 \mathrm{~Hz}$, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$), 100.6 (anomeric C), 94.5 (anomeric C), 83.9, 77.6, 74.2, 72.6, 70.3, 68.1, 67.9, 64.4, 54.6, 49.1, 48.3, 47.9, 39.8, 32.4, 32.3, 30.6, 29.3, 28.7, 27.8, 27.6, 21.8, 13.3; HRESI-MS m/z. calc'd for $\mathrm{C}_{24} \mathrm{H}_{50} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S} 568.3380$, found $568.3384[\mathrm{M}+\mathrm{H}]^{+}$.

6"-thioether TOB derivative 4b. Compound 3b (70 mg, 0.06 mmol) was treated at rt with $95 \% \mathrm{TFA}(1 \mathrm{~mL})$ for 3 min . The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford 4b (62 mg, 83\%) as a white foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S3) $\delta 5.59(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$, H-1'), 4.94 (d, $\left.J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}\right), 3.90-3.77\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5^{\prime}, \mathrm{H}^{2}{ }^{\prime \prime}, \mathrm{H}-5^{\prime \prime}\right), 3.74$ (app. t, $J_{1}=$ $\left.J_{2}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.64\left(\mathrm{app} . \mathrm{t}, J_{1}=J_{2}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.61-3.37\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3, \mathrm{H}-2^{\prime}\right.$, H-4', H-4"), 3.34-3.25 (m, 2H, H-6', H-3'), 3.11 (dd, $\left.J_{1}=13.6 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.89$ $\left(\mathrm{dd}, J_{1}=14.1 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{C}\right), 2.62\left(\mathrm{dd}, J_{1}=14.1 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 2.46$ (app. t, $\left.J_{1}=J_{2}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}\right), 2.41\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.6 \mathrm{~Hz}, J_{2}=J_{3}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-2 \mathrm{eq}), 2.15\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.2 \mathrm{~Hz}, J_{2}=J_{3}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right.$ 'eq $), 1.88\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{ax}), 1.80\left(\right.$ app. q, $\left.J_{1}=J_{2}=J_{3}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}\right), 1.44(\mathrm{br} \mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}\right), \quad 1.25-1.08\left(\mathrm{~m}, \quad 10 \mathrm{H}, \quad \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}\right), 0.70(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S4) $\delta 162.5\left(\mathrm{q}, J=35 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 116.0$ $\left(\mathrm{q}, J=290 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 100.2$ (anomeric C), 94.1 (anomeric C), 83.5, 77.3, 73.8, 72.2, 69.9,
$67.7,67.6,64.0,54.3,49.0,47.9,47.5,39.4,32.1,31.9,30.7,28.9,28.4,27.9,27.8,27.5,27.4$, 21.6, 13.0; HRESI-MS m / z calc'd for $\mathrm{C}_{26} \mathrm{H}_{54} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S} 596.3693$, found $596.3696[\mathrm{M}+\mathrm{H}]^{+}$.

6"-thioether TOB derivative 4c. Compound 3c (76 mg, 0.07 mmol) was treated at rt with $95 \% \mathrm{TFA}(1 \mathrm{~mL})$ for 3 min . The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford $4 \mathrm{c}(74 \mathrm{mg}, 92 \%)$ as a white foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S5) $\delta 5.60(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$, H-1'), $4.95\left(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 3.90-3.78\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5^{\prime}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-5^{\prime \prime}\right), 3.75\left(\right.$ app. $\mathrm{t}, J_{1}=$ $\left.J_{2}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.65\left(\right.$ app. $\left.\mathrm{t}, J_{1}=J_{2}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.61-3.37\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3, \mathrm{H}-2^{\prime}\right.$, H-4', H-4"), 3.36-3.26 (m, 2H, H-6', H-3"), 3.11 (dd, $\left.J_{1}=13.6 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.90$ $\left(\mathrm{dd}, J_{1}=14.1 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}\right), 2.63\left(\mathrm{dd}, J_{1}=14.1 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}\right), 2.48(\mathrm{t}$, $\left.J=7.4 \mathrm{~Hz}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}\right), 2.41\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.6 \mathrm{~Hz}, J_{2}=J_{3}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}\right), 2.17(\mathrm{app}$. $\left.\mathrm{dt}, J_{1}=12.1 \mathrm{~Hz}, J_{2}=J_{3}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{eq}\right), 1.89\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{ax}\right)$, $1.80\left(\right.$ app. q, $\left.J_{1}=J_{2}=J_{3}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}\right), 1.49-1.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}\right), 1.26-1.10$ $\left(\mathrm{m}, 14 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}\right), 0.71\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S6) $\delta 162.6\left(\mathrm{q}, J=35 \mathrm{~Hz}, \mathrm{CF}_{3} \underline{\mathrm{CO}}_{2} \mathrm{H}\right), 116.0\left(\mathrm{q}, J=289 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 100.3$ (anomeric C), 94.2 (anomeric C), 83.6, 77.4, 73.9, 72.3, 70.0, 67.8, 67.7, 64.1, 54.4, 49.1, 48.0, 47.6, 39.5, 32.2, 32.0, 30.9, 29.0, 28.5, 28.4, 28.3, 28.2, 27.9, 27.6, 21.7, 13.1; HRESI-MS m / z calc'd for $\mathrm{C}_{28} \mathrm{H}_{58} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S} 624.4006$, found $624.4005[\mathrm{M}+\mathrm{H}]^{+}$.

6"-thioether TOB derivative 4d. Compound $\mathbf{3 d}$ ($78 \mathrm{mg}, 0.07$ mmol) was treated at rt with $95 \% \mathrm{TFA}(1 \mathrm{~mL})$ for 3 min . The

TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford $\mathbf{4 d}(79 \mathrm{mg}, 95 \%)$ as a white foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S7) $\delta 5.57(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), $4.90(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{l}), 3.87-3.74(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4$, $\left.\mathrm{H}^{\prime} 5^{\prime}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-5^{\prime \prime}\right), 3.71$ (app. t, $J_{1}=J_{2}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.61 (app. t, $J_{1}=J_{2}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 6), 3.58-3.34 (m, 5H, H-1, H-3, H-2', H-4', H-4"), 3.32-3.22 (m, 2H, H-6', H-3"), 3.07 (dd, $J_{1}=$ $\left.13.6 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.86\left(\mathrm{dd}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}\right), 2.58\left(\mathrm{dd}, J_{1}=\right.$ $\left.14.0 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 2.43\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}\right), 2.39\left(\mathrm{app} . \mathrm{dt}, J_{1}=\right.$ $\left.12.7 \mathrm{~Hz}, J_{2}=J_{3}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}\right), 2.12\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.1 \mathrm{~Hz}, J_{2}=J_{3}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{eq}\right)$, $1.85\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{ax}\right), 1.77\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}\right)$, 1.45-1.36 (m, 2H, $\left.\mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}\right), 1.22-1.05\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}\right), 0.68(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S8) $\delta 163.3\left(\mathrm{q}, J=35 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right.$), $116.7\left(\mathrm{q}, J=289 \mathrm{~Hz}, \underline{\mathrm{CF}}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 101.0$ (anomeric C), 94.9 (anomeric C), 84.3, 78.0, 74.6, 73.0, $70.7,68.5,68.3,64.8,55.0,49.8,48.6,48.3,40.2,32.9,32.7,31.6,29.7,29.20,29.15,29.1,29.0$, 28.9, 28.7, 28.3, 28.2, 22.4, 13.8; HRESI-MS m / z calc'd for $\mathrm{C}_{30} \mathrm{H}_{61} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{SNa}$ 674.4139, found $674.4141[\mathrm{M}+\mathrm{Na}]^{+}$.

6"-thioether TOB derivative 4e. Compound $\mathbf{3 e}(52 \mathrm{mg}, 0.04$ mmol) was treated at rt with 95% TFA (1 mL) for 3 min . The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford
$4 \mathbf{e}(52 \mathrm{mg}, 95 \%)$ as a white foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S9) $\delta 5.57(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$, H-1'), 4.93 (d, $\left.J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}\right), 3.88-3.76\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5 ', \mathrm{H}-2^{\prime \prime}, \mathrm{H}-5{ }^{\prime \prime}\right), 3.73\left(\right.$ app. $\mathrm{t}, J_{1}=$ $\left.J_{2}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.62\left(\right.$ app. $\left.\mathrm{t}, J_{1}=J_{2}=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.58-3.33\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3, \mathrm{H}-2^{\prime}\right.$,

H-4', H-4"), 3.30 (app. t, $\left.J_{1}=J_{2}=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 3.27\left(\mathrm{dd}, J_{1}=13.6 \mathrm{~Hz}, J_{2}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ $\left.6^{\prime}\right), 3.10\left(\mathrm{dd}, J_{1}=13.6 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.89\left(\mathrm{dd}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right)$, $2.61\left(\mathrm{dd}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 2.46\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}\right), 2.38$ (app. dt, $\left.J_{1}=12.5 \mathrm{~Hz}, J_{2}=J_{3}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}\right), 2.14\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.1 \mathrm{~Hz}, J_{2}=J_{3}=4.3 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{eq}\right), 1.86\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{ax}\right), 1.76\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}), 1.47-1.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}\right), 1.24-1.08\left(\mathrm{~m}, 22 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}\right), 0.69(\mathrm{t}$, $\left.J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)($ Fig. S10) $\delta 162.6(\mathrm{q}, J=35 \mathrm{~Hz}$, $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 116.0\left(\mathrm{q}, J=290 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 100.3$ (anomeric C), 94.3 (anomeric C), 83.7, 77.6, $74.0,72.3,70.0,67.8,67.7,64.1,54.4,49.2,48.0,47.6,39.5,32.2,32.1,30.9,29.1,28.53,28.46$, 28.40, 28.3, 28.2, 28.0, 27.7, 27.6, 21.7, 13.1; HRESI-MS m/z calc'd for $\mathrm{C}_{32} \mathrm{H}_{65} \mathrm{~N}_{5} \mathrm{NaO}_{8} \mathrm{~S}$ 702.4452 , found $702.4453[\mathrm{M}+\mathrm{Na}]^{+}$.

6"-thioether TOB derivative 4f. Compound $\mathbf{3 f}$ ($34 \mathrm{mg}, 0.03$ mmol) was treated at rt with 95% TFA (1 mL) for 3 min . The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford $4 f(35 \mathrm{mg}, 98 \%)$ as a white foam: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)($ Fig. S11) $\delta 5.58(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}$, H-1'), 4.93 (d, J = 3.6 Hz, 1H, H-1"), 3.87-3.76 (m, 4H, H-4, H-5', H-2", H-5"), 3.73 (app. t, $J_{1}=$ $\left.J_{2}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.63\left(\mathrm{app} . \mathrm{t}, J_{1}=J_{2}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.59-3.31\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3, \mathrm{H}-2^{\prime}\right.$, H-4', H-4"), 3.30 (app. t, $\left.J_{1}=J_{2}=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 3.28\left(\mathrm{dd}, J_{1}=13.5 \mathrm{~Hz}, J_{2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ $\left.6^{\prime}\right), 3.09\left(\mathrm{dd}, J_{1}=13.5 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.89\left(\mathrm{dd}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right)$, $2.60\left(\mathrm{dd}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 2.45\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{CH}_{3}\right), 2.39$ (app. dt, $\left.J_{1}=12.6 \mathrm{~Hz}, J_{2}=J_{3}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}\right), 2.15\left(\right.$ app. dt, $J_{1}=12.1 \mathrm{~Hz}, J_{2}=J_{3}=4.4 \mathrm{~Hz}$,
$\left.1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{eq}\right), 1.86\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{ax}\right), 1.76\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}), 1.47-1.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{CH}_{3}\right), 1.24-1.05\left(\mathrm{~m}, 26 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{CH}_{3}\right), 0.70(\mathrm{t}$, $\left.J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)($ Fig. S12) $\delta 162.6(\mathrm{q}, J=35 \mathrm{~Hz}$, $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 116.0\left(\mathrm{q}, J=290 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 100.3$ (anomeric C), 94.2 (anomeric C), 83.6, 77.4, $73.9,72.3,70.0,67.8,67.6,64.1,54.3,49.1,48.0,47.6,39.5,32.2,32.1,30.9,29.0,28.5,28.4$, 28.3, 28.1, 28.0, 27.7, 27.5, 21.8, 13.1; HRESI-MS m / z calc'd for $\mathrm{C}_{34} \mathrm{H}_{70} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S} 708.4945$, found $708.4948[\mathrm{M}+\mathrm{H}]^{+}$.

6"-thioether TOB derivative $\mathbf{4 g}$. Compound $\mathbf{3 g}(37 \mathrm{mg}, 0.03$ mmol) was treated at rt with 95% TFA (1 mL) for 3 min . The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford $\mathbf{4 g}(38 \mathrm{mg}, 96 \%)$ as a white foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S13) $\delta 5.58(\mathrm{~d}, J=3.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1$ '), 4.87 (d, J = 3.0 Hz, 1H, H-1"), 3.85-3.73 (m, 4H, H-4, H-5', H-2", H-5"), 3.70 (app. t, $\left.J_{1}=J_{2}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.59\left(\mathrm{app} . \mathrm{t}, J_{1}=J_{2}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.49-3.31(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3$, H-2', H-4', H-4"), 3.31-3.24 (m, 2H, H-6', H-3"), 2.98 (br dd, $J_{1}=12.2 \mathrm{~Hz}, J_{2}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $\left.6^{\prime}\right), 2.85\left(\mathrm{br} \mathrm{d}, J_{1}=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 2.52\left(\mathrm{br} \mathrm{dd}, J_{1}=13.4 \mathrm{~Hz}, J_{2}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 2.37$ $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}\right), 2.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3$ 'eq $), 1.84\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=11.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-3'ax), 1.77 (app. q, $\left.J_{1}=J_{2}=J_{3}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}\right), 1.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{CH}_{3}\right)$, 1.19$1.05\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{CH}_{3}\right), 0.69\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)\left(\right.$ Fig. S14) $\delta 162.4\left(\mathrm{q}, J=35 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 116.0\left(\mathrm{q}, J=290 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 100.2$ (anomeric C), 93.8 (anomeric C), 83.6, 77.2, 73.9, 72.5, 69.9, 67.8, 67.7, 64.4, 54.5, 49.1, 48.0,
47.6, 39.8, 32.6, 32.2, 31.4, 29.2, 29.0, 28.8, 28.6, 28.1, 27.6, 22.1, 13.4; HRESI-MS m / z calc'd for $\mathrm{C}_{36} \mathrm{H}_{74} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S} 736.5258$, found $736.5259[\mathrm{M}+\mathrm{H}]^{+}$

6"-thioether TOB derivative $\mathbf{4 h}$. Compound $\mathbf{3 h}$ ($98 \mathrm{mg}, 0.08$ $\mathrm{mmol})$ was treated at rt with $95 \% \mathrm{TFA}(1.5 \mathrm{~mL})$ for 3 min . The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford 4h (76 mg, 74\%) as a white foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S15) $\delta \delta 5.61(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.87$ (d, J = 2.6 Hz, 1H, H-1'), 3.89-3.73 (m, 4H, H-4, H-5', H-2", H-5"), 3.72 (app. t, $\left.J_{1}=J_{2}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.61\left(\right.$ app. $\left.\mathrm{t}, J_{1}=J_{2}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.49-3.34(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3$, H-2', H-4', H-4"), 3.33-3.26 (m, 2H, H-6', H-3'), 2.96 (br dd, $J_{1}=13.3 \mathrm{~Hz}, J_{2}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $\left.6^{\prime}\right), 2.86\left(\mathrm{br} \mathrm{d}, J_{1}=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}\right), 2.51\left(\mathrm{br} \mathrm{dd}, J_{1}=13.3 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}\right), 2.39$ (m, 3H, H-2eq, $\left.\mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{20} \mathrm{CH}_{3}\right), 2.12$ (m, 1H, H-3'eq), 1.89-1.79 (m, 2H, H-2ax, H-3'ax), 1.37 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{20} \mathrm{CH}_{3}\right), 1.15-1.07\left(\mathrm{~m}, 38 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{20} \mathrm{CH}_{3}\right), 0.72(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{20} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S16) $\delta 162.4\left(\mathrm{q}, J=35 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$, $116.0\left(\mathrm{q}, J=290 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 100.1$ (anomeric C), 93.6 (anomeric C), 83.4, 76.8, 73.8, 72.5, $70.2,67.8,67.7,64.5,54.5,49.0,48.0,47.5,39.8,32.7,32.4,31.6,29.4,29.2,29.1,28.8,28.3$, 27.4, 22.2, 13.5; HRESI-MS m / z calc'd for $\mathrm{C}_{40} \mathrm{H}_{81} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{SNa} 814.5704$, found $814.5706[\mathrm{M}+\mathrm{Na}]^{+}$.

6"-thioether TOB derivative 4i. Compound 3i (41 mg, 0.06 mmol) was treated at rt with $95 \% \mathrm{TFA}(1 \mathrm{~mL})$ for 3 min . The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford
$4 \mathbf{i}(41 \mathrm{mg}, 94 \%)$ as a white foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S17) $\delta 5.57(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}$, H-1'), $4.92\left(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}\right), 3.89-3.77\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5^{\prime}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-5{ }^{\prime \prime}\right), 3.73\left(\right.$ app. $\mathrm{t}, J_{1}=$ $\left.J_{2}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.63\left(\right.$ app. t, $\left.J_{1}=J_{2}=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.58-3.34\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3, \mathrm{H}-2^{\prime}\right.$, H-4', H-4"), 3.31 (app. t, $\left.J_{1}=J_{2}=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 3.27\left(\mathrm{dd}, J_{1}=13.6 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ $\left.6^{\prime}\right), 3.13\left(\mathrm{dd}, J_{1}=13.6 \mathrm{~Hz}, J_{2}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.93\left(\mathrm{dd} J_{1}=13.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right)$, $2.67\left(\mathrm{dd}, J_{1}=13.2 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{C}\right), 2.41\left(\mathrm{app} . \mathrm{dt}, J_{1}=11.4 \mathrm{~Hz}, J_{2}=J_{3}=4.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-2 \mathrm{eq}), 2.16\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.3 \mathrm{~Hz}, J_{2}=J_{3}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{eq}\right), 1.88\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{ax}), 1.79$ (app. q, $\left.J_{1}=J_{2}=J_{3}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}\right), 1.18\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right)\left(\right.$ Fig. S18) $\delta 162.3\left(\mathrm{q}, J=35 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 115.5(\mathrm{q}, J=290 \mathrm{~Hz}$, $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 100.1$ (anomeric C), 94.1 (anomeric C), 83.4, 77.2, 73.6, 72.2, 69.9, 67.9, 67.4, 63.8, 54.1, $48.9,47.8,47.4,42.3,39.2,29.4,28.7,28.4,27.3$; HRESI-MS m / z calc'd for $\mathrm{C}_{22} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S}$ 540.3067 , found $540.3068[\mathrm{M}+\mathrm{H}]^{+}$.

6"-thioether TOB derivative $\mathbf{4 j}$. Compound $\mathbf{3 j}$ ($53 \mathrm{mg}, 0.05$ mmol) was treated at rt with $95 \% \mathrm{TFA}(1 \mathrm{~mL})$ for 3 min . The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford $\mathbf{4 j}(52 \mathrm{mg}, 92 \%)$ as a white foam: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)($ Fig. S19) $\delta 5.54(\mathrm{~d}, J=3.3$ Hz, 1H, H-1'), 4.89 (d, J = 3.5 Hz, 1H, H-1"), 3.86-3.73 (m, 4H, H-4, H-5', H-2", H-5"), 3.69 $\left(\right.$ app. t, $\left.J_{1}=J_{2}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.59\left(\right.$ app. $\left.\mathrm{t}, J_{1}=J_{2}=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.55-3.33(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-$ 3, H-1, H-2', H-4', H-4"), 3.26 (app. t, $J_{1}=J_{2}=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ " $), 3.23\left(\mathrm{dd}, J_{1}=13.4 \mathrm{~Hz}, J_{2}=\right.$ $\left.3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 3.07\left(\mathrm{dd}, J_{1}=13.6 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.89\left(\mathrm{dd}, J_{1}=13.8 \mathrm{~Hz}, J_{2}=2.0\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 2.63-2.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}, \mathrm{SC}_{6} \mathrm{H}_{11}\right), 2.37\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.6 \mathrm{~Hz}, J_{2}=J_{3}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$,

H-2eq), 2.11 (app. dt, $\left.J_{1}=12.2 \mathrm{~Hz}, J_{2}=J_{3}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{eq}\right), 1.84\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3$ 'ax $), 1.80-1.71\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}, \mathrm{SC}_{6} \underline{\mathrm{H}}_{11}\right), 1.57-1.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SC}_{6} \underline{\mathrm{H}}_{11}\right), 1.44-1.36(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{SC}_{6} \underline{\mathrm{H}}_{11}\right), 1.17-0.97\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{SC}_{6} \underline{\mathrm{H}}_{11}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right)($ Fig. S20) $\delta 162.7(\mathrm{q}, J=35$ $\left.\mathrm{Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 116.0\left(\mathrm{q}, J=290 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 100.4$ (anomeric C), 94.3 (anomeric C), 83.7, $77.3,73.9,72.3,70.2,67.9,67.7,64.1,54.4,49.2,48.0,47.7,44.2,39.5,33.1,32.9,30.2,29.0$, 27.5, 25.4, 25.3, 24.9; HRESI-MS m / z calc'd for $\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S}$ 566.3224, found 566.3226 $[\mathrm{M}+\mathrm{H}]^{+}$.

6"-thioether TOB derivative $4 \mathbf{k}$. Compound $\mathbf{3 k}$ ($45 \mathrm{mg}, 0.04$ mmol) was treated at rt with $95 \% \mathrm{TFA}(1 \mathrm{~mL})$ for 3 min . The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford 4k (40 mg, 83\%) as a white foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S21) $\delta 7.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, 2 H , aromatic), $7.20\left(\mathrm{dd}, J_{1}=J_{2}=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, aromatic), $7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic $), 5.54$ $\left.(\mathrm{d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1)^{\prime}\right), 4.92\left(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}\right), 3.94\left(\mathrm{ddd}, J_{1}=9.7 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, J_{3}=\right.$ $\left.2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 3.87-3.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-2^{\prime \prime}\right), 3.77\left(\mathrm{ddd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, J_{3}=3.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-5$ '), 3.68 (app. t, $J_{1}=J_{2}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.61 (app. $\left.\mathrm{t}, J_{1}=J_{2}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.58-$ $3.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4 \mathrm{C}, \mathrm{H}-4 "), 3.48$ (app. dt, $J_{1}=11.8 \mathrm{~Hz}, J_{2}=J_{3}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ '), $3.44-3.32(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3, \mathrm{H}-6{ }^{\prime \prime}\right), 3.30\left(\right.$ app. t, $\left.J_{1}=J_{2}=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3{ }^{\prime \prime}\right), 3.24\left(\mathrm{dd}, J_{1}=13.6 \mathrm{~Hz}, J_{2}=3.4\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 3.08\left(\mathrm{dd}, J_{1}=13.5 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right.$ '), $3.02\left(\mathrm{dd}, J_{1}=14.2 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-6 "), 2.38\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.6 \mathrm{~Hz}, J_{2}=J_{3}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}\right), 2.10\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.2 \mathrm{~Hz}\right.$, $\left.J_{2}=J_{3}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{eq}\right), 1.84\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{ax}\right), 1.77\left(\mathrm{app} . \mathrm{q}, J_{1}=\right.$ $\left.J_{2}=J_{3}=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)($ Fig. S22) $\delta 162.5(\mathrm{q}, J=35 \mathrm{~Hz}$,
$\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 134.9,129.2$ (2C), 128.7 (2C), 126.6, 116.0 ($\mathrm{q}, J=290 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$), 100.4 (anomeric C), 94.0 (anomeric C), 83.5, 77.2, 74.0, 72.0, 70.2, 67.9, 67.7, 64.1, 54.3, 49.2, 48.0, 47.6, 39.5, 34.6, 29.0, 27.5; HRESI-MS m/z calc'd for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{SNa} 582.2574$, found $582.2575[\mathrm{M}+\mathrm{Na}]^{+}$.

6"-thioether TOB derivative 41. Compound 31 ($42 \mathrm{mg}, 0.04$ mmol) was treated at rt with $95 \% \mathrm{TFA}(1 \mathrm{~mL})$ for 3 min . The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford $\mathbf{4 I}(42 \mathrm{mg}, 95 \%)$ as a white foam: ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)($ Fig. S23) $\delta 7.19(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}$, aromatic), 7.20 (app. t, $J_{1}=J_{2}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $5.53\left(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, 4.92 (d, $\left.J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}\right), 3.93$ (ddd, $\left.J_{1}=9.5 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, J_{3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}\right)$, 3.86$3.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-2 \mathrm{l}), 3.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.69\left(\right.$ app. $\left.\mathrm{t}, J_{1}=J_{2}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.61($ app. t, $\left.J_{1}=J_{2}=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.58-3.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4 ', \mathrm{H}-4{ }^{\prime \prime}\right), 3.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2$ '), 3.45-3.32(m, 2H, H-1, H-3), 3.31-3.21 (m, 3H, H-6', H-3", H-6"), 3.08 (dd, $\left.J_{1}=13.6 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right)$, $2.99\left(\mathrm{dd}, J_{1}=14.1 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 2.38\left(\right.$ app. dt, $J_{1}=12.6 \mathrm{~Hz}, J_{2}=J_{3}=4.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2 \mathrm{eq}), 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 2.10\left(\mathrm{app} . \mathrm{dt}, J_{1}=11.9 \mathrm{~Hz}, J_{2}=J_{3}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right.$ 'eq), 1.83 $\left(\right.$ app. q, $\left.J_{1}=J_{2}=J_{3}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{ax}\right), 1.77\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right)\left(\right.$ Fig. S24) $\delta 162.7$ (q, $\left.J=35 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 137.5,131.1,129.9$ (2C), $129.6(2 \mathrm{C}), 116.1\left(\mathrm{q}, J=290 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 100.4$ (anomeric C), 94.3 (anomeric C), 83.6, 77.4, $74.1,72.2,70.2,67.9,67.7,64.1,54.4,49.2,48.0,47.7,39.5,35.5,29.0,27.5,19.8 ;$ ESI-MS m / z calc'd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S} 574.2911$, found $574.2910[\mathrm{M}+\mathrm{H}]^{+}$.

6"-thioether TOB derivative 4m. Compound $\mathbf{3 m}$ ($71 \mathrm{mg}, 0.06$ mmol) was treated at rt with 95% TFA (1 mL) for 3 min . The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford $\mathbf{4 m}(65 \mathrm{mg}, 86 \%)$ as a white foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S25) $\delta 7.05(\mathrm{~m}, 3 \mathrm{H}$, aromatic), $5.54(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $\left.1^{\prime}\right), 4.90\left(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}\right), 3.96\left(\mathrm{ddd}, J_{1}=9.2 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, J_{3}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}\right)$, 3.85-3.79 (m, 2H, H-4, H-2"), 3.75 (m, 1H, H-5'), 3.70 (app. t, $J_{1}=J_{2}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.62$3.57(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-4 \mathrm{C}), 3.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{C}), 3.47\left(\mathrm{app} . \mathrm{dt}, J_{1}=11.7 \mathrm{~Hz}, J_{2}=J_{3}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 2^{\prime}), 3.43-3.33 (m, 2H, H-1, H-3), 3.29 (app. t, $J_{1}=J_{2}=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ "), $3.23\left(\mathrm{dd}, J_{1}=13.6\right.$ $\left.\mathrm{Hz}, J_{2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 '\right), 3.08\left(\mathrm{dd}, J_{1}=13.6 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right.$ '), $2.91\left(\mathrm{dd}, J_{1}=13.5 \mathrm{~Hz}\right.$, $\left.J_{2}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 2.85\left(\mathrm{dd}, J_{1}=13.4 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime \prime}\right), 2.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}), 2.35$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{SC}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.09\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.2 \mathrm{~Hz}, J_{2}=J_{3}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{eq}\right), 1.83\left(\mathrm{app} . \mathrm{q}, J_{1}=\right.$ $\left.J_{2}=J_{3}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{ax}\right), 1.75\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}\right) ;{ }^{13} \mathrm{C}$ NMR $(125$ $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)\left(\right.$ Fig. S26) $\delta 162.5\left(\mathrm{q}, J=35 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 142.5,132.3,128.5,127.8$ (2C), 116.0 $\left(\mathrm{q}, J=290 \mathrm{~Hz}, \underline{\mathrm{CF}}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 100.3,93.9,83.2,77.1,73.8,71.9,69.9,67.5,67.3,63.8,54.2,49.0$, 47.8, 47.3, 39.2, 35.6, 28.7, 27.3, 20.7 (2C); HRESI-MS m / z calc'd for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S}$ 588.3067, found $588.3063[\mathrm{M}+\mathrm{H}]^{+}$.

6"-thioether TOB derivative $\mathbf{4 n}$. Compound $\mathbf{3 n}$ ($53 \mathrm{mg}, 0.05$ mmol) was treated at rt with $95 \% \mathrm{TFA}(1 \mathrm{~mL})$ for 3 min . The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford $4 \mathbf{n}(55 \mathrm{mg}, 98 \%)$ as a white foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S27) $\delta 6.90(\mathrm{~s}, 2 \mathrm{H}$,
aromatic), $5.56\left(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.90(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{l}), 3.96\left(\mathrm{ddd}, J_{1}=9.4 \mathrm{~Hz}\right.$, $\left.J_{2}=6.2 \mathrm{~Hz}, J_{3}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}\right), 3.87-3.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-2{ }^{\prime \prime}\right), 3.77\left(\mathrm{ddd}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=\right.$ $\left.\left.7.1 \mathrm{~Hz}, J_{3}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right)^{\prime}\right), 3.72\left(\right.$ app. $\left.\mathrm{t}, J_{1}=J_{2}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.65-3.53(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-$ $4^{\prime}, \mathrm{H}-4$ " $), 3.49$ (app. dt, $J_{1}=11.4 \mathrm{~Hz}, J_{2}=J_{3}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ '), $3.45-3.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3)$, $3.32\left(\right.$ app. $\left.\mathrm{t}, J_{1}=J_{2}=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 3.25\left(\mathrm{dd}, J_{1}=13.6 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 3.10(\mathrm{dd}$, $\left.J_{1}=13.6 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.89\left(\mathrm{dd}, J_{1}=13.4 \mathrm{~Hz}, J_{2}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 2.83\left(\mathrm{dd}, J_{1}=\right.$ $\left.13.4 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 2.40\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.6 \mathrm{~Hz}, J_{2}=J_{3}=4.2 \mathrm{~Hz} \mathrm{1H}, \mathrm{H}-2 \mathrm{eq}\right), 2.32(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{SC}_{6} \mathrm{H}_{2}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.11\left(\mathrm{ddd}, J_{1}=12.2 \mathrm{~Hz}, J_{2}=8.8 \mathrm{~Hz}, J_{3}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right.$ 'eq), $2.08(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{SC}_{6} \mathrm{H}_{2}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.85\left(\right.$ app. q, $\left.J_{1}=J_{2}=J_{3}=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{ax}\right), 1.80\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right)\left(\right.$ Fig. S28) $\delta 162.5\left(\mathrm{q}, J=35 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 142.9$, 139.6, 129.3, $129.0(2 \underline{C}), 116.0\left(\mathrm{q}, J=290 \mathrm{~Hz}, \underline{\mathrm{CF}}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 100.8,94.3,83.7,77.5,74.2,72.4$, $70.4,68.0,67.8,64.3,54.7,49.6,48.3,47.8,39.7,36.2,29.2,27.8,21.1,19.9 ;$ HRESI-MS m / z calc'd for $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S} 602.3224$, found $602.3227[\mathrm{M}+\mathrm{H}]^{+}$.

6"-thioether TOB derivative 4o. Compound 30 (79 mg , 0.07 mmol) was treated at rt with 95% TFA (1 mL) for 3 min. The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford $\mathbf{4 o}(73 \mathrm{mg}, 84 \%)$ as a white foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S29) δ $7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $5.54(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $\left.1^{\prime}\right), 4.92\left(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}\right), 3.93\left(\mathrm{ddd}, J_{1}=9.7 \mathrm{~Hz}, J_{2}=7.9 \mathrm{~Hz}, J_{3}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right)$, $3.86-3.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-2^{\prime \prime}\right), 3.76$ (ddd, $\left.J_{1}=9.2 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}, J_{3}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.70$ $\left(\right.$ app. t, $\left.J_{1}=J_{2}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.61\left(\right.$ app. $\left.\mathrm{t}, J_{1}=J_{2}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.58-3.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$
$\left.4^{\prime}, \mathrm{H}-4{ }^{\prime \prime}\right), 3.47\left(\mathrm{app} . \mathrm{dt}, J_{1}=11.9 \mathrm{~Hz}, J_{2}=J_{3}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.44-3.33(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3, \mathrm{H}-$ $6^{\prime \prime}$), 3.32-3.26 (m, 2H, H-3", H-6"), $3.23\left(\mathrm{dd}, J_{1}=13.6 \mathrm{~Hz}, J_{2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right.$ '), $3.08\left(\mathrm{dd}, J_{1}=\right.$ $\left.13.6 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \cdot\right), 3.00\left(\mathrm{dd}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{C}\right), 2.37\left(\mathrm{app} . \mathrm{dt}, J_{1}=\right.$ $\left.12.6 \mathrm{~Hz}, J_{2}=J_{3}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}\right), 2.10\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.2 \mathrm{~Hz}, J_{2}=J_{3}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{eq}\right)$, $1.83\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{ax}\right), 1.77\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}\right)$, $1.10\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S30) $\delta 162.5(\mathrm{q}, J=35 \mathrm{~Hz}$, $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 151.0,131.7,129.5(2 \mathrm{C}), 126.6(2 \mathrm{C}), 116.3\left(\mathrm{q}, J=290 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 100.7$ (anomeric C), 94.5 (anomeric C), 83.8, 77.6, 74.2, 72.4, 70.4, 68.1, 67.9, 64.3, 54.6, 49.4, 48.2, 47.9, 39.7, 35.5, 33.9, 30.3 (3C), 29.2, 27.7; HRESI-MS m / z calc'd for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S}$ 616.3380, found $616.3381[\mathrm{M}+\mathrm{H}]^{+}$.

6"-thioether TOB derivative 4p. Compound 3p (26 mg, 0.02 mmol) was treated at rt with 95% TFA $(1 \mathrm{~mL})$ for 3 min. The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford $\mathbf{4 p}(26 \mathrm{mg}, 94 \%)$ as a white foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S31) δ $7.40(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic $), 7.19\left(\mathrm{dd}, J_{1}=7.9 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, aromatic $), 7.11(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $5.60\left(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right.$ '), $4.95\left(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}\right), 4.01$ (ddd, $\left.J_{1}=9.5 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}, J_{3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}\right), 3.90-3.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-2 \mathrm{C}), 3.80\left(\mathrm{ddd}, J_{1}=\right.$ $\left.12.1 \mathrm{~Hz}, J_{2}=8.2 \mathrm{~Hz}, J_{3}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 '\right), 3.72\left(\right.$ app. $\left.\mathrm{t}, J_{1}=J_{2}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.68-3.57$ (m, 3H, H-6, H-4', H-4"), 3.52 (app. dt, $\left.J_{1}=11.6 \mathrm{~Hz}, J_{2}=J_{3}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.49-3.25(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3, \mathrm{H}-6$ ', H-3", H-6"), 3.13 (dd, $\left.J_{1}=13.7 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 3.08\left(\mathrm{dd}, J_{1}=\right.$ $\left.13.6 \mathrm{~Hz}, J_{2}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.42\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.6 \mathrm{~Hz}, J_{2}=J_{3}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}\right), 2.21(\mathrm{~s}$,
$3 \mathrm{H}, \mathrm{CH}_{3}$), 2.15 (app. dt, $\left.J_{1}=12.3 \mathrm{~Hz}, J_{2}=J_{3}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{eq}\right), 1.88\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=\right.$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{ax}), 1.80\left(\right.$ app. q, $\left.J_{1}=J_{2}=J_{3}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}\right), 1.15\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right)\left(\right.$ Fig. S32) $\delta 162.8\left(\mathrm{q}, J=35 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 150.5,135.3,134.1,130.2$, 126.1, 124.0, $116.3\left(\mathrm{q}, J=290 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 100.8$ (anomeric C), 94.1 (anomeric C), 83.8, $77.2,74.1,72.3,70.6,67.9,64.2,54.6,49.6,48.3,47.8,39.7,34.4,34.0,30.4,29.2,27.7,19.0$; HRESI-MS m / z calc'd for $\mathrm{C}_{29} \mathrm{H}_{52} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S} 630.3537$, found $630.3534[\mathrm{M}+\mathrm{H}]^{+}$.

6"-thioether TOB derivative 4q. Compound 3q (53 mg, 0.05 mmol) was treated at rt with $95 \% \mathrm{TFA}(1 \mathrm{~mL})$ for 3 min. The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford $\mathbf{4 q}(55 \mathrm{mg}, 97 \%)$ as a white foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S33) δ 7.78-7.70 (m, 4H, aromatic), 7.45-7.37 (m, 3 H , aromatic), $5.48(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), $4.94(\mathrm{~d}$, $\left.J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}\right), 4.05\left(\mathrm{ddd}, J_{1}=9.8 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}, J_{3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}\right), 3.86\left(\mathrm{dd}, J_{1}=\right.$ $\left.10.8 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 "\right), 3.84-3.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.75\left(\mathrm{ddd}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}, J_{3}=\right.$ $\left.3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.69$ (app. t, $\left.J_{1}=J_{2}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.63-3.52\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6, \mathrm{H}^{\prime} \mathrm{H}^{\prime}, \mathrm{H}-4{ }^{\prime \prime}\right)$, $3.50\left(\mathrm{dd}, J_{1}=14.2 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 3.45-3.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3, \mathrm{H}-2^{\prime}, \mathrm{H}-3{ }^{\prime \prime}\right), 3.25(\mathrm{dd}$, $\left.J_{1}=13.6 \mathrm{~Hz}, J_{2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 '\right), 3.17\left(\mathrm{dd}, J_{1}=14.2 \mathrm{~Hz}, J_{2}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 3.07\left(\mathrm{dd}, J_{1}=\right.$ $\left.13.6 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.38\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.6 \mathrm{~Hz}, J_{2}=J_{3}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}\right), 2.10$ $\left(\right.$ app. dt, $\left.J_{1}=12.2 \mathrm{~Hz}, J_{2}=J_{3}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{eq}\right), 1.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{ax}\right), 1.76\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=\right.$ $\left.J_{3}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S34) $\delta 162.7(\mathrm{q}, J=35 \mathrm{~Hz}$, $\left.\mathrm{CF}_{3} \underline{\mathrm{CO}}_{2} \mathrm{H}\right), 133.2,132.8,131.3,128.6,127.5,126.9,126.7,126.5,126.1,115.5(\mathrm{q}, J=290 \mathrm{~Hz}$, $\underline{C F}_{3} \mathrm{CO}_{2} \mathrm{H}$), 100.4 (anomeric C), 93.9 (anomeric C), 83.4, 77.0, 74.0, 72.1, 70.2, 68.0, 67.7, 64.1,
54.4, 49.2, 48.1, 47.5, 39.5, 34.3, 29.0, 27.5; HRESI-MS m/z calc'd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{~S}$ 610.2911, found $610.2912[\mathrm{M}+\mathrm{H}]^{+}$.

6"-thioether TOB derivative 4r. Compound $\mathbf{3 r}$ (37 mg , 0.03 mmol) was treated at rt with $95 \% \mathrm{TFA}(1 \mathrm{~mL})$ for 3 min. The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford $\mathbf{4 r}(36 \mathrm{mg}, 93 \%)$ as a white foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S35) δ $7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, coumarin ring $), 7.26(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$, coumarin ring $), 7.20\left(\mathrm{dd}, J_{1}=\right.$ $8.4 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}$, coumarin ring), $6.16(\mathrm{~s}, 1 \mathrm{H}$, coumarin ring), $5.59(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $\left.1^{\prime}\right), 4.86\left(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.01\left(\mathrm{ddd}, J_{1}=9.4 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, J_{3}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}\right)$, 3.84-3.78 (m, 2H, H-4, H-2"), 3.74 (m, 1H, H-5'), 3.67 (app. t, $J_{1}=J_{2}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.633.52 (m, 4H, H-6, H-2', H-4', H-4"), $3.46\left(\mathrm{dd}, J_{1}=14.8 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 3.43-3.29(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3, \mathrm{H}-3{ }^{\prime \prime}\right), 3.25\left(\mathrm{dd}, J_{1}=13.8 \mathrm{~Hz}, J_{2}=3.5 \mathrm{~Hz}, \mathrm{H}-6 "\right), 3.18\left(\mathrm{dd}, J_{1}=14.6 \mathrm{~Hz}, J_{2}=6.6\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 3.08\left(\mathrm{dd}, J_{1}=13.7 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.36\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.6 \mathrm{~Hz}, J_{2}=J_{3}=\right.$ $4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, coumarin ring), $2.14\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.3 \mathrm{HZ}, J_{2}=J_{3}=4.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{eq}), 1.85\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{ax}\right), 1.74\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S36) $\delta 163.7,162.8\left(\mathrm{q}, J=35 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$, $155.8,152.5,141.8,125.1,123.2,117.4,115.5\left(\mathrm{q}, J=290 \mathrm{~Hz}, \underline{\mathrm{CF}}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 113.9,112.1,100.5$ (anomeric C), 93.7 (anomeric C), 83.4, 76.6, 74.0, 71.8, 70.1, 67.6, 67.4, 63.9, 54.2, 49.1, 47.9, 47.4, 39.4, 32.6, 28.9, 27.3, 17.5; HRESI-MS m/z calc'd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{~S}$ 642.2809, found $642.2804[\mathrm{M}+\mathrm{H}]^{+}$.

2.3. Oxidation of 6 "-thioether TOB derivatives 3d-e into 6 "-sulfoxide TOB derivatives 5d-e.

6"-sulfoxide TOB derivative 5d. Compound 3d (61 mg, 0.05 mmol) dissolved in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$ was treated with m chloroperbenzoic acid ($70-75 \%$) ($12 \mathrm{mg}, \sim 0.07 \mathrm{mmol}$). The reaction mixture was stirred at rt and progress of the reaction was monitored by ESI-MS by following the disappearance of the starting material $\left([\mathrm{M}+\mathrm{H}]^{+}, \mathrm{m} / \mathrm{z}\right.$ 1153.20) and the formation of the corresponding sulfoxide ($[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{m} / z$ 1169.19). Upon completion, the reaction mixture was diluted with $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$, washed with 1 M KOH (2 $\mathrm{mL})$, concentrated under reduced pressure, and treated with $95 \% \mathrm{TFA}(0.4 \mathrm{~mL})$ for 3 min . The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford $\mathbf{5 d}(34 \mathrm{mg}, 55 \%)$ as a white foam. (Note: A mixture of 2 diastereomers ($\sim 4: 1$ ratio) was obtained. The major and minor diastereomers are designated as (i) and (ii), respectively): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S37) $\delta 5.69\left(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime}(\mathrm{i})\right.$), 5.63 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} 1^{\prime}(\mathrm{ii})$), $4.96(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ "(ii) $), 4.95(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $\left.1^{\prime \prime}(\mathrm{i})\right), 4.26\left(\mathrm{app} . \mathrm{td}, J_{1}=J_{2}=9.2 \mathrm{~Hz}, J_{3}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}(\mathrm{i})\right), 4.09\left(\mathrm{app} . \operatorname{td}, J_{1}=J_{2}=9.7 \mathrm{~Hz}, J_{3}=\right.$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}(\mathrm{ii})$), 3.89-3.69 (m, 8H, H-4(i), H-4(ii), H-5(i), H-5(ii), H-5'(i), H-5'(ii), H-2"(i), H$2^{\prime \prime}(\mathrm{ii})$), 3.65-3.35 (m, 14H, H-1(i), H-1(ii), H-3(i), H-3(ii), H-6(i), H-6(ii), H-2'(i), H-2'(ii), H-4'(i), H$4^{\prime}(\mathrm{ii}), \mathrm{H}-3{ }^{\prime \prime}(\mathrm{i}), \mathrm{H}-3 "(\mathrm{ii}), \mathrm{H}-4 "(\mathrm{i}), \mathrm{H}-4$ "(ii)), 3.31-3.24 (m, 3H, H-6'(i), H-6"(i), H-6"(ii)), 3.20 (dd, $J_{1}=$ $13.7 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} \mathbf{6}^{\prime}(\mathrm{ii})$), $3.10\left(\mathrm{dd}, J_{1}=13.6 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\prime} \mathbf{6}^{\prime}(\mathrm{i}), \mathrm{H}^{\prime} \mathbf{6}^{\prime}(\mathrm{ii})\right.$), 2.97-
 $J_{2}=J_{3}=4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}(\mathrm{i}), \mathrm{H}-2 \mathrm{eq}(\mathrm{ii}), 2.15\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.1 \mathrm{~Hz}, J_{2}=J_{3}=4.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\right.$ $3^{\prime} \mathrm{eq}_{(\mathrm{i})}$, H-3'eq(ii), 1.92-1.74 (m, 4H, H-2ax(i), H-2ax(ii), H-3'ax(i), H-3'ax(ii)), 1.57 (m, 4H, $\mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}(\mathrm{i}), \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}$ (ii) $), 1.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}(\mathrm{i}), \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}(\mathrm{ii})\right.$),
1.22-1.10 (m, $32 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}(\mathrm{i}), \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}(\mathrm{iii}), 0.71(\mathrm{t}, 6 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\left.\mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}(\mathrm{i}), \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}(\mathrm{ii})\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right)$ (Fig. S38) $\delta 162.9(\mathrm{q}, J=$ $35 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$), 116.3 ($\mathrm{q}, J=290 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$), 101.2 (anomeric C(ii)), 100.7 (anomeric C(i)), 94.4 (anomeric C(ii)), 93.9 (anomeric $\left.C_{(i)}\right), 84.8(\mathrm{ii}), 84.4(\mathrm{i}), 77.2(\mathrm{ii}), 76.5(\mathrm{i}), 74.4(\mathrm{i}), 74.2(\mathrm{ii})$, $70.1(\mathrm{i}), 69.0(\mathrm{i}), 68.4(\mathrm{ii}), 68.3(\mathrm{i}), 68.1(\mathrm{ii}), 67.9(\mathrm{i}), 66.8(\mathrm{ii}), 64.5(\mathrm{i}), 54.7(\mathrm{i}), 54.6(\mathrm{ii}), 51.8,51.1(\mathrm{ii)}, 51.0(\mathrm{ii})$,
 28.4, 28.2, 28.1, 27.7, 27.6, 22.0(i), 21.7(ii), 13.4; HRESI-MS m/z calc'd for $\mathrm{C}_{30} \mathrm{H}_{62} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{~S}$ 668.4268 , found $668.4271[\mathrm{M}+\mathrm{H}]^{+}$.

6"-sulfoxide TOB derivative 5e. Compound $\mathbf{3 e}(130 \mathrm{mg}, 0.11$ mmol) dissolved in $\mathrm{CHCl}_{3}(3.5 \mathrm{~mL})$ was treated with m chloroperbenzoic acid ($70-75 \%$) ($26 \mathrm{mg}, \sim 0.15 \mathrm{mmol}$). The reaction mixture was stirred at rt and progress of the reaction was monitored by ESI-MS by following the disappearance of the starting material $\left([\mathrm{M}+\mathrm{H}]^{+}, m / z 1181.22\right)$ and the formation of the corresponding sulfoxide $\left([\mathrm{M}+\mathrm{H}]^{+}, m / z 1197.22\right)$. (Note: small quantities of the corresponding sulfone $\left([\mathrm{M}+\mathrm{H}]^{+}, m / z 1213.21\right)$ and of the starting material $\left([\mathrm{M}+\mathrm{H}]^{+}, m / z 1181.22\right)$ were in the mixture that was further processed). Upon near completion, the reaction mixture was diluted with $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$, washed with $1 \mathrm{M} \mathrm{KOH}(2 \mathrm{~mL})$, and concentrated under reduced pressure. Further purification by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave the Bocprotected diastereomeric mixture of the sulfoxide $(50 \mathrm{mg}, 38 \%)$ that was then treated with 95% TFA (0.4 mL) for 3 min . The TFA was removed under reduced pressure, the residue was dissolved in a minimal volume of $\mathrm{H}_{2} \mathrm{O}$ and freeze-dried to afford $\mathbf{5 e}(46 \mathrm{mg}, 87 \%)$ as a white foam. (Note: A mixture of 2 diastereomers ($\sim 4: 1$ ratio) was obtained. The major and minor
diastereomers are designated as (i) and (ii), respectively): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S39) δ $5.69\left(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}(\mathrm{i})\right), 5.63\left(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}(\mathrm{ii})\right), 4.95-4.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime \prime}(\mathrm{i}), \mathrm{H}-\right.$ 1 "(ii)), 4.26 (br app. td, $J_{1}=J_{2}=9.2 \mathrm{~Hz}, J_{3}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}(\mathrm{i})$), $4.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}(\mathrm{ii})\right.$), 3.883.69 (m, 8H, H-4(i), H-4(ii), H-5(i), H-5(ii), H-5'(i), H-5'(ii), H-2"(i), H-2" (ii)), 3.65-3.35 (m, 14H, H1(i), H-1 (ii), H-3(i), H-3(ii), H-6(i), H-6(ii), H-2'(i), H-2'(ii), H-4'(i), H-4'(ii), H-3"(i), H-3"(ii), H-4"(i), H-4"(ii)), 3.31-3.18 (m, 4H, H-6'(i), H-6'(ii), H-6"(i), H-6" (ii)), 3.10 (m, 2H, H-6'(i), H-6'(ii)), 2.962.74 (m, 6H, H-6"(i), H-6"(ii), $\mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}(\mathrm{i}), \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}(\mathrm{iii})$), 2.41 (app. dt, $J_{1}=12.0 \mathrm{~Hz}$, $J_{2}=J_{3}=4.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}(\mathrm{i}), \mathrm{H}-2 \mathrm{eq}(\mathrm{ii}), 2.15\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.1 \mathrm{~Hz}, J_{2}=J_{3}=4.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\right.$ $3^{\prime}{ }^{\prime}$ q.i) $^{\prime}$, H-3'eq(ii) , 1.93-1.74 (m, 4H, H-2ax(i), H-2ax(ii), H-3'ax(i), H-3'ax(ii)), 1.55 (m, 4H, $\mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}(\mathrm{i}), \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}$ (ii) $), 1.29\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}(\mathrm{i}), \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}(\mathrm{iii})\right.$, 1.20-1.10 (m, $40 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}(\mathrm{i}), \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}(\mathrm{iii}), 0.71(\mathrm{t}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}$, $\left.\mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}(\mathrm{i}), \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}(\mathrm{ii})\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right)$ (Fig. S40) $\delta 163.6(\mathrm{q}, J=$ $\left.35 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 117.0\left(\mathrm{q}, J=290 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 101.9$ (anomeric $\mathrm{C}(\mathrm{ii})$), 101.4 (anomeric C(i)), 95.0 (anomeric C(ii)), 94.5 (anomeric C(i)), $85.5(\mathrm{ii}), 85.2(\mathrm{i}), 77.8(\mathrm{ii}), 77$. (i) $^{(\mathrm{i})}$, 75.1(i), 74.9(ii), $70.8(\mathrm{i}), 69.6(\mathrm{i}), 69.2(\mathrm{ii}), 69.0(\mathrm{i}), 68.8(\mathrm{ii}), 68.6(\mathrm{i}), 67.4(\mathrm{ii}), 65.2(\mathrm{i}), 55.4_{(\mathrm{i})}, 55.3(\mathrm{ii}), 52.5(\mathrm{i}), 51.9(\mathrm{ii})$, 50.3 (ii), 50.1 (i), 49.0 (i), $48.9,48.6,48.5(\mathrm{i}), 40.6(\mathrm{i}), 32.0(\mathrm{ii}), 30.0,29.6,29.3,29.0,28.4,22.8(\mathrm{i})$, 22.5(ii), 14.2; HRESI-MS m / z calc'd for $\mathrm{C}_{32} \mathrm{H}_{66} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{~S} 696.4581$, found $696.4584[\mathrm{M}+\mathrm{H}]^{+}$.

2.4. Oxidation of 6 "-thioether TOB derivatives $3 \mathrm{~d}-\mathrm{e}$ into 6 "-sulfone TOB derivatives $6 \mathrm{~d}-\mathrm{e}$.

6"-sulfone TOB derivative 6d. Compound 6d was prepared as 5d using compound $\mathbf{3 d}(37 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{CHCl}_{3}(1 \mathrm{~mL}), m-$ chloroperbenzoic acid ($70-75 \%$) ($20 \mathrm{mg}, \sim 0.11 \mathrm{mmol}$) at rt. ESIMS indicated the disappearance of the starting material $\left([\mathrm{M}+\mathrm{H}]^{+}\right.$,
$m / z \quad 1153.20$) and the formation of the corresponding sulfone $\left([\mathrm{M}+\mathrm{H}]^{+}, \mathrm{m} / \mathrm{z}\right.$ 1185.02). Deprotection using 95% TFA (0.4 mL) for 3 min gave $\mathbf{6 d}(32 \mathrm{mg}, 85 \%)$ as a white foam: ${ }^{1} \mathrm{H}$ NMR (400 MHz, D ${ }_{2}$) (Fig. S41) $\delta 5.54$ (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), $5.00(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $1^{\prime \prime}$), 4.29 (app. td, $J_{1}=J_{2}=9.7 \mathrm{~Hz}, J_{3}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime \prime}$), $3.89-3.77\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-5^{\prime}, \mathrm{H}-\right.$ $\left.2^{\prime \prime}\right), 3.66\left(\mathrm{dd}, J_{1}=10.2 \mathrm{~Hz}, J_{2}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.60-3.36\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3, \mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-3^{\prime \prime}\right.$, H-4", H-6"(2H)), $3.28\left(\mathrm{dd}, J_{1}=13.6 \mathrm{~Hz}, J_{2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 3.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}\right)$, $3.10\left(\mathrm{dd}, J_{1}=13.6 \mathrm{~Hz}, J_{2}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.43\left(\mathrm{app} . \mathrm{dt}, J_{1}=12.6 \mathrm{~Hz}, J_{2}=J_{3}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-2 \mathrm{eq}), 2.16\left(\mathrm{app} . \mathrm{dt}, J_{1}=11.9 \mathrm{~Hz}, J_{2}=J_{3}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{eq}\right), 1.86\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=11.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3 ' \mathrm{ax}), 1.80$ (арр. q, $\left.J_{1}=J_{2}=J_{3}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}\right), 1.65(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}\right), 1.20-1.10\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}\right), 0.71(\mathrm{t}$, $\left.3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right)($ Fig. S42) $\delta 162.9(\mathrm{q}, J=35 \mathrm{~Hz}$, $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 116.3\left(\mathrm{q}, J=290 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 100.5$ (anomeric C), 95.0 (anomeric C), 84.3, 77.7, $74.6,69.9,67.7,67.65,67.5,64.5,54.5,54.1,52.3,49.2,48.1,48.0,39.9,31.2,29.6,29.4,28.7$, 28.6, 28.5, 28.4, 28.0, 27.7, 27.4, 22.0, 21.1, 13.4; HRESI-MS m / z calc'd for $\mathrm{C}_{30} \mathrm{H}_{62} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{~S}$ 684.4217, found $684.4216[\mathrm{M}+\mathrm{H}]^{+}$.

6 "-sulfone TOB derivative $6 e$. Compound $6 \mathbf{e}$ was prepared as $5 \mathbf{e}$ using compound $3 \mathrm{e}(63 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{CHCl}_{3}(1.5 \mathrm{~mL}), m-$ chloroperbenzoic acid ($70-75 \%$) ($35 \mathrm{mg}, \sim 0.20 \mathrm{mmol}$) at rt. ESI-

MS indicated the disappearance of the starting material $\left([\mathrm{M}+\mathrm{H}]^{+}, m / z 1181.22\right)$ and the formation of the corresponding sulfone $\left([\mathrm{M}+\mathrm{H}]^{+}, m / z 1213.21\right)$. Deprotection using $95 \% \mathrm{TFA}(0.4 \mathrm{~mL})$ for 3 min gave $6 \mathbf{e}(44 \mathrm{mg}, 70 \%)$ as a white foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S43) $\delta 5.54(\mathrm{~d}, J=$ $\left.3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.00\left(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}\right), 4.29\left(\mathrm{app} . \mathrm{td}, J_{1}=J_{2}=9.6 \mathrm{~Hz}, J_{3}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$,

H-5"), 3.89-3.77 (m, 4H, H-4, H-5, H-5', H-2"), 3.66 (dd, $J_{1}=10.3 \mathrm{~Hz}, J_{2}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.60-3.35 (m, 8H, H-1, H-3, H-2', H-4', H-3", H-4"H-6"(2H)), $3.28\left(\mathrm{dd}, J_{1}=13.6 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 3.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}\right), 3.10\left(\mathrm{dd}, J_{1}=13.6 \mathrm{~Hz}, J_{2}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.42$ (app. dt, $\left.J_{1}=12.6 \mathrm{~Hz}, J_{2}=J_{3}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{eq}\right), 2.16\left(\mathrm{app} . \mathrm{dt}, J_{1}=11.9 \mathrm{~Hz}, J_{2}=J_{3}=4.2 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{eq}\right), 1.85\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{ax}\right), 1.79\left(\mathrm{app} . \mathrm{q}, J_{1}=J_{2}=J_{3}=12.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}), 1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}\right), 1.20-1.10(\mathrm{~m}, 20 \mathrm{H}$, $\left.\mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}\right), 0.71\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{SCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) (Fig. S44) $\delta 163.7\left(\mathrm{q}, J=35 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 117.1\left(\mathrm{q}, J=290 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right), 101.2$ (anomeric C), 95.8 (anomeric C), $85.0,78.5,75.3,70.7,68.5,68.3,68.2,65.3,55.2,54.8,53.1,49.9,48.8$, 48.7, 40.7, 31.9, 30.3, 30.1, 29.5, 29.4, 29.3, 29.2, 29.1, 28.8, 28.5, 28.1, 22.8, 21.8, 14.1; HRESI-MS m / z calc'd for $\mathrm{C}_{32} \mathrm{H}_{65} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{SNa} 734.4350$, found $734.4348[\mathrm{M}+\mathrm{H}]^{+}$.

3. Biochemical methods

3.1. Determination of MIC values of 6 "-thioether TOB derivatives 4a-r.

MIC values were determined against a variety of Gram-positive bacterial strains: S.epidermidis ATCC12228 (A), S. aureus NorA (B), MRSA (C), S. pyogenes serotype M12 (strain MGAS9429) (D), S. mutans UA159 (E), B. subtilis 168 (F), B. subtilis 168 with AAC($\left.6^{\prime}\right) /$ APH (2")-pRB374 (G), B. cereus ATCC11778 (H), B. anthracis 34F2 Sterne strain (I), VRE (J), E. faecalis ATCC29212 (K), and L. monocytogenes ATCC19115 (L). MIC values were also determined against a variety of Gram-negative bacterial strains: E. coli BL21 (DE3) (M), E. coli BL21 (DE3) with pET22b (N), E. coli BL21 (DE3) with AAC(6')/APH(2")-pET22b (O), E. coli BL21 (DE3) with AAC(3)-IV-Int-pET19b-pps (P), E.coli BL21 (DE3) with Eis (Q), E. coli TolC (R), E. coli MC1061 (S), Shigella clinical isolate 6831 (T), and S. enterica

ATCC14028 (U). Strains were tested using a double-dilution of 6"-thioether TOB derivatives 4ar starting at $150 \mu \mathrm{~g} / \mathrm{mL}$ (Fig. S45A). All experiments were performed in two separate sets of duplicate or triplicate experiments. MIC values were confirmed by the addition of MTT ($50 \mu \mathrm{~L}$ of a $1 \mathrm{mg} / \mathrm{mL}$ solution in $\mathrm{H}_{2} \mathrm{O}$).

3.2. Prokaryotic protein translation inhibition test (luciferase assay system).

The prokaryotic in vitro translation inhibition by TOB (1) and the 6 "-thioether TOB derivative $4 \mathbf{e}$ was quantified in coupled transcription/translation assays ${ }^{7}$ by using E. coli S 30 extract for circular DNA with the pBESTluc plasmid (Promega), according to the manufacturer's protocol. Translation reactions ($10 \mu \mathrm{~L}$) containing various concentrations of the tested compounds (0.1 , $0.5,1,5,10,25,50$, and $100 \mathrm{ng} / \mathrm{mL}$) were incubated at $37{ }^{\circ} \mathrm{C}$ for 90 min , cooled on ice for 5 min , and diluted with a dilution reagent (tris-phosphate buffer ($25 \mathrm{mM}, \mathrm{pH} 7.8$ adjusted at rt), DTT (2 mM), 1,2-diaminocyclohexanetetraacetate (2 mM), glycerol (10\%), Triton X-100 (1\%), and BSA $(1 \mathrm{mg} / \mathrm{mL}))$ into 96 -well plates. The luminescence was measured immediately after the addition of the luciferase assay reagent ($50 \mu \mathrm{~L}$, Promega), and the light emission was recorded with a FLx800 Fluorescence Microplate Reader (Biotek). The half-maximal inhibition concentration $\left(\mathrm{IC}_{50}\right)$ values were obtained from fitting concentration-response curves to the data of at least two independent experiments by using Grafit 5 software.

3.3. Time-kill kinetic study of TOB (1) and 4 e against S. mutans UA159 and S. pyogenes serotype M12 (strain MGAS9429).

To determine the time-kill kinetic against S. mutans UA159 and S. pyogenes serotype M12 (strain MGAS9429), the bacteria were grown aerobically ($37{ }^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$, overnight) from a
frozen glycerol stock kept at $-80^{\circ} \mathrm{C}$ in Brain Heart Infustion (BHI) broth (BBL Microbiology Systems, Cockeysville, MD, USA) (25 mL) until they reached stationary phase. The overnight culture was then diluted into BHI broth (1 mL of overnight culture into 250 mL of fresh broth). The diluted S. mutans UA159 and S. pyogenes cultures were then aliquoted ($1 \mathrm{~mL} /$ well) into 12 well plates (Nunc, Rochester, NY, USA) and incubated in the presence of TOB (1) (75 $\mu \mathrm{g} / \mathrm{mL}$ for S. mutans and $18.8 \mu \mathrm{~g} / \mathrm{mL}$ for S. pyogenes $=1 \times$ MIC) or of the $6 "$-thioether TOB derivative $4 \mathrm{e}(2.3 \mu \mathrm{~g} / \mathrm{mL}=1 \times \mathrm{MIC})$ and grown aerobically $\left(37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}\right)$ for a total of 5 h . A positive control consisted of aliquots (1 mL) of S. mutans UA159 or S. pyogenes cultures incubated in the absence of antibiotic. Immediately (time 0), and after $10 \mathrm{~min}, 1,2,3,4$, and 5 h , an aliquot (5 $\mu \mathrm{L}$) was diluted (10-, 10^{3}-, and 10^{6}-fold) into BHI broth and $10 \mu \mathrm{~L}$ of each dilution ($50 \mu \mathrm{~L}$ total) were plated in duplicate on BHI agar (BBL Microbiology Systems) plates. After exactly 24 h (starting from each tested time point) of incubation, the number of colonies on each plate was counted using a colony counter. Time-kill assays were analyzed by determining the reductions in viable count ($\mathrm{CFU} / \mathrm{mL}$) at the above time points by TOB (1) and compound $\mathbf{4 e}$ as compared with the positive control (Fig. S45B). All duplicate experiments were performed 3 times.

3.4. Epi-fluorescence microscopy using the 6 "-thioether TOB derivative 4 e.

To verify if compound $\mathbf{4 e}$ targets the bacterial membrane, B. subtilis PY79 cells carrying YFP under an inducible IPTG promoter ${ }^{8}$ were used. This bacterial strain was constructed by cloning of the constitutive trpE promoter into the B. subtilis PY79 integration plasmid AEC127 designed to integrate into the sacA position and carrying a yfp gene. Cloning was done using standard techniques in E. coli DH5 . B. subtilis PY79 cells carrying YFP under an inducible IPTG promoter from a freshly streaked plate were grown ($37^{\circ} \mathrm{C}, \sim 14 \mathrm{~h}$) in Luria-Bertani (LB) broth (3
$\mathrm{mL})$ supplemented with tetracycline $(10 \mu \mathrm{~g} / \mathrm{mL})$ and IPTG $(1 \mathrm{mM})$. The overnight culture $(0.1$ mL) was diluted into fresh LB broth $(10 \mathrm{~mL})$ containing IPTG $(1 \mathrm{mM})$ and grown to an OD_{600} of 0.5. The cells were then treated with either TOB (1) $(2.3 \mu \mathrm{~g} / \mathrm{mL}(2 \times$ MIC $)$ and $9.4 \mu \mathrm{~g} / \mathrm{mL}(8 \times$ MIC)) or with the 6 "-thioether TOB derivative $4 \mathbf{e}(4.7 \mu \mathrm{~g} / \mathrm{mL}(2 \times \mathrm{MIC})$ and $18.8 \mu \mathrm{~g} / \mathrm{mL}(8 \times$ MIC)) and continued to grow at $37^{\circ} \mathrm{C}$. After 1 h in the presence of $\mathbf{1}$ or $\mathbf{4 e}$, aliquots ($1 \mu \mathrm{~L}$) were put on agar slabs made of PBS. Snapshots fluorescence images were taken with a $100 \times$ lens of an inverted epi-fluorescence microscope (Nikon TiE, Nikon, Japan).

3.5. Determination of AME activity on the 6 "-thioether TOB derivatives 4a-r.

To determine the activity of the modified TOB AGs (4a-r, 5d-e, and $\mathbf{6 d - e}$) with various AMEs, several previously developed assays were utilized to monitor the transformation of the AGs (Figs. 3 (in the main text) and S46).

Acetylation:
The acetylation activity of several $\mathrm{AACs}\left(\mathrm{AAC}\left(6^{\prime}\right) / \mathrm{APH}\left(2^{\prime \prime}\right),{ }^{1 ; 2} \mathrm{AAC}\left(6^{\prime}\right)-\mathrm{Ib}^{\prime},{ }^{3} \mathrm{AAC}\left(6^{\prime}\right)-\mathrm{IId}\right.$, AAC(3)-IV, ${ }^{1 ; 2}$ AAC(2')-Ic, ${ }^{4}$ and Eis ${ }^{4}$) was monitored using the Ellman's method where the reaction of the CoASH released during acetylation is reacted with DTNB and monitored at 412 nm . Briefly, reactions $(200 \mu \mathrm{~L})$ containing $\mathrm{AG}(100 \mu \mathrm{M})$ and AcCoA $(500 \mu \mathrm{M}$ for Eis or 150 $\mu \mathrm{M}$ for the remaining AACs) were incubated with AAC enzyme ($0.125 \mu \mathrm{M}$ AAC(2^{\prime})-Ic and AAC(3)-IV or $0.5 \mu \mathrm{M}$ for all remaining AACs) in the presence of DTNB (2 mM) and the appropriate buffer (50 mM MES pH 6.6 for $\mathrm{AAC}\left(6^{\prime}\right) / \mathrm{APH}\left(2^{\prime \prime}\right)$ and $\mathrm{AAC}(3)-\mathrm{IV}, 50 \mathrm{mM}$ Tris pH 7.5 for $\mathrm{AAC}\left(6^{\prime}\right)-\mathrm{Ib}^{\prime}$ and $\mathrm{AAC}\left(6^{\prime}\right)-\mathrm{IId}$, 50 mM Tris pH 8.0 for Eis, and 100 mM sodium phosphate pH 7.4 for $\left.\mathrm{AAC}\left(2^{\prime}\right)-\mathrm{Ic}\right)$. The reactions were monitored at $37^{\circ} \mathrm{C}\left(\mathrm{AAC}\left(6^{\prime}\right) / \mathrm{APH}\left(2^{\prime \prime}\right)\right)$ or $25^{\circ} \mathrm{C}$
(AAC(6')-Ib', AAC(6')-IId, AAC(3)-IV, AAC(2')-Ic, and Eis) on a SpectraMax M5 microplate reader, taking measurements every 30 s for 1 h . The initial rates of the reactions were calculated using the first 2 min of the reaction (AAC(3)-IV) or the first 10 min (all remaining AACs) and normalized to TOB (1). All experiments were performed in triplicate.

Nucleotidylation:

The nucleotidyltransferase activity of the ANT(4') was monitored at 600 nm through the complex formation of molybdate in malachite green and the P_{i} generated by inorganic pyrophosphatase cleavage of the released PP_{i} during the ANT catalyzed reaction. ${ }^{5 ; 9}$ To analyze the activity of $\mathrm{ANT}\left(4^{\prime}\right)$ on the $6^{\prime \prime}$-thioether TOB derivatives (4a-r) as well as the sulfoxide and sulfone derivatives 5d-e and $\mathbf{6 d - e}$, reactions ($160 \mu \mathrm{~L}$) containing $\mathrm{Tris-HCl}(50 \mathrm{mM}, \mathrm{pH} 7.5)$, $\mathrm{MgCl}_{2}(10 \mathrm{mM}), \mathrm{KCl}(50 \mathrm{mM})$, inorganic pyrophosphatase $(0.2 \mathrm{U} / \mathrm{mL}), \mathrm{AG}(100 \mu \mathrm{M})$, and ATP $(0.5 \mathrm{mM})$ were performed at $25^{\circ} \mathrm{C}$. The reactions were initiated by addition of ANT(4') (1 $\left.\mu \mathrm{M}\right)$, incubated for $15,30,45,60$, and 75 s , and quenched with the molybdate/malachite green reagent $(40 \mu \mathrm{~L})$ to terminate the reaction. After 15 min of color development, the liberated P_{i} concentration was measured by absorbance at 600 nm . The initial rates were determined using the first 60 sec of reaction time. All experiments were performed in triplicate.

3.6. Red blood cells (RBC) lysis assay.

Rat or human RBC solution ($2 \% \mathrm{w} / \mathrm{w}$) was incubated with 6 "-thioether TOB analogues $\mathbf{4 b} \mathbf{- h}$ ($18.8 \mu \mathrm{~g} / \mathrm{mL}$ as well as $75 \mu \mathrm{~g} / \mathrm{mL}, 1 \mathrm{~h}, 37^{\circ} \mathrm{C}$). Negative controls were PBS and Dextran (MW $\sim 70,000 \mathrm{Da}$) while positive controls were $1 \% \mathrm{w} / \mathrm{v}$ solution of Triton X100 (100% lysis). Following centrifugation ($2,000 \mathrm{rpm}, 10 \mathrm{~min}, \mathrm{rt}$), the supernatant was drawn off and its
absorbance measured at 550 nm using a microplate reader (Genios, TECAN). The results were expressed as percentage of hemoglobin released relative to the positive control (Triton X100).

4. Abbreviations.

AAC, aminoglycoside acetyltransferase; AG, aminoglycoside; AME, aminoglycoside-modifying enzyme; ANT, aminoglycoside nucelotidyltransferase; APH, aminoglycoside phosphotransferase; BHI, brain heart infusion; BOC, di-tert-butyl dicarbonate; BSA, bovine serum albumin; DMF, dimethylformamide; DTT, dithiothreitol; EtOAc, ethyl acetate; IPTG, Isopropyl β-D-1-thiogalactopyranoside; MIC, minimum inhibitory concentration; MTT, thiazolyl blue tetrazolium bromide; PBS, phosphate buffered saline; P_{i}, inorganic phosphate; PP_{i}, inorganic pyrophosphate; RBC, red blood cells; rt, room temperature; TFA, trifluoroacetic acid; TLC, thin layer chromatography; TOB, tobramycin; XDR, extensively-drug resistant; YFP, yellow fluorescent protein.

5. Supporting information references.

1. Shaul, P., Green, K. D., Rutenberg, R., Kramer, M., Berkov-Zrihen, Y., Breiner-Goldstein, E., Garneau-Tsodikova, S. \& Fridman, M. (2011). Assessment of 6'- and 6"'-N-acylation of aminoglycosides as a strategy to overcome bacterial resistance. Organic \& biomolecular chemistry 9, 4057-63.
2. Green, K. D., Chen, W., Houghton, J. L., Fridman, M. \& Garneau-Tsodikova, S. (2010). Exploring the substrate promiscuity of drug-modifying enzymes for the chemoenzymatic generation of N-acylated aminoglycosides. Chembiochem : a European journal of chemical biology 11, 119-26.
3. Green, K. D., Chen, W. \& Garneau-Tsodikova, S. (2011). Effects of altering aminoglycoside structures on bacterial resistance enzyme activities. Antimicrobial agents and chemotherapy 55, 3207-13.
4. Chen, W., Biswas, T., Porter, V. R., Tsodikov, O. V. \& Garneau-Tsodikova, S. (2011). Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB. Proceedings of the National Academy of Sciences of the United States of America 108, 98048.
5. Porter, V. R., Green, K. D., Zolova, O. E., Houghton, J. L. \& Garneau-Tsodikova, S. (2010). Dissecting the cosubstrate structure requirements of the Staphylococcus aureus aminoglycoside resistance enzyme ANT(4'). Biochemical and biophysical research communications 403, 85-90.
6. Michael, K., Wang, H. \& Tor, Y. (1999). Enhanced RNA binding of dimerized aminoglycosides. Bioorganic \& medicinal chemistry 7, 1361-71.
7. Greenberg, W. A., Priestley, E. S., Sears, P. S., Alper, P. B., Rosenbohm, C., Hendrix, M., Hung, S.-C. \& Wong, C.-H. (1999). Design and synthesis of new aminoglycoside antibiotics containing neamine as an optimal core structure: correlation of antibiotic activity with in vitro inhibition of translation. Journal of the American Chemical Society 121, 6527-41.
8. Eldar, A., Chary, V. K., Xenopoulos, P., Fontes, M. E., Loson, O. C., Dworkin, J., Piggot, P. J. \& Elowitz, M. B. (2009). Partial penetrance facilitates developmental evolution in bacteria. Nature 460, 510-4.
9. McQuade, T. J., Shallop, A. D., Sheoran, A., Delproposto, J. E., Tsodikov, O. V. \& GarneauTsodikova, S. (2009). A nonradioactive high-throughput assay for screening and characterization of adenylation domains for nonribosomal peptide combinatorial biosynthesis. Analytical biochemistry 386, 244-50.
10. Supporting information Figs. S1-S45.

Fig. S1. ${ }^{1}$ H NMR for 6"-thioether TOB derivative 4a.

Fig. S2. ${ }^{13} \mathrm{C}$ NMR for 6"-thioether TOB derivative 4a.

Fig. S3. ${ }^{1} \mathrm{H}$ NMR for 6 "-thioether TOB derivative $\mathbf{4 b}$.

Fig. S4. ${ }^{13} \mathrm{C}$ NMR for 6 "-thioether TOB derivative 4b.

Fig. S5. ${ }^{1}$ H NMR for 6 "-thioether TOB derivative $\mathbf{4 c}$.

Fig. S6. ${ }^{13}$ C NMR for 6"-thioether TOB derivative 4c.

Fig. S7. ${ }^{1} \mathrm{H}$ NMR for 6 "-thioether TOB derivative $4 d$.

Fig. S8. ${ }^{13} \mathrm{C}$ NMR for 6 "-thioether TOB derivative $4 d$.

Fig. S9. ${ }^{1}$ H NMR for 6 "-thioether TOB derivative $\mathbf{4 e}$.

Fig. S10. ${ }^{13} \mathrm{C}$ NMR for 6"-thioether TOB derivative $\mathbf{4 e}$.

Fig. S11. ${ }^{1} \mathrm{H}$ NMR for 6 "-thioether TOB derivative $\mathbf{4 f}$.

Fig. S12. ${ }^{13} \mathrm{C}$ NMR for 6"-thioether TOB derivative $4 f$.

Fig. S13. ${ }^{1} \mathrm{H}$ NMR for 6 "-thioether TOB derivative $\mathbf{4 g}$.

Fig. S14. ${ }^{13} \mathrm{C}$ NMR for 6 "-thioether TOB derivative $\mathbf{4 g}$.

Fig. S15. ${ }^{1}$ H NMR for 6 "-thioether TOB derivative $\mathbf{4 h}$.

$\mathrm{HO}{\underset{\mathrm{H}}{2} \mathrm{~N}}_{\mathrm{N}}^{\mathrm{O}} \mathrm{OH}_{21} \mathrm{Sf}$

Fig. S16. ${ }^{13} \mathrm{C}$ NMR for 6 "-thioether TOB derivative $\mathbf{4 h}$.

Fig. S17. ${ }^{1} \mathrm{H}$ NMR for 6 "-thioether TOB derivative $\mathbf{4 i}$.

Fig. S18. ${ }^{13} \mathrm{C}$ NMR for 6"-thioether TOB derivative $4 i$.

Fig. S19. ${ }^{1} \mathrm{H}$ NMR for 6 "-thioether TOB derivative $\mathbf{4 j}$.

Fig. S20. ${ }^{13} \mathrm{C}$ NMR for 6 "-thioether TOB derivative $\mathbf{4 j}$.

Fig. S21. ${ }^{1} \mathrm{H}$ NMR for 6 "-thioether TOB derivative $\mathbf{4 k}$.

Fig. S22. ${ }^{13} \mathrm{C}$ NMR for 6 "-thioether TOB derivative $\mathbf{4 k}$.

Fig. S23. ${ }^{1} \mathrm{H}$ NMR for 6 "-thioether TOB derivative 41.

Fig. S24. ${ }^{13} \mathrm{C}$ NMR for 6"-thioether TOB derivative 41.

Fig. S25. ${ }^{1}$ H NMR for 6"-thioether TOB derivative 4m.

Fig. S26. ${ }^{13} \mathrm{C}$ NMR for 6 "-thioether TOB derivative $\mathbf{4 m}$.

Fig. S27. ${ }^{1} \mathrm{H}$ NMR for 6 "-thioether TOB derivative $\mathbf{4 n}$.

Fig. S28. ${ }^{13} \mathrm{C}$ NMR for 6 "-thioether TOB derivative $4 n$.

Fig. S29. ${ }^{1} \mathrm{H}$ NMR for 6"-thioether TOB derivative 40.

Fig. S30. ${ }^{13} \mathrm{C}$ NMR for 6 "-thioether TOB derivative 40.

Fig. S31. ${ }^{1}$ H NMR for 6 "-thioether TOB derivative $\mathbf{4 p}$.

Fig. S32. ${ }^{13} \mathrm{C}$ NMR for 6 "-thioether TOB derivative $\mathbf{4 p}$.

Fig. S33. ${ }^{1} \mathrm{H}$ NMR for 6 "-thioether TOB derivative $\mathbf{4 q}$.

Fig. S34. ${ }^{13} \mathrm{C}$ NMR for 6 "-thioether TOB derivative $\mathbf{4 q}$.

Fig. S35. ${ }^{1} \mathrm{H}$ NMR for 6 "-thioether TOB derivative $\mathbf{4 r}$.

Fig. S36. ${ }^{13} \mathrm{C}$ NMR for 6 "-thioether TOB derivative $\mathbf{4 r}$.

Fig. S37. ${ }^{1}$ H NMR for 6"-sulfoxide TOB derivative 5d.

Fig. S38. ${ }^{13}$ C NMR for 6"-sulfoxide TOB derivative 5d.

Fig. S39. ${ }^{1} \mathrm{H}$ NMR for 6 "-sulfoxide TOB derivative $\mathbf{5 e}$.

Fig. S40. ${ }^{13} \mathrm{C}$ NMR for 6 "-sulfoxide TOB derivative $\mathbf{5 e}$.

Fig. S41. ${ }^{1} \mathrm{H}$ NMR for 6 "-sulfone TOB derivative $\mathbf{6 d}$.

Fig. S42. ${ }^{13} \mathrm{C}$ NMR for 6 "-sulfone TOB derivative $\mathbf{6 d}$.

Fig. S43. ${ }^{1}$ H NMR for 6"-sulfone TOB derivative $\mathbf{6 e}$.

Fig. S44. ${ }^{13} \mathrm{C}$ NMR for 6 "-sulfone TOB derivative $\mathbf{6 e}$.

A

Gram-negative bacterial strains:

Fig. S45. A. The effect of aliphatic tail length on MIC values of Gram-positive and Gram-negative bacterial strains.
B. Time-kill kinetics towards S. mutans UA159 (circle) and S. pyogenes serotype M12 (strain MGAS9429) (triangle) with TOB (1) or compound $\mathbf{4 e}$ at $1 \times$ MIC ($75 \mu \mathrm{~g} / \mathrm{mL}$ of $\mathbf{1}$ (S. mutans) or $18.8 \mu \mathrm{~g} / \mathrm{mL}$ of $\mathbf{1}$ (S.pyogenes)) and $2.3 \mu \mathrm{~g} / \mathrm{mL}$ of $\mathbf{4 e}$). After $0,10 \mathrm{~min}, 1,2,3,4$, and 5 h , an aliquot ($5 \mu \mathrm{~L}$) was diluted ($10-, 10^{3}$-, and 10^{6}-fold) into BHI broth and $10 \mu \mathrm{~L}$ of each dilution ($50 \mu \mathrm{~L}$ total) were plated in duplicate on BHI agar plates. After exactly 24 h (starting from each tested time point) of incubation, the number of colonies on each plate was counted using a colony counter. Time-kill assays were analyzed by determining the reductions in viable count (CFU/mL). Triplicate experiments were repeated twice.

Fig. S46. Bar graph showing the relative initial rates of AME reactions with TOB and the 6 "-thioether analogues $\mathbf{4 d}$ \mathbf{e} and their corresponding sulfoxides (5d-e) and sulfones ($\mathbf{6 d - e}$). Rates are normalized to TOB and experiments were performed in triplicate. AMEs tested include $\mathrm{AAC}\left(6^{\prime}\right)$-IId (blue), AAC(6^{\prime})-Ib (cyan), AAC($\left.6^{\prime}\right) / \mathrm{APH}\left(2^{\prime \prime}\right)$ (dark green), Eis (light green), AAC(3)-IV (yellow), AAC(2')-Ic (orange), and ANT(4') (red).

