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Chapter 1:   Introduction 

In the early-21st century, humanity is faced with multiple converging trends that 

threaten the environment, our health, and our quality of life. Worldwide energy use is 

projected to increase by 53% from 2008 to 2035, with most of the growth (~85%) in non-

OECD countries [Energy Information Administration 2011]. Additionally, the United 

Nations projects that world will increase by more than two billion people by 2050 

[United Nations 2010]. Concurrently, economic expansion in high-population countries 

has blossomed car ownership, e.g., China’s per capita vehicle ownership grew by 15% in 

2007 and 2008 [World Bank 2011] and the total passenger car fleet is expected to double 

to 1.7 billion vehicles by 2035 [International Energy Agency 2011]. The continuation of 

these trends and the finite limit of fossil fuel resources requires dramatic shifts in how we 

use energy and from where we derive that energy.  

Until recently, transportation energy and electrical power generation were treated 

as separate entities, mainly because transportation energy is typically petroleum-sourced, 

whereas electrical power comes from a variety of fossil and non-fossil sources, but is 

rarely petroleum-sourced. The burgeoning electrification of vehicles is causing these two 

energy systems to overlap, and future predictions of vehicle electrification, e.g., Pike 

Research’s projection of 5.2 million plug-in vehicles by  2017 [Pike 2010], will only 

serve to increase that overlap. 

This oncoming convergence of transportation and electrical energy systems, 

coupled with the need to reduce fossil fuel use and greenhouse gas emissions, requires us 

to consider both systems simultaneously in order to develop a combined system 

perspective that serves our needs best while minimizing deleterious effects. Though each 

system is designed by separate industries, it is necessary to study the interface of the two 

systems to understand the effects of one system on the other and look for synergies that 
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can provide a more efficient super-system design and serve more people with a smaller 

carbon footprint.  

There is much research studying the effects of plug-in vehicles on existing 

regional electrical power systems (i.e., the “macrogrid”). However, the design of the 

macrogrid will not change (or will change very slowly) in reaction to the addition of 

plug-in electrified vehicles (PEVs). Localized micropower systems, including local 

“microgrids,” are more likely to adapt their designs in response to PEVs and are also 

more likely to reap benefits from the inclusion of PEVs in the system, such as buffering 

power spikes and renewable energy variability or voltage and frequency regulation. 

1.1 Microgrids and vehicles 

The design of localized, distributed energy generation systems is a particularly 

important research issue, especially as the deployment of renewable energy sources 

increases [Jiayi et al. 2008]. The control of energy flows and electrical power quality 

from a large number of resources is inherently different than the highly-centralized 

electrical distribution system in the U.S. and other industrialized countries [Meliopoulos 

et al. 2002, Colson et al. 2009]. In addition, with the installation of small, renewable 

energy sources there exists the potential to increase energy security at the local level by 

networking a system of Distributed Energy Resources (DERs) into a so-called 

“microgrid.” One definition of a microgrid is: 

 

“A set of dispatchable (turbines, reciprocating engines, fuel cells) and/or 
non-dispatchable generators (wind turbines, PV), electrical and thermal 
energy storage, a grid connection for import and/or export of electricity, 
heat and power distribution infrastructure and an energy management 
system.” [Lasseter et al. 2003]   
 

These microgrids are of particular interest to areas or entities where energy independence 

and/or energy security are especially important, such as military bases, medical 

complexes, remote cities, and island communities [Shaffer et al. 2006, Ashok et al. 2007, 

Gupta et al. 2010]. 
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Various levels of microgrid designs exist, some simple with just one DER 

element and a passive control system, others complex enough to be able to separate from 

the external macrogrid during times of grid instability or grid failure and supply all of 

their own power, thus increasing the energy security of the local microgrid region 

[Friedman et al. 2005]. As microgrid systems increase in complexity, their design and 

control must be carefully coordinated, both to minimize the capital and operating costs as 

well as to ensure the microgrid’s stability and reliability. Furthermore, rather than 

existing in a load-following state, where electricity production is ramped up to meet 

demand, microgrids can have the capability of controlling the loads as well, through 

smart switches and circuit breakers that are centrally-controlled. These “smart grid” 

technologies offer the potential of reducing power demand during peak times and further 

increasing the independence and reliability of the microgrid. 

Previous research has shown that plug-in vehicles can be a complementary 

technology to microgrids [Gage et al. 2003, Tomić et al. 2007, Galus et al. 2008]. Both 

plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) can be 

linked with a microgrid in order to store off-peak renewable energy and either use it for 

vehicle propulsion or return some of that stored energy to the microgrid during times of 

peak energy use. This can maximize the utilization of renewable energy sources, reduce 

fossil energy use and reduce the greenhouse gas footprint of the microgrid area. This is 

doubly advantageous in that this vehicle/microgrid system addresses both transportation 

energy use as well as electrical energy use. However, other research questions the 

economic viability of vehicle-to-grid (V2G) power flow, as it can cause increased 

degradation of the vehicle batteries [Peterson et al. 2010b], requires additional control 

and communication equipment [Hiskens and Callaway 2009], and may reduce the utility 

of the vehicle for its owner [Momber et al. 2010].  

Additionally, plug-in vehicles can be a high-load strain on a local microgrid, 

especially given the random nature of when drivers will want to charge their vehicles. 

Therefore, additional design and control considerations must be made to ensure reliable 

operation of both the microgrid and the vehicles. This necessitates formulating a 

coordinated, system-level design and control problem that considers the microgrid and its 



4 
 

individual DER elements and control strategy as well as the design and control of the 

electrified vehicles that connect to the microgrid. 

1.2 Motivation of this work 

Microgrids and electric vehicles are separately-designed, but interacting, systems. 

Such separation is natural as different organizations undertake the design of a microgrid 

and the design of a vehicle. It is also easier to address each problem separately, rather 

than looking at combining them into a potentially complex and difficult to solve 

integrated problem. A system designer, however, will recognize that systems that 

significantly interact have the potential to mutually benefit if they are designed 

concurrently, or “co-designed” [Fathy et al. 2001, Reyer et al. 2002, Peters et al. 2009]. 

Given the caveat above, research is necessary to quantify the range and magnitude of the 

potential benefits of co-design to understand the system interactions better and develop 

tools, insights, and heuristics for the designers of these systems and their interfaces. 

Ad-hoc design of a microgrid is often based upon the expected peak load on the 

system, but this is a conservative approach that has the potential to oversize components, 

especially if the dispatch (operation and scheduling) of the components is not considered 

simultaneously to the system design. Additionally, if the actual power load deviates 

significantly from the expected power load, the system may suffer from loss-of-load and 

have poor reliability. This necessitates a coordinated, system-level design and dispatch 

problem that considers the sizing of individual DER elements and their dispatch control 

strategy, including consideration of system uncertainties. The complexity of solving the 

microgrid design problem is due to having to evaluate each design by determining the 

operation of the microgrid at discrete time steps over some time period. Additionally, the 

special case of a DER being an EV or HEV adds significantly more complexity when 

combined design and control of the vehicle must be combined with the design and control 

problem of the microgrid. 

This dissertation will focus on optimizing efficiency of the system by analyzing 

the power of the microgrid on long time scales (hours to years). This dissertation will not 
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consider the regulation and power quality of the microgrid, which requires simulation on 

short time scales (milliseconds to seconds). 

1.3 Dissertation overview and contributions 

This dissertation seeks to develop methods for and quantify the potential benefits 

of co-design of microgrids and electric vehicles. The dissertation will explore formal 

methods for designing each system, focusing on model-based, numerical design 

optimization methods, and will develop new methods and heuristics for co-design of both 

systems. The major contributions of this work are: 

 

(1)  Investigation and strategies to exploit the benefits of simultaneously 

designing an electrical microgrid and connected electric vehicles, as well as 

potential limitations. 

(2)  Methods to optimally design a distributed energy system and connected 

electric vehicles with uncertain parametric inputs. 

(3)  Categorization of different types of optimal microgrid-level power dispatch 

problems and assessment of appropriate methods to solve each type. 

 

The rest of this dissertation is organized as follows. Chapter 2 will explain the 

optimal dispatch problem, its purpose, formulation, complications, and various methods 

for simplification. The end of the chapter will summarize various classes of optimal 

dispatch problems and discuss how each should be formulated (Contribution #3).  

Chapter 3 discusses design optimization of microgrids, the formulation of optimal 

microgrid design problems with nested optimal dispatch problems, and solve a simple 

example optimization of a military microgrid. Chapter 4 will introduce microgrid design 

under parametric uncertainty, focusing on power load uncertainty and renewable energy 

uncertainty in the form of solar power. The uncertainty distributions will be modeled and 

incorporated into an efficient method to optimize the design in order to maintain 

microgrid reliability. Examples will be solved to show how this method optimizes the 

design of the military microgrid discussed in Chapter 3, but this time including 
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parametric uncertainty. Chapter 5 will introduce the concept of co-design of electric 

vehicles and microgrids. An overview of vehicle powertrain optimization will be 

followed by a description of how to formulate the co-design optimization problem 

including uncertainty (Contribution #2). A case study will follow, demonstrating co-

design of a military microgrid and its attached electric vehicles (Contribution #1). The 

results will be used to develop design insights into these two systems and their 

interactions, resulting in the development of additional heuristics for designers. Finally, 

Chapter 6 will summarize the dissertation and suggest future work. 
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Chapter 2:   Microgrid dispatch optimization 

The core of any microgrid design problem is evaluating how a particular design 

will operate. The operation of some microgrid components, e.g., generators, 

microturbines, fuel cells, storage batteries, are directly controlled, e.g.,  by dedicated 

controllers. These devices are known as “dispatchable” components. Other “passive” 

components are not directly controlled, such as renewable power sources. These are 

known as “non-dispatchable” components. To understand the operation of the entire 

microgrid, it is necessary to simulate the expected operation of the non-dispatchable 

components and simultaneously simulate how the microgrid controllers will operate the 

dispatchable components to supply the electric load and store energy. The dispatch 

problem that seeks to achieve some optimal objective, e.g., cost minimization or 

minimization of loss-of-load, is known as an optimal dispatch problem.  

2.1 Description of dispatch problems and literature review 

The operations research community has generated much research into optimal 

dispatching of microgrid components to minimize the operation cost while meeting the 

necessary electrical loads. This research for microgrid dispatching is an offshoot of 

approaches used for power distribution in regional electrical grids to dispatch power 

generation plants, which is known as the “unit commitment” problem [Hawkes et al. 

2009]. The difficulty in the optimal dispatching problem is that it must make optimal 

decisions for many devices at each time step along some time horizon (finite or infinite), 

resulting in a high-dimensional optimization problem.  
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2.1.1 Linear methods 

The most widely-used approach for solving the optimal dispatch problem is to 

linearize and solve it via linear programming (LP). The advantages of this approach are 

that large-scale systems can be efficiently solved over long periods of time and a 

globally-optimal solution is guaranteed. A typical goal for microgrids is to minimize the 

operating cost at discretized time increments (e.g., one hour) over a year to understand 

the performance of a given design, which requires solving for of thousands of dispatch 

decisions per dispatchable device. Microgrid design software that uses linear 

programming, such as those implemented in Lawrence Berkeley National Laboratories 

DER-CAM software, can solve the entire year’s dispatch simultaneously [Stadler et al. 

2009]. However, the solution of the entire time period simultaneously is not strictly 

necessary, and in fact may not be representative of how a microgrid will be operated in 

practice. Instead, a much smaller subset of time (the “decision horizon”) can be solved 

using estimates of future microgrid operation. A disadvantage of solving the dispatch 

problem via LP is that the linearization may not represent underlying nonlinear functions 

sufficiently well, such as efficiency of generators as a function of load, battery internal 

resistance as a function of state-of-charge, or electrical resistance losses as a function of 

current. 

Solution of microgrid dispatching via LP is the most common method used in the 

literature, so only a subset of implementations that also address microgrid design, 

stochasticity, or other topics relevant to this dissertation are listed here. For example, the 

DER-CAM microgrid design and optimization software developed by Lawrence 

Berkeley National Laboratories uses LP to solve its dispatch problems [Stadler et al. 

2009, Momber et al. 2010]. LP is also used by del Real et al. with their microgrid 

problems, which included nonlinear energy storage models and cost functions, which 

they linearized and solved hourly over a 24-hour period [del Real et al. 2009].  Gupta et 

al. evaluated microgrid designs for a remote community by solving a mixed-integer linear 

program for the optimal dispatch [Gupta et al. 2010].  

Hawkes and Leach extended the optimal dispatching problem to include the 

stochastic nature of wind energy, as well as to address the issue of optimal dispatching 
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during both microgrid “islanding” (isolated from an external electrical grid) and during 

grid-connection [Hawkes et al. 2009]. They incorporated wind-energy uncertainty by 

drawing Monte Carlo samples from a Weibull distribution of wind speeds and solving the 

full-year dispatch problem for each draw. 

 

2.1.2 Nonlinear methods 

Some researchers have used nonlinear programming to solve the dispatch 

problem, using either quadratic programming (quadratic cost function and linear 

constraints) or generalized nonlinear programming. These methods typically do not solve 

an entire year simultaneously, as the large number of variables make the problems 

computationally intractable for nonlinear programming methods. 

Asano and Bando solved the optimal dispatch of a microgrid by separating the 

year into six representative days and then solving each day as a separate problem [Asano 

et al. 2007]. Their  approach does not consider the boundaries of the solved days by 

linking the time before and after the representative days. Thus, their approach provides an 

approximation of the microgrid performance, but may differ from how the microgrid will 

be controlled and operated in practice. 

Almassalkhi and Hiskens solved a multi-period, mixed-integer quadratic 

programming problem for a 24-hour day with 1-hour time increments [Almassalkhi et al. 

2010]. The integer variables result from the formulation of energy storage charging and 

discharging, where they implement a binary variable to denote one or the other state, 

which eliminates a discontinuity in the charging/discharging efficiencies. They do not 

implement their dispatch solution over longer time periods, though this could be 

accomplished by solving a sequence of these one-day problems. 

Geidl and Andersson developed a generalizeable hub-based microgrid model with 

an emphasis on multiple energy carriers (e.g., electrical, heat, gas). They formulate a 

quadratic programming dispatch problem for each hub and then they formulate a non-

convex nonlinear programming problem to solve the optimal power flow between hubs 

[Geidl et al. 2007]. This second problem is solved by sequential quadratic programming 

(SQP). 
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Whitefoot et al. [2011] formulated a nonlinear dispatch problem over a moving 

24-hour time horizon, and solved a sequence of these problems using sequential quadratic 

programming (SQP). This preserves the nonlinearities of the problem while providing a 

computationally-tractable way of solving the dispatch for longer periods of time, e.g., an 

entire year. In addition, use of a moving time horizon emulates other, practical control 

methods, such as model-predictive control (MPC), which could be implemented on an 

actual microgrid to centrally-control the dispatch of the components. Thus, this approach 

may come closer to representing how an actual microgrid would operate. Their 

implementation used the optimization problem structure and many of the simplifications 

that will be described in this dissertation. 

 

2.1.3 Other solution methods 

Of all of the previous publications, only HOMER Energy used a rule-based 

(heuristic) strategy to solve for the dispatch [Lambert et al. 2006]. Their strategy 

minimizes operating cost in a single time increment and uses heuristics for charging and 

discharging energy storage without explicitly planning energy storage for future time 

periods. This method has the advantage of operating very quickly because each time 

increment is solved sequentially. Thus, no optimization problem needs to be solved and a 

single design can be efficiently evaluated. However, this method is not an “optimal” 

dispatch strategy in that it is a fixed strategy that does not seek out operational 

improvements through an algorithmic search procedure. 

Lu et al. [2011] solved for the operation of a hybrid energy system including 

energy storage, solar power, and wind power. Their system does not include any 

dispatchable power generation, so they only have to decide the dispatch of the energy 

storage at each time increment. Their dispatch objective is to minimize the probability of 

loss of load (LoL) given uncertainty in the renewable energy inputs. They solve the 

dispatch of energy storage for each design at one-hour increments using stochastic 

Markov chains to minimize the probability of LoL. They are able to use Markov chains 

because the dispatch solution to minimize LoL for a given time increment only requires 

information from the previous time increment. This is contrasted to economic dispatch, 
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which requires solving the dispatch of the energy storage over multiple time increments 

simultaneously (ideally, over the entire time period of interest). 

Mohamed and Koivo used mesh-adaptive direct search (MADS), a derivative-free 

pattern search algorithm, to find the optimal dispatch solution for a fixed microgrid 

design to minimize cost while meeting customer electrical demands [Mohamed et al. 

2009]. They compare the results from MADS to their results using SQP. For their 

problem MADS is shown to provide better solutions than SQP, though no reasons are 

given for this improvement. 

Other research has used model-predictive control (MPC) to represent better actual 

microgrid operation to solve the multi-period dispatch problem with a finite time horizon 

using expectations of system inputs and future microgrid states. Arnold et al. [2009] 

formulated an MPC problem for a hub-based microgrid, similar to Geidl and Andersson 

[2007]. Peters et al. also used model-predictive control to solve the dispatch problem and 

used this method to investigate the effects of prediction error and time horizon length 

[Peters et al. 2011].  

 

2.1.4 Summary of methods and issues 

These various approaches for solving the optimal dispatch problem typically use 

historical data for power loads, renewable energy supply, and other inputs, and most 

assume perfect knowledge (no uncertainty) to solve for the dispatch strategy (with the 

exception of [Hawkes et al. 2009, Geidl et al. 2009, and Lu et al. 2011]). Some of the 

methods, such as linear programming or HOMER’s rule-based dispatch strategy, seek 

efficiency at the risk of sub-optimality. Other methods seek to preserve problem 

nonlinearities, incurring increased computational cost and the likelihood of poor 

scalability to larger problems. The use of derivative-free methods in the literature is 

limited. These methods have the flexibility to handle mixed-integers, binary variables, or 

functional discontinuities, but they are slow to converge and thus may take significant 

computation time. Also, they can only handle a relatively small number of variables. 

Their use for microgrid design is therefore limited, since the dispatch problem must be 

solved for each design in order to compare their performances.  
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The question of which method is best may be most appropriately addressed by 

understanding the purpose for solving the optimal dispatch problem. While solving the 

entire year simultaneously seems to be ideal, it does not represent how a microgrid would 

operate in practice with an actual controller. A real-time controller, even one that used 

forward-looking predictions, would have to react to disturbances, prediction 

uncertainties, and other variations in the operating conditions that are not captured when 

solving an entire year’s dispatch simultaneously. Thus, a microgrid design that is 

evaluated using LP may have good performance in an ideal situation, but degraded 

performance in a realistic implementation because the estimates of future operating states 

may not match reality. To predict the actual performance of a microgrid design, it is 

necessary to simulate its dispatch using controllers that would be actually implemented to 

control the system. 

2.2 Energy storage dispatch vs. power generation dispatch 

The optimal dispatch problem will take different forms and require different 

solution strategies depending on the goal of the optimal dispatch (e.g., economic dispatch 

or minimizing loss of load) the types and number of dispatchable power generation 

resources, and whether energy storage is present. Economic dispatch of only power 

generation resources is a common problem solved in the power generation industry as the 

unit commitment problem [Hawkes et al. 2009]. The costs of operating various 

components can often be placed in a hierarchy, operating the cheapest resources first and 

only operating more expensive components when necessary to meet the load. Thus, the 

optimal dispatch solution can be predetermined for any given load and the actual 

operation decision for each time period can be decided independently of the preceding or 

following time periods. Note, however, that this solution only considers the direct 

operation costs and assumes no ramping costs or other transient costs for 

starting/stopping a particular resource. 

When only energy storage is present along with non-dispatchable power 

generation (e.g., renewable power resources), economic dispatch is not considered 

because there are typically no operation costs, only maintenance/degradation costs. This 
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type of system is typically seen in remote areas where fossil fuels and external grid 

connection are not available. An example can be seen in [Lu et al. 2011]. For these cases, 

the goal of optimal dispatch is often to minimize loss-of-load (LoL). The dispatch of the 

energy storage is typically rule-based: to charge when excess power is present (when the 

renewable sources are producing more than the power load) and to discharge when the 

renewable sources are not meeting the power load (to prevent LoL).  

When minimizing LoL, the structure of the optimal dispatch problem will be 

different if the goal is to minimize the total loss of load or if the goal is to minimize the 

total number of hours when LoL occurs independent of the amount of LoL. For the 

former case, the total LoL can be minimized by making dispatch decisions for each time 

period independently of preceding or following periods. However, for the case where the 

goal is to minimize the total number of hours where LoL occurs, the optimal dispatch 

solution for energy storage will be improved by using a decision horizon. Then, the 

optimal dispatch strategy would use the finite energy storage resources during periods of 

small LoL. For example, if a microgrid was predicted to experience five periods of a 10 

kW LoL and two periods of a 25 kW LoL, the energy storage could be expended during 

the five 10 kW LoL periods, thus maximizing system “up-time.” This can be especially 

important for microgrids that cannot shed load if LoL occurs and where any LoL can 

threaten to cause failure of the entire microgrid. 

When both dispatchable power (or external grid connection) and energy storage 

are present, the economic dispatch solution should consider a decision horizon to 

minimize operation cost [Whitefoot et al. 2011]. By doing so, the dispatch strategy can 

seek to use the energy storage when the marginal operation costs are highest.  

2.3 Optimal dispatch problem formulation 

The optimal dispatch formulation described and used in this dissertation is the 

economic dispatch over a time horizon, where dispatchable power generation and 

dispatchable energy storage are present in the system. 
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2.3.1 Generalized problem formulation 

The generalized optimal dispatch problem is to minimize some cost function, over 

some time period by choosing the optimal operation of each component at every time 

step. The cost function, fcost(x,u(t)), is a function of the microgrid design parameters, x, 

which are held fixed, and the dispatch variables, u(t), which determine the operation of 

each dispatchable component at every time t. The time range over which the optimal 

dispatch problem is solved (t0 to thoriz) is known as the time horizon. This minimization  is 

subject to some inequality constraints, g(x,u(t)), which define the power and energy 

limits of each component and other practical system limitations. Additionally, there may 

be equality constraints, h(x,u(t)), to ensure system power balance. The generalized 

problem structure is shown in Eqs. (2.1). 

  

݉݅݊
࢛ሺݐሻ   ෍ ௖݂௢௦௧൫࢞, ࢛ሺݐሻ൯

௧೓೚ೝ೔೥

௧ୀ௧బ

 (2.1a) 

 
subject  to: 

 

,൫࢞ࢍ ࢛ሺݐሻ൯ ൑ ૙ (2.1b) 

,൫࢞ࢎ ࢛ሺݐሻ൯ ൌ ૙ (2.1c) 

 

2.3.2 Problem‐specific formulation 

A typical problem formulation for a microgrid with some dispatchable power 

resources and energy storage is shown in Eqs. (2.2). This formulation will provide the 

framework of all the optimal dispatch problems solved in this dissertation. Note: the 

formulation below assumes time discretization in one-hour increments. This allows easy 

conversion between power in kW and energy in kWh, which simplifies the formulation. 

 

݉݅݊
࢛ሺݐሻ   ෍ ௙௨௘௟݌

்೓೚ೝ೔೥

௧ୀଵ

௙௨௘௟ܧ
௧  fuel cost for time horizon  (2.2a) 

   
subject to:   

௝ܧ ൑ ௝ܧ
௧ ൑ ,݆׊ ,௝ storage energy capacity limitsܧ  (2.2b) ݐ׊
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௝ܧ
௧ାଵ ൌ ௝ܧ

௧ + ݑ௝
௧

௝ܲ storage energy balance, ݆׊,  (2.2c) ݐ׊

෍ݑ௜
௧ܲ௜ ൅

௜

෍ݑ௝
௧

௝ܲ െ
௝

௟ܲ௦
௧ ൒ ௟ܲௗ

௧  network power balance, ݐ׊ (2.2d) 

௙௨௘௟ܧ
௧ ൌ෍݂ሺݑ௜

௧, ܲ௜
௜

ሻ fuel use of resource i at time t, ݐ׊ ,݅׊ (2.2e) 

0 ൑ ௜ݑ
௧ ൑ 1    resource power limits, ݅׊,  (2.2f) ݐ׊

െ ௝ܲ  ൑ ௝ݑ
௧ ൑ ௝ܲ   storage power limits, ݆׊,  (2.2g) ݐ׊

  

࢛ሺݐሻ ൌ ൣ࢛௜ሺݐሻ  ௝࢛ሺݐሻ൧; ݐ  א ሼ1, . . ,24ሽ; ݅ א ሼ1, . . , ௜ܰሽ; ݆ א ൛1, . . , ௝ܰൟ   
 

 

In the preceding formulation, the vector of dispatch factors, u(t), is comprised of 

the dispatch factors for all power generation resources, ࢛௜ሺݐሻ, and all energy storage 

devices, ௝࢛ሺݐሻ, at all time increments (where subscript i refers to power generation 

resources and subscript j refers to energy storage devices), t; pfuel is the fuel price; ܧ௙௨௘௟
௧ is 

the fuel energy used at time t; ܧ௝ and ܧ௝ are the maximum and minimum capacity of 

energy storage resource j, respectively, and ܧ௝
௧ is the state of charge (SOC) of resource j 

at time t; ݑ௝
௧ is the dispatch factor of energy storage j at time t; ௝ܲ is the maximum power 

available from energy storage j; ݑ௜
௧ is the dispatch factor of power resource i at time t; ܲ௜ 

is the maximum power available from power resource i; ௟ܲ௦
௧  is the power loss of the 

system due to transmission or other efficiencies at time t; ௟ܲௗ
௧  is the electrical power load 

at time t; ௜ܰ is the number of power generation resources; and Nj is the number of energy 

storage resources.  

The network power balance constraint, Equation (2.2d), is formulated as an 

inequality constraint. It ensures no loss-of-load (LoL), or insufficient power on the 

network, however it does not strictly enforce equality. This is necessary because the non-

dispatchable renewable energy may produce more power than the system can absorb, and 

in these cases it is assumed the excess power is dissipated or sent to ground. 

Renewable power sources can be added to this system as a “negative load” in the 

network power balance, Equation (2.2d). Equation (2.2e) is an intermediate equation to 

relate the dispatch of the power resources to the fuel use of the system in the objective. 

As such, it does not need to be presented in the optimization formulation, as it can be 
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substituted into the objective function and eliminated. However, it is presented here for 

completeness. 

 

2.3.3 Optimization algorithm and numerical issues 

The optimal dispatch problem presented here is a nonlinear problem with 

continuous variables. Therefore, a general-purpose nonlinear programming algorithm, 

Sequential Quadratic Programming (SQP), was chosen to solve it. Matlab’s fmincon 

implementation of SQP was used with finite differencing to estimate gradients and the 

following algorithm parameters: 

 

Table 2.1 – SQP parameters used within Matlab’s fmincon function 

Parameter Value 

SQP strategy ‘active-set’ 
Finite difference: maximum step 1.0 
Finite difference: minimum step 1e-5 
Convergence tolerance: objective function 5e-6 
Convergence tolerance: constraints 1e-4 

 
 
The algorithm was highly sensitive to these parameter values, both in efficiency and also 

in whether it could converge at all. A single starting point was chosen, as multiple start 

points (to investigate for local minima) would increase the simulation cost too 

significantly. 

The problem often suffers from numerical issues which can affect convergence 

and efficiency. The main problem is that the Hessian can often be rank-deficient. The 

most common source of this is that the problem formulation has variables and constraints 

for every time increment within the time horizon. Thus, for a 24-hour time horizon, there 

will be 24 similar constraints, e.g., for network power balance. Under certain conditions, 

these constraints can be identical, resulting in degeneracy and a rank-deficient Hessian. 

There may exist other problem formulations that can eliminate this issue; in this case, it 

was necessary to choose an implementation of SQP that was robust enough to be able to 

recover from these instabilities. 
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As a final note on Matlab’s fmincon function: the results in this dissertation were 

generated using version 2010a. It was noticed that the results can change when using 

older versions of Matlab, e.g., version 2009a. Users of Matlab are cautioned to note this 

anomaly. 

2.4 Problem simplification 

As mentioned at the beginning of the chapter, formulating an optimal dispatch 

problem with many dispatchable devices over a long time period can result in a large-

dimensional optimization problem. For example, solving a ten-device problem hourly 

over an entire year results in (10 devices)(8760 hrs) = 87,600 variables. The problem can 

be linearized and solved as a linear programming (LP) problem, but this can result in loss 

of solution fidelity for highly nonlinear problems. It may be possible to solve the problem 

using piece-wise linearization, which can preserve the trends of the nonlinearities 

depending on their actual form.  

If the problem is left in its original nonlinear form, it can be solved by nonlinear 

programming (NLP) methods if it is simplified and reduced in various ways, for example 

by reducing the amount of time over which the problem is solved, reducing the number of 

dispatch variables via lumped components, and problem decomposition. The methods 

evaluated in this dissertation include: 

 

1) Solving the optimal dispatch over a moving time horizon 

2) Minimizing the length of the time horizon 

3) Increasing the step-size between sequential time horizons 

4) Using variable reduction via lumping of similar elements 

5) Separating the energy storage dispatch and power generation dispatch 

6) Reducing the total time modeled by using representative days 

 

Each of these methods aims to simplify and reduce the optimal dispatch problem 

computation and will be described in the following sections. Some of these methods are 

dependent on specific assumptions and may not be applicable to all problems. 
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2.4.1 Distribution of power amongst similar elements 

Often, a microgrid will have numbers of similar elements, e.g., a series of diesel 

generators or a bank of storage batteries. When this occurs, it may be possible to combine 

the similar elements into a single lumped “device” and treat its dispatch as a single entity. 

This can reduce the complexity of the overall optimal dispatch problem. 

 

2.4.1.1  Vehicle batteries 

Multiple vehicles parked at a single charging station can be treated as a lumped 

storage device when solving the microgrid-level optimal dispatch problem, which 

reduces the dimension of the optimal dispatch problem and saves computation time. The 

lumped storage device would have the power and storage capacity of the sum of devices, 

and the division of power between each individual device can be handled by a 

subproblem algorithm or local controller. Much research exists on how to implement 

charge controllers for multiple plug-in vehicles, for example, [Galus et al. 2008, Hiskens 

et al. 2009, Peças Lopes et al. 2009, Markel et al. 2009, Li et al. 2011, Ahn et al. 2011a]. 

The choice of a particular charging algorithm or controller depends on the goals of the 

problem, e.g., state-of-charge equalization, minimizing battery degradation, or 

maximizing renewable energy potential. Throughout this dissertation, a charge controller 

developed by Peters et al. is chosen with the goal of equalizing battery state of charge 

(SOC) between all plugged-in vehicles [Peters et al. 2011]. It will be described in detail 

in Chapter 5. 

 

2.4.1.2  Multiple generators 

Similar to the case for multiple plugged-in vehicles, multiple co-located power 

generation devices can be lumped and treated as a single device when solving the 

microgrid-level dispatch problem. This is viable under the assumption that all power 

from these co-located devices is supplied to the microgrid through a common connection, 

and thus will have the same transmission losses regardless of which generation device is 

operating. Often, as described in Section 2.2, the dispatch strategy for these co-located 
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generation devices can be determined a priori as a function of the power required, which 

saves computation time when calculating the microgrid-level dispatch problem. 

This procedure can be shown by the example of two generators of different sizes, 

each available to supply a given power load. The first generator, Gen1, has a rated power 

of 70 kW, and the second generator, Gen2, has a rated power of 40 kW. Their respective 

fuel-use vs. power output curves are shown in Fig. 2.1. These curves are the output from 

a surrogate model generated using published data sheets for diesel generators [Cummins 

2011]. The surrogate model is explained in detail in Section 3.4.1.2. 

 

 

Figure 2.1 – Fuel use vs. power output for two generators, 40 kW and 70 kW 
 

The figure shows that the smaller generator, Gen2, uses less fuel for any output 

power up to its rated power. Therefore, the optimal economic dispatch strategy for power 

outputs from zero to 40 kW can be determined: run Gen2 only. Once the required output 

power is greater than what Gen2 can supply, the optimal dispatch strategy becomes more 

complicated. However, if the two generators have different fueling curves a globally-

optimal dispatch strategy can be determined for totaloutput power up to the maximum 

output from both generators (110 kW)(Note: if two or more generators have identical 

fueling curves, there will be multiple, equivalent solutions to this problem). 

The fueling curves are smooth and monotonic, so the optimal dispatch strategy to 

minimize total fuel use from the generators can easily be solved at small increments of 

total output power. An example solution for the two generator case is shown in Fig. 2.2. 
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The figure shows that the optimal dispatch strategy increases the load on Gen2 until its 

maximum output (40 kW), then begins increasing the load on Gen1. At a load of 52 kW, 

Gen2 is shut off and the entire load is shifted to Gen1. Once the load is above the 

maximum output of Gen1 (70 kW), Gen2 is again switched on to produce the remaining 

power. Note: this solution assumes no idling of generators and no startup fuel penalty, 

which is reasonable when studying dispatch strategy changes at long time increments, 

e.g., 1 hour. 

 
Figure 2.2 – Optimal dispatch strategy for two generators, 70 kW and 40 kW 

 

The shutting down of Gen2 at total output of 52 kW may not be intuitive initially, 

but can easily be understood by looking at the fueling curves in Fig. 2.3. As seen in the 

figure, the fuel used by Gen1 only is less than using Gen1 and Gen2 simultaneously for 

power loads from 52 – 70 kW. 
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Figure 2.3 – Fuel use for one generator (70 kW) vs. two generators (40 kW and 70 

kW) 
 

By deciding this subproblem dispatch strategy beforehand, multiple generators 

can be lumped into one device if they are co-located or if their transmission losses are 

equivalent. This reduces the dimensionality of the system-level optimal dispatch problem, 

allowing for reduced computation time and greater scalability to allow for larger systems 

to be solved. 

 

2.4.2 Separation of power generation dispatch problem 

As mentioned in Section 2.2, when there is no energy storage the optimal 

economic dispatch of the power generation devices in a microgrid can be predetermined 

for any given load and the actual operation decision for each time period can be decided 

independently of the preceding or following time periods. Again, this solution only 

considers the direct operation costs and assumes no ramping costs or other transient costs 

for starting/stopping a particular resource. An example of this was shown for two 

generators in the previous section. 

A similar process can be applied for the case where energy storage dispatch is 

included as well. We previously solved the power generation dispatch as a function of the 

Switch to 
Gen1 only 
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required load, as shown in Figure 2.2. For the case with energy storage included we must 

solve the power generation dispatch as a function of the power load and all possible 

energy storage dispatch scenarios. For a single energy storage element, the result is a 2-

dimensional matrix of power generation dispatch solutions as a function of energy 

storage dispatch and power load.  

Ren solved the optimal dispatch of two generators with a single energy storage 

element and showed that the generator dispatch strategy can be solved for the ranges of  

possible energy storage dispatch and power loads [Ren 2011]. The derivation can be 

found in the working paper and the resulting 2-dimensional plots of the optimal dispatch 

strategies for the generators are shown in Fig. 2.4.  

  
 

Figure 2.4 – Optimal dispatch for two generators (50 and 70 kW) as a function of 
battery dispatch and power load 

 

We can compare these results to the case with no energy storage by choosing 

vertical slices through  the graphs where the battery dispatch is zero. Looking only at 

these slices, we can again see that the optimal dispatch strategy is to initially use the 

smaller generator up to its maximum output, then increasing the load on the larger 

generator. At some point the load switches entirely to the larger generator, until its 

maximum output is reached. Then the load on the smaller generator is increased until the 

maximum total output is reached.  

The effect of adding the battery storage on the optimal dispatch strategy for the 

generators is to increase the total load on the generators (when charging the storage) or 

Dispatch 
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decrease the total load when discharging. This has the effect of shifting the dispatch 

strategies as a function of power load, as seen by the sloped transitions in Fig. 2.4. 

However, pre-solving for these matrices allows us to know the optimal generator dispatch 

for any energy storage dispatch. Thus, solving for the dispatch problem over a time 

horizon can be reduced to only solving for the energy storage dispatch, with the optimal 

generator dispatch chosen from the matrices as a function of the energy storage dispatch 

and power load. 

Note that these optimal dispatch matrices would increase in dimension for each 

additional energy storage element, thus the benefits of separation may decrease rapidly as 

too much pre-processing would be involved. Also, as mentioned in Section 2.2., this a 

priori solution of power generation dispatch is only valid if transmission losses are 

constant for any dispatch strategy, e.g., the power generation devices  are co-located or 

the power loads are co-located load with similar transmission losses for all power 

generation components. 

 

2.4.3 Reduction of time considered  

The optimal dispatch problem is often solved over some long time period, e.g., 

one year, in order to estimate the operating costs of the microgrid over the various 

seasons of the year. This is necessary because the power loads will change as heating, 

cooling, and lighting needs change, and renewable energy supply is often seasonal as 

well. Solving the optimal dispatch simultaneously over the entire year is possible using 

linear programming, but is intractable for nonlinear programming and also not 

representative of how the microgrid will actually operate. The computation time to solve 

the optimal dispatch problem can be reduced by breaking the whole-year problem into 

smaller time segments and additionally by solving for a subset of the entire year and 

using those results to estimate the operation over the entire year. The following four sub-

sections describe various methods implemented to achieve these goals. 
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2.4.3.1  Implementing a moving time horizon 

Optimizing the dispatch over a forward-looking time horizon is necessary to 

determine the optimal energy storage strategy, which requires decision making over 

multiple time increments. Ideally the entire time period from T1 to Tfinal would be solved 

simultaneously, but it is necessary to decompose the time period into a series of 

overlapping time windows (the time horizon) because solving the optimal dispatch for all 

time increments simultaneously is computationally infeasible for nonlinear programming.  

The problem structure is shown in Fig 2.5. For clarity, we refer to the entire time 

period by the uppercase variable T and the current time horizon, which is a subset of T, 

by the lowercase variable t. For a microgrid design, x, the optimal dispatch problem is 

solved over the finite time horizon (t=1 to thoriz) and then stepped forward one hour in 

time and re-solved, until the entire time period of interest (T1 to Tfinal) is completed. For 

each time horizon, only the vector of optimal dispatch for the first time step, t=1, is saved 

as part of the overall optimal dispatch matrix, û(T,x). At the end of the series of optimal 

dispatch problems, the optimal dispatch matrix is returned along with the total operation 

and maintenance (O&M) cost,  fO&M (x,û), and the feasibility information of the optimal 

dispatch problem, ĝ and ĥ. This optimal dispatch problem structure will be nested in an 

optimal design problem in Chapter 3. 

 

 
Figure 2.5 – Structure of solving a sequence of forward-looking optimal dispatch 

problems 
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The choice of time horizon length is an issue under research. Longer time 

horizons will theoretically provide better planning of energy storage, but at the cost of 

increased computation time. In addition, some research has shown that increased time 

horizons offer no benefits when uncertainty is included, as the error in future predictions 

will compound as the prediction horizon increases [Peters et al. 2011]. A heuristic choice 

for time horizon would be 24 hours because the solar supply and power loads also follow 

a 24-hour cycle. This issue will be explained further in the following section. 

 

2.4.3.2  Time horizon length 

Time horizon length affects the optimal dispatch solution and its computation 

time. Heuristically, a time horizon length of 24 hours would capture the diurnal nature of 

power load and solar energy supplies, so it is a natural choice. A study was performed on 

a fixed-design microgrid to analyze the effect of time horizon length on the optimal 

dispatch strategy and predicted fuel use, with the results in Table 2.2. This is similar to a 

study performed in [Peters et al. 2011]. Time horizon lengths were chosen from 4 - 24 

hours, with comparisons made to the 24-hour time horizon. 

 

Table 2.2 – Effect of time horizon length on dispatch solution 

Time Horizon 
(hrs) 

Step Size 
(hr) 

Objective 
variation 

Calculation time 
reduction 

24 1 - - 
22 1 0.10% 13% 
20 1 0.04% 27% 
18 1 0.08% 39% 
16 1 0.12% 47% 
14 1 0.16% 57% 
12 1 0.13% 65% 
10 1 0.18% 72% 
8 1 0.27% 77% 
6 1 0.42% 84% 
4 1 ---- FAIL ---- 
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The results show that the variation in the objective is 0.1% or less for time 

horizons from 18 – 24 hours. The objective increased for shorter time horizons, up to 

0.42% for the 6-hour horizon. To balance computation time reduction with accuracy, the 

time horizon was set at 18 hours for studies performed within this dissertation. 

 

2.4.3.3  Step size between time horizons 

To save additional computation time, the variation in step sizes between time 

horizons was studied. Theoretically, the minimum step size possible is one time period 

and the maximum step size would be the length of the time horizon (zero overlap). 

Various step sizes were studied for a single microgrid example with a 24-hour time 

horizon and 1-hour minimum step size, with the deviation in the objective function and 

calculation time reduction shown in Table 2.3. The results show that steps up to 12 hours 

do not degrade the solution significantly (< 0.16%); however, a step size of 18 hours 

degrades the solution over 2%, showing that some overlap of the time horizons is 

necessary.  

 

Table 2.3 – Effect of step size between time horizons on optimal dispatch solution 

Time Horizon 
(hrs) 

Step 
Size (hr)

Objective 
variation 

Calculation 
time reduction 

24 1 - - 
24 2 0.03% 43% 
24 3 0.04% 59% 
24 4 0.16% 69% 
24 6 0.06% 79% 
24 8 0.08% 83% 
24 12 0.02% 84% 
24 18 2.03% 90% 

 

When combined with the 18-hour time horizon chosen in Section 2.4.3.2, a step 

size of 4 hours between time horizons provided an objective function accuracy within 

0.1% while saving 80% of the computation time compared to the 24-hour time horizon, 

1-hour step size case. 
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2.4.3.4  Partial-year solution 

Solving the optimal dispatch for a single design over an entire year is 

computationally intensive, taking 2–3 hours on a 2.8GHz, quad-core i7 processor PC 

with 8GB of RAM. Therefore, steps were taken to estimate the operating costs based on 

the optimal dispatch for representative days of the year. This approach is a modified 

version of Asano and Bando’s [Asano et al. 2007], though their strategy only solved the 

optimal dispatch over single, independent days without considering the connection to 

preceding and following days. 

A study was performed by  Kendra Borchers to identify the minimum number of 

days necessary to accurately predict the yearly fuel use [Borchers 2011]. The study 

calculated the optimal dispatch for various numbers of consecutive days (2, 7, and 14 

days) run during various numbers of months distributed equally throughout  the year (3, 

4, 6, and 12 months). The predicted yearly fuel use was compared to the actual yearly 

fuel use calculated when running the optimal dispatch for the entire year. The error 

between each case studied and the actual fuel use is shown in Table 2.4. 

 

Table 2.4 – Error in fuel use prediction for partial-year solutions 

 3 
months 

4 
months 

6 
months 

12 
months 

2 Day Trials 49.2% 47.8% 47.7% 48.1% 
7 Day Trials 13.3% 10.5% 10.5% 10.9% 
14 Day Trials 7.4% 3.0% 3.4% 3.4% 

 

The results show that running 14-day trials for four or more months of the year 

can result in fuel use predictions within 3% of actual while providing significant 

reduction in computation time. For this dissertation, 14-day trials were chosen for three 

months of the year, which results in increased prediction error but saves additional 

computation time. If increased prediction accuracy is sought, it is recommended to run 

14-day trials for at least four months of the year. Also, these results were generated using 

deterministic, known input parameters (e.g., power load and solar irradiance). It is 

unknown whether the accuracy will hold when considering stochastic input parameters, 

as will be done in Chapter 4. 
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2.5 Effects of transmission losses within the microgrid 

The optimal dispatch strategy of a microgrid will be affected by transmission 

losses between components of the system, especially if the losses are significantly 

different for various power sources to supply a particular load. In some cases, 

transmission losses may dictate that the optimal dispatch strategy is to use a power source 

with lower inherent efficiency simply because it is closer to the load and the combined 

efficiency losses plus transmission losses are lower than a more efficient power source 

that is further away. 

A simple example can demonstrate this effect. Consider two diesel generators on 

a microgrid, G1 and G2, both rated at 100 kW peak power. For simplicity, assume the 

efficiency of G1 is a constant 30% (ηG1 = 0.30) and the efficiency of G2  is a constant 

28% (ηG2 = 0.28), where efficiency is defined as the electrical energy out divided by the 

fuel energy consumed. In addition, there are two electrical loads on the microgrid, L1 = 

50 kW and L2 = 30 kW. A schematic of this example is shown in Fig. 2.6. 

 
Figure 2.6 - An example microgrid with two generators, G1 and G2, and two loads, 

L1 and L2. 
 

If we assume no transmission losses, the fuel power consumed by G1 to supply 

the entire load is 80 kW / 0.30 = 266.7 kW, whereas if we operated G2 instead, it would 

consume fuel at a rate of 285.7 kW. Thus, the optimal dispatch strategy is for G1 to 

operate at 80 kW output to supply the two loads, with G2 off. If we assume constant 

transmission losses between each generator and each load, for example 5% losses (ηTL = 

95%), the overall efficiency of G1 to supply any load is now ηG1 ηTL = (0.3)(0.95) = 
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0.285. Similarly, we can calculate the overall efficiency of G2 to supply any load as ηG2 

ηTL = (0.28)(0.95) = 0.266. It is clear that the dispatch strategy will be the same as the no-

loss scenario: operating G1 until its maximum power is exceeded, with G2 taking the 

remaining load. Thus, we can say for this simple example with constant or zero 

transmission losses that the efficiency of G2 is always dominated by G1.  

In this case, the dispatch strategy can be pre-determined for any case simply by 

knowing the total electrical load required. This leads to the ability to separate power 

generation dispatch from the optimal dispatch problem, as it can be deterministically 

solved for any state of the system. This simplification reduces the dimension of the 

optimal dispatch problem and therefore also reduces the computation time required to 

solve the problem. 

However, if we assume variable transmission losses between each generator and 

each load, the optimal dispatch strategy is less clear. This is especially true if the losses 

are nonlinear, e.g., a function of the voltage and current of the power flow and the 

resistance of the electrical lines. To show this, we modify the previous example as shown 

in Fig. 2.7. Now, if G1 supplies power to L2 or G2 supplies power to L1 there is an 

additional transmission loss ηTL = 0.90. For our original example where L1 = 50 kW and 

L2 = 30 kW, the optimal dispatch solution changes to operating G1 at 52.6 kW and G2 at 

31.6 kW. We can see that as the transmission losses increase the optimal dispatch 

strategy will favor localized power generation. 

  
Figure 2.7 - An example microgrid with variable transmission losses between 

components. 
 

η = 0.95η = 0.90η = 0.95 
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For systems with realistic, nonlinear transmission losses, the dispatch strategy 

cannot be pre-determined, but must be determined for every specific state of the system. 

In this case, the power generation dispatch cannot be separated from the optimal dispatch 

problem. However, in some cases where power generation is co-located and where the 

transmission losses from each generating unit are the same, e.g., multiple generators in a 

single location, the total power generation can be lumped and that lumped power can be 

used in solving the optimal dispatch problem. The dispatch of each generator in that 

lumped system can then be solved as a separate subproblem.  

2.6 Possibility of multiple equivalent solutions 

The optimal dispatch problem is not guaranteed to have a unique solution. This 

can lead to numerical instability of the optimization algorithm, e.g., by causing a rank-

deficient Hessian matrix for quasi-Newton methods. Specific problem formulations that 

can lead to multiple equivalent solutions include: 

 

(1) Multiple identical elements, e.g., similar electric vehicles at a charging station. 

(2)  Negligible loss of energy storage over time, e.g., zero battery self-discharge 

over one hour. 

 

In Case (1), if two vehicles are parked at a charging station and they have 

identical battery packs and charging efficiencies, then the optimal dispatch cannot discern 

between charging one vehicle or the other. A similar situation occurs if there are multiple 

identical diesel generators available to supply power. This problem can be remediated by 

lumping the identical elements into a single device for the purposes of solving the 

optimal economic dispatch. The actual dispatch strategy for the lumped elements can 

then be solved as a subproblem, perhaps with a different objective, e.g., state-of-charge 

equalization between electric vehicles or minimizing diesel generator on/off cycling. 

In Case (2), it is valid to assume that the charge lost from a battery in a single 

hour is negligible. Thus, charging or discharging the battery some fixed amount at time t 

or at time t+1 may have the same effect on the optimal dispatch objective function and 
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constraints. These two dispatch solutions are then equivalent. Simply including self-

discharge may not solve this problem, as the amount of self-discharge may be so small 

that the optimization algorithm has difficulty numerically discerning between the 

dispatch strategies. A method to address this issue is unknown to the author. Instead, it is 

important to choose an optimization code that is robust to dealing with rank-deficient 

Hessians and other numerical instabilities. 

2.7 Summary of economic dispatch optimization methods for different 

scenarios 

Based on all of the optimal dispatch studies performed for this dissertation, the 

various problem-specific scenarios can be classified into four generic cases. Each case 

has characteristics that make different problem formulations appropriate and allow for 

various simplifications. By identifying the case that best matches a given problem, the 

optimal dispatch can be solved more efficiently, which is a critical component for optimal 

design of a microgrid where the optimal dispatch problem is nested within. The four 

cases are described as follows, in order of increasing solution complexity. 

 

Case 1:  No energy storage, n dispatchable power generation resources 

‐ Perform economic dispatch during individual time increments without 

consideration of other time increments; 

‐ Solve to minimize power costs (external grid + internal dispatch - renewable 

generation); 

‐ For multiple dispatchable resources, it can pre-decide deterministic 

hierarchical ordering of least cost resources (“unit commitment problem”); 

‐ It can include loss-of-load (LoL) probability, if islanded. 

 

Case 2:  Have energy storage but no dispatchable power generation  

‐ Must be islanded—no external grid connection (if grid connected, it becomes 

Case 3); 

‐ Solve dispatch for loss-of-load only; 
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‐ Energy storage strategy is to charge when power is available, discharge when 

there is a LoL (deterministic heuristic); 

‐ Solve single time increments—no advantage to use a time horizon unless 

seeking to minimize number of hours where loss of load occurs, rather than 

total loss of load. 

 

Case 3:  Energy storage with dispatchable power generation 

‐ Dispatchable power generation may include external grid connection; 

‐ For optimality, should solve energy storage dispatch over a time horizon; 

‐ If cost of dispatched energy is constant, e.g., for residential grid electricity 

with single-tiered pricing, this case collapses to Case 2; 

‐ If cost of dispatched energy varies (e.g., multi-tiered electricity pricing or 

variable generator efficiency), it can solve the unit commitment problem 

separately (similar to Case 1) for each level of load and energy storage 

dispatch to generate a matrix of solutions; 

‐ Once optimal power generation is determined, problem becomes deciding 

optimal energy storage dispatch over time horizon; 

‐ Optimal power generation dispatch of multiple components can be treated as 

a subproblem to solve only if transmission losses are constant for any 

dispatch strategy, e.g., co-located power generation devices or co-located 

load with similar transmission losses for all components; 

‐ Optimal dispatch of multiple energy storage devices can be treated as a 

subproblem to solve if storage devices are co-located (e.g., electric vehicles), 

or if transmission losses are similar/negligible for all devices. 

 

Case 4:  Energy storage with multiple dispatchable power generation components 

and varying transmission losses (not co-located) 

‐ Must solve multi-period dispatch for all resources simultaneously; 

‐ Cannot predetermine power generation dispatch; 

‐ Cannot solve lumped energy storage/power generation dispatch problem; 
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‐ Can still solve dispatch of co-located resources as a lumped 

problem/subproblem. 

 

It is important to make some additional notes on transmission losses. Constant 

transmission efficiencies will not change the dispatch strategy as load changes location or 

level (hierarchical economic dispatch strategy). However, nonlinear or varying 

transmission efficiencies may change the dispatch strategy as the load changes location or 

level (non-hierarchical economic dispatch strategy). 

2.8 Summary 

This chapter has proposed an approach to solve a sequential series of nonlinear 

optimal dispatch problems with a finite time horizon. Problem simplifications were 

proposed to reduce the computation time. Additionally, optimal dispatch problems were 

grouped into four scenarios to understand the types of problem formulation and 

applicable simplifications. For the rest of this dissertation, we will implement the time 

reduction procedures but not the simplifications that assume constant transmission losses 

(e.g., we cannot decompose the solution of energy storage dispatch and power generation 

dispatch), which means we are assuming Case 4 as defined in the previous section. The 

optimal dispatch approach will be nested within an optimal microgrid design problem in 

Chapter 3. 
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Chapter 3:   Microgrid design optimization 

Ad-hoc design of a microgrid would be to size components to meet the expected 

peak load on the system. This is a conservative approach that has the potential to oversize 

components because the actual system dispatch is not considered. Instead, each microgrid 

design should be evaluated by solving the optimal dispatch problem of Chapter 2. This 

leads to coordinated optimal design and optimal dispatch problems that consider the 

sizing of individual microgrid elements simultaneously with their dispatch strategy. 

3.1 Literature review 

As described in Chapter 2, much research has been devoted to solving the optimal 

dispatch problem. A subset of this research also seeks to design the microgrid in addition 

to solving its dispatch problem. This research can be separated into four categories. 

 

1. Non-optimal design approaches that use design of experiments or other methods 

to compare different design choices without performing design optimization; 

2. Optimal design methods that do not solve for the optimal dispatch but instead use 

rule-based or fixed-controller methods to decide the microgrid operation; 

3. Formulations that solve the optimal design and optimal dispatch problems as a 

combined All-in-One (AiO) problem; 

4. Formulations that decompose the optimal design and optimal dispatch problems 

into separate, coordinated subproblems. 

 

Non-optimal design approaches 

HOMER Energy solves the optimal design problem using a full-factorial design 

of experiments on number and size of components, using a rule-based dispatch strategy to 

evaluate the microgrid operation. The HOMER approach solves the dispatch strategy for 
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minimum cost in a single time increment without explicitly planning energy storage for 

future time increments [Lambert et al. 2006]. The approach is not formally an “optimal” 

design problem as the full-factorial DOE chooses component sizes at a limited number of 

fixed intervals. 

Zoka et al. compared the performance of four specific microgrid designs by 

solving the optimal dispatch problem for each, but they do not provide for more general 

design optimization capability [Zoka et al. 2007]. 

 

Optimal design without optimal dispatch 

Vallem and Mitra used the simulated annealing algorithm to solve a mixed-

integer, nonlinear sizing and siting (topology) of a microgrid to minimize system cost 

while maintaining system reliability [Vallem et al. 2005]. Their formulation uses generic 

“distributed power” of constant cost per unit power and does not directly consider an 

optimal dispatch problem. They do include a subproblem for power flow to minimize 

loss-of-load. 

Pelet et al. used genetic algorithms to solve the nonlinear sizing problem 

incorporating detailed, physics-based models of the microgrid components [Pelet et al. 

2005]. Their objective is to minimize capital and operational costs, with a tradeoff 

objective (Pareto objective) of minimizing CO2 emissions. They use a rule-based control 

strategy to solve for the energy use of each component rather than an optimal dispatch 

problem. 

Research by del Real et al. studied both optimal dispatch [del Real et al. 2009a] 

and the optimal sizing of a microgrid [del Real et al. 2009b], though not concurrently. In 

the optimal sizing case, they formulate a sizing problem with renewable energy (wind) 

and hydrogen storage. Instead of solving for an optimal dispatch problem they use 

“estimated operating conditions” to ensure that the design can meet the necessary load 

under various wind resource scenarios. Their objective function is formulated as a convex 

sum of equipment capital costs with no operating or maintenance costs, and the 

constraints are all linear functions. Therefore, they are able to solve a mixed-integer 

quadratic program.  
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Lu et al. solved a nonlinear microgrid design problem by decomposing it using 

MDO techniques to solve each time increment individually while coupled to other time 

increments through battery storage linking variables [Lu et al. 2010]. However, their 

approach does not calculate a multi-component optimal dispatch; instead, they use non-

dispatchable components (wind and solar) to determine when battery storage should 

charge or discharge. In addition, they solve the problem using one-day time increments, 

which does not consider the hourly dynamics of renewable energy supply and energy 

storage.  

Lu et al. extended their research to find the optimal design (sizing) of a hybrid 

energy system including energy storage, solar power, and wind power, with the objective 

of minimizing the capital cost of the system while also minimizing loss of load (LoL) 

given uncertainty in the renewable energy inputs [Lu et al. 2011]. As mentioned in 

Chapter 2, they solve the dispatch of energy storage for each design at one-hour 

increments using stochastic Markov chains to minimize the probability of LoL.  

 

AiO approaches 

Stadler et al. posed the design and dispatch problem as an All-in-One (AiO) 

problem for the entire year by linearization and solution using linear programming 

[Stadler et al. 2009], thus increasing solution efficiency but with the limitation of 

linearizing submodels, such as diesel generator efficiency as a function of load, or battery 

internal resistance as a function of state-of-charge.  

Asano et al. solved a mixed-integer, nonlinear design (optimal sizing and 

component selection) and dispatch problem by separating the year into six representative 

days, then solving each day as a fixed AiO problem [Asano et al. 2007]. However, their 

approach does not consider the boundaries of the solved days by linking the time before 

and after the representative days. As such, the approach provides an approximation of the 

microgrid performance, but may differ from how the microgrid will be controlled and 

operated in practice.  

Geidl’s dissertation includes a section discussing optimal sizing and layout of 

microgrid components  [Geidl et al. 2007b]. Though Geidl has also addressed the optimal 
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dispatching problem, he does not consider how to solve the optimal dispatch and optimal 

design problems concurrently.  

 

Decomposed approaches 

A decomposed method of microgrid sizing followed by controller design is 

proposed by del Real et al. but not implemented. In addition, their proposed framework 

does single-pass optimization, where an optimal controller is designed for an optimal 

design. This type of single-pass optimization has been shown to often result in a 

suboptimal design [Fathy et al. 2001]. 

The method presented in this chapter is a decomposition-based approach. The 

optimal dispatch problem is nested within the optimal design problem, as described 

further in Section 3.2.1 and first explained in [Whitefoot et al. 2011]. This type of nested 

optimization can result in a globally-optimal solution if the problem is shown to be 

convex, though non-convex functions are often present. This nested strategy is commonly 

used in combined optimal design and optimal control problems [Fathy et al. 2001, Peters 

et al. 2009], but has not been used previously for optimal design and optimal dispatch 

problems.  

3.2 Problem formulation 

The problem formulation of the optimal microgrid design problem varies 

depending on the variables chosen. The most basic microgrid design problem is to find 

the optimal size of components, where the number and type of components are held 

fixed, as is the microgrid topology.  

 

3.2.1  Nested solution of optimal dispatch problem 

The design and dispatch problems cannot be solved simultaneously (all-in-one) 

because, as mentioned in Chapter 2, the optimal dispatch problem is decomposed into a 

series of optimization problems solved over a moving time window. Therefore, the 

overall problem is separated into an outer loop design problem with a nested optimal 

dispatch problem, as shown in Figure 3.1. The optimal design problem (outer loop) 
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passes a vector of design variables, x, to the optimal dispatch problem (inner loop). These 

design variables are treated as parameters (held fixed) by the optimal dispatch problem. 

The optimal dispatch problem is solved over its time horizon (t=1 to thoriz) and then 

stepped forward one hour in time and re-solved, until the entire time period of interest (T1 

to Tfinal) is completed. For each time horizon, only the vector of optimal dispatch for the 

first time increment, t0, is saved as part of the overall optimal dispatch matrix, û(T,x). At 

the end of the series of optimal dispatch problems (inner loop), the optimal dispatch 

matrix is returned to the optimal design problem along with the total operation and 

maintenance (O&M) cost over the time period from T1 to Tfinal, fO&M(x,û), and the 

feasibility information of the optimal dispatch problem, ĝ and ĥ. The optimal design 

problem collects this information to evaluate each design’s total objective function, 

annualized capital cost, fcap(x), combined with the annual O&M cost, fO&M(x,û), from the 

optimal dispatch problem. The outer optimal design problem is subject to the constraint 

that the optimal dispatch problem is feasible. 

 

 
 

Figure 3.1 – Optimal design problem structure with  
nested optimal dispatch problem 

 

If the optimal dispatch problem was known to be convex, this nested problem 

structure could be proven to provide the global optimum [Fathy et al. 2001]. However, 
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the microgrid problems in this dissertation contain non-convex functions, e.g., the 

generator fuel use as a function of load, thus there is the possibility for multiple optima 

and no claims can be made about global optimality or combined optimality. 

 

3.2.2  Optimal design problem formulation 

The goal of the optimal design problem is to minimize the combined capital cost, 

௖݂௔௣ሺ࢞ሻ, and operation and maintenance (O&M) costs, ை݂&ெሺ࢞, ࢛ሺ࢚ሻሻ, of the microgrid 

by changing the size and number of microgrid components. Defining the objective this 

way balances the marginal benefit of investing in additional capital to reduce O&M 

costs. The O&M costs are defined over some specific time period, ܶ א ሼ1, . . , ௙ܶ௜௡௔௟ሽ, so 

net present value calculations should be used to define the portion of capital cost that is 

depreciated during that same time period. The O&M costs are calculated from solving 

the optimal dispatch problem over the entire time period, so the optimal design problem 

is also a function of the optimal dispatch variables, denoted as ෝ࢛ሺܶ, ࢞ሻ. The optimal 

design problem is only feasible if the nested optimal dispatch problem is feasible. 

Therefore, it is subject to the inequality and equality constraints, g(x, ෝ࢛(T,x)) and 

h(x, ෝ࢛(T,x)), which are passed from the optimal dispatch problem. The generalized 

optimization statement for the optimal microgrid design problem is shown in Eqs. (3.1). 

A problem-specific formulation will be shown in the example at the end of the chapter. 

 

݉݅݊
࢞
        ௖݂௔௣ሺ࢞ሻ ൅ ෍ ை݂&ெ൫࢞, ෝ࢛ሺࢀ, ࢞ሻ൯

்೑೔೙ೌ೗

்ୀଵ

 (3.1a) 

subject to:  

,൫࢞ࢍ ෝ࢛ሺࢀ, ࢞ሻ൯ ൑ ૙ (3.1b)

,൫࢞ࢎ ෝ࢛ሺࢀ, ࢞ሻ൯ ൌ ૙ (3.1c) 

3.3 Choice of optimization algorithm  

Solving the series of SQP problems for the optimal dispatch results in a 

numerically noisy function for operating cost because small changes in algorithm 
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convergence propagate through the series of SQP problems. Therefore, a non-gradient-

based algorithm is selected to solve the optimal design problem. Additionally, in some 

formulations there are integer variables, such as to select the number of components 

(vehicles). Thus, the chosen algorithm must be able to handle mixed-integer problems as 

well.  

The algorithm chosen for the studies in this dissertation is the DIRECT 

derivative-free algorithm, which can handle noisy objective functions and mixed integer 

and continuous variables [Jones 2001]. DIRECT is a robust, deterministic, global-search 

algorithm that can handle high levels of noise and discontinuity in the objective function. 

It works by dividing the design space into three hyper-rectangles along one variable 

dimension at a time. Upon evaluation of the center-points of the hyper-rectangles, it 

decides which rectangles to further subdivide. During each iteration of the algorithm, it 

will balance global and local searching by selecting high-performing rectangles of 

various sizes. Example iterations of DIRECT on a two-variable problem are shown in 

Fig. 3.2, where the rectangles selected for further subdivision in each iteration are greyed-

out. For additional explanation of DIRECT, refer to the abbreviated description in 

[Whitehead 2001] or the full algorithm description in [Jones 2001]. 

 

 
Figure 3.2 – Example iterations of the DIRECT algorithm 

 

DIRECT’s major drawback is that its performance suffers as problem 

dimensionality increases. Typically, it is not used for problems with more than 10 – 12 

design variables, unless the computation of function calls is particularly inexpensive (~1 

second or less). Furthermore, the DIRECT algorithm has no formal convergence criteria; 
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it runs for the number of design evaluations specified by the user. This disadvantage is 

remediated somewhat because the algorithm is deterministic and can be re-started from 

where it left off, if additional function evaluations are desired. 

3.4 Example: Optimization of a military microgrid 

The optimal microgrid design approach with nested optimal dispatch strategy was 

applied to the case of a small, islanded military microgrid. The microgrid is an example 

of a small Forward Operating Base (FOB) near Kabul, Afghanistan with approximately 

50 soldiers. The goal of the optimization is to solve for the sizing of two diesel 

generators, a solar panel, and storage battery to meet the expected load of the base over a 

year. The operation cost for this base is solely from the fuel consumed by the diesel 

generators; maintenance costs were neglected for this analysis. 

  

3.4.1 System modeling 

The system topology is represented as four separate energy hubs, each with its 

own share of the power load and some of the hubs with power resources and/or storage 

devices. Hub 1 contains Generator 1, the PV array, and the storage battery. Hubs 2 and 3 

are solely power loads and Hub 4 contains Generator 2. This layout is shown in Figure 

3.3. 

 
Figure 3.3 – Layout of hubs in military microgrid example 
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3.4.1.1 Microgrid network 

It is assumed that there are no transmission losses within a single hub, which 

gives efficiency precedence to producing power locally to supply the load within a given 

hub. Power transfer is assumed to go through a common bus, with transmission losses 

modeled equivalently between any two hubs. The losses are assumed to scale 

quadratically with current, in keeping with I2R resistance losses. Because of the high 

power flows (up to 80 kW), the bus voltage was assumed to be 400V and the conductors 

were assumed to be AWG 000 wire (0.4" Dia, 200 Amp capacity, 0.2 milliohm/meter) 

with a distance of 150m between any two hubs. This results in voltage and power losses 

of less than 4% at maximum current, which is within typical electrical specifications. 

Before the network power balance is calculated, the power required by each hub 

is calculated by subtracting produced power from the power load within each hub, as 

shown in Eqs. (3.2). If the sum is positive the hub is importing power from other hubs, 

and vice versa. Transmission losses are then accounted for by applying Eq. (3.3) to each 

hubs’ internal power balance, where h is the index of each hub.  The effect of this 

equation is to require higher power when importing power and reduce the power 

available when exporting power. 

 

Hub 1 ௛ܲ௨௕ଵ ൌ ଵܮ െ ௚ܲ௘௡ଵ െ ௉௏ߟ ௉ܲ௏ െ ௕௔௧௧ߟ ௕ܲ௔௧௧ (3.2a) 

Hub 2 ௛ܲ௨௕ଶ ൌ  ଶ (3.2b)ܮ

Hub 3 ௛ܲ௨௕ଷ ൌ  ଷ (3.2c)ܮ

Hub 4 ௛ܲ௨௕ସ ൌ ସܮ െ ௚ܲ௘௡ଶ (3.2d) 

   

Hub power with losses ௡ܲ௘௧,௛ ൌ 0.00019 ௛ܲ௨௕,௛
ଶ ൅ 1.012 ௛ܲ௨௕,௛ (3.3) 

 

The power losses are small and similar to using a small, constant efficiency 

(~4%), but the advantages of using this method are twofold. First, this method attempts to 

estimate actual line losses and cause dispatch optimization to prefer local power 

production, especially at high power. Secondly, using a constant efficiency causes a 

discontinuity at zero power (the transition between importing and exporting power). This 
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discontinuity can cause numerical difficulty for nonlinear programming algorithms. The 

quadratic power loss model gives a smooth transition between power import and export 

as shown in Fig. 3.4. 

 

 
Figure 3.4 – Quadratic power import/export model on microgrid network 

 

3.4.1.2 Generators 

Performing design optimization of generator sizing requires a fuel-use model that 

varies both with the size (rated power) of the generator and with the load on the 

generator. Generator fuel use data at various loads were gathered for fifty Cummins 

diesel generators in rated powers from 10 – 300 kW [Cummins 2011]. A response surface 

model was created to calculate the generator efficiency as a function of generator rated 

power and load. The available data gave fuel use per hour at 25%, 50%, 75%, and 100% 

load. Data were added for 0% load, where it was assumed the generator would be turned 

off (not idling) so the fuel use was set to zero. 

One of the goals of the response surface model was to be constantly increasing 

with load, so polynomial models were not suitable as they typically have inflection points 

between the two extremes, 0% and 100% load. Instead, a logarithmic model was chosen 

of the form: 

Fuel (liters/hr) = a Pgen log(1 + Lgen) (3.4) 
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where a is the model fit parameter, Pgen is the rated power of the generator in kW, and 

Lgen is the generator load as a fraction of its rated load (0 – 1.0). The second goal of the 

response surface model was to ensure zero fuel use at 0% load, which is accomplished by 

adding 1 to the Lgen variable in the logarithm. This model form was suggested by Yi Ren 

at the Optimal Design Laboratory, University of Michigan.  

After fitting the model using Matlab’s nlinfit function, the resulting fit parameter 

was a = 3.95. The model produces contours of fuel use vs. load and rated power as shown  

in Fig. 3.5.  

 
Figure 3.5 -  Model of diesel generator fuel use (liters/hr) as a function of  

generator rated power and load 
 

3.4.1.3  Batteries & photovoltaic array 

The efficiencies of charging the batteries were assumed to be linear with a 95% 

efficiency for either charging or discharging. The power output from the photovoltaic 

array scaled linearly with solar irradiation and rated power, which was based on a 1 

kW/m2 peak solar irradiance. The PV panel inverter efficiency was assumed to be a 

constant 95% efficiency. 

 

3.4.1.4 Power load 

The electrical power load was based upon the number of soldiers at the forward 

operating base (50) and the estimated average and peak power loads per soldier (1.5 kW 
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per soldier). Due to lack of measured data, the daily power load was generically 

represented by a base load with an afternoon peak and night-time trough. The total daily 

power load was split amongst the hubs according to the following percentages: Hub 1: 

10%, Hub 2: 20%, Hub 3: 40%, Hub 4: 30%. 

The nominal power load was modified for a given day by seasonal average 

temperature data for the chosen region using Eq. (3.5), where the deviation from a “goal” 

temperature is used to approximate heating and cooling load changes. 

 

ௗܮ ൌ ௕ሾ0.65ܮ ൅ ,ሺ0ݔ0.023݉ܽ ௔ܶ௩ െ ௚ܶሻ + 0.016max(0, ௚ܶ െ ௔ܶ௩ሻሿ (3.5) 

 

In this equation, ܮௗ is the daily power load, ܮ௕ is the average power load over the year, 

௔ܶ௩ is the average air temperature for a given day (F), and ௚ܶ is the goal temperature, 

chosen to be 65 F. The average daily temperature for the region was taken from 

historical data, as shown in Table 3.1. 

 

Table 3.1 – Average monthly high and low temperature  

for Kabul, Afghanistan (F) [weather.com] 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

High 40 41 54 66 75 86 89 89 83 72 59 46 

Low 19 21 33 42 47 54 59 57 48 39 29 23 

 

Combining the seasonal variation with the nominal power load curve results in 

daily power load curves as shown in Fig. 3.6. 
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Figure 3.6 -  Nominal power load and specific days showing seasonal variation 

 

3.4.1.4  Solar irradiance 

The solar irradiance for Kabul is taken from HOMER, which can estimate the 

solar irradiance at global locations by specifying the latitude and longitude of the 

location. Due to the high variability of solar supply (e.g., due to clouds), the hourly solar 

irradiance was averaged using two weeks before and after the days studied to smooth out 

the supply and represent an average day at that time of year. The averaged solar 

irradiance is shown in Fig. 3.7. 
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Figure 3.7 – Averaged solar irradiance for one year in Kabul, Afghanistan 

 

3.4.1.5 Fuel cost 

The fully-burdened cost of fuel for the U.S. military can range upwards from $5 

per gallon ($1.32/liter), with one study estimating the average fully-burdened cost of a 

gallon of JP-8 at $13.68/gallon ($3.61/liter) [Hartranft et al. 2007]. Thus, the capital 

investment in renewable energy could be justified to reduce fuel cost. The variation in 

fuel cost varies widely depending on base location, method of transport, and other 
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factors, and different fuel costs will result in different optimal designs. Therefore, a 

parametric study of fuel cost is often included to show the range of optimal designs. 

 

3.4.1.6 Capital costs 

The capital costs of the microgrid components are functions of their sizes and the 

capital costs were “annualized” to enable combination with annual operating cost.  To 

properly annualize the capital cost, the net present value (NPV) of the capital should be 

calculated. However, this requires knowledge of the investing entity’s discount rate, the 

lifetime of the project (different than the total life of the capital), and the salvage or re-

sell value of the equipment at the end of the project. The life of a forward operating base 

can range from months to years and the depreciation of the equipment is unknown. 

Therefore, it was assumed that the depreciation of the equipment was a linear function of 

its total lifetime. Also, the U.S. government has a low discount rate that is tied to the 

interest rate on U.S. Treasury bonds (currently ~2.2%), versus the discount rate for 

companies, which is typically assumed to be between 8 – 10%. As the discount rate 

approaches zero the NPV calculation collapses to the cost of the equipment divided by its 

lifetime. Therefore, given the large uncertainties in capital lifetimes and the low discount 

rate, the annualized capital cost calculation was simplified to be the total capital cost 

divided by its expected lifetime. 

The capital cost of diesel generators and photovoltaic arrays are functions of their 

maximum power, p (kW), and lead-acid battery costs are a function of their capacity, C 

(kWh), as shown in Table 3.2. The equations are taken from various references, also 

listed in the table. 

 

Table 3.2 – Capital cost equations as a function of component size 

Component Capital Cost Equation ($) Reference 
Generators 1352(p0.631) [LBNL 2010] 
PV array 8431(p0.983) + 3000 [LBNL 2010] 

Lead-acid Battery 190C [Vyas et al. 1997] 
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The lifetimes were estimated based upon lifetimes reported by Lawrence Berkeley 

National Labs [LBNL 2010], but the PV array life was reduced from 20 to 15 years based 

on the rigors of military use and portability. These lifetimes are summarized in Table 3.3. 

 

Table 3.3 - Lifetime estimates for capital equipment 

 Diesel 
Generator 

PV Array Lead-Acid 
Battery 

Lifetime (yr) 10 15 8 

 

3.4.2 Optimization problem statements 

The optimal design problem statement for this example is listed in Eqs. (3.6) and 

the accompanying optimal dispatch problem statement is listed in Eqs. (3.7). 

 

݉݅݊
࢞

 ෍
1
௖ܮ
௖ݔ௖݌

௖

൅ ෍ ௙௨௘௟ܧ௙௨௘௟݌
௧

்ಷ೔೙ೌ೗

௧ୀଵ

 
Annualized Capital Cost + 
Annual Fuel Cost 

(3.6a) 

    
w.r.t.: ݔଵ ൌ തܲ௚௘௡ଵ Generator 1 rated power (kW) (3.6b) 

ଶݔ  ൌ തܲ௚௘௡ଶ Generator 2 rated power (kW) (3.6c) 

ଷݔ  ൌ  ത௕௔௧௧ Storage battery capacity (kWh) (3.6d)ܧ
ସݔ  ൌ തܲ௉௏ PV array rated power (kW) (3.6e) 
    
subject to: ࢍ൫࢞, ෝ࢛ሺࢀ, ࢞ሻ൯ ൑ ૙ Optimal dispatch problem 

feasibility 

(3.6f) 

,൫࢞ࢎ  ෝ࢛ሺࢀ, ࢞ሻ൯ ൌ ૙ (3.6g) 

 35  ൑ തܲ௚௘௡ଵ ൑ 150  (3.6h) 

 30  ൑ തܲ௚௘௡ଶ ൑ 140  (3.6i) 

 50  ൑ ത௕௔௧௧ܧ  ൑ 2000  (3.6j) 
 50  ൑ തܲ௉௏     ൑ 400  (3.6k) 

 

In the above formulation, x is the vector of design variables; Lc is the lifetime and 

pc is the unitized capital cost of microgrid component c; തܲ௚௘௡ଵand തܲ௚௘௡ଶare rated powers 

of Generators 1 and 2, respectively; ܧത௕௔௧௧ is the capacity of the stationary battery; and 

തܲ௉௏ is the rated power of the PV panel array. All other symbols are used as previously 

described.     
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The optimal dispatch formulation is a problem-specific version of the one 

presented in Section 2.3.2, with all symbols as previously defined. 

 

݉݅݊
࢛ሺݐሻ  ෍෍݌௙௨௘௟݂ሺ

௜௧

௜ݑ
௧, തܲ௜ሻ fuel cost for time horizon  (3.7a) 

   
w.r.t.:   

௜ݑ
௧ dispatch of generator i at time t, ݐ׊ ,݅׊ (3.7b) 

௝ݑ
௧ dispatch of storage j at time t, ݐ׊ ,݆׊ (3.7c) 

   
subject to:   

௝ܧ0.3 ൑ ௝ܧ
௧ ൑ ,݆׊ ,௝ storage energy capacity limitsܧ0.95  (3.7d) ݐ׊

௝ܧ
௧ାଵ ൌ ௝ܧ

௧ + ݑ௝
௧

௝ܲ storage energy balance, ݆׊,  (3.7e) ݐ׊

෍ ௡ܲ௘௧,௛
௧

௛

൑ 0 network power balance, ݐ׊ (3.7f) 

0 ൑ ௜ݑ
௧ ൑ 1  generator power limits, ݅׊,  (3.7g) ݐ׊

െ0.5ܧ௝ ൑ ௝ݑ
௧ ൑ ,݆׊ ,௝ storage power limitsܧ0.5  (3.7h) ݐ׊

  

࢛ሺݐሻ ൌ ൣ࢛௜ሺݐሻ  ௝࢛ሺݐሻ൧; ݐ  א ሼ1, . . ,18ሽ; ݄ א ሼ1, 2, 3, 4ሽ; ݅ א ሼ1,2ሽ;  ݆ א ሼ1ሽ   

 

The network power balance Eq. (3.7f) is found according to the modeling 

Equations (3.2) in Section 3.4.1.1. In this case, rather than a strict equality the total power 

import for all hubs, h, must be less than or equal to zero (any excess power production is 

assumed to be dissipated). The problem-specific dispatch formulation places limits on the 

power and energy available from the storage battery. The maximum and minimum SOC 

are limited to 95% and 30%, respectively, and the maximum power is limited to a 0.5C 

charge/discharge rate, as shown in Eq. (3.7h). 

Again, it should be noted that this problem formulation, with its nonlinear 

transmission losses, falls under Case 4 as presented in Section 2.8. Therefore, no 

simplifications can be applied to decompose the solution of the power generation and 

energy storage. However, the time reduction strategies (18-hour time horizon, 6-hour 

time step between horizons, and partial-year solution) were all applied to reduce the 

computation time. 
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3.4.3  Results and discussion 

The optimal designs, costs, and fuel uses are shown in Table 3.4. A parametric 

study of fuel cost was performed, with levels from $1.6 – $2.6 per liter ($6.05 - $9.85 per 

gallon). 

 

Table 3.4 – Results of microgrid design optimization for different fuel costs 

 $1.6/lit $2.1/lit $2.6/lit 
Total Cost ($1k) 282.5 336.4 384.9 
Fuel Cost ($1k) 167.4 198.4 165.1 
Capital Cost ($1k) 115.1 138.0 219.8 
Generator-1 (kW) 39 41 37 
Generator-2 (kW) 41 37 28 
Battery (kWh) 676 869 775 
PV Array (kW) 190 224 395 
Fuel Use (kiloliters) 105.6 93.9 62.5 

  

The results show that as fuel price increases the optimal microgrid design 

increases the size of the PV array and slightly decreases the sizes of the generators. The 

PV array, though expensive, dramatically reduces fuel use and thus overall cost. Smaller 

generators will operated at higher load and thus higher efficiency. The size of the battery 

does not vary monotonically with fuel price, though each design chooses a fairly large 

battery. This suggests that a larger battery does not monotonically reduce fuel use, but 

some minimum level of battery storage is preferred by the system. 

The practicality of installing large solar panel arrays and battery banks may be 

limited by the footprint of these components or by transportation issues. Barring these 

restrictions, the purely economic dispatch shows that significant installation of energy 

storage and solar power is justified to reduce fuel use and operating cost. 

It is notable that the total generator power (65 – 80 kW, depending on the case) 

can provide the average power load (~65 kW), but cannot provide the peak power load of 

the system (~140 kW). The microgrid designs must rely on the solar power, which peaks 

in the mid-day, to supply most of the remaining power load, which also peaks in mid-day. 

However, these optimal microgrid designs were based upon averaged solar irradiance. 

Actual solar irradiance varies widely by hour and by day. Thus, these microgrid designs, 
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with their small dispatchable generators, may not supply power reliably in an actual 

implementation. Uncertainties in the solar irradiance and the power load must be 

considered in the design process, as will be discussed in Chapter 4. 

3.5 Summary 

This chapter introduced a method to optimize the design of a microgrid to balance 

capital investment and operational costs. The method is coordinates an optimal design 

problem with a nested optimal dispatch problem to size individual microgrid elements 

simultaneously with their dispatch strategy. The approach presented thus far is 

deterministic: all inputs are assumed to be known perfectly, with no variation. The next 

chapter will discuss how to include parametric uncertainty into the optimal design 

problem. 
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Chapter 4:   Optimal design of a microgrid under uncertainty 

Modeling any system involves many types of uncertainty. Even given a 

hypothetical, “perfect” physical model, the modeler must make assumptions on the 

correctness of input values (parameters), though inevitably there will be errors and 

temporal variation in these inputs. Furthermore, the modeler assumes that a real device or 

system will be built exactly as designed using the model, though precision, tolerances, 

and error will lead to deviations from the design. For a microgrid, uncertainty appears 

within the system inputs, such as power load and renewable energy supply. Designing a 

reliable microgrid requires accounting for these uncertainties. 

4.1 Sources of parametric uncertainty in microgrid design problem 

Various sources of uncertainty can affect the design problem directly or through 

the dispatch problem, cascading upward into the design problem. 

 

4.1.1 Uncertain parameters that affect inner loop (dispatch problem) 

The dispatch problem has multiple input parameters that are stochastic and time-

variant: renewable energy inputs (e.g., wind speed and solar radiance) and power load. In 

addition, if the microgrid has electric vehicles, the plug-in schedules and states-of-charge 

of vehicle batteries are also stochastic and time-variant. The system may be modeled 

using the expected values of these stochastic parameters, but the actual system 

performance will deviate from this expectation due to the uncertainty.  

Depending on the problem objective formulation, fuel price may affect the inner 

loop (dispatch) problem, or it may only affect the outer loop (design) problem. 

Throughout this dissertation we have only considered minimization of operating costs in 

the dispatch problem. In addition, the operating costs are limited to a single source: liquid 



54 
 

diesel fuel to run generators and potentially to run vehicles as well. In this single-fuel 

case, the fuel price can be removed from the optimal dispatch objective and the resulting 

solution would be the same. Thus, fuel price uncertainty would not affect the optimal 

dispatch problem in this single-fuel case. 

However, if multiple fuels are used, if the microgrid is grid-connected, or if 

additional costs (e.g., maintenance costs) are considered in the optimal dispatch 

objective, then the fuel price(s) cannot be removed from the objective and fuel price 

uncertainties will affect the solution of the optimal dispatch problem. 

 

4.1.2 Uncertain parameters that affect outer loop (design problem) 

Any uncertainty that affects the inner loop dispatch problem will affect the outer 

loop design problem because the output of the dispatch problem (objective and 

constraints) will be stochastic inputs to the design problem. As mentioned previously, 

calculating these distributions is a major issue, which motivated the linearization 

approach of Chan [2006]. The design problem can also be affected by other parametric 

uncertainties that do not affect the dispatch problem, e.g., capital cost, lifetime, and fuel 

prices. 

Capital costs and capital lifetimes are contained within the design problem 

objective function but do not occur in the dispatch problem objective (Eq. 3.7a). 

Therefore, their uncertainty will only affect the solution of the design problem. As 

mentioned in the previous section, uncertain fuel prices may or may not affect the 

dispatch problem, but will affect the design problem because they appear in the objective. 

4.2 Characterization of uncertainty distributions 

4.2.1  Solar irradiance 

The solar irradiance measurement used for fixed photovoltaic panels is the Global 

Horizontal Irradiance (GHI), which is the sum of the total direct radiation and diffuse 

radiation coming from other parts of the sky as they strike a flat panel, horizontal to the 

ground [Lambert et al. 2006]. Other corrections must be made for PV panels that follow 

the sun, but only fixed PV panels are considered in this dissertation. The data are 



55 
 

typically measured by sensors on the ground but some data for remote locations are 

estimated by satellite data. 

The data used in this dissertation comes from HOMER Energy’s worldwide data 

set, which uses satellite data measured by NASA, taken for a site near Kabul, 

Afghanistan. Solar irradiance varies diurnally and also throughout the year, so modeling 

the variation in solar irradiance should ideally include multiple years of data to show the 

variation of a specific hour of the year. Lacking this data, it was assumed that the 

variation of a single hour could be correlated to the same hour in the two weeks 

preceding and following a particular day. Using these twenty-nine data points, the mean 

irradiance was calculated for each hour of the year. A typical day is shown in Fig. 4.1, 

with the mean irradiance plotted versus time as the solid line, and the actual data for all 

twenty-nine days plotted as dashed lines. 

 
Figure 4.1 – Mean and actual solar irradiance and for two weeks around July 1st 

 
The distribution of irradiance for a given hour was estimated using these same data 

groupings and a distribution was fit to the data, as shown for 12pm on July 1st in Figure 

4.2. Multiple times of day and days of the year were examined this way and seven of nine 

data sets examined showed a unimodal distribution with a long tail towards zero 

irradiance. The other two data sets showed a smaller mode at low irradiance, most likely 

due to increased cloudiness during those months. For all the data sets, it was found that a 
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generalized Extreme Value (EV) distribution best fit the data. An EV distribution was fit 

to each hour of the year and the resulting distributions were used to randomly generate 

solar irradiance for use in the uncertainty analysis. 

 
 

Figure 4.2 – Distribution of solar irradiance at noon for two weeks around July 1st 
 

While this distribution worked well to represent the variation for a single hour, in 

reality the solar irradiance of one hour is partially correlated to the irradiance during the 

previous hour, due to the presence of clouds (or lack of clouds). This hour-to-hour 

correlation is not modeled here. Thus, the stochastic variation modeled here will be more 

volatile from hour to hour, and the energy storage devices will be necessary to smooth 

this volatility.  

 

4.2.2  Power load 

Similar to the solar irradiance data, the power load data will also follow a 

circadian cycle and also vary throughout the year. Ideally, data from multiple years 

would be used to understand the variation for each hour of the year. No power load data 

was available to analyze, so instead the power load was assumed to have a normal 

distribution centered around a nominal power load with a standard deviation that was a 

constant percentage of the mean load during any specific hour, σL = x(µL). An example is 
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shown in Figure 4.3 for σL = 0.15µL. The mean power load is plotted for July 1st – 3rd with 

+/- one standard deviation and an example random power load. 

 
Figure 4.3 – Mean power load with standard deviation for July 1 - 3 

 

Like the solar irradiance model, the power load during one hour should be 

correlated to the power load during the previous hour due to daily ambient temperature 

and other environmental conditions. This hour-to-hour correlation is not modeled here.  

4.3 Uncertainty in design problems 

Engineering design often uses safety factors to account for uncertainties because 

they are difficult to characterize, requiring significant data from a system that may not 

exist, and the way uncertainties propagate through a system is difficult to understand 

without significant modeling and sampling.  However, safety factors risk oversizing a 

system, resulting in operating inefficiencies and increased capital costs, or potentially 

undersizing a system, risking system failure.  
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4.3.1 Robust design 

Robust design seeks to address the large number of possible uncertainties in the 

design process, from manufacturing and material variation to uncertainty in the 

environment where the product/system is used. The manufacturing and material 

variations are often referred to as stochastic variables, because the designer is 

determining their nominal characteristics, whereas the environmental uncertainty is 

referred to as parametric uncertainty, because it is an input to the designed artifact or 

system. 

Robust design seeks to minimize the variation from a nominal performance (refer 

to Taguchi's methods for quality improvement via statistical analysis, e.g., [Roy et al. 

1990]). In essence, robust design seeks to minimize the spread of a distribution, where 

that distribution represents the possible range of a product's performance. Robust design 

methods can be focused on minimizing variation in the objective function (optimality 

robustness), meeting some level of reliability of the constraints (feasibility robustness), or 

both.  

The formulation of optimality robustness problems typically involves minimizing 

some weighted sum of the mean and standard deviation of the objective function. This is 

a common problem solved in product manufacturing to improve product quality. Design 

for feasibility robustness seeks to generate optimal design solutions that will not fail in 

the presence of expected variation, within some specified level of reliability. 

Formulations of optimal feasibility robustness problems usually include probabilistic 

constraints, because design optimization will often find a design that is optimal on 

constraint boundaries (active constraints), and any deviation from that point due to 

random variables or parameters can result in violation of the active constraint(s). Some 

robust design methods (e.g., Six Sigma Design), consider both optimality robustness and 

feasibility robustness, typically by design of experiments and sampling, to minimize 

product variation within a manufacturing process. 
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4.3.2 Reliability‐based design optimization 

Robust design that considers only feasibility robustness is sometimes called 

Reliability-Based Design Optimization (RBDO) [Tu et al. 1999]. RBDO can include 

stochastic design variables, stochastic parameters, or both. A generalized RBDO problem 

has a formulation as shown in Eq. (4.1), where the design variables, x, or the input 

parameters, p, may be uncertain. 

 

 

݉݅݊
࢞
      ݂ሺ࢞,  ሻ (4.1a)࢖

subject to:  

Pr ሾ݃௠ሺ࢞, ሻ࢖ ൐ 0ሿ ൑ ௙ܲ,௠ (4.1b) 

  

In this formulation, each constraint gm is now formulated as a probability of 

failure (infeasibility) being less than or equal to some probability, ௙ܲ,௠, for each 

constraint m. Solving the above problem typically involves a two-loop process: the outer 

optimization loop and an inner loop to estimate the probability of failure of each of the 

constraints. The problems here are threefold: (1) the distributions of the stochastic 

parameters may be unknown, or only limited data may be available, (2) calculating the 

distributions of the probabilistic constraints in the above formulation is challenging, and 

(3) calculating the distributions of the constraints for each design evaluated results in a 

two-loop optimization problem structure, which can be computationally expensive.  

Addressing the first problem, in the ideal case there will exist a large amount of 

measured data over a long period of time for all of the stochastic parameters. This data 

often does not exist, so probability distributions must be assumed around an expected 

mean value. However, if the wrong type of distribution is assumed, or the spread of the 

distribution does not match the actual distribution, the reliability calculations will be 

inaccurate and the resulting system design may be sized incorrectly.  

For the second problem, the probability distributions of the constraints can be 

estimated using sampling methods such as Monte Carlo sampling (MCS) or Latin 

Hypercube Sampling (LHS), though large numbers of samples may be required to 



60 
 

accurately estimate high probability levels (the tails of the distributions). Other methods 

attempt to approximate the probability of violating constraints using first- and second-

order Taylor series expansions at the constraint boundaries. These methods are known as 

the first-order second moment method (FOSM), the first-order reliability method 

(FORM) and the second-order reliability method (SORM), though these methods require 

normal (Gaussian) distributions of stochastic variables and parameters. Chan extended 

the FORM and SORM methods to non-normally distributed random quantities by 

transforming them into normal distributions. However, he notes that this is 

computationally intensive because these methods require their own optimization process, 

and the transformations applied may cause convergence difficulties [Chan 2006]. 

Addressing the third problem, much research has focused on reducing the 

computation required for the two-loop RBDO problem structure. The two-loop problem 

structure is shown for reference in Fig. 4.4.  

 

 
Figure 4.4 – Typical two-loop RBDO problem structure 

 

Improved methods often seek to either reduce the number of samples required to evaluate 

the reliability in the inner loop, or eliminate the sampling completely by explicitly 

calculating the probability distributions of the constraints. Some examples include the 

advanced mean value method, the hybrid mean value method [Youn et al. 2003], 

sequential optimization and reliability analysis [Du and Chen 2004], the design potential 

method [Tu et al. 2001], and Chan’s sequential linearization method [Chan 2006]. For 
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this dissertation the sequential optimization and reliability analysis (SORA) method was 

chosen. The SORA method places the reliability analysis at the end of the optimization, 

resulting in the modified RBDO problem structure shown in Fig. 4.5. The design 

reliability from the reliability analysis is used to update the constraints within the design 

optimization problem, until the design converges with the desired reliability. This method 

will be explained in detail in Section 4.4. 

 

 
Figure 4.5 – Sequential RBDO problem structure of the SORA method 

 

4.3.3 Microgrid design under uncertainty 

Adding stochastic renewable energy resources to the electrical grid introduces 

significant uncertainties that must be addressed by new research and methods [Mills et al. 

2009]. The effect of uncertainty is even more severe when a lack of available 

dispatchable power can lead to loss-of-load situations, such as those that can occur with 

an islanded microgrid. In spite of this, little research has specifically addressed how to 

handle uncertainty on a microgrid in a rigorous way and how to design a microgrid to be 

robust and reliable without oversizing the system. This research is described below. 

Most microgrid research uses sensitivity analysis to capture some trends of 

parametric uncertainty. For example, research by Firestone and Lawrence Berkeley 

National Laboratories use sensitivity analysis to study the effects of different levels of 

carbon taxes and electricity tariffs on microgrid design [Firestone 2007, Stadler et al. 

2009]. The research mentioned in Chapters 2 and 3 by HOMER Energy handles 

microgrid design under uncertainty through sensitivity analysis. The user can specify a 

range of parameter values around some nominal value, and HOMER will simulate each 

Design optimization Reliability analysis

E[ g(x,p) ] ≤ 0

f(x,p) min
x

Pr[ g(x,p) > 0 ] ≤ Pf
x
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value. For time-variant parameters, such as wind speed or solar irradiance, HOMER will 

scale all data over the entire time period with respect to the mean value of the parameter 

[NREL 2005]. Similarly, del Real et al. [2009b] propose performing similar sensitivity 

studies to account for uncertainties. These sensitivity methods are useful to identify 

worst-case scenarios and give the designer a sense of how the system will respond, but do 

not directly address the issue of how to design for a specified level of reliability. 

The research mentioned in Chapter 2 and 3 by Lu et al. [2011] uses Markov 

chains to incorporate renewable energy uncertainty into their method for finding the 

optimal design (sizing) of a hybrid energy system, including energy storage, solar power, 

and wind power. Their objective is minimizing the capital cost of the system and they 

solve the dispatch of energy storage for each design at one-hour increments using 

stochastic Markov chains to minimize the probability of loss-of-load (LoL). As 

mentioned previously, their formulation does not include solving an optimal dispatch 

problem, nor solution over a time horizon. 

4.4 Method used: Sequential Optimization and Reliability Analysis (Du/Chen) 

The Sequential Optimization and Reliability Analysis (SORA) method, developed 

by Du and Chen [Du et al. 2006], is implemented here to perform design optimization of 

microgrids under parametric uncertainty. This method eliminates the need to perform 

reliability analysis of every design during the optimization process, e.g., via Monte Carlo 

sampling, and instead only evaluates the reliability of designs at the end of each 

optimization iteration. This significantly reduces the number of function evaluations 

during the optimization. 

The SORA method first performs deterministic design optimization to generate an 

initial design. At the end of the optimization, the active constraints are identified. The 

active constraints that are a function of uncertain parameters are selected for reliability 

analysis, typically by Monte Carlo sampling or some other procedure. Once the reliability 

of the design is quantified with respect to the active constraints, the method follows one 

of two paths. If the actual reliability is lower than the desired reliability, the bounds of the 

active constraints are shifted to be more conservative and the SORA method iterates. If 

the actual reliability is greater or equal to the desired reliability, and the design is not 
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significantly changed from the previous iteration (within some tolerance), the SORA 

method exits. This operation is explained in the flowchart of Fig. 4.6. The 

implementation of this method is detailed in sub-sections 4.4.1 – 4.4.4. 

 

 

 
Figure 4.6 – Flowchart of Du and Chen’s Sequential Optimization and Reliability 

Assessment (SORA) method 
 

 

4.4.1 Deterministic optimization 

Deterministic design optimization is performed by setting the uncertain 

parameters (electrical power load or solar irradiance) to their nominal, expected values. 

The optimization algorithm chosen is the same used for deterministic design optimization 

in Chapter 3, the DIRECT algorithm. DIRECT has no convergence criteria, so it is run 

for a pre-determined number of function evaluations as specified by the expert user. For a 
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four-variable design problem, 200 function evaluations were shown to be sufficient. For a 

more general implementation, the rate of change of the objective function could be 

tracked and when it is sufficiently small the DIRECT algorithm could terminate, though 

this method was not implemented here. 

 

4.4.2 Calculation of design reliability 

The final design from the deterministic optimization is simulated with random 

sampling of the chosen random parameter(s) to calculate design reliability. It is assumed 

that the effect of the random parameters does not result in an identifiable distribution at 

the output, so the reliability is calculated simply as the number of successful samples 

(feasible designs) over the total number of samples. If the uncertain parameters were 

known to generate identifiable distributions of the output (e.g., normal distributions, 

Weibull distributions, or other distributions), then “smart sampling” methods could be 

used to generate the output distributions with the sampling procedure to reduce the total 

number of samples needed to calculate the design reliability. For generalization, this was 

not implemented here. 

The sampling method used will affect the required number of samples as well as 

the error in the resulting reliability calculation. For example, for Monte Carlo sampling 

(MCS), Chan quotes Shooman who estimates the error in MCS by Eq. (4.2). 

 

ሺ%ሻߝ ൌ ቈ
1 െ ௙்݌
ܰெ஼ௌ்݌௙

቉
଴.ହ

x 200% (4.2)

 
 

where pTf  is the true probability of failure and NMCS is the number of samples [Chan 

2006]. The true probability of failure is usually unknown, so calculating this error 

involves multiple iterations. MCS is run for some number of samples to calculate an 

approximate probability of failure. Based on the result, one can calculate the N required 

to obtain desired accuracy and then run MCS for this number of samples. The probability 

is then updated and N is calculated again until the desired error is reached and converged. 

The prediction error for various probabilities of failure is plotted as a function of the 



65 
 

number of MC samples in Fig. 4.7. As seen in the figure, even for 20% probability of 

failure, 1500 samples are required to reach 10% error in the prediction. 

 
Figure 4.7 – Error in failure probability estimations using Monte Carlo sampling 

 

Drawing thousands of samples to evaluate the reliability of a microgrid design is 

computationally prohibitive. Instead, various “smart sampling” methods can be used to 

reduce the number of samples required to accurately estimate a probability distribution. 

These methods include quasi-Monte Carlo sampling, latin hypercube sampling, 

importance sampling, and adaptive importance sampling [Chan 2006]. For this 

dissertation, latin hypercube sampling (LHS) is used to generate the random parameters 

during the reliability analysis. Latin hypercube sampling seeks to spread the random 

samples over the sampling space by creating intervals and only sampling once within a 

given interval. This is especially useful when sampling in multiple dimensions, as the 

number of samples required to “cover” the space increases linearly with dimension rather 

than quadratically. However, no relation such as Eq. (4.2) is known to the author for 

determining a sufficient number of LH samples required to achieve some level reliability. 

Instead, empirical studies showed that the calculated reliability of a system converged 

within ±3% after 150 LH samples, as shown in Fig 4.8. Thus, 200 LH samples were used 

to evaluate reliability for the studies in this dissertation. Whether this is an appropriate 

number is an area for future research. 

p
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Figure 4.8 – Change in reliability calculation with increasing number of samples  

(7 independent cases) 
 

4.4.3 Identifying active constraints for bound movement 

The only constraint in the design problem that is not a variable bound is the 

constraint ensuring feasibility of the dispatch problem, Eq. (3.6f). Therefore, to identify 

the active constraints, we must examine the activity within the dispatch problem. Within 

the dispatch problem, many of the constraint bounds are fixed by the design problem, 

e.g., the limits on battery power are determined by the battery design (size, chemistry, 

electrode geometry, and other battery design variables). Therefore, it is not possible to 

move these bounds to improve the reliability of the design. In fact, the “movement” of 

these bounds is implicitly handled by the optimal design problem when it attempts to 

achieve a feasible design. 

The same is true for the generator power limits and battery energy capacity limits, 

leaving only one set of constraints where the bounds can be moved: the network power 

balance at each time step (Eq. 3.7f). By moving the bound on these constraints, the 

optimal design problem will be forced to oversize the system, thus leaving reserve 

capacity that can handle the uncertainty in the power load, renewable energy supply, or 

other system variability.  
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These constraints are equality constraints and thus, by definition, they are all 

active constraints, so in keeping with the SORA method one should move the constraint 

bounds uniformly for all of these constraints. However, doing so will require the 

microgrid to produce extra energy at all time instances which will result in artificially 

high energy and fuel use for each design. Instead, it is preferred to identify only those 

network constraints where the microgrid cannot meet the power load because its 

dispatchable power devices are operating at their limits, or within some range from their 

limits. 

The most practical way to address this is to create a new constraint that calculates 

the “operating reserve” of the microgrid. We will define the operating reserve as the 

additional power potential that is not being produced by the microgrid. Such a constraint 

is shown in Eq. (4.3) and will be added to the optimal dispatch problem. 

 

തܲ௚௘௡൅  ௉ܲ௏
௧ ൅ തܲ

௕௔௧௧
௧ െ ௟ܲ௦

௧ െ ௟ܲௗ
௧ ൒ ௥ܲ௘௦௘௥௩௘ , (4.3)   ݐ׊ 

 

In the above equation, Preserve is a constant value of reserve power desired on the network, 

തܲ௚௘௡is the combined rated power from the generators, ௉ܲ௏
௧  is the power available from the 

PV array at time t, തܲ௕௔௧௧
௧  is the maximum power available from the storage battery at time 

t, ௟ܲ௦
௧  is the total power lost during transmission at time t, and ௟ܲௗ

௧  is the total microgrid 

power load at time t. This equation is similar to the network power balance Equation 

(2.2d), except instead of using the actual power produced by each device, it uses the 

maximum power possible from each device. Note (1) that the maximum possible power 

for generators is independent of the time period, whereas the power available from 

energy storage may be limited by the current state-of-charge; and (2) that the renewable 

power potential is limited by the renewable input (e.g., solar radiance or wind speed) in 

each time period. 

The operating reserve, Preserve, will be changed for each iteration of the SORA 

method in order to ensure a reliable microgrid. By dynamically changing this parameter, 

we can attain the desired reliability level analytically without arbitrarily setting the 
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operating reserve or using heuristic rules that may excessively oversize the system 

(resulting in increased cost) or undersize the system (resulting in poor reliability). 

 

4.4.4 Calculating amount of bound movement 

The initial operating reserve is set to zero for the first iteration of the SORA 

method. After the reliability assessment, the amount of increase in operating reserve is 

calculated by first calculating the number of designs that must shift to the feasible region 

to meet the desired reliability level. All of the designs are ranked by increasing level of 

constraint violation (operating reserve deficit). Designs with some amount of constraint 

violation are counted until reaching the desired number to shift to the feasible region. The 

constraint violation of the last design counted is used to set the new operating reserve. 

 

4.4.5 Termination criteria 

Once the design has achieved the desired reliability, the objective function value 

of the current design is compared to the objective of the previous design. If they are 

within a 0.5% tolerance from each other, the process terminates. 

4.5   Example: Optimization of military microgrid under uncertainty 

The approach described in this chapter to perform optimal microgrid design under 

uncertainty was applied to the same military microgrid case from Chapter 3. The basic 

problem remains the same, except that the power load and/or the solar irradiance are 

represented by probability distributions rather than their nominal values. The changes in 

the problem statement will be described in section 4.5.2. This example has four goals: 

 

(1) Show the effect of microgrid design optimization while considering solar 

and power load uncertainty in comparison to the deterministic case shown in 

Chapter 3; 

(2) Compare the SORA method to optimal design using Monte Carlo sampling; 

(3) Show the effect of energy storage on reliability; 

(4) Analyze the effect of different levels of power load variation. 
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4.5.1 Uncertainty propagation through the optimization problem 

Understanding how uncertainty will affect the microgrid design optimization 

requires an understanding of how the uncertainty will propagate through the problem. 

The parametric uncertainties for solar irradiance and power load enter the optimization 

problem through the dispatch subproblem in the hub power balance equations. From 

there the uncertainties are propagated to the outer design problem via the variation in 

operating cost. As an example, the hub power balance Equations (3.2a – d) can be re-

written to include the expected value of power load, E[L], as follows: 

 

Hub 1 ௛ܲ௨௕ଵ ൌ ଵሿܮሾܧ െ ௚ܲ௘௡ଵ െ ௉௏ߟ ௉ܲ௏ െ ௕ܲ௔௧௧ (4.4a) 

Hub 2 ௛ܲ௨௕ଶ ൌ  ଶሿ (4.4b)ܮሾܧ

Hub 3 ௛ܲ௨௕ଷ ൌ  ଷ] (4.4c)ܮሾܧ

Hub 4 ௛ܲ௨௕ସ ൌ ସሿܮሾܧ െ ௚ܲ௘௡ଶ (4.4d) 

   

As a result of this uncertainty, the power required at each hub, Phubi, also becomes 

uncertain, which causes the network power balance constraint from the optimal dispatch 

problem, Eq. (3.7f), to be uncertain. The new probabilistic constraint is shown in Eq. 

(4.5). 

 

ݎܲ ൥෍ ௡ܲ௘௧,௛

௛

൐ 0൩ ൑ ௙ܲ (4.5) 

 

To satisfy this constraint, the dispatchable components (generators and battery) must 

modify their operation from the expected value to meet any variation in power load. This 

variation in generator output will propagate into the optimal dispatch objective, which is 

to minimize fuel cost, Eq. (3.7a), and this cost is then propagated out to the objective of 

the optimal design problem, Eq. (3.6a). A similar propagation can be shown for the solar 

uncertainty. 

These uncertainties create variation in the fuel use and operating cost of the 

microgrid, with an example shown in Fig. 4.9 for a power load standard deviation of 30% 
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of the mean (σL=0.3µL). The variation of the output (operating cost) due to the variation 

of the load also has an approximately normal distribution for this example case with 200 

Monte Carlo samples. 

 
Figure 4.9 – Operating cost variation due to one level of load variation (σ=0.3µ) 

 

4.5.2 Updated optimal dispatch problem statement 

There are two different optimal dispatch problem statements used with the SORA 

method. The first is the deterministic problem statement, used during the Design 

Optimization portion of the SORA method. This optimal dispatch problem statement is 

the same as the one presented in Eqs. (3.7), with the addition of the operating reserve 

constraint for each time t, as shown in Eq. (4.3). The deterministic optimization only uses 

the mean values of the uncertain parameters to generate the optimal designs. 

The second optimal dispatch formulation is used during the Reliability Analysis 

portion of the SORA method. In this formulation, the operating reserve constraints are 

excluded, but the network power balance constraint is probabilistic, as shown in Eq. 

(4.5).  All other equations in the formulation remain as in Eqs. (3.7). The Reliability 

Analysis uses parametric inputs that are sampled from the previously described 

distributions for power load and solar irradiance. However, while the parameter inputs 

vary for each sample, they are still “known” exactly over the time horizon: that is, there is 

no “prediction error” as might be seen using a forward-predictive feedback controller. 

 



71 
 

4.5.3 SORA flowchart for microgrid optimization under uncertainty 

The flowchart presented in Fig. 4.6 can be updated to include the microgrid-

specific elements described above. This flowchart is shown in Fig. 4.10. 

 

 
Figure 4.10 – SORA flowchart for microgrid optimization 

 

4.5.4 SORA method efficacy vs. optimal design using Monte Carlo sampling 

The first goal of the example is to ensure that the SORA method has similar or 

improved results compared to design optimization with Monte Carlo sampling (MCS), 

while significantly reducing the computation time. Thus, the example was run using both 

approaches for two cases: with solar irradiance uncertainty and no power load 

uncertainty, and for power load uncertainty of σL=0.1µL with no solar uncertainty. The 

reliability goal was set to be >90% and the optimal design for both methods was run for 

120 design evaluations with 100 Monte Carlo samples to evaluate design reliability. 

The results for power load uncertainty and solar uncertainty are shown in Table 

4.1. As seen in the table, the designs generated by the SORA method and optimal design 
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using MCS are similar, and the SORA method results in designs with slightly improved 

objectives. By only performing reliability analysis at the end of a design optimization 

run, rather than for each design, the SORA method reduced the number of function 

evaluations and computation time by ~98%. 

 

Table 4.1 – Comparison of SORA method and MCS for optimal design  
with power load uncertainty or solar uncertainty 

Load Uncertainty Solar Uncertainty 
MCS SORA MCS SORA 

Objective Function ($1k) 268.6 268.4 269.8 268.7 
Gen 1 (kW) 46 47 53 56 
Gen 2 (kW) 40 35 62 50 
Battery (kWh) 676 676 655 647 
PV array (kW) 169 169 173 167 
Reliability 100% 100% 98% 100% 
Num. Function Evals 12700 221 13700 227 
Calculation time (hrs) 143.0 1.6 104.9 2.9 

 

These trials show that the SORA method is successful at generating reliable 

designs, similar to the Monte Carlo approach, but saving a significant number of function 

evaluations, which will become important as the problem is scaled up. However, for these 

cases the SORA method only required one iteration to find designs that met the required 

reliability level. That is, the initial deterministic design optimization, which is the first 

step of the SORA method, was able to meet the required reliability with an operating 

reserve of zero. This will be investigated further in the next section. 

 

4.5.5 Optimization under uncertainty vs. deterministic optimization 

As shown in Section 4.5.2, when the microgrid design is allowed to choose a 

large battery and PV array the resulting reliability is 100% during the first iteration. This 

means that the initial, deterministic design optimization using mean values of power load 

and solar irradiance was sufficient. However, the resulting battery and PV arrays are 

impractically large. In practice they would be limited by their footprint for the PV array 

and footprint, weight, and/or volume for the battery. This is especially true for the 
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military case, where they must transport all of their equipment through potentially hostile 

environments to some remote location. 

Lacking specific limits on the sizes of these two components, arbitrary limits were 

set on each to analyze the effects. The PV array was limited to 100 kW, which is a 

medium-large array of 430 m2 for rigid PV panels or 1500 m2 for flexible PV panels. 

This is equivalent to the footprint of 1.6 and 5.7 tennis courts, respectively. The lead-acid 

storage battery capacity was limited to 400 kWh, which would have an approximate 

weight of 11,400 kg and a cell volume of 5.3 m3 [Larminie et al. 2003], excluding 

controls, spacing of cell racks, cooling, and other associated equipment. Assuming a 50% 

increase for actual installed volume, the resulting installed volume would be 8.0 m3, 

which would result in a footprint of 4.0 m2 for a 2 m tall system enclosure. 

Using these new constraints, the SORA method was re-run for power load 

variation σL=0.4µL and fuel price of $2.1/liter with a goal of >90% reliability. For these 

runs, DIRECT was run for 200 function evaluations for each optimization and 200 latin 

hypercube samples were used to evaluate design reliability. The SORA method took four 

iterations to converge to the desired reliability (up to 5% greater reliability was allowed) 

as shown in Table 4.2.  

 

Table 4.2 – Optimal design with σL=0.3µL and limited battery and PV panel sizes 
 

 

The results show that limiting the storage battery and PV panel sizes causes the 

initial deterministic design to have only 23% reliability. The SORA method then overshot 

the desired reliability on the second iteration and required two additional iterations to 

SORA Iteration 1 2 3 4 
Operating reserve (kW) 15.0 48.5 44.5 45.5 
Reliability 23% 99% 88% 95% 
Total cost ($1k) 348.2 349.9 349.4 349.4 
Capital cost ($1k) 59.7 61.6 60.6 60.7 
Operating cost ($1k) 288.5 288.3 288.8 288.7 
Gen 1 (kW) 93 109 113 112 
Gen 2 (kW) 61 79 64 70 
Battery (kWh) 183 243 206 217 
PV array (kW) 100 100 100 100 
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reach the desired reliability window with an operating reserve of 45.5 kW. The total 

computation time was 13 hours. If oversizing the system was not a concern, the method 

could be terminated once the desired reliability was surpassed, saving computation time. 

The final design shows a 19% larger battery and 18% greater total generator power than 

the initial design, and all designs reached the maximum allowable PV array size. The 

capital costs increased by less than 2% and operating costs were almost unchanged. 

Overall, the investment in reliability is fairly inexpensive and does not cause a noticeable 

reduction in system efficiency. 

A similar study was performed for solar irradiance variation with limits on battery 

capacity and solar panel size; results are shown in Table 4.3. However, in this case the 

initial deterministic design with zero operating reserve achieved the reliability target 

(>90%), suggesting that the solar variance (as modeled) is not enough to reduce the 

reliability of the resulting microgrid design. Therefore, for simplicity, only power load 

variation will be considered for the rest of the studies in this chapter. 

 

Table 4.3 – Optimal design with solar irradiance uncertainty and  
limited battery and PV array sizes 

SORA Iteration 1 
Operating reserve (kW) 0 
Reliability 100% 
Total cost ($1k) 347.6 
Capital cost ($1k) 288.3 
Operating cost ($1k) 59.3 
Gen 1 (kW) 88 
Gen 2 (kW) 45 
Battery (kWh) 183 
PV array (kW) 100 

 

4.5.5.1  Comparison of sensitivity analysis and RBDO 

As mentioned in the literature review, most microgrid design including 

uncertainty uses sensitivity analysis of the uncertain parameters to analyze the effects of 

uncertainty. To compare this approach to design using the SORA method, sensitivity 

analysis was performed by running deterministic optimization using increasing levels of 
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the power load instead of using the mean power load. Assuming a normal distribution of 

power load with standard deviation of σL=0.3µL, three levels were chosen at the 70th, 84th, 

and 90th percentiles of the distribution’s CDF. This is shown graphically for a CDF of 

power load with a mean of 100 kW and a standard deviation of 30 kW in Fig. 4.11. 

 
Figure 4.11 – Power load cumulative density function showing the mean and 70th, 

84th, and 90th percentiles 
 

The second case, the 84th percentile of the CDF, was chosen to capture one 

standard deviation higher than the mean power load; the other two levels were chosen to 

bracket that percentile. A graph of the mean power load and the three levels above it is 

shown in Fig. 4.12 for example days around July 1st. 
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Figure 4.12 – Example power load inputs used for sensitivity analysis 

 

The deterministic optimization was re-run as before as well as a reliability 

analysis using LH sampling for the final design in order to compare the reliability of 

these designs to the one generated using the SORA method. For these results, the fuel 

cost was set at $2.1/liter. The results are summarized in Table 4.4. 

 

Table 4.4 – Optimization results from sensitivity analysis compared to SORA result 

  
SORA 

Method 
Deterministic Optimization 

w/ Sensitivity Analysis 

Power load CDF - 70.0% 84.2% 90.0% 
Total cost ($1k) 348.8 349.6 349.8 350.9 
Reliability 90% 86% 100% 100% 
Operating Reserve (kW) 20.0 - - - 
Gen 1 (kW) 94.6 96.3 111.8 116.2 
Gen 2 (kW) 60.9 63.9 65.4 75.5 
Battery (kWh) 183.3 183.3 216.7 183.3 
PV array (kW) 99.5 99.5 99.9 99.5 
 

The results show that the SORA result is most similar to the deterministic result 

using power load scaled up to 70% of the CDF of the power load distribution. The result 

using SORA has a slightly better objective and higher reliability; however, the difference 
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in reliability is not significant. The sensitivity analysis results using higher power loads 

show the expected increase in generator sizes necessary to meet the higher power 

requirements, approximately 10% larger for every 10% increase in power load CDF, and 

a requisite increase in total cost.  

The result of this shows that it is possible to design using sensitivity analysis 

instead of a formal RBDO method. However, this requires an understanding of where to 

set the level of power load in order to achieve the desired system reliability. This in itself 

is an iterative optimization problem, which may be as computationally costly as using the 

RBDO method. It may be possible to develop a design heuristic relating CDF percentage 

to desired reliability, but this heuristic may not hold for a wide variety of scenarios. 

Furthermore, if high levels of reliability are desired, it will be necessary to sample the 

extreme tails of the distribution, which a sensitivity analysis may not reach. As such, the 

RBDO method is the most general method to guarantee a level of reliability for microgrid 

design under uncertainty. 

 

4.5.6 Effect of different levels of power load variation 

The actual power load variation is unknown due to lack of data. To address this, a 

parametric study was performed using three levels of power load variation, with the 

standard deviation (σL) ranging from 30% - 50% of the mean power load. The final 

results using the SORA method are shown in Table 4.4. 

The results show that as power load uncertainty distribution widens, the operating 

reserve required to meet the 90% reliability level also increases. To meet this increasing 

requirement, the total generator power and battery capacity increase by up to 24% and 

45%, respectively, but annualized capital cost only increases by 3.5% because most of the 

capital cost is invested in the PV array, which is already at its maximum size. 

Interestingly, the operating cost remains essentially unchanged. One possible reason for 

this is that the increase in energy storage increases system efficiency enough to offset the 

efficiency loss due to increasing generator size.  
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Table 4.4 – Optimal design with three levels of power load uncertainty  
and limited battery and PV array sizes 

Power Load St. Dev (%) 30% 40% 50% 
SORA Iterations 2 4 4 
Operating reserve (kW) 20 46 60 
Reliability 90% 95% 91% 
Total cost ($1k) 348.4 349.4 350.3 
Capital cost ($1k) 59.8 60.7 61.9 
Operating cost ($1k) 288.6 288.7 288.4 
Gen 1 (kW) 95 112 120 
Gen 2 (kW) 61 70 73 
Battery (kWh) 183 217 265 
PV array (kW) 100 100 100 

 

To understand better the effect of operating reserve on reliability, operating 

reserve was swept at 5 kW increments for the two power load variations: σL = 0.4µL and 

σL = 0.5µL. By plotting the iterations of the SORA method versus operating reserve, we 

can observe the trend of reliability improvement, as shown in Fig. 4.13.  

 
Figure 4.13 – Reliability trends as a function of operating reserve 

 

The figure shows that reliability is not necessarily monotonic with increasing 

operating reserve, which is unexpected. In fact, the discontinuous responses suggest that 

specific details of the microgrid design can affect reliability more than the overall 
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operating reserve. The effect of the operating reserve is to change the design of the 

microgrid so that the network constraints are satisfied with some “reserve,” but the goal 

of the optimization is still to minimize costs without directly considering reliability. It is 

possible that the goal of improving reliability is somewhat independent of the goal of 

objective function improvement and each goal may be served by changing different 

elements of the microgrid design. 

To inform this question, we can also plot the trend of reliability improvement with 

respect to battery capacity and total generator power, as shown in Fig. 4.14. 

 
Figure 4.14 – Reliability trends as a function of total generator power and battery 

capacity 
 

Observing these results, it is difficult to decide correlation of reliability to each 

variable, as they are changing simultaneously for each iteration. Most likely each has 

some effect on total system reliability and operating cost. The following section will 

discuss the variation of reliability and objective function with respect to battery size only. 

Battery size is chosen because it can be increased without significantly affecting the fuel 

use and operating cost, whereas increasing generator size monotonically increases these 

outputs. 
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4.5.7 Effect of energy storage on reliability 

The previous study showed that increased operating reserve did not directly 

increase the reliability of the microgrid. It was observed that increased reliability was 

correlated to increased battery capacity. It is expected that increasing the battery capacity 

will generally improve the reliability of microgrid operation because a larger battery has 

increased ability to buffer spikes in power load or drops in solar power. To study this 

effect, the battery size was swept while the rest of the microgrid design was held 

constant. A Monte Carlo sample was taken for each step in battery size with the standard 

deviation of load set to 50% of mean load. The fixed design values were: Generator 1 = 

120 kW, Generator 2 = 65 kW, PV panel = 100 kW. The results are shown in Fig. 4.15. 

 
Figure 4.15 – Effect of battery capacity on reliability for σL = 0.4µL 

 

The figure shows that the battery size has a significant role in microgrid 

reliability, up to a point. For this design, the reliability was not able to improve beyond 

98%, which suggests that higher reliability would require changing other design 

variables. However, it has been previously noted that battery size only weakly affects the 

overall optimal design objective. Lead-acid batteries are relatively inexpensive, so 

increasing their size does not dramatically increase the total capital cost relative to other, 

expensive components (e.g., solar panels). Also, some battery storage helps reduce 

operating costs, but that benefit flattens out as storage increases. 
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This will have an effect on iterations of the SORA method. The operating reserve 

may be increased to improve reliability, and the optimal design problem re-solved 

multiple times. However, a simple heuristic rule could be to increase the battery capacity 

to achieve the desired reliability, while holding the rest of the design fixed. This could 

result in improved operating cost, if it allows the generators to remain smaller rather than 

increasing in size to meet the increased operating reserve requirement. Additionally, it 

could save time by reducing the number of iterations of the SORA method. 

 

4.5.8 Summary and conclusions 

Accounting for uncertainties in microgrid design is important in order to design 

reliable systems. Using analytical methods can generate reliable microgrids that have 

lower cost and higher efficiency because they are not unnecessarily oversized. The 

methods shown in this chapter can account for power load uncertainty and renewable 

energy uncertainty in the design process. Using the Sequential Optimization and 

Reliability Assessment (SORA) method of Du and Chen can efficiently design for these 

uncertainties, while requiring less than 10% of the computation time of using Monte 

Carlo sampling of every design. 

The initial studies showed that allowing very large energy storage and PV arrays 

results in economically optimal designs that are also very reliable. Note, though, that this 

optimum occurs because the fuel cost is relatively high ($2.1/liter), so the addition of 

large PV arrays can be cost-justified. However, these large PV arrays and storage 

batteries may not be practical for implementation at remote military bases due to their 

sizes and weights. Practical upper limits are necessary to properly optimize these system 

designs, and when their sizes are limited the microgrid reliability is reduced. 

The results of the various studies showed that the goals of system reliability and 

minimizing costs are opposed to each other. Thus, deterministic optimization to minimize 

costs will not necessarily result in a reliable microgrid design, as increasing reliability 

will increase capital costs. However, simply adding operating reserve to the deterministic 

optimization does not guarantee an increase in system reliability. This occurs because 

increasing battery capacity will improve system reliability, but battery size is not 
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monotonic with respect to minimizing costs, which is the goal of the optimization. 

Adding a heuristic design rule of increasing energy storage capacity to improve reliability 

could save design computation time. 

The studies performed here showed that power load uncertainty has a greater 

effect on system reliability than solar uncertainty. This can be explained because solar 

supply, at the extreme low side of its distribution, can only approach zero, whereas power 

load uncertainty can spike to very high values. The same would be true for other 

uncertain renewable energy supplies, e.g., wind speed. However, the solar irradiance in 

one hour may be correlated to preceding and following hours, rather than independent as 

modeled here. These correlations, e.g., a series of cloudy days, could cause long droughts 

of solar power that the energy storage may not be able to buffer. This is an area for 

further study. 
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Chapter 5:   Co‐design of electric vehicles and a microgrid 

Until now this dissertation has been solely concerned with methods and strategies 

for the optimal design of microgrids. This chapter will examine the addition of electric 

vehicles to the microgrid and consider how the two can be co-designed to maximize 

benefits. The question of how vehicles interact with a microgrid has been studied in some 

detail, both as a variable charging load as well as the possible benefits offered by vehicle-

to-grid (V2G) support. However, no research has investigated how the physical designs 

of vehicles and microgrids can improve or hinder their interactions. Likewise, these 

studies have not considered the optimal design of electric vehicles and microgrids in a 

single, system-level problem. This co-design problem is the subject of this chapter.  

The chapter will first overview vehicle design optimization, focusing on 

electrified vehicle powertrains. A model of an all-electric military light tactical vehicle 

(LTV) will be described, along with its optimization problem formulation. The chapter 

will continue by discussing various co-design problem formulations and suggest a 

preferred formulation. The co-design problem will be solved with uncertain power load 

(as in Chapter 4) and the results will be discussed to generate insights into the 

interactions of vehicle design and microgrid design.  

5.1 Vehicle powertrain optimization 

Vehicle powertrain optimization is an important early-stage design tool that can 

include sizing the powertrain components, the design of the powertrain controller, and/or 

the location of components within the vehicle. The basic vehicle geometry and mission 

are often considered as givens, with the goal usually set to maximize some performance 

measure (fuel economy, vehicle range, or another metric) while satisfying various 

performance constraints (acceleration time, towing ability, maximum velocity, vehicle 

dynamics, or packaging). Powertrain optimization is especially useful for design of 
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electrified and other non-conventional powertrains, where there are multiple tractive 

power sources, multiple energy storage elements (batteries, liquid fuel), and a 

complicated energy management strategy. For these vehicles there are too many 

components to easily capture the design tradeoffs among them by using heuristic design 

rules and separated design of each component. 

 

5.1.1 Literature review 

The availability of system-level vehicle simulation models and computing power 

improvements combined with increased interest in hybrid vehicles to make vehicle 

powertrain optimization a topic of research in the late 1990s. For example, hybrid vehicle 

analysis tools were developed at national laboratories, PSAT at Argonne National 

Laboratory and ADVISOR at the National Renewable Energy Laboratory, and these tools 

were used for study of hybrid vehicle benefits [Cuddy et al. 1997]. These simulation tools 

were used with design optimization methods to efficiently design complex, hybrid 

powertrains simultaneously with their controllers [Assanis et al. 1999, Fellini et al. 1999, 

Guzzella et al. 1999, Whitehead 2001, Wipke et al. 2001, Filipi et al. 2004, Hu et al. 

2004, Guenther and Dong 2005]. Throughout the past decade, improvements in 

computing power have allowed these methods to be used with higher-fidelity component 

submodels (e.g., for the battery pack, fuel cell, electric motor, and engine). Examples 

include studies of HEV power management [Kim et al. 2007], fuel cell vehicle 

powertrain and optimal control design [Rodatz et al. 2005, Kim and Peng 2007, Han et al. 

2008b], power-split hybrid powertrain design [Ahn et al. 2008, Whitefoot et al. 2010], 

dual-mode hybrid vehicle optimization [Ahn et al. 2011b], and PHEV control 

optimization with varying all-electric range [Karbowski et al. 2008]. 

Since the early 2000s, plug-in hybrid electric vehicles (PHEVs) and battery 

electric vehicles (BEVs) have been a larger topic of research. PHEVs are more practical 

than BEVs for wide deployment in the near future due to their smaller battery cost, so 

there has been an associated larger amount of research on these vehicles. The research on 

PHEVs can be divided mainly into two areas: optimal powertrain/energy management 

control and optimal design. The optimal control literature is often focused on minimizing 
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the power consumption per mile of a given vehicle, maximizing all-electric distance, 

and/or minimizing degradation of the battery packs during charging and discharging. 

Moura et al. showed results for optimal power management of a PHEV using Markov 

chains [Moura et al. 2008] and also studied the effect of battery sizing of PHEVs on the 

optimal power management strategy [Moura et al. 2010]. The optimal design literature 

typically has addressed the tradeoff of battery pack size and petroleum displacement, 

especially from a cost/benefit point-of-view for the consumer. Shiau et al. studied the 

optimal design of PHEVs to minimize consumer cost, greenhouse gas emissions, and 

petroleum consumption [Shiau et al. 2010a, 2010b]. University of Michigan researchers 

used GPS driving data in Southeast Michigan to create naturalistic driving cycles 

[Adornato et al. 2009, 2010] and used them to study PHEV designs [Patil et al. 2009], 

showing how their performance varies dramatically on different driving cycles.  

Much of the research on PHEVs applies to all electric vehicles as well, especially 

any research relating to battery degradation and charging algorithms. However, these 

studies do not typically consider the electric grid side of the system, though some of them 

do consider the charging controllers. They do not address the potential to concurrently 

design a microgrid, nor design the battery packs of the vehicles to support a microgrid. 

While this chapter focuses on all-electric vehicles, some of the methods and results can 

be extended to plug-in hybrid vehicles.  

  

5.1.2  Military EV optimization 

Optimization of an all-electric, tactical military vehicle has been previously 

studied in [Alexander 2011]. Alexander optimized the design of an all-electric Light 

Tactical Vehicle (LTV), which is the U.S. Army’s upcoming replacement for the High 

Mobility Multipurpose Wheeled Vehicle (HMMWV). It is a four-person vehicle designed 

for convoy escort and urban assault missions. Additionally, the vehicle would be used 

internally on military bases, so it is a viable candidate for military microgrid support. The 

design goal was to maximize the range of the vehicle by changing the design of the four 

in-hub electric motors along with the battery pack design and placement and transmission 

gear ratios. The constraints on the problem included limitations on battery pack volume, 
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limits on battery and motor power draw (design-dependent), vehicle dynamic stability, 

and vehicle protection from improvised explosive devices (IEDs).  

 

5.1.2.1 EV model description 

 The electric vehicle (EV) model used by Alexander was a modification of the 

EV model developed by [Allison 2008]. Alexander’s dissertation explains this model in 

great detail and only a brief summary is given here to introduce the level of modeling.  

This model was used as given: all modeling of the electric vehicle is solely by Alexander 

and other researchers. For a more in-depth description including more modeling 

equations, please refer to [Alexander 2011]. 

 As seen in the top-view of Fig. 5.1, the vehicle has four traction motors, one at 

each wheel, with a gearbox to reduce the motor speed to wheel speeds. The battery pack 

is centrally-located with limits on maximum width and length, and the center of mass of 

the battery is also a variable. 

 

 
Figure 5.1 – Top view of all-electric military light tactical vehicle  

[from Alexander 2011] 
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The dimensions of the LTV were based upon the dimensions of the existing 

HMMWV M1025A2, though the mass of the vehicle was modified to exclude the 

internal combustion engine and fuel tank and include the electric machines and battery 

pack. Alexander developed relations between the motor, battery, and gearbox variables 

and the mass of each, so that as the vehicle design changes the vehicle mass will change 

accordingly. This is important because the vehicle dynamics, electricity use, and blast 

protection are all mass-dependent. 

 The vehicle energy efficiency simulation uses a backward-looking calculation 

and is implemented in Simulink. The backward-looking simulation calculates the 

necessary motor torque, motor speed, and battery power at each time step to follow a 

prescribed military drive cycle, with outputs of vehicle range and electricity use per 

kilometer. Using a backward-looking calculation requires the addition of power limit 

constraints to the optimization problem that ensure the motors and battery can supply the 

torque and power requested during the simulation. The vehicle efficiency is tested on a 

military-specific convoy escort cycle, which covers a total distance of 42 miles (69.0 km) 

in approximately 1.14 hours (4100 seconds) with an average speed of 37 mph (60.8 kph). 

The acceleration simulation is forward-looking and uses the same power limits on the 

motors and battery along with the other vehicle parameters to determine the vehicle 

acceleration performance from 0 to 50 mph (82.1 kph). The vehicle design parameters are 

listed in Table 5.1. 

 
Table 5.1 – Military electric LTV model parameters [Alexander 2011] 

Parameter Description Value 
mb Baseline vehicle mass 1930 kg 

mocc Occupant mass 100 kg 
L Wheelbase 3.30 m 

Wo Overall vehicle width 2.18 m 
Cd Drag coefficient 0.70 
Af Frontal area 3.58 m2 
ρa Air density 1.10 kg/m3 
mus Unsprung mass 440 kg 
ζ Damping ratio per wheel 83500 N-s/m 
ks Suspension stiffness per wheel 16000 N/m 
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gh Geared hub ratio 1.92 
rgo Gearbox output gear radius 0.0508 m 
rgo,i Gearbox output idler gear radius 0.0254 m 
rgi,i Gearbox input idler gear radius 0.0762 m 
Iyt Tire/wheel assembly spin inertia per axle 14.22 kg-m2 
Cr Tire rolling resistance 0.01 
rt Tire radius 0.470 m 

Pacc Accessory power load 11200 W 

 
 

Battery submodel 

 The vehicle battery consists of two parallel packs, with each pack containing 48 

prismatic Li-ion cells in series (the electrode and electrolyte materials are not specified in 

the documentation). The battery performance parameters are determined via a surrogate 

model (radial-basis function artificial neural network) developed by Alexander, which 

was generated from the output of a 1-D Li-ion electrochemical diffusion model 

developed in [Han 2008a]. Han’s battery simulation is based on studies by Doyle, Fuller, 

and Newman on a single Li-ion cell undergoing a hybrid pulse power characterization 

(HPPC) test [Doyle et al. 1993; Fuller et al. 1994; PNGV 2001]. This test determines the 

cell capacity, internal and polarization resistances, open circuit voltage, and polarization 

time constant as a function of cell state-of-charge. The inputs to the model are the battery 

electrode insertion scale, battery width and length. 

The battery electrode insertion scale, BI, defines the thickness of the electrodes 

and the separator. The battery cell width scale, BW, determines the electrode and cell 

width as shown in Fig. 5.2. The battery is mounted transversely in the LTV; thus, this 

variable affects the overall battery length, bl. The number of windings (folds) in the cell 

are given by the variable BL. The cell height is set to a constant 11cm. 
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 (a) Cell windings   (b) Flat-wound lithium-ion cell 

 
Figure 5.2 –  Typical flat-wound lithium-ion battery cell [Han 2008a] 

 
 

Electric motor submodel 

 The four electric traction motors are three-phase AC induction motors. 

Induction motors (IM) were chosen over permanent magnet motors due to their lower 

cost. Hybrid-electric vehicles often use permanent magnet (PM) motors due to their 

higher power density, but the larger electric power requirements of an EV tends to make 

PM motors cost-prohibitive. Thus, induction motors are used in commercially-available 

EVs, such as the Chevrolet Volt extended-range electric vehicle and the Nissan Leaf 

electric vehicle.  

 Each phase of the motor is modeled as an equivalent electrical circuit as shown 

in Figure 5.3, where Vs is the RMS AC source voltage, Lm is the mutual inductance 

between the stator and rotor, Rs is the winding resistance of the stator, Lls and Llr are the 

leakage inductances of the stator and rotor respectively, and Rr is the variable electric 

resistance through the rotor. The electromagnetic interaction between the stator and rotor 
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is modeled by dividing the slip s into Rr. This model was originally developed by [Bose 

2002], implemented by [Allison 2008] and modified by [Alexander 2011]. For additional 

modeling details, refer to those references. 

 
Figure 5.3 – Equivalent circuit model of one phase of an induction motor  

[Bose 2002] 
 

The input variables to the motor model are the rotor stack length, rotor radius, 

number of turns per coil in the stator, and rotor resistance (ls, rm, nc, Rr). These variables 

are used with the parameters in Table 5.2 to determine the motor performance. 

 

Table 5.2 – Induction motor parameters [Alexander 2011] 

Parameter  Description  Value  
Vsm  Maximum stator voltage  460 V  
p  No. of stator poles  4  
q  No. of slots per phase per pole  3  

m1  No. of motor phases  3  
σYr  Rotor yield stress  300 MPa  
ν  Rotor Poisson ratio  0.30  

SF  Rotor safety factor  4  
ωinv  Maximum inverter frequency  1510 rad/s  
ρfe  Iron density  7870 kg/m3  

Cm1  1st cm parameter  0.062  
Cm2  2nd cm parameter  0.998  
Cm3  3rd cm parameter  0.94  
Cm4  4th cm parameter  0.0513  
na  Slot volume ratio  0.8  
np  Wire packaging ratio  0.5  
ts  Stator radius proportionality factor 0.5  
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ke  End effect ratio  1.5  
ρcu  Copper resistivity  1.72 x 10-8 Ω-m  
CI1  Constant Ism parameter  0.0564  
CI2  Linear Ism parameter  -0.0237  
CI3  Quadratic Ism parameter  2.21  

 
The outputs from the motor model are the maximum and minimum torque curves 

as a function of motor speed, as well as the power loss map. An example output map is 

shown in Fig. 5.4. The final output from the motor submodel is the motor mass. 

 

 
Figure 5.4 – Example power loss map of induction motor model  

[Alexander 2011] 
 

Directional stability 

Under specified vehicle design parameters and driving conditions, the directional 

stability analysis determines whether the vehicle would remain stable (i.e., not “spinning 

out”) at a specified maximum stable speed, herein set as 113 kph (70 mph). The 

directional stability submodel has inputs of the sprung mass, longitudinal center of mass 
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location, tire stiffness, and the average front and rear tire normal forces to computes the 

directional stability based on a model in [Wong et al. 2001].  

 

Blast resistance 

Based on the large number of roadside bomb attacks causing numerous casualties 

in recent conflicts, the U.S. Army has set design targets that require future LTVs to 

protect against a 10% chance of severe injury on the abbreviated injury scale (AIS) for 

the neck, lumbar/spine, and tibia of occupants. Light military vehicles such as the electric 

LTV described herein run a greater risk of injury due to their low mass and light armor; 

however, these vehicles maintain the mobility required for certain military missions. A 

metric was developed to address this tradeoff between the probability of exceeding the 

injury thresholds and mobility. This equation is a nonlinear function of total vehicle 

mass, mT, as shown in Eq. (5.1) [Hoffenson 2012]. 
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5.1.2.2  EV optimization problem formulation 

The objective of the military EV optimization problem is to maximize the vehicle 

range by varying the design of the electric motors, battery pack, battery pack location, 

and reduction gear ratios. The constraints on the system include the acceleration time, 

maximum battery capacity, torque and speed limits for the motors, power limits for the 

battery, vehicle directional stability, and vehicle blast protection. The problem 

formulation is listed in Eqs. (5.2).  
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ݔܽ݉
࢞  rv EV range (5.2a) 

    
w.r.t.: 0.7 ൑ ଵݔ ൑ 2.0 Battery electrode insertion scale (5.2b) 
 0.5 ൑ ଶݔ ൑ 2.8 Battery cell width scale (5.2c) 
 15 ൑ ଷݔ ൑ 30 Number of cell windings (5.2d) 
 

0.0 ൑ ସݔ ൑ 0.5 
Longitudinal battery pack placement 
from reference point (m) 

(5.2e) 

 0.75 ൑ ହݔ ൑ 2.00 Gearbox ratio, front gearboxes (5.2f) 
 0.75 ൑ ଺ݔ ൑ 2.00 Gearbox ratio, rear gearboxes (5.2g) 
 0.05 ൑ ଻ݔ ൑ 0.13 Motor stack length (m) (5.2h) 
 0.01 ൑ ଼ݔ ൑ 0.19 Motor rotor radius (m) (5.2i) 
 8 ൑ ଽݔ ൑ 22 Number of turns per stator coil (5.2j) 
 0.05 ൑ ଵ଴ݔ ൑ 0.30 Rotor resistance (ohms) (5.2k) 
    
subject  to: 
 ܾ௪ ൑ 1.5 Battery pack width packaging limit (m) (5.2l) 
 ܾ௟ ൑ 2.1 Battery pack length packaging limit (m) (5.2m) 
଴ିହ଴ݐ  ൑ 20 Acceleration time 0 – 50mph (s) (5.2n) 
 ௙ܶ௥௡௧ ൑ ௠ܶ௔௫ Torque limit – front motors (N-m) (5.2o) 

 ௥ܶ௘௔௥ ൑ ௠ܶ௔௫ Torque limit – rear motors (N-m) (5.2p) 
 ௙ܰ௥௡௧ ൑ ܰ௠௔௫ Speed limit – front motors (rad/s) (5.2q) 

 ௥ܰ௘௔௥ ൑ ܰ௠௔௫ Speed limit – rear motors (rad/s) (5.2r) 
 ௩ܲ௕௔௧௧ ൑ ௠ܲ௔௫ Power limit of battery (W) (5.2s) 
௩௕௔௧௧ܧ  ൑ ሼ350,… ,650ሽ Capacity limit of battery (A-h) (5.2t) 
௦ܦ  ൑ 1 Directional stability metric (5.2u) 
௜௡௝ݎܲ  ൑ 0.1 Probability of injury due to blast (5.2v) 

 
The only differences between this formulation and Alexander’s are that his 

formulation allowed different designs for the front and rear motors and used a fixed upper 

limit on battery capacity to limit battery cost. In this formulation, multiple limits were 

used for the maximum battery capacity and the problem was solved for each limit. This 

was done because Alexander’s results showed this constraint was always active, which is 

expected because the design problem is maximizing vehicle range. In the co-design 

problem, battery cost will be included in the overall cost minimization objective so this 

constraint can eventually be eliminated and the co-design problem can determine the 

optimal battery capacity. 
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5.1.2.3  Possible objectives of EV optimization problem 

The most common objective for vehicle optimization is to minimize its energy 

consumption per unit distance (e.g., liters of fuel per 100 kilometers or electric watt-hours 

per kilometer) subject to constraints on the vehicle’s performance, such as vehicle range, 

acceleration time, top speed, and handling dynamics. The range constraint is especially 

important for an EV, because the energy density of electrochemical batteries is low 

compared to liquid fuels and batteries are expensive. 

For an EV, it makes sense to formulate the problem with a different objective: 

range maximization with a constraint on the maximum battery size to limit the battery 

cost. This is the formulation used in Section 5.1, as proposed by [Alexander 2011]. 

However, for an EV the range maximization problem and energy consumption 

minimization problem can be shown to be equivalent, under certain ranges of the design 

variables. For a given battery size, b, electrical energy use per kilometer, Ekm, and vehicle 

range, rv, are related through Eq. (5.3). 

 

௩ݎ ൌ
ܾ
௞௠ܧ

 (5.3)

 

Thus, reducing electrical energy use per kilometer will increase vehicle range, and 

the objectives of the two possible formulations are aligned. However, for the first 

formulation, minimizing Ekm, we must include a constraint to ensure that vehicle range 

meets a minimum value (lower bound), lest the optimization seek to reduce the battery 

size to reduce vehicle weight (thus improving the objective). Due to this relationship, the 

minimum range constraint will be active at the optimum. 

Conversely, for the range maximization formulation, we must include an upper 

bound on the battery size, lest the optimization seek to continuously increase the battery 

size to increase the vehicle range. As Alexander showed, this constraint is expected to be 

active at the optimum because vehicle range monotonically increases with increasing 

battery capacity [Alexander 2011]. We can show these two formulation tradeoffs 

graphically, as presented in Fig. 5.5. In this figure, an example function is plotted 

showing the monotonic relationship between EV range and battery capacity. 
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Figure 5.5 – Equivalency of range and efficiency objectives for an EV 

 

For a given battery size, b, we can expect a particular range for the vehicle, rv. If 

the range constraint of the first problem formulation (min Ekm) is set to r, and the battery 

size constraint of the second problem formulation (max rv)  is set to b, we can see that the 

two problems will generate the same optimal solution, albeit forcing the design in 

different directions. Thus, we can see that the solutions to the two problems are 

equivalent. This insight is only applicable in the variable range where increasing battery 

size will monotonically increase vehicle driving range, and decreasing battery size will 

improve vehicle efficiency. It is possible that there exist extreme values of battery size 

where this monotonicity is not present. 

We can exploit this feature to simplify the co-design problem. By solving the 

range-maximization EV optimization for multiple levels of maximum battery size, we 

can generate a tradeoff curve of battery size to vehicle range, with an accompanying 

relationship for electricity use per kilometer. This tradeoff curve can then be used in the 

microgrid optimization problem in place of concurrent vehicle optimization, thus 

simplifying the co-design problem significantly. This sequential process is possible 

because the performance of the vehicle is independent of the microgrid design, but the 

microgrid performance is dependent on the vehicle design. This type of interaction 

between two linked problems is known as unidirectional coupling [Fathy et al. 2001, 

Peters et al. 2009]. However, the microgrid must ensure that the vehicle has enough 

battery energy to perform its driving tasks. Therefore, the microgrid design and dispatch 

Battery Capacity

EV 
range

r

b

max rv

min Ekm
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problems must contain constraints that account for each vehicle’s driving requirements 

and state-of-charge of the batteries. This problem decomposition will be explained further 

in Section 5.3. 

Solving the co-design problem this way has an additional advantage in that it 

“modularizes” the combined microgrid and EV optimization problem: multiple vehicles 

can be implemented within the microgrid design problem without the need to include all 

of the design variables from each within the AiO problem. This is accomplished by 

generating the EV tradeoff curves for multiple types and sizes of vehicles, and these 

results can be implemented into any number of different microgrid design problems.  

 

5.1.2.4  Military EV optimization results 

The military EV design was optimized to maximize vehicle range for seven levels 

of the battery capacity constraint. This capacity constraint was always active at the 

optimum, which matches Alexander’s result. The vehicle range is plotted versus battery 

size in Fig. 5.6 along with a linear-fit model. Here, battery amp-hours were converted to 

kWh by assuming a constant battery pack voltage of 210 V. The vehicle energy 

consumption for all runs ranged from 530 – 545 W-h/km, with an average value of 540 

W-h/km.  

 
Figure 5.6 – Light Tactical Vehicle range versus battery capacity 
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The complete results are shown in Table 5.3. As seen in the final row, the battery 

capacity constraint, g9, was always active at the optimum. 

 

Table 5.3 – Electric LTV optimization for different battery capacity constraints 

Max. battery capacity  (A-h) 350 400 450 500 550 600 650 

Objective: Range (km) 86.4 99.0 111.2 127.6 135.6 150.1 160.8 
x1 - Battery electrode scale 0.92 0.92 1.49 1.84 1.37 1.40 1.83 
x2 - Battery cell width scale 1.63 1.62 1.63 1.63 2.38 1.63 1.63 
x3 - Number of cell windings 24.4 27.7 19.4 17.5 17.7 27.5 22.7 
x4 - Battery pack placement (m) 0.18 0.20 0.25 0.40 0.06 0.08 0.14 
x5 - Gearbox ratio, front  1.47 1.50 1.51 0.77 1.64 1.47 1.23 
x6 - Gearbox ratio, rear  1.45 1.56 1.61 0.77 1.64 1.51 0.96 
x7 – Motor stack length (m) 0.13 0.13 0.12 0.05 0.12 0.13 0.06 
x8 – Motor rotor radius (m) 0.10 0.10 0.10 0.16 0.10 0.10 0.14 
x9 - Number of turns per coil 9.9 10.2 8.9 18.6 11.7 8.3 16.6 
x10 - Rotor resistance (ohms) 0.05 0.09 0.19 0.12 0.27 0.06 0.20 
g9 - Battery capacity constraint -0.01 -0.01 -0.00 -0.00 -0.00 -0.00 -0.00 

 

5.2 Vehicle interaction with microgrid 

Plug-in vehicles, both all-electric and plug-in hybrid, can interact with a 

microgrid either with one-way power flow (solely as a charging load) or with two-way 

power flow, including vehicle-to-grid (V2G) power flow. Two-way power flow requires 

increased communication and control equipment, but can offer additional benefits to the 

microgrid. However, V2G may not offer enough benefits to justify the additional costs of 

controls equipment and vehicle battery degradation.  

 

5.2.1  Literature review 

Of the existing V2G literature, the vehicles are typically modeled as a simple 

power source/sink combination and the focus is often on the control strategies or required 

communications infrastructure. Also, the vehicles are generally assumed to follow a fixed 

connection schedule. No research has studied the issues of modifying vehicle design to 

improve V2G benefits or how to design for stochasticity in vehicle charging scheduling. 
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Much of the research on V2G has focused either on the practical, technological 

aspects or the economic aspects of V2G. Kempton and Tomić developed models of the 

economic potential of using electrified vehicles for grid support, though their work was 

focused on the macrogrid. They discussed the multiple possibilities for the owner of a 

plug-in vehicle to generate revenue through power supply during peak load times and 

through ancillary support services (acting as a “spinning reserve” or via frequency 

regulation) [Kempton et al. 2005]. They also looked into the revenue potential of a 

company or other entity with a fleet of plug-in vehicles to provide frequency regulation 

[Tomić et al. 2007]. Gage performed tests using a converted PHEV based on a 

Volkswagen Jetta to test PHEV capability as well as the practical aspects of V2G 

capability, including the communication necessary to remotely control the vehicle to 

supply energy back to the grid [Gage et al. 2003]. More recently, Galus studied agent-

based control strategies to maximize the economic benefits of plug-in vehicles for grid 

support [Galus et al. 2008]. Waraich et al. studied the details of how PHEVs might affect 

the load on a grid using a micro-simulation model of thousands of PHEVs in Berlin 

[Waraich et al. 2009].  

Other research by Peterson et al. questioned the economic viability of using 

PHEVs for grid support, especially in areas with low electricity pricing and given the 

costs of battery pack degradation and replacement [Peterson et al. 2010a]. Peterson et al. 

also studied the economics of battery degradation of PHEVs when used for V2G 

applications, concluding that it rarely makes economic sense for a vehicle owner to allow 

their vehicle to be used to support the grid [Peterson et al. 2010b].  

There are many papers that discuss the communication protocols and hardware 

required to allow V2G to work, e.g., [Hiskens et al. 2009]. This area of research is critical 

for the actual implementation of V2G, but it is out of the scope of this dissertation and 

will not be reviewed here. 

 

5.2.2 Charging only 

If no V2G power flow is allowed, consideration of plug-in vehicles attached to a 

microgrid only requires including an additional load to the system. The major differences 
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are that this load can be controllable, allowing for charging at optimal times of day, e.g., 

during periods of high renewable energy supply or during periods of low load, such as 

late at night. Adding vehicle loads to the system can thus change the typical diurnal 

power load curve, as shown previously in Fig. 3.6, and result in high overnight loads. For 

a microgrid with diesel generators and a PV array, this may increase fuel use due to the 

absence of solar power at night. 

 

5.2.3  V2G capability 

The more complicated case for adding plug-in vehicles to a microgrid is when the 

vehicles have the ability to return power to the microgrid. Many possible benefits arise, 

as now the vehicles appear as both a controllable load and a controllable power supply. 

However, additional controls are necessary and the degradation of vehicle batteries must 

be balanced against the possible benefits to the grid. 

 

5.2.3.1 Possible benefits from V2G 

Various potential benefits have been suggested for adding plug-in vehicles to a 

grid or microgrid. Among these include acting as a controllable load to balance 

renewable energy variability [Ahn et al. 2011a], spinning reserve to maintain line 

frequency and voltage [Tomić et al. 2007, Peterson et al. 2010], and as a vessel for 

arbitrage, storing energy when electricity is cheap and returning it when it is expensive 

[Momber et al. 2010, Stadler et al. 2010]. For most electric grids, which have high 

reliability and low marginal costs, it is difficult to make an economic case to justify 

vehicle-to-grid benefits of plug-in vehicles [Peterson et al. 2010a]. The high cost of 

vehicle batteries and the resultant battery degradation are higher than the value of using 

the vehicle as spinning reserve or as arbitrage. However, economic benefits can be 

realized by using communication technologies to control the charging load of the vehicles 

[Ahn et al. 2011a], but this does not require any V2G capability. 

The economic situation for military microgrids and other remote, islanded grids is 

significantly different than for a regional-level macrogrid. Microgrid power generation is 

much more expensive on the margin, as the power often comes from a high-energy 
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density fuel, e.g., petroleum-based fuels. Additionally, the power outputs tend to vary 

widely and the power generation efficiency will suffer at low loads. Furthermore, 

microgrids rarely have significant redundancy or operating reserve, resulting in lower 

reliability. Thus, plug-in vehicles may offer a wider range of benefits to a microgrid than 

to the macrogrid.   

The remainder of this chapter will study the benefits of controlling power flow to 

and from electric vehicles and a microgrid. The possible benefits for voltage and 

frequency regulation will not be considered as those require short time-scale simulation 

(~1 ms to 1 sec), whereas this dissertation only studies bulk power flows on hourly time 

increments. 

 

5.2.3.2 Control algorithm for V2G 

The V2G control algorithm used in this dissertation was previously mentioned in 

Section 2.4.1.1. The algorithm, from [Peters et al. 2011], attempts to balance the state-of-

charge (SOC) of all the connected vehicles, either in charging or discharging. This 

controller is a rule-based approach that splits the total power command between attached 

vehicles depending on their individual states-of-charge. Thus, when the lumped charging 

station command is negative (charging) it prioritizes charging the vehicles with lowest 

SOC, and when the command is positive (discharging) it prioritizes the vehicles with the 

highest SOC. The charge priority and power flow to/from each vehicle are calculated by 

Eqs. (5.4). 

 

௞ݕݐ݅ݎ݋݅ݎܲ ൌ ܿ௞ כ ሺܧത௩ െ ௩,௞ܧ
௧ ሻ (5.4a) 

௞ݕݐ݅ݎ݋݅ݎܲ ൌ ܿ௞ כ ሺܧ௩,୩
௧ െ  ௩ሻ (5.4b)ܧ

௩ܲ௘௛
௧ ൌ   ௩ܲ,௞

௧ כ
௞ݕݐ݅ݎ݋݅ݎܲ

∑ ௞௞ݕݐ݅ݎ݋݅ݎܲ
 (5.4c) 

 

In these equations, ck is a binary variable that specifies whether a vehicle is 

connected (ck =1) or disconnected (ck =0). The first equation calculates priority for each 

vehicle k when the lumped command is to charge and the second equation calculates the 

priority during discharge. The third equation calculates the power to each vehicle k as a 



101 
 

function of the total lumped charging station power, ௩ܲ௘௛
௧ , and the priority of each vehicle 

relative to the other vehicles. 

This control strategy does not contain constraints to ensure that the battery SOC is 

maintained within certain bounds, nor does it ensure that the battery will have enough 

SOC to drive its scheduled cycle. These constraints will be added within the microgrid 

optimization problem formulation. 

5.3 Formulation of co‐design problem 

The co-design problem can be solved by combining the EV optimization problem 

and the microgrid optimization problem into a single problem, known as the All-in-One 

(AiO) approach. Theoretically, solving this problem will give the optimal co-design 

solution. However, the clear separation between these two systems, the vehicle and the 

microgrid, provides the possibility of decomposing the AiO problem into two 

subproblems, which can be solved sequentially to reduce computation time and provide 

for a modular, generalized structure for solving the co-design problem. The resulting 

structure of the decomposed co-design problem may or may not provide the same 

solution as the AiO problem. Under certain conditions, though, the structure can be 

proven to provide the overall optimal solution.  

 

5.3.1 Decomposed co‐design problem formulation 

To decompose the co-design problem, we must first understand how the electric 

vehicle and microgrid subproblems interact. The EV optimization problem does not 

depend on its interaction with the microgrid. However, the microgrid optimization 

problem will depend on the vehicle battery size, vehicle energy use per mile (which will 

vary how much energy the microgrid should supply to the vehicle), and the vehicle plug-

in schedule. This is referred to as a co-design problem with unidirectional coupling 

[Fathy et al. 2001, Peters et al. 2009]. Therefore, it could be possible to solve the EV 

optimization problem first and then solve the microgrid optimization problem in an 

iterative, sequential optimization loop. 
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The vehicle plug-in schedule is an exterior parametric input to the system and is 

independent from either the vehicle design or the microgrid design; it is, rather, part of 

the “environment” where the system exists. (An argument could be made that vehicles 

designed with very small or large battery packs may change their plug-in schedules, but 

that will be ignored here.) Thus, we can say that the microgrid design will depend on the 

vehicle design through the battery size and energy use per kilometer. The new problem 

structure is shown graphically in Fig. 5.7. 

 

 
Figure 5.7 – Microgrid and vehicle co-design problem structure 

 

In this structure, the microgrid design could select the number of electric vehicles 

but would not be able to directly affect the design of the vehicles, e.g., the size of the 

batteries. Thus, the microgrid design may be sub-optimal in that it can only increase the 
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storage capacity of the microgrid by discretely selecting additional vehicles, which may 

be more expensive than simply adding additional battery capacity. For example, if the 

optimal microgrid design would prefer 150 kWh of storage, and the vehicles have 100 

kWh packs, the design is limited to selecting one or two vehicles, neither of which is 

optimal for the microgrid. 

One possible solution to this problem is to generate optimal vehicle designs over a 

range of battery pack sizes, and this information can be used by the microgrid problem to 

choose the battery pack size as well as the number of vehicles, which should result in a 

better design. These results were generated in Section 5.1.2.4 as a linear model of EV 

range as a function of battery size. 

 
5.3.2 Modeling connected electric vehicles 

Using the microgrid topology described in Chapter 3, the EVs are assumed to all 

plug in at a single charging station in Hub 2 (as shown in Fig. 5.8) and they follow a 

fixed plug-in/driving schedule. The lead-acid storage batteries previously in Hub 1 have 

been removed. 

 
Figure 5.8 – Microgrid topology with vehicle charging station 

 

This schedule was initially randomly-generated but then held fixed to allow for 

direct comparison between different system designs.  Each vehicle was assigned a driving 
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“cycle” according to the probabilities in Table 5.4. When driving, the vehicles were 

assigned a random driving distance in the ranges specified in the table. The probabilities 

varied diurnally, where the vehicles were more likely to be driving from 5am to 9pm than 

during the overnight hours. Lacking actual driving behavior data for military vehicles, 

these probabilities and distances were set to roughly approximate the expected use of 

vehicles during a given day. The overall probability of any vehicle being parked during 

any hour was ~75%. 

 

Table 5.4 – Driving schedule and distance probabilities 

Cycle Probability 
(5am – 9pm) 

Probability 
(9pm – 5am) 

Driving Distance 
Range (km) 

Parked/plugged-in 60% 90% 0 
Driving 1 hour trip 30% 10% 3 – 30 
Driving 2 hour trip 8% 0% 5 – 40 
Driving 3 hour trip 2% 0% 10 - 50 

 

An example day’s plug-in schedule using the probabilities in Table 5.4 is shown 

in Fig. 5.9, where white squares signify a vehicle that is driving (not plugged-in) and a 

filled-in square represents a parked and plugged-in vehicle. This plug-in schedule will 

vary for different days. 

 

 

Figure 5.9 – Example vehicle plug-in schedule for one day 
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When the vehicles are attached to the microgrid, the optimal dispatch problem is 

free to decide when to charge and discharge the vehicles, as long as the vehicles can 

maintain enough charge to complete their driving requirements. This can roughly 

approximate a smart-charging scheme where the vehicle operators can input future 

driving information to the charge controller. However, in order to allow for some 

unexpected vehicle use, the vehicle state-of-charge was constrained to always allow for 

enough charge to drive 15km at any time. Thus, the minimum vehicle battery SOC is set 

as a function of the EV’s energy use per kilometer, which can vary depending on the 

vehicle design.  

A total of eight vehicles are assumed to be assigned to the military base, and any 

vehicles that are not chosen to be EVs are assumed to have typical internal combustion 

engines. It is necessary to account for this fuel use in the design problem, otherwise the 

optimization problem will favor IC engine vehicles over EVs. The U.S. Army 

specifications for a HMMWV list the highway fuel economy at 14 miles per gallon of 

diesel fuel. Assuming a mixture of driving, the overall fuel economy of the diesel-

powered LTV was set at 12 mpg, which is equivalent to a fuel consumption of 19.6 

liters/100km. 

5.4 Case Study: Co‐design of a military microgrid with attached EVs and 

uncertain system parameters 

The co-design formulation was tested on a similar system to the one presented in 

Chapter 4. The military microgrid specifications remain the same, including the power 

load variability and desired reliability. However, instead of stationary lead-acid storage 

batteries the design includes the number of electrified military LTVs as well as the size of 

their Li-ion battery packs. The objective remains the same: minimizing combined capital 

costs and operating costs, but as mentioned previously the operating costs now include 

the charging of the electric LTVs and the fuel use of the diesel-powered LTVs. Note: 

lacking cost data converting from a diesel powertrain to an electric powertrain, it is 

assumed that the only additional cost for an electric LTV is the cost of the battery pack. 
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5.4.1  Description of case study 

For this case study, capital lifetimes were reduced to reflect expected reduced 

lifetimes on a military base, as listed in Table 5.5. 

 

Table 5.5 – Updated capital lifetimes for a military base 

 
Diesel 

Generator 
PV Array 

Li-ion 
Battery 

Lifetime (yr) 8 10 5 

 

The base is equipped with eight vehicles, though the optimization can choose how 

many of them are electrified. The design is optimized to meet a reliability of 90% with a 

power load variability of σL = 0.2µL.  The fuel price was set at a medium level of 

$8/gallon ($2.11/liter). Three levels of EV range constraint were chosen as a parametric 

study: 80, 100, and 120 km. To reduce solution time, the time horizon was reduced from 

18 hours to 12 hours and the time step between sequential optimal dispatch problems was 

increased from 4 hours to 6 hours. 

The formulation of the MG+EV co-design problem allows for ease of selecting a 

different type of vehicle, with a modular change in the model. Therefore, a second, larger 

vehicle was simulated to show the effect of different vehicles on the design problem. The 

only additional information needed for the second EV is the vehicle range as a function 

of battery size and the electrical energy use per kilometer. Likewise, the fuel 

consumption for the conventional vehicle needs to be updated as well.  

The vehicle was assumed to be a larger LTV, with 1.5 times the mass and size of 

the original vehicle. For the purposes of this study, the larger vehicle will be referred to 

as the Medium Tactical Vehicle, or MTV. The simulated vehicle range as a function of 

battery size is shown in Figure 5.10 and the vehicle electricity use per mile is 733 W-

h/km. The fuel consumption for the conventional version of this vehicle was scaled with 

the same proportion as the electricity consumption, resulting in a fuel consumption of 

26.5 liters per 100 km. 
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Figure 5.10 – Medium Tactical Vehicle range versus battery capacity 

 

5.4.2  Optimization problem statement 

The co-design problem structure with uncertainty is similar to the one presented 

in Chapter 3, with the modifications for uncertainty as described in Chapter 4 and 

additional changes to include the vehicles and eliminate the stationary battery storage. 

The two-stage SORA method requires different optimization problem statements for the 

deterministic optimization and reliability analysis (refer to Fig. 5.7 for the problem 

structure). These will be described below. 

The deterministic optimal design problem statement is a modification of the one 

presented in Chapter 3 in Eqs. (3.6). The changes include replacing the stationary battery 

capacity variable with the vehicle battery capacity variable, ܧത௩; adding an integer variable 

for the number of vehicles, ௩ܰ; and changing the lower bound of the vehicle battery size 

to be a function of the required vehicle range, ݎ௩. Also, the constraint to ensure feasibility 

of the optimal dispatch problem, Eq. (5.5g), is now a function of the operating reserve. 
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௖

൅ ෍ ௙௨௘௟ܧ௙௨௘௟݌
௧

்ಷ೔೙ೌ೗

௧ୀଵ

 
Annualized capital cost + annual 
fuel cost 

(5.5a) 

    
w.r.t.: ݔଵ ൌ തܲ௚௘௡ଵ Generator 1 rated power (kW) (5.5b) 

ଶݔ  ൌ തܲ௚௘௡ଶ Generator 2 rated power (kW) (5.5c) 

ଷݔ  ൌ തܲ௉௏ PV array rated power (kW) (5.5d) 
ସݔ  ൌ ௩ܰ Number of electrified vehicles (5.5e) 
ହݔ  ൌ  ത௩ Vehicle battery capacity (kWh) (5.5f)ܧ
    
subject  to: 
,൫࢞ࢍ  ෝ࢛ሺࢀ, ࢞ሻ൯ ൑ 0 Feasibility of optimal dispatch (5.5g) 

 35  ൑ തܲ௚௘௡ଵ ൑  190  (5.5h) 

 30  ൑ തܲ௚௘௡ଶ ൑  160  (5.5i) 

 50  ൑ തܲ௉௏     ൑  150  (5.5j) 
 2 ൑ ௩ܰ  ൑  8  (5.5k) 
 ݂ሺݎ௩ሻ  ൑ ത௩ܧ  ൑  200  (5.5l) 

 

The optimal dispatch problem statement for the deterministic optimization is a 

modified version of the one presented in Eqs. (3.7). In this formulation, the changes 

included the addition of the operating reserve constraints (as explained in Chapter 4), new 

limits on vehicle battery SOC, where the lower limit is set to allow for 15km of range at 

all times, and the fuel cost in the objective is now also a function of the fuel energy 

consumed by the non-electrified vehicles, EvIC. By including constraints on the battery 

minimum and maximum SOC, the optimization problem ensures that the vehicles have 

enough energy to perform their various driving cycles. For example, if a vehicle returned 

from a trip with an SOC below the requirement, the dispatch strategy would be infeasible 

and a new strategy would be sought.  

 

݉݅݊
࢛ሺݐሻ ෍෍݌௙௨௘௟ሾ݂ሺ

௜௧

௜ݑ
௧, തܲ௜ሻ ൅ ௩ூ஼ܧ

௧ ሿ fuel cost for time horizon  (5.6a) 

   
w.r.t.:   

௜ݑ
௧ dispatch of generator i at time t, ݐ׊ ,݅׊ (5.6b) 

௩௧ݑ  dispatch of connected vehicles at time t, ݐ׊ (5.6c) 
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subject to:   

݂ሺݎ௩ሻ  ൑ ௩,௞ܧ
௧ ൑ ,݇׊ ,௩ battery energy capacity limitsܧ0.95  (5.6d) ݐ׊

௩,௞ܧ
௧ାଵ ൌ ௩,௞ܧ

௧  + ݂ሺݑ௩௧ ሻ battery energy balance, ݇׊,  (5.6e) ݐ׊

෍ ௡ܲ௘௧,௛

௛

൑ 0 network power balance, ݐ׊ (5.6f) 

തܲ௚௘௡൅  ௉ܲ௏
௧ ൅ തܲ

௩௘௛
௧ െ ௟ܲ௦

௧ െ ௟ܲௗ
௧

൒ ௥ܲ௘௦௘௥௩௘ 
operating reserve requirement, ݐ׊ (5.6g) 

0 ൑ ௜ݑ
௧ ൑ 1  generator power limits, ݅׊,  (5.6h) ݐ׊

െ0.4ܧ௩ ൑ ௩௧ݑ ൑  (5.6i) ݐ׊ ,௩ battery power limitsܧ0.4

  
ݐ א ሼ1, . . ,12ሽ;  ݄ א ሼ1, 2, 3, 4ሽ; ݅ א ሼ1,2ሽ; ݇ א ሼ1, . . , ௩ܰሽ   

 
 
Finally, the optimal dispatch problem statement for the reliability analysis portion 

of the SORA method is presented in Eqs. (5.7). The changes between this problem 

statement and the deterministic optimization problem statement are the elimination of the 

operating reserve constraints, Eq. (5.6g), and formulating the network power balance, Eq. 

(5.7f) as a probabilistic constraint. 

 

݉݅݊
࢛ሺݐሻ ෍෍݌௙௨௘௟ሾ݂ሺ

௜௧

௜ݑ
௧, തܲ௜ሻ ൅ ௩ூ஼ܧ

௧ ሿ fuel cost for time horizon  (5.7a) 

   
w.r.t.:   

௜ݑ
௧ dispatch of generator i at time t, ݐ׊ ,݅׊ (5.7b) 

௩௧ݑ  dispatch of connected vehicles at time t, ݐ׊ (5.7c) 
   
subject to:   

݂ሺݎ௩ሻ  ൑ ௩,௞ܧ
௧ ൑ ,݇׊ ,௩ battery energy capacity limitsܧ0.95  (5.7d) ݐ׊

௩,௞ܧ
௧ାଵ ൌ ௩,௞ܧ

௧  + ݂ሺݑ௩௧ ሻ battery energy balance, ݇׊,  (5.7e) ݐ׊

ݎܲ ൥෍ ௡ܲ௘௧,௛
௧

௛

൐ 0൩ ൑ ௙ܲ network power balance, ݐ׊ (5.7f) 

0 ൑ ௜ݑ
௧ ൑ 1  generator power limits, ݅׊,  (5.7g) ݐ׊

െ0.4ܧ௩ ൑ ௩௧ݑ ൑  (5.7h) ݐ׊ ,௩ battery power limitsܧ0.4

 
ݐ א ሼ1, . . ,12ሽ;  ݄ א ሼ1, 2, 3, 4ሽ; ݅ א ሼ1,2ሽ; ݇ א ሼ1, . . , ௩ܰሽ  
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5.4.3  Results: two sizes of electric vehicle 

The results from optimization of the microgrid with electric LTVs are shown in 

Table 5.6 and the results using the electric MTVs are shown in Table 5.7. The total 

optimization time for each case ranged from 28 to 76 hours. The fuel price for these 

optimization runs is set at $2.1 per liter ($8 per gallon) and the power load distribution 

has a standard deviation of 20% of the mean (σL = 0.2µL). 

 

Table 5.6 – Co-design optimization results using LTVs 

Range Constraint (km) 80 100 120 
SORA iterations 3 2 1 
Operating Reserve (kW) 79.3 26.3 0 
Reliability 92% 98% 92% 
Total Cost ($1k) 369.4 387.0 404.9 
Operating Cost ($1k) 213.3 207.4 202.5 
Capital Cost ($1k) 155.1 179.6 202.4 
Generator 1 (kW) 80 160 69 
Generator 2 (kW) 84 47 83 
PV Array (kW) 98 100 107 
Number of Vehicles 8 8 8 
Veh. Battery Capacity (kWh) 68 86 101 

 
 

Table 5.7 – Co-design optimization results using MTVs 
 

 

Range Constraint (km) 80 100 120 
SORA iterations 2 1 1 
Operating Reserve (kW) 20 0 0 
Reliability 100% 99% 100% 
Total Cost ($1k) 378.3 401.0 423.8 
Operating Cost ($1k) 191.7 181.1 178.4 
Capital Cost ($1k) 186.6 219.9 245.4 
Generator 1 (kW) 145 99 167 
Generator 2 (kW) 81 70 91 
PV Array (kW) 83 98 99 
Number of Vehicles 8 8 8 
Veh. Battery Capacity (kWh) 103 123 144 
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Looking at the LTV case first, the optimal design generally chooses larger 

generators to increase system reliability because generators are the least-expensive way 

to increase operating reserve. However, when larger vehicle batteries are required to meet 

the minimum vehicle range constraint, these batteries increase the reliability of the 

system. Therefore, the designs with the 120 km vehicle range constraint meet the desired 

reliability with smaller generators and an operating reserve of zero. The resulting capital 

cost is 13% higher than the 100km range case, due mainly to the Li-ion batteries, but the 

operating cost is 3% lower due to the large PV array and downsized generators. 

The optimal design of the vehicle battery pack for all cases is reduced to its 

minimum value in order to meet the vehicle range constraint. However, the optimal 

design always features the maximum number of electrified vehicles in order to reduce the 

cost of fuel, mainly during driving relative to the diesel-powered vehicles, which 

outweighs the additional cost of the Li-ion battery packs. These results are highly 

dependent on the fuel price, as shown previously in Chapter 3. For actual use in design a 

parametric study should be performed over the range of expected fuel prices. 

When moving from the LTV to the MTV, we see similar trends as the LTV case. 

The major difference is that the MTVs always require larger battery packs due to the 

increased weight of the vehicles, and microgrid system reliability is improved 

accordingly. In fact, only the 80 km range case required more than one SORA iteration to 

meet the desired reliability. The larger battery packs also resulted in 10 – 12% lower 

operating costs for the MTV-supported microgrids as compared to the LTV-supported 

microgrids. However, the capital costs were ~20% greater for the MTV-supported 

microgrids because of the larger battery requirements. Relative to the LTV+microgrid 

system designs, the MTV cases featured smaller PV arrays. This is due to the increased 

capital cost required for the larger battery packs, which is offset during the optimization 

by specifying a smaller PV array. 

The designs of the vehicles are relatively unchanged compared to when they were 

designed independently of the microgrid. In both cases, the vehicle battery pack size is 

minimized to meet the required range (refer to Section 5.1 for the discussion on EV 

optimization). This further strengthens the assumption that vehicles can be initially 

designed for different range requirements, and the microgrid design problem can then 
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choose the vehicle(s) which meet its requirements. A further extension of this would be 

to allow the microgrid design to choose different vehicles with various battery pack sizes 

(e.g., a mixture of MTVs and LTVs). The heterogeneity allowed by this approach could 

meet system reliability at reduced cost relative to the cases presented here.   

 

5.4.4 Results: effects of fuel price and battery cost 

The results from the previous study showed that the optimal vehicle designs 

generated using the co-design approach are the same designs as would be generated if the 

vehicles were separately optimized from the microgrid. In order to determine whether the 

vehicle design during co-design would ever deviate from the separately-optimized 

vehicle design, a parametric study was performed using two parameters that were 

expected to cause significant change in the optimal design. The two parameters chosen 

were fuel price and the unit cost of the lithium-ion batteries. Three levels were chosen for 

fuel price: $1.32, $2.64, and $3.96 per liter ($5, $10, and $15 per gallon). Two levels 

were chosen for Li-ion battery cost: $700 and $350 per kWh. The optimizations were 

performed using the LTV with a required 80km minimum driving range. Power load 

uncertainty was assumed with the standard deviation of the distribution set at 20% of the 

mean (σL = 0.2µL). The results from the optimization are shown in Table 5.8 for the 

battery cost of $350 per kWh and in Table 5.9 for the battery cost of $700 per kWh. 

 

Table 5.8 – Co-design of LTVs with varying fuel cost and battery cost of $350/kWh 

Fuel Price ($/liter) 1.32 2.64 3.96 
Operating Reserve (kW) 65 65 6 
Reliability 94% 100% 97% 
Total Cost ($1k) 243.3 388.0 499.6 
Operating Cost ($1k) 157.9 228.0 336.0 
Capital Cost ($1k) 85.5 160.0 163.7 
Generator 1 (kW) 115 86 118 
Generator 2 (kW) 66 125 47 
PV Array (kW) 52 144 144 
Number of Vehicles 8 8 8 
Veh. Battery Capacity (kWh) 68.9 72.4 82.7 
Resulting vehicle range (km) 81.9 86.1 98.3 
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Table 5.9 – Co-design of LTVs with varying fuel cost and battery cost of $700/kWh 

Fuel Price ($/liter) 1.32 2.64 3.96 
Operating Reserve (kW) 54 0 0 
Reliability 96% 89% 91% 
Total Cost ($1k) 280.6 421.1 539.7 
Operating Cost ($1k) 158.9 244.6 340.7 
Capital Cost ($1k) 121.8 176.5 199.0 
Generator 1 (kW) 107 92 75 
Generator 2 (kW) 80 67 81 
PV Array (kW) 50 122 144 
Number of Vehicles 8 8 8 
Veh. Battery Capacity (kWh) 67.8 67.8 72.4 
Resulting vehicle range (km) 80.6 80.7 86.1 

 

Three of the six cases run resulted in a co-designed vehicle battery that is the 

same as for the separately-designed vehicle. However, as fuel price increases the vehicle 

battery chosen by the co-design approach increases in capacity. This occurs for both 

levels of battery price, but the effect happens at a lower fuel price when the battery price 

is low. For the $700/kWh battery scenario, the breakpoint where the co-designed EV 

differs from the separately-designed EV happens between fuel prices of $2.64 and $3.96 

per liter ($10 and $15 per gallon). For the $350/kWh battery scenario, the breakpoint 

happens between fuel prices of $1.32 and $2.64 per liter. These breakpoints clearly show 

when co-design can generate a better design than when separately designing the vehicle 

and microgrid systems. 

Comparing across battery prices, we see that along with the larger batteries for the 

$350/kWh case, the operating cost (which is a proxy for fuel use) is lower, even though 

the total generator power tends to be higher. Thus, we can see the effect of increased 

energy storage in the vehicles on system fuel use and the sensitivity of the optimal 

designs to capital equipment costs. 

To analyze the effects of vehicles on the microgrid operation in detail, we can 

examine the hourly power balance for a single design over time. The design chosen for 

this analysis was the optimal co-design generated using $350/kWh batteries and 

$3.96/liter fuel from Table 5.8. For this design, the rated powers of Generator 1 and 2 are 

118 kW and 47 kW, respectively; the rated power of the PV array is 144 kW; and there 
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are 8 electric vehicles, each with a 82.7 kWh battery pack. This design was chosen 

because it represents a design where the co-design solution chooses a larger vehicle 

battery than if the vehicle was designed separately. 

The power balance of the system is shown for hours 1 – 30 in Fig. 5.11 and for 

hours 30 – 60 in Fig. 5.12. These figures show the output power from each generator and 

the power to/from the vehicle charging station, where negative power means that vehicles 

are charging (absorbing power). The heavy black line shows the power load minus the 

power from the PV array. Thus, the power goal of the system reduces to meeting this 

remaining power load. If the output power from the generators is greater than the ‘Load 

less PV’ line, the generators are also supplying power to the vehicle charging station (as 

shown in hours 5 and 6 in Fig. 5.11). 

 

Figure 5.11 – Detailed power balance over time: hours 1 – 30 
 

Looking first at the first day in Fig. 5.11 we can see that the power load is initially 

low in the early morning hours. In hour 1, the smaller generator (Gen2) is sufficient to 

supply the load and is operating because it is more efficient than Gen1. From hours 2 – 4, 

both generators are shut down and the entire load is supplied by the plugged-in vehicles. 

At 5am, the SOC of the plugged-in vehicles has been depleted, so they begin charging at 

a high rate and both generators must be run to supply the load and the vehicles 
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simultaneously. After this charging period, from hours 7 – 9 the generators are again shut 

down and the EVs are used to supply the load. From hours 12 – 20 there is a changing 

mix of generator use, vehicle charging and discharging to meet the peak power of the 

afternoon and early evening. The mix changes hourly depending on what is the most 

efficient option. During the overnight period from hours 20 – 30, the smaller generator 

(Gen2) is mainly used to supply the load, as the vehicle battery capacity is not large 

enough to supply the entire load for more than a few hours. 

Looking at the second day in Fig. 5.12, we can see a different usage of the vehicle 

batteries. From hours 29 – 37 the power load is greater than can be supplied by Generator 

2; however, rather than using Generator 1 to inefficiently supply the remaining power, 

the vehicles are used to buffer the power fluctuations and supply the rest of the load. By 

doing this, the larger, less-efficient Generator 1 can remain off until hour 38, which 

corresponds to 2:00pm. 

 

Figure 5.12 – Detailed power balance over time: hours 30 – 60 
 

5.4.5 Results: co‐design vs. separated design 

The results from the parametric study of fuel price and battery cost showed that 

under certain conditions the vehicle design resulting from co-design can have a larger 
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battery than is required to meet the range constraint. If the vehicle were separately 

designed from the microgrid, the battery pack would be optimized to be the minimum 

size necessary to meet the range constraint. This shows the effect of co-design but does 

not quantify the differences between co-design and separate design of the electric 

vehicles and microgrid. 

In order to quantify this difference, one co-design result is compared to the result 

for separately-designed systems in Table 5.10. For the separately-designed systems, the 

vehicle was first optimized with a range constraint of 80 km. This vehicle design was 

then used in the microgrid optimization, where the microgrid design could choose the 

number of vehicles but could not change any other aspects of the vehicle design (the 

vehicle battery pack size was fixed). For this comparison, fuel price was set at $5.28 per 

liter, the battery price was set at $350 per kWh, the minimum vehicle range was 80 km, 

and the power load distribution had a standard deviation of 20% of the mean (σL = 

0.2µL). The third column of the table shows the percent change when moving from the 

separately-designed systems to the co-designed systems. 

 

Table 5.10 – Difference between co-design and separated design 

  
Separated 

design Co-design % change 

Operating Reserve (kW) 80.0 25.9 -68% 
Reliability 99% 90% 
Total cost (deterministic) ($1k) 615.0 609.0 -1% 
Mean total cost (LHS) ($1k) 782.4 630.1 -19% 
Generator 1 (kW) 130 94 -28% 
Generator 2 (kW) 66 49 -27% 
PV Array (kW) 145 148 2% 
Number of Vehicles 8 8 0% 
Veh. Battery Capacity (kWh) 67 86 28% 
Resulting vehicle range (km) 80 102 27% 

 

The co-designed microgrid features generators that are 27-28% smaller than the 

separately-designed microgrid, which is made possible because the co-designed vehicles 

have a 28% larger battery pack than the separately-designed vehicles. As shown in 

previous results, the larger battery packs allow for improved system reliability with a 
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lower operating reserve; thus, the generators can be down-sized, which improves the fuel 

efficiency of the system. 

While the total annualized cost of the co-designed system (as evaluated during the 

deterministic optimization using the mean power load) is only 1% lower than the 

separately-designed system, the mean total cost (as generated from the LH samples 

during the reliability analysis) is 19% lower for the co-designed system. That is, the co-

designed system is significantly more robust with respect to operating costs than the 

separately-designed systems. The larger battery capacity, while increasing system 

reliability, also reduces the operating variability given uncertainty in the power load. This 

clearly shows the value of co-design for this set of input parameters. However, when the 

input parameters generate similar systems using co-design and separated design, this 

advantage will not be seen. 

 

5.4.6 Results: effects of plug‐in schedule variation 

The microgrid and EV designs are generated using a fixed vehicle plug-in 

schedule. In reality, the vehicle plug-in schedule and driving distances are stochastic 

parameters. We wish to understand the consequences of using fixed plug-in schedules 

during the co-design process on the microgrid reliability and operating cost. Two 

scenarios will be studied: (1) different schedules with the same probabilities listed in 

Table 5.4, and (2) schedules generated using lower plug-in probabilities. 

For Scenario (1), three new plug-in and driving schedules were randomly 

generated using the probabilities from Table 5.4. The co-design solution with fuel cost of 

$2.64/liter and battery cost of $700/kWh (Table 5.8) was simulated using these new 

driving schedules. Reliability analysis was performed and the resulting reliabilities and 

mean operating costs for all of the  runs are summarized in Table 5.11. The results show 

that the system is robust to changes in the plug-in schedule and driving distances, 

assuming the same probabilities that were used to design the system. 
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Table 5.11 – Co-design of LTVs with different plug-in schedules  
using the same plug-in probabilities 

Cycle Reliability
Mean Operating 

Cost ($1k) 
Original 89% 424.7 
Cycle-1 98% 421.1 
Cycle-2 94% 427.6 
Cycle-3 91% 419.8 

 

For Scenario (2), more aggressive probabilities for driving distance were 

assumed, as listed in Table 5.12, and these were used to generate a new schedule. One 

day of this new schedule is shown in Fig. 5.13, where there is noticeably more driving 

time than the original schedule shown in Fig. 5.9. The results from this study are shown 

in Table 5.13. 

 

Table 5.12 – Aggressive driving schedule and distance probabilities 

Cycle Probability 
(5am – 9pm) 

Probability 
(9pm – 5am) 

Driving Distance 
Range (km) 

Parked/plugged-in 45% 75% 0 
Driving 1 hour trip 40% 20% 3 – 30 
Driving 2 hour trip 10% 5% 5 – 40 
Driving 3 hour trip 5% 0% 10 - 50 

 

 

 

Figure 5.13 – Example vehicle plug-in schedule with higher driving probabilities 
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The results show that even with a more aggressive driving schedule, with lower 

probability of plug-in and longer driving distances, the co-designed system still meets the 

reliability requirements and shows minimal increase in mean operating costs. However, 

this study does not address whether there is a correlation between vehicles for when they 

are plugged-in or driving. That is, it may happen that multiple vehicles will be used for a 

mission simultaneously, depriving the microgrid of their presence. This is not accounted 

for because the driving schedules are randomly generated. 

 

Table 5.13 – Co-design of LTVs with higher driving probabilities 

Cycle Reliability
Mean Operating 

Cost ($1k) 
Original 89% 424.7 

Aggressive 92% 442.1 

 

 

5.4.7 Summary and conclusions 

A microgrid and electric vehicle co-design strategy was developed and 

implemented for the case of a military microgrid. Analysis of the design problem showed 

that the electric vehicle optimization could be separated from and solved prior to the 

microgrid optimization problem. This allowed for significant computation time reduction 

relative to the all-in-one problem. This also allowed for modular study of the influence of 

two different vehicles on the microgrid design. However, this problem decomposition 

may not be applicable when considering plug-in hybrid electric vehicles (PHEVs). The 

optimization of a PHEV requires simultaneous optimization of its energy management 

strategy, which will interact with the plug-in frequency, battery state-of-charge, and other 

factors. This is an area for future research. 

The results show that the method performs well for co-design optimization and 

can generate designs and show design tradeoffs within a reasonable period of time. For 

example, the optimization shows that requiring increased range from the vehicles will 

increase overall cost, but with the benefit of improving system reliability and reducing 

operating costs and fuel use. Also, for these vehicles the benefits of electrification in 

reduced fuel cost outweighs the significant cost of the battery packs. This result is highly-
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dependent on the energy consumption of the electrified and conventional vehicles, but it 

does allow for high system reliability without the addition of a stationary energy storage 

system. 

One of the outcomes from these studies, and the prior studies in other chapters, is 

that the designs are highly-dependent on the input parameters, especially pricing 

parameters. The designer must be careful to perform appropriate parametric studies to 

understand the sensitivity of the resulting designs to parametric uncertainty. Inclusion of 

parametric uncertainty is possible, as shown with the uncertain power load used here. 

However, inclusion of multiple uncertain parameters within the design process can result 

in an unwieldy and difficult optimization problem with too many random samples 

required to generate meaningful reliability results.  

A parametric study of fuel price and battery cost shows that for low fuel prices 

and high battery cost the co-design solution is the same as the solution if the two systems, 

electric vehicles and microgrid, were separately designed. However, as the fuel price 

increases and the battery price is reduced, a breakpoint is reached where the co-design 

solution diverges from the separately-designed solution. For these cases, the co-design 

solution features larger vehicle battery packs, which increases system reliability and 

reduces operating cost relative to the separately-designed solution. This clearly shows the 

benefits of co-design for certain scenarios. 

While the combined system was designed assuming a fixed plug-in schedule and 

driving distances, a study shows that the system is robust to modest changes in that 

schedule. When a single design is simulated with other schedules with increased driving 

and reduced time spent plugged-in, the system reliability was only slightly reduced and 

the operating cost remained similar to the baseline case. 
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Chapter 6:   Conclusions and future work 

As mentioned in the beginning of this dissertation, the vehicular transportation 

and electric power systems are converging. These massive systems, long separated and 

developed in isolation from each other, are beginning to interact directly. As vehicle 

electrification increases, this interaction will become an area that needs to be addressed in 

the design of power systems and vehicles. The overall goal of this dissertation is to add a 

few grains of understanding to this vehicle/grid interaction, provide some guidance for 

designers of both systems, and generate questions for future research in this direction. 

6.1 Summary 

The dissertation first addressed the problem of optimal dispatching of multiple 

power generation and energy storage elements, focusing on long time scale (hourly) 

economic dispatch to minimize operating costs over a single year (Chapter 2). Multiple 

problem formulations were identified depending on the available power resources and 

likewise many problem simplifications were identified to increase the efficiency of 

solving the optimal dispatch problem. An problem formulation with a finite, moving time 

horizon was proposed as the best balance of efficiency and accuracy for solving the 

nonlinear optimal dispatch problem. Short time scale transients and power quality were 

not evaluated in this analysis, though they may affect the optimal dispatch results, e.g., by 

placing ramping limits on generators or switching limits on battery storage. The 

combination of the long time scale economic dispatch problem and short time scale 

power quality problem is a subject for future research. 

Next, Chapter 3 showed how this optimal dispatch strategy could be implemented 

into an optimal microgrid design framework. A nested optimization problem was 

formulated and solved for a deterministic example problem. The case studied was a 

small, islanded military microgrid with diesel generators, a PV array, and a storage 
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battery. The optimal design with nested optimal dispatch was shown to work well for this 

example. 

In Chapter 4, uncertain parametric inputs were added to the optimal microgrid 

design problem. The uncertain distributions of solar irradiance and power load were 

modeled; an extreme value distribution was used for solar irradiance and a normal 

distribution used for the power load. Two methods were compared for performing design 

under uncertainty: (1) a two-loop method, where Monte Carlo sampling was performed 

for each design studied during the optimization, and (2) a sequential method, SORA, 

developed by Du and Chen, where the reliability of the microgrid design is only 

evaluated at the end of each optimization. The SORA method was shown to generate 

similar designs as the two-loop MCS method, but with up to a 98% improvement in 

efficiency. 

Finally, Chapter 5 added electric vehicles to the microgrid in lieu of storage 

batteries. A co-design problem was formulated and it was shown that the electric vehicle 

and microgrid optimization problems could be decomposed and solved sequentially. This 

allowed for computation reduction and modular study of the influence of two different 

vehicles on the microgrid design. The co-design problem was useful to show various 

synergies and tradeoffs between the microgrid and electric vehicle designs. For example, 

the results showed that the presence of electric vehicles can significantly improve the 

reliability of a microgrid while reducing operating costs and fuel use. The co-design 

solution was shown to be superior to separately-designed systems for some combinations 

of input parameters; in this case, fuel price and battery price. This shows how the results 

are dependent on the costs of fuel and capital equipment, as well as the expected lifetimes 

of the equipment. This decomposed approach may not be possible when considering 

plug-in hybrid electric vehicles due to their more complicated energy management 

strategies. 

6.2 Contributions 

This dissertation has made three main contributions: (1) developing a 

categorization of different types of optimal microgrid dispatch problems, (2) a method to 
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optimally design a microgrid with uncertain parametric inputs, and (3) a method for 

optimal co-design of electric vehicles and a microgrid including parametric uncertainty. 

These contributions are described in detail below. 

 

Contribution (1) 

The first contribution of this work is developing a categorization of different 

optimal dispatch problems for microgrids and an explanation of the formulation needed 

to solve each. In prior work, much effort was given on methods to solve optimal dispatch 

problems but little emphasis was placed on the different types of formulations. The work 

presented in this dissertation can guide designers, controls developers, and others needing 

to solve optimal dispatch problems and help them choose the simplest formulation that 

meets their particular case. 

 

Contribution (2) 

 The second contribution of this work is the formulation and solution of an optimal 

microgrid design problem while accounting for parametric uncertainty. Prior optimal 

microgrid design research only considered uncertainty by performing sensitivity analysis 

or other parametric studies, e.g., using best-case and worst-case scenarios for the 

uncertain parameters. The approach presented here takes into account actual distributions 

of uncertain parameters using the examples of solar irradiance and power load. The 

optimal microgrid dispatch and design formulations were combined with the SORA 

method by Du and Chen to efficiently solve for the optimal microgrid design under 

parametric uncertainty. Using this method reduced the computation time by up to 98% 

relative to using Monte Carlo sampling on each design evaluated. This implementation 

can hopefully provide a new direction for microgrid design research, where uncertainty in 

the design process is handled in a formal way that can provide actual microgrid reliability 

predictions. 

 

Contribution (3) 

 The final and most significant contribution is the development of an approach for 

co-design of microgrids and electric vehicles. It was shown that the co-design problem 
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can be decomposed, allowing for faster computation and efficient analysis of the 

interaction of different vehicles with the microgrid. In some cases, the co-design 

approach can generate improved system designs as compared to designing the vehicles 

and microgrid separately. This approach can lead to studies of vehicle fleet mixing and 

how a range of vehicle types and sizes will interact differently with a microgrid. This is 

the most-likely scenario for future V2G applications, where consumers who plug-in will 

not be driving one type of vehicle. Future studies can additionally look at the effects of 

PHEVs versus BEVs, where the vehicle energy management strategy and difference in 

battery sizes will affect the V2G interaction.  

Looking at the military microgrid case in specific, the current bases in combat 

areas do not use electrical networks. Typically, each building has its own generator, 

independent from the other buildings. This is done for practical reasons, as it is easier and 

more robust, but suffers from severe inefficiencies. The integrated design approach in this 

dissertation may not generate “field-ready” designs, but is useful to calculate the designs 

which could be most beneficial for various scenarios. The results from these studies can 

be used to give impetus to changing military practices to include more renewable energy, 

network military bases into microgrids, and implement controllers to maximize system 

efficiency while maintaining reliability. Additionally, the work presented here can be 

used as a framework to study highly-detailed, practical design issues, such as electrical 

dynamics and distributed control systems. This capability has been previously 

demonstrated in the a case study at the University of Michigan’s Automotive Research 

Center [Papalambros et al. 2011]. 

6.3 Assumptions and Limitations 

The modeling and results in this dissertation are performed under the following 

assumptions: 

-  all parametric inputs (e.g., capital equipment lifetimes, costs, and other model 

inputs) are assumed known precisely, unless specifically addressed as stochastic 

parameters using reliability analysis; 
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-  batteries have fixed, linear charging efficiencies and DC/AC inverters have linear 

efficiency losses; 

-  no equipment failure or downtime due to maintenance; 

-  no battery degradation or other additional costs for V2G; 

-  the additional cost of an electric vehicle relative to a conventional vehicle is 

solely due to the battery pack; 

-  vehicle plug-in schedule and driving needs are known and predictable; 

-  the vehicle driving model is simple, where vehicle energy efficiency is constant 

per unit distance (i.e., not a function of the driving cycle); 

- reactive power is not considered. 

 

These assumptions present limitations to this work, which lead to possible extensions and 

future work, as described in the following section. 

6.4 Future work 

This dissertation studied uncertainty in the parametric inputs to the model; 

however, the forward-looking dispatch assumed certainty under its time horizon. Thus, 

the control strategy could perfectly adapt to sudden changes, e.g., a significant drop in 

solar power. This method is useful for design to account for these uncertainties, 

especially with regard to balancing system investment cost and operational cost. It is 

necessary to account for the variation in operation cost in order to know how much to 

invest, and know how to size components such that expected variation will not result in a 

loss-of-load. 

However, the forward-looking dispatch under a time horizon assumes certainty in 

its future predictions, at least under the time horizon. Thus, the control strategy is able to 

perfectly adapt to sudden changes, e.g., a significant drop in solar power.  In reality, any 

future predictions will have error associated with them, and the actual fuel use and 

probability of LoL will depend on the accuracy of these predictions. Thus, it would be 

useful to design microgrids using realistic, feedback controllers for the dispatch problem 

to account for these prediction errors, e.g., model-predictive control or trajectory 



126 
 

methods. Some researchers are studying these controllers for microgrids [Peters et al. 

2011, Arnold et al. 2009], but thus far have not used them for system design as well. This 

is an area for future research. 

While this dissertation considered uncertainty in power load and solar power, it 

assumed the vehicle plug-in and driving schedules were fixed and known. In an actual 

system, these are uncertain parameters which can significantly affect the system design 

and performance. For example, if the microgrid assumes the driving distance to be 

known, it can supply the vehicle with precisely the amount of energy to drive that 

distance, but additional driving may not be possible. Addition of vehicle driving and 

plug-in uncertainty would significantly improve the results from this approach. 

The methods and results in Chapter 5 only consider all-electric vehicles. If plug-in 

hybrid vehicles are used instead, the vehicle optimization problem must also include the 

optimization of the vehicle energy management strategy. This strategy will vary 

depending on the vehicle battery state-of-charge, which is affected by the battery size, 

plug-in schedule and the microgrid’s dispatch strategy for charging and discharging the 

vehicles. Thus, the decomposed approach presented herein may not apply for PHEVs. 

The analysis and discussion of the possible benefits of vehicle-to-grid (V2G) 

power flow does not include the negative aspects of V2G, including the costs of battery 

degradation, additional controls and communication infrastructure, and possible loss of 

utility for the vehicles drivers. Other studies, e.g., [Kempton and Tomić 2005, Momber et 

al. 2010, Peterson et al. 2010b], do include aspects of these costs. The inclusion of these 

costs would generate solutions that are more realistic and give a practical cost/benefit 

analysis of V2G. 

Additionally, the work in this dissertation considered only fixed microgrid 

topologies and fixed numbers and types of microgrid components, except for changing 

the number of vehicles. A more generalized microgrid design problem should consider 

multiple types of renewable power sources, as some may be more economically suitable 

than others for different locations. Likewise, considering different types of energy storage 

and power generation can also benefit certain microgrid designs. The number of similar 

elements should also be used as a variable, as multiple small generators may have better 

efficiency and reliability than one or two larger generators. Lastly, problem topology is 



127 
 

very important when reliability and robustness are goals of the system and when 

electrical dynamics are considered in the microgrid design and dispatch.  

The analysis of reliability in this dissertation is limited to considering loss-of-

load. However, reliability of individual components should also be considered. Using a 

different formulation, the expected system reliability could be calculated using the mean 

time to failure and other equipment specifications. This would result in system designs 

that may have some redundancy in components, but would be more robust to equipment 

failure and downtime due to regularly scheduled maintenance. 

While the nonlinear formulation worked well for the examples presented herein, 

these were necessarily small design problems with only a few vehicles, power supply, 

and energy storage resources. Scaling the problem up to larger systems may result in 

problems that are too large for nonlinear programming algorithms, or simply too large for 

solving within a practical amount of time. For these cases, the lumping of similar 

elements can provide some improvement for scaling up, especially if the system being 

designed has modularity (e.g., a neighborhood where each house has a similar PV array 

and battery storage). However, at some point linearization should be used to allow for 

larger problem size and more efficient solution. If loss of fidelity is a concern, sequential 

linearization or piece-wise linearization can be used to preserve the nonlinear 

characteristics of the system. 

Finally, as mentioned at the beginning of this chapter, the microgrid problems 

solved in this dissertation only considered the long time scale power flow within the 

microgrid and vehicles. This is sufficient for capturing the economics of the dispatch 

problem, but modeling electrical transients and power quality requires simulation on 

short time scales. The design of microgrids while considering both the long time scale 

and short time scale dynamics has begun to be studied at the University of Michigan, but 

is definitely an area for future research. 
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