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ABSTRACT

Joint Parametric Modeling and Estimation of Time to Cancer Recurrence and
Disease Stage at Recurrence

by

Olga V. Marchenko

Chair: Robert W. Keener

A clinical trial with bladder cancer patients who went through surgery and were

followed up for tumor recurrence was used as motivation for this research. The

surgery was conducted on patients with an early bladder cancer stage. During the

follow-up, patients were evaluated for cancer recurrence at 3 months, 6 months, 9

months, and at about 5 year visits unless they had cancer recurrence in between

visits or died prior to a scheduled visit. One of the main objectives of the study

was to evaluate the time to cancer recurrence. At the time of cancer recurrence, the

disease stage was also evaluated. The stage of the cancer at recurrence significantly

impacts future treatment and quality of life. Therefore, modeling and analyzing the

time to cancer recurrence and the stage at recurrence jointly makes more sense than

an analysis based on the time to recurrence alone.

In our research, we describe a model for the joint distribution of time to recurrence

and cancer stage at recurrence that accounts for the recurrence caused by the cancer

cells surviving treatment or surgery, and for the recurrence caused by spontaneous

carcinogenesis. First, we proceeded with a continuous follow-up assumption using
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stochastic models of cancer recurrence. Then we extend the approach to allow for

a discrete follow-up process. We provide methods for full maximum likelihood esti-

mation based on the EM algorithm. The methods are illustrated through modeling

and estimation of data from a clinical trial in patients with bladder cancer described

above. Simulations are used to assess the sensitivity of the methods. An added

benefit of such modeling is that it permits using the cancer stage at recurrence to

provide adjusted estimates for the time to recurrence distribution and allows for more

powerful inference.
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CHAPTER I

Introduction

The pharmaceutical industry is highly regulated in the United States and around

the world. Before any drug or device becomes available to people, extensive work is

done to evaluate the efficacy and safety of investigational drug or device in pre-clinical

and clinical trials. Even after the drug or device is approved by regulatory agencies

and released to the market, post marketing trials are conducted to detect any rare

or long-term adverse effects over a much larger patient population and longer time

period than was possible during the Phase I-III clinical trials.

Clinical trials are studies that are conducted in humans to allow safety and efficacy

data to be collected and evaluated for new drugs or devices. Clinical trials are com-

monly classified into four phases. Each phase has its own objectives. While Phase

I and most Phase II trials are considered to be exploratory, Phase III studies are

aimed at being the definitive assessment of how effective the drug is, in comparison

with current gold standard treatment. Because of the large size and comparatively

long duration, Phase III trials are the most expensive, time-consuming and difficult

trials to design and run. The increasing pressure on pharmaceutical manufacturers

to deliver critically important therapies to patients, together with limited funding,

has spawned increased efforts to design, analyze, and report clinical trials in a more

efficient manner.
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Oncology clinical trials face additional ethical issues. Therefore, statistical designs

must be sensitive to the associated ethical issues and the choice of the endpoints

should appropriately address the research questions.

The National Cancer Institute (NCI) has a Data Modeling Branch whose mission

is to support research on statistical and mathematical models in order to understand

the impact of cancer control interventions and economic, health care delivery, and

utilization factors on the cancer burden. They use mathematical modeling to develop,

evaluate and improve estimates of cancer progress measures and develop software for

integration of modeling into data systems. The Cancer Intervention and Surveillance

Modeling Network (CISNET) is a consortium of NCI-sponsored investigators that

use statistical modeling to improve our understanding of cancer control interventions

in prevention, screening, and treatment and their effects on population trends in

incidence and mortality. More information can be found on www.cancer.gov.

In our research, we describe a model for the joint distribution of time to cancer

recurrence and cancer stage at recurrence. Our model accounts for recurrence caused

by the cancer cells surviving treatment or surgery and for recurrence caused by spon-

taneous carcinogenesis. Parametric distributions are used for inference. We describe

methods for full maximum likelihood estimation based on the EM algorithm. The

methods are illustrated through modeling and estimation of data from a clinical trial

in patients with bladder cancer. An added benefit of such modeling is that it permits

using the cancer stage at recurrence to provide adjusted estimates for the time to

recurrence distribution and allows for more powerful inference.

1.1 Motivation

Oncology clinical trials are conducted mainly in advanced stage cancer patients

with high mortality rate. But not all cancers have a high mortality rate although

the treatment cost and the burden of these cancers are fairly high. One such cancer
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is bladder cancer. The American Cancer Society estimated about 70,530 new cases

(about 52,760 men and 17,770 women) and 14,680 deaths (about 10,410 men and

4,270) from bladder cancer in the US in 2010. In spite of increased incidence, the

rate of people dying of this cancer has decreased over the past 20 years. More than

500,000 people in the United States are survivors of this cancer1. Bladder cancer is

one of the most expensive cancers for society because patients live longer and have

multiple recurrences.

Photocure ASA, a pharmaceutical company from Norway, conducted a clinical

program in patients with bladder cancer which showed that compared to standard

white-light cystoscopy, fluorescence cystoscopy using a combination of the photo-

sensitzer hexaminlolevulinate (Hexvix) and blue light improve the visualization of

bladder tumors. Results of the Hexvix clinical program conducted in Europe and in

USA demonstrated that local instillation of Hexvix significantly increased the number

of tumors detected during cystoscopy, which leads to improved patient management

in a significant number of patients. The pivotal study 305 also demonstrated for

the first time that improved detection of bladder tumors, enables a more complete

tumor mapping, and more complete resection, resulting in a significant reduction of

recurrence rates at 9 months. More interestingly, of the patients with documented

recurrence during the 9 month follow up period, more patients in the group treated

with white light only experienced recurrence of higher stage tumors compared to pa-

tients in the group treated with both white light and Hexvix fluorescence cystoscopy

(Stenzl et al., 2010).

After completion of the pivotal study, Photocure ASA decided to initiate an exten-

sion of the pivotal phase III of 305 study to compare the time to recurrence, disease

stage at recurrence, and the number of recurrences between two groups. This study

investigated whether this improved initial detection and resection of bladder cancer

1American Cancer Society, ACS detailed guide: bladder cancer. What are the key statistics for
bladder cancer? Available at: www.cancer.org
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lesions in patients with non-muscle invasive bladder cancer with experimental fluo-

rescence cystoscopy would also lead to a long-term reduction in recurrence compared

to standard white light cystoscopy.

Based on the current knowledge of the bladder cancer recurrence process and

the technology available to perform surgeries, there are reasons to believe that a

significant percentage of supposed tumor recurrences result from residual tumor left

behind at resection or growth of previously undetected lesions (Sylvester et al., 2006).

Given the extent of the data that is available from PhotoCure ASA bladder cancer

305 trial, one interesting question to address was how we can model the data assuming

the recurrence of cancer can be caused by two reasons: by cancer cells surviving the

treatment or surgery, or by spontaneous carcinogenesis. Additionally, given the 305

study conduct and results, it was evident that modeling and analyzing the time to

cancer recurrence and the stage at recurrence jointly would make more sense than an

analysis based on the time to recurrence alone.

1.2 Bladder Cancer Overview

Bladder cancer is the fourth most common malignant cancer disease in men and

the eighth most common malignant cancer disease in women. The disease affects

primarily older people; nearly 90% of people with bladder cancer are over the age of

55 years. Men are 3 times as likely to be affected as women. Whites are diagnosed

with bladder cancer almost twice as often as blacks. Black patients have generally

more advanced cancer at diagnosis. In almost 75% of the cases, patients are first

diagnosed with the cancer stage confined to the bladder. In most remaining cases,

the cancer has spread to nearby tissues outside the bladder. In about 3% of cases,

the cancer has spread to distant sites.
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1.2.1 Risk Factors of Bladder Cancer

There are several known and potential risk factors for bladder cancer. Cigarette

smoking and occupational exposure to aromatic amines are the most well-established

among them. It is estimated that smokers have a twofold to fourfold greater risk

of having bladder cancer than nonsmokers, and smoking is believed to contribute

to up to 50% of all bladder cancers that are diagnosed. Other risk factors include

chronic bladder irritation (e.g., stones or long-term catheter use), occupational expo-

sures (e.g., polychromatic hydrocarbons), family history, and infection with certain

parasites (Lee et al., 2006).

1.2.2 Types and Stages of Bladder Cancer

Of urothelial bladder tumors, about 90% are transitional cell carcinoma. Transi-

tional cell carcinoma (Figure 1.1) can be either non-muscle-invasive (pathologic Stages

Ta, T1, and carcinoma in situ (CIS)) or muscle-invasive (pathologic Stages T2 to T4).

Figure 1.1: Bladder Cancer Pathologic Stages.

In patients with the diagnosis of bladder cancer, about 70% present initially as

non-muscle-invasive bladder tumors, with the remainder presenting as invasive can-

5



cer2.

1.2.3 Clinical Presentation and Course of Disease

Important endpoints in the natural history of bladder cancer include recurrence,

stage at recurrence, progression and survival. Recurrence is defined as appearance

of tumors of the same or smaller stage and grade as the primary tumor. The cause

of early bladder cancer recurrence may be due to residual tumor after incomplete

resection, microsatellites missed during initial transurethral resection of the bladder

(TURB) or true recurrence. Recurrence is common; depending on a patient’s char-

acteristics after TURB the probability of recurrence at one year ranges from about

15% to 61% and from 31% to 78% at 5 years (Lee et al., 2009). Progression is de-

fined as the development of higher grade tumors with muscle invasion or metastatic

disease, and is associated with an increased risk of death. The major prognostic fac-

tors for recurrence and progression are tumor multiplicity, size, previous recurrence

rates, baseline tumor (T) stage, presence of CIS and tumor grade (Kurth et al., 1995;

Sylvester et al., 2006). In the current research, we refer to the cancer recurrence in a

general sense; since right after the surgery the patient is considered to be cancer-free,

the recurrence is either the true cancer recurrence to the baseline stage (the identi-

fied stage prior to the surgery) or any cancer stage at which a patient had the first

recurrence diagnosed after the surgery.

1.2.4 Diagnosis and Treatment

The type and severity of clinical signs and symptoms of bladder tumors depend

on the extent and location of the tumor. The most common first symptom of bladder

cancer is gross or microscopic hematuria, which occurs in over 80% of bladder cancers.

Other presenting symptoms include dysuria and urinary frequency or urgency, and

2John Hopkins Pathology, Types of Bladder Cancers. Available at: www.pathology2.jhu.edu.

6



less commonly, flank pain secondary to obstruction, and pain from pelvic invasion or

bone metastases (Lee et al., 2009).

The current standard of care for diagnosing bladder cancer is a combination of

urine cytology, a visual inspection of the bladder with an cystoscope and white-light il-

lumination (WL cystoscopy) and biopsies for histological verification. WL cystoscopy

is used conventionally to detect lesions in the bladder for patients with known or sus-

pected bladder cancer. However, tumors such as flat carcinomas (particularly CIS),

dysplasia, multifocal growth and microscopic lesions are often overlooked by conven-

tional WL cystoscopy. Urinary cytology is most accurate in detecting high grade

malignancy or CIS, but offers poor sensitivity in detecting low grade carcinomas. A

positive cytology may indicate tumor anywhere in the urinary tract, whereas a neg-

ative cytology does not necessarily exclude the presence of a low grade malignancy.

TURB removes the tumor and allows for pathologic analysis of the resected or biopsied

specimen, which establishes the diagnosis and provides important information about

the tumor grade and depth of bladder invasion. For patients with low-grade (Ta) tu-

mors, TURB without intravesical therapy is the standard treatment. Immunotherapy

with intravesical Bacillus Calmette-Guerin (BCG) or chemotherapy following TURB

is the preferred option for patients with high-grade Ta and T1 tumors, as well as for

patients with carcinoma in situ (CIS). For invasive disease, total urethrectomy along

with cystectomy is performed with adjuvant chemotherapy or radiation (Lee et al.,

2006, 2009).

Regular follow-up is required, generally every 3 months for the first 1 to 2 years,

then at increasing intervals over the next 2 years, and annually from then on (Lee

et al., 2009).

The high rate of early recurrences (up to 60% within 3 months) reported in the

literature suggests that a significant percentage of supposed tumor recurrences re-

sult from residual tumor left behind at resection or growth of previously undetected
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microscopic lesions Sylvester et al. (2006).

1.3 Short Overview of PhotoCure Hexvix Trials (NDA 22-

555)

The NDA submission of Hexvix consist of 5 Phase III studies (301, 302, 303,

304, and 305) with only one study (305 study) defined as the pivotal/ confirmatory

trial. The primary objective of single arm studies 301, 302, and 303 was improved

detection, while the study 304 evaluated only the recurrence rate. The pivotal Study

305 is different from other trials in study design, randomization structure, primary and

secondary endpoints, and in patient population considered for the primary objectives.

Clinical study 305 was a prospective, randomized multicenter phase III study

designed to be comparative and is both within-patient and between-patient controlled.

The flowchart (Figure 1.2) illustrates the design of the study:

Figure 1.2: Study Design.

The study had two co-primary objectives:
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• To compare Hexvix cystoscopy with white light cystoscopy in the detection of

histology confirmed papillary bladder cancer in patients with papillary bladder

cancer.

• To compare early recurrence rate after Hexvix and white light transurethral

resection of bladder (TURB) with white light TURB in patients with superficial

bladder cancer (stages Ta and T1).

After completion of the pivotal study, Photocure ASA decided to initiate the

extension of the 305 study. This study investigated whether this improved initial

detection and resection of bladder cancer lesions in patients with non-muscle invasive

bladder cancer with experimental fluorescence cystoscopy will also lead to a long-term

reduction in recurrence compared to standard white light cystoscopy. The primary

endpoint of the extension study was the recurrence-free survival time. The main

secondary endpoints are the time to recurrence, the tumor stage at recurrence and

the number of recurrences per patient. All patients who completed the main part of

the study were eligible to participate in the extension part of the study.

Table 1.1 provides a sample of the trial data. There are three derived variables:

censor status (Censor Status), time to recurrence (Recur Time), and stage at recur-

rence (Recur Stage). The collected variables include: patient identification number

(Patient Num), center number (Center Num), age (Age), gender (Sex), race (Race),

procedure group (Group Num), country (Cnt), scheduled visit (Visit Time), baseline

cancer stage (Baseline Stage), whether a patient had an initial or recurrent cancer

(Cancer History), baseline cancer grade (Baseline Grade), and whether a patient had

CIS lesion at baseline or not (CIS).

About 560 patients with histologically confirmed non-muscle invasive bladder can-

cer (Ta and T1) by a local pathologist were included in the main pivotal study. The

recurrence analysis included 551 patients. At inclusion the patients were randomized

to have their cystoscopy including TURB by white light only or by white light plus

9



Patient
Num

Center
Num

Age/Sex
/Race

Group
Num

Cnt Censor
Sta-
tus

Recur
Time

Visit
Time

Recur
Stage

Baseline
Stage

Cancer
His-
tory

Baseline
Grade

CIS

001 001 65/M/
White

1 USA 0 61 5y 0 Ta 1 2 0

002 001 37/M/
White

2 USA 1 2.7 3m 1 Ta 1 2 0

003 001 68/F/
White

2 USA 1 3.1 3m 1 Ta 2 2 0

004 201 71/F/
White

1 CAN 1 10.4 9m 1 Ta 1 2 0

005 011 78/M/
White

1 USA 1 9.2 9m 6 Ta 2 1 0

006 005 61/M/
White

2 USA 1 4.2 6m 7 T1 1 3 1

Table 1.1: Data Sample.

blue light with experimental drug. The randomization was stratified by cancer his-

tory (initial and recurrent bladder cancer). Patients were followed-up by cystoscopy

in white light after the resection procedure at 3, 6, and 9 months. The results from

the local pathologist at baseline were used to determine if the patient was to be fol-

lowed up at 3, 6 and 9. Recurrence was to be verified by histology assessment of the

local pathologist during visits. Recurrence was defined as presence of either CIS,

Ta, T1, or T2 − T4 tumor. Patients having a recurrence at three months (based on

local pathology) did not continue to the six or nine months follow up. If the patient

had recurrence at six months, the patient did not continue to the nine months follow

up. Suspected areas seen during cystoscopy at baseline and at follow-up visits were

biopsied or resected. If there were multiple pathology results for a single lesion or

multiple cancer lesions were identified for a patient, the worst lesion type was used in

the analysis. However, if there was a CIS in addition to a papillary lesion reported,

both results were included. Prognostic factors for recurrence such as the baseline

number of lesions, baseline tumor stage, baseline tumor grade, presence of CIS, and

previous recurrences were collected for all patients. The results of this pivotal phase

III study (305 study) are in line with the previously published studies and showed

that Hexvix fluorescence cystoscopy improves detection of non-muscle invasive papil-

lary bladder tumors compared to white light cystoscopy and TURB alone. In 16.4%
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of the patients with Ta or T1 tumors at least one additional tumor was detected with

Hexvix fluorescence cystoscopy only (p = 0.001) Sylvester et al. (2006); Stenzl et al.

(2010).

The study also demonstrated for the first time that improved detection of bladder

tumors, enables a more complete tumor mapping, and more complete resection result-

ing in a significant reduction of recurrence rates at 9 months. During the surveillance

period, for the ITT (intent-to-treat) analysis 128/271 patients (47%) in the Hexvix

group and 157/280 patients (56%) in the white light group had tumor recurrence

(p = 0.026 using CMH test stratified by study center) (Stenzl et al., 2010). The

difference of time to recurrence curves was tested by log-rank test at 5% of statis-

tical significance. The analysis of the cancer stage at recurrence did not achieve a

statistical significance, although the marginal difference toward the improvement in

an experimental group was noted.

551 patients with non-invasive papillary bladder cancer (271 in the fluorescence

group, and 280 in the white light group, respectively) enrolled in the previously

completed pivotal phase III study who were followed for recurrence were included in

the extension phase of the study. The extension part of the study showed that the

improved initial detection and resection of bladder cancer lesions in patients with

non-muscle invasive bladder cancer with experimental drug fluorescence cystoscopy

would also lead to a long-term reduction in recurrence compared to standard white

light cystoscopy. Overall time to recurrence difference was tested by Wilcoxon test

since the hazard ratio was higher at early survival times than a late ones. The

analysis of the cancer stage at recurrence showed again the marginal improvement in

an experimental group, but it did not achieve a statistical significance at 5% level.
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1.4 Research Objectives

Recurrence-free survival is the suggested endpoint to measure a clinical benefit

of bladder cancer patients in long confirmatory trials. There are no requirements on

the trial duration in patients with bladder cancer, but the typical trial of 1-5 years

in duration will not give an accurate estimation of overall survival or recurrence-free

survival due to much longer expected survival time. Such trials mainly use either

the proportion of patients without a recurrence at a particular time cut-off (e.g., 1

year or 5 years) or the time to recurrence/progression as the primary endpoint for the

comparison. The proportion of patients without a recurrence at a particular point was

not a reliable endpoint as was seen in Photocure ASA 305 study: the drop-out rate

at 9 month was about 30%. The typical drop-out rate is fairly large (> 25%). Time

to recurrence is the recommended primary endpoint in such trials. While one of the

primary objectives of the 305 study was to evaluate and compare the time to tumor

recurrence, the disease stage was also evaluated at the time of tumor recurrence. A

patient recurrence stage was defined as the worst stage among all lesion stages if a

patient had multiple lesions at the recurrence diagnosis. The majority of these stages

were less advanced, while some patients progressed to more aggressive stages. The

stage of the disease at recurrence significantly impacts future treatment and quality

of life. Therefore, analyzing and comparing the time to tumor recurrence and the

stage at recurrence jointly makes more sense than an analysis based primarily on the

time to recurrence.

The main objectives of this research were the following:

• To build and evaluate a joint model of time to cancer recurrence and disease

stage at recurrence,

• To provide the appropriate estimates for the time to recurrence distribution

adjusting for the cancer stage at recurrence.
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Since the current knowledge of the bladder cancer recurrence process and the

technology available to perform surgeries suggest that there are reasons to believe that

a significant percentage of supposed tumor recurrences result from residual tumor left

behind at resection or growth of previously undetected lesions Sylvester et al. (2006),

we established additional model requirements:

• The model describing the recurrence process should have a biological meaning,

• The model should accommodate two causes of cancer recurrence: recurrence

caused by cancer cells surviving a treatment or a surgery, and recurrence caused

by spontaneous carcinogenesis.

In our research we describe a model for the joint distribution of time to recurrence

and cancer stage at recurrence that accounts for recurrence caused by the cancer cells

surviving treatment or surgery, and for recurrence caused by spontaneous carcino-

genesis. First, we proceeded with a continuous follow-up assumption using stochastic

models of cancer recurrence for the right-censored data (Chapter II). Then we ex-

tend the approach to allow for a discrete follow-up process. The interval-censored

data model is described in Chapter III. We provide methods for full maximum like-

lihood estimation based on the EM algorithm. We introduce the random variable U

which is not observed, but it is used to differentiate the cause of cancer recurrence.

The methods are illustrated through modeling and estimation of data from a clinical

trial in patients with bladder cancer described below. We also discuss in Chapter

III how the proposed models and methods can be extended to cancer post-surgery

surveillance which is represented by discrete process with a non-zero false-negative

rate of a diagnostic test.

Before we move further, let us describe the bladder cancer stages and their order-

ing. The typical bladder cancer stage ordering is the following: CIS < Ta < T1 <

T2 < T3 < T4. In clinical trial which was used in our research, most patients had
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more than one cancer lesion. Therefore, patient recurrence stage was defined as the

worst stage among all lesion stages if a patient had multiple cancer lesions. Since the

presence of CIS is considered to be one of the major prognostic factors for recurrence,

the suggested order of the stages includes the presence of CIS with another stage as

a separate category. In this trial, the clinical stage order from less advanced to more

advanced stages was proposed to be the following: Ta < CIS < (Ta + CIS) < T1 <

(T1 + CIS) < T2 < (T2 + CIS) < T3 < (T3 + CIS) < T4 < (T4 + CIS). In our

research, the cancer stage was modeled using a multinomial logit model to account

for more general case.

1.5 Literature Review

1.5.1 Models Describing Tumor Latency

Many scientists have investigated the mathematical modeling of carcinogenesis.

The majority of models use elements of birth-and-death stochastic processes theory.

Tan gives a comprehensive analysis of this class of models in Tan (1991). A number

of multistage models of the Markov type have been introduced starting from work

of Armitage and Doll (1954). Recent biological findings provide enough evidence to

consider carcinogenesis as a multistage process. Moolgavkar with his colleagues re-

searched two-stage models extensively in Moolgavkar and Venzon (1979), Moolgavkar

et al. (1988), Moolgavkar et al. (1990), Luebeck and Moolgavkar (1991). A common

weak point in many Markovian models of carcinogenesis is that the description of

tumor progression is not sufficiently advanced. The time to observing a tumor is not

equal to the time at which the first malignant cell is generated. Additionally, the

estimation procedure is quite tedious even in computationally feasible cases (Tan and

Chen, 1993). Therefore, the search for new ways of modeling carcinogenesis seems

to be important. The mathematical description of tumor latency with regard to
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the tumor recurrence and regression analysis of tumor recurrence data is described in

work by Yakovlev and Tsodikov (1996). The authors discuss different stochastic mod-

els with parameters that have clear biological meaning. Their proposed parametric

models describe the process of cancer recurrence. They suggest that there are several

causes of local cancer recurrence including recurrence caused by the cancer cells sur-

viving a treatment or a surgery, and recurrence caused by spontaneous carcinogenesis

which have different mathematical representation and biological interpretation. In

our research, we used these models to build the joint model of the time to bladder

cancer recurrence and the cancer stage at recurrence.

1.5.2 Joint Distribution Models and Estimation

Numerous papers were published on joint modeling and analysis of time to event

outcome and repeated measurements on a continuous response. The motivation for

such modeling and analysis arose from medical studies. The most popular motivating

example given in literature is an HIV study with the progression of CD4 cell counts

over time and the time to patients’ death. A mixed-effects model with normal ran-

dom effects is used to model the repeated measurements and a proportional intensity

model is used to model the hazard function of survival time. Random effects are used

to account for the dependence between repeated measurements and survival time due

to unobserved heterogeneity. In the literature, such a joint model is described as

either a selection model if the conditional distribution of survival time given repeated

measurements is modeled, or as a pattern-mixture model if the conditional distribu-

tion of repeated measurements given survival time is modeled. In most of the joint

analysis literature, nonparametric maximum likelihood estimation has been proposed.

The EM algorithm has often been used to calculate the maximum likelihood (ML)

estimates.

Selection models have been studied by many scientists in difference contexts, for
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example, by Tsiatis and Davidian (2001), and by Henderson et al. (2000). Zeng

and Cai (2005) proved the consistency of the maximum likelihood estimators in the

selection model and derived their asymptotic distributions.

Hogan and Laird (1997) described a mixture model for the joint distribution which

accommodates incomplete repeated measures and right-censored event times. The

EM algorithm was used to calculate the ML estimators. The parameter estimates

from the model were used to make a treatment comparison after adjusting for the

effects of dropout.

Faucett and Thomas (1996) proposed a joint model for censored survival data and

repeated measured covariates. They used the Markov chain Monte Carlo technique of

Gibbs sampling to estimate the joint posterior distribution of the unknown parameters

of the model.

Ankerst and Finkelstein (2006) used a shared parameter selection model, to model

the prostate cancer biomarker PSA level following radiotherapy and disease recur-

rence. A Markov chain Monte Carlo method comprised of a series of Gibbs and

Metropolis-Hastings steps was used to estimate the joint posterior distribution of the

unknown parameters and to assess sensitivity of the estimators using different priors.

Law et al. (2002) considered the cure model which is a special case of the mix-

ture model. The longitudinal disease progression marker (PSA) and the failure time

process were modeled jointly, in the joint-cure model setting. The EM algorithm was

used to obtain the ML parameter estimators.

Tsodikov and Chefo (2009) modeled the prostate cancer data using the complex

joint survival-multinomial mixed model. Observed outcomes represented the age at

diagnosis and stage which was a combination of the actual cancer stage and grade.

Chefo and Tsodikov developed a stable and structured MLE approach obtaining the

model estimates iteratively. The approach was based on generalized self-consistency

and the quasi-EM algorithm was used to handle the mixed multinomial part of the
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response through a Poisson likelihood.

1.5.3 Survival Analysis

Fleming and Lin (2000) gave a nice overview of survival analysis methods, tech-

niques, and areas of the research. The developments in this field that had the most

impact on clinical trials were the Kaplan-Meier method for estimating the survival

function, the log-rank statistic for comparing two survival distributions, and the Cox

proportional hazards model for quantifying the effects of covariates on the survival

time. Significant progress has been achieved and further developments are expected

in many areas including the accelerated failure time model, multivariate failure time

data, depending censoring, joint modeling of failure time and longitudinal data,

Bayesian survival methods, etc.

Cox and Oakes (1984), Klein and Moeschberger (1999), and Hosmer and Lemeshow

(1999) provide a detailed explanation, including examples of the standard survival

data analysis and techniques for censored and truncated data.

The theory for the analysis of interval-censored data has been developed over

the past three decades and several good reviews have been written. However, it is

still a common practice in clinical trials to simplify the interval censoring structure

of the data into a more standard right censoring case. Reviews written by Huang

and Wellner (1997) and Lindsey and Ryan (1998) have been a keystone, but are

outdated by many of the newer interval-censored methods. The more recent book

by Sun (2006) addresses statistical issues and describes statistical methods for the

analysis of singly and doubly interval-censored survival data arising from AIDS, can-

cer and other disease studies. Parametric survival models for interval-censored data

with time-dependent covariates are described in work by Sparling et al. (2006). The

most recent review by Gomez et al. (2009) includes methodology on non-parametric,

parametric, and semi-parametric estimating approaches, and reviews software for an-
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alyzing interval-censored data.

1.5.4 Cancer Post-treatment Surveillance

Post-treatment cancer surveillance represents a discrete observational process yield-

ing incomplete information on the time to cancer recurrence. Instead of the actual

time of recurrence only the time of examination is available, which usually follows the

specific discrete schedule. Additionally, false-positive and false-negative rates of the

diagnostic test may be present. There exists a broad range of literature on parametric

and non-parametric estimation of the disease natural history from discrete observa-

tions including Albert et al. (1978a,b), Flehinger and Kimmel (1991), Klebanov et al.

(1993), Ivankov et al. (1993), and Yakovlev et al. (1993). If surveillance is error free,

the corresponding sample can be considered as the interval-censored.

1.5.5 Multivariate Survival Techniques

Another way to model the recurrence data, time to recurrence to a particular stage

or to a grouped stage, is by use of dependent competing risks. A parametric model

with two dependent competing risks and the estimation of parameters are briefly

discussed in Yakovlev and Tsodikov (1996). More information on the multivariate

survival data and analysis including the multivariate parametric and non-parametric

estimation can be found in Hougaard (2000).

Thall et al. (2000) proposed an approximate Bayesian method for comparing two

treatments based on multivariate patient outcomes. They partitioned the parameter

space into four sets: a set where the experimental treatment is superior to the con-

trol treatment, a set where two treatments are equivalent, a set where the control

treatment is superior to the experimental one, and a set where the treatment effects

are discordant. Then they computed posterior probabilities of the parameter sets by

treating an estimator of the parameter vector as a random variable in the Bayesian
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paradigm.

1.5.6 Stochastic Processes

Stochastic processes theory provides another way to look at and model the recur-

rence data. A general review of stochastic processes, including the Poisson process,

Markov chains, martingales, and Brownian motion theory, is provided by Ross (1996).

The counting-process martingale theory pioneered by Aalen provided a unified

framework for studying the small- and large-properties of survival analysis statistics,

see Fleming and Lin (2000). Fleming and Harrington (2005) give the detailed de-

scription and provide applications of counting processes and martingales to survival

analysis.

Yakovlev and Tsodikov (1996) consider threshold models of tumor latency. The

simple model describing the dynamics of tumor growth is a linear birth-and-death

process with two absorbing states. More general model, a semistochastic threshold

model of tumor recurrence, is introduced and evaluated by the authors.

King et al. (2008) model the process of cholera (an infectious disease) using an

iterated filtering algorithm. The models were formulated as stochastic differential

equations which were integrated using the Euler-Maruyama algorithm. Breto et al.

(2009) continued working with cholera data and developed a framework for construct-

ing nonlinear mechanistic models. This work builds on recently developed plug-and-

play inference methodology for partially observed Markov models. He et al. (2010)

model the measles data using the plug-and-play approach.

In Chapter II we proceeded with a continuous follow-up assumption using stochas-

tic models of cancer recurrence and describe the models and methods for the right

censored data. Then we extend the approach to allow for a discrete follow-up process.

Chapter III describes the models and methods for the interval-censored data. Our

conclusions are given in Chapter IV.
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CHAPTER II

Joint Modeling of Time to Recurrence and Cancer

Stage at Recurrence in Oncology Trials - When

Event Times Are Right Censored (Continuous

Follow-up Observation Process)

2.1 Introduction

2.1.1 Motivation

This research was motivated by a clinical trial with bladder cancer patients who

went through surgery and were followed up for tumor recurrence. The surgery was

conducted in patients with an early cancer stage (Ta and T1) and either with first

or recurrent cancer at diagnosis. There was a control group using the standard pro-

cedure, and an experimental group with a drug designed to enhance a detection of

suspected cancer lesions. One of the study objectives was to evaluate and compare

the time to tumor recurrence of patients in control and experimental groups. At the

time of tumor recurrence, the disease stage was also evaluated. The stage of disease

at recurrence significantly impacts future treatment and quality of life of a patient.

Therefore, modeling and analyzing the time to tumor recurrence and the stage at

recurrence jointly makes a lot of sense and gives more powerful inference.
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Oncology clinical trials are conducted mainly in advanced stage cancer patients

with high mortality rate. But not all cancers have high mortality rate while the

treatment cost and the burden of cancers are fairly high. One of such cancers is

bladder cancer. The American Cancer Society estimated about 70,530 new cases

(about 52,760 men and 17,770 women) and 14,680 deaths (about 10,410 men and

4,270) from bladder cancer in the US in 2010 (www.cancer.org). In spite of the

increased incidence, the rate of people dying of this cancer has decreased over the past

20 years. More than 500,000 people in the United States are survivors of this cancer.

Bladder cancer is one of the most expensive cancers for society because patients

live longer and have multiple recurrences. Depending on a patient’s characteristics

after TURB (transurethral resection of the bladder) the probability of recurrence

at one year ranges from about 15% to 61% and from 31% to 78% at 5 years (Lee

et al., 2006). The major prognostic factors for recurrence and progression are tumor

multiplicity, size, previous recurrence rates, baseline tumor (T) stage, presence of

CIS and tumor grade (Kurth et al., 1995). The high rate of early recurrences (up to

60% within 3 months) reported in the literature suggests that a significant percentage

of tumor recurrences result from residual tumor left behind at resection or growth of

previously undetected microscopic lesions. See Sylvester et al. (2006) for more details

and references therein.

This problem in not unique to the bladder cancer trials, cancer trials in other

indications evaluating patients at the early stage when the surgery or the treatment

with expectation of complete recovery is possible, anticipate the cancer recurrence in

some patients for whom the time to recurrence and the cancer stage at recurrence

would make a difference with respect to subsequent treatment and a quality of the

life.
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2.1.2 Brief Overview

Many scientists investigated mathematical modeling of carcinogenesis problem.

The majority of models used the elements of the birth-and-death stochastic processes

theory. Tan gives a comprehensive analysis of this class of models in his work Tan

(1991). A common weak point in many Markovian models of carcinogenesis is that

the description of tumor progression is not sufficiently advanced. The time to observ-

ing a tumor is not equal to the time at which the first malignant cell is generated.

Additionally, the estimation procedure is quite tedious even in computationally fea-

sible cases Tan and Chen (1993). Therefore, the search for new ways of modeling

the carcinogenesis seems to be very reasonable. The mathematical description of tu-

mor latency with regard to the tumor recurrence and regression analysis of tumor

recurrence data described in work by Yakovlev and Tsodikov (1996). Authors discuss

different stochastic models with parameters that have clear biological meaning. The

proposed parametric models describe the process of cancer recurrence. Authors sug-

gest that there are several causes of local cancer recurrence including the recurrence

caused by the cancer cells surviving a treatment or a surgery and the recurrence

caused by spontaneous carcinogenesis which have different mathematical representa-

tion and biological interpretation. In our research, we used the proposed models to

build the joint model of the time to bladder cancer recurrence and the cancer stage

at recurrence.

Multinomial-Poisson (MP) transformation has been a popular technique to sim-

plify maximum likelihood estimation and has been researched by many scientists

including Baker (1994). The approach works by substituting a Poisson likelihood

for the multinomial likelihood at the cost of augmenting the model parameters by

axillary ones. The MP transformation is justified through the method of Lagrange

multipliers by Lang (1996). Tsodikov and Chefo (2009, 2008) proposed an alternative

approach based on generalized self-consistency methodology that allows to use Pois-
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son likelihood with arbitrary covariate structure. The authors modeled the prostate

cancer data using the complex joint survival-multinomial mixed model. Observed

outcomes represented the age at diagnosis and stage which was a combination of the

actual cancer stage and grade. Chefo and Tsodikov developed a stable and structured

MLE approach obtaining the model estimates iteratively. The approach was based

on generalized self-consistency and the quasi-EM algorithm used to handle the mixed

multinomial part of the response through Poisson likelihood. This work was extended

from the work of Tsodikov (2003). Tsodikov developed a generalized self-consistency

approach to MLE estimation and model building in a survival analysis setting.

In this chapter, we describe a model for the joint distribution of time to recurrence

and cancer stage at recurrence that accounts for the recurrence caused by the cancer

cells surviving a treatment or a surgery and for the recurrence caused by spontaneous

carcinogenesis when event times are right censored. We provide methods for full max-

imum likelihood estimation based on the EM algorithm. The methods are described

in Section 2.2 of this chapter. Section 2.3 outlines the real-life example based on the

clinical trial in patients with bladder cancer. The methods are illustrated through

modeling and estimation of data from this trial. The simulations used to assess the

sensitivity of the methods are presented in Section 2.4. Section 2.5 summarizes the

results and gives conclusions.

2.2 Models and Methods

2.2.1 The Model of Cancer Recurrence

In this section, we outline a parametric model that will be used to model the

cancer recurrence in patients with bladder cancer who went through the surgery.

Yakovlev (1993) proposed a simple stochastic model for cancer recurrence incorpo-

rating parameters that have clear biological meaning. At the end of surgery, the
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cancer cells that were not resected possess the capacity of giving rise to an overt

tumor. These cells, clonogens, will propagate into a newly detectable tumor. The

initial number of clonogens is modeled as a Poisson random variable with expectation

θ1. Let Xi be a random time for the ith clonogen to produce a detectable tumor. The

non-negative random variables Xi are independent and identically distributed with

a common cumulative distribution function F1(t). This assumption is natural if the

surviving tumor clonogens are in small proportion and wide apart from each other

which is likely to occur in a treated tumor. The time to tumor recurrence (latent

period) can be defined as the random variable V such that

V = min
{i:0≤i≤ num. of surv. clonogens}

Xi, (2.1)

where X0 = +∞ with probability one. Then the survival function for the random

variable V is the following:

S1(t) =
∞∑

k=0

{
θk
1 exp(−θ1)

k!
(1− F1(t))k

}
= exp (−θ1 F1(t)) . (2.2)

The key advantage of expression (2.2) is to show the contribution of the two dis-

tinct characteristics of tumor growth: the expected number of surviving clonogens

θ1 and the rate of their progression described by the c.d.f. F1(t). Estimation of

both characteristics is feasible and provides additional information on the biology

of tumor recurrence. Another advantage is due to the fact that survival function

(2.2) corresponds to an improper (substochastic) distribution and its limiting value

S1(+∞) = exp(−θ1) represents the probability of tumor cure (no recurrence) or the

surviving fraction. The difficulties associated with the estimation of surviving frac-

tion from censored observations within the non-parametric framework are known and

described in works by Pepe and Fleming (1989) and Cantor and Shuster (1992). Most

parametric survival models implicitly assume a zero limiting survival probability as in
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Kalbfleisch and Prentice (2002). The importance of allowing for surviving fractions in

failure-time models has been recognized by many scientists. In parametric analyses,

this concept leads to the necessity of improper distributions in the analysis of failure

time data. These distributions do not need to be of the mixture type as deliberated

by Yakovlev (1994). The model specified by (2.2) allows for the surviving fraction in

a natural way.

When considering the cause of tumor recurrence, it is important to consider the

possibility of tumor appearance due to an enhanced transformation rate and depres-

sion of the immune system in the subject. The model proposed by Klebanov et al.

(1993) includes the description of spontaneous carcinogenesis as a special case. A

non-stationary generalization of the model was given by Yakovlev, Tsodikov, and

Bass in Yakovlev (1993). Once a malignant cell comes into existence, its growth is

irreversible and the progression begins resulting in a detectable tumor after some

time. The primary event in the process of carcinogenesis is the formation of an intra-

cellular lesion which is potentially carcinogenic. These precancerous lesions located

in different target cells possess the capacity for producing a detectable tumor in the

long run. The primary events occur at random times and their sequence in time rep-

resents a point stochastic process. This process will be considered a Poisson process

with intensity θ2(t), so that the number of lesions accumulated by time T is a Poisson

random variable with expectation
∫ T

0
θ2(t)dt. Let a random variable Yi be the time

from the ith lesion formation to the observable overt tumor caused by this lesion.

The nonnegative random variables Yi, i = 1, 2, . . ., are assumed to be independent

and identically distributed with the common c.d.f. F2(y). Let ν(t) be the number

of misrepaired lesions (cells are endowed with a capacity to repair lesions, but some

lesions remain unrecognized by the repair system and some lesions happen to be mis-

repaired) accumulated in an organism by time t. We assume that ν(t) is independent

of random variables Y1, Y2, . . .. The latent period is defined as a random variable W
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such that:

W = min
i:0≤i≤ν(t)

(Ei + Yi), (2.3)

where Ei is the time of the ith lesion formation given that this time is less than T , and

Ei and Yi are mutually independent with E0 + Y0 = +∞ (no lesion) with probability

one. Tumor recurrence remains latent until either it is detected or a censoring event

occurs. The survival function of the random variable W is:

S2(t) = exp



−

t∫

0

θ2(x)F2(t− x)dx



 , (2.4)

where θ2(t) is the rate of formation of intracellular lesions, and the rate of their

progression described by the function F2. When θ2(t) is constant over time, S2(t)

becomes:

S2(t) = exp



−

t∫

0

θ2F2(x)dx



 , (2.5)

which is best matched to model S1(t) with regards to estimation problems.

There are no pathological or clinical criteria for discrimination between possible

causes of cancer recurrence. By studying the temporal characteristics of tumor la-

tency, an appropriate solution to this problem might be found. The results by Hoang

et al. (1996) show that discrimination between true recurrence and spontaneous car-

cinogenesis is feasible. In our real-life example we are evaluating patients with bladder

cancer who went through the surgery. Depending on a patient’s characteristics after

TURB (transurethral resection of the bladder) the probability of recurrence at one

year ranges from about 15% to 61% and from 31% to 78% at 5 years (Lee et al.

(2006)). The high rate of early recurrences (up to 60% within 3 months) reported in

the literature suggests that a significant percentage of tumor recurrences result from

residual tumor left behind at resection or growth of previously undetected microscopic

lesions.
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As discussed above, a recurrence of cancer can be caused by cancer cells surviving

the treatment or surgery or by spontaneous carcinogenesis. Assuming that these

two reasons are the cause of a cancer recurrence, the survival function of time to

recurrence can be written as a product of two survival functions:

S(t) = exp


−θ1F1(t)−

t∫

0

θ2F2(x)dx


 = S1(t)S2(t), (2.6)

where S1(t) = exp (−θ1F1(t)) describes the time to tumor recurrence from cancer

cells that survive treatment, and S2(t) = exp
(
− ∫ t

0
θ2F2(x)dx

)
describes the time

to tumor recurrence by spontaneous carcinogenesis. Here θ1 is the mean number of

cancer cells surviving a treatment or surgery and F1(t) is a c.d.f. describing the rate

of their progression; θ2 is the rate of formation of intracellular lesions and F2(t) is a

c.d.f. describing the rate of their progression.

To allow functional dependence on covariate information, the rates θ1 and θ2 will

be modeled parametrically as:

θ1(Z) = exp
(
β01 + βT

1 Z
)
, θ2(Z) = exp

(
β02 + βT

2 Z
)
, (2.7)

where Z is a vector of values of explanatory variables and βij are regression coeffi-

cients.

Let introduce random variable U which will take the following values:

U =





1, if recurrence is caused by spontaneous carcinogenesis,

0, if recurrence is caused by surviving a treatment cancer cells.
(2.8)

Note that U is a random variable which is not observed, but is used to differentiate

the cause of cancer recurrence.
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2.2.2 Multinomial Logit Model

Let Xi ∈ {1, 2, · · · ,M} be the ith subject’s multinomial response (cancer stage)

in one of the M possible categories. On the complete-data level, multinomial prob-

abilities are modeled using log-linear predictors πm(zi, ti, ui) specific to categories m

and conditional on a vector of covariates Zi, time Ti, and indicator Ui:

Pr {Xi = m|Zi, Ti, Ui} =
πm(zi, ti, ui)

1 +
∑M

c=2 πc(zi, ti, ui)
, (2.9)

where for identifiability, regression coefficients corresponding to the first category are

set to zero. We will use the following parameterization of function πm using regression

coefficients αm:

πm(zi, ti, ui) = exp (αm · zi + αt,m · ti + αu,m · ui) . (2.10)

2.2.3 Joint Distribution and Likelihood

In survival analysis we observe the time to recurrence or the time at which a

subject did not have a cancer recurrence which was confirmed by an objective medical

evaluation and then the information was not collected after a certain period or it was

missing. In this case, the event is considered to be right censored at the time of

an objective evaluation confirming no recurrence. The event is right censored when

follow-up is curtailed with observing the event. Let

δi =





1, if ith subject had cancer recurrence,

0, otherwise.
(2.11)

It is convenient to represent time to recurrence data subjected to random censoring

by the n pairs of the form (ti, δi), where ti are observed times, and δi is a censoring

index, i = 1, . . . , k. If the censoring is non-informative, then the likelihood for right
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censored data is:

L ∝
k∏

i=1

f(ti)
δiS(ti)

1−δi . (2.12)

Let’s build the joint distribution for k = 1. Given δ = 0, S(t) = S1(t)S2(t). Then

given δ = 1, the joint density for a time to recurrence and a cancer stage at recurrence

can be described by the following pdf:

(T, X) ∼ f(t,m) = s1(t)S2(t)
πm(t, Z, u = 0)

1 +
∑M

c=2 πc(t, Z, u = 0)
(2.13)

+ S1(t)s2(t)
πm(t, Z, u = 1)

1 +
∑M

c=2 πc(t, Z, u = 1)
,

where s1(t) and s2(t) are pdf given by 1−S1(t) and 1−S2(t) distributions, respectively.

Denote

ρ0,m(t, Z) =
πm(t, Z, u = 0)

1 +
∑M

c=2 πc(t, Z, u = 0)
and ρ1,m(t, Z) =

πm(t, Z, u = 1)

1 +
∑M

c=2 πc(t, Z, u = 1)
.

Then since s1(t) = θ1(Z)f1(t)S1(t) and s2(t) = θ2(Z)F2(t)S2(t), the joint pdf f(t, m)

can be expressed in the following way:

f(t,m) = θ1(Z)f1(t)S1(t)S2(t)ρ0,m(t, Z) + θ2(Z)F2(t)S1(t)S2(t)ρ1,m(t, Z)

= S(t) ( θ1(Z)f1(t)ρ0,m(t, Z) + θ2(Z)F2(t)ρ1,m(t, Z) ) , (2.14)

where f1(t) is the pdf corresponding to a distribution given by F1(t). Therefore,

f(t,m, u) =





S(t)θ1(Z)f1(t)ρ0,m(t, Z), if u = 0,

S(t)θ2(Z)F2(t)ρ1,m(t, Z), if u = 1.
(2.15)

The conditional pdf of U = u given T = t and X = m is

f(u|t,m) =
f(t,m, u)

f(t,m)
,
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so that if u = 0, then

f(u = 0|t,m) =
θ1(Z)f1(t)ρ0,m(t, Z)

θ1(Z)f1(t)ρ0,m(t, Z) + θ2(Z)F2(t)ρ1,m(t, Z)
, (2.16)

and if u = 1

f(u = 1|t,m) =
θ2(Z)F2(t)ρ1,m(t, Z)

θ1(Z)f1(t)ρ0,m(t, Z) + θ2(Z)F2(t)ρ1,m(t, Z)
. (2.17)

The full likelihood is proportional to the likelihood associated with the event time

distribution and cancer stage L(β), where β is a vector of parameters need to be

estimated from the model. The observed data log-likelihood is log L(β) calculated as

following:

l = log L(β) =
∑

i∈ non-recurrences


−θ1(Zi)F1(ti)−

ti∫

0

θ2(Zi)F2(x)dx


 (2.18)

+
∑

i∈ recurrences
log (S(ti)θ1(Zi)f1(ti)ρ0,xi

(ti, Zi) + S(ti)θ2(Zi)F2(ti)ρ1,xi
(ti, Zi)) .

The complete data log-likelihood is:

lcd =
∑

i∈ non-recurrences


−θ1(Zi)F1(ti)−

ti∫

0

θ2(Zi)F2(x)dx




+
∑

i∈ recurrences
{ui · log (S(ti)θ2(Zi)F2(ti)ρ1,xi

(ti, Zi)) (2.19)

+ (1− ui) · log (S(ti)θ1(Zi)f1(ti)ρ0,xi
(ti, Zi))}.

Our approach will be to use EM algorithm, with the E-step solving the problem

of imputation of U and the M-step maximizing a log-likelihood obtained from the

complete data model.
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2.2.4 The EM Algorithm

The EM algorithm is formulated as follows.

Step 1: Set initial values of regression coefficients and distribution parameters

β(0) = (β1, β2, α, parameters from F1(t) and F2(t) distributions) .

Step 2: E-step. Calculate a vector

Û(β(k)) = E(U |Observed data = (t,m), δ = 1) (2.20)

=
θ2(Zi)F2(ti)ρ1,xi

(ti, Zi)

θ1(Zi)f1(ti)ρ0,xi
(ti, Zi) + θ2(Zi)F2(ti)ρ1,xi

(ti, Zi)
.

Step 3: M-step. Maximize the log-likelihood obtained from the complete data

model at Û(β(k)) which can be achieved by maximizing separately lρcd and l1cd + l2cd,

where

lρcd =
∑

i∈ recurrences

{
ûi(β

(k)) · log ρ1,xi
(ti, Zi) + (1− ûi(β

(k))) · log ρ0,xi
(ti, Zi)

}
,

l1cd + l2cd =
∑

i∈ non-recurrences


−θ1(Zi)F1(ti)−

ti∫

0

θ2(Zi)F2(x)dx


 + (2.21)

+
∑

i∈ recurrences
{ûi(β

(k)) · log (S(ti)θ2(Zi)F2(ti))

+ (1− ûi(β
(k))) · log (S(ti)θ1(Zi)f1(ti))}

=
∑

i∈ all events

−θ1(Zi)F1(ti) +
∑

i∈ recurrences
(1− ûi(β

(k))) log(θ1(Zi)f1(ti))

+
∑

i∈ all events

−
ti∫

0

θ2(Zi)F2(x)dx +
∑

i∈ recurrences
ûi(β

(k)) log(θ2(Zi)F2(ti)).

Denote the solution by β(k+1).
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Step 4: Set k = k + 1. Continue with Step 2 and Step 3 iterations until conver-

gence.

Standard error estimates are based on the inverse of the observed information

matrix:

I = − ∂2l(β)

∂β∂βT
, (2.22)

where β is the vector of model parameters and l(β) = log E {L(β|U)} is the model

log-likelihood maximized as a result of EM algorithm. The observed information

matrix is derived by an application of the missing information principle representing

the observed information as the difference between expected complete-data informa-

tion and the missing information, given observed data, see McLachlan and Krishnan

(2008). Alternatively, a bootstrap estimate of standard errors could be done using

Efron’s approach, see Efron (1994).

2.3 Real-life Example: Bladder Cancer Trial

2.3.1 Background

The clinical 305 trial described in Section 2.2.2 was a trial conducted in patients

with bladder cancer. The trial had two parts: a pivotal 9 month study and an

extension part of the study which captured patient information for approximately 5

years after the completion of the pivotal study. About 560 patients with histologically

superficial bladder cancer (Ta and T1) confirmed by a local pathologist were included

in the study. The recurrence analysis included 551 patients. At inclusion the patients

were randomized to have their cystoscopy including TURB by white light only or by

white light plus blue light with the experimental drug. In addition, the patients were

stratified by cancer history (initial and recurrent bladder cancer).

Patients were followed-up by cystoscopy in white light after the resection proce-
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dure at three, six and nine months. The results from the local pathologist at baseline

were used to determine if the patient was to be followed up at 3, 6 and 9 months.

Recurrence was to be verified by histology assessment of the local pathologist during

visits. Recurrence was defined as presence of either a CIS, Ta, T1 or T2 − T4 tu-

mor. Suspected areas seen during cystoscopy at baseline and at follow-up visits were

biopsied or resected. The urologist recorded the bladder sector in which the lesion or

suspected area was found, whether the lesion appeared visually to be flat or papillary,

and whether the lesion/suspected area was visible in white light (or blue light at the

baseline). The results were recorded as normal, flat lesions (classified as dysplasia,

hyperplasia, carcinoma in situ (CIS)), or papillary lesions (classified as Ta, T1, T2,

T3, T4 according to the TNM staging). In addition, the WHO grade was recorded if

applicable as 1, 2, 3 for the papillary tumors. If there were multiple pathology results

for a single lesion or multiple cancer lesions were identified for a patient, the worst

lesion type was used in the analysis. However, if there was a CIS in addition to a

papillary lesion reported, both results were included. In the analysis of the trial data,

the cancer stage order from less advanced to more advanced stages was determined

clinically as the following: Ta < CIS < (Ta + CIS) < T1 < (T1 + CIS) < T2 <

(T2 +CIS) < T3 < (T3 +CIS) < T4 < (T4 +CIS). Risk factors such as smoking, oc-

cupational exposure to aromatic amines, history of kidney stones, and family history

were not collected in this study while prognostic factors for recurrence/ progression

(e.g., number of lesions, tumor stage, tumor grade, presence of CIS, and previous

recurrences) were collected for all patients.

2.3.2 Data Summary

Both therapy groups had similar patients with respect to the baseline character-

istics such as gender, race, age, and the bladder history Stenzl et al. (2010).

The scheduled visits for the cystoscopy were at 3, 6, and 9 months. The extension
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part of the study collected the follow up data for 5-6 years after the original ther-

apy unless patient died prior to the follow-up period. The recurrence data used in

the study was treated slightly different for the analysis in this paper from what was

reported after the study was completed. Only patients who had the cancer stage at

recurrence available and confirmed by histology were considered as ones with recur-

rence. If the cancer stage was missing or not confirmed, the time to recurrence was

censored.

The visual summary of the data is provided by Figure 2.1. It gives a histogram

of the observed data (top left panel), a density function of observed data (top right

panel), a histogram of recurrence data (bottom left panel), and a histogram of cen-

sored data (bottom right panel). One can notice that the majority of patients with

cancer recurrences were diagnosed during the first year after the surgery.

The Kaplan-Meier (KM) estimate of the median recurrence time in the standard

group was 9.5 months with the number of events of 142. The Kaplan-Meier estimate

of the median recurrence time in the experimental group was 16.4 months with the

number of events of 125. The p-value from the Wilcoxon test was 0.043. From the

KM Figure 2.2 (left panel), it is noticeable that the separation between the survival

curves started after 6 months and continued until the end of the follow-up period

suggesting the better outcome in the experimental group. Figure 2.2 (right panel)

shows the cumulative hazard by therapy group.

The Kaplan-Meier curve of the overall time to cancer recurrence with the 95%

confidence intervals is presented on Figure 2.3.

The proportional hazard model (Cox regression) of the recurrence time revealed

the significant effect of therapy, country, baseline cancer stage, and cancer history.

The significant effect of baseline cancer stage and cancer history was expected as

these variables are considered to be the prognostic factors for time to recurrence/

progression. The effect of the country can be explained by the following fact: this
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study was the multi-country study ran in Europe, Canada, and USA; while the sites

in Canada and USA used the technology the first time, the European sites had some

experience with it already (this experimental therapy was approved by the European

Medicine Agency in 2004).

The number of patients with recurrence in the standard therapy group was 142

out of 280 patients, and the number of patients with recurrence in the experimental

group was 125 out of 271 patients. The distribution of the stages by group is described

in Table 2.1. The χ-squared test did not show a significant difference between groups

Cancer Stage at Recurrence Experimental Ther-
apy (Number of Pa-
tients)

Standard Ther-
apy (Number of
Patients)

Missing 16 19
0 (None or not confirmed) 130 119
1 (Ta) 102 109
2 (CIS) 3 5
3 (Ta + CIS) 4 5
4 (T1) 7 11
5 (T1 + CIS) 3 3
6 (T2 − T4) 5 7
7 (T2 − T4 + CIS) 1 2

Table 2.1: Study Cancer Stage at Recurrence.

using the ordered outcomes of stages although the marginal difference toward the

better outcomes (e.g., less recurrences and recurrences at less aggressive stages) in

the experimental group needs to be noted here.

The cancer recurrence was observed as early as at 3 months after the surgery.

While only 7 patients with recurrences were observed in the experimental group, 21

patients with recurrences were observed in the standard group. It was noted that out

of 21 patients 7 progressed to more advanced stages. The distribution of the stages

is presented in the table below:
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Cancer Stage at Recurrence
during first 3 months

Experimental Ther-
apy (Number of Pa-
tients)

Standard Ther-
apy (Number of
Patients)

1 (Ta) 6 12
2 (CIS) 1 2
3 (Ta + CIS) 0 0
4 (T1) 0 3
5 (T1 + CIS) 0 1
6 (T2 − T4) 0 1
7 (T2 − T4 + CIS) 0 2

Table 2.2: Recurrence Cancer Stage at 3 months.

2.3.3 Data Modeling

The time to cancer recurrence and the cancer stage at recurrence data were mod-

eled using joint modeling methods described in Section 2.2. Covariates that showed

significant effect during the preliminary analysis such as procedure group, cancer his-

tory (previous recurrences), and baseline tumor stage were included in the model.

Therefore, the mean number of cancer cells surviving the surgery θ1 and the rate of

formation of intracellular lesions θ2 were based on the following parametrization of

the predictors:

θi(z) = exp (βi0 + βi1 · z1 + βi2 · z2 + βi3 · z3) , (2.23)

where z1 = procedure group, z2 =cancer history, and z3 =baseline tumor stage.

Seven cancer stages (Ta, CIS, Ta+CIS, T1, T1+CIS, T2−T4, and T2−T4+CIS)

were evaluated in the model.

Pr {Xi = m|Zij, Ti, Ui} =
πm(zij, ti, ui)

1 +
∑7

c=2 πc(zij, ti, ui)
, (2.24)

πm(zij, ti, ui) = exp (αm1 · zi1 + αm2 · zi2 + αm3 · zi3 + αt,m · ti + αu,m · ui) ,

where i ∈ {1, . . . , 551}; and j ∈ {1, 2, 3}.
The modified cancer stages such as less aggressive (T1), moderately aggressive
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Parameter MLE SE Wald Statistics P-value
β10 -1.7513 0.36608 -4.6678 <0.001
β11 0.3039 0.13554 2.2023 0.0281
β12 0.5122 0.14704 3.3707 <0.001
β13 0.0289 0.06227 0.3925 0.6949
γ1 8.2432 0.37193 22.1194 <0.001
γ2 1.7529 0.08579 20.4572 <0.001
β20 -5.3287 0.20151 -26.4439 <0.001
β21 -0.1296 0.01583 -8.1869 <0.001
β22 0.1811 0.08112 2.2325 0.0201
β23 0.0674 0.00342 19.7076 <0.001
λ1 0.1254 0.02231 5.6208 <0.001

Table 2.3: Parameter Estimations for Survival Function of Time to Recurrence.

(CIS, Ta +CIS, T1, and T1 +CIS), and more aggressive (T2−T4 and T2−T4 +CIS)

were evaluated in the model as well, but these stage combinations did not result in

a better fit. Several combinations of distributions were fit the recurrence time data.

Gamma, Weibull, log-normal, Makeham, Compertz and exponential distributions

were evaluated as possible candidates for the survival function describing the rate of

progression of cancer cells surviving the surgery. Gamma, Weibull, and exponential

distributions were evaluated as potential candidates for the survival function describ-

ing the rate of spontaneous carcinogenesis. Weibull distribution (γ1, γ2) for time to

tumor recurrence from cancer cells that survive surgery and exponential distribution

(λ1) for time to tumor recurrence by spontaneous carcinogenesis showed the most

appropriate fit graphically and analytically. Models were fit using the proposed EM

algorithm which was written in R software. The results of the parameter estimations

for the survival function of time to recurrence are presented in Table 2.3.

Figure 2.4 (left panel) gives the graphical estimation of the survival curve of

time to cancer recurrence: Kaplan-Meier non-parametric estimation and a parametric

estimation adjusted for the recurrence stage. Stepwise curve is the Kaplan-Meier

estimate, and the smooth line is the MLE. Figure 2.4 (right panel) gives a similar

graphical estimates by procedure group.
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Fifty four parameters for the model-predicted marginal probabilities of the can-

cer stage associated with the cancer recurrence caused by cancer cells surviving the

surgery and caused by spontaneous carcinogenesis were estimated from the model,

they are presented in Table 2.4, Maximum Likelihood Estimators (MLE) of coeffi-

cients from the stage model.

Categories αm,1;
u = 0

αm,2;
u = 0

αm,3;
u = 0

αt,m;
u = 0

αm,1;
u = 1

αm,2;
u = 1

αm,3;
u = 1

αt,m;
u = 1

αu,m;
u = 1

Stage 2 -0.3150 -0.6763 0.9910 -1.2168 2.0395 1.6534 0.8097 -0.7246 0.6936
Stage 3 -1.2113 0.4469 0.5294 -0.9591 1.2060 -0.7715 0.8260 -0.1446 0.6357
Stage 4 -0.1667 -0.8487 0.4121 -0.3154 0.3737 -0.2968 0.1679 -0.0850 0.9847
Stage 5 -0.3015 -1.5345 0.6671 -0.7112 0.6429 -0.1053 2.4061 -0.4861 0.6499
Stage 6 -0.4717 -1.2408 0.5968 -0.2206 1.0309 -1.2957 0.2788 -0.1798 2.2075
Stage 7 0.3107 -1.9972 0.8325 -0.9091 4.5126 -3.9208 0.0490 -0.9377 3.4217

Table 2.4: MLE.

2.4 Simulations

Simulations were used to assess the sensitivity of the method. Similar to the

real-life example, three covariates were simulated and included in the model: proce-

dure group, cancer history (previous recurrences), and baseline tumor stage. It was

assumed that only three stages: less aggressive (1), moderately aggressive (2), and

more aggressive (3) were the possible cancer stage outcomes.

Parameter MLE SE P-value
β10 0.4497 0.4234 0.2911
β11 0.3632 0.0314 <0.001
β12 6.6384 0.4563 <0.001
β13 -0.6936 0.5811 0.2357
γ1 0.0179 0.0010 <0.001
γ2 1.4253 0.1342 <0.001
β20 -1.7796 0.3203 <0.001
β21 -0.1226 0.2752 0.6564
β22 0.3539 0.2784 0.2068
β23 0.0683 0.2738 0.8035
λ1 5.7801 4.8189 0.2333

Table 2.5: Table X: F1=Weibull(γ1, γ2), F2=exponential(λ1).
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Parameter MLE SE P-value
β10 -9.6819 7.7231 0.2131
β11 8.9729 0.7832 <0.001
β12 -3.7458 3.2341 0.2497
β13 -0.7269 0.6342 0.2547
µ1 56.0891 5.4562 <0.001
µ2 10.5673 9.9721 0.2920
β20 -1.0888 0.2143 <0.001
β21 0.0812 0.1734 0.6404
β22 -0.1919 0.3245 0.5557
β23 0.7505 0.6931 0.2817
λ1 1.9570 0.8231 0.0195

Table 2.6: Table Y: F1=Gamma(µ1, µ2), F2=exponential(λ1).

Parameter MLE SE P-value
β10 2.4316 0.4254 <0.001
β11 0.3077 0.0312 <0.001
β12 -0.2567 0.2316 0.2705
β13 -0.3264 0.2811 0.2485
λ2 0.0179 0.0011 <0.001
β20 -1.016 0.2805 <0.001
β21 0.3499 0.2734 0.2038
β22 -0.2875 0.2788 0.3051
β23 -0.3883 0.2813 0.1707
λ1 4.3423 3.0959 0.1640

Table 2.7: Table Z: F1=exponential(λ2), F2=exponential(λ1).

The Weibull distribution (γ1, γ2), gamma distribution (µ1, µ2), and exponential

distribution (λ2) were evaluated as suitable candidates for the time to tumor recur-

rence from cancer cells that survive surgery, and the exponential distribution (λ1) was

evaluated as a suitable candidate for the time to tumor recurrence by spontaneous

carcinogenesis. The results of the parameter estimations for the survival function

of time to recurrence are presented in Tables 2.5-2.7. These results were obtained

from samples of size 100. Given the results in these tables, one can build confidence

intervals for model parameters.
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2.5 Discussion

We have described a framework for modeling the joint distribution of time to

cancer recurrence and cancer stage at recurrence. Our approach accommodates two

different causes of the cancer recurrence: recurrence caused by cancer cells surviving

a treatment or a surgery and recurrence caused by spontaneous carcinogenesis. The

case considered in this chapter based on the continuous follow-up observation process

with right censored event times. ML estimation with the EM algorithm was used

to estimate the necessary parameters in the model. One could apply the approach

proposed by Tsodikov and Chefo to simplify the likelihood maximization of the cancer

stage and use the quasi-EM algorithm instead of the EM algorithm.

Modeling the time to cancer recurrence and cancer stage at recurrence jointly

allows for more powerful inference. Real-life data and simulations are used to assess

the sensitivity and provide robustness of the method. In the real life example, we

had to model and estimate 65 parameters. Eleven parameters were used to estimate

the time to recurrence distribution. An added benefit of such modeling is that it

permits using the cancer stage at recurrence to provide adjusted estimates for the

time to recurrence distribution and use them in tests. The cancer stage at recurrence

significantly impacts patient quality of life and further treatment. Therefore, it should

be accounted in the estimation and analysis of time to cancer recurrence.

A potential limitation of the proposed approach is the use of the parametric func-

tions. There are many different parametric survival distributions that one might need

to evaluate in order to find the most appropriate fit for the data.

In this chapter, we assumed the continuous follow-up observation process with

right censored event times. In the real-life example, during the first year of the

follow-up period patients had scheduled visits at 3, 6, and 9 months; after one year, the

follow-up process was based on the regular visits set by investigators and their patients

participating in the clinical trial. The more typical clinical trials have scheduled visits
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throughout the follow-up period defined by a protocol. In the next chapter we extend

our approach to allow for a discrete follow-up process. The interval censored data

model will be described in the next chapter.
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Figure 2.2: Kaplan-Meier and Cumulative Hazard Curves by Therapy.
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CHAPTER III

Joint Modeling of Time to Recurrence and Cancer

Stage at Recurrence in Oncology Trials - When

Event Times Are Interval - Censored (Discrete

Follow-up Observation Process)

3.1 Introduction

3.1.1 Interval-Censored Data: Brief Overview

In the real-life example described in Chapter I and Section 2.3, during the first

year of the follow-up period patients had scheduled visits at 3, 6, and 9 months; after

one year, the follow-up process was based on the regular visits set by investigators and

their patients participating in the clinical trial. The extension part of the 305 study

collected a 5-year follow up information based on a single patient visit. The more

typical way to collect the extension trial information would be to have scheduled visits

throughout the follow-up period defined by a protocol (the same scheduled visits for

all patients in a study).

In many situations, the event of interest cannot be observed and it is only known

to have occurred within two times. In this set-up, we say that the time is interval-

censored. Interval-censored data are quite usual in longitudinal studies where subjects
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are not monitored continuously but scheduled to be inspected at particular visits.

The theory for the analysis of interval-censored data has been developed over

the past three decades and several good reviews have been written. However, it is

still a common practice in clinical trials to simplify the interval censoring structure

of the data into a more standard right censoring case. Reviews written by Huang

and Wellner (1997) and Lindsey and Ryan (1998) have been a keystone but are

outdated by many of the interval-censored methods. The more recent book by Sun

(2006) addresses statistical issues and describes statistical methods for the analysis

of singly and doubly interval-censored survival data arising from AIDS, cancer and

other disease studies. Parametric survival models for interval-censored data with

time-dependent covariates are described in work by Sparling et al. (2006). The most

recent review provided by Gomez et al. (2009) includes the methodology on non-

parametric, parametric, and semi-parametric estimating approaches, and the review

of software for analyzing interval-censored data.

There are several types of interval-censored data.

Case I interval-censored data or current status data: T is only known to be larger

or smaller than an observed monitoring time, L. In this case, the study subject is

observed only once producing either a left- or a right-censored observation.

Case II interval-censored data: In experiments with two monitoring times, L and

R with L < R, the survival time of interest T is only known to be before the first

monitoring time (T ≤ L), between the two monitoring times (L < T ≤ R), or after

the second monitoring time (T > R).

Case K interval-censored data: In longitudinal studies with periodic follow-up and

K monitoring times M1,M2, . . . ,MK , the event of interest is only observed between

two consecutive inspecting times Ml, Ml+1 and the observed data reduce to the in-

terval (Ml, Ml+1]. This censoring scheme corresponds to a natural extension of case

I and case II mechanisms and is discussed and extended in Schick and Yu (2000).
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Authors generalized the model assuming that the number of monitoring times K is

random.

The main assumption for many interval-censored techniques is that censoring oc-

curs non-informatively, that is, the only information provided by censoring interval

about the survival time t is that the interval contains t. The non-informative assump-

tion is relevant and not always fulfilled. More information on it can be found in Oller

et al. (2004).

In the next section, we will describe a framework for modeling the joint distribution

of time to cancer recurrence and cancer stage at recurrence accommodating two causes

of the cancer recurrence: recurrence caused by cancer cells surviving a treatment or a

surgery and recurrence caused by spontaneous carcinogenesis using interval-censored

techniques.

3.2 Models and Methods

3.2.1 Survival Function

Survival function in this case will be the same as in Section 2.2.1 and will be

written as

S(t) = exp


−θ1F1(t)−

t∫

0

θ2F2(x)dx


 = S1(t)S2(t), (3.1)

where S1(t) = exp (−θ1F1(t)) describes the time to tumor recurrence from cancer

cells that survive treatment, and S2(t) = exp
(
− ∫ t

0
θ2F2(x)dx

)
describes the time

to tumor recurrence by spontaneous carcinogenesis. Here θ1 is the mean number of

cancer cells surviving a treatment or surgery and F1(t) is a c.d.f. describing the rate

of their progression; θ2 is the rate of formation of intracellular lesions and F2(t) is a

c.d.f. describing the rate of their progression.

To allow functionally dependence on covariate information, the rates θ1 and θ2
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will be modeled parametrically as:

θ1(Z) = exp
(
β01 + βT

1 Z
)
, θ2(Z) = exp

(
β02 + βT

2 Z
)
, (3.2)

where Z is a vector of values of explanatory variables and βij are regression coeffi-

cients.

Let introduce random variable U which will take the following values:

U =





1, if recurrence is caused by spontaneous carcinogenesis,

0, if recurrence is caused by surviving a treatment cancer cells.
(3.3)

Note that U is a random variable which is not observed, but is used to differentiate

the cause of cancer recurrence.

3.2.2 Multinomial Logit Model

Again, let Xi ∈ {1, 2, · · · ,M} be the ith subject’s multinomial response (cancer

stage) in one of the M possible categories. On the complete-data level, multinomial

probabilities are modeled using log-linear predictors πm(zi, ti, ui) specific to categories

m and conditional on a vector of covariates Zi, time Ti, and indicator Ui:

Pr {Xi = m|Zi, Ti, Ui} =
πm(zi, ti, ui)

1 +
∑M

c=2 πc(zi, ti, ui)
, (3.4)

where for identifiability, regression coefficients corresponding to the first category are

set to zero. We will use the following parameterization of function πm using regression

coefficients αm:

πm(zi, ti, ui) = exp (αm · zi + αt,m · ti + αu,m · ui) . (3.5)
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3.2.3 Joint Distribution and Likelihood

In many situations, the event of interest cannot be observed and it is only known

to have occurred within two times, say L and R. In this set-up, we say that the time

is interval-censored. Interval-censored data are quite usual in clinical trials where

subjects are inspected at particular visits. Let

δi =





1, if ith subject had cancer recurrence detected,

0, otherwise.
(3.6)

Let Ti denote the time to recurrence for subject i, i = 1, . . . , k and suppose the

Ti’s follow a parametric model with survival function S(t, β) where vector β denotes

unknown parameters. Also suppose that only interval-censored data are available and

have the form:

{(Li, Ri], Zi; i = 1, . . . , k}, (3.7)

where (Li, Ri] denotes the interval to which an observed Ti belongs, and Zi is the

covariate vector associated with subject i, i = 1, . . . , k. Then the likelihood from the

interval-censored times is proportional to:

L1(β) =
k∏

i=1

ÃLi(β) ∝
k∏

i=1

[S(Li, β)− S(Ri, β)], (3.8)

assuming that Li < Ri for all i = 1, . . . , k.

If we assume that the recurrence is interval-censored while the non-recurrence

data is right censored, the likelihood function will be:

L2 =
k∏

i=1

{
(S(Li))

1−δi · (S(Li)− S(Ri))
δi
}

. (3.9)

The computations and model fitting procedure are simplified if only a few values are

possible for L and R. In our case, it is easier to refer to the interval-censored values by
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intervals on the time scale common to all subjects. Assume that we have J intervals

denoted by (τj−1, τj] for j = 1, 2, . . . , n with τ0 = 0 and τJ = ∞, and these intervals

are the same for all subjects. In the real-life example we used in the previous chapter

the intervals would be the following:

{(0, 3], (3, 6], (6, 9], (9, 60], (60,∞]}.

Let denote Ij the jth interval (τj−1, τj]. The binary variable indicating the specific

time interval observed for the ith subject is defined as:

aij =





1, if (Li, Ri] = Ij,

0, otherwise.
(3.10)

Now for k = 1 and δ = 0, the likelihood contribution is
∏n

j=1[S(τj−1)]
aij ,where:

S(τj−1) = S1(τj−1)S2(τj−1).

For k = 1 and δ = 1, the joint density for a time to recurrence and a cancer stage at

recurrence can be described by the following pdf:

(T, X) ∼ f(t,m) = Pr(T ∈ (τj−1, τj], x = m) (3.11)

=

τj∫

τj−1

S2(t)s1(t)ρ0,m(t, Z)dt +

τj∫

τj−1

S1(t)s2(t)ρ1,m(t, Z)dt,

where s1(t) and s2(t) are pdf’s given by 1− S1(t) and 1− S2(t) distributions, respec-

tively.

As previously,

ρ0,m(t, Z) =
πm(t, Z, u = 0)

1 +
∑M

c=2 πc(t, Z, u = 0)
and ρ1,m(t, Z) =

πm(t, Z, u = 1)

1 +
∑M

c=2 πc(t, Z, u = 1)
.
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Since s1(t) = θ1(Z)f1(t)S1(t) and s2(t) = θ2(Z)F2(t)S2(t), the joint pdf f(t,m) can

be expressed as follows:

f(t,m) =

τj∫

τj−1

S2(t)θ1(Z)f1(t)S1(t)ρ0,m(t, Z)dt

+

τj∫

τj−1

S1(t)θ2(Z)F2(t)S2(t)ρ1,m(t, Z)dt (3.12)

=

τj∫

τj−1

{S(t) ( θ1(Z)f1(t)ρ0,m(t, Z) + θ2(Z)F2(t)ρ1,m(t, Z) )} dt,

where f1(t) is the pdf corresponding to a distribution given by F1(t).

Therefore,

f(t,m, u) =





∫ τj

τj−1
S(t)θ1(Z)f1(t)ρ0,m(t, Z)dt, if u = 0,

∫ τj

τj−1
S(t)θ2(Z)F2(t)ρ1,m(t, Z)dt, if u = 1.

(3.13)

The conditional pdf of U = u given T = t and X = m is

f(u|t,m) =
f(t,m, u)

f(t,m)
.

So, if u = 0, then

f(u = 0|t,m) =

∫ τj

τj−1
S(t)θ1(Z)f1(t)ρ0,m(t, Z)dt∫ τj

τj−1
S(t)θ1(Z)f1(t)ρ0,m(t, Z)dt +

∫ τj

τj−1
S(t)θ2(Z)F2(t)ρ1,m(t, Z)dt

,

and if u = 1

f(u = 1|t,m) =

∫ τj

τj−1
S(t)θ2(Z)F2(t)ρ1,m(t, Z)dt∫ τj

τj−1
S(t)θ1(Z)f1(t)ρ0,m(t, Z)dt +

∫ τj

τj−1
S(t)θ2(Z)F2(t)ρ1,m(t, Z)dt

.

The full likelihood is proportional to the likelihood associated with the event time

distribution and cancer stage L(β), where β is a vector of parameters need to be
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estimated from the model. The observed data log-likelihood is log L(β) calculated as

following:

lobs = logL(β) =
∑

i∈ non-recurrences

n∑
j=1

aij log S(τi,j−1) (3.14)

+
∑

i∈ recurrences

n∑
j=1

aij log

( τi,j∫

τi,j−1

S(t)θ1(Zi)f1(t)ρ0,xi
(t, Zi)dt

+

τi,j∫

τi,j−1

S(t)θ2(Zi)F2(t)ρ1,xi
(t, Zi)dt

)
.

The complete data log-likelihood is:

lcd =
∑

i∈ non-recurrences

n∑
j=1

aij log S(τi,j−1) (3.15)

+
∑

i∈ recurrences

n∑
j=1

aij

{
(1− ui) · log

τi,j∫

τi,j−1

S(t)θ1(Zi)f1(t)ρ0,xi
(t, Zi)dt

+ ui · log

τi,j∫

τi,j−1

S(t)θ2(Zi)F2(t)ρ1,xi
(t, Zi)dt

}
.

The EM algorithm, with the E-step solving the problem of U imputation and the

M-step maximizing a log-likelihood build from the complete data model, can be used

to estimate the necessary parameters. These complex computations can be simplified

if we use a single point imputation approach for the multinomial probabilities of

the cancer stage model. When a patient has a cancer recurrence in between visits,

a cancer is in its earliest stage. Since a cancer lesion is growing over time, the

cancer stage is increasing until detected. When a patient comes to the hospital for

a visit and a cancer recurrence detected, the cancer stage is determined at that time

point. Therefore, using the right time point of the interval to model and estimate the

multinomial probabilities of the cancer stage seems to be reasonable. In this case, the
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joint density for a time to cancer recurrence and a cancer stage at recurrence can be

described by the following pdf:

(T,X) ∼ f(t,m) = Pr(T ∈ (τj−1, τj], x = m) (3.16)

= ρ0,m(τj, Z)

τj∫

τj−1

S2(t)s1(t)dt + ρ1,m(τj, Z)

τj∫

τj−1

S1(t)s2(t)dt

= ρ0,m(τj, Z)

τj∫

τj−1

S2(t)θ1(Z)f1(t)S1(t)dt

+ ρ1,m(τj, Z)

τj∫

τj−1

S1(t)θ2(Z)F2(t)S2(t)dt.

Therefore,

f(t,m, u) =





ρ0,m(τj, Z)
∫ τj

τj−1
S(t)θ1(Z)f1(t)dt, if u = 0,

ρ1,m(τj, Z)
∫ τj

τj−1
S(t)θ2(Z)F2(t)dt, if u = 1.

(3.17)

If u = 0, then

f(u = 0|t,m) =
ρ0,m(τj, Z)

∫ τj

τj−1
S(t)θ1(Z)f1(t)dt

ρ0,m(τj, Z)
∫ τj

τj−1
S(t)θ1(Z)f1(t)dt + ρ1,m(τj, Z)

∫ τj

τj−1
S(t)θ2(Z)F2(t)dt

,

and if u = 1

f(u = 1|t,m) =
ρ1,m(τj, Z)

∫ τj

τj−1
S(t)θ2(Z)F2(t)dt

ρ0,m(τj, Z)
∫ τj

τj−1
S(t)θ1(Z)f1(t)dt + ρ1,m(τj, Z)

∫ τj

τj−1
S(t)θ2(Z)F2(t)dt

.

The full likelihood is proportional to the likelihood associated with the event time

distribution and cancer stage L(β), where β is a vector of parameters need to be

estimated from the model. The observed data log-likelihood is log L(β) calculated as
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following:

lobs = logL(β) =
∑

i∈ non-recurrences

n∑
j=1

aij log S(τi,j−1) (3.18)

+
∑

i∈ recurrences

n∑
j=1

aij log
(
ρ0,xi

(τi,j, Zi)

τi,j∫

τi,j−1

S(t)θ1(Zi)f1(t)dt

+ ρ1,xi
(τi,j, Zi)

τi,j∫

τi,j−1

S(t)θ2(Zi)F2(t)dt
)
.

The complete data log-likelihood is:

lcd =
∑

i∈ non-recurrences

n∑
j=1

aij log S(τi,j−1) (3.19)

+
∑

i∈ recurrences

n∑
j=1

aij

{
(1− ui) · log ρ0,xi

(τi,j, Zi)

τi,j∫

τi,j−1

S(t)θ1(Zi)f1(t)dt

+ ui · log ρ1,xi
(τi,j, Zi)

τi,j∫

τi,j−1

S(t)θ2(Zi)F2(t)dt
}

=
∑

i∈ non-recurrences

n∑
j=1

aij log S(τi,j−1) (3.20)

+
∑

i∈ recurrences

n∑
j=1

aij

{
(1− ui) · log ρ0,xi

(τi,j, Zi)

+ (1− ui) · log

τi,j∫

τi,j−1

S(t)θ1(Zi)f1(t)dt

+ ui · log ρ1,xi
(τi,j, Zi) + ui · log

τi,j∫

τi,j−1

S(t)θ2(Zi)F2(t)dt
}

.

Our approach will be to use EM algorithm, with the E-step solving the problem of

imputation U and the M-step maximizing a log-likelihood obtained from the complete

data model.
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3.2.4 The EM Algorithm

The EM algorithm is formulated as follows.

Step 1: Set initial values of regression coefficients and distribution parameters

β(0) = (β1, β2, α, parameters from F1(t) and F2(t) distributions) .

Step 2: E-step. Calculate a vector

Û(β(k)) = E(U |Observed data = (t,m), δ = 1) (3.21)

=
ρ1,xi

(τi,j, Zi)
∫ τi,j

τi,j−1
S(t)θ2(Zi)F2(t)dt

ρ0,xi
(τi,j, Zi)

∫ τi,j

τi,j−1
S(t)θ1(Zi)f1(t)dt + ρ1,xi

(τi,j, Zi)
∫ τi,j

τi,j−1
S(t)θ2(Zi)F2(t)df

.

Step 3: M-step. Maximize the log-likelihood obtained from the complete data

model at Û(β(k)), which can be achieved by maximizing separately lρcd and ltcd:

lρcd =
∑

i∈ recurrences

n∑
j=1

aij

{
ûi(β

(k)) · log ρ1,xi
(τi,j, Zi)

}

+
∑

i∈ recurrences

n∑
j=1

aij

{
(1− ûi(β

(k))) · log ρ0,xi
(τi,j, Zi)

}
,

ltcd =
∑

i∈ non-recurrences

n∑
j=1

aij log S(τi,j−1) (3.22)

+
∑

i∈ recurrences

n∑
j=1

aij

{
(1− ûi(β

(k))) · log

τi,j∫

τi,j−1

S(t)θ1(Zi)f1(t)dt

+ ûi(β
(k)) · log

τi,j∫

τi,j−1

S(t)θ2(Zi)F2(t)dt
}

.

Denote the solution by β(k+1).

Step 4: Set k = k + 1. Continue with Step 2 and Step 3 iterations until conver-
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gence.

Standard error estimates are based on the inverse of the observed information

matrix:

I = − ∂2l(β)

∂β∂βT
, (3.23)

where β is the vector of model parameters and l(β) = log E {L(β|U)} is the model

log-likelihood maximized as a result of EM algorithm. The observed information

matrix is derived by an application of the missing information principle representing

the observed information as the difference between expected complete-data informa-

tion and the missing information, given observed data, see McLachlan and Krishnan

(2008). Alternatively, a bootstrap estimate of standard errors could be done using

Efron’s approach, see Efron (1994).

3.3 Discussion

In this chapter, we described a framework for modeling the joint distribution of

time to cancer recurrence and cancer stage at recurrence using interval-censored data

techniques considering two causes of the cancer recurrence: recurrence caused by

cancer cells surviving a treatment or a surgery and recurrence caused by spontaneous

carcinogenesis. The proposed EM algorithm can be used to estimate the necessary

parameters in the model.

The availability of software for the right censoring techniques in survival analysis

made it easy for the scientists in the pharmaceutical industry to apply the right

censored data techniques to the time to event outcomes. It is one of the main reasons

why it is still a common practice in clinical trials to simplify the interval censoring

structure of the data into a more standard right censoring case. The commercial

software S-PLUS and the free software R from the R Development Core Team Team
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(2008) are the most complete sources for survival analysis with interval-censored data.

In general, the parametric approach for analyzing interval-censored data is com-

putationally easier than non-parametric. A variety of parametric models can be used,

for example see Lindsey and Ryan (1998) to obtain smooth representations of both

the hazard and the survival functions. Maximum likelihood methods can be applied

to provide useful and meaningful parameter estimation. Under the non-informative

censoring assumption, standard likelihood inference and usual large sample proper-

ties apply. The parametric approach is appealing because of its simplicity but its

disadvantage is that all the inferences depend upon the assumption of a model which

is difficult to assess based on an interval-censored sample, with the risk of deriving

inconsistent estimators for the parameters of interest leading to inaccurate conclu-

sions. Ren (2003) proposed a goodness-of-fit method, called the leveraged bootstrap,

and Calle and Gomez (2008) proposed a sampling-based chi-squared test.

3.4 Remarks

The post-treatment cancer surveillance represents a discrete observational process

yielding incomplete information on the time to cancer recurrence. Instead of the

actual time of recurrence only the time of examinations is available which usually

follows the specific discrete schedule. Additionally, false-positive and false-negative

rates of the diagnostic test may be present. There exists a broad range of literature on

parametric and non-parametric estimation of the disease natural history from discrete

observations including Albert et al. (1978a,b), Flehinger and Kimmel (1991), Klebanov

et al. (1993), Ivankov et al. (1993), and Yakovlev et al. (1993). If surveillance is error

free, the corresponding sample can be considered as interval-censored.

Cancer surveillance represents a discrete observation process. During cancer

surveillance only the time of disease diagnosis is available while the time of the tumor

onset is unknown. The diagnostic time is usually discretized according to the specific
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schedule of visits.

Every individual under study is supposed to be initially at the disease free stage.

In other words, the disease escapes detection for some time right after the surgery. At

some point of time the preclinical stage begins during which a disease is detectable

but asymptotic. Having stayed in the preclinical stage without being diagnosed, a

patient enters the clinical stage characterized by apparent symptoms. If a preclinical

disease is detected by screening at time τ , its natural history is interrupted. The

probability, p, that a test detects cancer given the individual under examination is in

the preclinical stage is called sensitivity. Sensitivity estimation is a difficult task for

many reasons, see Yakovlev and Tsodikov (1996). In our case, we can assume that it

is known and it is a constant or a simple function.

Let τi be the time points at which patients are scheduled to be examined, i =

1, . . . , n:

0 ≤ τ0 ≤ τ1 ≤ . . . ≤ τn ≤ T,

where T is the planning period of observation. The individual’s outcome can be one

of the following:

• { an individual is censored in [τj−1, τj) },

• { an individual is detected with cancer at τj during scheduled visit },

• { an individual is detected with cancer prior to visit τj based on clinical symp-

toms }.

Let p1 be the detection probability of the cancer caused by the cancer cells surviv-

ing a treatment or surgery, and q1 = 1− p1 is false negative rate of the corresponding

diagnostic test. Let p2 be the detection probability caused by spontaneous carcino-

genesis, and q2 = 1− p2 false negative rate of the corresponding diagnostic test.

If a surveillance is error free, the corresponding sample will be interval censored

by the points τ1, τ2, . . . .
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Let us assume that a cancer lesion is growing deterministically which depends

on the follow-up time. We have two types of cancer diagnosis during the discrete

cancer surveillance: clinical diagnosis, when a patient comes to the office prior to the

scheduled visit because of the symptoms that he/she experiences; or visit diagnosis,

when a patients is diagnosed with the cancer during a scheduled visit. It would be

interesting to build and evaluate the models for this case.
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CHAPTER IV

Conclusions

We have described a framework for modeling the joint distribution of time to

cancer recurrence and cancer stage at recurrence. Our approach accommodates two

different causes of the cancer recurrence: recurrence caused by cancer cells surviv-

ing a treatment or a surgery and recurrence caused by spontaneous carcinogenesis.

We evaluated the model and provided the estimates for different outcomes of the

recurrence time. First, we proceeded with a continuous follow-up assumption using

stochastic models of cancer recurrence. Then we extended the approach to allow for

a discrete follow-up process. ML estimation with the EM algorithm was used to esti-

mate the necessary parameters in the models. We introduced the random variable U

which is not observed, but was used to differentiate the cause of cancer recurrence.

By using the random variable U , the maximization step in the EM algorithm was

simplified by splitting the complete-data likelihood into separate parts for stage and

event time.

Modeling the time to cancer recurrence and cancer stage at recurrence jointly

allows for more powerful inference. Real-life data from a bladder cancer trial and

simulations were used to assess the sensitivity and robustness of the method. An

added benefit of such modeling is that it permits using the cancer stage at recurrence

to provide adjusted estimates for the time to recurrence distribution and use them in
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tests. The cancer stage at recurrence significantly impacts patient quality of life and

further treatment. Therefore, it should be accounted in the estimation and analysis

of time to cancer recurrence.

The research described in this paper is not unique to the bladder cancer trials.

The proposed method can be used in evaluating the time to recurrence or progression

jointly with the disease stage at recurrence or progression in other indications, settings

(e.g., adjuvant therapies), and even therapeutic areas.

We considered cancer post-surgery surveillance which is represented by a discrete

process with non-zero false-negative rate of a given test. The extension of our methods

to this case is a natural next step of the research. The pharmaceutical industry is

highly regulated industry. Before any drug or device becomes available to people,

extensive work is done to evaluate the efficacy and safety of investigational drug or

device in pre-clinical and clinical trials. Clinical trials are classified into exploratory

and confirmatory studies. While Phase I and most Phase II trials are considered to

be exploratory ones, Phase III studies are aimed at being the definitive assessment

of how effective the drug is, in comparison with current gold standard treatment.

Therefore, testing, sample size and power calculations are always of interest. As a

future research, tests that can be applied to compare joint and marginal survival

distributions between two or more treatment or procedure groups could be developed

and evaluated. The sample size and power calculation of the tests would be a logical

next step in a future research. The recurrence data from the extension study 305

have the information on patients’ multiple recurrences during the follow-up period.

Therefore, as an extension to the current problem, the join distribution approach

can be considered for recurrent event data and the corresponding analysis techniques

might be proposed.
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