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Abstract 

 

Clofazimine is a poorly soluble drug that accumulates as solid deposits in the body 

during prolonged oral administration.  At the outset, we hypothesized that clofazimine 

accumulated intracellularly by a passive and spontaneous crystallization, and in various 

levels of experimental set-ups, from a tissue culture to mouse models.  We found that 

clofazimine readily formed amorphous inclusions in complexes with intracellular 

membranes in MDCK cells, while different types of inclusions were found in the tissue 

macrophages of clofazimine-diet fed mice.  Most of the inclusions in vivo appeared as 

vibrant red, birefringent, 10 – 20 µm length crystal-like structures; however, their 

physicochemical and morphological characteristics were inconsistent with those of pure 

clofazimine crystals.  Most remarkably, among the inclusions from macrophages, we 

discovered a new cytoplasmic structure delimited by double membranes with internal 

supramolecular organizations resembling stacks of lipidic lamellae.  Upon prolonged 

dosing, the intact clofazimine was redistributed from adipose tissues to the lymphatic 

organs paralleled by anti-inflammatory responses such as splenomegaly, liver 

microgranulomas, and an expansion of macrophage populations.  In conclusion, instead 

of passive intracellular crystallization hypothesis, I propose that clofazimine accumulates 

in vivo by active sequestration in the immune system. By constructing intracellular 

crystal- and organelle-like “polyhedrosomes”, the macrophages can impact the 

clofazimine’s systemic pharmacokinetics and biodistribution, from micro to macro scale.
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Chapter 1  

Introduction 

 

1.1 Pharmacokinetics of poorly soluble drugs 

The main goal of pharmacokinetics is to study drug absorption, distribution, 

metabolism and excretion.
1
  Such information is useful in identifying the maximum 

therapeutic use of a drug while allowing us to avoid unwanted toxicity.  Therefore, in the 

drug development process, pharmacokinetic study is required to understand the bodily 

response to xenobiotic treatment, and is carried out during clinical trials
2
 that seize about 

70% of the drug development cost estimated from 500 to 900 million dollars.
3, 4

  In order 

to reduce the cost spent on the clinical trials through decreasing the number of test 

subjects or the failure rate, the characteristics of chemical entities in a drug product must 

be predicted and addressed as early as possible.
2
  Due to such strong demand for inquiry, 

government, academia, and the pharmaceutical industry have invested significant 

amounts of effort to develop models with in silico simulation,
4-6

 in vitro
7-12

 and in vivo,
13, 

14
 which are implemented for better and earlier prediction of pharmacokinetic behavior.

2
 

Among pharmacokinetic parameters, drug plasma concentration is one of the most 

prominent indicators that reflects how much of a drug is in the body, since it can 

represent the net level of the drug in the systemic circulation resulting from the interplay 
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among absorption, distribution, metabolism and excretion components.
1
  A decrease in 

the plasma concentration can be described as plasma half-life (t1/2), and it can be linked to 

the two important pharmacokinetic parameters, which are total drug clearance (CL) and 

volume of distribution (Vd).  For example, a certain case of drug clearance results from 

metabolism followed by renal excretion indicating how fast an elimination process for a 

particular drug is carried out in individuals with varying characteristics, such as 

differences in age, gender, or pathophysiology.  The second parameter, the volume of 

distribution, is the volume accounting for the total amount of a drug in the body.  When a 

steady state drug plasma level is achieved, in other words, when equilibrium has reached 

between the plasma and tissue concentrations, the volume of distribution can be used to 

estimate the total amount of drug by multiplying the plasma concentration.  It is 

generalized that the volumes of distribution can be linked to plasma half-life and 

clearance (Vd = CL × t1/2 / 0.693); however, they often result in values with little 

physiological relevance that are much greater than the bodily fluid estimated to be 42L 

for a 70kg male adult.
1
 

In some cases, some drugs have longer half-lives and larger volumes of distribution 

than others owing to lipophilicity.
1
 By becoming partitioned within fatty tissues, as these 

drugs favor deposition over dissolution into the blood stream, they could exert a slower 

rate of elimination and, in return, a longer plasma half-life than the more water-soluble 

drugs.  Not only could lipophilic drugs make the clinician’s control of the elimination 

process more difficult, as fat is a poorly perfused tissue, but it would also require more 

time to reach a desired plasma level, leading to a more complicated administration 

process for the same reason.  On the other hand, since lipophilicity in general is related to 
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drug permeability through biological membranes,
15

 the absorption can be promoted by 

increasing lipophilicity,
16

 suggesting that the balance of drug permeability and 

lipophilicity (often anti-correlated to water solubility) becomes the main determinant of 

pharmacokinetic performance.
15, 17

  

 

1.2 Poorly water soluble drug development and possible adverse effect 

Despite the fact that controlling pharmacokinetic behavior is difficult, recent 

investment in poorly soluble drugs has increased dramatically. In the current industry, 39% 

of the marketed drugs and 90% of the new molecular entities under development are 

poorly soluble compounds,
8
 and these trends have been supported by the technological 

advancement of promoting drug absorption and avoiding metabolism.  By implementing 

the physicochemical advantages of formulation, e.g. supersaturation, a greater amount of 

poorly soluble components could be dissolved and driven through the gut wall into the 

body by a significant concentration gradient.
18

  Also, biotransformation of poorly soluble 

components has become either less effective against drug encapsulation strategies, e.g. 

liposomal delivery,
19

 or actively utilized by a pro-drug strategy,
20

 such that the solubility 

of a parent compound is enhanced by covalent attachment of a cleavable moiety.  

However, these trends cast an unprecedented concern owing to the fact that a large 

amount of poorly water-soluble drug administered into the body could possibly induce 

idiosyncratic side effects. 

Currently, the drug industry is largely focused on enhancing bioavailability as 

explained above, rather than having researchers consider the possible side effects 

associated with tissue partitioning, aggregate formation, precipitation or complex 
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formation of xenobiotics after delivering them into the body.  Often, drug formulators 

rely overly on the belief that the protein binding, which was measured at the early drug 

discovery stage, would prevent in vivo aggregation or solid precipitation, and therefore 

disregard the potential toxicity, since they seldom encounter such cases.  Nevertheless, 

there are a significant number of case reports of in vivo precipitation of drugs or 

metabolites, sometimes crystallizing in either pure form or as salts, leading to problems 

in the body.
21-23

  For example, indinavir crystalluria
21

 or triamterene kidney stone 

formation
24

 are fast-developing symptoms that can cause acute renal failure,
24-27

 whereas 

crystal arthritis or gout
28

 are more like slow acting inflammations resulting from the 

excessive amount of a xenobiotic present in the body over its solubility limit, but one that 

the body can handle.  

 

1.3 Model drug clofazimine 

Past research has shown that the treatment with clofazimine (Lamprene®, Novartis, 

CAS 2030-63-9, Mw: 473,4)
29-31

 results in the red pigmentation of patients due to “drug 

crystals”, which are also reported under search words as “crystals deposition” or “crystal-

storing cells”.
32-35

  At the outset, we hypothesized that clofazimine would accumulate in 

cells by crystallization, a spontaneous, thermodynamic process.  However, other than 

birefringence and needle-like morphology, we found no direct evidence that these 

intracellular structures are pure drug crystals, which are unlikely to crystallize under a 

system as complicated, concentrated, and “dirty” as that of cytoplasm.  Therefore, we 

thought these “crystal-like drug inclusions (CLDIs)” could well be comprised of different 

components and induced by biological factors instead of “clofazimine to clofazimine” 
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crystallization.  CLDIs could be actively formulated within designated locations in the 

body as opposed to being physicochemically driven to crystallize and precipitating out at 

random places.  

The drastic skin pigmentation in Mycobacterium Leprae infected patients is 

thought to be due to the physicochemical characteristics of clofazimine that has a logP of 

7.3 and water insolubility.
36

  The plasma half-life is up to 70 days,
36

 and in some cases, 

clofazimine was reported to stay in the body for a couple of years after discontinuation of 

the drug which was administered orally as 50 – 100 mg tablets per day.
30, 37, 38

  When the 

drug was dosed with fat, there was a marked increase in absorption; meanwhile, when the 

drug was chemically modified to a more water soluble version (B720), the drug 

accumulated and deposited to a lesser extent in the lungs, spleen and liver.
37, 39

  This 

modification advocated the importance of lipophilicity, which affects the drug absorption 

and distribution.
17

  Since clofazimine has high permeability and low solubility 

(Biopharmaceutics Classification System class 2),
7
 at the same time, we could find 

several references for the clofazimine accumulating inside cells,
40, 41

 we sought to further 

test whether a biological factor could either promote or prevent
42

 the drug precipitation. 

Since its first synthesis in 1956 by Barry and coworkers,
29

 a significant number of 

observations have been recorded for clofazimine (B663) and its accumulation, which was 

related to poor solubility.
29, 31

  Levy and Banerjee et al. have reported that 99% of the 

drug was present in an un-dissolved form, indicating significant precipitation had 

occurred within the first week of treatment in mice.
36, 38

  Within this study, the authors 

reported that 50% of the orally administered drug was excreted unchanged in feces after a 

single dose, while less than 1% was excreted in urine.
36

  The metabolism of clofazimine 
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has not been fully elucidated, and although 3 metabolic pathways were reported, the 

biotransformation process remains ineffective, confirmed by metabolite detection in the 

urine of leprosy patients.
31, 43

  Conalty and Jackson have also tested organ pigmentation, 

and they reported that the liver and lungs developed the drug inclusions significantly later 

than the spleen.
44, 45

  In their discussion, the authors speculated that an adverse drug 

reaction could have developed a negative immunological effect, owing to the decrease in 

phagocytic activity of the macrophages with drug inclusions.  Several electron 

microscopy studies have been carried out in both humans and small animals.
40, 46

  The 

results showed crystalloid cavities with polygonal shapes with delimiting membranes in 

the cytoplasm.  These empty spaces were remainders of drug deposits washed away 

during the sample preparation involving a series of extensive alcohol dehydration steps.  

Meanwhile, no one has directly characterized whether clofazimine inclusions are pure 

drug crystals or complexes with other endogenous materials in the body. 

In terms of cellular uptake and response to clofazimine, just as the reticular 

endothelial systems are the immunological outposts in the body that would take care of 

atypical stress, e.g. parasitic invasion,
41

 we hypothesized that cells would have a similar 

subcellular functionality that would respond to the exposure to poorly soluble compounds.  

As clofazimine is a weakly basic drug (pKa = 8.5), it could first accumulate within acidic 

compartments through an ion-trapping mechanism, in which protonation decreases the 

drug molecule’s permeability across the lipid bilayers.
47

  However, as the protonated 

form of the molecule still continues to favor partitioning within the lipid phase 

significantly (logD = 6.59 at pH 5, predicted by MarvinSketch, ChemAxon, Appendix A), 

cells may need to counteract the random partitioning of clofazimine which otherwise 
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would change the biological lipid membranes’ fluidity and compromise their function.  

So far, no transporter mechanism has been shown to efflux the clofazimine out of cells, 

and the drug molecules have seemed to accumulate in subcellular compartments.  

A previous study from our group has reported that the lipophilic compound 

chloroquine (logP = 4.63) did not reach a steady state concentration during subcellular 

drug accumulation, and the concentration continued to increase.
48

  Such an un-saturable 

phenomenon was partly caused by drug induced phospholipidosis,
49-51

 a 

phenomenological malfunction in cells in clearing phospholipids, which results in  a 

significant accumulation of phospholipids in cytoplasm that could be detected with 

electron microscopy
52

 and confocal Raman imaging.
48

  In addition to a priori knowledge, 

that clofazimine has been reported to precipitate in cells,
40, 41

 we could trace the vibrantly 

red clofazimine with transmitted microscopy and explore subcellular accumulation 

phenomena.  Therefore, we sought to investigate the physicochemical and biological 

nature of clofazimine precipitation in MDCK cells (Madin-Darby Canine Kidney 

epithelium) and Balb/c mice in order to address whether clofazimine can crystallize 

inside the cells. 

 

1.4 Biological response against poorly soluble, lipophilic xenobiotics 

Several exogenous substances are known to accumulate and cause pigmentation in 

vivo,
53-55

 and sometimes reveal similar empty cavities under microscopy.
22, 23

  For 

example, some heavy metals and drugs are reported to induce hyperpigmentation by 

deposition into different parts of the body and photochemically react with ultraviolet light 

to cause color changes.
56

  In the case of poorly soluble paraffin wax, it was reported to 
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accumulate and induce inflammatory changes in the liver and mesenteric lymph nodes of 

Fischer-344 rats, but not in Sprague-Dawley rats.
57

  Histochemical analysis in Fischer-

344 rats showed the development of splenomegaly, liver microgranulomas, and Kupffer 

cells with lysosomal, polyhedral cavities under electron microscopy.  These reports 

indicate that accumulation of foreign substances can trigger different immunological 

responses and related chronic inflammation involving phagocytes depending on 

biological contributions of the species.  Therefore, in addition to the physicochemical 

characterization, we sought to investigate any pathophysiological changes that are 

induced upon clofazimine administration and in vivo precipitation or aggregation 

formation.  Understanding the physiological basis of this phenomenon could provide the 

cellular and microscopic underpinnings of the atypical pharmacokinetic behavior of such 

poorly soluble drugs focused by the current research investments in the pharmaceutical 

industry. 
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Chapter 2  

Molecular Imaging of Intracellular Drug-Membrane 

Aggregate Formation 

 

2.1 Abstract 

Clofazimine is a lipophilic antibiotic with an extremely long pharmacokinetic 

half-life associated with the appearance of crystal-like drug inclusions, in vivo.  Here, we 

studied how clofazimine accumulates inside cells in the presence of supersaturating, 

extracellular concentrations of the drug (in the range of physiological drug 

concentrations). Based on a combination of molecular imaging, biochemical analysis and 

electron microscopy techniques, clofazimine mass increased inside cells in vitro, over a 

period of several days, with discrete clofazimine inclusions forming in the cytoplasm. 

These inclusions grew in size, number and density, as long as the drug-containing 

medium was replenished. With Raman confocal microscopy, clofazimine’s spectral 

signature in these inclusions resembled that of amorphous clofazimine precipitates and 

was unlike that of clofazimine crystals. Additional experiments revealed that clofazimine 

first accumulated in mitochondria, with ensuing changes in mitochondrial structure and 

function.  In turn, the degenerating organelles coalesced, fused with each other and 

condensed to form prominent drug-membrane aggregates (dubbed autophagosome-like 
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drug inclusions or “ALDIs”). Like clofazimine, it is possible that intracellular drug-

membrane aggregate formation is a common phenomenon underlying the reported 

phenotypic effects of other small molecule drugs with similar physicochemical properties. 

 

2.2 Introduction 

Intracellular drug targeting can be useful to minimize drug toxicity and maximize 

efficacy.  Nevertheless, the sequestration of drugs within intracellular organelles can also 

affect pharmacokinetics and pharmacodynamics after systemic delivery
1-3

. Among 

several known organelle sequestration mechanisms, ion-trapping of drugs within acidic 

compartments, i.e. lysosomes, has been most extensively studied
4, 5

. Protonation of 

weakly basic molecules leads to increased solubility and decreased membrane 

permeability, and promotes retention within lysosomes and endosomes. In the case of 

lipophilic cations, the electrical potential present across the inner membrane of 

mitochondria drives accumulation of membrane permeant lipophilic cations into this 

organelle 
1, 3, 6, 7

. Beyond transmembrane pH gradients (i.e. lysosomotropism) and 

electrical potentials (i.e. mitochondriotropism), interactions of chemical agents with 

intracellular membranes could directly promote drug accumulation.  To study this 

phenomenon, the FDA approved antibacterial drug clofazimine was selected as a model 

compound.  Clofazimine is highly lipophilic and possesses and unusually long 

pharmacokinetic half-life of up to 70 days 
8
 associated with extensive accumulation of 

the drug in the body
9
.       

Although clofazimine’s low solubility has been suspected to be responsible for its 

atypical pharmacokinetics, the mechanism by which drug accumulates intracellularly is 
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not known
8-12

. To study this, we decided to pursue a cell-based approach to determine 

whether clofazimine forms intracellular precipitates or crystal-like deposits in Madin 

Darby Canine Kidney (MDCK) cells, in vitro. MDCK cells were selected because they 

are considered a robust in vitro assay system for drug transport studies. While these cells 

originated from the epithelia of the distal renal tubules, they are also used as a model to 

study the passive diffusive component of intestinal drug absorption
2
 and to study drug 

bioaccumulation associated with ion-trapping
13

 and phospholipidosis
3, 14

. Taking 

advantage of clofazimine’s red color, the drug’s absorbance, fluorescence, and 

biodistribution properties could be readily measured. In addition, Raman spectral imaging 

and electron microscopic examination were performed to reveal the mechanism of 

clofazimine’s intracellular accumulation: the formation of organelle-derived, intracellular 

drug-membrane aggregates. 

 

2.3 Materials and Methods 

Chemicals. Reagents were purchased from Sigma-Aldrich (St. Louis, MO), unless 

otherwise indicated. 

Drug mass measurement. MDCK (CCL-34
TM

 ATCC, Manassas, VA) cells were 

maintained with DMEM plus 10 % FBS (Gibco® 10082), 10 % non-essential amino acid 

(Gibco® 11140 from Invitrogen, Carlsbad, CA), and with 10 % penicillin/streptomycin 

(Gibco® 15140) in a 37
°
C 5% CO2 incubator. For experiments, MDCK cells were 

incubated with clofazimine solutions: clofazimine-containing medium was made by 

diluting 10 mM clofazimine stock (in DMSO) into DMEM plus 5 % FBS immediately 

before adding to cells ( clofazimine added to cell culture medium without FBS formed 
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amorphous precipitates, but in 5% FBS no visible precipitates formed due to drug binding 

to serum proteins). For clofazimine mass measurements, cells were detached using 

Trypsin-EDTA (Gibco® 15050), resuspended in 0.1 M citric acid/ 0.1 M trisodium 

citrate buffer (pH 5) and counted with hemocytometer. Equal number and volume of cells 

were transferred to 96-well plates and dissolved with 100 µl ATCC detergent (American 

Type Culture Collection, 30-1010K). The clofazimine absorbance at 495 nm was 

measured with a plate reader (Synergy-2, Biotek Instruments, Winooski, VT) and mass 

was calculated with the aid of a standard curve generated separately.  

LC/MS analysis of intracellular clofazimine. Analysis of clofazimine’s chemical 

stability was performed for samples treated with drug-containing media (10 µM or 0 µM), 

and for pure drug (1 µg/ml). For extraction, samples were resuspended in methanol to 

dissolve and extract the drug, and then centrifuged at 15,000g for 10 minutes to remove 

insoluble components. Analysis was performed with HPLC (Agilent1200, Zorbax RX-

C18 column) coupled to a mass spectrometer (Applied Biosystems QTRAP 3200) eluted 

with H2O:acetonitrile gradient (Analyst1.4, Applied Biosystems). Full scanning of total 

ion current (TIC) from 200 to 800 of the reference drug sample revealed intact 

clofazimine 473.2 and two ion transition fragments of  431.2 and 429.2 (m/z). For treated 

cells, multiple reaction monitoring (MRM) was performed, scanning for 44 common 

metabolic transformations of the intact molecule and the two fragments of 431.2 and 

429.2 m/z.  

Light and fluorescence microscopy. Cells on cover glasses were cultured with 

clofazimine-medium for the indicated times.  For cellular lipid staining, 1 μg/ml Nile red 

was added for 2 hours. MTR staining was carried out with or without CFZ in media with 
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150 nM of MTR (from 10 mM DMSO stock solution) incubated for 45 minutes. After 

incubation, cover glasses were washed twice with DPBS and inverted onto glass slides 

for visualization on Olympus 51X upright epifluorescence/polarization microscope 

equipped 100× objective (1.40 NA, PlanApo oil emersion), cross polarizers, U-MWIBA3 

(eGFP) for green U-MWG2 (rhodamine) filter cube for red channel, and an Olympus DP-

70 color camera. Images were acquired using DP controller 3.1.1.267 under same 

exposure settings.  

Transmission Electron Microscopy. Samples were processed as previously described 
15

 

and imaged with a Philips CM-100 at magnifications from ×2,600 to ×130,000.  Objects 

from pictures of cells taken during triplicate experiments were counted and scored for 

each category (with 6 to 10 individual cells analyzed per sample). 

Mitochondrial respiration measurement.  Mitochondrial respiration was measured 

using Seahorse XF24 Extracellular Flux Analyzer (Seahorse Bioscience Inc., North 

Billerica, MA) equipped with optical sensors that measure oxygen and protons in the 

extracellular media
16

. Briefly, 24 hours before the measurement, 50,000 cells were 

seeded onto wells of XF24 cell culture microplates (V7, Seahorse Bioscience) with 150 

µl DMEM, and additional 100 µl was added after 4 hours when cells attached firmly. 

After 24 hours, cells were washed and pre-incubated with bicarbonate-free media 

(DMEM base XF Assay Medium, Seahorse Bioscience 100965) in 37 
°
C incubator 

without CO2 control. Injection cartridge (Seahorse Bioscience 100840) was pre-incubated 

with calibration media 24 hour-prior to the assay and four different injection ports were 

loaded with following compounds containing 20 µM BSA with 10 fold concentrate of the 

drugs in media: CFZ (100 µM, port A), oligomycin (10 µM, port B), FCCP (carbonyl 
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cyanide p-trifluoromethoxyphenylhydrazone, 30 µM, port C), and Antimycin A (15 

µg/ml, port D). After automated calibration of the sensors, at pre-determined time points, 

O2 level was measured and OCR (oxygen consumption rate) was calculated from the 

depleting oxygen level and data were analyzed using algorithm described by the 

manufacturer
17

. For plotting drug effects, OCR measurements for each well were 

subtracted by the internal, baseline OCR obtained for that same well, based on the 

measurement made before injecting any drug (arbitrarily set to the 27
th

 minute read after 

cells equilibrate in the instrument).  

Confocal Raman microscopy. Cover glasses were inverted on glass slides, and sealed 

with nail polish. The glass slides were then frozen in liquid N2 and kept at less than -20°C 

until microscopic analysis using a WITec alpha300R instrument equipped with a CCD 

camera, a UHTS300 Raman spectrometer and with a 10 mW power 532 nm doubled 

Nd:YAG laser (WITec GmbH
©

, Germany). For the analysis of clofazimine signal, a 2
nd

 

order polynomial was fitted to the raw data for background fluorescence subtraction, and 

the remaining signal was filtered with median-2 filter (WITec project 2.00 software).  

Lipid analysis. Cells were prepared on 10 cm-diameter dish and incubated with media 

containing either 10 µM or 0 µM of clofazimine for 36 hours. Cells were trypsinized, 

counted and kept frozen until analysis at the Lipidomics lab at Michigan Metabolomics 

and Obesity Center. Lipids were extracted using methanol:chloroform (2:1) solution and 

isolated with thin layer chromatography (TLC Silica gel 60, E.Merck). 

Chloroform:methanol:acetic acid:water (100:40:12:4) was used as mobile phase and TLC 

bands were scraped off and weighed for neutral lipid and phospholipid species, while 

phospholipid species (lyso phosphatidylcholine, phosphatidic acid, phosphatidyl choline, 
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phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl inositol, sphingomyelin, 

cardiolipin) were quantified according to the inorganic phosphorous assay
18

. For each 

lipid species, reference standards were purchased from Sigma. The experiments were 

independently repeated three times and the results analyzed with the Student’s T-test. 

Mitochondria isolation and clofazimine partitioning. Mitochondria were isolated 

using a commercial kit (MITOISO1, Sigma) from approximately 10
8
 cells and 

homogenized with rotating motor (200 rpm, >50 times) in 4 – 5 ml volume of Extraction 

Buffer A (E2778 Sigma) followed by centrifugation at 1,000g for 5 min, and then at 

11,000g for 10 min. After the enrichment procedure, a small brown-white color pellet 

comprised of enriched mitochondria was verified using the JC-1 accumulation assay, 

following the kit’s instructions. To measure CFZ binding to isolated mitochondria, 5 µM 

CFZ solution was made in Storage Buffer (S9689 Sigma), which contains ATP/ADP and 

DTT in potassium buffer to sustain the mitochondrial respiration, then added to the 

isolated mitochondria. The mix was vortexed until homogenous, then centrifuged at 

11,000g for 10 min. Clofazimine that was bound to the pellet, that remained dissolved in 

the liquid, or that was absorbed to the sides of the tube were extracted with MeOH.  

MeOH extracts were cleared by after centrifugation at 11,000g for 10 min.  The mass of 

clofazimine in each fraction was determined from the concentration of clofazimine in the 

extracts, using the absorbance plate reader, with the aid of a standard curve.  The mass of 

clofazimine remaining in the supernatants was determined by adding the mass of 

clofazimine that adsorbed to the sides of the centrifuge tube to that which remained 

dissolved in the liquid.   
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Image processing. For display, images were digitally enhanced and overlaid using 

Photoshop
®
.  For control vs. experimental comparisons within the same figure, contrast 

and brightness settings were similarly adjusted. 

 

2.4 Results 

2.4.1 Biochemical Analysis and Transmitted Light Microscopy Reveal 

Intracellular Clofazimine Inclusion Formation 

Clofazimine accumulated intracellularly upon incubation with cells (Figure 1A). 

Based on the calculated single cell volume of 1.6 pL
5
, cellular concentration 

approximated 4 mM.  However, concentration in the extracellular medium was 10 µM, 

mostly in protein-bound form (SI. 1), which is within range of serum concentrations in 

vivo
19

.  We observed a rapid increase of cell-associated drug mass within minutes after 

the start of incubation, followed by a continuous, gradual increase that continued for as 

long as the cells were maintained in the clofazimine-containing medium (Figure 1B).  To 

determine if intracellular clofazimine was metabolized, we performed LC/MS chemical 

analysis of intracellular clofazimine in cells incubated with or without 10 µM clofazimine 

in culture medium for 90 hours. Intracellular clofazimine was present intact with no 

major metabolites detected (SI. 2). 

Within the first 12 hours of clofazimine accumulation, small and scattered 

clofazimine inclusions in the cytoplasm formed nanometer-sized bright red speckles, 

visible with transmitted light illumination.  After 24 hours or longer, inclusions grew in 

size, ranging from 1 to 2 μm in length, and assumed irregular shapes and heterogeneous 

red color.  They continued growing in size for as long as the extracellular medium was 
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replenished with fresh, clofazimine-containing medium (Figure 1B, 120 hours). The size, 

shape and color of the inclusions were consistent with previous report in mouse lung 

macrophages
10

. Intracellular clofazimine accumulation was reversible. After clofazimine-

treated cells were transferred to drug-free medium, the efflux half-life was between 2 and 

3 hours, with some red inclusions remaining visible even after 6 hours of efflux. At these 

concentrations, clofazimine incubation inhibited cell growth and intracellular drug mass 

accumulation was proportional to the drug concentration in the medium (SI. 3).  

2.4.2 Fluorescence microscopy yields evidence that large clofazimine 

inclusions form from condensation and aggregation of smaller vesicles. 

In buffer, dilute clofazimine solutions (< 10 µM) fluoresce under 450 nm 

illumination (528 nm emission), but more concentrated solutions result in fluorescence 

quenching (SI. 4).   With epifluorescence microscopy, we found small intracellular 

inclusions were fluorescent at those wavelengths (460 – 495 nm excitation, 515 – 550 nm 

emission), but that the larger, redder inclusions apparent at later time points did not 

fluoresce (arrow, Fig 1C). We inferred that clofazimine first accumulated in the small 

fluorescent vesicles, and then became increasingly concentrated in the larger, red (but 

nonfluorescent) inclusions. 

 The larger clofazimine inclusions were brightly stained with Nile Red (NR), a 

highly lipophilic, neutral fluorophore that is commonly used as cellular lipid stain.  This 

suggested that the larger clofazimine inclusions were enriched in a hydrophobic 

component. Without clofazimine, cells showed significantly lower NR staining which 

bleached very quickly, without evidence of organelle-associated NR staining. However, 

measurement of total cellular lipid, neutral lipid and various phospholipids did not reveal 
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statistically significant alterations in lipid mass or relative contents after clofazimine 

treatment (data not shown). Thus, while the growth of clofazimine inclusions was 

associated with increased NR staining and photostability, there were no measurable 

changes in lipid profiles. 

2.4.3 Chemical imaging yields evidence of clofazimine aggregates but no 

evidence of intracellular crystals. 

 To investigate whether intracellular clofazimine inclusions were formed by 

crystallization of clofazimine, cells were analyzed with polarization microscopy. 

Birefringence from intracellular clofazimine inclusions was not detectable (SI. 5). With 

confocal Raman microscopy
20, 21

, clofazimine-treated cells exhibited a fluorescence 

signal (Figure 2A) superimposed on a drug-specific vibrational Raman signal (Figure 2B).  

Clofazimine fluorescence (Figure 2C) and Raman signals (Figure 2D) was localized 

almost exclusively to the cytoplasm, mostly in discrete spots in the perinuclear region 

corresponding to the red clofazimine inclusions observed by transmitted light microscopy 

(Figure 1).   

Clofazimine’s vibrational signal (Figure 2D, in the region between 1100 and 1600 

cm
-1

) overlapped with the overall fluorescence signal.  After subtracting the fluorescence 

signal, different parts of the cells exhibited similar Raman spectra, only varying in 

intensity (Figure 2E). The strongest vibrational signals came from the punctate foci in the 

perinuclear region (Figure 2E 2, 4, 6, 7, and 8). In contrast, regions inside the nucleus and 

at the cell periphery lacked Raman signal (Figure 2E 1, 3, and 5).  Again, the specific 

Raman chemical signal of clofazimine corresponded to the distribution of red inclusions 

observed with transmitted light microscopy (Figure 1). 



  

25 

 

As a reference, the vibrational Raman spectra of untreated cells (negative control; 

Figure 2Fa) and the vibrational spectra of crystalline and amorphous clofazimine 

precipitates in various buffers (positive controls; Figure 2Fb – h) were compared to the 

Raman spectra of clofazimine-treated cells. The vibrational spectra acquired from the 

punctate foci of clofazimine-treated cells (Figure 2Fi) resembled that of positive 

clofazimine controls (2Fb – h), with signature peaks at 1167, 1255, 1353, and several 

other peaks between 1406 and 1565 cm
-1

.  In buffer (2Fb – e), peaks at 1298 and 1493 

cm
-1

 decreased in intensity, whereas the peak at 1565 cm
-1

 only appeared in association 

with crystalline clofazimine in pH 5 and 7, indicating vibrational signals of clofazimine 

are sensitive to the local microenvironment. 

 Most importantly, the reference spectrum of amorphous clofazimine at pH 5 

(Figure 2Fc) resembled that of amorphous clofazimine at pH 3, whereas the spectrum of 

crystalline in pH 5 (Figure 2Fd) resembled that of crystalline clofazimine at pH 7 (SI. 6). 

Remarkably, the spectra from drug-treated cells (Figure 2Fi) clearly lacked the peaks of 

1436 (*) and 1461 (*) cm
-1

 which were the prominent, signature peaks of crystalline 

clofazimine.  These peaks were absent in amorphous clofazimine aggregates (Figures 2F 

c and f, bold). Thus, chemical imaging of intracellular drug inclusions also did not yield 

evidence for the presence of clofazimine crystals. 

2.4.4 Transmission electron microscopy reveals an intracellular drug-

membrane aggregation pathway, leading to ALDI formation without 

intracellular crystals. 

With TEM, the cytoplasm of control cells appeared normal in morphology (Figure 

3A and SI. 7a – c). In comparison, incubation with clofazimine-containing medium for 24 
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hours induced many dense, osmiophilic multivesicular bodies (MVB) and many other 

darkly stained, osmiophilic vesicles filled with granular material (Figure 3B and SI. 7g – 

i).  Upon prolonged exposure (10 μM clofazimine for >72 hours), the bulk of cellular 

membrane content became reorganized into morphologically-distinct and atypical 

inclusions, many possessing multilamellar membrane features (Figure 3C and SI. 7g – l). 

These inclusions were highly complex and heterogeneous in their internal structure, 

resembling autophagosomes
22

. The number, size, location and appearance of these 

heterogeneous, membranous inclusions corresponded in size, number and distribution to 

the red clofazimine inclusions observed under transmitted light microscopy (Figures 3D – 

F and SI. 7j – p). Hence, we inferred these structures corresponded to clofazimine-

membrane aggregates, and labeled them autophagosome-like drug inclusion, aldi (SI. 7m 

– p). 

Cytoplasmic object counts from TEM sections of cells exposed to clofazimine 

containing cell culture media for varying periods of time allowed piecing together a 

sequence of events leading to aldi formation (Figure 4A and SI. 7).  Depending on their 

apparent size, complexity, density of the internal structure and the time course of 

appearance, we divided aldis into early (Figure 4B) and late stage (Figure 4C).  Based on 

object counts, aldis accumulated with time, to become the most frequent organelle 

observed in clofazimine-treated cells (Figure 4D).  

2.4.5 Additional structural and functional evidence for a mitochondrial 

origin of aldis 

In TEMs, mitochondria caught our attention, which were prominent in untreated 

cells but seldom observed in clofazimine-treated cells. We confirmed the number of 
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intact mitochondria (Figure 4E) decreased significantly upon drug treatment, concomitant 

with an increase in the number of organelles with morphological features resembling 

degenerating mitochondria (Figure 4F). Staining cells with a mitochondria-specific, 

membrane potential-sensitive probe, MitoTracker
®
 Red CMXRos (MTR, Figure 5), 

revealed that incubation with clofazimine led to mitochondrial membrane depolarization, 

with diffuse cytoplasmic MTR staining. In untreated cells, normal MTR signal was 

observed in association with cytoplasmic organelles possessing vermiform appearance, 

typical for mitochondrial labeling. After clofazimine incubation, MTR background signal 

in cytoplasm was increased, with fewer organelles showing specific mitochondria 

morphology. After 21 hours, small clofazimine-containing vesicles (observed using the 

epifluorescence eGFP channel) corresponded to MTR-labeled mitochondria (observed 

under rhodamine channel).  However, the larger clofazimine inclusions which lacked 

clofazimine fluorescence did not stain with MTR. Accordingly, we inferred that some of 

the membranes in aldis could originate from degenerating mitochondria. 

Consistent with a mitochondrial origin of these induced, drug-membrane 

complexes, clofazimine avidly partitioned into isolated mitochondria in vitro (Figure 5B). 

In clofazimine-treated cells, mitochondrial respiratory function was perturbed by 

clofazimine treatment (Figure 5C).  Although basal oxygen level consistently ranged 

between 132 – 141 mmHg, oxygen consumption rate (OCR) was affected by clofazimine 

treatment, which reflects a change in mitochondrial respiration responsible for the 

production of ATP through the reduction of O2.  In positive control experiments, OCR 

varied in response to the standard pharmacological inhibitors of mitochondrial respiration 

(Figure 5C, ○): 1) oligomycin inhibited the ATP synthase (complex V), resulting in a 
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decrease in OCR; 2) carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) 

disrupted the electrochemical gradient across the mitochondrial membrane, increasing the 

OCR; and, 3) Antimycin A blocked complex I and III in electron transfer chain, 

decreasing the OCR. In the experimental conditions, addition of clofazimine (♦) 

increased the OCR, suggesting a disruption of the proton gradient across the 

mitochondrial inner membrane, similar to FCCP addition.  Furthermore, after clofazimine 

treatment, the OCR became unresponsive to oligomycin or FCCP, whereas Antimycin 

remained fully active. This was consistent with clofazimine interfering with the 

mitochondrial membrane potential, similar to FCCP.  

  

2.5 Discussion 

Based on our observations, the intracellular accumulation of clofazimine is 

accompanied by the formation of massive, intracellular drug-membrane aggregates.  

Morphologically, these aggregates do not resemble the crystal-like drug inclusions that 

are observed in patients after months of clofazimine treatment 
8-11

, but they may be a 

precursor for such inclusions since similar structures can be also be observed in electron 

micrographs of clofazimine-treated tissues. Because clofazimine has weakly basic amine 

groups with reported pKa ranging from 7.87 to 9.11
23

, the drug is expected to be 

protonated and more water soluble in acidic environments. However, the drug is also 

expected to become deprotonated and less soluble in neutral or alkaline environments, 

which can lead to the formation of supersaturated solution once the drug is absorbed and 

distributes throughout the body.  It is possible that a lipoprotein carrier could be involved 

in cellular uptake
24

 and that the low pH environment of lysosomes could lead to ion-
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trapping
4, 13

. However, based on electron microscopy, the mechanism ultimately 

responsible for sequestering clofazimine appears to be the formation of aldis: drug-

membrane aggregates that resembled autophagosomes in morphology. Biochemical 

studies with isolated mitochondria revealed that clofazimine accumulates in mitochondria, 

and functional studies confirmed that clofazimine interacts with mitochondria inside cells, 

suggesting at least some of the membranes in these aggregates may originate from 

degenerating mitochondria. 

In the continuous presence of clofazimine, the formation of drug-membrane 

aggregates can destabilize organelle structure and function, inducing membranes to 

coalesce, fuse and condense, and give rise to aldis.  The formation of drug-membrane 

aggregates can serve as a sink to facilitate the continuous accumulation of clofazimine 

inside cells, without clofazimine crystals forming intracellularly. With supersaturated 

clofazimine solutions forming in the gastrointestinal tract, clofazimine can be absorbed 

into the body and partition into cellular lipids and the phospholipid membranes that form 

the boundaries of intracellular organelles. Upon prolonged dosing, aldis can accumulate 

and may serve as an intracellular clofazimine depot.  Presumably, aldis may continue to 

form and grow as long as the drug is not toxic to cells, and the rate of drug-membrane 

aggregate formation does not exceed the cells’ capacity to synthesize new membranes 

and regenerate its degenerating organelles.  

Morphologically, aldis resembled autophagosomes or mitophagosomes 
22

. 

However, aldis lacked the double membrane that normally surrounds autophagosomes.  

Unlike autophagosomes and mitophagosomes, aldis appeared completely filled with 

condensed lipid membrane aggregates, instead of the typical, degenerating vesicular 
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membrane cargo. In the natural degradation of mitochondria (and other organelles) 
22, 25, 

26
, a membrane structure termed phagophore is observed to engulf the degenerating 

organelle. Later, the mitophagosomes fuse with lysosomes to form autophagolysosomes 

22, 25, 26
 which degrade the membrane contents for intracellular recycling. Unlike 

autophagolysosomes or mitophagosomes, aldis appeared to grow continuously by 

coalescence and condensation. Considering the possibility that aldis were related to 

multilamellar bodies resulting from phospholipidosis 
14, 27

, a toxicological phenotype 

associated with certain classes of lipophilic drugs 
28, 29

, clofazimine did not lead to a 

measurable increase in phospholipid levels in MDCK cells.  

To conclude, the ability of clofazimine to interact with mitochondria and induce 

the formation of intracellular drug membrane aggregates may be worth considering not 

only as a drug side effect, but also in terms of potential therapeutic applications.  Indeed, 

while such phenotypic changes are generally reported as drug side effects, they could also 

have cytoprotective functions
30, 31

. For example, interaction of clofazimine with 

mitochondria could be useful to attenuate mitochondrial damage associated with 

oxidative stress that occurs during ischemia-reperfusion injury 
32, 33

. Today, there is an 

increasing interest in probing drug-membrane interactions as a determinant of the cellular 

disposition of lipophilic small molecule drugs
6, 34

.  Experimental evidence indicates that 

chloroquine
5
 and amiodarone

28, 35
 accumulate in association with multilamellar bodies.  

However, characterizing the formation of drug-membrane complexes within cells has 

been a challenge.  In this context, the ability to use a combination of chemical imaging 

technologies including Raman, fluorescence, and absorbance to study clofazimine’s 

intracellular disposition, together with the ability to perform electron microscopic 
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observations on the resulting drug inclusions, constitutes a major advance in terms 

revealing the appearance of prominent drug-membrane aggregates that result from drug-

membrane interactions as they occur within cells.   
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2.7 Figures 

 
 

Figure 2-1 Clofazimine accumulation kinetics.   

A) Time course analysis of intracellular clofazimine accumulation. (error bars represent 

the s.e.m., N=3). B) Red intracellular drug inclusions grow in size. Brightfield images 

were acquired during 0 to 120 hour incubation in 10 µM clofazimine containing 5% FBS-

DMEM. Lines were manually drawn to indicate individual cell boundaries. N: nucleus. C) 

Intrinsic fluorescence of CFZ and Nile Red (NR) staining of control and drug-treated 

cells. Cells were incubated with CFZ containing DMEM for 24 hours and imaged with 

the standard eGFP (green) and rhodamine (red) fluorescence filter set. Arrows point to 

large clofazimine inclusions lacking green fluorescence (whereas small inclusions are 

visibly fluorescent). Nile Red staining (NR) of CFZ treated vs. untreated samples were 

acquired and displayed under the same exposure settings, showing significantly greater 

NR fluorescence in association with clofazimine inclusions.  
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Figure 2-2 Confocal Raman imaging of clofazimine-treated cells.  

A) Polynomial fitting of a representative, raw spectral scan acquired from a clofazimine 

treated cell. B) Background subtracted Raman vibrational spectra from A. C) The spectral 

intensity map of a selected fluorescence spectral region (2199 – 2296 cm
-1

), highlighted 

in blue in panel A. D) The spectral map of the selected, background subtracted, Raman 

spectral region (1100 – 1600 cm
-1

), highlighted in blue in panel B. E) spectra of various 

regions of in D (1: cytosol, 2: perinuclear region, 3: center of the nucleus, 4: perinuclear 

region; 5: center of the nucleus; 6-8: various punctate cytoplasmic foci. F) Representative, 

fluorescence-subtracted Raman spectra of untreated MDCK cells (a); clofazimine 

precipitates in different buffer solutions (b – g); dry clofazimine crystals (h); and, drug-

treated cells (i). The intensity is in arbitrary units, normalized to the same scale. 1436 and 

1461 cm
-1

 (*) are vibrational peaks that are prominent in crystalline clofazimine but 

almost absent the amorphous clofazimine (bold line). 
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Figure 2-3 TEM images of treated cells 

A) Control cell (vehicle-only with 5% FBS-DMEM after 24 hr treatment); and cells 

incubated with 10 µM clofazimine for 24 hr (B) or 87 hr (C). D, E, and F are zoom-in of 

boxed regions in A, B, and C, respectively. Cytoplasmic objects were categorized into 

autophagosome-like drug inclusions (aldis) if they did not show characteristic features of 

the typical organelles, while exhibiting lipid-rich (lamellar or vesicular) internal 

structures stained with osmium tetroxide. 
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Figure 2-4 Temporal analysis of ALDI biogenesis and mitochondria degeneration.  

A)  Representative image of osmiophilic and granular multivesicular body that appears 

during the first 24 hr incubation. B) Early aldi, showing internal lamellae and 

heterogeneous appearance C) More complex aldi representative of those that appeared at 

latter time points. D) Measured frequency of different organelles, at various time points 

after beginning of clofazimine incubation. E) TEM images of abnormal/degenerating 

mitochondria in clofazimine treated cells. F) Frequency of normal vs. degenerating 

mitochondria changes during drug treatment.  For TEM organelle counts, morphological 

features were manually scored from 6 or more cells. 
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Figure 2-5 Clofazimine associates with mitochondria, followed by dissipation of the 

mitochondrial membrane potential.   

A) MitoTracker Red (MTR) staining of untreated vs. clofazimine treated cells. Arrows at 

21 hr treatment indicate clofazimine fluorescence (green channel) colocalized with 

functional mitochondria (labeled with MTR signal in red channel). However, the larger 

(older) clofazimine inclusions do not stain with MTR. (B) Clofazimine binds to isolated 

mitochondria. As a control, the same experiment was repeated with storage buffer alone 

and no mitochondria (w/o mito). Under control conditions, clofazimine signal was not 

detected in the pellet after centrifugation. Error bar represents standard deviation from 

representative experiment. Student’s T-test show statistically significant differences in 

both supernatant and pellet (p<0.05; N=2). C) Oxygen consumption rate (OCR) 

differences of clofazimine-treated cells (♦) vs. control cells (○). Various inhibitors of 

mitochondrial respiration were sequentially applied in the presence or absence of 

clofazimine at pre-determined time points, as indicated in x-axis. The OCR difference 

was calculated as the measured OCR level minus the baseline OCR level (at the 27th 

minute). Error bars indicate s.e.m; N=3 (the error bar may be smaller than marks). 

Statistical significance for each treatment was tested comparing the last data point before 

vs. the new treatment’s last data point: 4th point vs. 11th point for clofazimine effect, 

11th vs. 14th for oligomycin, 14th vs. 17th for FCCP, and 17th vs. 20th for Antimycin A. 

For every treatment, p < 0.05. 
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2.8 Supporting Information Available 

This material is published in Molecular Pharmaceutics and supporting 

information figures SI. 1 – SI. 7 are available in the Appendix B. 
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Chapter 3  

Expansion and Structural Reorganization of Macrophages 

Mediate the Massive Redistribution and Retention of 

Clofazimine upon Long Term Administration 

 

3.1 Abstract 

The antibacterial clofazimine is a poor solubility and high lipophilicity drug, 

possessing a pharmacokinetic half-life greater than 70 days. Here, we have studied the 

biodistribution of clofazimine in mice fed with clofazimine mixed diet and 

discontinuation for 16 wks. Various organs were collected at different time points for 

biochemical and histological analyses.  

Clofazimine was sequestered in cytoplasmic compartment within the cells of the 

liver, lungs and lymphatic organs, but not in the kidneys or brain. Most interestingly, 

drug content measured in abdominal fat at 3 wks was significantly greater than 8 wks of 

treatment, while other organs exhibited greater accumulation after the prolonged 

treatment. Such redistribution of clofazimine from fat to other organs was suspected to 

result from the role of macrophages extracting the drug from circulation, which in turn 

leads to an efflux from the fatty tissues, redirecting the molecules into a more stable form 

of intracellular sequestration.  
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Inside macrophages, these drug inclusions grew in size and number. Moreover, 

macrophage numbers increased and the spleen expanded in size and mass more than 

threefold, suggesting concomitant inflammatory response. Upon discontinuation of 

clofazimine administration, the drug was cleared out at different efflux patterns from 

various organs, yet was mostly retained in the spleen.  

In conclusion, the sequestration of lipophilic, poorly soluble drug molecules into 

specialized cytoplasmic inclusions within an increased number of macrophages impacts 

the biodistribution of clofazimine upon prolonged dosing. The results demonstrate how 

changes in organ mass and volume as well as the changes in drug interaction with cellular 

and subcellular compartments can exert a major effect on systemic pharmacokinetic 

parameters.  

 

3.2 Introduction 

Poorly soluble, lipophilic antibacterial clofazimine exerts an extremely long half-

life up to 70 days.
1
  This effect is mainly due to the drug disposition in the cells within 

the body instead of more common elimination from the body such as renal or hepatic 

clearance.
2
  Pathologically, such deposition is related to dark purple pigmentation 

associated with congestion in the small intestine upon months of administering high 

doses (300 – 400 mg daily), causing abdominal pain and malabsorption in patients, and in 

some cases splenic infarction requiring removal of the organ.
3
  

Although several investigators have studied the pharmacology and 

pharmacokinetics of clofazimine administered in patients and in animals,
1, 4

 there has 

been a lack of understanding about how the drug distributes and what are the cellular and 
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microscopic mechanisms by which bioaccumulation occurs. We hypothesize that 

subcellular level compartmentalization and sequestration observed in vitro would affect 

whole body distribution; therefore, pharmacokinetic parameters such as plasma half-life 

and drug disposition in vivo may be affected. We took advantage of clofazimine’s 

lipophilicity (logP > 7, Appendix A) and its distinctive red color to detect the 

accumulation, which did not follow classical pharmacokinetics models in which an 

elimination process, such as hepatic metabolism or renal excretion, plays a major role in 

lowering plasma concentration.
5
  Importantly, such an atypical case study can further be 

applied to investigate the pharmacokinetic behavior of other poorly soluble, lipophilic 

drugs lacking distinctive optical signals, which are in other words not readily detectable 

in terms of bioaccumulation and adverse effects. 

From earlier studies in our group, we identified liver microgranulomas
6
 to be one 

of the significant accumulation sites within drug treated mice.
7
  They were the result of 

the chronic inflammation response created by the collection of macrophages around the 

blood vessels of mice at washout phase, for which the drug diets were replaced by drug-

free food after 8 wks of feeding.  The microgranulomas were associated with macrophage 

marker F4/80 and developed fibrosis stained by Masson’s trichrome which is an indicator 

of the chronic damage on the tissue component of the liver.  Since the clofazimine-like 

drug inclusions (CLDIs) and drug contents were localized in particular organs but not in 

others, we hypothesized that such sequestration could function as a detoxification, 

isolation mechanism of the poorly soluble irritant. In fact, studies on insoluble paraffin
8
 

or bacterial infections
9
 have suggested that the macrophages can function as a defensive 

mechanism of anti-inflammatory process. 
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Here, we generate a more detailed pharmacokinetic distribution map of 

clofazimine among major organs and plasma, and a combined microscopic analysis to 

show the atypical, multiscale, redistribution phenomena in mice. The conclusion suggests 

that the large volume of distribution in non-compartmental pharmacokinetics may result 

in from the sequestration mechanism of the lipophilic drug.  

 

3.3 Materials and Methods 

Animal experiment. Mice (4-5 wk male Balb/c) were purchased from Jackson lab (Bar 

Harbor, Maine) and acclimatized for 2 wks in the university specific pathogen free 

animal facility.  All animal care and experimental procedures complied with approved 

protocol by University of Michigan Committee of Use and Care of Animals.  Mice were 

divided into two groups, fed with drug with powder food (drug was pre-dissolved to 3 

mg/ml of sesame oil, mixed at 0.01% oil to food (0.03% drug to chow)) or with oil mixed 

food (vehicle only control) served in ceramic jar placed on the cage floor.  Clofazimine 

was purchased from Sigma-Aldrich (C8895, St. Louis, MO), and sesame oil (Roland, 

China or Shirakiku, Japan) was purchased from local grocery store.  An average 25g 

mouse consumed about 3g of food per day, half of them spilled on the cage floor and 

wasted. Assuming oral bioavailability to be 50% in average,
10

 approximately 20 mg/kg 

was daily intake and 10 mg/kg was clofazimine daily absorption. 

Biochemical analysis of clofazimine in tissues. At predetermined time points organs 

were collected and kept in -20°C after CO2 euthanasia and blood collection through 

cardiac puncture. Tissue (0.05 – 0.1 g/ml water) was homogenized with Tissumizer 

(Tekmar
®
, Cincinnati, OH) and 100 µl of sample was mixed with same volume of 5N 
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NaOH than extracted with 300 µl dichloromethane twice in a bath sonicator.
11

  After 

centrifuged at 2000g for 10 minutes to collect dichloromethane layer, the solvent was 

evaporated at 40°C and reconstituted in MeOH for absorbance to be measured at 490 nm 

by Synergy-2 plate reader (Biotek Instruments, Winooski, VT). Concentration was 

calculated from the standard curve generated by spiking drug solution into a tissue extract 

from vehicle-only treated sample. Average extraction yield was 60 – 80% for other 

organs except abdominal fat which was around 100% recovery.  

CLDI isolation.  CLDI purification was done using the protocol previously reported.
7
  In 

brief, two 8 wk treated spleens and an 8 wk treated liver homogenates was diluted in 

distilled water (0.025 – 0.05 g/ml) and sonicated for 30 minutes, then centrifuged (100g 

for 1 min).  Supernatants were resuspended in 0.125% Trypsin-EDTA solution (Gibco) 

and kept at 37°C for 1 hour, followed by another centrifugation at 100g to remove large 

cell debris. The drug inclusions in supernatant were then pelleted by centrifugation 

(21,000g × 1 min), and resuspended in water for analyses.  Protein content was 

determined with the BCA assay (Pierce 23227, Thermo Scientific) and clofazimine 

content was determined spectrophotometrically. For protein assay, equal volume of 5% 

SDS solution was mixed with the samples and the protein content was measured 

following the BCA kit instructions. The yield of triplicate run was averaged to result in 

10-fold purification. 

Plasma concentration determination.  Multiple samples of collected blood were let clot 

at room temperature and centrifuged at 7000g for 5 minutes and supernatants were 

submitted to LC-MS core at Michigan Nutrition and Obesity Research Center. 20 µl of 

sample was extracted with 60 µl of acetonitrile for 10 minutes at 4°C with intermittent 
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vortexing.  After centrifugation at 15,000 rpm at 4°C, the supernatant was injected into 

Agilent 1200 RRLC coupled to 6410 Triple Quad LC/MS.  Xbridge C18 column (2.5 µ, 

2.1mm ID × 10 mm long, Waters) was used. Mobile phase: A = 5 mM ammonium 

acetate, adjusted to pH 9.9 with ammonium hydroxide; B = acetonitrile. Flow rate = 0.35 

ml/min, linear gradient from 50 to 100% B over 1.5 min; hold 100% for 1.5 min, return 

to 50% B and re-equilibrated for 2.5 min. Mass spectrometer source condition: 325°C, 

gas flow 10 L/min, nebulizer 40 psi, capillary 4000V, positive ion mode. MS acquisition 

parameter: MRM mode, transition 1:473.1 to 431.1, dwell time 400 ms, fragmentor 180, 

collision energy 40; transition 2: 473.1 to 429.1, dwell time 100 ms, fragmentor 180, 

collision energy 40.  

CLDI contents were intact clofazimine.  Using the LC/MS methods and equipment 

setting in the above, the content from three different tissue extracts were confirmed to be 

the same as the positive control, clofazimine in acetonitrile, which showed elusion time 

of 3.374 min. Triplicates of one liver sample and two spleens were eluded at the same 

time 3.374 min, and the extraction yield was 90% in average, demonstrating comparable 

amount of drug concentration from the biochemical analysis above.  This finding was 

consistent with other reports demonstrating the compound found in drug treated mice 

were intact using thin layer chromatography
12

 and laser microprobe mass analysis 

(LAMMA)
13

 which used laser to evaporate crystal-like drug inclusion in spleen and 

detected clofazimine using a mass spectrometer.  

Mouse perfusion fixation for EM.  Blood was collected from euthanized mice and 

washed by perfusing 5 – 6 ml of 0.1M Sorensen’s buffer at 2.5 ml/min rate injected to 

left ventricle and egressed to vena cava.  Then, 5 ml of Karnovsky’s fixative (3% 
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paraformaldehyde, 2.5% glutaraldehyde, 0.1 M Sorensen’s buffer, pH 7.4) was infused to 

result in stiffening of the corps, and turning organ colors to pale pink.  Immediately after 

perfusion, organs were taken out for either paraffin fixation or TEM sample preparation. 

Tissue cryo-fixation or paraffin fixation for immunohistochemistry.  Cryosection of 

organs embedded in OCT (Tissue-Tek® 4583, Sakura) were carried out using Leica 

3050S cryostat, and samples were sectioned to 10 µm thicknesses, placed onto glass slide 

with a drop of glycerol and covered with #1.5 cover glass.  Paraffinization of the 

perfusion fixed organ and heat mediated antigen retrieval were carried out in histology 

lab at Pathology Cores of Animal Research (PCAR), Unit for Laboratory Animal 

Medicine (ULAM) at the University of Michigan.  Routine H&E and Masson’s trichrome 

staining, as well as immunohistochemistry of F4/80 (1/100 dilution, ab6640, abcam
®
), 

αSMA (1/200, ab5694, abcam
®

), vWF (1/500, ab7356, Millipore), CD21 (1/200, 

ab75985, abcam
®
), CD3T (1/300, RM-9107S, Thermo Scientific) were carried out using 

Horse Radish Peroxidase and intelliPATH FLX DAB chromogen (IPK5010, Biocare 

Medical, Concord, CA).  

Transmission Electron Microscopy.  Immediately after perfusion fixation, the organs 

kept in fixative were diced into pieces smaller than 1 mm in each dimension, and they 

were preserved in the glass vial with the fixative stored at 4°C.  After rinsing three times 

with Sorensen’s buffer, diced tissues were stained with 1% osmium tetroxide in 0.1M 

Sorensen’s buffer and washed three times in Sorensen’s buffer. Dehydration was carried 

out with graded ethanol/water series (50, 70, 90, and two changes of 100%) for 15 min 

each. After transitioning through three changes of propylene oxide, tissues were 

infiltrated with Epon resin (Electron Microscopy Sciences), and then polymerized at 
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60°C for 24 h.  The blocks were then ultramicrotome sectioned to 70 nm thicknesses and 

mounted on copper EM grid (Electron Microscopy Sciences) which were post-stained 

with uranyl acetate and lead citrate before TEM imaging with Philips CM-100.  Images 

were recorded digitally using a Hamamatsu ORCA-HR camera system operated by AMT 

software (Advanced Microscopy Techniques Corp., Danvers, MA). Magnifications: 

×2,600 to ×256,000.   

Transmitted light, polarization (PL) and fluorescence microscopy (FL).  Olympus 

51X upright epifluorescence/polarization microscope equipped with 100× objective (1.40 

NA, PlanApo oil emersion), cross polarizers, and an Olympus DP-70 color camera was 

used.  For fluorescence channel, U-MWIBA3 (eGFP) filter cube for the green, U-MWG2 

(rhodamine) filter cube for red channel were used.  Images were acquired using DP 

controller 3.1.1.267 under the same exposure settings. For display purposes, images were 

digitally enhanced using Microsoft
®
 PowerPoint and Adobe Photoshop

®
.  For control vs. 

experimental comparisons within the same figure, contrast and brightness settings were 

adjusted to same extent. 

 

3.4 Results 

3.4.1 Skin pigmentation starts within 1 wk followed by organ pigmentation 

caused by drug accumulation  

Physiological changes in clofazimine treated mice indicated low levels of drug 

toxicity.  Although the extent of weight gain was different, the body weight increased 

during 8 wks of treatment and further increased after the discontinuation of the treatments 

with powder food mixed with either drug-in-oil (treated) or oil-only (control) (Fig 1A).  
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The skin and hair discoloration was visible during the first wk of treatment and was 

further darkened as the treatment was continued (Fig 1B).  After 8 wks of treatment, 

when drug-food was replaced with a drug-free, normal diet (washout phase), the redness 

of the outer skin and hair did turn pale; however, the previously-treated group remained 

pink and distinguishable for a couple of months compared to the control group.  

Upon anatomical inspection, significant but heterogeneous pigmentation was 

observed throughout the organs (Fig 1C). The lungs, pericardium and diaphragm 

surrounding the chest cavity had marked spots of black discolored punctate while the 

liver and spleen showed homogeneous pigmentation into dark purple or black.  The 

oracle and heart did not seem to be affected.  Notably, the size and mass of the 

mesenteric lymph node and spleen had increased, suggesting absorption of the drug 

through the intestinal lymphatic system, and subsequent inflammatory response had 

developed in conjunction with splenomegaly similar to pathogen invasion
8
 or irritation of 

poorly soluble substances
7
 in the blood stream.  The ileum first developed dark purple to 

black coloration over the course of 3 wks of treatment but as treatment was continued the 

change further progressed to the jejunal area upward.  In visual inspection of isolated 

jejunal and ileal sections, patches of pigmentation were observed along the outer walls of 

the intestine, contrasted by the minimal changes in the duodenum and stomach even after 

18 wks of treatment.  The mesenteric lymph node and all other lymph nodes inspected 

(superficial cervicals, deep cervicals, mediastinal, axillary, brachial, thymus, pancreatic 

sheet, linguinal, lumbar, sciatic, and caudal) turned dark black throughout, suggesting a 

significant crystal-like drug deposition within the lymphatic tissues.  The omental fat and 

abdominal fat turned bright orange in color from the beginning of the first wk and 
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remained orange throughout 8 wks of treatment, indicating that the partitioning into fat 

had reached saturation early on.  Also, the orange color revealed that the partitioned 

drugs within the fatty tissues were in unionized state, whereas clofazimine aggregation 

and precipitation in other organs had dark red or black pigmentation as observed for the 

drug powder suspended in buffers with various pHs.
5, 13

  Interestingly, the skin isolated 

from the abdominal section itself did not seem to be much different in color, which also 

corresponds to the earlier observation that most deposits are localized at the subcutaneous 

layer underneath the skin and causing overall reddish discoloration.
4
  Bones seemed to be 

clean except the tip of the femurs demonstrating a black pigmentation. The nervous 

system such as the brain, spinal cord, and sciatic nerve from the back leg appeared clean.  

The pancreas and kidney did not show much difference in color provided the lymphatic 

cover or renal capsule was removed.  These sheet-like tissues consisted mostly of adipose 

tissue with macrophages that would be responsible for partial pigmentation along the 

viscera.  

3.4.2 Development of splenomegaly 

The increase in spleen mass was statistically significant compared to the changes 

in the kidney which is one of the mildly, or minimally, affected organs (Fig 1D).  The 

spleen mass did not change from that of the control mice (no drug, oil mixed powder 

food) during the first 3 wks of treatment.  However, continued drug treatment to either 8 

wks or 18 wks resulted in 3.2- and 5.2-fold increase in weight.  The increase was also 

significant in washout phase after treatment (WO) which is the period after 8 wks 

discontinuation of the drug food feeding.  The WO spleen weight continued to increase 

by 20%, meanwhile the body weight increased only by 3.5% and the kidney remained 
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constant throughout the dosing.  Significant increase in spleen mass and size indicates 

there is an anti-inflammatory response associated with clofazimine treatment. 

3.4.3 Transmitted light microscopy revealed differential distribution of 

crystal-like drug inclusions among various organs 

After isolation of the organs, the tissues were inspected either by wet-mount or by 

the 10 µm-cryosections on the slide glass. The 8 wk treatment sample of the lung 

parenchyma revealed heterogeneous distribution of red colored drug deposits, and there 

were two distinctive populations: ALDI (autophagosome-like drug inclusions)
13

 and 

CLDI (crystal-like drug inclusions)
7
 as previously reported (Fig 2A). The ALDIs have 

subcellular organelle-like features that are fluorescent in eGFP but do not polarize light 

due to lack of a regular, structural organization.
13

  However, the CLDIs have 

distinguished optical features that can rotate the polarized light and appear brightly 

birefringent (Fig 2B), as well as fluoresce under the standard rhodamine channel as 

previously reported from our group.
7
  While the size of an ALDI does not measure more 

than 2 µm, that of a CLDI can range from 5 to 20 µm in length.  Notably, the distribution 

pattern in the kidney for these drug inclusions appeared to be dependent on the 

histological section.  For example, the kidney medulla showed a broad staining of orange 

color along the tubular cells similar to that demonstrated by our previous investigation: 

presence of ALDIs and the absence of the CLDI in Madin-Darby dog kidney epithelial 

cells.  In contrast to the medulla, the cortex of the same kidney near a glomerulus (GM) 

appeared clean without such broad staining, but rather was associated with a small 

number of CLDIs around the blood vessels (V).  In the jejunum and ileum, the CLDIs 

were only associated with the lamina propria of villi, suggesting that the enterocytes were 
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free from accumulation (Fig 2E). Meanwhile the drug deposition was concentrated in the 

walls of the intestine.  The mesenteric lymph nodes at the 8
th

 wk appeared swollen and 

were filled with countless aggregations of CLDIs comprised of individual, needle-like 

structures (Fig 2F).  Interestingly, they were scattered around the germinal center (GC), 

whereas the follicles seemed to be clean and the lymphocytes within these regions were 

free of drug inclusions.  A similar observation was recorded in the spleen at the 3
rd

 wk 

(Fig 2G) and 8
th

 wk (Fig 2H), where the progression of CLDI aggregations was observed 

around the germinal centers.  From the liver, we found the progression of CLDI 

distribution changed from a scattered pattern across the section at the 3
rd

 wk (Fig 2I) to a 

more concentrated and localized pattern around the blood vessels at the 8
th

 wk (Fig 2J).  

The hepatocytes lacked the CLDIs, and therefore we suspected that endothelium, 

fibroblasts or Kupffer cells would be responsible for the drug sequestration and CLDI 

formation that is absent in other cell types.  The CLDIs could be isolated through 

trypsinization of tissue homogenates followed by the series of differential centrifugation, 

and resulted in a removal of more than 95% of protein contents.  The tissue unbound 

CLDIs, collectable through centrifugation, were a maximum 91% (average 50 ± 36%).  

On average, 10-fold purification could be achieved for further biochemical and 

physicochemical analysis.
7
  

3.4.4 TEM image analysis 

As particular tissue accumulated the poorly soluble clofazimine differently from 

other organs, transmitted electron microscopy was implemented to investigate whether 

specific types of cells were involved in the drug inclusion formation.  In the lungs of 4.5 

wk treated mice, we found that only parenchymal macrophages showed CLDI cavities, 
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where needle-like structures with empty space were preserved after extraction of the drug 

during the sample preparation (Fig 3A).  The macrophages also contained significant 

amount of ALDIs, which are round and osmiophilic objects with concentrated lipidic 

membranes as described previously.
13

  In the section of the kidney from 8.5 wk treated 

mice (Fig 3B), we found, although it was rare, the peritubular macrophages (M) 

contained cytoplasmic CLDI cavities.  However, the neighboring tubular cells (T) 

consisting of the epithelium of renal tubules contained only ALDIs in their cytoplasm as 

demarcations, with comparable ultrastructure to what was found in vitro of MDCK 

cultures.
13

  Generally, macrophages are hard to find in the kidneys; however, macrophage 

infiltrations are reported to be a common immunological response induced by 

nephrotoxic reagents (e.g., cyclosporine).
14

  

In the jejunal submucosa of a 4.5 wk treated mouse (Fig 3C) and in the spleen of 

8.5 wk treated mouse (Fig 3D), a significant number of macrophages appeared with 

CLDI cavities and ALDIs.  Alongside, there was a distinct population of cells absent of 

neither ALDIs nor CLDIs.  The cells had small cytoplasm with rounded nuclei, indicating 

they are lymphocytes, and this observation was consistent with the absence of the red 

CLDI population around the lymphoid follicles of the lymph nodes or spleen seen under 

light microscopy (Fig 2F-H).
15

  For the CLDI cavities in macrophages, we could draw a 

structural morphology of CLDIs that assumed a polyhedral in shape, having 4 to 7 facets 

once they appear thicker than 1 to 2 µm in widths. When smaller, these CLDI cavities 

seemed to exist more as bundles of needles juxtaposed sideways.  

In the liver of 4.5 wk treated mice (Fig 3E), the marked development of CLDIs 

were observed over a specific region around the hepatocytes identified by the 
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characteristic, round nucleus and biliary ducts (H).  In contrast to the hepatocytes, which 

remained unaffected by the drug treatment, a couple of macrophage-like cells (M), 

presumably Kupffer cells, were aggregating into a colony showing CLDI development.  

Electron micrographs of samples after prolonged treatment to 8.5 wks (Fig 3F) have 

shown a palpable increase of the number and size of the CLDI cavities, and these 

increases were comparable to those that were measured from the isolated CLDIs in our 

previous study.
7
  The expansion of macrophage population in the liver was localized 

around the blood vessels, and they were developing in the inner regions of the 

endothelium, suggesting that they were progressing towards the pathological condition 

referred as microgranulomas.
6
  

3.4.5 Biodistribution changes along the course of drug treatment 

Colorimetric assessments of drug content within various tissues were carried out 

to investigate the differential accumulation and biodistribution in relation to what was 

observed in the microscopic analysis.  In terms of drug concentration, the extracted 

contents were normalized by the weight of wet tissue and plotted to demonstrate the 

relative concentrations between 3 wk treatment, 8 wk treatment, and washout (WO, 8 

wks of drug-free diet after the 8 wks of treatment) (Fig 4A).  During the 8 wks of 

treatment, the drug concentrations in the spleen, liver, and small intestine (jejunum and 

ileum) had dramatically increased more than 15 fold from that of the 3
rd

 wk.  More 

captivatingly, contents in fat within this period had decreased to about 38% despite the 

continued treatment.  Such a reversed trend could be explained by redistribution of the 

drug from the adipose tissues to spleen or liver where the delayed accumulations occur as 

a solid mass.  While concentration in the spleen did not change from 8
th

 wk to washout, 
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concentration in the liver showed marked decrease to 25%, suggesting a different 

retention mechanism is present in the spleen, a similar pattern having been observed 

previously in human patients.
1
  Since the major elimination route for this metabolically 

stable drug has been suggested to occur through biliary clearance followed by fecal 

excretion,
4, 16

 we reasoned that the effective decrease of the liver content may result from 

closer biliary access which the spleen lacks.  Presumably, the drug deposits in the spleen 

must be dissolved into plasma in order to be transferred to the bile; therefore, the poorly 

soluble drug accumulated in the spleen would accompany a prolonged retention with 

possibly a longer plasma half-life.  

Since the total drug content in an organ is dependent on the total weight of the 

particular tissue, the drug concentration was converted to drug mass (Fig 4B) for the four 

major accumulation organs by multiplying either the measured weight (for spleen and 

intestine) or the reported values from the literature (for liver and fat, provided by Jackson 

Laboratory).  Within the 8
th

 wk samples of spleen, liver, jejunum/ileum, and fat, 

approximately 13 mg of total drug mass was found, which corresponded to 83% of the 

total drug consumed, assuming 50% bioavailability after a 20 mg/kg/day dose.  Although 

the concentrations measured in the liver were lower than those of the spleen, the larger 

weight and volume of the liver made it the largest storage compartment, since it reserved 

up to 6 mg of CFZ during the 8 wks of treatment.  Assuming fat to be 16% of the body 

weight (Jackson Laboratory), the drug mass in the fat at the 8
th

 wk apparently had 

decreased to 1/3 from that of the 3
rd

 wk which had more than 3 mg of CFZ.  Also, the 

CFZ content in the jejunum and ileum (Fig 4A) changed over the course of treatment in 

contrast to the duodenum content (Fig 4C) or to that of the large intestine (not shown) 
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which accompanied no detectable pigmentation.  The jejunum revealed secondary dark-

purple pigmentation that started from the lower portion of the ileum and progressed 

upstream of the small intestine but did not advance to the duodenal portion.  The 

distinctive coloration boundaries had stopped at 7 ± 0.4 cm point after the stomach at the 

8
th

 wk of treatment.  By multiplying the total weight of the jejunum and ileum (30 ± 0.7 

cm, 1.3 ± 0.1 g), the drug mass within the portion averaged about 3 mg.  Meanwhile, the 

concentration in the lungs peaked at 8 wks of treatment and cleared out relatively quickly 

to 25%, and the duodenum as well as kidney remained clean throughout the course of 

treatment (Fig 4C). 

3.4.6 Plasma concentration reflects the drug content in adipose tissue 

The plasma concentration was measured to investigate pharmacokinetics and the 

relationship between various organs among which the drug contents were distributed (Fig 

4D).  Interestingly, the plasma concentration revealed a similar trend to that of the fat 

rather than other highly perfusive organs such as the liver.  The measured plasma 

concentrations were within a comparable range to previously reported values, 2.6 – 7 µM, 

measured in animals and humans, the plasma concentration decreased for higher doses 

and for longer treatments.
1, 17

  Similarly, the current study shows higher concentration in 

the 3
rd

 wk and then a decrease during the course of treatment and in the washout phase.  

Such dynamic interplay between dose strength and duration is thought to be owing to the 

fast partitioning between the plasma and adipose tissues prior to formation of crystal-like 

drug inclusions in the spleen, liver, or jejunum.  We reasoned that since the drugs in 

adipose tissues exist as neutral, orange in color, and lipid-soluble form, it would be easier 

for the molecules to be transported elsewhere by plasma, whereas sequestered solid mass 
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in other tissues would face an energy barrier –thermodynamic solubility– in order to 

leave the depository, therefore resulting in a directionality to the drug redistribution.  

3.4.7 Macrophages form the crystal-like drug inclusions 

As the CLDIs were shown to be distributed in an organ-specific manner, we 

sought to determine whether there was any cell specificity in tissues with 

immunohistochemical staining.  In the liver, we found the progression of the 

microgranulomas during the 6 wks of treatment and even at the washout phase (Fig 5).  

Macrophages were positively stained with the macrophage-specific antibody F4/80 after 

feeding mice with oil-diet (6wk Oil) or clofazimine-diet (6wk CFZ).  Staining of the 

developing microgranulomas with F4/80 at 6wk CFZ appeared slightly larger than the 

individual, diffusely existing Kupffer cells seen in the vehicle only sample (Oil), 

indicating that more macrophages were recruited upon continued dosing.  The 

clofazimine treatment accompanied fibrosis as the same microgranulomas were stained 

with Masson’s trichrome (MTS).  In the control sample, the MTS, α-smooth muscle actin 

(SMA) or endothelial cell marker (von Willebrand Factor, vWF) staining did not show 

any sign of fibrosis or involvement of muscle cell or endothelium.  In the higher 

magnification, small microgranulomas (arrow) were enlarged to reveal the cytoplasmic 

scars or empty cavities where the CLDIs were removed by organic solvents during the 

immunostaining.  At this stage, cells were positively stained with F4/80 and were 

developing fibrotic tissue; however, there was no involvement of muscle or endothelial 

cells.  It is noteworthy, that at the washout phase, microgranulomas were localized 

around the blood vessels (triangles), and possibly more around the hepatic arteries than 

the central veins which in general appear as much larger and loosened structures.
15

  This 
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suggests that the neutrophil augmentation from the circulation onto the existing 

microgranulomas is more likely than the local macrophage proliferation.
9
 

 In the villi of the jejunum, we did not find any changes in the population of any 

particular type of cell (Fig 6A).  The F4/80 positive macrophage level was comparable 

between the treated and untreated sample of lamina propria.  CD21 (follicular dendritic 

cell marker) and CD3 (early T cell marker) staining did not show any significant 

differences between the samples.  The submucosa of intestinal walls were mostly 

deposited with macrophages; however, due to variability between the samples and 

sections, we could not make any quantitative observation. 

Similar to that which was seen in the TEM analysis, the kidney cortex section 

showed an increased level of macrophage infiltration around the glomerulus and 

peritubular regions.  The F4/80 (Fig 6B, triangle), α-smooth muscle actin (SMA) and von 

Willebrand Factor (vWF) staining indicated the macrophage infiltrated next to the blood 

vessels, indicating kidney inflammation.
14

 

As the spleen was most concentrated with CLDIs, we investigated the distribution 

pattern of different cells around the germinal center, where lymphocytes were 

concentrated and isolated from the surrounding sinus through which blood is filtered (Fig 

7).  The untreated sample revealed a clear distinction between the F4/80 positive 

macrophages, CD21 positive follicular dendritic cells, and CD3 positive early T cells.  In 

the 6 wk treated mouse spleen, an equivalent region to the control section did show a 

similar pattern.  Notably, the CLDI cavities were identified to show empty cytoplasm 

(triangle), and they were only localized at the periphery of the germinal centers which 

themselves appeared normal.  The macrophage marker (F4/80 and CD21) stained only in 
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a diffuse manner for CLDI positive cells, suggesting possible cell necrosis.  However, 

they were in close proximity to a large number of F4/80 positive cells for possible 

augmentation.  Consistent with the TEM image analysis and previous report,
3
 we 

concluded that the macrophage distribution and recruitment determines the site-specific 

localization of the drug deposits, and therefore the drug content in a certain tissue; in 

other words, lymphatic tissues will accumulate and sequester more drugs. 

 

3.5 Discussion 

As a lipophilic compound is generally assumed to partition into fatty tissues to 

exert a larger volume of distribution, an earlier pharmacokinetics study of clofazimine 

demonstrated that fat is the main storage compartment for a short period of time.
2
  In that 

study, drug absorption and distribution were monitored in mice for either 1 or 5 days after 

a daily dose of 40 mg/ml through oral gavage.  The drug contents in the lungs, spleen, 

and liver peaked at 6 hours, followed by a sharp decrease and then remained at minimal 

level until another dose was given.  However, the contents in fat increased consistently 

over a 24 hour period, which kept on increasing with each daily treatment throughout the 

5 days of treatment.  These observations imply that fat can extract lipophilic molecules 

from the plasma and highly perfusive organs, and therefore plays a significant role in the 

drug distribution within 5 days.  In the current study, we demonstrated that a longer term 

administration of clofazimine involves another level of physiological factors, that the 

expansion and structural reorganization of tissue-macrophages significantly affect the 

distribution and retention of the poorly soluble, lipophilic drug.  
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In terms of systemic pharmacokinetics, the formation of atypical, intracellular 

drug inclusions of clofazimine was linked to lowering the plasma concentration by a 

sequestration mechanism that is different from common elimination processes such as 

drug metabolism or renal excretion.  In addition, the volume of the spleen increased as it 

sequestered a more significant amount of the drug in the process.  Similarly, liver 

microgranulomas was a response of the body to an idiosyncratic drug reaction, driving 

the majority of the clofazimine into inert, solid forms and serving as a storage 

compartment for the drugs en masse.  Altogether, these results challenge the 

pharmacokinetic models assuming compartments with constant volumes and 

homogeneous tissue composition. 

The microgranulomas development also indicated that macrophages can 

recognize irritants at the molecular level and sequester them within the cytoplasmic 

compartment, which would trigger a positive feedback to recruit more macrophages.  It 

was expected to see some necrosis within the center of the microgranulomas, as highly 

active macrophages would end up accumulating more materials, and therefore 

mechanical stress could eventually kill the cells.  However, additional layers of 

macrophages summoned by pre-existing layers can further extract and isolate clofazimine 

from the systemic circulation.  In the same context, the progression of splenomegaly 

without significant change of concentrations during the washout phase suggests ongoing 

recruitment of macrophages for further isolation of the drug.  Chronic irritation and 

macrophages’ anti-inflammatory response caused fibrosis, similar to the cases of poorly 

soluble substances persisting and retention due to resistance to macrophagic metabolism.
8
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At the 8
th

 wk of treatment, the spleen could contain the poorly soluble clofazimine 

more than 1% of the organ weight.  Such a massive accumulation in the form of solid 

matter advocates for the physiological nature of a large volume of the distribution, which 

is a conceptual volume to represent total amount of drug in the body assuming a constant 

plasma concentration.  As a matter of fact, the drug sequestration in the macrophage is 

responsible for the biodistribution of the poorly soluble, lipophilic drug. 
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3.7 Figures 

 

Figure 3-1 Pigmentation in CFZ treated mice 
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(A) Body weight monitored for 8 wks of treatment followed by additional 8 wks of 

washout period by feeding drug-free, regular diet.  Weight gains for the 16 wks in each 

groups were statistically significant (*, p<0.05).  (B) Skin and hair discoloration to pink 

was apparent at 8 wk treatment (right) compared to the mouse treated with vehicle-only 

diet (left).  (C) Significant pigmentation was observed on the lungs, liver, spleen, 

jejunum, ileum, and msenteric lymph node (mLN).  Mild, orange color pigmentation was 

observed in the hypodermis of the skin, abdominal fat, omental fat attached to mesenteric 

lymph node, and tips of femurs.  The color of the heart, brain, pancreas, kidney and 

duodenum remained unchanged.  (D), 8 wk drug treatment induced splenomegaly, which 

even further increased during washout period (WO) compared to the controls (drug-free 

diet) or 3
rd

 wk of treatment.  In contrast, mass change of the kidney was insignificant. 

Statistical significance: *, p<0.05, and ***, p<0.001, S.E.M. n = 4 – 6, ANOVA (analysis 

of variance). 
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Figure 3-2 Frozen section of organs from drug treated mice  
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(A) 8 wk treated lung parenchyma showed distinct, vibrant red drug inclusions.  (B) 

CLDIs were birefringent under polarized light, while smaller, autophagosome-like drug 

inclusions did not.  (C) 8 wk treatment affected kidney medulla without CLDIs.  (D) 

Glomerulus (GM) in the cortex region of the same kidney.  (E) 8 wk treated jejunal/ileal 

section is shown.  CLDIs in the lamina propria of intestinal villus, enterocytes were clean.  

(F) 8wk treated mesenteric lymph node with significant and heterogeneous distribution 

around the germinal center (GC).  (G and H) Spleens with CLDI development.  (I and J) 

Liver developed CLDIs from scattered (3 wk) to localized (8 wk) pattern around the 

vessel region (V).  Scale bars = 20 µm.  
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Figure 3-3 TEM images of affected organs showing different types drug inclusions 

associated with unique histological features. 
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(A) 4.5 wk treated lung parenchyma macrophages (M) with cytoplasmic inclusions 

bodies.  While autophagosome-like drug inclusions (ALDIs) were preserved, CLDIs were 

shown as empty cavities as they were washed out.  (B) 8.5 wk treated kidney tubular 

region with numerous renal tubules (T) were shown.  In peritubular region, a group of 

macrophages appeared with CLDI cavities in the cytoplasm.  (C) 4.5 wk treated mice 

jejunal submucosa showed a number of macrophages with ALDIs and CLDIs.  (D) 8.5 

wk treated spleen showed significant amount of CLDI cavities associated presumably 

with macrophages.  Lymphocytes (L) with small cytoplasm and round nuclei did not have 

CLDI cavities.  (E) 4.5 wk treated liver showed a number of Kupffer cells with CLDI 

cavities surrounded by hepatocytes (H).  (F) 8.5 wk treated liver developed a significant 

size of microgranulomas around the blood vessel.  Fibrocytes (F) were separating the 

endothelium from the macrophages in microgranulomas.  Scale bars = 5 µm. 
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Figure 3-4 CFZ content analysis in various organs.  

(A), Concentration of CFZ per gram of the spleen, liver, intestinal segments from the 

jejunum to ileum, and fat after 10 mg/kg mice daily absorption.  Total drug mass in these 

organs (B) were obtained by multiplying total weight of the respective organs.  (C), The 

lungs have developed a significant accumulation between 3wk and 8 wk, which was 

effectively cleared out during the washout phase (WO).  The kidney and duodenum show 

no difference between the treatments.  (D), CFZ concentration measured in plasma which 

peaked at earlier point of treatment decreased significantly during further treatment and 

washout phase. (*, p<0.05, ** p<0.01, ***, p<0.001, S.E.M, N = 4 – 6 by ANOVA) 
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Figure 3-5 Liver microgranulomas developed to sequester CFZ as CLDIs.  

Regions around the blood vessels underwent a structural transformation as drug treatment 

lasted as well as during the washout phase.  Macrophage distribution by the F4/80 

staining showed the scattered distribution of Kupffer cells developing into small colonies 

evenly distributed throughout the section.  However, larger colonies of microgranulomas 

(triangles) developed with fibrosis (MTS) at region around the vessels (vWF).  Higher 
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magnification images indicated the microgranulomas (arrow) were actually comprised of 

macrophages that contained a significant number of CLDIs in cytoplasm shown by the 

cavities.  There was no involvement of muscle tissue indicated by α-smooth muscle actin 

staining (SMA)
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Figure 3-6 Immunostaining for 6 wk treated mice jejunum and kidney.  

(A), jejunal sections of 6 wk treated mice are shown.  Macrophage marker F4/80, 

dendritic cell marker CD21 or T cell marker CD3 did not show much difference between 

control, 6 wk treated, and washout of jejunal villi.  (B) In the kidney with 6 wk of drug 

treatment, macrophages that are normally absent had infiltrated around the glomeruli.  

Masson’s trichrome staining (MTS), α-smooth muscle actin (SMA), or von Willebrand 

factor (vWF) did not show much difference other than structures around the blood vessels. 
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Figure 3-7 Spleen revealed a specific region that localized CLDIs  

In contrast to the control, CFZ treated mice spleen developed a significant CLDI storing 

region around the germinal centers (GC) that are rich in lymphocytes and lymphoblasts.  

On the periphery of this region, there were a significant number of cells with cytoplasmic 

CLDI cavities.  
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Chapter 4  

Cytoplasmic Construction of Supramolecular Structures with 

Organelle- and Crystal-like Features 

 

4.1 Abstract 

Eukaryotic cells naturally possess a limited repertoire of evolutionarily-conserved 

organelles and cytoskeletal elements.  To endow cells with a new structural element, we 

fed mice with a supramolecular structure-forming molecule: a cell-permeant, highly-

insoluble, antibacterial drug clofazimine.  Clofazimine was mixed with powder diet and 

fed to Balb/c mice for 2 months, followed by drug-free diet.  At predetermined time 

points, various organs were collected for biochemical analysis and microscopic imaging, 

including polarization, fluorescence, and electron microscopy.  After absorption, 

clofazimine accumulated in macrophage-like cells, where intracellular drug-membrane 

complexes transformed into functionally-integrated structural elements.  These 

“polyhedrosomes” were birefringent red needles with the internal structure of planar 

stacks of membranes at the core, forming elongated, faceted prisms.  Meanwhile, the 

harvested macrophages with polyhedrosomes could adhere and migrate on the plastic 

culture dish, and could release the structure-forming molecule upon illumination.  

Physicochemical properties showed that the polyhedrosomes were unlike pure drug 
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crystals or other cellular organelles.  They burst in distilled water or when heated, and 

disintegrated in alkaline media.  We demonstrate how artificial structural elements with 

organelle- and crystal-like features can be constructed within the cytoplasm of 

mammalian cells in vivo.  

 

4.2 Introduction 

Low concentrations of exogenous chemical agents are normally used in 

pharmaceutical science experiments to probe different aspects of cell physiology by 

activating or inhibiting specific receptors or enzymes.  Nevertheless, we decided to 

investigate a previously unexplored dimension of chemical biology: the possibility of 

using small molecule chemical agents as physical building blocks to endow cells with 

new structural and functional features.  For this purpose, we used clofazimine, a highly 

cell-permeant, non-toxic antibiotic
1-4

 approved for clinical use to treat leprosy and other 

inflammatory diseases.
2, 4, 5

  It dissolves in acidic solutions, or in DMSO, and becomes 

virtually insoluble in aqueous media at neutral or alkaline pH.
6
  Therefore, in the 

gastrointestinal tract after oral administration, clofazimine can form supersaturated 

solutions when it passes from the acidic pH of the stomach to the more alkaline pH of the 

intestine.  During the absorption and distribution, the drug can possibly form complexes 

with intracellular membranes leading to a significant subcellular drug accumulation as 

suggested in the previous study with MDCK cells exposed to supersaturating 

concentrations of the drug for 5 days.
6
  In light of these observations, we decided to 

investigate the supramolecular structures that form upon long-term, continuous 

administration of clofazimine in vivo.   
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4.3 Materials and Methods 

Animal experiments and perfusion fixation for TEM imaging.  The University of 

Michigan Committee of Use and Care of Animals approved all animal studies and 

procedure.  Mice (4-5 wk male Balb/c, Jackson lab, Maine) were fed with drug with 

powder diet (3 mg/ml clofazimine (Sigma, C8895) in sesame oil, mixed at 0.01% oil to 

food).  Blood was collected from euthanized mice and carcasses were fixed by perfusing 

0.1M Sorensen’s buffer and Karnovsky’s fixative (3% paraformaldehyde, 2.5% 

glutaraldehyde) infused to left ventricle and let egressed to vena cava (2.5 ml/min).  

Tissues were minced smaller than 1 mm in each dimension followed by TEM sample 

preparation and imaging.
6
  Control mice were fed with 0.01% oil to food, and wash out 

mice were fed drug- and oil-free diet. 

Biochemical analysis of clofazimine in tissues.  At predetermined time point mice were 

euthanized using CO2, and blood was removed through cardiac puncture.  Next, the 

organs were collected, washed in cold DPBS, and kept at -20°C until further analysis.  

Tissue (0.05 – 0.1 g/ml water) was homogenized with Tissumizer (Tekmar
®
, Cincinnati, 

OH), extracted with dichloromethane twice and the solvent was evaporated.
7
  For 

measurement, clofazimine was redissolved in methanol and its absorbance was measured 

at 490 nm.  Concentration was calculated using as standard curve generated by spiking 

extracted tissue of the control (vehicle-only treated) mice with known amounts of drug.  

Extraction yield was 60 – 80%. 

Immunohistochemistry.  Tissues were perfusion fixed as described above, paraffin-

embedded and stained with the standard H&E and Masson’s trichrome technique.  Horse 

Radish Peroxidase and intelliPATH FLX DAB chromogen kit (IPK5010, Biocare 



  

79 

 

Medical, Concord, CA) was used for F4/80 (1/100, ab6640, abcam
®
), α-SMA (1/200, 

ab5694, abcam
®
), and vWF (1/500, ab7356, Millipore) antibody staining.  All staining 

was performed by the Pathology Core for Animal Research (PCAR) in the Unit for 

Laboratory Animal Medicine (ULAM) at the University of Michigan. 

Freeze-fracture freeze-etch EM.  Unfixed liver was collected after exsanguination, kept 

in 4°C, and shipped overnight to the Heuser lab at Washington University (St. Louis) for 

freeze-etch EM analysis, as reported previously
8
 with minor modifications.  In brief, the 

sample was quickly frozen against a copper block, cooled with liquid helium using slam 

freezer and kept in liquid nitrogen.  The sample was fractured with Balzers 400 nitrogen 

cooled vacuum evaporator and freeze-etched for 2 min at -100°C.  Rotary replica was 

generated with 2 nm platinum and backed with 10 nm carbon film support.  It was 

cleaned with chromo-sulfuric cleaning solution (Fisher Scientific, cat# SC88) for 12 

hours and rinsed with DI water.  The sample was picked up on formvar coated grids for 

viewing on a JEOL 1400 electron microscope with AMT camera.  

Primary cell isolation and culture.  4% Brewer’s thioglycollate medium was prepared 

sterile as described.
9
  A 2 ml volume of solution was injected IP.  Cells were collected 4 

days later using cold DPBS.  Bone marrow macrophages were flushed out from mice 

femurs using a fine needle syringe with DPBS.
10

  Cells from spleen and lymph nodes 

were collected by mincing small tissue using a cell strainer with 100 µm mesh size.  Cells 

were seeded in tissue culture plates and kept 7 days in 37°C, 5% CO2 with DMEM 

supplemented with 10% FBS, Pen/Strep, and non-essential amino acids. 

Polyhedrosome isolation.  Tissue homogenate was sonicated for 30 minutes, centrifuged 

(100g for 1 min) to remove large cell debris.  Supernatant was resuspended in 0.125% 
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Trypsin-EDTA solution (Gibco) and kept at 37°C for 1 hour, followed by centrifugation 

at 100g to remove large cell debris.  The drug inclusions in supernatant were then 

pelleted by centrifugation (21,000g for 1 min), and resuspended in water.  Protein content 

was determined with the BCA assay (Pierce 23227, Thermo Scientific) and clofazimine 

content was determined spectrophotometrically as described above.  For protein assay, 

equal volume of 5% SDS solution was mixed with the samples and the protein content 

was measured following the BCA kit instructions.  

Powder X-ray diffraction of clofazimine crystals and isolated polyhedrosomes.  

PXRD of dried samples of isolated polyhedrosomes and 8 wk treated (or control) mouse 

tissue homogenate were carried out with benchtop Rigaku Miniflex X-ray diffractometer 

(Danvers, MA).  CuKα radiation (λ = 1.54 Å), tube voltage = 30 kV, tube current = 15 

mA.  Data were collected at 2 theta from 2.5 to 40 at a continuous scan at the rate of 

2.5°/min.  Diffractograms of triclinic and monoclinic form of clofazimine crystals were 

imported from Cambridge Structural Database (CSD) and positive control for 

clofazimine crystals was obtained from the powder from the bottle. 

 

4.4 Results 

For long term, continuous administration, mice were fed with powdered chow 

supplemented with the structure-former clofazimine, ad libitum.
4, 7, 11, 12

  This resulted in 

a daily intake of approximately 20 mg/kg, well below clofazimine’s LD50 and 

comparable to the human daily dose of 4.3 mg/kg.
13

  As in humans,
13

 the skin of the 

Balb/c mice gradually turned red after three wks (Fig. 1a).  Otherwise, the treated animals 

gained weight and behaved similarly to their untreated counterparts (Fig. 1b).  
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From 3 to 8 wks of dietary supplementation, biodistribution analysis revealed a 

steady state accumulation of clofazimine in the kidney, muscle, heart, and brain (Fig. 1c).  

However, continuous, non-steady state accumulation occurred in the spleen, liver, lymph 

nodes, bone marrow, intestine and lungs.  In the spleen, the mass of structure-former 

almost reached 1% of the wet organ weight (Fig. 1c).  After discontinuation, the skin of 

the drug-diet treated mice gradually returned to a paler color over a period of two months.  

Some organs, like the kidneys, gradually lost most of the structure-former.  However, 

clofazimine concentration only decreased by 76% and 73% in liver and lung respectively, 

while changes in concentration in the spleen were statistically insignificant, indicating a 

specific retention mechanism (Fig. 1c).  

In vivo, clofazimine accumulated in tissues in metabolically intact form.
3, 11

  

Examination of unfixed, frozen tissue sections by transmitted light microscopy revealed 

dark, ruby red and crystal-like drug inclusions present in all organs exhibiting continuous 

accumulation and retention of the drug (Fig. 1d).  They were most numerous in spleen 

and lymph nodes, followed by liver, small intestine and lungs.  In treated mice, 

splenomegaly (mass increase by >3.4 fold (N=5), P<0.01; t-test) and swollen mesenteric 

lymph nodes were observed.
14

  In contrast, tissues achieving steady state levels of 

clofazimine lacked drug inclusions.  At 3 wk treatment, the inclusions were 2.2 ± 0.78 

(SD) µm in width and 3.9 ± 2.6 µm in length.  At 8 wk treatment, the individual 

inclusions were only slightly more elongated to 6.0 ± 3.6 µm (P<0.01) but increased in 

numbers.  Thus, the growth of drug inclusions was constrained by the size of the cells.  

After treated mice were switched to a clofazimine-free, regular diet for two months (Fig. 
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1c, wash), the drug inclusions were still prominent in those organs that retained 

clofazimine (e.g., spleen). 

In the liver, only macrophage-like cells appeared to contain inclusions (Fig. 1e), 

and surrounding hepatocytes clearly lacked them.  Cells with drug inclusions formed 

small clusters resembling microgranulomas, which are normally formed by liver 

macrophages under stress (Fig. 1f, M).
15

  These clusters were adjacent to blood vessels 

(Fig. 1f, V).  Cells in these clusters expressed the F4/80 antigen (macrophage marker; Fig. 

1f) which are also labeled the Kupffer cells.  The cell clusters were embedded in 

extracellular matrix (Masson’s trichrome staining, MTS; Fig. 1f) and they did not stain 

with von Willebrand factor (endothelial cell marker, vWF; Fig. 1f) or α-smooth muscle 

actin (smooth muscle marker, αSMA; Fig. 1f).   

In the jejunum, drug inclusions were absent in the enterocytes, and were prominent 

in cells of the lamina propria and the lymphatic regions of the muscularis mucosae.  As in 

the liver, these cells stained positively with the F4/80 marker but lacked staining with the 

vWF and αSMA.  Together with the accumulation of clofazimine and retention in spleen 

and lymph nodes, these results indicated the special role of immune cells at the sites of 

deposition. 

Due to the extraction procedure used for sample preparation, intracellular drug 

inclusions in liver and spleen generally appeared as empty, elongated cavities.  

Nevertheless, in the macrophage-like cells of the intestine the inclusions were not 

extracted (Fig. 2a).  Since their supramolecular features did not resemble any other 

known subcellular structures, we dubbed these structures “polyhedrosomes”.  They were 

osmiophilic, elongated and polyhedral in shape, and bounded by a lipid bilayer (Fig. 2b).  
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In addition, there were other atypical organelles with heterogeneous granular bodies 

merging with elongated polyhedrosome-like structures or with multilamellar bodies 

merging with amorphous granular bodies (Fig. 2c).  

The regular, internal membrane organization of polyhedrosomes was evident at 

higher magnifications.  As seen in medial cross-sections cut along the long axis of the 

structure (Fig. 2d and 2e), polyhedrosomes possessed a multilamellar core comprised of 

planar sheets separated by parallel array of clear “channels” spaced 18 nm apart, and 

aligned parallel to the long axis of the structure (Fig. 2g and 2f).  In some regions, the 

polyhedrosome structure appeared as a lattice with periodic structural elements repeating 

every 10 or 18 nm (Fig. 2e and 2f). 

Transversal cross-sections cut perpendicularly to the long axis (Fig. 2h) revealed 

the multilamellar core comprised of planar stacks of alternating black and white 

membranes of 10 nm thickness (Fig. 2i).  The core was surrounded by concentric 

lamellae of cortical, multilayered membranes.  The entire structure was bounded by an 

outermost membrane bilayer (Fig. 2h).  The multilayered membrane that filled the entire 

structure seemed to be comprised of stacks of trilayer membranes present in all the 

elongated polyhedrosomes, as well as in the transitional structures (Fig. 2c).  This trilayer 

membrane consisted of a thick, dark osmiophilic band at the center (Fig. 2j, arrows) 

flanked by two thinner osmiophilic bands on either side (Fig. 2j, triangles).  A clear, 5 nm 

layer separated the central band and the flanking bands.  In the polyhedrosome core, the 

trilayer membranes were separated by a regular, 5 nm clear layer that was continuous 

with membrane-free regions (Fig. 2h, *).  
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In order to gain structural information on the un-extracted sample without using 

organic solvent, freeze-fracture freeze-etch electron microscopy (FEEM) was 

implemented on the unfixed liver of a 6 wk treated mouse (Fig. 2l and m).  Consistent 

with the results from TEM study, FEEM showed a three-dimensional, planar, 

multilamellar organization at the core of the polyhedrosomes, with no evidence of lateral 

organization along the plane of each layer.  The polyhedrosomes were surrounded by a 

double membrane (Fig. 2l and m, blue and purple) with protein-like structural features 

similar to those present in the other cellular membranes in the cytoplasm of the cell 

(green). 

Remarkably, this multilamellar structure was unlike any other membrane 

organizations formed by intracellular membranes or previously reported forms of isolated 

phospholipids reconstituted in aqueous medium.
16

  Also, the membrane-bound polyhedral 

structure possessing such an atypical supramolecular architecture was distinct from any 

other organelles, cytoskeletal or supramolecular architecture naturally present in mice 

macrophages.
16

  

To study the newly formed intracellular structures polyhedrosomes in greater detail, 

bone marrow macrophages (BMM) were isolated from femurs, and peritoneal 

macrophages (PM) were elicited by intraperitoneal injection of 4% thioglycollate.
9
  These 

cells attached and spread on tissue culture plastic (Fig. 3a).  The polyhedrosomes of the 

elicited macrophages resembled those in vivo.  Peritoneal macrophages containing the 

polyhedrosomes were observed to migrate out from clusters onto the tissue culture plastic 

(Fig. 3b) indicating the cells were alive and remained functional despite the inclusions.  

In contrast to the toxic effect reported in previous study with MDCK cells,
6
 the 
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polyhedrosomes seemed to be compatible with macrophages, as numerous intact 

mitochondria were observed.  

Interestingly, with peritoneal macrophages isolated in vitro, illuminating 

polyhedrosomes with 490 nm light induced release of structure-former (Fig. 3c).  Soon 

after illumination, the structure-former’s fluorescence filled the cell.  Upon continued 

illumination, the fluorescence diffused to the neighboring cells (Fig. 3c), indicating 

perturbation of the crystal-like drug inclusions is possible via optical stimulus. 

When live cells were plated on tissue culture plastic, polyhedrosomes maintained 

their shape and size.  Outside cells, polyhedrosomes gradually transformed into irregular, 

rhomboidal shapes resembling typical clofazimine crystals, which grew larger than the 

cells in length: from 9.7 ± 3.1 µm (day 0) to 15 ± 4.7 µm (day 7) (Fig. 3d).  Nevertheless, 

intracellularly retained polyhedrosomes were highly regular in shape.  They appeared 

rigid and did not bend when cells were detached and rounded up in suspension (Fig. 3e).  

Generally, cells contained one, two or more polyhedrosomes of similar length as bundles. 

To further examine the characteristics of polyhedrosomes, we decided to compare 

their physicochemical properties directly to pure clofazimine crystals.
17-21

  In contrast to 

polyhedrosomes, clofazimine crystals were highly irregular in shape and size (Fig. 4a).  

They fluoresced in the standard, green (eGFP) channel and in the red (Cy3) channel of 

the epifluorescence microscope.  These properties did not change when they were placed 

in water and heated to 100 °C, placed in 1N NaOH or trypsinized.  

For comparison, polyhedrosomes were isolated by mincing and disaggregating 

spleens with 0.125% trypsin-EDTA, ultrasonicating them for one hour after passing them 

through a cell strainer.  Polyhedrosomes were the only microscopic structure remaining 
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visibly intact, and could be further purified through step-wise centrifugation as described 

in the methods section.  Isolated polyhedrosomes were immediately resuspended in 10% 

sucrose and the structure was stable for more than 3 months stored in -20°C.  The 

calculated clofazimine content within isolated polyhedrosomes were normalized by 

protein content, and content analysis indicated that the purification process enriched as 

much as 16-fold for 8 wk treated spleen homogenate.  Greater than 90% of the total 

clofazimine mass in the homogenates were recovered in the polyhedrosome fraction, 

while 95% of proteins were removed.  The isolated polyhedrosomes were birefringent, 

and appeared dark, ruby red in color and needle-like in appearance.  Unlike control 

clofazimine crystals, they were homogenous in shape and size, and polarized light as a 

single birefringent domain.  They did not fluoresce in the green eGFP channel, yet they 

were brightly fluorescent in the red Cy3 channel (Fig. 4b).     

Unlike clofazimine crystals, isolated polyhedrosomes were highly responsive to the 

environment.  Upon exposure to distilled water (Fig. 4c), they burst into smaller 

birefringent globules which aggregated into large masses and became fluorescent in the 

green eGFP channel.  Upon treatment with 1N NaOH (Fig. 4d), polyhedrosomes 

underwent localized changes in structure: parts of the elongated polyhedrosomes 

fragmented and transformed to the green eGFP fluorescent form.  Other polyhedrosomes 

treated in this manner became fluorescent at the tips (arrows).  Isolated polyhedrosomes 

in suspension disintegrated when heated to 100°C for 15 minutes (Fig. 4e).  When heated, 

they turned yellow, became fluorescent in the green eGFP channel, and burst into small 

globules that remained attached without aggregating to each other.  Polyhedrosomes 

remained largely intact after 0.125 % trypsin-EDTA treatment for 1 hr (Figure 4f). 
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Based on powder X-ray diffraction of isolated polyhedrosomes (Fig. 4g), a single 

peak was observed at a small diffraction angle.  The absence of diffraction peaks at 

higher angles was consistent with the liquid crystal-like organization of polyhedrosomes 

observed by EM (Fig 2).   

 

4.5 Discussion 

The ability of clofazimine to induce the formation of highly organized, liquid 

crystal-like multilamellar structures inside the cells of a mammalian organism is quite 

remarkable.  The organelle-like membrane organization of the polyhedrosomes is an 

indication that the intracellular membrane organization of mammalian cells is not under 

strict genetic control.  Instead, the results indicate the organization of intracellular 

membranes can be chemically manipulated with structure-forming molecules like 

clofazimine, in a manner that had not been previously observed in nature or in test 

tubes.
22

  More importantly, the formation and growth of polyhedrosomes were 

constrained to the cytoplasm of macrophage-like cells, indicating that such a structure is a 

product of the cells’ biosynthetic machinery interacting with the structure forming 

molecule in a very specific manner.   

We hypothesize that the formation of polyhedrosomes reflects local differences in 

complex biological processes regulating organelle and cell membrane organization, 

homeostasis, and cell survival, rather than being purely a result of local differences in the 

pharmacokinetics and biodistribution of the structure forming molecule.  That 

polyhedrosomes are only associated with a specific cell type is evidence that the 

formation of such a structure is under epigenetic control.  Indeed, although they are 
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present in different organs of the body, polyhedrosomes are always associated with 

macrophage-like cells.  A local expansion of the macrophage-like cell population was 

observed in association with microgranulomas formation in the liver, and the 

splenomegaly phenotype.  This suggests that specific macrophage cell growth and 

differentiation signaling pathways determine the organ accumulation and tissue 

distribution patterns of polyhedrosomes.  

Our results demonstrate that a highly stimulus-responsive, organelle-like 

supramolecular structure can be constructed through the massive accumulation of an 

insoluble, structure-forming small molecule within the cells of an animal.  

Polyhedrosomes possess features of liquid crystals, but their size, shape, distribution, and 

molecular structure is under biological control.  Unlike the natural organelles of 

eukaryotic cells and unlike inert clofazimine crystals,
6, 23

 the distinctive physical, 

chemical and biological properties of polyhedrosomes sets them in a class of their own.  

They are most akin to a solid-state, living cell-based micro-device, and they should be 

genetically tractable and evolvable.  
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4.7 Figures 

 
 

Figure 4-1 Clofazimine inclusions formed in macrophage-like cells in vivo.  

(a) Mice fed with the structure-former for 3 wks (upper) showed reddish pigmentation 

visible in the ear, tail, and skin when compared to mice treated with vehicle only (lower).  

(b) Weight gains in mice fed with and without structure-former were comparable (n = 40, 

■, vehicle; ○, treated; *, P<0.01, Student’s T-test).  (c) Biochemical analysis of various 

organs revealed differences in the accumulation and retention of the structure-former 

upon wash out (*, P<0.01, n = 5 per group, ANOVA).  (d) Ruby red inclusions appeared 

in frozen sections of spleen, lung and liver, but not in kidneys of 8 wk drug-diet.  H, 

hepatocyte; V, blood vessel; M, microgranulomas.  (e) Intracellular inclusions were 

extracted in perfusion-fixed liver upon EtOH-dehydration and staining with toluidine 

blue.  Arrows indicate needle-like cavities remaining after extraction.  (f) Histological 

sections revealed cellular changes in liver of mice fed with the structure-former.  H&E, 
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F4/80 (macrophage), Masson’s trichrome staining (MTS, collagen fibers), von 

Willebrand factor (vWF, endothelium) and alpha-smooth muscle actin (αSMA).  K, 

Kupffer cells.  Scale bar = 10 µm unless indicated otherwise. 
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Figure 4-2 TEM analysis revealed the internal structure of polyhedrosomes.  

(a) Intact polyhedrosomes were observed in the cells of the lamina propria of 8.5 wk 

treated mouse jejunum.  P, extracted polyhedral cavities. M, mitochondria. Arrow: 

atypical structure, magnified in panel b.  (b) Polyhedrosomes were delimited by a lipid 

bilayer.  (c) Polyhedrosomes appeared to form from heterogeneous granular domains 

transforming into a lamellar structure (arrow, magnified in d), observed in 4.5 wk treated 

jejunum.  (e) Zoomed image of the polyhedrosome from (a) showed the lattice-like 

lamellar structure.  (f) and (g), Fast Fourier Transform confirmed the regular, periodic 

structure of polyhedrosomes.  (h) Transversal cross section of polyhedrosomes from 8.5 

wk jejunum showed an internal organization of parallel bands and some amorphous 

regions indicated by (*).  (i) Zoomed image revealed the trilayer membrane of 10 nm in 

width separated by inter-laminar spaces continuous with amorphous region.  (j) Zoomed 

image of rectangle in (h), showing trilayer membrane structure comprised of a central 

dark band (arrows) flanked by a pair of less prominent, dark bands (triangles) on either 

side.  The central band and flanking bands are separated by clear 5 nm space.  The 

trilayer membranes were regularly spaced and formed planar stacks, with the central 

bands exhibiting the 18 nm spacing observed with FFT (k).  (l) Unfixed liver of 6 wk 

treated mouse was processed with FEEM analysis.  The polyhedrosome was wrapped by 

double membrane (blue and purple) which was surrounded by cytoplasmic components 
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(green).  The inner cortex and core showed a multilayered organization with no evidence 

of lateral molecular ordering (m). 
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Figure 4-3 Macrophages containing intracellular polyhedrosomes were collected, plated 

and studied in vitro.   

(a) Bone marrow macrophage (BMM) and thioglycollate elicited peritoneal macrophages 

(PM) were obtained from mice fed with structure-former, attached and spread on tissue 

culture plastic, and were stained with Hoechst 33342 to show nuclei.  (b) Peritoneal 

macrophages with polyhedrosomes migrated away from large clusters when plated on 

tissue culture dishes.  (c) Blue light triggers structure-former release from 

polyhedrosomes in peritoneal macrophages, observed in TRITC channel.  (d) 

Extracellular polyhedrosomes grew in size and became irregular in morphology, unlike 

intracellular polyhedrosomes.  Red blood cells in the background serve as size markers, 

for reference.  (e) Polyhedrosomes inside bone marrow-derived cells in suspension, 

stained with Trypan Blue.  Scale bars = 10 µm unless otherwise indicated. 
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Figure 4-4 Polyhedrosomes respond to stimuli.  

Birefringence, fluorescence under eGFP or Cy3 channel showed clofazimine crystals 

(control, a) were unchanged upon different treatments.  (b) Isolated polyhedrosomes 

remained intact in isotonic solution of 10% sucrose in water.  (c) Isolated 

polyhedrosomes burst and aggregated in distilled water.  (d) After exposure to 1N NaOH, 

isolated polyhedrosomes partially disintegrated from different parts.  Arrows point to the 

tips of polyhedrosome that were fluorescent in the green channel.  (e) After 15 min at 

100°C, polyhedrosomes fragmented and changed to a pale orange color.  (f) 

Polyhedrosomes remained relatively intact after 30 min sonication and 1 hour trypsin 
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treatment.  Scale bar = 10 µm.  (g) Powder X-ray diffractogram for isolated 

polyhedrosomes and 8 wk treated mouse spleen homogenate had single peak at 2 theta = 

7.2.  Vehicle-treated mouse spleen (8 wk control) and neither of clofazimine crystal 

polymorphs (monoclinic and triclinic) showed corresponding peaks. 
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Chapter 5  

Comparative Study of In Vivo Crystal-like Drug Inclusions 

using Transmitted and Freeze-Etch Electron Microscopy 

 

5.1 Abstract 

We present three different types of electron microscopic analysis to characterize the 

polyhedrosomes, ultrastructural organization of crystal-like drug inclusions (CLDIs).  

The cryo-electron microscopy (cTEM), transmitted electron microscopy (TEM), and 

freeze-fracture freeze-etch electron microscopy (FEEM) techniques were implemented to 

find the cytoplasmic structures resembling polyhedrosomes we have discovered in the 

tissues of clofazimine treated mice.  The cytoplasmic structures found in cTEM and TEM 

were present in macrophages bound by delimiting membranes which were approximately 

20 nm in thickness.  Along with empty crystalloid cavities, there were polyhedral 

osmiophilic structures with polyhedral morphology which resembled CLDIs.  Some of 

the structures contained alcohol-proof, highly organized, lattice-like layers regularly 

spaced between 6 to 17 nm.  Under FEEM, the cytoplasmic organelle revealed planar 

stacks enclosed by 30 nm thick double membranes which contained pillar-like inter-

membrane structures.  These supramolecular organizations suggested that the internal 

lamellae could be some type of lipid component rearranged and compacted into a unique 
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shape which was controlled by the specific biology of macrophages, rather than the 

crystallization of pure drug molecules.  

 

5.2 Introduction 

Previously we have reported an unusual cytoplasmic structure with crystal- and 

organelle-like features.
1
  These subcellular constructs, which we have named 

“polyhedrosomes”, were formed by the highly permeable and extremely lipophilic (logP 

> 7) antibacterial drug clofazimine, which accumulated inside the macrophages of mice 

after oral dosing.  The polyhedrosomes were vibrantly red, 10 – 20 nm crystal-like 

needles with highly homogeneous distribution.  Through transmitted electron microscopy 

(TEM), we found polyhedrosomes’ internal structures were highly organized membrane 

configurations ranging from 5 to 18 nm in which drugs of 1 nm in each dimension were 

presumably sequestered.  

Five decades ago, McDougall performed EM study on the macrophages in 

clofazimine treated mice and found some structures akin to what we described.
2
  The 

structures he found were empty cavities with membrane outlining, which formed 

polygonal shapes similar to those of the crystal-like drug inclusions (CLDIs) apparent 

under transmitted light microscopy.  He also observed long, featureless “osmiophilic rods” 

with 3 – 4 nm internal planes running perpendicular to the long axis flanked by two 

layers of membranes.  Nevertheless, searching for direct evidence of a crystalline 

structure, he was not able to find any evidence indicating they were crystalline, while he 

confirmed that the dense bodies were not the result of artifacts, after checking impurity, 

staining, and possible incomplete alcohol dehydration.  Unfortunately, he has not 
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followed up on his initial report and discussion with the further structural analyses that he 

originally proposed to conduct. 

So far, only a small number of techniques have been applied to characterize these 

polyhedral, needle-shaped structures embedded in the cytoplasm of a small population 

within lymphatic organs.
1
  Optical, polarization, and fluorescence microscopy inspections 

allowed for visual differentiation between pure drug crystals and intact CLDIs.  Unlike 

the pure drug, the new constructs were stimulus-responsive, sensitive to osmotic pressure, 

pH, or temperature for example, indicating they were supramolecular complexes that 

could be manipulated.  Nevertheless, the resolution remains insufficient to probe which 

molecular entities comprise the assembly.  

Brief investigation with electron microscopy in our previous study
1
 has suggested 

that polyhedrosomes are membrane bound lattice structures similar to liquid crystal.  

Therefore, we decided to further scrutinize the EM images in order to extract as much 

information as possible and investigate how the lipophilic clofazimine molecules are 

concentrated and become packed in such a unique way.  High magnification electron 

micrographs from different settings including transmitted and freeze-fracture freeze-etch 

electron microscopy were acquired and compared in attempt to provide a guideline for 

experiments to investigate molecular entities of polyhedrosomes.  These new findings 

could be the first step towards building and controlling a new construct in cells.  

 

5.3 Materials and Methods 

Animal experiment.  Mice (4-5 wk male Balb/c) were purchased from Jackson lab (Bar 

Harbor, Maine) or Harlan lab (Haslett, Michigan) and acclimatized for 2 wks in the 



  

103 

university specific pathogen free animal facility.  All animal care and experimental 

procedures complied with approved protocol by University of Michigan Committee of 

Use and Care of Animals.  Mice were fed with clofazimine (Sigma C8895, St. Louis, MO) 

with powder diet (3 mg/ml clofazimine in sesame oil (Shirakiku, Japan), mixed at 0.01% 

oil to food) or with oil mixed diet (vehicle only) as previously described.
1
  

5.3.1 cTEM 

Mouse perfusion fixation and sample preparation.  After euthanasia, blood was 

removed through cardiac puncture and washed by perfusing 5 ml of 0.9% saline solution 

at 2.5 ml/min rate injected to left ventricle and egressed to vena cava.  Then, 5 ml of 

fixative in cacodylate buffer (2% formaldehyde, 2.5% glutaraldehyde in 0.15M 

cacodylate with 2 mM Ca
2+

, pH 7.4) was infused.  Immediately after perfusion, organs 

were taken out and cut into pieces to 5 mm in each dimension under 1:10 volume of 

fixative, stored in cold fixative wrapped around with paper towel and sent out to National 

Center for Microscopy and Imaging Resources (NCMIR).  Tissues were cut into 100 µm 

thick sections using a vibratome and circular tissue punches were taken from the slices 

(1.5 mm diameter) and then placed into Leica membrane carriers.  These wells were 

filled with 20% BSA in cacodylate and high-pressure frozen in a Leica EM PACT2 HPF 

apparatus, stored in liquid nitrogen. 

Freeze substitution and imaging.  Using Leica AFS2 unit, samples were placed in 0.1% 

tannic acid in anhydrous acetone at -90°C for 89 hours.  Samples were then washed 3 

times with acetone at -90°C (30 min each), and placed into 2% OsO4/0.1% uranyl acetate 

in acetone (-90°C for 7 hours).  They were warmed to -20°C for 14 hour, transferred to 

4°C for 2 hours.  They were washed in dry acetone at room temperature for 10 min (3 
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times), placed into series of Durcupan:acetone solution: 25:75 for 3 hours, 50:50 

overnight, 75:25 for 4 hours and then 100:0 for overnight.  100% Durcupan was refreshed 

and left in 60°C oven for 2 days.  The membrane carriers were dislodged from Durcupan 

blocks by cooling liquid nitrogen and 80°C warming, then ultrathin sectioned, placed 

onto copper 300 mesh grids to post stain with 2% aq uranyl acetate for 10 min followed 

by Sato lead for 5 min.  Imaging was carried out with JEOL 1200EX at 80 kV, recorded 

onto Kodak 4489 film, developed picture was scanned using a Flextight scanner. 

5.3.2 TEM 

Mouse perfusion fixation.  Blood was collected from euthanized mice and washed by 

perfusing 5 – 6 ml of 0.1M Sorensen’s buffer at 2.5 ml/min rate injected to left ventricle 

and egressed to vena cava.  Then, 5 ml of Karnovsky’s fixative (3% paraformaldehyde, 

2.5% glutaraldehyde, 0.1M Sorensen’s buffer, pH 7.4) was infused to result stiffening of 

the corps, and organs turn pale pink.  Immediately after perfusion, organs were taken out 

for either paraffin fixation or TEM preparation. 

Transmission Electron Microscopy.  After perfusion fixation, organs were diced on a 

dish with 10 fold volume of fixative into pieces smaller than 1 mm in each dimension, 

and preserved in the glass vial with the fixative at 4°C.  After rinsing three times with 

Sorensen’s buffer, tissues were fixed with 1% osmium tetroxide in 0.1M Sorensen’s 

buffer and washed three times in the buffer.  Dehydration was carried with graded 

ethanol/water series (50, 70, 90, and two changes of 100%) for 15 min each.  After 

transitioning through three changes of propylene oxide, tissues were infiltrated with Epon 

resin (Electron Microscopy Sciences), and then polymerized at 60°C for 24 h.  The block 

was then ultramicrotome sectioned to 30 – 70 nm thickness and mounted on copper EM 
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grid (Electron Microscopy Sciences) which was post-stained with uranyl acetate and lead 

citrate before TEM imaging with Philips CM-100.  Images were recorded digitally using 

a Hamamatsu ORCA-HR camera system operated by AMT software (Advanced 

Microscopy Techniques Corp., Danvers, MA).  Magnifications: ×2,600 – ×256,000.   

5.3.3 Freeze-fracture freeze-etch EM (FEEM) 

Liver FEEM.  Fresh liver isolated from 6wk treated mouse was washed in cold DPBS 

and refrigerated and shipped overnight to the Heuser lab in Washington University at St. 

Louis for Quick-freeze deep-etch EM analysis performed according to published 

protocol,
3
 with minor modification.  3 × 3 × 1.5 mm thick slices of non-fixed liver were 

frozen by forceful impact against a pure copper block, cooled to 4°K with liquid helium.  

Frozen samples were mounted in a Balzers 400 vacuum evaporator, fractured and etched 

for 2.5 min at -104°C and then rotary-replicated with 2 – 3 nm platinum nanoparticles 

deposited from a 20° angle above the horizontal, followed by an immediate ~10 nm 

stabilization film of pure carbon deposited from an 85° angle.  Replicated samples were 

placed into a dish of chromo-sulfuric acid cleaning solution (Fisher Scientific, SC88-500) 

for overnight.  Released replicas were passed through several rinses of distilled H2O and 

then picked up on formvar coated copper grids, and photographed with on JEOL 1400 

microscope with attached AMT digital camera.  Stereo images were obtained using a 

goniometer stage tilt of ±5° and converted to anaglyph in Photoshop
®
. 

Isolated Crystal-like Drug Inclusions.  25 µl aliquots of purified CLDIs were pipetted 

onto 3 × 3 mm coverslips, which were chromic-sulfuric acid cleaned, water rinsed and 

air-dried, just before use.  Samples were then quick frozen, fractured and etched as 

described above.  Following platinum/carbon coating, samples were floated on the 
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surface of a dish containing 52% hydrofluoric acid (VWR, Mallinkrodt #2648).  Released 

replicas were transferred with a glass rod through 3 dishes of distilled H2O, each 

containing a loopful of Photo-flo, with a 35 min sit between exchanges.  Next, the 

replicas were floated off onto a dish of chromo-sulfuric acid cleaning solution, where 

they eventually sank below the surface and sat for one hour.  Finally, replicas were 

passed, by pipet, through several rinses of distilled H2O and picked up on formvar coated 

grids for viewing as noted above. 

Image processing.  For display, images were digitally enhanced and overlaid using 

Photoshop
®
.  For control vs. experimental comparisons within the same figure, contrast 

and brightness settings were equally adjusted. 

 

5.4 Results 

5.4.1 CLDIs have two distinct domains enclosed by 20 nm bilayers (cTEM) 

A perfusion fixed liver from a 6 wk clofazimine treated mouse was refrigerated in 

cacodylate-base fixative and then freeze-substituted for cryo-electron microscopy (cTEM) 

as described in the Methods.  cTEM photographs showed virtually the same CLDI 

structures as previously described.
1
  They were evident as polyhedral cavities delimited 

by double membranes in the cytoplasm neighboring with intact organelles such as 

mitochondria and nucleus (Fig 1).  There were two atypical intracellular objects, 

osmiophilic bodies (*) and CLDI cavities (CC), which seemed to be confined within the 

same boundary of the double layer with 20 nm in thickness (arrow, Fig 1B).  It seemed as 

if the osmiophilic domains were fusing onto the CC within the same organelle-like 

compartments, paralleling the CCs (white *) or extending from the tips (black *).  This 
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observation suggests that the separate domains are comprised of different molecular 

components that react differently to the sample fixation and rigorous processing (Fig 1C 

and D).  The cavities and osmiophilic bodies were consistent with what has been 

previously described in the literature.
1, 2, 4

 

5.4.2 Jejunal villus show polyhedrosomes with 10 – 17 nm spaced lamellae 

(TEM) 

The jejunum of the mouse fed with clofazimine diet for 8.5 wks was perfused 

with glutaraldehyde containing Karnovsky’s fixative as described in the Methods.
1
  

Under TEM, we found polyhedrosomes containing supramolecular osmiophilic lattice 

organization, which were not seen in the samples from control mice treated with a 

vehicle-only diet (Fig 2A).  Since the composition of these structures was different from 

the alcohol washable component that was emptied from ethanol dehydration and resin 

infiltration, these domains were previously dubbed as “polyhedrosomes (PD)” in order to 

distinguish them from the CLDIs.
1
  Similar to the cTEM images described above, they 

were bound by 20 nm thick delimiting membranes (Fig 2A inset), which were much 

thicker, for example, compared to typical membrane structures found in cytoplasm, 

mitochondrial or plasma membrane.  Interestingly, when the PD region is magnified (Fig 

2B), a supramolecular structure was revealed with a regular stacks of 10 nm lamellae as 

analyzed by Fast Fourier Transform (FFT, Fig 2B inset).   

Another macrophage found in a different villus contained a neighboring CLDI 

cavity (CC) and polyhedrosomes of similar size and morphology, which revealed 

apparent internal structures (Fig 2C).  The content in CC was emptied out only leaving a 

20 nm outer double layer (Fig 2C1), but one of the polyhedrosomes maintained two 
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unwashable domains that appeared as a darker amorphous region (Fig 2C2) vs. faintly 

stained lamellae (Fig 2C3) with 17 nm spacing oriented along the long axis.  Notably, 

some of the CLDI positive cells’ cytoplasms had rigid linings or rod-like structures which 

morphologically resembled the endoplasmic reticulum or Golgi apparatus, located next to 

the osmiophilic bodies (OB) of polyhedral shape.  In a zoomed-in view (Fig 2E), these 

much darker and thicker linings corresponded to 10 nm tubes flanked by outer tubes akin 

to structures previously reported.
1, 2

 

5.4.3 Stacking pattern of lamellae can vary between polyhedrosomes 

In addition to 8.5 wk treatment samples, several polyhedrosome images were 

collected from mice at washout phase, an 8 wk clofazimine diet followed by 8 wks of 

drug-free diet for the drug to be cleared out.  Although the clofazimine content at this 

stage in the jejunum decreased significantly, the CLDIs were abundant for ultrastructural 

study.
1
  Under TEM analysis, multiple polyhedral structures were witnessed next to the 

CLDI cavities (Fig 3A and B) and when these structures were magnified, the internal 

lattice-like organization was observed (Fig 3C).  The individual polyhedrosomes were 

juxtaposed with each other; however, they had different spacings and intersecting angles 

as shown in Fig 3PD1 and Fig 3PD2 that ranged from 6 to 10 nm and between 25° to 61°.  

The majority of the polyhedrosomes aligned themselves together with CC and 

assumed polygonal outlines, but occasionally we found transversal sections of the 

intracellular placement (Fig 4A).  One of the polyhedrosomes (*) was magnified to show 

the stacked layers within hexagonal silhouette (B).  When the internal structure was 

further magnified (C), we found struts layered in two different orientations within a 
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double membrane bound structure, as represented in FFT.  Lattice spacings were about 

10 nm apart intersecting at a 55° angle.  

In the liver samples of washout phase and 8.5 wk treated mice, multiple domains 

of CLDIs were observed as described above (Fig 5A and B).  Juxtaposed with CC, the 

osmiophilic bodies (arrows) appeared at 200 – 300 nm in size, and their dark polygonal 

shapes were limited by the fragmented CLDI membranes.  Since the results were 

comparable to the previous TEM and immunohistochemical analyses from liver 

microgranulomas, we sought to further investigate the liver samples in 3D.  

5.4.4 FEEM shows intact polyhedrosomes in 3 dimension  

The freeze-fracture freeze-etch EM technique quickly freezes an unfixed sample 

and generates a metal replica that can diffract electron beam.  A mouse treated with a 

clofazimine diet for 6 wk was euthanized, exsanguinated, and then the liver was 

refrigerated for overnight shipment.  The sample was frozen in liquid helium to minimize 

the distortion from water crystals, and fractured under vacuum.  After a small fraction of 

water was sublimated (freeze-etch technique), the samples were shadowed with platinum 

and carbon nanoparticles which limited the resolution of the acquired images to 2 nm.
5
  

In the liver, many cytoplasmic components appeared intact, including vesicles and 

mitochondria filling the background of needle-shaped CLDIs (Fig 6A and B).  They were 

200 to 400 nm wide, and parts of the long axis were embedded in cytoplasmic material.  

There were planar layers along the long axis of CLDIs and because these struts were 

absent in the mitochondrial membranes nearby, they are suggested to be polyhedrosomes, 

which are CLDIs with internal organization.  In some parts of the cells, there were rigid 

bodies similar to the structure in Fig 2D (Fig 6C), in that they also had outer delimiting 
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membranes (Fig 6D).  In addition, there were vesicles (V) fusing onto the existing rigid, 

needle-like CLDIs comparable to early investigation with TEMs (Fig 6E and 6F).  

 Captivatingly, the freeze-fracture method preserved the outer membrane structure 

and internal stacks of emerging CLDI from the cytoplasm of a liver cell (Fig 7A).  They 

assumed a hexagonal shape covered with the lipid membranes, and inner stacks appeared 

as a coarse texture that fractured to expose a more diverse pattern than any particular 

plane as seen earlier in Fig 6A.  Also, in close proximity to hexagonal polyhedrosomes, 

an ER-like rigid body was often juxtaposed for possible fusion (arrow, Fig 7B).  

5.4.5 Polyhedrosomes have internal stacks of 6 – 14 nm lamellae and outer 

membranes connected to cytoplasm  

During the fracture, we could visualize a more detailed structure of 

polyhedrosomes including the internal stacks with different spacing as well as the 

separation interface between the delimiting double layers (Fig 8A).  The rigid body was 

roughly 500 – 700 nm wide and the outer membrane was peeled away to reveal the 

texture of the inner membrane that directly contacted the internal material (Fig 8B).  

They appeared to have compact planes stacked parallel to the x-y plane which were 

presumably separated due to relatively weak interaction in the z-direction.  However, 

since these stacks were cut unevenly, i.e., fractured in curves, the differences in spacings 

in FFT analysis did not result in well-defined dots (Fig 8C).  Therefore, the measured 

spacings between the parallel stacks along the long axis ranged between 6 to 14 nm 

owing to an angled view.  

The inner surface of the double layer revealed a cracked texture, dark lining of 10 

nm in size (Fig 8D).  These features may have resulted from the uneven deposition of 
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platinum nanoparticles, possibly interacting with the peculiar surface characteristics of 

what it is masking underneath.  The fractured double layer also revealed inter-membrane 

particles within the separated membranes (arrowhead, Fig 8E).  These globular objects 

were about 12 – 13 nm in size, which were relatively too big for an inter-membrane 

protein particle, as described in the literature.
5
  Notably, the cross section of the double 

layer was clearly demonstrated at the edge of the unwrapped membrane with 

approximately 30 nm spacing (Fig 8F).  Between the two membranes, there were 

connecting pillars (arrows) that were 20 nm in height and 12 – 13 nm in width, 

corresponding to the inter-membrane particles found in Fig 8E. 

Almost complete removal of the surrounding bilayers uncovered 3-dimensional 

geometry of the internal stacks (Fig 9A).  The planar structures and elevation of these 

layers were evident in the upper polyhedrosome.  A neighboring structure uncovered of 

the outer layer showed the membrane morphology similar to that which has been 

observed.  When further zoomed in, the internal lamellae appeared as stacks below the x-

y plane, packing normal the z-axis (Fig 9B).  As the planar layers were elevated, the 

upper portion of the section rotated around the y-axis and became angled to the x-y plane.  

5.4.6 Isolated CLDIs maintain similar structures but appear larger in size 

Using differential centrifugation and sucrose density gradient centrifugation, a 

significant portion of the CLDIs could be purified to perform further analysis.
1
  These 

structures were mounted on slide glass to be processed for free-etch EM and the results 

were shown here as distinctive structures among cytoplasmic debris (Fig 10A).  Although 

the structures appear comparable to CLDIs from the liver, they were significantly larger 

in size, ranging several micrometers in width.  This is probably due to the fact that 
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samples were placed in flat, rather than upright position; therefore the majority of CLDIs 

were fractured along the long axis, while transversal sections were unlikely to appear.  

Although the isolation procedure involved a sonication process in order to dissociate 

cytoplasmic components from the polyhedrosomes, there was evidence of strong 

adhesion between the vesicle-like structure and the polyhedrosomes (Fig 10B).  This was 

similar to an amorphous domain merging onto crystalline layers as observed in the 

previous samples.  Meanwhile, the multilayered and uneven fracture plane has exposed 

the internal lamellae of the isolated CLDIs, demonstrating the same structure integration 

among polyhedrosomes which is distinct from that of any other organelles in cells (Fig 

10C). 

 

5.5 Discussion 

The structural features of new subcellular construct was recorded using different 

types of electron microscopy to deduce structural information that would suggest what 

the composition of polyhedrosomes could be and how they would assemble.  Arguably, 

they were distinct from pure drug crystals as they had multiple domains with internal 

organization and delimiting double membranes. 

We have found that polyhedrosomes contain highly organized internal lamellae 

with 6 – 17 nm stacks often crossed at angles between 25° and 61°.  These layers were 

often oriented longitudinally along the long axis of the needle-shaped structure, 

occasionally revealing transversal sections with polyhedral outline.  The inner stacks are 

confined by the delimiting double membranes, 10 – 30 nm in thickness, which could be 

separated to show the distinctive texture of the inter-membrane space.  Within these 
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spaces, channel-like pillar substructures were seen, through which the inside of the 

polyhedrosomes seemed to be connected to the surrounding cytoplasm, and once the 

double layers were separated, they would appear as 12 – 13 nm particles.  In addition, we 

observed vesicles fusing onto the polyhedrosomes, presumably corresponding to a cargo 

compartment filled with amorphous, cellular materials. 

One of the biological membrane organizations that the polyhedrosomes resemble 

was lyotropic liquid crystalline, whose assembly phase can change depending on the 

temperature and concentration of its constituents.  Several researchers also have reported 

self-assembled lipid models and biological membrane systems in chemical mixtures, 

studying them using freeze-fracture electron microscopy.
6-9

  For example, Hope et al. 

reviewed various conditions of phospholipid compositions and reported that a common 

lipidic bilayer organization could transition into hexagonal HII phase.
7, 9

  In such 

uncommon lipid polymorphism, the components were packed as stacks of cylindrical 

tubes assembled in a way that the hydrophilic head group of lipids were facing inward to 

the lumen of 2 nm diameter cylinders.
6
  If this structure were fractured in longitudinal 

section, a distinctive planar structure would appear with varying periodicity from 4 – 15 

nm, depending on the lipid composition.
6
  When sectioned transversely, it would appear 

as a hexagonal array, which the polyhedrosome transverse section would resemble to a 

certain extent.  However, it is important to note that the polyhedrosomes we found were 

different from bundles of cylindrical tubes, and rather it was arranged more as stacks of 

planes indicating that they are distinct supramolecular structures. 

Although we could not come up with a comparable model system, we found that 

membrane rearrangements could be influenced by manipulating pH, ionic constituents or 
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protein contents.
6, 9

  Tarahovsky et al. tested the electrostatic factor by preparing lipid 

mixtures of varying molar ratios of anionic and cationic phospholipids, and as a result, 

found lipidic phases transitioning from lamellar into sponge phase, from sponge to cubic 

phase, and finally from cubic to inverted hexagonal HII phase.
8
  Once the two lipid 

constituents, EDOPC (1,2-dioleoyl-sn-glycero-3-ethylphosphocholine, +1 charge) and 

cardiolipin (–2 charge), were mixed to 2:1 molar ratio, therefore having a 1:1 charge ratio, 

the resulting lipidic phase appeared birefringent and became an adhesive gel with a 

regular spacing of roughly 6 nm.  When the charge ratio was increased or decreased by 

adding smaller or larger amounts of EDOPC, the resulting mixture lost the birefringence 

while the membrane organization increased the size of the spacing from 10 to 13 nm and 

eventually lost lattice spacing.  These results suggest that a highly organized polymorphic 

structure could develop from lamellar or amorphous structures as we have witnessed in 

our study.  The lamellar structures in the subcellular drug inclusion were evident, and 

they often merged onto the existing, mature structures.  Since clofazimine has two basic 

amines, they can become positively charged in acidic organelles, and therefore possibly 

behave similarly as EDOPC.  It is possible that protonated clofazimine molecules interact 

with cardiolipin, thereby reorganizing the lipidic phase as clofazimine further 

accumulates and changes the composition ratio in the membranes.  

Since the formation of the polyhedrosomes was induced exclusively in 

macrophages, and hepatocytes or adipocytes were free of the CLDIs, it is reasonable to 

think that the physiology of macrophages expresses a unique, biological functionality that 

controls the formation and distribution of the polyhedrosomes.  In consistent with kidney 

medulla epithelium lacking CLDIs or polyhedrosomes, cell types appear to be important 
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in determining what morphology of a structure they can build: whether they would 

produce many autophagosome-like drug inclusions corresponding to lamellar to sponge 

phases, or would alternatively build the highly organized, supramolecular, crystal-like 

drug inclusions.  Even with a continued supply of clofazimine, it seemed that MDCK 

cells and renal tubular cells in mice were incapable of producing CLDIs, indicating that 

these cells might be deficient of cardiolipin or equivalent that can hypothetically form 

complexes with clofazimine.   

In summary, we have presented a comparative electron microscopic analysis on 

clofazimine induced subcellular constructs, polyhedrosomes, for their unique structural 

organization.  By comparing previously studied freeze-fracture membrane model systems, 

we found that the polyhedrosomes are different from any lipid model systems currently 

known.  However, since some aspects of the polyhedrosomes resemble liquid crystalline 

or hexagonal arrangements, we suspect important roles of pH and concentration of the 

co-formers.  For future studies, it is recommended to investigate clofazimine-cardiolipin 

mixtures, and to analyze them with 
31

P NMR (nuclear magnetic resonance) which is 

known to be capable of distinguishing the hexagonal HII polymorphism from the common 

lipid bilayers.  In terms of macrophages, it would be beneficial to search for an increased 

level of cardiolipin or determine if its lipogenesis pathway has been upregulated upon 

clofazimine treatment. 
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5.7 Figures 

 

Figure 5-1 cTEM, 6 wk treated mouse liver macrophage  

(A), Cytoplasm of liver macrophage contained CLDI cavities (CC), which appeared as 

polyhedral spaces of several micrometers.  (B), CCs are double membrane bound 

structure (arrow), and the thicknesses of the double membranes were approximately 20 

nm.  (C), higher magnification of CC along with mitochondria (M) is shown.  CLDI has 

multiple domains: osmiophilic materials (*) were connected to empty spaces where 

contents were washed out during the sample preparation.  (D), osmiophilic body (*) was 

confined within the same delimiting membrane with the empty spaces. 
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Figure 5-2 TEM, polyhedrosomes found in 8.5 wk treated mice jejunum  

(A), Inside a macrophage found in a villus, a 20 nm membrane-bound (inset) cytoplasmic 

structure revealed two distinguished regions: polyhedrosome (PD) and more osmiophilic, 
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amorphous region (*).  (B), PD from panel A was magnified, and Fast Fourier Transform 

(inset) indicated 10 nm of regular spacing.  (C), CC and a neighboring polyhedrosome 

were found in a cytoplasm.  Boxed region shows double membrane with 20 nm 

thicknesses (C1), while polyhedrosome also revealed two distinguishable regions: 

amorphous (C2) and crystalline region (C3) only which shows 17 nm spots in the FFT.  

(D), in some macrophages, there were rigid lining of tubes next to the CC.  Inner portion 

of these tube-like structures had much darker osmiophilic stain flanked by 10 nm layers 

on each side (E). 
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Figure 5-3 TEM, polyhedrosomes found in jejunum villus from washout 

(A, B), CLDI cavities (CC) and three polyhedrosomes (PD) within a cytoplasm of a 

macrophage. M: mitochondrion.  (C), Magnified region of the box from panel B shows 

lattice organization in two different polyhedrosomes, each of which are further magnified 

(PD1 and PD2) with FFT analysis to show the regular, yet diverse spacing.  Internal 

lamellae were intersecting at varying angles. 
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Figure 5-4 TEM, cross section of polyhedrosomes in a macrophage  

(A), In a section from a washout mouse jejunum, polyhedrosomes were delimited by 

dashed lines.  M: mitochondria, N: nucleus.  (B), one of the PDs (*) from panel A was 

magnified.  (C), internal lamellae revealed a meshwork organization with about 10 nm 

thickness intersecting at 55° angle in FFT.
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Figure 5-5 TEM, macrophage from liver microgranulomas 

Samples from a washout mouse (A) and 8.5 wk treated mouse (B).  Among CLDI 

cavities, polyhedrosome formed in between (A, arrow).  Equivalent region in a higher 

magnification of another cell shows similar osmiophilic components between the CCs (B, 

arrows). 
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Figure 5-6 FEEM, 6 wk treated mouse liver showing CLDIs  

(A and B), Needle shaped CLDIs found in liver macrophages had distinctive features 

compared to other cytoplasmic organelles, such as vesicles (V) or mitochondria (M).  (C), 

elongated, rigid bodies appeared in close proximity to the CLDIs.  (D), higher 

magnification of inner structure for the rigid bodies are shown.  (E), CLDIs were 

observed with a structural addition from nearby vesicle, which were possibly fusing onto 

existing CLDI (F). 
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Figure 5-7 FEEM, polyhedrosome, CLDI with internal organization 

(A), A CLDI emerging from cytoplasm of a liver macrophage showed hexagonal 

outlining and inner layers.  (B), magnified view of the structure in panel A.  The arrow 

indicates juxtaposing rigid body, partly merging onto the pre-existing polyhedrosome. 
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Figure 5-8 FEEM, a polyhedrosome has multiple structural domains.  

(A)  A polyhedrosome presented diagonally with outer membrane peeled open.  (B), thin 

layers were stacked in z-direction parallel to x-y plane.  (C), due to uneven fracture plane, 
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layers were spaced in gradient from 6 to 14 nm.  (D), the inner texture of the delimiting 

double membrane shows distinct patterning.  (E), the internal space of the separated 

double layer, which contained inter-membrane globules ranging 12 – 13 nm in size 

(triangles).  (F), cross section of the delimiting double membrane is greater than 30 nm in 

thickness.  Between the inner and outer layer, the connecting pillars (arrow) appeared to 

be approximately 20 nm in height and 12 – 13 nm in width.  
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Figure 5-9 FEEM, polyhedrosome with rotational stacking  

(A), a couple of polyhedrosomes were juxtaposed, and they showed the inner stacks and 

the delimiting membrane (inset).  (B), the architecture of the stack was not normal to z-

axis.  Separated by the x-y plane, layers in the upper region rotated around the y-axis 

(from +x to +z), resulting a slanting view.  In contrast, below the x-y plane, – z-axis, has 

an organized stack, normal to z-axis. 
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Figure 5-10 FEEM, isolated CLDIs  

(A), structural organization was similar to what was found in liver tissues, but the size of 

isolated polyhedrosomes were much larger in general.  (B), the addition of a vesicle 

containing cellular component onto a polyhedrosome.  (C), inner stacks have layers, seen 

from the top view. 
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Chapter 6  

Conclusion 

 

6.1 Multiscale biodistribution analysis 

A series of biodistribution analyses was carried out at various levels for a lipophilic, 

poorly soluble antibacterial, clofazimine.  Such a multi-scaled approach to the subject 

matter revealed the clofazimine’s intracellular sequestration phenomena and subcellular 

aggregation formation at the microscopic level.  Furthermore, the subcellular level 

accumulation was shown to impact the clofazimine’s organ/tissue drug distribution and 

its atypical pharmacokinetic behavior at the systemic, macroscopic level.   

Based on these results, we find it important to study more detailed relationships 

between the low solubility compounds with their pharmacokinetic and pharmacologic 

responses, especially owing to the significant efforts and investments of the current 

pharmaceutical industry focusing on poorly soluble compounds.
1
  However, one of the 

most common descriptors used in pharmacokinetic studies, volume of distribution (Vd), 

does not work as informative for clofazimine as it does with other drugs.  The volume of 

distribution is an equation-derived, calculated parameter from total clearance (CL) and 

plasma half-life (t1/2), Vd = t1/2×CL/0.693.  Therefore, the estimated values can hardly be 

useful for the cases like clofazimine whose mechanism of clearance is unclear or 

inconsistent while its half-life is extremely long.  Instead of such a hypothetical, possibly-
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misleading volume of solution with drug plasma concentration conjectured to account for 

the total drug presented in the body, we have demonstrated a new cellular and biological 

basis that is responsible for the drug’s significant retention and long pharmacokinetic 

half-life.  In addition, we reported the drug-induced changes of tissue structure as well as 

subcellular compartments, requiring modification in pharmacokinetic models. 

MDCK cells treated with supersaturated clofazimine-containing medium resulted 

in autophagosome-like drug inclusions, the lipophilic drug forming complexes with 

biological membranes, and a measurable amount of drug sequestered in amorphous form.  

More importantly, the drug did not crystallize in cells as we originally hypothesized, 

whereas an apparent drug precipitation in extracellular media was observed after 5 days 

of incubation.  Therefore, in search of the biological determinant that could induce crystal 

precipitation, solid aggregation, or their inhibitory mechanism, we fed Balb/c mice with 

drug mixed diet.  As a result, unchanged clofazimine was selectively accumulating in 

lymphatic tissues, leaving some other tissues unaffected.  At the cellular level, the drug 

molecules were exclusively sequestered in macrophage-like cells and also led the 

macrophage population to increase, which in return drastically changed the 

pharmacokinetic and distribution pattern after 2 months of prolonged dosage.  To our 

surprise, we discovered that the crystal-like drug inclusions were in fact not pure drug 

crystals as had been commonly perceived for over 50 years.  Therefore, we conclude that 

the subcellular level accumulation of clofazimine was biologically controlled, rather than 

thermodynamically crystallizing at random places in the body.  

Upon further analysis using electron microscopy, we found that there was 

unreported and unique, ultrastructural organizations within crystal-like drug inclusions, 
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and therefore we dubbed the inclusions as polyhedrosomes.  Their highly organized, 

supramolecular structure with organelle-like features suggested an efficient packing and 

storage of the lipophilic compound, which in return would possibly make the packed 

molecules not only biologically inactive but also inaccessible to plasma, conceivably 

leading to an elongated plasma half-life.  Since the polyhedrosomes were responsive to 

various stimuli and extracellular environment, they possess a series of potential 

applications for both science and engineering.  

 

6.2 Future investigation of polyhedrosomes and similar structures 

As investigated in a previous chapter, the involvement of an immunological 

reaction must be further elucidated.  Cytokine profiling and oxidative stress level could 

be tested to find whether unforeseen irritation is present, causing proliferation of the 

immune cells, and therefore further inducing a positive feedback to sequester more 

clofazimine within an expanded macrophage population.  The inflammatory response 

could also be tested by measuring protein expression levels, such as nitric oxide
2
 or 

manganese superoxide dismutase,
3
 which are known to play significant roles in 

inflammatory response. 

In order to further investigate the components and structural organization of the 

polyhedrosomes, we need to develop the physical and biochemical techniques that can 

resolve the subcellular structure at the molecular level.  To identify molecular entities and 

their stoichiometry within the supramolecular organization, technical challenges related 

to isolation and purification of the intact polyhedrosomes must be overcome so that the 

lipids, proteins, or ionic species associated with clofazimine can be unveiled.  Following 
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the purification, chromatographic approach
4
 followed by mass spectrometry

5
 would be 

suitable to measure any enrichment of protein or lipidic components that could suggest 

the biogenesis pathway of the atypical structure; for example, cardiolipin enrichment 

would suggest that the membrane has originated from mitochondria. 

In addition, applying different sorts of in situ analytical techniques would be 

worthwhile; for example: X-ray diffraction for component periodicity measurement
6
, 

small angle X-ray scattering (SAXS) for supramolecular structure periodicity
7
, laser 

microprobe mass analysis (LAMMA) for component analysis
5
, low-energy-loss electron 

microscopy for molecule-specific optical signal detection
8
 or 

31
P-nuclear magnetic 

resonance on freeze-fractured sample for phospholipid content analysis.
9-11

  For example, 

SAXS and 
31

P-NMR were previously implemented to characterize supramolecular 

organization called cubic phases,
12, 13

 which are known to be three dimensional, highly 

organized membranous structures that can be generated both artificially
6
 and 

naturally.
14,15

   

In relationship towards earlier studies on cubic lipidic phases,
6
 also known as 

lipidic mesophases,
7
 liquid crystalline,

6
 or membrane polymorphisms,

12, 13
 identifying the 

actual supramolecular organization would require comparative studies with model 

systems, such as in vitro lipid mixtures.
6, 12, 13, 16, 17

  In addition to the artificial mixtures in 

the test tubes, a group of researchers have found cases of highly organized lattice-like 

lamellae present in human and mice.  Pasyk et al. reported cytoplasmic crystalloid 

inclusions in patients with hemangiomas (a form of benign tumor associated with the 

blood vessels of newborns), revealing distinctive 5 – 7 nm of triple membrane structures 

with alternating, dark dense layers.
18-20

  In addition, splenic lipofuscinosis in mice,
21
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multilamellar bodies in the macrophages of amiodarone-treated patients,
22

 and myelin 

fibers of Schwann cells in the nerve system from clofazimine treated patients
23

 revealed 

whirls of concentric multilamellar structure, spaced 6 – 28 nm apart.  Also, there are 

naturally occurring multilamellar bodies in the lungs of humans and mice that are 

associated with lung surfactants to share some of the morphological features with 

subcellular drug inclusions.
24, 25

  Investigating these structurally similar macromolecular 

assemblies by image analysis could unravel whether polyhedrosome-like machinery in 

cells is related to other diseases or whether lipidic systems naturally exist.  

Furthermore, there are several case reports on supramolecular structure that show 

needle-like structures, as investigators often referred them as crystals, crystalloid cavities, 

or osmiophilic rods.  In mice spleen that developed lipofuscinosis, several micrometers 

long crystalloid bodies were observed in association with rough endoplasmic reticulum,
21

 

which appeared morphologically similar to the osmiophilic rods described in the previous 

chapter.  In another study with mice, macrophages from the bone marrow and red pulp of 

spleen spontaneously developed needle-like crystalloids over 5 months, transforming 

from spherical inclusions into bundles of needles that are 10 µm in average length.
26

  The 

authors of this study speculated that the crystalloids were related to erythropoietic activity, 

where certain types of macrophages may be breaking down the phagocytized blood cells 

and building crystalloid structure within the phagolysosomes.  Similarly, rod-like 

crystalline structures were recorded under pulmonary infection of Cryptococcus 

neoformans, and presumably the multinucleated cells in the lungs were polymerizing an 

eosinophilic protein into needle-like constructions.
27

  These reports suggest that there are 
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certain types of cells in the body which can build subcellular materials into rod-shaped, 

crystal-like structures ranging several micrometers long.   

Since formation of these inclusions in macrophages seems to be a natural, 

defensive reaction of the body, we perceived formation of clofazimine crystal-like drug 

inclusions as a result of active sequestration of poorly soluble xenobiotics.  To show that 

this is not a clofazimine-specific case, we found a comparable case study of the poorly 

soluble fluoroquinolone antibiotic, tosufloxacin (CAS 100490-36-6, clogP = 0.81 

(TerraQSAR-LOGP
TM

 by TerraBase Inc), Mw: 404.3).  A biopsy from a patient treated 

with tosufloxacin tosilate for 4 years showed intracellular drug inclusions that were 

birefringent.  Transmitted light microscopy also revealed a significant number of 

crystalloid cavities and granulomatous interstitial nephritis.
28

  The authors also remarked 

that due to such crystalloid accumulation, the drug exerts renal and hepatic toxicity 

leading to its limited approval and use in Japan.
29

   

In extension to the bioaccumulation phenomena as to sequester the surplus of 

molecules in the body, cholesterol is also one of the model systems that must be closely 

looked into in terms of crystal formation.  The cholesterol deposition is reported to cause 

crystal embolism and form plaque as well as crystalloid cavities in human patients.
30

  

Moreover, cholesterol
31

 and cholesterol monohydrate
32

 crystal formation in different 

types of macrophages were investigated, and the researchers have reported the formation 

of multilamellar bodies, crystalloid cavities, and the effect of composition on the phase 

transition within the macrophage intracellular compartments.
33, 34
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6.3 Candidates for drug-membrane complex/aggregation formation 

Two issues related to pharmaceutical research must be emphasized.  One is the 

recognition that a poorly soluble drug delivered into the body can be sequestered in a way 

that can change drug performance, and this may lead to unpredictability and possible 

failure at a later point of drug development, which would be costly.  The second notion is 

that the anti-inflammatory response of the body related to the role of macrophages on 

drug sequestration, which could make pathophysiological changes on the volume or 

structural component of the liver or spleen.  As a result of fibrosis or microgranulomas 

development, pharmacokinetic models assuming consistency in body state would be 

inapplicable and require modifications to account for the poorly soluble drugs that 

already have long plasma half-lives.  Therefore, researchers in the field of pharmaceutical 

sciences are advised to pay attention to in vivo drug-membrane complex formation when 

investigating poorly soluble compounds.  

There are several factors that could serve as indicators of the in vivo drug-

membrane complex/aggregation formation that could be applied to identify the potential 

candidates causing unwanted bioaccumulation in the body.  For example, currently 

known parameters can be used for draft selection, such as long half-life, large volumes of 

distribution and poor solubility.  Also, high permeability with poor metabolism and/or 

slow clearance could be indicative of drug accumulation.  These criteria could be 

considered to be a quick screen for potential in vivo aggregation and precipitation at an 

early stage of drug discovery.   
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As an example, selected from the literature were nine drugs that have been reported 

to accumulate in humans and cause temporary hyperpigmentation (Table 1).
35

  Under the 

electron microscope, they revealed ultrastructures resembling autophagosome-like drug 

inclusions,
36-39

 and in some cases were associated with mononuclear cells or macrophage 

population expansion associated with subcellular sequestration.  Even though some of 

these drugs were reported to be cleared out through either renal excretion or extensive 

metabolism, others did show significantly long plasma half-lives (underlined in Table 1). 

Both biopharmaceutical classification systems BCS
40

 (Biopharmaceutics Classification 

System that divides drugs with solubility and permeability) and BDDCS
41

 

(Biopharmaceutics Drug Disposition Classification System that divides drugs with 

solubility and metabolism) suggested that the drugs with long half-lives could be poorly 

soluble drugs based on the equation, t1/2 = 0.693×Vd/CL.  In fact, the listed drugs were 

highly hydrophobic and they were subjected to hepatic metabolism; however, 

chloroquine did not show as much extensive biotransformation, presumably leading to a 

significant length of circulation despite the favorable water solubility.  On the other hand, 

amiodarone could be imagined to be first partitioning into fatty tissue owing to its 

extreme lipophilicity, but at the same time, they could be extensively metabolized in the 

liver, making the plasma half-life highly variable.  Presumably, such variability is due to 

the plasma’s extraction efficiency against fatty tissue, which has a limited perfusion rate.  

In any case, these subcellular structure forming molecules need to be studied further and 

administered with care to prevent unwanted drug side effects.  

In conclusion, multiscale biodistribution analysis on clofazimine revealed a striking 

biological response that the field of pharmaceutics has never seen.  Understanding the 
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subcellular polyhedrosomes as well as the bioaccumulation and sequestration phenomena 

could change the concept on how a body responds to a drug. 
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Table 1.  Drug candidates with reported hyperpigmentation and deposition in the body.
42

 

Long half-life and poor solubility with less extensive metabolism of a drug may suggest 

that it may form membrane complex and become sequestered via polyhedrosome 

formation. Data collected from various sources.
1, 41, 42

 

 

Drug 

 

Use 

BCS / 

BDDCS 

 

t1/2 

Vd 

(L/kg) 

CL 

(ml/min/

kg) 

 

logP 

Solubility 

(mg/mL) 

Metab

olism 

Amiodarone Anti-

arrhythmic 

2/2 15-142 d 66±44 1.9±0.4 7.8 0.7 Extens. 

hepatic 

Busulfan immunosup

pressive 

?/1 2.5 hr 0.99±0.0

3 

4.5±0.9 -0.52 0.1 Hepatic 

Bleomycin Antibiotic ?/3 2 hr - - -7.5 

xLogP 

20 Unchan

ged 

renal 

Chloroquine Antibiotic 2/3 30-60 d 132-261 3.7-13 4.63 100 Hepatic 

Chlorpromazine Antipsycho

tic 

2/? 30 hr 21±9 8.6±2.9 5.41 400 Extens. 

Hepatic 

Renal 

Clofazimine Antibiotic 2/2 70 d - - 7.4 0.001 - 

Imipramine Antidepress

ant 

1/1 8-20 hr 18±2 13±1.7 3.9 0.02 Extens. 

Hepatic 

Methacycline Antibiotic ?/? 14 hr - - -0.3 7.55 ? 

Minocycline Antibiotic 1/1 11-22 hr - - 0.05 50 Hepatic 
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Appendix A 

Clofazimine logD 

 

Clofazimine lipid/water distribution coefficient was simulated using logD function in 

program MarvinSketch 5.3.8, developed by ChemAxon Ltd. Optional electrolyte 

concentration was set to 0.1M Cl
-
 and 0.1M Na

+
K

+
. Weighted method was set to VG=1, 

KLOP=1, PHYS=1. 
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Appendix B 

Supporting Information in Chapter 2 

 

SI 1. (A) CFZ is present in solution as protein-bound form as 10 mg/ml BSA in DPBS 

prevented CFZ to precipitate out from the solution. (B) In the supernatant, significant 

amount is present in protein bound form and only a small fraction is observed to be 

protein-unbound, freely dissolved in the solution containing 90% of (NH4)2SO4 in DPBS. 

About 22% of the amount was unrecoverable owing to non-specific adsorption of the tips, 

eppendorf tubes, conical tubes as well as the loss from calculation error etc. (C) As the 

control, without BSA, DPBS containing over 90% saturation of the ammonium sulfate 

was shown for retaining CFZ in solution, where significant amount was adsorbed onto 

the walls of the glass vials at 2, 5, and 10 µM of CFZ final concentration. Precipitation 

was negative and adsorption to the wall was visible at certain portion in the vial, top of 

the liquid phase. 
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SI. 2 LC-MS metabolism study result indicates there are no major drug metabolism. 

Detailed method was described in main section. Briefly, pure drug was dissolved in 

MeOH (1 µg/ml) for standard, whereas the pure drug was mixed with cell lysate for 

positive control. For metabolism analysis, two experiments were separately carried out 

for cells treated with 10 µM CFZ for 90 or 96 hours, which virtually showed the same 

result. Two major peaks were analyzed under multiple reaction monitoring (MRM) mode 

observing possible biotransformation. Among 44 listed biotrransformations and pairs of 

178 fragments in combination, the peaks indicated 473 or 431 m/z which is the parent 

compound rather than any of its metabolites. 
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SI. 3 Proliferation rate measured over 24 – 48 hours of exposure under various FBS 

contents. Within same serum concentration, fitted cell proliferation factor k is inversely 

proportional to the extracellular drug concentration in the cell culture medium. Fitted 

curve was y = y0e
kt

 assuming exponential increase in cell number without reaching 

confluency.   
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SI. 4 Intrinsic fluorescence of CFZ is quenched for aggregation at higher concentration in 

0.2 M phosphate buffer: pH at 5.58, 6.89, and 8.09, with varying CFZ content. 

Fluorescence excitation at 450 nm and emission 528 nm, dichroic mirror 510 nm was 

used. After linear increase, signal in more basic solution showed greater extent of 

quenching owing to CFZ being monobasic compound that decreases solubility with 

increasing pH. 
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SI. 5 Polarization microscopy (L) and dark field image (R) of CFZ treated MDCK cells 

with extracellular drug crystal (positive control). The MDCK cells show significant 

amount of drug inclusions yet alive, but no polarization or birefringence in the dark field 

is observed in contrast to extracellular crystal shows significant birefringence. 500x 

magnification (no scale bar is available, but cell dimension is approximately 20 µm x 30 

µm) 
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SI. 6 Focus on amorphous vs. crystal sample suspended in different buffer system for 

confocal Raman microscopy. Corresponding spectra were shown in main figure. 
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SI. 7 Organelle morphology category used to count the objects observed in particular 

TEM section. In general one section cannot be representative of the entire object, 

however, it is assumed that larger organelle comes from small one(s), and complex 

internal structure should originate from less complicated structures. Postulated sequence 

develops from top to bottom of the figure. Each row represents one category: Normal (a – 

c) -> Degenerating/Abnormal (d – f) -> MVB/MLB (g – i) -> early ALDI (j – l) -> late 

ALDI (m – p). Although we cannot confirm early ALDIs are actually small objects rather 

than a particular section from larger, it represents less complicated internal structures. 

Images were not drawn to same scale. 
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Appendix C 

In Vitro Phenotypic Characteristics of Peritoneal Macrophages 

Forming Crystal-like Drug Inclusions  

 

C.1   Abstract 

Mice fed with clofazimine (CFZ) developed crystal-like drug inclusions (CLDIs) in 

various organs in association with resident tissue macrophages. In order to further study 

the characteristics and composition of the CLDIs, mass production of this subcellular 

structure is needed. Here, we tested the possibility of producing CLDIs in vitro to 

evaluate the factors of their formation in a simpler and controlled manner. We isolated 

peritoneal macrophages from CD-1 mice (PMC) and cultured them on tissue culture 

plates with different concentrations of CFZ to investigate the relationship between the 

formation of different types of inclusions/crystals and cell viability. Epifluorescence 

microscopic imaging revealed that the drug accumulated inside the macrophages, which 

was similar to the previous study using MDCK cells.
1
 PMC treated with 1 µM of CFZ for 

48 – 96 hours produced intracellular CLDIs similar to those observed in vivo as well as 

producing autophagosome-like drug inclusions (ALDIs) and extracellular CFZ crystals.
1, 

2
 Cells associated with crystals remained attached, well spread, and produced formazan 

from MTT assay used to test the cell viability. ALDI, CLDI, and CFZ crystals did not 
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show any sign of cytoprotective function upon doxorubicin treatment. In conclusion, we 

successfully demonstrated the bioaccumulation of CLDIs in peritoneal macrophages. 

 

C.2   Introduction 

Immunohistochemical analysis and ultrastructural image analysis revealed that 

tissue macrophages play crucial roles in pharmacokinetic distribution of the poorly 

soluble drug clofazimine (CFZ).
2
 This in fact is related to the anti-inflammatory response 

phenomenon observed in cases such as paraffin or parasitic infection as elaborated in 

previous chapters.
3, 4

 One of the most significant pathological responses related to these 

foreign body reactions is the formation of microgranulomas which is the colonizing 

macrophages accumulating in the liver to counteract the inflammation.
5
  

 In previous work, intracellular drug inclusions were categorized into two: 

autophagosome-like drug inclusions (ALDI) and crystal-like drug inclusions (CLDI), 

both prevalent in cytoplasm of affected cells.  In order to study this unique 

bioaccumulation phenomenon, we aimed to create an in vitro environment that could 

reproduce what was shown in mice and humans. Previous work done on Madin-Darby 

Canine Kidney (MDCK) cells in vitro only produced ALDIs and failed to form CLDIs.  

Here, we hypothesized that cell specificity and functionality is key to CLDI formation, 

and therefore we tested various macrophage cell lines to demonstrate formation of CLDIs 

in vitro.
1
  

Usually the isolation of CLDI is followed by labor intensive work involving animal 

sacrifice with series of homogenization and density gradient centrifugation which takes 

time and energy only to gain a small amount of intact material that we cannot be sure that 
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has not been disrupted by these processes.
2
 Hence, the establishment of an in vitro set up 

would promote the study of bioaccumulation of xenobiotics in a more effective way.  

CLDIs are membrane bound polyhedral inclusions that display distinct optical and 

physicochemical properties from CFZ crystals, which are extracellular, orange-red, and 

have needle-like morphology.
2
 Utilizing these characteristics, and under different 

concentrations and treatment durations, we implemented epifluorescence and polarization 

microscopy to successfully demonstrate phenotypical changes of inclusions or crystals in 

macrophages. In addition, since several investigators suggested that autophagosomes 

have cytoprotective function, we tested whether ALDI or CLDIs might alleviate the 

toxicity of the anti-cancer reagent Doxorubicin (DOX) by combining with CFZ treatment.  

 

C.3   Materials and Methods 

Chemicals. Reagents were purchased from Sigma-Aldrich (St. Louis, MO), unless 

otherwise indicated. Doxorubicin was obtained from (BEDFORD Laboratories). 

Peritoneal macrophage isolation and in vitro culture. Peritoneal macrophages (PMC) 

were obtained from the peritoneal cavity of 8 – 12 wk old female CD-1 mice (Harlan 

laboratory). 1.5 – 2 ml of 4% thioglycollate solution was injected into both sides of the 

abdomen as previously described.
2
 After 4 days of peritoneal macrophage recruitment 

into peritoneum, mice were euthanized under sterile environment and wash collected with 

cold DPBS (Gibco® 14190). Cells were cultured on T-75 flasks at 37
o 
C, 5% CO2 

supplied sterile incubator treated with DMEM plus 10% FBS (Gibco® 10082), 10% non-

essential amino acids (Gibco® 11140), and 10% penicillin/streptomycin (Gibco® 15140). 

Culture media was changed every 1 – 2 days and cells were sub-cultured at 90% 
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confluency with 0.25% Trypsin-EDTA (Gibco® 15050). They were plated to 96 well or 

6 well with carbonated cover glass for biochemical experiment or microscopic imaging as 

previously described.
1
  

Cell viability assay upon treatment. PMC cells in different conditions were tested with 

standard MTT assay (American Type Culture Collection 30-1010K) following 

manufaturer’s manual. Absorbance between 550 nm and 600 nm (Synergy-2, Biotech 

instruments, Winooski, VT) were measured, background subtraction and cell number was 

estimated with standard curve generated separately.  

Formation of ALDI/CLDI/CFZ crystals in PMC. Seeded in different densities in 96 

well plates for 24 – 96 hours, doubling time was estimated using 1
st
 order exponential 

increase with y = yo e
kt

.  Positive control of intracellular CLDI in PMC were 

experimented for feasibility of microscopic analysis, and cells were treated with isolated 

CLDI previously collected from the liver of CFZ-chow fed mice.
2
  

CFZ of 0, 0.1, 1, 5 and 10 µM in DMEM were diluted from a 5 mM in DMSO 

stock and the PMC were treated for 48 and 96 hours. Doxorubicin solution of 0, 3, 9, 18, 

25, 36, 50 µM were treated for 48 hours.  After generating the Hill curve for toxicity, 

PMCs were treated with 5 µM CFZ for 48 hours and then co-treated with 18 µM DOX 

for additional 48 hours to observe if CFZ crystal inclusions had any cytoprotective 

function towards DOX treatment. Student’s T-test was performed for statistical 

significance using Microsoft Excel. 

Light and fluorescence microscopy. Olympus 51X upright epifluorescence/polarization 

microscope equipped 100× objective (1.40 NA, PlanApo oil emersion), cross polarizers, 

U-MWIBA3 (eGFP) for green, U-MWG2 (rhodamine) filter cube for red channel, and an 
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Olympus DP-70 color camera. Images were acquired using DP controller 3.1.1.267 under 

same exposure settings. Nikon Eclipse TE2000-S microscopy and MetaMorph
TM 

imaging 

software were used for image analysis. Different optical properties allowed us to 

distinguish PMC alone, ALDIs, CLDIs, extracellular CFZ crystals and isolated CLDIs.   

 

C.4   Results 

Isolation of peritoneal macrophages and their phagocytic activity on 

CLDI isolated from CFZ treated mouse liver 

After 4% thioglycollate injection into the peritoneum, the anaerobic environment 

helped recruitment of unactivated macrophages which were isolated by repeated washing 

with cold DPBS.
6
 They were collected in DMEM supplemented with 10% of FBS, 

penicillin/streptomycin, and non-essential amino acids, and plated on tissue culture flasks 

kept in a sterile incubator to remain viable (Fig 1A). After a couple of days, macrophages 

were tested for phagocytic activity by treatment of the crystal-like drug inclusions that 

were isolated previously from CFZ-chow fed mice (Fig 1B). Macrophages readily 

phagocytosed the particle, however they could not metabolize or degrade the material. 

The CLDI structure inside the macrophages was used as the positive control to test 

optical microscopy properties in order to distinguish CLDI from autophagosome-like 

drug inclusions (ALDIs) which appeared as birefringent and non-fluorescent in the green 

channel (FITC), but brightly fluorescent in the red channel (RHOD) (Fig 1B). In the 

previous study, autophagosome-like drug inclusions were non-birefringent, but at the 

same time, appeared brightly fluorescent in the green channel, suggesting that ALDIs and 
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CLDIs are different types of cytoplasmic structures. These characteristics were used as 

distinguishing criteria for extracellular clofazimine crystals as well which were visibly 

different in terms of larger crystal size bright yellow in color, but most importantly 

brightly fluorescent in the green channel.  

PMC proliferation  

MTT assay was carried out to measure cell viability relying on enzymatic 

reactions to convert tetrazolium salt into formazan crystals. Mitochondrial 

dehydrogenases for this reaction are known to be active only in live cells, and therefore, 

by measuring production of the formazan after complete lysis and dissolution we could 

extrapolate the number of the cells under different conditions.
7-9

 An equal number of 

PMCs were seeded and grew for 72 hours and they were compared to the standard curve 

generated separately on formazan produced from a known number of cells (Figure 2A). 

Cells within the first 24 hours decreased in number due to the subculture, by which 

activated and adherent macrophages would undergo apoptotic death upon forced 

detachment from flasks. However, after 24 hours, PMC proliferated slowly but steadily, 

resulting in approximately 145 ± 42 hours of doubling time depending on the seeding 

density (Figure 2B). Therefore, we used controlled seeding density and incubation time to 

carry out further analyses for consistency (Figure 2C).   

PMC viability after treatment with CFZ and DOX 

10 µM CFZ revealed toxicity and decreased cell viability significantly (Fig 3A). 

Lower concentrations at 1 µM CFZ with longer incubation times only slightly decreased 

cell numbers and PMC with formazan crystals were verified under microscopy at 24, 48 

and 72 hours (Fig 3B).  The LC50, the concentration of CFZ required to decrease the cell 
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viability to under 50%, was significantly lowered during this prolonged treatment, from 

greater than 10 µM at 24 hours to 7 and less than 4 µM for 48 and 72 hours, respectively. 

Notably, 10 µM in DMEM showed formation of extracellular CFZ crystals associated 

with MTT positive cells (Fig 3B, indicated by arrows) which presumably precipitated 

from an initially supersaturated drug solution that is known to stay protein bound as 

previously reported.
1
 They grew about 50 µm per day in vitro and were also found in 5 

µM solution, although to a significantly lesser extent during 72 hours of CFZ treatment. 

Therefore, we applied 1 µM CFZ for 48 hours to see the CFZ effect on PMCs without 

toxicity or extracellular crystal precipitation.  

In order to show a positive toxic effect, we treated PMC with the anti-mitotic 

reagent doxorubicin (DOX). LC50 was approximately 18 µM during 48 hours of 

treatment (Fig 4A) and at 50 µM, cells were completely dead and did not produce 

formazan (Fig 4B). Meanwhile, 24 hours of DOX treatment was insufficient to show 

cytotoxicity.     

CLDI forms at 1 µM CFZ treatment for 96 hours 

Relying on optical characteristics of CFZ crystals, CLDI, and ALDI, formations 

of different drug inclusions inside the cytoplasm of PMC were assessed after 1 µM CFZ 

treatment for 96 hours (Fig 5). The CLDI and ALDI formed and revealed their 

characteristic optical features as tested in the positive control above (Fig 1B). The CLDIs 

were 10 – 20 µm in length, 1 – 2 µm in width needle-like cytoplasmic structures, and 

dark red in color. They were birefringent under polarized light (PL) while selectively 

fluorescent in the red channel but not in the green channel. ALDIs were not birefringent 

but brightly fluorescent in the green channel as scattered, cytoplasmic punctate.  
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Depending on the orientation of the needle shaped CLDI on the stage, fixed polarized 

light shined as different colors, and sometimes birefringence was completely off-set by a 

post-polarization filter, and as a result, CLDI appeared as black (Fig 6A). The same 

exposure time and background correction settings were applied throughout the 

experiment and contrast-enhanced in pairs with the negative control, unexposed to CFZ 

containing media. 

Different CFZ inclusions formed after 48 hours 

We also found that 48 hours of 1 µM CFZ treatment was sufficient to induce the 

formations of CLDIs (Fig 6A) and ALDIs (Fig 6B) similar to what was previously found 

in vitro and in vivo. 5 µM treatments exhibited a mixed population of CLDIs and ALDIs 

(Fig 6C and D, indicated as arrows). The ALDIs appeared fluorescent in the green 

channel but did not polarize light. Under the same condition, CFZ crystals were observed 

and categorized as such, depending on their optical property shining as orange-red with 

positive fluorescence in the green channel (Fig 6C). 5 and 10 µM treatments 

demonstrated a significant increase in ALDI formations confirmed by a brighter 

fluorescence signal under the same exposure setting (Fig 6D and E). At this concentration 

extracellular CFZ crystals were much elongated, shining in orange-red, and associated 

with PMC. Most interestingly, no intracellular CLDI was observed (Fig 6E) indicating 

the supersaturated concentration drives crystallization of the CFZ too fast to allow the 

cells to take in a sufficient amount of molecules. It also suggests that there is no simple 

relationship between ALDI formation and CLDI formation in terms of one preceding the 

other. At this condition ALDIs were darker and heterogeneous in size and density, but 

retained their morphology rather than developing into CLDI. 
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CFZ inclusions do not have cytoprotective function towards doxorubicin 

Since autophagosomes were reported to have cytoprotective function,
10, 11

 we 

hypothesized CFZ induced ALDI could function to rescue or alleviate the cells from 

DOX toxicity. We treated PMCs for 48 hours with CFZ containing media to induce a 

sufficient number of ALDIs, but toxicity appeared to be additive when they were pre-

treated for 48 hours with 1 or 5 µM CFZ solutions and then exposed to a CFZ+DOX 

solution for an additional 48 hours (Fig 7A and B). Cytotoxicity of the CFZ and DOX 

showed that 50% of the cells survived after 48 hours, further decreasing to less than 10% 

at even longer period, after an 18 µM DOX treatment.  Therefore, we conclude that 

doxorubicin was toxic to cells regardless of any inclusions formed, which were not 

cytoprotective in the given condition (Fig 7C).  

 

C.5   Discussion 

PMCs were successfully isolated and subcultured in vitro. Their phagocytosis on 

isolated CLDIs showed similar characteristics to CLDIs under polarization and 

fluorescence microscopy from the in vivo study,
2
 in which we distinguished the different 

types of inclusions through experimental processes.  Based on CFZ crystal formations at 

1 µM concentration, we can infer that PMC can develop CLDIs as well as ALDIs, which 

is a significant finding compared to the previous study on MDCK cells resulting in 

ALDIs exclusively, despite the longer treatment of over 5 days.  The longer period of 

treatment exhibited more CLDI formation, as similar to what was seen in vivo.
2
 Also this 

prolonged treatment accompanied significant cell death, producing a large margin of 

error in quantitative study on CFZ accumulation and cell proliferation. In relation to the 



  

163 

 

microgranulomas in vivo,
2, 5

 the cells in the center of the tissue macrophage colonies were 

found necrotic. Nevertheless, we have demonstrated that weeks of treatment in mice is 

unnecessary to create CLDIs as the 48 hour treatment at 1 µM concentration could 

successfully produce them in PMCs. To further investigate the formation of CLDIs in 

future, we could simplify the supply chain of these biosynthetic drug inclusions.  

Although CFZ crystals were differentiated from CLDIs, they cannot be confirmed 

to be polyhedrosomes as well until EM analysis was made to reveal the ultrastructure 

with highly organized membrane lamellae in cytoplasm as previous chapters has 

described. Therefore, EM study with a significant number of cells in vitro is strongly 

recommended.  

ALDI formations occurred in all conditions tested, and suggested that PMC 

phagocytosis can be a way of intake and accumulation at the site of exposure.  However, 

cells that had CLDI were not the PMC containing the more of ALDIs, indicating that 

ALDI does not necessarily coalesce to form crystal-like features. Despite the higher 

concentrations of CFZ in the medium led to the aggregation of ALDIs into much larger 

and more pronounced number of inclusions, the populations between CLDI positive vs 

ALDI positive cells were distinct. On the other hand, extracellular CFZ crystals, either 

attached or unattached to PMCs, have displayed the pure CFZ crystal morphology 

without forming CLDIs in PMCs. It is possible that the extracellular CFZ crystal 

formation could induce the CFZ to crystallize out from culture medium, limiting the 

amount of the drug that could be delivered into cytoplasm restraining the formation of 

intracellular ALDIs or CLDIs.    
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In order to establish a condition for mass production of CLDI-storing 

macrophages, we have tested various cell lines in DMEM culture media, including 

HepG2 (human hepatocarcinoma), NR8383 (rat lung macrophage), bone marrow-derived 

macrophages (isolated from mouse femur), Raw 264.7 (mouse monocyte/macrophage), 

P388D1 (lymphoblasts). HepG2 developed ALDIs only, while other macrophages 

appeared to be too sensitive to subculture which made it hard to reproduce experimental 

outcomes. If we could identify the stable cell lines and conditions suitable for inclusion 

formations, it would be interesting to run a comparative study on similarities and 

differences among cell lines that form varying types, number, and morphology of 

inclusions.  
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C.7   Figures 

 

Figure 1. Optical property of PMC with phagocytosed CLDIs.  

(A) Isolated PMC cells seeded on cover slip showed negative optical properties for 

polarized light (PL), green (FITC) and red (RHOD) fluorescence channel for indicated 

exposure. (B) PMC phagocytosed isolated CLDIs as positive control. They showed 

birefringence (PL +) and red fluorescence (RHOD +), while appeared negative in the 

FITC channel. Under the green fluorescence, cytoplasmic area appears brighter due to 

small endo/lysosomal accumulation of the CFZ as reported in the previous study. 
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Figure 2. MTT assay on PMC proliferation. 

(A) Standard curve for formazan production showing linear relationship between PMC 

cell numbers vs. absorbance at 570 nm. (B) Growth curve of PMC for 72 hours at 

different seeding. N=3, average doubling time was 145 hours. (C) Transmitted light 

microscopy image of PMC before and after MTT treatment. 30 minute incubation was 

sufficient to produce purple crystalline formazan. 
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Figure 3. MTT assay on PMC with CFZ treatment.  

(A) Cell viability calculated from MTT assay after 0.1 – 10 µM CFZ treatment for 24 – 

72 hours. Approximated LC50 decreased for prolonged treatment. (B) PMC treated with 

CFZ at different concentrations with and without MTT reagent. Notably 10 µM CFZ 

treatment showed significant elongation of extracellular crystals while PMC did not show 

formazan production. Experiments were duplicated. 
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Figure 4. Doxorubicin toxicity analysis on PMC.  

(A) Cell viability of PMC from MTT assay after 48 hours of DOX treatment showed LC 

50 around 18 µM. (B) Brightfield image of PMC cells after DOX treatment with and 

without MTT. Negative control at 0 µM, LC 50 at 18 µM and positive control at 50 µM 

was shown with corresponding MTT treatment. 
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Figure 5. A CLDI formed in PMC cells after treatment of 1 µM CFZ for 96 hours.  

CLDIs appeared as bright red needles about 20 µm in length, 1 – 2 µm in width with 

birefringent (PL positive), negative green fluorescence (FITC), and positive red 

fluorescence (RHOD). ALDIs (autophagosome-like drug inclusions) were also positive in 

other PMCs which did not polarize light but fluorescent in the green channel. 
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Figure 6.  PMC with CLDI, ALDI, and CFZ crystals (X-tal)  

(A) CLDI formed in PMC after 1 µM CFZ treatment for 48 hours.  (B)  ALDI formed in 

PMC as well in same treatment.  (C)  Although it appears intracellular, orange-red 

colored, thick object is CFZ crystal. They appear birefringent but green fluorescent as 

well. (D)  Darker and larger number ALDI formed in PMC after 5 µM CFZ treatment 

which revealed stronger green fluorescence. (E)  Elongated, orange-red, extracellular 

CFZ crystals with ALDI formed at 10 µM CFZ treatment for 48 hours. 
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Figure 7. Co-treatment of CFZ with DOX 

(A) MTT assay on PMC treated with 5 µM CFZ with 18 µM DOX. N=3 *: P<0.05 using 

student’s T-test. (B) PMC w/ CFZ 1 µM demonstrated similar pattern with 5 µM which 

showed CFZ and DOX has additive toxicity. (C) CLDI formations at CFZ + DOX 

treatment for 48 hours under different optical properties.   
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