
PROTEOLYTIC PROFILING WITH IMAGING AGENTS 
FOR RATIONAL DESIGN OF TARGET-ACTIVATED 

PEPTIDE PRODRUGS 

 

 

by 

 

 

Cara Hartz Nelson 

 

 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
(Pharmaceutical Sciences) 

in The University of Michigan 
2012 

 
 
 
 
 
 

Doctoral Committee: 
 
 Professor Kyung-Dall Lee, Co-Chair 
 Professor Gordon L. Amidon, Co-Chair 
 Professor Anna K. Mapp 
 Associate Professor Duxin Sun 



 

 

 

 

 

 

 

 

 

 

 

 

 

© Cara Hartz Nelson 

2012



 

ii 
 

DEDICATION 
 

 

 

 

 

In loving memory of my mother



 

iii 
 

ACKNOWLEDGEMENTS 
 

 I’d like to thank my advisors Dr. Kyung-Dall Lee and Dr. Gordon Amidon.  I 

appreciate all the advice I’ve gotten from KD over the years and our discussions of 

current events in lab meetings.  I’d like to thank Gordon for the ability to give an 

executive summary of my research and for sharing all his knowledge on regulatory laws.  

I’d also like to thank Dr. Chester Provoda for all the editing he’s done for me and for him 

letting me constantly bother him about research techniques in the beginning.  I’d like to 

thank the College of Pharmacy staff for making my time here go smoothly. 

 My labmates were instrumental in helping me get through graduate school, 

especially Dr. Emily Rabinsky, Dr. Chasity Andrews, Dr. Zachary Walls, Dr. Hairat 

Sabit, Stefanie Goodell, and Dr. Yasuhiro Tsume.  I always enjoyed our conversations 

about school, work, and life.  I’d like to thank Zach for his critiques of my work and his 

career advice.  I’d like to thank Chasity and Emily for always being there to talk to, even 

when I just needed a coffee and a break from the lab.   

 While I consider all of the graduate students here my friends, I would especially 

like to acknowledge my classmates, Jason Baik, Chinmay Maheshwari, Lindsey White, 

Juhee Lee, Dr. Nan Zheng, and Dr. Shu-Pei Wu, who have been so supportive throughout 

graduate school.  They have made life so much easier to deal with by sharing their 

troubles and listening to mine.  I’m really going to miss my coffee breaks and lunches 

with Jason.  I’d also like to thank Maria, Maya, and Lilly for being my roommates at 



 

iv 
 

conferences; they made them so much more enjoyable. 

 Finally, I’d like to thank my family.  I love my parents, Ed and Laurie, for always 

believing in me and supporting me.  Even though my mother is no longer with us, I know 

she is proud of what I have accomplished.  I want to express my gratitude to my sister, 

Chrissy, for always being there more me.  I want to thank my in-laws for their 

encouragement.  Finally, I want to thank my husband, Nathan, for being there for me in 

every way, even when that means moving across the country. 

 



 

v 
 

TABLE OF CONTENTS 
 

DEDICATION................................................................................................................... ii 

ACKNOWLEDGEMENTS ............................................................................................ iii 

LIST OF FIGURES ......................................................................................................... xi 

LIST OF TABLES ......................................................................................................... xiv 

LIST OF ABBREVIATIONS ........................................................................................ xv 

ABSTRACT ................................................................................................................... xvii 

CHAPTER 1 Enzyme-activated prodrugs as a strategy to improve drug delivery .... 1 

1.1  Introduction ........................................................................................................ 1 

1.2  Prodrugs to improve oral absorption ............................................................... 2 

1.2.1  Amino acid and peptide-prodrugs of antiviral compounds .................... 2 

1.3  Targeted prodrugs for tumor-specific delivery ............................................... 5 

1.3.1  Protease-activated prodrugs in cancer therapy ....................................... 7 

1.4  Imaging prodrug activation ............................................................................. 12 

1.4.1  Magnetic resonance imaging .................................................................... 13 

1.4.2  Fluorescence imaging................................................................................ 14 

1.5  Conclusions ....................................................................................................... 17 



 

vi 
 

1.6  References ......................................................................................................... 24 

CHAPTER 2 Puromycin-sensitive aminopeptidase: An antiviral prodrug activating 

enzyme .............................................................................................................................. 41 

2.1  Summary ........................................................................................................... 41 

2.2  Introduction ...................................................................................................... 42 

2.3  Methods ............................................................................................................. 44 

2.3.1  Chemicals and reagents ............................................................................ 44 

2.3.2  Generation of recombinant APP-S .......................................................... 44 

2.3.3  Hydrolysis assays ...................................................................................... 46 

2.4  Results ............................................................................................................... 48 

2.4.1  Recombinant APP-S hydrolysis investigations ...................................... 48 

2.4.2  Activation pathways for Val-Ser-cHPMPC and its metabolites........... 49 

2.4.3  Kinetic constants for APP-S hydrolysis of p-nitroanilide compounds . 50 

2.4.4  APP-S hydrolysis of AMC and ACC compounds .................................. 50 

2.5  Discussion .......................................................................................................... 51 

2.6  References ......................................................................................................... 63 

CHAPTER 3 Enzyme-Activated Magnetic Resonance Imaging Contrast Agent ..... 67 

3.1  Summary ........................................................................................................... 67 

3.2  Introduction ...................................................................................................... 68 

3.3  Methods ............................................................................................................. 73 



 

vii 
 

3.3.1  Conjugation of Asn to DTPA ................................................................... 73 

3.3.2  Conjugation of NWAE to DTPA ............................................................. 74 

3.3.3  Conjugation of Lys-OMe to DTPA ......................................................... 75 

3.3.4  Determination of free gadolinium ........................................................... 76 

3.3.5  Relaxivities of contrast agents in NMR ................................................... 76 

3.3.6  Relaxivities of contrast agents in MRI .................................................... 77 

3.3.7  Subcloning of legumain ............................................................................ 77 

3.3.8  Recombinant legumain expression and purification ............................. 78 

3.3.9  Legumain hydrolysis of Z-AAN-AMC .................................................... 79 

3.3.10  Legumain hydrolysis of neurotensin and NWAE .................................. 79 

3.3.11  Enzymatic hydrolysis of Gd-DTPA-NWAE ........................................... 80 

3.3.12  HEK-293 cells overexpressing legumain ................................................. 80 

3.3.13  Hydrolysis of Z-AAN-AMC by HEK-LEG cells. ................................... 81 

3.4  Results ............................................................................................................... 81 

3.4.1  Synthesis and characterization of procontrast agents ........................... 81 

3.4.2  Production and characterization recombinant legumain ..................... 82 

3.4.3  Legumain incubated with procontrast agent ......................................... 83 

3.4.4  Legumain activity in whole cells .............................................................. 83 

3.4.5  Synthesis and characterization of an alternative procontrast agent .... 83 

3.5  Discussion .......................................................................................................... 84 



 

viii 
 

3.6  References ......................................................................................................... 94 

CHAPTER 4 Determination of differential peptide hydrolysis in whole cells using 

fluorescence ..................................................................................................................... 96 

4.1  Summary ........................................................................................................... 96 

4.2  Introduction ...................................................................................................... 96 

4.3  Methods ............................................................................................................. 98 

4.3.1  Materials .................................................................................................... 98 

4.3.2  Synthesis of ACC compounds .................................................................. 99 

4.3.3  Cell culture ................................................................................................ 99 

4.3.4  Transfection of HEK-293 cells ................................................................. 99 

4.3.5  Whole cell hydrolysis of AMC and ACC conjugates ........................... 100 

4.3.6  Hydrolysis of AMC conjugates in mouse serum .................................. 100 

4.3.7  mRNA expression data ........................................................................... 101 

4.3.8  Statistical analysis ................................................................................... 101 

4.4  Results ............................................................................................................. 101 

4.4.1  Single amino acid conjugates of AMC in transfected cells ................. 101 

4.4.2  Hydrolysis of peptide-AMC conjugates in transfected cells ............... 101 

4.4.3  Hydrolysis of single amino acid conjugates by three cell lines ........... 102 

4.4.4  Differential hydrolysis of peptide-AMC conjugates by BT-549 cells . 103 

4.4.5  Hydrolysis of ACC conjugates ............................................................... 103 



 

ix 
 

4.4.6  Serum and liver stability of AMC conjugates ...................................... 104 

4.4.7  Protease expression levels in breast cancer cells .................................. 104 

4.5  Discussion ........................................................................................................ 104 

4.6  References ....................................................................................................... 118 

CHAPTER 5 Selective Hydrolysis of Doxorubicin Prodrugs ................................... 123 

5.1  Summary ......................................................................................................... 123 

5.2  Introduction .................................................................................................... 123 

5.3  Methods ........................................................................................................... 125 

5.3.1  Materials .................................................................................................. 125 

5.3.2  Synthesis of doxorubicin prodrugs ........................................................ 125 

5.3.3  HPLC analysis ......................................................................................... 126 

5.3.4  pH stability of prodrugs ......................................................................... 126 

5.3.5  Cell culture .............................................................................................. 126 

5.3.6  Transfection of HEK-293 cells ............................................................... 127 

5.3.7  Hydrolysis of prodrugs ........................................................................... 127 

5.3.8  Whole-cell hydrolysis of L-Lys-L-Ala-AMC ......................................... 128 

5.3.9  Cell viability ............................................................................................. 128 

5.3.10  Microscopy............................................................................................... 129 

5.3.11  Statistical analysis ................................................................................... 129 

5.4  Results ............................................................................................................. 129 



 

x 
 

5.4.1  Synthesis and pH stability ...................................................................... 129 

5.4.2  Hydrolysis of L-Lys-L-Ala-Doxorubicin by lysed cells ........................ 130 

5.4.3  Hydrolysis of Dox prodrugs by whole cells........................................... 130 

5.4.4  Hydrolysis of L-Lys-L-Ala-Dox by transfected cells ............................ 131 

5.4.5  Hydrolysis of L-Lys-L-Ala-AMC by transfected cells .......................... 131 

5.4.6  Cytotoxicity of prodrugs......................................................................... 131 

5.4.7  Microscopy............................................................................................... 132 

5.5  Discussion ........................................................................................................ 132 

5.6  References ....................................................................................................... 145 

CHAPTER 6 Conclusions ............................................................................................ 150 

6.1  Significance ..................................................................................................... 150 

6.2  Future Directions ............................................................................................ 155 

6.3  References ....................................................................................................... 160 

APPENDIX…………………………………………………………………………….165 

 



 

xi 
 

LIST OF FIGURES 
 

Figure 1.1  Bioactivation of the ester prodrug oseltamivir ............................................... 18 

Figure 1.2  Absorption and activation of valacyclovir. .................................................... 19 

Figure 1.3  Bioactivation of valacyclovir. ........................................................................ 20 

Figure 1.4  Chemical structures of cidofovir, cyclic cidofovir, and L-Val-L-Ser-cHPMPC

........................................................................................................................................... 21 

Figure 1.5  Labeling of a cysteine protease by an activity-based probe ........................... 22 

Figure 1.6  Structure and absorbance spectra of AMC and AMC amino acid conjugate. 23 

Figure 2.1  Chemical structures of cidofovir (1) and Val-Ser-cHPMPC (2). ................... 55 

Figure 2.2  Superdex-200 purification of APP-S from Caco-2 cell homogenates. ........... 56 

Figure 2.3  Chemical structures of Ala-AMC, Ala-ACC, and Ala-pNA .......................... 57 

Figure 2.4  Purified recombinant APP-S. ......................................................................... 58 

Figure 2.5  Michaelis-Menten plot of Val-Ser-cHPMPC hydrolysis by APP-S. .............. 59 

Figure 2.6  Chemical structures of the observed metabolites obtained during the 

hydrolysis of Val-Ser-cHPMPC by recombinant APP-S.................................................. 60 

Figure 3.1  Proposed bioactivation of Gd-DTPA-NWAE ................................................ 87 

Figure 3.2  Synthesis Scheme for Gd-DTPA-Asn and Gd-Asn-DTPA-Asn .................... 88 

Figure 3.3  Synthesis scheme for Gd-DTPA-NWAE and Gd-NWAE-DTPA-NWAE .... 89 

Figure 3.4  The relaxivity ratios for Gd-DTPA amino acid and tetrapeptide analogues. . 90 

Figure 3.5  Purified recombinant mouse legumain is autocatalytically activated in acidic 



 

xii 
 

conditions. ......................................................................................................................... 91 

Figure 3.6  Structure of Gd-Lys-OMe-DTPA-Lys-OMe .................................................. 92 

Figure 4.1  Chemical structures of AMC and ACC. ....................................................... 109 

Figure 4.2  Single amino acids are not ideal candidates for targetd prodrug promoieties.

......................................................................................................................................... 110 

Figure 4.3  Dipeptide promoieties are sufficient for differential hydrolysis in transfected 

HEK-293 cells. ................................................................................................................ 111 

Figure 4.4  Membrane permeabilization by Triton X-100 changes the rate of hydrolysis 

by transfected HEK-293 cells ......................................................................................... 112 

Figure 4.5  Differential hydrolysis can be achieved with single amino acid substrates. 113 

Figure 4.6  Di- and tripeptide promoieties resulted in greater differential hydrolysis. .. 114 

Figure 4.7  The promoiety confers differential hydrolysis despite changing the leaving 

group. .............................................................................................................................. 115 

Figure 4.8  There is significant X-prolyl peptidase activity in mouse serum. ................ 116 

Figure 4.9  mRNA expression levels of select proteases in MCF7 and BT-549 cells. ... 117 

Figure 5.1  Synthesis scheme for L-Lys-L-Ala-Doxorubicin .......................................... 137 

Figure 5.2  L-Lys-L-Ala-Dox is hydrolyzed significantly faster by detergent-

permeabilized BT-549 cells. ........................................................................................... 138 

Figure 5.3  BT-549 cells hydrolyze L-Lys-L-Ala-Dox to L-Ala-Dox significantly faster 

than MRC-5 or MCF7 cells. ........................................................................................... 139 

Figure 5.4  Bestatin inhibits whole-cell hydrolysis of L-Lys-L-Ala-Dox. ...................... 140 

Figure 5.5  L-Lys-L-Ala-Dox and L-Lys-L-Ala-AMC are hydrolyzed faster by ANPEP-

transfected HEK-293 cells. ............................................................................................. 141 



 

xiii 
 

Figure 5.6  Prodrugs of doxorubicin retain some cytotoxicity. ...................................... 142 

Figure 5.7  Doxorubicin prodrugs accumulate outside the nucleus. ............................... 143 

Figure 6.1  Structures of doxorubicin (Dox) and Daunorubicin (DNR) ......................... 158 

Figure 6.2  Activation of Gly-Pro-Aminoluciferin ......................................................... 159 

Figure A.1  pH has minimal effect on proteolytic profiles of cell lysates……………...172 

Figure A.2  Serum starvation has the opposite effect on extent of Ala-AMC hydrolysis in 

MCF7 and HEK-LEG cells……………………………………………………………..173 

Figure A.3  Cells from different tissue sources have different proteolytic profiles at 

physiologic pH………………………………………………………………………….174 

 



 

xiv 
 

LIST OF TABLES 
 

Table 2.1  Kinetics of Val-Ser-cHPMPC hydrolysis by recombinant APP-S. ................. 61 

Table 2.2  Initial velocity of hydrolysis of AMC and ACC substrates by recombinant 

APP-S. ............................................................................................................................... 62 

Table 3.1  Relaxivities (R1) of Gd-DTPA analogues ....................................................... 93 

Table 5.1  IC50 values of doxorubicin and dox prodrugs in MRC-5, MCF7, and BT-549 

cells ................................................................................................................................. 144 



 

xv 
 

LIST OF ABBREVIATIONS 
 

ACC  7-amino-4-carbamoylmethylcoumarin 

AMC  7-amino-4-methylcoumarin 

ANPEP Gene name for alanyl aminopeptidase 

AOMK Acyloxymethylketone 

APN/CD13 Alanyl aminopeptidase/aminopeptidase N 

APP-S  Puromycin-sensitive aminopeptidase 

BPHL  Biphenyl-hydrolase-like protein/valcyclovirase 

cHPMPC Cyclic cidofovir 

DMF  Dimethylformamide 

Dox  Doxorubicin 

DPP  Dipeptidyl dipeptidase 

DTPA  Diethylentriamine pentaacetic acid 

ECM  Extracellular matrix 

Gd3+  Gadolinium 

GnRH  Gonadotropin-releasing hormone 

HPMPC Cidofovir (methyl (S)-2-((S)-2amino-3-methyl-butyrylamino)-3-[(S)-5-(4-

amino-2-oxo-2H-pyrimidin-1-ylmethyl)-2-oxido-1,4,2-dioxaphosphinan-

2—yloxy]propanoate) 

MeOH Methanol 



 

xvi 
 

MMP Matrix metalloproteinase 

MRI Magnetic resonance imaging 

MS Mass spectroscopy 

NMR Nuclear magnetic resonance 

NPEPPS Gene name for puromycin-sensitive aminopeptidase 

NWAE Asparagine-tryptophan-alanine-glutamic acid peptide 

PBS Phosphate-buffered saline 

PepTI Peptide transporter 1 

pNA para-nitroaniline 

PSA Prostate-specific antigen 

R1 Relaxivity 

T1 Spin-lattice time 

TEA Triethylamine 

TEAA Triethylacetic acid 

V0 Initial velocity of hydrolysis 

Z Benzyloxycarbonyl protecting group 



 

xvii 
 

ABSTRACT 
 

 Peptide prodrugs can be used to alter pharmacokinetic properties of drugs such 

improved oral bioavailability and site-specific delivery.  This thesis focuses on peptide 

prodrug activating enzymes and selection of peptide promoieties to achieve targeted 

activation.  The peptide prodrug L-Val-L-Ser-cyclic cidofovir (Val-Ser-cHPMPC) was 

previously shown to improve the oral bioavailability of the poorly absorbed antiviral 

cHPMPC.  However, this prodrug must be efficiently and predictably hydrolyzed in vivo 

to the parent compound cHPMPC to exhibit antiviral activity.  Herein, we describe the 

identification and characterization of puromycin-sensitive aminopeptidase (APP-S) as the 

primary activator of Val-Ser-cHMPC.  For orally absorbed prodrugs, it is often desirable 

to achieve immediate activation upon absorption.  Conversely, to achieve site-specific 

delivery it is desirable to select a promoiety that is preferentially cleaved by a protease 

that is overexpressed or uniquely expressed in diseased tissue.  One such protease that is 

overexpressed in tumors is the cysteine endopeptidase legumain.  To measure protease 

activity in a minimally invasive manner, we synthesized a peptide conjugate of the MRI 

contrast agent Gd-DTPA.  The peptide effectively blocked the ninth coordination site of 

gadolinium, which resulted in a slower relaxitivity (R1) than the parent compound Gd-

DTPA or the proposed single amino acid metabolite, which should result in enhanced 

signal intensity in vivo.  However, the Gd-DTPA-tetrapeptide analogue was not 

significantly hydrolyzed by purified recombinant legumain.  The purified legumain was 
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shown to be active using the model substrate Z-Ala-Ala-Asn-AMC, but there was 

minimal hydrolysis of the model compound when incubated with HEK-293 cells 

overexpressing legumain.  This difference in enzymatic activity between the purified 

protease and protease expressed in whole cells suggested a whole-cell system would be 

more physiologically relevant for peptide promoiety screening.  We selected amino acid 

and peptide conjugates of the fluorescent compounds AMC and ACC to screen whole-

cells and were able to identify several promoieties that were hydrolyzed significantly 

faster by BT-549 breast cancer cells compared to MCF7 or MRC-5 cells.  One of these 

dipeptide promoieties, L-Lys-L-Ala, was selected to make a doxorubicin prodrug.  There 

was differential activation of L-Lys-L-Ala-Dox by BT-549 cells, suggesting that our 

peptide promoiety screening system can be applied to rational prodrug design. 
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CHAPTER 1  
 

Enzyme-activated prodrugs as a strategy to improve drug delivery   
 

1.1 Introduction 

The term prodrug was first introduced by Adrien Albert in the 1950’s (1) as a 

compound that is pharmacologically inactive or significantly less active until it is 

enzymatically or chemically converted to an active drug in vivo.  Prior to Albert, Paul 

Ehrlich proposed the concept of a “magic bullet” in which he reasoned that if one could 

find a compound that is selective for a disease-causing organism, then a toxin could be 

attached to said compound for selective delivery (2, 3).  According to a 2004 review by 

Ettmayer et al., prodrugs are almost 7% of marketed medicines in Germany (2) and 

approximately 10% of marketed drugs worldwide (4).  The prodrug strategy is often 

considered only late in drug development, when other approaches have failed to improve 

the pharmaceutical properties such as solubility, permeability, toxicity or chemical or 

enzymatic stability  In fact, many prodrugs on the market were not intentionally designed 

as prodrugs and were only recognized as such later on.  Examples of this include 

prontosil, heroin, and isoniazid, which was not discovered to be a prodrug until 40 years 

after Roche first introduced isoniazid (4).  Prodrugs represent an exciting opportunity to 

not only improve pharmacokinetic properties of a compound, but to also extend the life 

cycle of a drug, often with reduced development costs (4).  This thesis will focus on one 

aspect of prodrug development, namely the hydrolases responsible for conversion of 
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prodrug to parent compound and their identification before, during, and after prodrug 

development. 

1.2 Prodrugs to improve oral absorption 

As mentioned previously, prodrugs have been used to improve a variety of 

pharmaceutical properties including solubility, chemical or enzymatic stability, 

permeability, and toxicity.  As oral drug delivery is the preferred route for most drugs, the 

prodrug approach can be especially useful in improving oral absorption.  One way to 

accomplish this is to improve the lipophilicity of the compound by masking hydrophilic 

hydroxyl, carboxyl, phosphate or other charged groups by forming esters (5).  

Oseltamivir (Tamiflu; Genentech (Roche Group)) shown in Figure 1.1 is a good example 

of an ethyl ester prodrug that was developed to improve bioavailability from 5% for the 

free carboxylate to nearly 80% for the more lipophilic prodrug (6).  Following 

absorption, oseltamivir is extensively metabolized to the active compound oseltamivir 

carboxylate by hepatic esterases (6). 

1.2.1 Amino acid and peptide-prodrugs of antiviral compounds 

1.2.1.1 Valacyclovir and valganciclovir 

The poor oral bioavailability of other compounds such as acyclovir and ganciclovir 

has been improved by a slightly different approach.  Rather than improving the 

lipophilicity of the compound for passive diffusion, the drugs were given nutrient-like 

properties to allow them to be absorbed by carried-mediated transport.  Valacyclovir and 

valganciclovir are L-valyl ester prodrugs of acyclovir and ganciclovir (7-11).  In the case 

of valacyclovir, the oral absorption was improved 3- to 5-fold compared to the parent 

compound, acyclovir (8, 9, 12).  The improved oral bioavailability of valacyclovir over 



 

3 
 

acyclovir has been shown to be due to carrier-mediated transport by the human peptide 

transporter 1 (PEPT1) (7, 13-15).  The absorption and activation of valacyclovir are 

diagrammed in Figure 1.2.  Human PEPT1 is a high capacity, low affinity oligopeptide 

transporter abundantly expressed in the small intestine with broad substrate specificity 

and stereoselectivity for L-amino acid residues (16-18).  Following intestinal absorption, 

both valacyclovir and valganciclovir are rapidly converted to acyclovir and ganciclovir, 

respectively, by the esterase biphenyl hydrolase-like protein (BPHL) (19).  This is 

important because acyclovir requires phosphorylation to be activated and the valyl ester 

must be removed for the phosphorylation to occur (4), as seen in Figure 1.3.  Thus, an 

amino acid or peptide prodrug strategy relies on the rapid and predictable conversion of 

the prodrug to the parent compound. 

1.2.1.2 Cidofovir and cyclic cidofovir 

The antiviral compound cidofovir (HPMPC) is an approved intravenous treatment 

of cytomegalovirus (CMV) infections in immunocompromised individuals, such as those 

infected with HIV, however, its use is limited because of nephrotoxicity associated with 

treatment (20, 21).  The similarly potent antiviral prodrug cyclic cidofovir (cHPMPC) 

was developed to reduce the nephrotoxicity resulting from cidofovir treatment (22).  

Cidofovir and cyclic cidofovir are also effective against other DNA viruses such as 

herpesviruses, adenoviruses, polyomaviruses, and orthopoxviruses (17, 20, 23-25).  Poor 

oral bioavailability limits the use of HPMPC and cHPMPC (<5%) (17, 22), which can be 

attributed their negatively charged phosphonic and phosphante groups at physiological 

pH as seen in Figure 1.4 (26-28).  The McKenna laboratory has developed several amino 

acid and dipeptide prodrugs of cHPMPC to mask the charge of cHPMPC at physiological 
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pH and increase uptake by carrier-mediated transporters such as PEPT1 (17, 27, 29-31).  

A serine phosphoester prodrug of cHPMPC, L-Val-L-Ser-cHPMPC (Val-Ser-cHPMC) 

shown in Figure 1.4 was one of the more successful prodrugs identified by this approach 

(27).  Using an in situ single pass perfusion method, the permeability of Val-Ser-

cHPMPC was more than 20 times greater than cHPMPC (27).  Furthermore, the oral 

bioavailability of Val-Ser-cHPMC was 18.1% compared to 2.2% for cHPMPC following 

direct injection into the gastrointestinal tract of rats (27).  As mentioned previously, for 

an amino acid- or peptide-prodrug approach to be successful, the prodrug must be 

activated to the parent compound in addition to improving the bioavailability.  In 

transport studies in rats, the major species found in plasma was cHPMPC (>90%); thus, 

Val-Ser-cHPMPC appears to be efficiently activated in rats (27).  However, this strategy 

relies on the predictable and efficient conversion of prodrugs in humans; therefore, it 

would be beneficial to identify the prodrug activating enzyme(s) in humans.  It was 

observed in Caco-2 cell homogenate that valine was cleaved from serine, which led to 

chemical hydrolysis of the serine residue from cHPMPC, and this process was inhibited 

by the aminopeptidase inhibitor bestatin (27).  Also, the co-dosing of bestatin with Val-

Ser-cHPMPC increased the plasma level of cHPMPC by more than 3-fold compared to 

prodrug alone (27), which suggests bestatin inhibits enzymes present in the 

gastrointestinal tract that are hydrolyzing the prodrug prior to absorption.  The ability of 

bestatin to increase the enzymatic stability of Val-Ser-cHPMPC suggested an 

aminopeptidase was primarily responsible for the hydrolysis of Val-Ser-cHPMPC.  The 

identification of an aminopeptidase responsible for activating Val-Ser-cHPMPC is 

discussed further in Chapter 2. 
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1.3 Targeted prodrugs for tumor-specific delivery 

The use of prodrugs to enhance site-specific delivery of a compound can be applied 

to a variety of drugs and targets such as brain, bone, colon, and tumors as previously has 

been reviewed (2, 4, 32, 33).  To limit the scope, this thesis will focus on prodrugs to 

improve tumor-targeting.  While many chemotherapeutics on the market are effective at 

cell killing, they are often limited by a narrow therapeutic window due to cytotoxicity 

toward normal cells.  Doxorubicin (Dox) is a highly potent anthracycline with a broad 

range of activity.  The antitumor activity of Dox has been attributed to its ability to 

intercalate DNA, bind proteins involved in DNA replication and induce cell death via 

p53-dependent and independent pathways (34, 35).  Despite its widespread use, there are 

many side effects that continue to plague patients treated with Dox, the most troubling 

being cardiotoxicity (34).  The cardiotoxicity induced by Dox is thought to be 

independent of its nuclear DNA-binding, but rather as a result of Dox binding cardiolipin, 

free-radical formation, and mitochondrial damage, though the exact mechanism is not 

known (35).  Another chemotherapeutic, paclitaxel, induces programmed cell death via a 

different mechanism than Dox, but still has a narrow therapeutic index due to myelo-

suppression and sensory neuropathy (35).   

There have been some successes in limiting off-target cytotoxicity by using a 

rational approach to designing drugs for molecular targets involved in cancer formation 

and progression, e.g. inhibitors of Abl kinase (36) or EGF receptor kinase (37).  

However, the role of these molecular targets in cancer pathogenesis is often not clearly 

understood, and inhibition of the target may not result in growth-arrest or apoptosis.  

Alternatively, these targets could be used as molecular addresses to deliver a cytotoxic 
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compound to the tumor site.  This approach has been exemplified by the conjugation of 

doxorubicin to the peptide CNGRC (38, 39) and the conjugation of paclitaxel to the 

peptide gonadotropin-releasing hormone (GnRH) (40).  The cyclic peptide CNGRC has 

been shown to bind aminopeptidase N (APN/CD13), which is highly expressed on tumor 

vasculature as well as some solid tumors (38, 41, 42).  This conjugate prolonged the 

survival of mice bearing MDA-MB-435 carcinoma cells compared to doxorubicin alone 

(39).  There is evidence for the presence of GnRH receptors in prostate cancer tissue, 

ovarian cancer tissue, and malignant breast cancer tissue (40).  When the GnRH peptide 

was conjugated to paclitaxel by the spacer chloroacetic acid to the 2’-hydroxyl group of 

paclitaxel, it decreased MCF7 cell proliferation more than paclitaxel alone (40).  Both the 

doxorubicin-CNGRC conjugate and paclitaxel-GnRH were hydrolyzed by intracellular 

esterases to release the parent compounds (38, 40).  Although GnRH and its analogues 

have pharmacological applications (43), in the case of paclitaxel-GnRH the GnRH 

binding was used as a molecular address tag and to possibly aid in transport, while the 

paclitaxel was used for its pharmacological effect (40). 

Peptide prodrugs are not only useful in binding molecular targets; they can also be 

used to control the activation of prodrugs.  In this situation, the prodrug strategy could be 

employed in an alternative manner, wherein the promoiety is cleaved from the parent 

compound by an enzyme that is overexpressed or uniquely expressed at the target site, 

which may or may not be correlated with genetic changes (35).  As proteases account for 

~2% of all proteins and play a role in most cellular processes, they are an attractive target 

for this type of prodrug design (44).  Additionally, doxorubicin contains a primary amine, 

which allows the conjugation of amino acid sequences without the use of a linker (35).  
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Unlike the ester linkages described above, the amino-peptidyl bond is considered 

relatively stable in serum (35).  This was taken advantage of in the development of N-L-

leucyldoxorubicin (Leu-Dox) to reduce the cardiotoxicity of doxorubicin (45-47).  In 

phase I clinical trials, Leu-Dox was shown to be rapidly, though not completely, 

converted to free Dox in plasma after i.v. administration (46, 47).  The cytotoxicity of 

Leu-Dox is better correlated to free Dox concentrations in tumor tissues and cell cultures, 

suggesting Leu-Dox is acting as a prodrug rather than being cytotoxic itself (45-50).  

Leu-Dox had a higher maximum tolerated dose than free Dox, resulting in higher free 

Dox concentrations in tumor tissues in murine models (50).   

1.3.1 Protease-activated prodrugs in cancer therapy 

To expand on the work with Leu-Dox, many groups have attached longer peptide 

sequences to doxorubicin to allow for more specific activation at the tumor site (51-64).  

There are three main classes of proteases that are targeted by this approach; serine, 

cysteine, and metalloproteases (44, 65, 66).  These proteases are involved in 

bioregulation, matrix remodeling, digestion, and immune response (44).  Interestingly, 

these proteases are often secreted by fibroblasts and inflammatory cells rather than the 

tumor cells themselves (67). 

1.3.1.1 Matrix metalloproteases 

The matrix metalloproteases (MMPs) are some of the most popular targets of 

peptide prodrug design for chemotherapeutics.  Enzymes of the MMP class are involved 

in the normal matrix remodeling associated with embryo development, wound healing, 

and activation or deactivation of signal proteins involved in the immune response (68).  

However, the normal functions of MMPs can be altered in tumors.  More specifically, 
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MMP-2 and -9 have been shown to be involved in the degradation of the basement 

membrane, which leads to tumor cell invasion (68), and their expression by tumor cells 

has been associated with poor clinical outcomes (69).  This discovery has led to the 

development of several doxorubicin prodrugs that are specifically activated by MMPs 

(51, 58, 60-62, 70).  Both Albright et al. (51) and Lee et al. (62) found that doxorubicin 

prodrugs with MMP-cleavable peptides resulted in less systemic toxicity in mouse 

models compared to Dox, while still suppressing tumor growth, thus increasing the 

therapeutic index. 

1.3.1.2 Prostate-specific antigen 

Another popular target in chemotherapeutic prodrug design is the serine protease 

prostate-specific antigen (PSA) (52-54, 59, 71-76).  PSA has chymotrypsin-like activity 

and is present in both normal and tumor tissues, with the highest expression being in 

breast and prostate (52).  PSA gained notoriety as a serological marker of prostate cancer, 

and levels are positively correlated with tumor burden (52).  While secreted PSA is 

present in serum and can be used to aid in the diagnosis of prostate cancer, it is relatively 

inactive in the systemic circulation because it forms a complex with α1-antichymotrypsin 

and α2-macroglublin, protease inhibitors present in plasma (52).  Therefore, prodrugs 

designed to be selectively cleaved by PSA would be primarily activated in the tumor 

microenvironment where the enzyme is highly expressed and active (52).  Researchers at 

Merck laboratories conjugated the peptide N-glutaryl-(4-hydroxyprolyl)-Ala-Ser-

cyclohexaglycyl-Gln-Ser-Leu-CO2H to the aminoglycoside of Dox (52, 54, 75).  This 

compound (L-377,202) had 20-fold greater activity against PSA-secreting LNCap cells 

compared to non-PSA-secreting DuPRO cells in vitro (75).  Furthermore, L-377,202 was 
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15 times more effective than Dox at inhibiting human prostate cancer tumors in nude 

mice, with minimal total body weight loss (52).  In a small clinical trial, L-377,202 was 

found to be well tolerated in addition to being cleaved to Leu-Dox and Dox (54). 

1.3.1.3 Cathepsins 

Cathepsins are cysteine proteases that have been shown to play a role in cancer 

(67).  Not only are they involved in the degradation of the extracellular matrix (ECM), 

but they have also been implicated in angiogenesis and growth of primary and metastatic 

tumors (67).  Cathepsin B is able to hydrolyze collagen IV, fibronectin and laminin 

(ECM components) and was identified in breast cancer progression more than 30 years 

ago (67).  To take advantage of cathepsin B overexpression in tumors, Dubowchik and 

Firestone developed a doxorubicin prodrug in which the internalizing antibody (BR96) 

was attached to doxorubicin with a cathepsin B cleavable linker (55, 56).  Similarly, 

Schmid et al. attached the albumin-binding compound EMC (6-maleimidocaproic acid) 

to doxorubicin via a cathepsin B cleavable hexapeptide (77).  The albumin-binding Dox 

prodrug was efficiently cleaved to H-Leu-Ala-Leu-Dox, H-Leu-Dox, and Dox in vitro 

and the antitumor efficacy was similar to that of doxorubicin in vivo (77).  Furthermore, 

there was no change in body weight associated with H-Leu-Ala-Leu-Dox treatment 

compared to a 9% weight loss in mice treated with Dox, suggesting the prodrug reduces 

off-target toxicity (77). 

1.3.1.4 Legumain 

Another cysteine protease that was immunohistochemically identified as being 

overexpressed in tumors is legumain (63, 64, 78).  Legumain is a lysosomal endoprotease 

with specificity for Asn or Asp in the P1 position (79, 80).  While legumain is normally a 



 

10 
 

lysosomal enzyme, it was found to be in membrane-associated vesicles at the 

invadopodia of tumor cells and associated with the cell surface (63).  Legumain was also 

shown to be only overexpressed in solid tumors and xenografts of cancer cells, not in 

cultures of immortalized cancer cell lines (63).  Liu et al. synthesized the prodrug N-(-t-

Butoxycarbonyl-L-alanyl-L-alanyl-L-aspraginyl-L-leucyl)doxorubicin (legubicin) (63).  

The cytotoxicity of legubicin was <1% of that of doxorubicin against HEK-293 cells not 

expressing legumain in vitro and it was significantly cytotoxic against HEK-293 cells 

overexpressing legumain (63).  When tested in vivo, legubicin was tumoricidal against a 

murine model bearing CT26 carcinoma cells with little weight loss or toxicity against 

non-tumor bearing organs that express legumain such as kidney and liver (63).  A similar 

compound, succinyl-L-alanyl-L-alanyl-L-asparginyl-L-leucyl-doxorubicin (LEG-3) was 

synthesized by Wu et al. (64).  LEG-3 was virtually non-cytotoxic toward non-legumain-

expressing HEK-293 cells and was shown to be cell-impermeant, whereas it was 

effectively hydrolyzed by legumain-expressing HEK-293 cells and had an EC50 similar to 

that of doxorubicin (64).  LEG-3 exhibited a higher maximal tolerable dose and a lower 

LD50 than doxorubicin in vivo while still being tumoricidal (64).  Stern et al. also 

synthesized a legumain-activated prodrug, carbobenzyloxy-alanine-alanine-aspargine-

ethylenediamine-etoposide, that was 100% cleaved by the lysates of HEK-293 cells 

overexpressing legumain and only 33% cleaved by non-legumain expressing HEK-293 

cell lysates (78).  However, this etoposide prodrug was not efficiently cleaved by intact 

legumain-expressing HEK-293 cells (78). 

1.3.1.5 Dipeptidyl peptidase IV 

The serine peptidase dipeptidyl peptidase IV (DPP IV) has been associated with 
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several diseases including cancer (81, 82).  While not consistently overexpressed in all 

tumor types, DPP IV has been shown to be overexpressed in thyroid cancer, astrocytic 

tumors, and breast cancer metastases (81).  Despite this association, there have been very 

little development of DPP IV-targeted prodrugs for cancer therapy.  There is some 

evidence that DPP IV would be a good target for a prodrug approach as it has already 

been successfully applied to the antiviral bicyclic furanopyrimidine nucleoside analogue 

(83). 

1.3.1.6 Protease profiling to identify new targets 

Although there have been several proteases identified as potential targets for 

prodrug therapy, it is highly likely there are more proteases yet to be identified.  The field 

of genomics has helped advance the knowledge of differential expression in the diseased 

state using DNA microarrays; however, these assays cannot account for posttranslational 

protein concentrations or activity (84).  To aid in the identification of proteases that 

exhibit increased activity in disease tissue, many laboratories have developed activity-

based probes for protease profiling (44, 84-92).  In general, activity-based probes label 

active site residues through a chemical reaction that is both specific and dependent upon 

enzymatic activity (93).  One of these probes was able to identify a hydroxypyruvate 

reductase that was labeled by the activity-based probe 6-fold more in obese (ob/ob) mice 

compared to wild-type mice (84).  Despite the developments in expanding the reactivity 

of these activity-based probes, they are still limited in identifying a diverse array of 

proteases.  For targeting disease tissue it is not necessarily essential to identify proteases 

that are overexpressed, but rather identify the substrates that are preferentially hydrolyzed 

in the target tissue.  Cloutier et al. accomplished this by using a phage display library and 
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were able to identify pentapeptides that were specifically cleaved by three different 

prostate cancer cell lines with varying levels of invasiveness (94).  Schmid et al. screened 

a fluorogenic positional-scanning tetrapeptide library to identify albumin-binding 

camptothecin prodrugs that were hydrolyzed by homogenates of human colon tumor 

xenografts (95).  However, these prodrugs were not specifically hydrolyzed by colon 

tumors (95).  Another approach employed by Trouet et al. screened oligopeptide 

derivatives of doxorubicin to find a tetrapeptide prodrug, N-β-alanyl-L-leucyl-L-alanyl-L-

leucyl-doxorubicin, that was selectively hydrolyzed by MCF7 cells over MRC-5 cells 

(57, 96, 97).  Each of the previously described profiling approaches had the same 

drawbacks, they only screened extracellular and/or secreted proteases and the substrates 

were tetrapeptides or longer.  Thus, a screening system that is able to measure the activity 

of intracellular proteases and uses shorter peptide or amino acid promoieties has the 

potential to identify new protease targets including aminopeptidases and dipeptidases. 

1.4 Imaging prodrug activation 

Targeted prodrugs activated by enzymes overexpressed or uniquely expressed by 

disease tissue such as tumors have not had great success in clinical trials because of the 

unpredictability of enzyme expression and activity in vivo (98, 99).  To better predict 

which promoieties might be effective at targeting in vivo, it would be useful to have a 

relatively non-invasive method to measure enzymatic activity.  In this manner, 

promoieties attached to molecular imaging agents can be useful in the development of the 

protease-activated prodrugs (100-103).  There are a variety of imaging techniques that 

have been adapted to observe enzymatic activity both in vitro and in vivo including 

optical (fluorescence and bioluminescence), magnetic resonance imaging (MRI), single-
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photon emission computed tomography (SPECT), and positron emission tomography 

(PET) (101-104).  The use of MRI and fluorescence in monitoring enzymatic activity are 

described in further detail below.  

1.4.1 Magnetic resonance imaging 

MRI works by applying a strong magnetic field to the body or tissue, which will 

cause the proton spins (mainly from H+ of water) to align along this magnetic field 

direction (105).  Energy is then transferred into the system using an electromagnetic wave 

that corresponds to the Larmor frequency, which is the precession frequency of spins 

located in a magnetic field, and causes the spins to be deflected away from the Z-

direction (105).  The time required for the excited spins to recover to the Z-direction, 

which is along the external magnetic field, is called the spin-lattice time or T1 time and 

can be determined by monitoring the emission of energy (105).  A shorter T1 time means 

the spins recover more quickly, thus emitting a stronger signal (105).  It was discovered 

in 1971 that malignant tumors had different relaxation times than normal tissue and could 

thus be identified by MRI (106).  The T1 time can further be altered by contrast agents 

that contain paramagnetic ions, which results in a higher relaxivity.  Relaxivity (R1) can 

be defined as 1/T1 when 1 mol of the contrast agent is dissolved in 1 L of water (105).  

Gd3+ is one such paramagnetic element that can create strong local magnetic fields to 

accelerate the spin-lattice relaxation (T1) of water protons.  Like other heavy metals, 

Gd3+ is quite toxic in animals with an LD50 of 0.5 mmol/kg body weight in rats (107).  

However, when Gd3+ is chelated with a compound such as DTPA (diethylenetriamine 

pentaacetic acid), it still retains its paramagnetic properties and is considerably less toxic, 

with an LD50 of 8 mmol/kg body weight (107).  Gd3+ has nine coordination sites that can 
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form complexes with electron-donating ligands.  DTPA complexes with eight of the nine 

coordination sites of Gd3+ leaving the ninth coordination site open for Gd3+ to interact 

with water protons (107).  It is this ninth coordination site of the inner sphere that can be 

manipulated to cloak the signal enhancement properties of gadolinium.   

Many of the advances in this area have been made in the laboratory of Thomas 

Meade (108-117).  The attachment of a β-galactopyranose to a gadolinium chelating 

agent effectively reduced the signal enhancement typically seen with MRI contrast agents 

by blocking the ninth coordination site (116).  When incubated in vitro with β-

galactosidase to remove the β-galactopyranose ring, there was a 20% difference in T1 

time (116).  This structure was later improved upon by adding an α-methyl group to 

increase the rigidity of the compound, resulting in a 3-fold difference in relaxivity 

between the cleaved and uncleaved compounds (113).  When measured in vivo in a 

Xenopus laevis embryo expressing β-galactosidase in half of its cells, there was a 57% 

enhancement in signal intensity in the β-galactosidase expressing cells (113).  Peptides 

have also been attached to MRI contrast agents to improve the accumulation of these 

compounds at sites overexpressing matrix metalloproteases (118, 119), but, to our 

knowledge, have not yet been used as a cloaking mechanism.  The development of a 

peptide procontrast agent to monitor enzymatic activity is discussed further in Chapter 3. 

1.4.2 Fluorescence imaging 

Historically, fluorescence has not received much attention in the area of clinical in 

vivo imaging for several reasons including strong autofluorescence following external 

illumination and absorption and scattering of photons in tissues which severely limits the 

thickness of tissue that can be imaged (120).  While there have been advances in optical 
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imaging including bioluminescent quantum dots and near-infrared probes (104, 120, 

121), fluorescence imaging remains a more useful tool in preclinical applications. 

1.4.2.1  Activity-based probes 

As previous sections have described, there is significant evidence of differences in 

protease abundance and activity in disease tissue.  Fluorescence imaging can aid in the 

identification of these proteases as well as allow for high-throughput screening of 

substrate preferences (90, 92, 104, 122, 123).  Bogyo et al. have developed several 

activity-based probes to target cysteine proteases (90, 122, 123).  These activity-based 

probes (Figure 1.5) contain a fluorophore, a quenching group, a warhead that irreversibly 

binds to the active site (acyloxymethyl ketone, AOMK), and a peptide sequence linking 

the fluorophore to the quencher (90, 122, 123).  The peptide sequence is recognized by 

the cysteine protease and the quenching group is hydrolyzed from the AOMK, leaving 

the warhead covalently attached to the active site of the cysteine protease.  The peptide 

sequence and fluorophore remain attached to the warhead, thus producing a fluorescently 

labeled enzyme for identification (90, 122, 123).  Furthermore, when the quenching 

group is cleaved from the probe, the fluorescence can then be detected allowing real-time 

imaging of protease activity with reduced background signal (90, 122, 123).  The peptide 

sequence can be modified to target different cysteine proteases and identify their 

preferred substrate sequences (90, 122, 123).  Using this probe with an aspartic acid in 

the P1 position and altering the amino acids in the P2, P3, and P4 positions, Sexton et al. 

were able to identify a highly preferred substrate of legumain with limited cross-

reactivity toward the similar cysteine protease, cathepsin B (124).  While the substrate 

specificity was identified in vitro, there is the potential to use this probe in vivo, to image 
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legumain activity in small animal models similarly to that which was done with 

cathepsins (125). 

1.4.2.2 AMC (7-amino-4-methylcoumarin) 

AMC (7-amino-4-methylcoumarin) with amino acid sequences attached to the 

primary amine was developed by Zimmerman et al. to detect the activity of several 

proteases including chymotrypsin, trypsin, and elastase (126, 127).  The structures of 

AMC and an AMC amino acid conjugate are shown in Figure 1.6.  Prior to this, para-

nitroanilides (pNAs) were primarily used to image protease activity using changes in 

absorbance upon cleavage of the amino acid sequence, but these assays were not as 

sensitive as fluorescence (127).  For example, Gly-Phe-AMC had a detection limit of 0.5 

µg/ml chymotrypsin compared to 10 µg/ml for Gly-Phe-pNA.  AMC is a fluorescent 

molecule that emits light at 460 nm when excited by light with a wavelength of 380 nm 

and has ~500-fold greater relative fluorescence in its free form compared to when amino 

acid(s) are conjugated to AMC (126, 127).  The absorbance/excitation spectrum and 

emission spectrum of AMC are shifted when an amino acid or peptide is conjugated to 

AMC as shown in Figure 1.6, thus allowing the hydrolysis to AMC to be monitored 

fluorescently.  Since its development, AMC has been used in the characterization of 

many proteases (128-151).  Many of these AMC substrates are now available 

inexpensively through commercial sources and are generally used with biochemically 

purified or recombinant proteases.  The use of AMC conjugates in proteolytic profiling of 

whole-cells is explored further in Chapter 4. 

1.4.2.3 ACC (7-amino-4-carbamoylmethylcoumarin) 

As outlined in previous sections, proteases play important roles in diseases such as 
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cancer.  To more effectively target these proteases, it is useful to have a rapid method to 

monitor proteolytic acitivity.  While some AMC conjugates are commercially available, 

screening a more complete peptide library requires custom synthesis, which can be 

tedious.  To overcome the synthetic limitations of an AMC library, Harris et al. 

developed ACC (7-amino-4-carbamoylmethylcoumarin), which allows for solid-phase 

coupling of Fmoc-amino acids (89).  ACC-peptide libraries have been used to screen 

serine proteases, cysteine proteases, and aminopeptidases (85, 89, 152).  Thus, ACC has 

the potential to be even more useful than AMC in protease profiling and its effectiveness 

in determining protease activity in live cells is demonstrated in Chapter 4. 

1.5 Conclusions 

The development of prodrugs has been advantageous in improving many 

pharmacokinetic and pharmacodynamic properties such as absorption, biodistribution 

reduced toxicity, and targeting.  When using a prodrug approach, the efficient and 

predictable hydrolysis to the pharmacologically active compound in vivo is important.  

This necessitates the identification of hydrolases involved in activation.  Often these 

hydrolases are ubiquitously expressed, although there are proteins solely expressed or 

highly overexpressed in disease tissue such as tumors.  These proteins can be used as 

molecular addresses or activators of targeted prodrugs.  Some potential proteases have 

already been identified, but molecular imaging can aid in protease profiling to identify 

new proteases and substrates.  The primary goal of this research is to develop a 

physiologically relevant whole-cell screening method to identify amino acid or peptide 

promoieties that are preferentially activated by target cells compared to control cells and 

apply the results of the screening to rational prodrug design.  
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Figure 1.1  Bioactivation of the ester prodrug oseltamivir 
Figure adapted from Huttunen et al. (4) 
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Figure 1.2  Absorption and activation of valacyclovir. 
Image modified from Lai et al. (153) 
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Figure 1.3  Bioactivation of valacyclovir. 
Figure adapted from Huttunen et al. (4) 
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Figure 1.4  Chemical structures of cidofovir, cyclic cidofovir, and L-Val-L-Ser-
cHPMPC 
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Figure 1.5  Labeling of a cysteine protease by an activity-based probe 
The activity based probe consists of a quenching group, a warhead (acyloxymethyl 
ketone, AOMK), a peptide sequence to be recognize by the protease, and a fluorescent 
molecule which has an emission wavelength that corresponds to the absorbance 
wavelength of the quenching group.  Upon recognition of the peptide sequence by the 
cysteine protease, the warhead covalently labels the active site of the protease and the 
quenching group is removed, resulting in fluorescence emission from the fluorophore.  
This figure is adapted from Blum et al. (122). 
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Figure 1.6  Structure and absorbance spectra of AMC and AMC amino acid 
conjugate. 
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CHAPTER 2  
 

Puromycin-sensitive aminopeptidase: An antiviral prodrug activating enzyme 
 

2.1 Summary 

The broad-spectrum antiviral agent Cidofovir (HPMPC) is currently administered 

intravenously to treat AIDS-related human cytomegalovirus retinitis.  While Cidofovir 

has the potential to be used in the treatment of other herpes and DNA viruses, its use is 

hampered by the inherent low bioavailability of the compound.  Val-Ser-cyclic HPMPC 

(Val-Ser-cHPMPC) is a promising peptide prodrug that has been previously shown to 

improve oral bioavailability of the parent compound in rodent models (1).  The 

conjugation of Val-Ser to cyclic cidofovir makes it a substrate for the intestinal peptide 

transporter PEPT1, but renders it pharmacologically inactive.  Thus, this prodrug strategy 

requires reliable and predictable in vivo activation.  Puromycin-sensitive aminopeptidase 

(APP-S) was partially purified from Caco-2 cellular homogenates and identified as a 

potential prodrug-activating enzyme for Val-Ser-cHPMPC (2).  A recombinant APP-S 

was generated and its substrate specificity was investigated using amino acid conjugates 

of para-nitroaniline (pNA), 7-amino-4-methylcoumarin (AMC), and 7-amino-4-

carbamoylmethylcoumarin (ACC).  The kcat values for Ala-pNA and Ala-AMC were 18-

fold and 48-fold faster than the values for Val-pNA and Val-AMC, respectively, 

suggesting APP-S prefers some amino acids over others.  Furthermore, the drastically 

different kcat values for Val-pNA, Val-AMC, and Val-Ser-cHPMPC suggests that the 
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leaving group may play an important role in determining the rate of hydrolysis.  In 

addition to its ability to hydrolyze a variety of substrates, the in vitro hydrolysis of Val-

Ser-cHPMPC and the inhibition of hydrolysis by the aminopeptidase inhibitor bestatin in 

Caco-2 homogenates suggest that APP-S is an important enzyme for activating Val-Ser-

cHPMPC in vivo.  Taken together, our data suggest that APP-S makes an attractive target 

for activation of orally absorbed amino acid or peptide prodrugs. 

2.2 Introduction 

The development of prodrugs to improve bioavailability has become an 

increasingly common strategy.  For example, the valyl ester prodrugs of acyclovir 

(valacyclovir) and ganciclovir (valganciclovir) have been used to dramatically increase 

the oral absorption compared to their parent compounds; 3- to 5-fold in the case of 

valacyclovir (3-7).  Cidofovir (Vistide®, HPMPC, 1, Figure 2.1) is an antiviral agent that 

is clinically used for treatment of the AIDS-related herpes virus infection, 

cytomegalovirus retinitis.  It is a broad-spectrum antiviral agent with therapeutic potential 

in the treatment of other herpes and DNA viruses, including polyoma-, papilloma-, 

adeno-, and poxvirus infections (8, 9).  Cidofovir is of particular interest due to its 

potential use as therapy in the event of an outbreak of smallpox (10).  Currently, a major 

drawback of using cidofovir in a large-scale emergency situation is its need for 

intravenous administration.  This has led to the development of several cyclic cidofovir 

(cHPMPC) prodrugs incorporating dipeptides (1, 11-14).  One of the lead prodrugs, Val-

Ser-cHPMPC (2, Figure 2.1), shows significantly enhanced intestinal uptake (18.1% 

versus 2.2% for cHPMPC) in an in situ rat perfusion model (1, 13).   

The term prodrug describes chemicals with little or no pharmacological activity 
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that undergo biotransformation to yield a therapeutically active metabolite (15).  This 

biotransformation may be chemically or enzymatically mediated.  Reliable and 

predictable in vivo activation is a critical aspect of the prodrug strategy; therefore, 

identification of the mechanisms of their in vivo activation is important from a prodrug 

design perspective.  Our laboratory has previously identified human valacyclovirase 

(BPHL) as one of the enzymes responsible for activation of valacyclovir and 

valganciclovir (16).  Interestingly, the majority (≥ 90%) of Val-Ser-cHPMPC was found 

to be converted to cHPMPC during in situ rat perfusion experiments (1).  Since Val-Ser-

cHPMPC undergoes substantial in vivo activation in the rat intestine, we are interested in 

investigating plausible human activation pathway(s) for Val-Ser-cHPMPC.  Puromycin-

sensitive aminopeptidase (APP-S) was partially purified from Caco-2 cell homogenates 

in our laboratory and identified as a potential activator of Val-Ser-cHPMPC (Figure 2.2) 

(2).  To further confirm this finding, we produced a recombinant APP-S (GenBank 

accession no. CAA68964) to determine the kinetic constants of Val-Ser-cHPMPC 

hydrolysis as well as the APP-S prodrug activating pathway.  The broad tissue 

distribution of APP-S and other neutral aminopeptidases, as well as their homology and 

expression in a variety of species (17-20) makes them attractive targets for activation of 

orally absorbed prodrugs.  To aid in the design of prodrugs to be activated by these 

compounds, we studied the hydrolysis kinetics of other amino acids and leaving groups 

such as para-nitroaniline (pNA), 7-amino-4-methylcoumarin (AMC), and 7-amino-4-

carbamoylmethylcoumarin (ACC) shown in Figure 2.3.   
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2.3 Methods 

2.3.1 Chemicals and reagents 

Val-Ser-cHPMPC was synthesized as previously described (1).  Amino acid 

conjugates of para-nitroaniline (pNA) and 7-amino-4-methylcoumarin (AMC) were 

purchased from Bachem.  Cell culture reagents and 4-12% Bis-Tris polyacrylamide gels 

were obtained from Invitrogen/Gibco.  Bestatin, trifluoroacetic acid (TFA) and N-(3-

dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) were purchased from Sigma-Aldrich.  

Other chemicals were either ACS reagent grade, analytical or HPLC grade and purchased 

from Thermo Fisher Scientific, Inc. unless otherwise noted. 

2.3.1.1 Synthesis of ACC compounds 

ACC (7-amino-4-carbamoylmethylcoumarin) was synthesized and conjugated to 

Rink amide AM resin according to the method of Maly et al.(21)  The single amino acid 

conjugates of valine and alanine were made using the coupling conditions described 

previously (21).  Compound identities and purity were confirmed by TOF mass spec 

(ES+) and 1H NMR. 

2.3.2 Generation of recombinant APP-S 

2.3.2.1 Subcloning of APP-S cDNA 

Human APP-S cDNA (IMAGE clone ID 6059589) in the mammalian expression 

vector pCMV-SPORT6 (Open Biosystems) was subcloned into the pET-28a vector 

(Novagen) for expression of the N-terminally His-tagged construct in Escherichia coli.  

Briefly, the APP-S cDNA was excised from pCMV-SPORT6 and ligated into pET28a 

after digesting both with the restriction enzymes EcoRI and XhoI (New England Biolabs) 

and purifying by electrophoresis in a 1% agarose gel.  The ~2.8 kb band corresponding to 
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APP-S and the ~5.4 kb band corresponding to pET-28a were purified from the agarose 

using a QIAEX II gel extraction kit (QIAGEN) and ligated using T4 DNA ligase (New 

England Biolabs).  To shift the inserted cDNA to the correct reading frame, one 

nucleotide was inserted upstream of the APP-S cDNA using the primers 5’- 

GGCCTCGCCGCG AATGCCGGAGAAGAGG -3’ and 5’-CTCTTCTCCGGCATTCG 

CGGCGAGGCC -3’ (Integrated DNA Technologies) and QuikChange Site Directed 

Mutagenesis kit (Stratagene).  The His-APP-S/pET-28a construct was then transformed 

into E. coli strain BL21-RIPL (Stratagene) followed by dideoxy sequencing (University 

of Michigan DNA Sequencing Core) to confirm the nucleotide sequence of the 

recombinant His-APP-S. 

2.3.2.2 Recombinant APP-S expression and purification 

His-APP-S protein expression was induced according to the method of Sengupta 

et al. (22) with modifications.  Briefly, BL21-RIPL cells containing His-APP-S/pET-28a 

were grown to stationary phase in LB broth at 37 °C, and then expanded until cultures 

reached an optical density of 0.8-1.0 at 570 nm, at which point His-APP-S expression 

was induced with 1 mM isopropyl β-D-thiogalactopyranoside (IPTG) at 18 °C for 18-20 

hr.  Following centrifugation at 6,000 × g for 10 min at 4 °C, the cell pellet was 

resuspended in 50 mM sodium phosphate, 300 mM sodium chloride, and 20 mM 

imidazole, pH 8 (wash buffer) containing 1 mg/ml lysozyme (Sigma-Aldrich), followed 

by three cycles of freeze-thaw.  After a 10 min incubation at 37 °C, the homogenate was 

pulsed for 30 seconds with a probe sonicator (Model KT40, Kontes) followed by 

centrifugation at 20,000 × g for 40 min.  His-APP-S was purified from the supernatant 

using Ni-NTA agarose (QIAGEN), followed by washing with 100 bed volumes (~ 250 
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ml) wash buffer.  The recombinant APP-S was eluted with 100 U (~15 µg) thrombin (GE 

Healthcare) in 1 ml PBS pH 7.4 for 18 hours at 25 °C with gentle agitation, which also 

served to remove the His-tag.  The thrombin and APP-S were separated from the Ni-NTA 

agarose by spinning at 1,500 × g for 5 min and the supernatant transferred to a clean tube, 

after which the Ni-NTA agarose was washed 3 × 1 ml with PBS, pH 7.4 and all four 

supernatants were combined.  Thrombin was removed by incubating with 400 µl p-

aminobenzamidine agarose (Sigma-Aldrich; binding capacity 4-8 mg thrombin) for 2 

hours at 25 °C, followed by pelleting of the p-aminobenzamidine agarose at 1,500 × g.  

Protein concentration was determined using the Pierce BCA assay (Thermo Fisher 

Scientific).  Gel images were acquired and quantified uising a Molecular Dynamics 

Typhoon 9200 imager and ImageQuant software (GE Healthcare).  Purified APP-S was 

aliquoted and stored at -80 °C. 

2.3.3 Hydrolysis assays 

2.3.3.1 Prodrug hydrolysis by recombinant APP-S 

2.3.3.1.1 HPLC assay of metabolites 

Recombinant APP-S (30 μg/ml) was preincubated with and without the inhibitor 

bestatin (Fluka, 20 µg/ml) in 10 mM HEPES, 100 mM NaCl (pH 7.4) for 5 minutes at 

37°C.  Prodrug was added at final concentrations ranging from 0.125 to 1 mM to initiate 

the enzymatic reaction.  Aliquots of 40 μl were removed at predetermined time points (0-

15 min) and quenched by the addition of 80 μl of 10% ice-cold TFA.  The quenched 

samples were spun through 96-well 0.45 µm polyvinylidene difluoride (PVDF) 

membranes (Unifilter, Whatman) at 1,800 × g in a Jouan MR 22i tabletop centrifuge to 

remove the precipitates before HPLC analysis. The HPLC system (Waters) consisted of a 
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reverse-phase column (XTerra RP18, 5 µm, 4.6 x 250 mm), a 515 pump, a 996 

Photodiode Array UV detector and a 717 Plus Autosampler.  The remaining prodrug and 

the production of parent drug were analyzed using a mobile phase consisting of an 

acetonitrile (0.1% TFA) gradient (2-52%) mobile phase with a flow rate of 1 ml/min and 

detection at 274 nm.  The specific activity was expressed as nmol min-1 mg-1 of protein 

based on the disappearance of the prodrug. 

2.3.3.1.2 LC-MS identification of the metabolites 

Further identification of the APP-S hydrolysis products was achieved on a 

Finnigan LCQ Deca XP Max mass spectrometer in positive mode with a Finnigan 

Surveyor PDA Plus detector and MS Pump Plus, all controlled using Xcalibur software.  

The samples (20 μl injection volume) were resolved in a Varian Microsorb-MV C-18 

column (100-5, 250 × 4.6 mm) with UV detection at 274 nm. The eluate was diverted 

immediately before the mass spectrometer, such that only half of the flow was injected 

into the MS. The mobile phases consisted of 0.1 N ammonium acetate buffer, pH 5.5 

containing either 0% acetonitrile (A) or 17.5% acetonitrile (B), run at 1 ml/min.  Mobile 

phase gradients consisted of 100% A/ 0% B for 5 min, 50% A/ 50% B at 6 min (or 25% 

A/ 75% B at 7 min for prodrug alone samples), 20% A/ 80% B from 15 to 20 min. 

2.3.3.2 APP-S hydrolysis of para-nitroanilide compounds 

The ability of APP-S to hydrolyze various amino acids was tested using the 

chromogenic substrates L-valine para-nitroanilide (Val-pNA) and L-alanine para-

nitroanilide (Ala-pNA) (Bachem).  Recombinant APP-S was pre-incubated in PBS, pH 

7.4 with and without 20 μg/ml bestatin in a final volume of 300 μl.  The reaction was 

started by adding 0.05 – 1.6 mM substrate dissolved in dimethyl sulfoxide (DMSO) and 
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carried out at 37 °C.  The production of p-nitroaniline was measured 

spectrophotometrically at 405 nm every 30 sec for 15 min.  The concentration of p-

nitroaniline was determined using the Beer-Lambert equation (ε405 = 9500 L mol-1 cm-1).  

Km and Vmax were calculated for each substrate using GraphPad Prism 4. 

2.3.3.3 APP-S hydrolysis of AMC and ACC compounds 

Recombinant APP-S was diluted in 10 mM Hepes, 100 mM sodium chloride (pH 

7.4) to a concentration of 1 ng/µl.  The protein was distributed to a black-walled 96-well 

plate in 100 µl aliquots and pre-incubated at 37°C for 5 min.  AMC and ACC conjugates 

were then added at a final concentration of 100 µM to determine V0 or 6.25 to 100 µM to 

determine kinetic constants.  Hydrolysis was monitored by measuring fluorescence 

(400ex/580em nm) every 2 min for 1 hr in a Biotek Synergy plate reader heated to 37°C.  

Using AMC standards, the fluorescence was used to calculate the amount of compound 

hydrolyzed to AMC or ACC, which was plotted against time.  The slope of the linear 

portion of the best fit line was equal to the initial velocity (V0).  To determine the kinetic 

constants, the initial velocities were plotted against the initial concentration of the 

compound in GraphPad Prism 4.0.  Using non-linear regreassion, the Michaelis-Menton 

equation was fit to the data to calculate Km and VMAX.  The catalytic constant (kcat) was 

then determined using the following equations: 

[E] = (Amount of enzyme/ volume of sample)/molecular weight of enzyme 

kcat = VMAX/ [E] 

2.4 Results 

2.4.1 Recombinant APP-S hydrolysis investigations 

To confirm that APP-S is an activating enzyme of Val-Ser-cHPMPC, the APP-S 
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cDNA (Open Biosystems) was subcloned into the bacterial expression vector pET-28a 

(Novagen).  Recombinant His-tagged APP-S was purified to > 98% purity (Figure 2.4) 

using Ni-NTA agarose (QIAGEN) and thrombin cleavage to remove the His-tag.  The 

purified recombinant APP-S migrated as two bands in SDS-PAGE when eluted from Ni-

NTA by thrombin digestion (Figure 2.4), but as a single band when eluted with imidazole 

(data not shown).  Both thrombin-eluted bands were identified as APP-S by peptide mass 

analysis at the University of Michigan Proteome Core, and the presence of a potential 

thrombin-cleavable sequence, in addition to the expected pET-28a vector thrombin 

cleavage site, was subsequently identified at amino acid 15 in APP-S’s N-terminus, 

consistent with the ~1.5 kDa MW difference observed in these gels. To determine the Km 

and Vmax of APP-S for Val-Ser-cHPMPC, APP-S was incubated with a range of substrate 

concentrations with aliquots withdrawn at predetermined time points.  Using HPLC to 

determine the concentration of Val-Ser-cHPMPC at various time points, V0 was 

calculated using the disappearance of prodrug.  The data from four independent 

experiments were plotted (Figure 2.5) and analyzed by non-linear regression (GraphPad 

Prism 4, GraphPad Software, Inc) to determine Vmax and Km.  APP-S was shown to 

hydrolyze Val-Ser-cHPMPC with a Vmax of 1873 ± 400 nmol min-1 mg-1 protein and a Km 

of 0.85 ± 0.33 mM.  As expected, this hydrolysis was almost completely inhibited by 

addition of bestatin.   APP-S was not able to appreciably hydrolyze D-Val-D-Ser-

cHPMPC beyond that which was detected in buffer alone; similar to what was observed 

with Caco-2 homogenates (data not shown). 

2.4.2 Activation pathways for Val-Ser-cHPMPC and its metabolites  

Using LC-MS analysis it was observed that in the presence of the recombinant 
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APP-S, the peptide bond in Val-Ser-cHPMPC was cleaved to remove the N-terminal 

amino acid (L-valine, Figure 2.6) to generate the intermediate, Ser-cHPMPC, (3).  When 

Val-Ser-cHPMPC was incubated in buffer alone or with APP-S in the presence of the 

inhibitor bestatin the peak corresponding to compound 3 was not present.  Besides the 

above-mentioned activating products, a minor species (≤ 15%) with a mass of 480 

(positive ion mode) was also observed (4). This mass corresponds to the intact dipeptide 

conjugate attached to the parent compound and not the cyclic version of cidofovir.   

2.4.3 Kinetic constants for APP-S hydrolysis of p-nitroanilide compounds 

The activity of purified recombinant APP-S was then analyzed using the model 

substrates L-alanine p-nitroanilide (Ala-pNA) and L-valine p-nitroanilide (Val-pNA) in 

the presence and absence of the inhibitor bestatin.  Val-pNA was shown to have a lower 

Km than Ala-pNA (0.28 ± 0.19 mM vs 0.51 ± 0.14 mM, respectively) and a greater than 

18-fold lower Vmax (289 ± 85.1 nmol/min·mg protein vs 5365 ± 610.0 nmol min-1 mg-1 

protein, respectively) as shown in Table 2.1.  APP-S hydrolysis of the model substrates 

was completely inhibited by the addition of bestatin. 

The kcat for Val-pNA was approximately 18-fold lower (p < 0.06) than the kcat for 

Ala-pNA and approximately three-fold lower than the kcat for Val-Ser-cHPMPC.  The 

kcat/Km values for Val-Ser-cHPMPC cleavage by APP-S (0.22 × 106 M-1 min-1) are 

comparable to those obtained for the para-nitroanilide derivatives of L-alanine and L-

valine as well as by others (22).  

2.4.4 APP-S hydrolysis of AMC and ACC compounds 

The Km and kcat values for Ala-AMC and Val-AMC hydrolysis by APP-S were 

determined (Table 2.1).  Similar to the p-nitroanilide compounds, Val-AMC had a lower 
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Km value than Ala-AMC (0.038 mM and 0.29 mM, respectively) and Ala-AMC had a 

faster kcat than Val-AMC (201 min-1 and 4.2 min-1, respectively).  While the preference of 

APP-S for Ala substrates compared to Val substrates remained, the kcat/Km values for the 

AMC substrates were 2- to 3-fold lower for the AMC substrates compared to the pNA 

substrates. 

The initial velocities of hydrolysis of several single amino acid substrates by APP-

S were determined (Table 2.2).  Val-AMC and Val-ACC had similar V0 values as well as 

Ala-AMC and Ala-ACC.  Ala substrates were still hydrolyzed faster than Val substrates; 

however the hydrolysis of Leu-, Met-, and Phe-AMC were significantly faster. 

2.5 Discussion 

By stepwise purification from the human intestinal cell line Caco-2 and MS/MS 

analysis we previously demonstrated that puromycin-sensitive aminopeptidase (APP-S) is 

involved in activation of the antiviral prodrug Val-Ser-cHPMPC (2).  While previous 

data do not exclude the possibility that other proteases may be involved, the observation 

that bestatin, a known inhibitor of APP-S (17, 22), is able to inhibit enzymatic hydrolysis 

of Val-Ser-cHPMPC in Caco-2 cell homogenates further suggests that APP-S is 

important in the in vivo activation of the prodrug (1).  Moreover, it has been reported that 

APP-S prefers basic and hydrophobic amino acids and has relatively low affinity for 

acidic residues (17, 23), consistent with our observation that the valine residue is 

efficiently cleaved from Val-Ser-cHPMPC.  Finally, APP-S has been shown to hydrolyze 

a variety of amino acid substrates, with the exception of: (i) those that have acidic side 

chains, (ii) D-amino acid isomers, or (iii) N-terminally blocked amino acids (17, 23).  

Consistent with these observations, the recombinant APP-S was unable to hydrolyze the 
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D-amino acid version of 2, D-Val-D-Ser-cHMPC (data not shown).  Similarly, there was 

no significant hydrolysis of D-Val-D-Ser-cHPMPC in Caco-2 homogenate as compared to 

buffer alone (2). 

The recombinant APP-S was able to efficiently hydrolyze Val-Ser-cHPMPC in 

vitro, reinforcing our hypothesis concerning APP-S’s role in Val-Ser-cHPMPC activation 

in vivo.  Similar to that observed in Caco-2 cell homogenates (1), bestatin was able to 

inhibit APP-S hydrolysis of Val-Ser-cHPMPC.  The approximately 18-fold lower kcat for 

Val-pNA as compared to Ala-pNA further demonstrated that some amino acids are 

preferred over others.  This was further confirmed by the almost 50-fold faster kcat of Ala-

AMC compared to Val-AMC.  Furthermore, the three-fold and almost 50-fold higher kcat 

for Val-Ser-cHPMPC as compared to Val-pNA and Val-AMC, respectively, suggests that 

the leaving group may play an important role in determining the rate of hydrolysis.  

Interestingly, the Km value for the hydrolysis of Val-Ser-cHPMPC by APP-S is in the 

sub-millimolar range, suggesting that under in vivo conditions the conversion of Val-Ser-

cHPMPC is likely to occur well below saturating substrate concentrations.  The kcat/Km 

value for Val-Ser-cHPMPC cleavage by APP-S (0.22 x 106 min-1 M-1) is comparable to 

those obtained for the para-nitroanilide derivatives of L-alanine and L-valine as well as 

by others (22), suggesting that the prodrug hydrolysis is likely to occur with a reasonable 

efficiency even in the presence of other substrates.  The preference of APP-S for certain 

amino acids seems to remain regardless of leaving group as Met-, Leu-, and Ala-AMC 

were hydrolyzed significantly faster than Val- or Pro-AMC, as was reported for p-

nitroanilide substrates by Sengupta et al. (22). 

LC-MS analysis revealed that the peptide bond in Val-Ser-cHPMPC was cleaved 
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to remove the N-terminal valine to generate the Ser-cHPMPC intermediate (3) when 

incubated with APP-S, but not in buffer alone or in the presence of APP-S and bestatin.   

This intermediate also disappeared with prolonged incubation  in the presence of the 

Caco-2 homogenates while the peak associated with cHPMPC (cyclic cidofovir, 1) 

correspondingly increased (2).  One likely mechanism for this relative instability of Ser-

cHPMPC is nucleophilic attack on the phosphodiester linkage by the primary amine of 

serine that is produced after the removal of valine by APP-S.  Indeed, Lazarus et al. have 

previously proposed and demonstrated such a mechanism to explain the intramolecular 

hydrolysis of amine-containing phosphoryl esters (24, 25).  Based on these findings, and 

the fact that the major species found in rat plasma after a modified in situ single pass 

perfusion is indeed cHPMPC (1), we suspected that the activation of Val-Ser-cHPMPC 

occurs through both enzymatic and chemical pathways.  It is worth noting that cyclic 

cidofovir itself undergoes a biotransformation to generate cidofovir when exposed to 

endogenous cyclic cytidine 3′,5′-monophosphate (cCMP) phosphodiesterase (26, 27), and 

can therefore be regarded as a prodrug of cidofovir.  In addition, cyclic cidofovir has 

been reported to be less nephrotoxic than cidofovir, while also exhibiting potent antiviral 

activity (26).  Nevertheless, cyclic cidofovir itself shows low oral bioavailability (28), 

indicating the need to mask the residual phosphonate negative charge present at 

physiological pH, which the reported Val-Ser-cHPMPC prodrug has been designed to do.  

APP-S has been extensively studied and has been implicated in a number of 

physiological processes, including normal cellular turnover (29-31), cell cycle regulation 

(17), processing of antigenic peptides for display on MHC class I (32), and degradation 

of neuropeptides and brain function (19, 33).  However, to our knowledge, this is the first 
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reported finding that APP-S is able to hydrolyze an antiviral prodrug.  The broad tissue 

distribution of APP-S and other neutral aminopeptidases, as well as their homology and 

expression in a variety of species (17-20) can be advantageous to ensure complete and 

rapid prodrug activation, as was previously noted for Val-Ser-cHPMPC in situ (1).  

Additionally, APP-S has been shown to have a broad substrate specificity with preference 

for hydrophobic and basic amino acids, (22, 23, 34-36) making it an attractive target for 

future design of orally absorbed prodrugs. 
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Figure 2.1  Chemical structures of cidofovir (1) and Val-Ser-cHPMPC (2). 
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Figure 2.2  Superdex-200 purification of APP-S from Caco-2 cell homogenates.   
Active and non-active fractions from the Superdex-200 purification were analyzed by 
10% SDS-PAGE, here stained with SYPRO Red.  Lanes 4-6 contain active fractions 
hydrolyzing Val-Ser-cHPMPC, while lanes 2, 3, 7 and 9 are non-active fractions. Lane 8 
corresponds to the pooled active MonoQ fractions that were initially applied to the 
Superdex-200 column.  Lanes 1 and 10 are size markers with molecular mass expressed 
in kDa.  The band visible at ~ 100 kDa in lane 4-6 and 8 was exclusively present in the 
active fractions and its identity was determined by tandem mass spectrometry and 
database searches to be puromycin-sensitive aminopeptidase (APP-S). 
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Figure 2.3  Chemical structures of Ala-AMC, Ala-ACC, and Ala-pNA 
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Figure 2.4  Purified recombinant APP-S. 
Recombinant human APP-S was expressed in BL21-RIPL cells and purified using a Ni-
NTA affinity column.  APP-S was eluted via cleavage by thrombin between the His-tag 
and the recombinant APP-S.  Following quantification of total protein using the BCA 
assay (Pierce), 80 ng of APP-S was run in a 4-12% Bis-Tris gel (Invitrogen) and stained 
with Krypton Protein Stain (Pierce Biotechnology, Inc.).  Lane 1 contains BenchMark 
Protein Ladder (Invitrogen) and lane 2 contains the purified recombinant APP-S.  APP-S 
was purified to > 97% purity as determined by ImageQuant Analysis (Molecular 
Dynamics). 
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Figure 2.5  Michaelis-Menten plot of Val-Ser-cHPMPC hydrolysis by APP-S. 
Recombinant APP-S (30 μg/ml) was incubated in 10 mM HEPES, 100 mM NaCl, pH 7.4 
at 37 ºC with 0.125 to 1 mM Val-Ser-cHPMPC.  Aliquots of 40 μl were removed at 
predetermined time points (0-15 min) and quenched by the addition of 80 μl of 10% ice-
cold TFA.  The samples were analyzed by HPLC with a 2-52% acetonitrile gradient 
mobile phase at 1 ml/min and detection at 274 nm.  The concentration detected at 0 min 
was used as the initial concentration in the plot above to control for variability between 
sample sets.  The V0 was calculated and the plot was generated using GraphPad Prism 
4.0. 
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Figure 2.6  Chemical structures of the observed metabolites obtained during the 
hydrolysis of Val-Ser-cHPMPC by recombinant APP-S. 
Samples from APP-S hydrolysis of Val-Ser-cHPMPC were analyzed by LC/MS.  It was 
found that the peak corresponding to 3 was present in the samples hydrolyzed by APP-S, 
but not present in the negative control samples (prodrug in buffer alone or with APP-S 
and bestatin).  Enzymatic (APP-S) as well as chemical hydrolysis is involved in the 
overall prodrug activation process. 
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Table 2.1  Kinetics of Val-Ser-cHPMPC hydrolysis by recombinant APP-S. 
Recombinant APP-S was incubated with Ala-pNA, Val-pNA or Val-Ser-cHPMPC at 
37°C in the presence or absence of the inhibitor bestatin.  Hydrolysis of the p-nitroanilide 
compounds was monitored spectrophotometrically at 405 nm every 30 sec for 15 min.  
Hydrolysis of Val-Ser-cHPMPC was determined by monitoring the disappearance of the 
prodrug peak by HPLC (detection at 274 nm) at t = 0, 1, 2, 3, 5, 10, and 15 min.  Km and 
Vmax were calculated using GraphPad Prism 4.0. 
 

Substrate 
Km         

(mM) 

Vmax             
(nmol min-1 mg-1 

protein) 
kcat 

(min-1)a 
kcat/Km    

(min-1 M-1) 
Ala-AMC 0.29 ± 0.09 2008 ± 475 201 6.9 × 105 

Ala-pNA 0.51 ± 0.14 5365 ± 610 1071 2.1 × 106 

Val-AMC 0.038 ± 0.007 42 ± 3 4.2 1.1 × 105 

Val-pNA 0.28 ± 0.19 289 ± 85 58 0.21 × 106 

Val-Ser-cHPMPC 0.85 ± .33 1873 ± 400 187 0.22 × 106 
a kcat values are calculated from Vmax values with the assumption that all enzyme 
molecules are catalytically active. 
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Table 2.2  Initial velocity of hydrolysis of AMC and ACC substrates by recombinant 
APP-S.  
Recombinant APP-S was incubated with 100 µM AMC or ACC substrates at 37°C.  
Hydrolysis was monitored by fluorescence emission at 508 nm (excitation at 400 nm) 
every 2 min for 1 hr.  Data were analyzed by One-way ANOVA with a Bonferroni post 
test using GraphPad Prism 4.0 and values were considered significantly different if p < 
0.05. 
 

Substrate 
Vo                     

(nmol/min•mg protein) 

D-Ala-AMC 0.93 ± 0.06a 
Val-AMC 12 ± 1.5a 
Val-ACC 20 ± 1.7a 
Pro-AMC 21 ± 1.5a 
Ala-ACC 235 ± 7.1b 
Ala-AMC 271 ± 7.1b 
Tyr-AMC 263 ± 12b 
Leu-AMC 335 ± 13c 
Met-AMC 488 ± 51d 
Phe-AMC 611 ± 24e 

*Values with different letters are significantly different from each other (p < 0.05). 
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CHAPTER 3  
 

Enzyme-Activated Magnetic Resonance Imaging Contrast Agent 
 

3.1 Summary 

There has been increasing attention on targeting of drugs.  One way to target drugs 

is to make prodrugs activated by enzymes expressed at the target site.  To monitor this 

activation in vivo, it would be useful to have an imaging agent that is activated in a 

similar manner.  The magnetic resonance imaging (MRI) contrast agent Gd-DTPA 

(gadolinium diethylenetriamine pentaacetic acid) is a good candidate for this approach as 

the ninth coordination site of Gd3+ can potentially be blocked by a peptide to cloak the 

signal enhancing qualities of Gd3+.  Several analogues of Gd-DTPA were synthesized 

including Gd-DTPA-NWAE, Gd-NWAE-DTPA-NWAE, Gd-DTPA-Asn, and Gd-Asn-

DTPA-Asn.  T1 times were measured by NMR and MRI to determine the relaxivity of 

each compound.  Recombinant mouse legumain was expressed and purified from Sf9 

insect cells as well as overexpressed in HEK-293 cells.  The activity of recombinant 

legumain was characterized using model substrates such as Z-AAN-AMC and 

neurotensin.  Legumain was incubated with Gd-DTPA-NWAE in an attempt to activate 

the procontrast agent.  The relaxivities of Gd-DTPA-Asn and Gd-Asn-DTPA-Asn were 

slower than that of the parent compound, but still faster than the relaxivities of the 

tetrapeptide-DTPA conjugates by 1.5-2.5-fold.  Recombinant mouse legumain from Sf9 

insect cells was catalytically active as evidenced by the hydrolysis of the model 
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substrates, Z-AAN-AMC and neurotensin.  However, there was no detectable hydrolysis 

of Gd-DTPA-NWAE by legumain possibly due to steric hindrance.  Furthermore, HEK-

293 cells stably expressing legumain were only able to hydrolyze Z-AAN-AMC to a 

limited extent, suggesting legumain may not have sufficient activity for prodrug activity 

in vivo.  Despite the lack of activation of Gd-DTPA-NWAE, we have shown a peptide 

procontrast agent to be a feasible concept for monitoring enzymatic activity. 

3.2 Introduction 

To date, many researchers have focused on developing prodrugs to improve the 

bioavailability of poorly absorbed drugs.  Often these prodrugs are activated prior to 

reaching systemic circulation and so behave similarly to an i.v. injection of the parent 

compound.  A prodrug would be dosed in its inactive form and would be activated upon 

enzymatic cleavage prior to reaching the target tissue, as was the case for Val-Ser-

cHPMPC discussed in Chapter 2.  Drug-induced toxicity is a major side effect of many 

drugs; the concept of targeting the drug to the site of action has been proposed to get 

around this issue.  To take this idea one step further would be to make a prodrug which is 

inactive until acted upon by enzyme(s) at the target site.  While this does not guarantee 

absolute specificity, it should result in a higher concentration of active drug at the target 

site and reduced toxicity to non-target cells.  One of the biggest hurdles of this strategy is 

identifying appropriate enzymes to target, which are either greatly overexpressed or 

solely expressed at the target tissue.  Once an enzyme has been identified and a prodrug 

has been developed it can be difficult to monitor the efficacy using endpoints alone.  

Also, in order to determine which patients would benefit most from this kind of prodrug 

therapy requires knowing the activity of the target enzyme.  A proimaging agent, that is 
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an imaging agent that produces little to no signal until acted upon by the target enzyme, is 

one way to determine enzyme activity in vivo in a noninvasive manner.  For example, 

monitoring the activity of an enzyme that is overexpressed in metastatic tumors is one 

way to use the proimaging agent as a diagnostic tool, as it is currently very difficult to 

locate metastatic tumors in the early stages.  Furthermore, it can be very difficult to treat 

metastatic tumors, so an imaging agent that is activated at the tumor site can give very 

good insight as to what prodrug will be most effective for treatment, or alternatively the 

imaging agent may deliver the drug itself.  Finally, during or after treatment the 

proimaging agent can be used to monitor the effectiveness of the treatment.  It is 

foreseeable that a proimaging agent can be useful both in the research setting to aid in the 

design of prodrugs and in the clinical setting as a diagnostic tool and to monitor 

treatment.    

There are many enzymes that potentially could be targeted by this approach for 

the treatment of a variety of diseases including, but not limited to, cancer, arthritis, 

inflammation, and cardiovascular disease.  For example, in the case of inflammation, 

leukocytes are recruited to the site.  Serine proteases such as cathepsin G, neutrophil 

elastase, and proteinase 3 are expressed exclusively in mature neutrophils (1).  It is not 

necessary for these enzymes to be expressed at high levels in each individual cell because 

accumulation of neutrophils at the site of inflammation will lead to high enzyme 

concentrations within the target area.  Dipeptidyl peptidase I (DPPI) is a lysosomal 

cysteine protease believed to be responsible for the activation of the previously listed 

serine proteases (2).  By targeting DPPI it may be possible to treat inflammation earlier in 

the process. 
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More recently the cysteine endopeptidase legumain has been the target of 

anticancer prodrugs.  Legumain is a lysosomal protease found sparsely in most tissues 

with the highest expression in kidney followed by liver and spleen (3-5).  However, when 

tumor tissues were analyzed immunohistochemically with anti-legumain anti-sera, 

legumain was found to be highly expressed in a broad range of tumor tissues including 

prostate carcinoma, breast carcinoma, colon carcinoma, and all tested central nervous 

system malignancies (5).  While legumain is normally localized to the lysosome, it also 

has been shown to be present in membranous vesicles at the invadopodia of tumor cells 

and associated with the cell surface (5).  Similar to other lysosomal endopeptidases such 

as cathepsins B and L, legumain has been shown to be stable in the pH range 4.2-5.5, 

with stability decreasing sharply above pH 6.0 (3).  Curiously, when assayed in vitro at 

25°C, the enzyme was more stable and had maximal activity at pH 6.4 (3).  Tumor tissue 

tends to be more acidic than normal tissue; extracellular tumor pH has been shown to be 

as low as 5.5, but on average ranges from pH 6.9 to 7.2 (6-8).  Therefore, legumain 

would be active outside the cell in the acidic microenvironment of the tumor, but highly 

unstable in most cases.  The presence of extracellular legumain in a variety of tumor 

types led researchers to develop the prodrug legubicin, which consists of the tetrapeptide 

Ala-Ala-Asn-Leu attached to the amino group of doxorubicin (5).  Legubicin was cell-

impermeant until the Ala-Ala-Asn tripeptide was cleaved extracellularly by legumain (9).  

This is a successful example in which the prodrug showed greater efficacy and reduced 

toxicity as compared to the parent compound (5, 9).  In this particular case they were able 

to visualize doxorubicin localization in cell culture fluorometrically (470ex/590em nm), 

but not all drug compounds can be imaged directly.  Furthermore, the excitation 
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wavelength for doxorubicin is in the blue-green range, which can cause cell damage and 

has high background in vivo due to scattering and cellular autofluorescence, making it 

less than ideal for imaging (10, 11).   Therefore, the creation of enzyme-targeted imaging 

agents can aid in the monitoring of enzyme-activated prodrugs. 

Overexpression of legumain by tumor cells appears to be stress-induced, as it is 

undetectable in cultured cancer cells under normal conditions and its expression is 

elevated in serum-starved conditions and in xenografts (5).  This highlights the 

importance of determining enzyme activity in vivo for two reasons; the enzyme may be 

less active or less expressed in vivo, and furthermore, not all tumors result in 

overexpression of legumain, so an accurate determination of activity in patients would be 

necessary to prescribe treatment.  As a solution to this problem, we propose a MRI 

(magnetic resonance imaging) contrast agent that will be activated in a similar manner to 

the prodrug legubicin.  Activation of the contrast agent can be used to non-invasively 

monitor enzyme activity using whole-body imaging.  Not only will this allow us to 

monitor activity at the target site, but we will also be able to monitor off-target activation.  

A similar contrast agent was developed by Moats, et al. (12) that targeted the non-

mammalian enzyme β-galactosidase.  In their system a galactopyranosyl ring was 

attached to a gadolinium chelating agent.  The chelating agent occupies eight of the nine 

coordination sites of gadolinium (Gd3+) and the galactopyranose ring blocks the ninth 

coordination site.  Cleavage of the galactopyranose ring from the chelating agent by β-

galactosidase allows water protons to interact with the ninth coordination site of Gd3+ 

which results in an increased T1 relaxation time and an increased MR signal.  They were 

able to use this contrast agent to follow the expression of the β-galactosidase gene in 
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Xenopus laevis embryos (13).  However, there were three potential caveats to their model 

system.  Because this is not an endogenous enzyme there would be very little off-target 

activation, thus inherently biasing the results in favor of selectivity.  Secondly, because β-

galactosidase mRNA was directly injected into the cells the expression levels may have 

been significantly higher than in the case of an endogenous enzyme.  Thirdly 

microinjection, which was used to deliver the contrast agent to the cells,is generally not a 

good delivery option for whole-body imaging, which is why we have chosen to target an 

enzyme that is present extracellularly.  Furthermore, the use of a membrane-impermeant 

proimaging agent should help to prevent off-target activation by intracellular enzymes.  

In the future, it may be possible to use a delivery system such as liposomes to allow 

targeting of intracellular enzymes.   

Previously our laboratory has developed prodrugs by attaching amino acids which 

can be cleaved by proteases to activate the drug.  To continue along these lines the 

imaging agents will also have peptides attached to them in the inactive state.  Upon 

reaching the target tissue, overexpressed enzyme(s) such as legumain (5) at the site will 

recognize the peptide sequence and activate the imaging agent as shown in Figure 3.1.  

The MRI contrast agent gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) has 

been approved for use in humans since 1988 (14).  We have attached a tetrapeptide to 

Gd-DTPA to block the ninth coordination site of Gd3+, hence blocking the ability of Gd3+ 

to interact with water and affect signal intensity.  This tetrapeptide Gd-DTPA contrast 

agent has a slower T1 time than the activated single amino acid Gd-DTPA conjugate. 
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3.3 Methods 

3.3.1 Conjugation of Asn to DTPA 

Diethylenetriamine pentaacetic acid (DTPA) was purchased from Fluka and Boc-

L-asparagine was purchased from Novabiochem.  A benzyl protection group was added 

to the C-terminus followed by the removal of the Boc-protecting group.  100 mg (0.28 

mmol) of DTPA was dissolved in 5 ml anhydrous N,N-dimethylformamide (DMF) and 

stirred at 0°C.  Benzyl asparagine (Asn-Bzl) (52 mg, 0.23 mmol) was dissolved in DMF 

and slowly added to the DTPA solution followed by the addition of triethylamine (TEA) 

(320 µl, 2.3 mmol) with continued stirring at 0°C for 30 min under argon gas.  The 

reaction was then quenched with 2 ml water and rotovaporized.  Compounds were 

purified using a Hypersep C18 column (10 g/75 ml, Thermo Scientific, 60108-703) with 

0.5% acetonitrile in water (0.1% TFA) and increasing the gradient to 5% acetonitrile 

(0.1% TFA) over 150 ml, collecting 10 ml fractions.  The gradient was then increased to 

15% ACN (0.1% TFA) over the next 70 ml, while collecting 10 ml fractions.  Fractions 

were then analyzed by mass spectroscopy in ES- mode to determine fractions containing 

the bi-derivative (m/z = 800.4 +14) and the mono-derivative (m/z = 596 +14, +28).  

Samples were then dried on the rotovaporizer and NMR and MS were performed to 

confirm purity.  There was ~27% yield of the bi-derivative and ~4% yield of the mono-

derivative.  For the benzyl group de-protection, the compounds were dissolved in 

anhydrous methanol and palladium, 10% (w/w) on activated carbon with a drop of acetic 

acid.  The reaction was stirred for 30 min at room temperature under hydrogen gas.  

Purity of the compounds were again confirmed by NMR and MS in ES- mode; Asn-

DTPA-Asn (m/z = 620.3) and Asn-DTPA (m/z = 506.2).  To chelate the gadolinium, 10 
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mM solutions of DTPA-Asn,  Asn-DTPA-Asn and gadolinium chloride (GdCl3) in water 

were made.  GdCl3 was slowly added to the solution containing the chelate while 

simultaneously adding 1 M sodium hydroxide to maintain the pH ~7.  Upon addition of 

all of the GdCl3, the pH was adjusted to 7.3 and the solution was concentrated by 

rotovaporization and filtered through a 0.22 µm PTFE filter followed by lyophilization 

for 24 hrs.  Mass spectroscopy in ES- mode was done to confirm the presence of the 

complex, (m/z = 569, MW +Na).   

3.3.2 Conjugation of NWAE to DTPA 

The tetrapeptide Asn-Trp-Ala-Glu-OH was custom synthesized by Genscript 

Corp.  The tetrapeptide (NWAE, 20 mg, 0.0286 mmol ) was dissolved in 2 ml anhydrous 

DMF and added to a stirring solution of DTPA (12.3 mg, 0.034 mmol) in anhydrous 

DMF (dimethylformamide) at 0°C followed by the addition of 120 µL (0.86 mmol) TEA.  

The reaction was stirred for 2 hr at 0°C under argon gas, then quenched by the addition of 

water.  The reaction mixture was purified on a Hypersep C18 column (10 g/75 ml) from 

Thermo Scientific (60108-703) starting with 100% water (0.1% TFA) and increasing the 

gradient to 100% ACN in 10 ml increments.  Fractions were then analyzed by mass 

spectroscopy in ES- mode to determine fractions containing the mono-derivative (m/z = 

567) and the bi-derivative (m/z = 508).  Samples were then dried on the rotovaporizer and 

NMR and MS were performed to confirm purity.  To chelate the gadolinium, 1 mM 

solutions of DTPA-NWAE, NWAE-DTPA-NWAE, and gadolinium chloride (GdCl3) in 

water were made.  GdCl3 was slowly added to the solution containing the chelate while 

simultaneously adding  1 M sodium hydroxide to maintain the pH >7.  Upon addition of 

all of the GdCl3, the pH was adjusted to 7.3 and the solution was concentrated by 
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rotovaporization and filtered through a 0.22 µm PTFE filter followed by lyophilization 

for 24 hrs.   

3.3.3 Conjugation of Lys-OMe to DTPA 

Carboxybenzyl-lysine with a methyl protection group on the C-terminus (Z-Lys-

OMe) was purchased from Bachem.  100 mg (0.28 mmol) of DTPA was dissolved in 5 

ml anhydrous DMF and stirred at 0°C.  Z-Lys-OMe•HCl (83.4 mg, 0.252 mmol) was 

dissolved in DMF and slowly added to the DTPA solution followed by the addition of 

TEA (400 µl, 2.8 mmol) with continuous stirring at 0°C and further stirred for 15 min 

under argon gas.  The reaction was then quenched with 2 ml water and rotovaporized.  

Compounds were purified using a Hypersep C18 column (10 g/75 ml) with a methanol: 

0.1 M triethylacetic acid (TEAA) gradient.  Fractions were then analyzed by mass 

spectroscopy in ES+ mode to determine fractions containing the bi-derivative (m/z = 946) 

and the mono-derivative (m/z = 669).  The mono-derivative eluted at 40% methanol and 

60% TEAA while the bi-derivative eluted at 60-70% methanol and 40-30% TEAA.  

Samples were then dried on the rotovaporizer and NMR and MS were performed to 

confirm purity.  There was ~60% yield of the bi-derivative and ~10% yield of the mono-

derivative.  For the carboxybenzyl group de-protection, the Z-Lys-OMe-DTPA-Z-Lys-

OMe was dissolved in 5 ml anhydrous methanol and palladium, 10% (w/w) on activated 

carbon with a drop of acetic acid.  The reaction was stirred for 2 hrs at room temperature 

under hydrogen gas.  Purity of the compounds was again confirmed by NMR and MS in 

ES+ mode; Lys-OMe-DTPA-Lys-OMe (m/z = 677).  To chelate the gadolinium, 10 mM 

solutions of Lys-OMe-DTPA-Lys-OMe and gadolinium chloride (GdCl3) in water were 

made.  GdCl3 was slowly added to the solution containing the chelate while 
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simultaneously adding 1 M sodium hydroxide to maintain the pH ~7.  Upon addition of 

all of the GdCl3, the pH was adjusted to 7.3 and the solution was concentrated by 

rotovaporization and filtered through a 0.22 µm PTFE filter followed by lyophilization 

for 24 hrs.   

3.3.4 Determination of free gadolinium 

The method of Barge, et al. (15) was used to determine the amount of free 

gadolinium after complexation.  Briefly, a 12 µg/ml solution of xylenol orange (Fluka) 

was prepared in 50 mM acetate buffer, pH 5.8.  To generate a standard curve, 0-50 µM 

dilutions of the gadolinium atomic absorption standard solution (Sigma-Aldrich) were 

made in 50 mM acetate buffer, pH 5.8.  The absorbance was measured at 433 nm and 573 

nm and the ratio A573/A433 was plotted versus the concentration of gadolinium.   Dilutions 

of the contrast agents were prepared (0 – 2 mM) and absorbance at 433 nm and 573 nm 

was measured in the presence of xylenol orange solution and the concentration of free 

gadolinium was calculated from the standard curve. 

3.3.5 Relaxivities of contrast agents in NMR 

Gd-DTPA was purchased from Sigma-Aldrich to be used as a positive control and 

deionized water was used as the negative control.  Solutions of 0.1 mM to 5 mM Gd-

DTPA analogues in deionized water were prepared.  Samples were loaded into coaxial 

insert NMR tubes with a 60 µL internal capacity.  Deuterated chloroform (CdCl3) 

(Cambridge Isotope Laboratories) was loaded in the outer tube for external locking.  T1 

relaxation times were measured on a Bruker Avance DRX-500 NMR spectrometer with 

an 11.75 Tesla field strength magnet and a 1H NMR frequency of 500 MHz by an 

inversion-recovery sequence with tau equal to 1, 5,10, 20, 30, 40, 50, 100, 500, and 1000 
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ms.  T1 was calculated using TopSpin (Bruker Biospin).  The relaxation rate is equal to 

1/T1 (s-1).  The relaxation rates were plotted against the concentration of the contrast 

agent.  The slope of the best-fit line for the data is equal to the relaxivity (mM-1s-1) of the 

contrast agent. 

3.3.6 Relaxivities of contrast agents in MRI 

Solutions of 0.1 mM to 4 mM DTPA analogues were prepared in deionized water.  

T1 of these solutions were determined using a small animal MRI (GE 7T).  T1 was 

measured by an inversion recovery fast spin echo imaging sequence using inversion times 

of 50, 100, 500, 800, 1200, and 2500 ms, an echo time (TE) of 12 ms, and an echo train 

length of 8 at a repeat time (TR) of 6000 ms.  All images were obtained from a single 

axial slice, 0.5 mm slice thickness.  T1 for each solution and deionized water were 

calculated using the RT Image software.  The relaxivity (R1) value was calculated from 

the slope of the plot of (1/T1, solution – 1/T1, water) versus the equivalent concentration 

of Gd-DTPA analogues.  

3.3.7 Subcloning of legumain 

All restriction enzymes were purchased from New England Biolabs.  Mus 

musculus legumain cDNA (mLGMN, Accession # BC132515) in pCR4-TOPO was 

ordered from Open Biosystems.  mLGMN cDNA was amplified using the primers 5’-

CCTAGTGCTA GCGAC-3’ and 5’CCTTGCTAGAGCTCTTGTAGTGACTAAGACA 

CACTTTGTCC-3’ (Integrated DNA Technologies).  The PCR product and the vector 

pET-28a were double digested with the restriction enzymes NheI and SacI and ligated 

using T4 DNA ligase (New England Biolabs).  Digested mLGMN-pET-28a with BlpI 

and the vector pFastBac (containing a secretion signal peptide, MDPPRPALLALLALPA 
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LLLLLLAGA RAE) with NotI and filled in the 5’-overhangs with T4 DNA polymerase 

(New England Biolabs).  mLGMN-pET-28a and pFastBac were further digested with 

NdeI.   His-mLGMN and pFastBac were purified in an agarose gel.  Following gel 

extraction using a QIAEX II gel extraction kit (QIAGEN), His-mLGMN and pFastBac 

were ligated using T4 DNA ligase.  DNA sequence in pFastBac was verified by dideoxy 

sequencing (University of Michigan Sequencing Core). 

3.3.8 Recombinant legumain expression and purification 

His-mLGMN-pFastBac was transposed into DH10Bac competent cells by heat 

shock and streaked on LB Agar plates containing 50 µg/ml kanamycin, 7 µg/ml 

gentamicin, 10 µg/ml tetracycline, 100 µg/ml Bluo-gal, and 40 µg/ml IPTG.  The plate 

was incubated inverted for 24-48 hrs at 37°C.  White colonies were selected to inoculate 

liquid cultures of LB Broth containing 50 µg/ml kanamycin, 10 µg/ml tetracycline, and 

10 µg/ml gentamycin and incubated overnight on a shaker (230 rpm) at 37°C.  Bacmid 

DNA was isolated using the protocol as described in the Bac-to-Bac® Baculovirus 

Expression System manual by Invitrogen.  Transfection of Sf9 insect cells with the 

recombinant bacmid DNA and infection of insect cells with recombinant baculovirus 

particles were also done according to the same manual.  A titer of 1 × 108 pfu/ml was 

assumed after two rounds of amplification and an MOI of 0.5 pfu/ml was selected.  Cells 

and media were harvested 96 hours after infection for protein purification.   

To purify the secreted legumain protein, cells and media were centrifuged at 9100 

× g for 15 min at 4°C.  The supernatant was collected and filtered with 0.22 µm cellulose 

acetate membrane.  A filtration cartridge was used to exchange the media with wash 

buffer (50 mM sodium phosphate, 300 mM sodium chloride, and 20 mM imidazole, pH 
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8.0).  The supernatant was then incubated overnight with Ni-NTA resin, which had 

previously been equilibrated in wash buffer.   The resin was then washed with ~100 

column volumes of wash buffer before eluting with 50 mM sodium phosphate, 300 mM 

sodium chloride, 250 mM imidazole, pH 8.0.  The purified protein was then dialyzed in 

25 mM Tris and 0.15 M sodium chloride, pH 7.5.  Protein concentration was determined 

using the Pierce BCA assay (Thermo Fisher Scientific).  A sample was run in a 4-12% 

Bis-Tris gel and stained with KryptonTM Protein Stain (Thermo Fisher Scientific) 

according to manufacturer’s protocol to determine the relative purity of the protein.  

Protein aliquots were stored at -80°C until needed for activity assays. 

3.3.9 Legumain hydrolysis of Z-AAN-AMC 

Recombinant mouse legumain (50 µg/ml) was auto-activated by incubation in 100 

mM NaOAc, 0.1 M NaCl (pH 4.5) at 37°C for 4 hrs.  Legumain was then diluted to 1 

µg/ml in 50 mM MES, 0.25 M NaCl (pH 5.5) and Z-Ala-Ala-Asn-AMC was added at a 

final concentration of 12.5 – 100 µM.  Fluorescence (400ex/508em nm) was measured 

every 3 min for 1 hr in a BioTek Synergy HT plate reader with an internal temperature of 

37°C.  The concentration of free AMC was calculated from fluorescence values and 

plotted against time.  The linear portion of the curve was used to calculate the initial 

velocity of hydrolysis (nmol/min).  GraphPad Prism 4.0 was used to determine the kinetic 

constants Km and VMAX.   

3.3.10 Legumain hydrolysis of neurotensin and NWAE 

Recombinant mouse legumain (50 µg/ml) was auto-activated by incubation in 100 

mM NaOAc, 0.1 M NaCl (pH 4.5) at 37°C for 4 hrs.  As a negative control, legumain 

was heat-inactivated (HI-lgmn) at 90°C for 10 min.  Legumain and HI-lgmn were then 
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diluted to 1 µg/ml in 50 mM MES, 0.25 M NaCl (pH 5.5).  Then, 50 µM or 100 µM 

neurotensin peptide (Glp-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu) or 1 mM 

NWAE peptide (Asp-Trp-Ala-Glu-OH) was added.  Neurotensin samples were incubated 

overnight and NWAE peptides were incubated 2 hrsat room temperature overnight and 

then spun through 96-well 0.45 µm polyvinylidene difluoride (PVDF) membranes 

(Unifilter, Whatman) at 1,800 × g in a Jouan MR 22i tabletop centrifuge cooled to 4°C to 

remove legumain before HPLC analysis.  The HPLC system (Waters) consisted of a 

reverse-phase column (XTerra RP18, 5 µm, 4.6 x 250 mm), a 515 pump, a 996 

Photodiode Array UV detector and a 717 Plus Autosampler.  The remaining NWAE 

peptide, full-length neurotensin, and the production of Glp-Leu-Tyr-Glu-Asn and Lys-

Pro-Arg-Arg-Pro-Tyr-Ile-Leu were analyzed using a mobile phase consisting of an 

acetonitrile (0.1% TFA) gradient (2-52%) mobile phase with a flow rate of 1 ml/min and 

detection at 274 nm.  Peaks were collected and further analyzed by mass spectroscopy in 

ES+ mode.   

3.3.11 Enzymatic hydrolysis of Gd-DTPA-NWAE 

Recombinant mouse legumain (50 µg/ml) was auto-activated as described above 

(3.3.10).  As a negative control, legumain was heat-inactivated (HI-lgmn) at 90°C for 10 

min.  Legumain or HI-lgmn was then diluted to 1 µg/ml in 50 mM MES, 0.25 M NaCl 

(pH 5.5), Gd-DTPA-NWAE was added at a final concentration of 1 mM and samples 

were incubated at room temperature overnight.  The T1 times of the samples were 

measure as described above. 

3.3.12 HEK-293 cells overexpressing legumain 

HEK-293 cells stably expressing legumain (HEK-LEG) were a generous gift from 
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Dr. G. David Roodman from the University of Pittsburgh.  Cells were maintained in 

Dulbecco’s Modified Eagle Medium (DMEM, Gibco/Invitrogen) containing 10% heat-

inactivated fetal bovine serum (HI-FBS) in a 37°C incubator with 5% CO2 and 90% 

humidity.  Cells were washed and collected in PBS (pH 7.4) and pellets were stored at -

20°C until analysis.  Protein concentration was determined using the Pierce BCA assay 

(Thermo Fisher Scientific).   

3.3.13 Hydrolysis of Z-AAN-AMC by HEK-LEG cells. 

Lysed HEK-293 or HEK-LEG cells (65 mg/ml protein) were incubated with 100 

µM Z-AAN-AMC in 50 mM MES, 0.25 M NaCl (pH 5.5) for 2 hrs at 37°C.  HEK-LEG 

cells were seeded at a density of 50000 cells per well in a black wall, clear bottom 96-

well plate.  Prior to adding 100 µM Z-AAN-AMC, media was replaced with 100 µL of 

10 mM Hepes, 100 mM NaCl (pH 7.4) or 50 mM MES, 0.25 M NaCl (pH 5.5).  

Fluorescence (400ex/508em nm) was measured every 3 min for 2 hrs in a BioTek Synergy 

HT plate reader with an internal temperature of 37°C.  The concentration of free AMC 

was calculated from fluorescence values and plotted against time.   

3.4 Results  

3.4.1 Synthesis and characterization of procontrast agents 

 Gd-DTPA-Asn and Gd-Asn-DTPA-Asn were synthesized and purified according 

to the scheme shown in Figure 3.2.  The tetrapeptide NWAE was conjugated to Gd-

DTPA and the mono- and bi-derivatives were purified according to the scheme shown in 

Figure 3.3.  Mass spectrometry confirmed the structures of the DTPA conjugates, which 

were then complexed with GdCl3•6H20.  The free gadolinium concentration was 

determined to be minimal (<2%) using the xylenol orange assay.  T1 times of 0.5 to 5 
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mM solutions of the contrast agents were measured in NMR and MRI and used to 

calculate the relaxivities of the compounds, shown in Error! Reference source not 

ound..  Gd-DTPA had the fastest R1 (4.59 mM-1 s-1 in NMR and 6.971 mM-1 s-1 in MRI), 

while Gd-DTPA-NWAE had the slowest R1 (0.846 mM-1 s-1 in NMR and 1.588 mM-1 s-1 

in MRI).  The relaxivities of Gd-DTPA-Asn and Gd-Asn-DTPA-Asn were slower than 

that of Gd-DTPA (1.73 mM-1 s-1 and 2.75 mM-1 s-1 in NMR, respectively).  While the 

absolute values for the relaxivities of the compounds in NMR and MRI were not the 

same, the ratio of relaxivities between the tetrapeptide conjugates and single amino acid 

metabolites were similar in both, with ratios  >1.5 (Figure 3.4) and should be sufficient to 

observe signal enhancement upon activation in vivo.   

3.4.2 Production and characterization recombinant legumain 

Recombinant mouse legumain with a C-terminal His-tag was subcloned and 

transfected in Sf9 insect cells to produce secreted His-tagged legumain.  His-lgmn was 

purified to >98% purity using Ni-NTA agarose (Qiagen).  The legumain precursor with 

His-tag had a molecular weight of ~50 kDa, while the autocatalytically activated 

legumain had a molecular weight of ~35 kDa as shown in Figure 3.5.  The activity of the 

recombinant legumain was analyzed using the model substrate benzoylcarbonyl-L-alanyl-

L-alanyl-L-asparagine-4- methylcoumaryl-7-amide (Z-AAN-AMC).  Recombinant mouse 

legumain had a Km value of 0.04 ± 0.015 mM, a VMAX of 797 ± 136 nmol/min•mg 

protein, and a kcat value of 44.8 min-1.   

To confirm the specificity of recombinant mouse legumain for asparagine in the 

P1 position, recombinant lgmn was incubated with the peptide neurotensin (Glp-Leu-Tyr-

Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu).  HPLC and MS analysis confirmed that 
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neurotensin was cleaved into two fragments by lgmn, Glp-Leu-Tyr-Glu-Asn (m/z = 649) 

and Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu (m/z = 521, z = 2), while only full-length 

neurotensin (m/z = 837, z = 2) was detectable when incubated with heat-inactivated 

legumain (data not shown).  NWAE peptide was incubated with legumain or heat-

inactivated legumain and analyzed by HPLC.  There was no detectable hydrolysis of 

NWAE in either sample (data not shown).   

3.4.3 Legumain incubated with procontrast agent 

 Gd-DTPA-NWAE was incubated with legumain or heat-inactivated legumain and 

T1 times were measured by NMR.  There were no differences in the T1 times for the 

contrast agent incubated with legumain or heat-inactivated legumain at the concentrations 

tested (data not shown).  Furthermore, T1 times of the the procontrast agent in the 

presence of buffer and protein were different than those seen in pure water.  

3.4.4 Legumain activity in whole cells 

The hydrolysis of Z-AAN-AMC was tested in cell lysates and whole cells of HEK-

293 cells stably overexpressing legumain.  Though Z-AAN-AMC seemed to be 

specifically activated by legumain, the extent of hydrolysis was nominal.  While, there 

was ~10-fold greater hydrolysis of Z-AAN-AMC by HEK-LEG cell lysates compared to 

HEK-293 cell lysates, there was still very little hydrolysis overall (0.035 nmol vs 0.35 

nmol in 2hrs).  Similarly, HEK-LEG whole cells hydrolyzed Z-AAN-AMC to a greater 

extent in acidic buffer (1.8%) compared to whole cells in neutral buffer (<0.4%).   

3.4.5 Synthesis and characterization of an alternative procontrast agent 

 After determining Gd-DTPA-NWAE could not be significantly activated by 

legumain, an alternative procontrast agent was proposed wherein the N-terminal of 
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asparagine was no longer conjugated to DTPA.  One way to accomplish this is through 

the conjugation of the side chain of lysine to DTPA.  Furthermore, this would allow 

amino acids to be attached to the N- or C-terminal of lysine to target different proteases.  

The epsilon amine group of lysine was conjugated to DTPA to form Gd-Lys-OMe-

DTPA-Lys-OMe as shown in Figure 3.6.  The relaxivity of this compound was 

determined to be 3.7445 mM-1 s-1 by NMR.   

3.5 Discussion 

The procontrast agents Gd-DTPA-NWAE, Gd-NWAE-DTPA-NWAE and their 

proposed metabolites, Gd-DPTA-Asn and Gd-Asn-DTPA-Asn, were successfully 

synthesized and purified.  The relaxivities of these contrast agents as well as the parent 

compound, Gd-DTPA, were determined by both NMR (11.75T) and MRI (7T) because 

the relaxivity is specific to the magnetic field strength, with MRI generally being lower 

strength than NMR.  The ratio of the relaxivities between the single amino acid 

conjugates and tetrapeptide conjugates of Gd-DTPA were greater than 1.5 in NMR and 

MRI.  Louie et al. found that a 3-fold difference in relaxivities of their cleaved and 

uncleaved contrast agent, EgadMe, resulted in a 57% enhancement in signal intensity in 

vivo (13).  This suggests that there would be a detectable difference between the 

tetrapeptide contrast agent and the single amino acid metabolite in vivo. 

Groups previously working with legumain used biochemically purified legumain 

from tissue sources or overexpressed the protein in transfected mammalian cells for 

purification (3, 4, 16-18).  We successfully expressed full-length mouse preprolegumain 

with a C-terminal His-tag and an N-terminal secretion signal in Sf9 insect cells.  The 

work of Chen et al. hypothesized that mouse legumain autocatalytically activates after 
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Asp-27, leaving Gly-28 as the first amino acid of the mature form (4).  The size 

difference between the prolegumain and mature legumain suggests that there is also post-

translational processing at the C-terminus, as is the case with legumain in other species 

(17, 18).  The shift in gel electrophoretic mobility between the preprolegumain and the 

legumain incubated in acidic buffer, suggests that the recombinant mouse legumain is 

able to autocatalytically activate.   

To further confirm that the recombinant mouse legumain produced by Sf9 insect 

cells was catalytically active, we determined the kinetic constants for legumain with the 

model substrate Z-AAN-AMC.  The calculated values for recombinant legumain 

expressed by Sf9 cells were similar to those of legumain from other species (3, 17, 19).  

Recombinantly expressed legumain was also able to hydrolyze the peptide neurotensin, 

as has been previously reported for pig legumain (3).  The recombinant legumain was not 

able to hydrolyze the tetrapeptide NWAE.  This was not unexpected, as Dando et al. 

found that legumain requires a minimum of two amino acids N-terminal of the P1 

asparagine for activity and prefers a blocking group on the N-terminus (16). 

When Gd-DTPA-NWAE was incubated with legumain or heat-inactivated 

legumain there was no difference in the T1 times measured by NMR.  Most likely, Gd-

DTPA-NWAE is not being hydrolyzed by legumain to Gd-DTPA-Asn, or the extent of 

hydrolysis is too insignificant to detect, possibly due to steric hindrance of DTPA in the 

P2 position or an insufficient number of amino acids N-terminal of Asn.  Furthermore, 

there was minimal hydrolysis of Z-AAN-AMC when incubated with either intact HEK-

LEG cells or lysates.  Taken together, the evidence suggests that legumain is not the ideal 

target enzyme for our procontrast agent.  Despite promising NMR results with Gd-
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DTPA-NWAE, Gd-DTPA-Asn, and Gd-DTPA-Lys-OMe, a procontrast agent targeted to 

legumain was not pursued further due to insufficient legumain activity.  The differences 

in relaxivities between the tetrapeptide contrast agent and the single amino acid contrast 

agent are encouraging; thus it would be worthwhile to pursue a peptide procontrast agent 

with a new enzymatic target and peptide sequence and possibly the use of a linker such as 

Lys-OMe or propanediamine to overcome issues of steric hindrance. 
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Figure 3.1  Proposed bioactivation of Gd-DTPA-NWAE 
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Figure 3.2  Synthesis Scheme for Gd-DTPA-Asn and Gd-Asn-DTPA-Asn 
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Figure 3.3  Synthesis scheme for Gd-DTPA-NWAE and Gd-NWAE-DTPA-NWAE 
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Figure 3.4  The relaxivity ratios for Gd-DTPA amino acid and tetrapeptide 
analogues.   
The T1 times for Gd-DTPA-Asn, Gd-DTPA-NWAE, Gd-Asn-DTPA-Asn, and Gd-
NWAE-DTPA-NWAE were measured by NMR (11.75T) and MRI (7T) at various 
concentrations.  The inverse T1 times were first plotted against the concentrations to 
determine the relaxivity (R1) for each compound.  The relaxivities of the single amino 
acid metabolites were then divided by the relaxivities of the corresponding tetrapeptide 
contrast agents to obtain the relaxivity ratios shown here.  The ratios suggest there would 
be observable signal enhancement upon activation in vivo. 
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Figure 3.5  Purified recombinant mouse legumain is autocatalytically activated in 
acidic conditions. 
Recombinant mouse legumain was expressed and purified from Sf9 insect cells.  A 
portion of recombinant mouse legumain was incubated in acidic buffer for 4 hrs to allow 
for autocatalytic activation.  His-legumain (lane 1) and activated legumain (lane 2) were 
run in a 4-12% Bis-Tris gel (Invitrogen) with BenchMark™ Protein Ladder (Invitrogen) 
to confirm approximate size and purity. 
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Figure 3.6  Structure of Gd-Lys-OMe-DTPA-Lys-OMe 
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Table 3.1  Relaxivities (R1) of Gd-DTPA analogues  
The T1 times for Gd-DTPA-Asn, Gd-DTPA-NWAE, Gd-Asn-DTPA-Asn, and Gd-
NWAE-DTPA-NWAE were measured in NMR (11.75T) and MRI (7T) at various 
concentrations.  The inverse of the T1 times were plotted against the concentration of the 
compounds and the slope of the best fit line is equal to the relaxivity (R1) of each 
compound.   

Compounds Relaxivity (R1) (mM-1 s-1) 

  NMR MRI 

Gd-DTPA 
(synthesized) 4.59 6.971 

Gd-Asn-DTPA-Asn 2.75 3.702 

Gd-DTPA-Asn 1.73 2.602 

Gd-NWAE-DTPA-
NWAE 1.046 2.245 

Gd-DTPA-NWAE 0.846 1.588 
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CHAPTER 4  
 

Determination of differential peptide hydrolysis in whole cells using fluorescence 
 

4.1 Summary 

Identification of peptide promoities selectively cleaved in disease tissue such as 

cancer can be useful in designing target-activated prodrugs.  Historically, sequences have 

been identified using purified proteases; however, there may be changes in protein 

abundance and/or activity in more complex systems, thus necessitating the development 

of a whole-cell screening system.  The hydrolysis of amino acid sequences from the 

fluorescent compounds AMC (7-amino-4-methylcoumarin) and ACC (7-amino-4-

carbamoylmethylcoumarin) can be monitored in real-time using a fluorescence plate 

reader without time-consuming sample preparation.  In this chapter we demonstrate the 

ability of AMC conjugates to monitor proteolytic activity of proteases overexpressed in 

transfected whole cells with known substrates.  We then apply this method to identifying 

peptide sequences differentially hydrolyzed by cancer cells with unknown protease 

abundances.  The differential hydrolysis by peptide sequence was further confirmed with 

ACC conjugates. 

4.2 Introduction 

A major challenge in developing drugs is to reduce side effects caused by off-target 

activity.  One approach to this challenge is to design prodrugs that are preferentially 

activated at the target site.  As proteases make up approximately 2% of the mammalian 
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proteome, they represent a significant target for prodrug development (1).   

One area in which this strategy has had moderate success is cancer chemotherapy.  For 

example, peptides attached to anticancer compounds such as doxorubicin, 5-

fluorodeoxyuridine, paclitaxel, thapsigargin, and vinblastine have been used to target 

proteases such as prostate-specific antigen, matrix metalloproteases 2 and 9, legumain, 

and cathepsin B (2-15).  The development of these prodrugs has focused on identifying a 

single protease that is overexpressed in the tumor tissue and screening the purified 

protease for the most preferential peptide sequence, often several amino acids long.  

While this approach is reasonable, it inherently limits the number of potential peptide 

promoieties.  Another drawback of this strategy is that it ignores the potential role of 

other proteases within the cell in prodrug activation.  Furthermore, as seen in Chapter 3, 

there might be less activity in a whole-cell system as compared to screening with a 

purified protein.  An improved strategy for prodrug design to overcome these drawbacks 

is to target not merely a single enzyme, but rather the proteolytic profile of the entire 

target cell.  Cloutier et al. demonstrated the validity of this approach by using a phage 

display library to identify pentapeptides that were differentially cleaved by secreted 

proteases of three prostate cancer cell lines (16).   However, their method was limited to 

identifying surface proteolytic activity, was labor intensive with multiple rounds of 

screening, and excluded aminopeptidase activity as the pentapeptide did not have an 

exposed N-terminus.    

To overcome these limitations, we have developed a rapid, physiologically 

relevant screening system to determine whole-cell proteolytic activity using the 

fluorescent compound 7-amino-4-methylcoumarin (AMC).  To further simplify prodrug 
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development, we selected AMC compounds with single amino acids, dipeptides or 

tripeptides conjugated, and screened for differential activation.  While AMC compounds 

have been used extensively to determine purified protease activity, to our knowledge this 

is the first time they have been used in a whole-cell screening system.  To verify the 

promoiety was responsible for differential hydrolysis, we also used ACC (7-amino-4-

carbamoylmethylcoumarin) as a leaving group.  ACC has a similar structure to AMC 

(Figure 4.1) and both compounds experience a shift in excitation/emission spectra when 

an amino acid or peptide is conjugated to the amine group. 

To investigate the feasibility of this approach we monitored the hydrolysis of 

known substrates by proteases overexpressed in HEK-293 cells. We then wanted to see if 

there was differential hydrolysis of our existing repertoire of AMC compounds by two 

breast cancer cell lines (MCF7 and BT-549) and a non-cancerous fibroblast cell line 

(MRC-5) that expresses proteases involved in remodeling of the extracellular matrix.  

The rationale for this strategy was that if we could observe differential hydrolysis with a 

limited number of compounds in two similar cell lines, then this approach could likely be 

extended to include a more complete library of compounds with cells from different 

tissue sources. 

4.3 Methods 

4.3.1 Materials  

AMC (7-amino-4-methylcoumarin) compounds were purchased from Bachem, 

except Met-AMC (Enzo Life Sciences) and Lys-Pro-AMC (MP Bio); unless otherwise 

noted, all amino acids are L-isomers.  Cells were purchased from ATCC and cell culture 

media was purchased from GIBCO.    
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4.3.2 Synthesis of ACC compounds 

ACC (7-amino-4-carbamoylmethylcoumarin) was synthesized and conjugated to 

Rink amide AM resin according to the method of Maly et al. (17).  The single amino acid 

conjugates of valine and alanine were made as well as the dipeptide conjugate of lysine-

alanine using the coupling conditions described previously (17).  Compound identities 

and purity were confirmed by TOF mass spec (ES+) and 1H NMR. 

4.3.3 Cell culture 

All cells were maintained at 37°C in 90% humidity with 5% CO2.  HEK-293 and 

HepG2 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) containing 

10% heat-inactivated fetal bovine serum (HI-FBS).    MRC-5, MCF7, and BT-549 cells 

were maintained in RPMI-1640 medium supplemented with 10% HI-FBS.  HepG2, 

MRC-5, MCF7, and BT-549 cells were plated in black wall, clear bottom, tissue culture 

treated 96-well plates at a density that resulted in 25000 cells/well at the time of assay.  

For assays with MRC-5, MCF7, and BT-549 cells, media was replaced with serum-free 

RPMI-1640 medium immediately prior to adding substrate. 

4.3.4 Transfection of HEK-293 cells   

The cDNA for hANPEP, hNPEPPS, hDPP4, hDPP7, and mDPP9 in the vector 

pCMV-SPORT6 were purchased from OpenBiosystems.  Plasmids were prepared from 

200 ml DH10B TonA cultures using a maxi-prep kit from QIAGEN.  Plasmids were 

sequenced at the University of Michigan DNA Sequencing Core using the T7 and M13 

reverse primers.  For mock-transfections, the empty pcDNA3.1 vector (Invitrogen) was 

also purified using a maxi-prep kit.  Approximately 20 min prior to plating cells, 0.32 µg 

DNA and 0.5 µL Lipofectamine 2000 in 50 µL OptiMEM were added to each well of a 

black wall with clear bottom 96-well plate with CellBIND® surface (Corning).  HEK-293 
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cells were trypsinized, counted, and plated at a density of 120,000 cells/well in 100 µL 

DMEM containing 10% HI-FBS.  Cells were incubated at 37°C in 5% CO2 with 90% 

humidity for 48-72 hrs prior to assaying.   

4.3.5 Whole cell hydrolysis of AMC and ACC conjugates 

Val-AMC, Pro-AMC, Tyr-AMC, Met-AMC, Leu-AMC, Phe-AMC, Ala-AMC, 

Gly-Phe-AMC, Gly-Pro-AMC, Lys-Pro-AMC, Lys-Ala-AMC, Ala-Ala-Phe-AMC, 

AMC, Val-ACC, Ala-ACC, Lys-Ala-ACC, and ACC were dissolved in DMSO at a 

concentration of 10 mM to create stock solutions.  For the competition assays, 10 mM 

Gly-Sar was added prior to adding AMC compounds.  For permeabilized membrane 

studies, 0.2% Triton X-100 was added 15 min prior to assay.  A final concentration of 

100 μM AMC or ACC compounds (1% DMSO) was added to the media and plates were 

incubated 2 hrs at 37°C.  AMC fluorescence was measured every 2 min at 400ex/508em 

nm in a BioTek Synergy HT plate reader. The fluorescence reading for the DMSO 

negative control was subtracted.  The amount of compound hydrolyzed to AMC or ACC 

was calculated from the fluorescence values and plotted against time to obtain the initial 

velocities (V0, nmol/min) of hydrolysis.    

4.3.6 Hydrolysis of AMC conjugates in mouse serum 

Mouse serum was obtained from Invitrogen and diluted to 50% (v/v) in phosphate 

buffered saline, pH 7.4 (PBS).  The diluted serum as well as PBS were aliquoted in 

opaque 96-well plates.  AMC conjugates were added at a final concentration of 100 µM.  

AMC fluorescence was measured every 5 min at 400ex/508em nm in a BioTek Synergy 

HT plate reader heated to 37°C.  The amount of compound hydrolyzed to AMC was 

calculated from the fluorescence values and plotted against time to obtain the initial 

velocities (V0, nmol/min) of hydrolysis.    
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4.3.7 mRNA expression data  

The mRNA expression data were obtained from the National Cancer Institute 

database, which is normalized using GC-content-based Robust Multiarray Averaging 

(GCRMA).  The MEROPS peptidase database (http://merops.sanger.ac.uk/) (18) was 

used to identify potential peptidases involved in AMC substrate hydrolysis.  TreeView 

software (EisenSoftware, Stanford University) was used to create a heat map of the 

mRNA expression data of the relevant proteases. 

4.3.8 Statistical analysis  

Data were analyzed by two-way ANOVA with a Bonferroni posttest using 

GraphPad Prism 4 (GraphPad Software, Inc).  A P-value of < 0.05 was considered 

statistically significant. 

4.4 Results 

4.4.1 Single amino acid conjugates of AMC in transfected cells 

To examine the feasibility of studying proteolytic activity in a whole-cell system, 

we transiently transfected HEK-293 cells with ANPEP and NPEPPS cDNA and screened 

several single amino acid conjugates of AMC known to be substrates of the 

aminopeptidases.  The selected amino acids included valine, proline, tyrosine, 

methionine, phenylalanine, alanine, and leucine.  While the transfected cells appeared to 

have slightly increased hydrolytic activity against several of the compounds, only Leu-

AMC was hydrolyzed significantly faster by ANPEP-transfected cells compared to 

mock-transfected control cells (Figure 4.2).   

4.4.2 Hydrolysis of peptide-AMC conjugates in transfected cells 

The rapid hydrolysis of single amino acid substrates in mock-transfected cells 

make them less than ideal candidates for targeted prodrug promoieties.  To examine the 
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potential for dipeptide promoieties, we transiently transfected HEK-293 cells with DPP4, 

DPP7, and DPP9 and screened with the known substrates of these dipeptidases: Gly-Pro-

AMC, Lys-Pro-AMC, and Lys-Ala-AMC, with Gly-Phe-AMC as a control substrate.  

The initial velocities, V0 (nmol/min), of hydrolysis are shown in Figure 4.3.  Gly-Pro-

AMC and Lys-Pro-AMC were good substrates for DPP4, DPP7, and DPP9 (>5-fold 

faster V0 compared to mock-transfected cells).  Interestingly, only cells expressing DPP7 

and not DPP4 or DPP9 showed significantly faster hydrolysis of Lys-Ala-AMC 

compared to mock-transfected cells (1.16 ± 0.238 nmol/min compared to 0.02 ± 0.003 

nmol/min, respectively).  The hydrolysis assays were repeated in the presence of 10 mM 

Gly-Sar, a competitive inhibitor of PEPT1.  This did not result in any significant changes 

in hydrolysis rates (data not shown).  This was repeated in detergent-permeabilized cells, 

which resulted in faster rates of hydrolysis in DPP4-, DPP7-, and DPP9-transfected cells, 

while the trends remained the same (Figure 4.4).  The hydrolysis of dipeptide substrates 

were also measured in ANPEP- and NPEPPS-transfected cells (Figure 4.3).  The most 

noteworthy finding was the significant hydrolysis of Gly-Phe-AMC and Lys-Ala-AMC in 

HEK-293 cells overexpressing ANPEP. 

4.4.3 Hydrolysis of single amino acid conjugates by three cell lines 

We determined that we could measure differential hydrolysis in cells artificially 

overexpressing select proteases.  To determine whether endogenous protease levels were 

sufficiently different to observe differential hydrolysis of AMC compounds, we selected 

the breast cancer cell lines MCF7 and BT-549 as well as the fibroblast cell line MRC-5.  

Again we started the screening with single amino acid substrates including D-Ala-, Val-, 

Pro-, Tyr-, Phe-, Leu-, Met-, and L-Ala-AMC and determined the initial velocities of 

hydrolysis.  Unlike the transfected HEK-293 cells, there were significant differences in 
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hydrolysis rates among the three cell lines (Figure 4.5).  The two breast cancer cell lines, 

MCF7 and BT-549, had similar hydrolysis rates for most compounds with the exception 

of Met- and Ala-AMC.  Also, the preferential hydrolysis seemed to be stereo-specific, as 

BT-549 cells hydrolyzed L-Ala-AMC significantly faster than the other two cell lines, but 

there was virtually no hydrolysis of D-Ala-AMC in any cell line. 

4.4.4 Differential hydrolysis of peptide-AMC conjugates by BT-549 cells 

While there was significantly faster hydrolysis of select single amino acid 

substrates by the two breast cancer cells, there was still hydrolysis of these compounds by 

MRC-5 fibroblast cells.  In an effort to achieve greater specificity, we tested the 

hydrolysis of several di- and tripeptide AMC conjugates by the three cell lines.  The 

promoieties Lys-Ala, Gly-Phe, and Ala-Ala-Phe were hydrolyzed significantly faster by 

BT-549 cells compared to MCF7 or MRC-5 cells (Figure 4.6).  Moreover, there was 

minimal hydrolysis of Lys-Ala-AMC in MRC-5 or MCF7 cells resulting in 10-fold and 

100-fold differences in initial velocities, respectively, compared to BT-549 cells.  

4.4.5 Hydrolysis of ACC conjugates 

To verify whether this promoiety specificity can be conferred to other leaving 

groups, we synthesized ACC and conjugated valine, alanine, and lysine-alanine to ACC 

and compared the hydrolysis of these compounds by MRC-5, MCF7, and BT-549 cells to 

their respective AMC counterparts.  Regardless of whether the leaving group was AMC 

or ACC, alanine and lysine-alanine substrates were hydrolyzed significantly faster by 

BT-549 cells as compared to MRC-5 and MCF7 cells (Figure 4.7).  The hydrolysis of the 

ACC conjugates was significantly faster than the hydrolysis of the AMC conjugates by 

BT-549 cells.  
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4.4.6 Serum and liver stability of AMC conjugates 

Ideally, there should be minimal hydrolysis of enzyme-activated prodrugs prior to 

reaching their target site.  The blood stream and liver represent two potential sites of off-

target activation.  To begin to estimate the off-target activation that may occur, we 

measured the hydrolysis of our AMC compounds in 50% mouse serum and HepG2 liver 

cells.  The hydrolysis rates were quite similar between serum and liver cells, with only 

Gly-Pro-AMC and Lys-Pro-AMC being hydrolyzed significantly faster in serum as 

compared to HepG2 cells (Figure 4.8).  The three lead compounds from the breast cancer 

cell screen, Lys-Ala-, Gly-Phe-, and Ala-Ala-Phe-AMC, tended to be hydrolyzed more 

slowly than the majority of the compounds tested in both serum and HepG2 cells. 

4.4.7 Protease expression levels in breast cancer cells 

Using the MEROPS database (18), proteases that could potentially cleave single 

amino acids, dipeptides or tripeptides from AMC were selected.  Figure 4.9 is a heat map 

of the mRNA expression levels of these proteases in MCF7 and BT-549 cells.  The 

expression levels of many of these proteases are very similar between the two cell lines.  

The most notable differences in expression are the cathepsins (B, C, and D), tripeptidyl 

peptidases 1 and 2, and alanyl aminopeptidase. 

4.5 Discussion 

According to studies done with purified proteases, Ala, Met, and Leu are good 

substrates of alanyl aminopeptidase and puromycin-sensitive aminopeptidase while Pro 

and Val are poor substrates (19-21).  However, as seen in Chapter 3 with legumain, there 

can be significant differences in hydrolytic activity between a purified protease and an 

overexpressed protease in a whole-cell system.  Thus, screening prodrug substrates 

against purified proteases may not be the best predictor of their activation in vivo, as 



 

105 
 

subcellular localization and environment may affect the hydrolytic activity of an enzyme.  

To test this hypothesis, we transfected HEK-293 cells with the membrane-bound alanyl 

aminopeptidase (ANPEP, aminopeptidase N, APN, CD13) which has been previously 

characterized in its purified form due to its purported role in tumor progression (19, 20, 

22-26).  The cytosolic puromycin-senstive aminopeptidase (NPEPPS, APP-S) was also 

selected for transfection because it prefers substrates similar to those of APN, and 

because the purified protease has previously been characterized in our laboratory (27) and 

by others (21, 28-31).  When APN and APP-S were overexpressed in HEK-293 cells, 

there was only slightly increased hydrolysis of single amino acid substrates compared to 

mock-transfected cells, and only Leu-AMC was hydrolyzed significantly faster by 

ANPEP-transfected cells.  This lack of differential hydrolysis makes single amino acid 

promoieties less than ideal for a targeted prodrug approach, but makes them good 

candidates for to ensure rapid activation upon absorption of orally administered prodrugs. 

The lack of significantly increased hydrolysis may be due to the already rapid 

hydrolysis of single amino acid substrates in mock-transfected cells.  With this in mind, 

we selected several dipeptide substrates including Gly-Pro-, Lys-Pro-, and Lys-Ala-AMC 

which are known substrates of dipeptidyl peptidase IV (DPP4) (32), dipeptidyl peptidase 

VII (DPP7) (33), and dipeptidyl peptidase IX (DPP9) (34).  We also tested the hydrolysis 

of Gly-Phe-AMC, which is not a known substrate of the previously listed dipeptidases 

and has been reported to be a substrate of cathepsin C and possibly APP-S (35, 36).   In 

agreement with previous literature, Gly-Pro-AMC and Lys-Pro-AMC were good 

substrates for DPP4, DPP7, and DPP9.  The kcat values reported in the literature (33) 

indicate Lys-Ala-AMC should be hydrolyzed faster than Gly-Pro- or Lys-Pro-AMC by 
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DPP7.  Our data are in partial agreement with this, as the V0 for Lys-Ala-AMC was 

significantly faster than the V0 for Gly-Pro-AMC (P < 0.05).  Interestingly, the initial 

velocities of hydrolysis for Gly-Pro and Lys-Pro substrates by DPP9-transfected cells 

were similar in our system, whereas kcat values reported in literature for Gly-Pro 

substrates are 2- to 4-fold greater than the kcat values for Lys-Pro substrates (34, 37).  

Finally, Lys-Ala-AMC is reported to be a DPP4 substrate in literature (32), but the 

hydrolysis of Lys-Ala-AMC in DPP4-transfected cells was not significantly faster than 

mock-transfected cells.  These results further emphasize the potential differences in 

enzymatic activity between purified proteases and proteases in live cells. 

The hydrolysis of the dipeptide substrates were also tested in the ANPEP- and 

NPEPPS-transfected HEK-293 cells.  The work of Ishii et al. (20) showed that Gly-Pro- 

and Lys-Ala-AMC were poor substrates for alanyl aminopeptidase, with Lys-Ala-AMC 

being the worse of the two.  However, in HEK-293 cells transfected with ANPEP, we 

saw that Lys-Ala-AMC was hydrolyzed almost as fast as Ala-AMC, while there was no 

detectable increase in Lys-Pro-AMC hydrolysis.  Alternatively, Huang et al. found Lys-

Ala-AMC was almost as good a substrate for alanyl aminopeptidase as Ala-AMC (19).  

Similarly, Feracci et al. (22) found the peptide Lys-Ala-Ala was a better substrate for 

APN than Ala-p-nitroanilide.  Huang et al. (19) proposed that alanyl aminopeptidase 

hydrolyzes Lys-Ala-AMC in a two-step reaction based on the concave curve of activity 

plotted against time.  Therefore, it is possible Ishii et al. (20) only measured the slow step 

of the two-step reaction.  Furthermore, based on the reported enzymatic activity of alanyl 

aminopeptidase against Gly- and Phe-AMC (19, 20, 22), the rapid hydrolysis of Gly-Phe-

AMC by ANPEP-transfected cells was unexpected, which further highlights the need for 
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screening whole-cell proteolytic activity.  However, it was previously suggested that 

APP-S may be involved in Gly-Phe-AFC hydrolysis based on inhibitor profile 

characteristics (36). 

There was a possibility that the differences in substrate hydrolysis could be due to 

accessibility of the substrate to the enzyme, as DPP IV is a membrane protease (38), 

while DPP VII is lysosomal (33, 39), and DPP IX is localized to the cytosol (34).  To rule 

out this possibility, cell membranes were permeabilized with Triton X-100.  The 

differential pattern of hydrolysis remained in detergent-permeabilized cells suggesting 

the pattern was not due to substrate accessibility. 

Using the MEROPS database, we identified 31 proteases potentially involved in the 

hydrolysis of our AMC compounds and compared the mRNA expression levels of these 

proteases in the two breast cancer cell lines.  Based on our hydrolysis results we were not 

surprised to find increased expression levels of alanyl aminopeptidase, cathepsin C, and 

tripeptidyl peptidases 1 and 2 in BT-549 cells, which are known activators of Ala-AMC, 

Gly-Phe-AMC, and Ala-Ala-Phe-AMC, respectively (19, 20, 40-44).  Similarly, the lack 

of differences in mRNA expression levels of dipeptidyl peptidasesIV, VII, and IX fit with 

the lack of differential hydrolysis of their known substrates, Gly-Pro-AMC and Lys-Pro-

AMC (32-34).  As was shown in DPP7-transfected cells, Lys-Ala-AMC is a DPP VII 

substrate and there was faster hydrolysis of Lys-Ala-AMC in BT-549 cells compared to 

MCF7 cells, yet there was no difference in DPP7 mRNA expression levels between the 

two breast cancer cell lines.  The increased V0 of Lys-Ala-AMC hydrolysis in BT-549 

cells could be explained by the increased expression of alanyl aminopeptidase (ANPEP) 

in BT-549 cells rather than DPP7.  This further highlights the ability to target more than 
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one protease with a single substrate and the need to know the entire proteolytic profile of 

a target cell. 

To successfully design target activated prodrugs using single amino acid or peptide 

promoieties, it is first necessary to identify promoieties that will be differentially 

hydrolyzed.  As the results of this chapter have shown, relying on the in vivo mRNA 

transcript level and in vitro substrate specificity of a single protease is not sufficient to 

predict the hydrolysis pattern of even a select number of promoieties.  By screening a 

whole-cell system we can achieve differential activation through the combined activity of 

multiple proteases.  These promoieties can be used to not only design prodrugs to treat a 

disease such as cancer, but can also be attached to imaging agents for diagnostic 

purposes.  
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Figure 4.1  Chemical structures of AMC and ACC. 
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Figure 4.2  Single amino acids are not ideal candidates for targetd prodrug 
promoieties. 
HEK-293 cells were transiently transfected with ANPEP or NPEPPS cDNA or mock-
transfected with pcDNA3.1 (empty vector).  Fluorescence values were converted to 
amount of AMC and plotted against time to determine the initial velocity (Vo, nmol/min).   
Data were analyzed by two-way ANOVA with a Bonferroni posttest.  Asterisks indicate 
that the value is significantly different from mock-transfected cells (**P<0.01). 
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Figure 4.3  Dipeptide promoieties are sufficient for differential hydrolysis in 
transfected HEK-293 cells. 
HEK-293 cells were transiently-transfected with ANPEP, NPEPPS, DPP4, DPP7 or 
DPP9 cDNA or mock-transfected (control).  Compounds were added at a final 
concentration of 100 uM and fluorescence was measured.  Fluorescence values were 
converted to amount of AMC and plotted against time to determine the initial velocity 
(Vo, nmol/min).  Data were analyzed by two-way ANOVA with a Bonferroni post-test 
using GraphPad Prism 4.0.  Bars with asterisks are significantly different from mock-
transfected control cells (**P < 0.01, ***P < 0.001). 
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Figure 4.4  Membrane permeabilization by Triton X-100 changes the rate of 
hydrolysis by transfected HEK-293 cells 
HEK-293 cells were transfected with ANPEP, NPEPPS, DPP4, DPP7 or DPP9 cDNA or 
empty vector (control).  Cell membranes were permeabilized with detergent prior to 
performing assay.  The hydrolysis of the compounds to AMC was measured by the 
change in fluorescence over time.  The initial velocity of hydrolysis (V0, nmol/min) was 
determined by the slope of the linear portion of the hydrolysis curve.  Bars with asterisks 
are significantly different from the mock-transfected (control) cells (*P < 0.05, **P < 
0.01, ***P < 0.001). 
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Figure 4.6  Di- and tripeptide promoieties resulted in greater differential hydrolysis.   
AMC conjugates were added to MRC-5, MCF7, and BT-549 cells and change in 
fluorescence was measured over time.  Fluorescence values were converted to amount of 
AMC and plotted against time to determine the initial velocity (Vo, nmol/min).  Data 
were analyzed by two-way ANOVA with a Bonferroni post-test using GraphPad Prism 
4.0.  Bars with asterisks are significantly different (**P < 0.01, ***P < 0.001). 
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Figure 4.7  The promoiety confers differential hydrolysis despite changing the 
leaving group. 
AMC and ACC conjugates were added to MRC-5, MCF7, and BT-549 cells and change 
in fluorescence was measured over time.  Fluorescence values were converted to amount 
of AMC or ACC and plotted against time to determine the initial velocity (Vo, nmol/min).  
Data were analyzed by two-way ANOVA with a Bonferroni post-test using GraphPad 
Prism 4.0.  Bars with asterisks are significantly different from other cell lines with the 
same compound (**P < 0.01, ***P < 0.001). 
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Figure 4.8  There is significant X-prolyl peptidase activity in mouse serum. 
AMC conjugates were added to wells containing 50% mouse serum or HepG2 cells. 
Fluorescence values were converted to amount of AMC and plotted against time to 
determine the initial velocity (V0, nmol/min).  Data were analyzed by two-way ANOVA 
with a Bonferroni post-test using GraphPad Prism 4.0.  Bars with asterisks are 
significantly different between the serum and HepG2 groups (***P < 0.001). 
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Figure 4.9  mRNA expression levels of select proteases in MCF7 and BT-549 cells. 
Proteases were selected using the MEROPS database and expression levels (GCRMA 
normalized) were obtained from the National Cancer Institute.  The heat map was created 
using TreeView software (EisenSoftware) with high expression in red and low expression 
in black. 
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CHAPTER 5  
 

Selective Hydrolysis of Doxorubicin Prodrugs  
 

5.1 Summary 

To more selectively target chemotherapeutics, it is useful to identify peptide 

sequences that are preferentially hydrolyzed by cancer cells.  The proteolytic profiles of 

cells can be determined by a variety of methods.  In the previous chapter, AMC and ACC 

conjugates were used to screen whole cells to identify peptide sequences differentially 

hydrolyzed by cancer cells.  In this chapter, the results from the AMC screen are applied 

to the rational design of a peptide prodrug.  The lead sequence from the AMC screen, 

lysyl-alanine is conjugated to doxorubicin (Dox), as well as control amino acid and 

dipeptide sequences.  The prodrugs are characterized by measuring the rate of hydrolysis 

in lysed and whole cells and the cytotoxicity is compared to that of free Dox using IC50 

values.  Finally, microscopy is used to explore distribution of free Dox and Dox prodrugs 

within the cells. 

5.2 Introduction 

The lack of tumor selectivity continues to limit the dosage of many anti-cancer 

compounds on the market.  It has become increasingly common to use a prodrug 

approach to target existing drugs in order to improve selectivity (1-4).  One such prodrug 

approach involves conjugating a peptide to a drug that is hydrolyzed by a protease 

overexpressed in the tumor tissue.  Proteases are required for degradation of the 
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extracellular matrix, which is essential for tumor metastasis (4).  In addition, proteases 

make up almost 2% of mammalian genes (5), making them an attractive target for 

prodrug activation.  Chemotherapeutic prodrugs have been targeted to a variety of 

cysteine, serine, and metalloproteases including cathepsins (6-8), prostate-specific 

antigen (9-18), matrix metalloproteinases (19-24), legumain (25-27), and urokinase 

plasminogen activator (28).  However, there can be variability in expression and activity 

of a single protease, making this approach less reliable.  Furthermore, these targets tend 

to be extracellular, thus ignoring the ~50% of proteases that are intracellular (5).   

Protease-activated prodrugs have been developed to improve the selectivity of 5-

fluorodeoxyuridine (17, 29), camptothecin (30), vinblastine (9), paclitaxel (15), 

thapsigargin (12), and, most extensively, doxorubicin (8, 10, 13, 14, 20, 22, 23, 25, 31, 

32).  The anthracyline doxorubicin (Dox) is one the most commonly used 

chemotherapeutics and has a broad spectrum of activity (33).  Breast cancer is the most 

commonly diagnosed cancer among women and the median 5-year survival rate for 

metastatic breast cancer (MBC) is less than 25% (34).   In a population-based study in 

British Columbia, ~35% of women with MBC were treated with an anthracycline (35).   

Despite its widespread use, cytotoxic side effects continue to plague the use of Dox, with 

cardiotoxicity being one of the most significant problems leading to dose limitations (33).  

The need for improved selectivity combined with the presence of a primary amine group 

on Dox make it a good candidate for a peptide-prodrug approach. 

In the previous chapter, we established a method to screen peptide promoities to aid 

in the design of target-activated prodrugs.  In this chapter, we conjugated the lead 

promoiety from that screen, L-Lys-L-Ala, to doxorubicin and measured the hydrolysis and 
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cytotoxicity in MRC-5, MCF7, and BT-549 cells.  We also attempted to identify some of 

the proteases involved in hydrolysis using inhibitors and transfected cells. 

5.3 Methods 

5.3.1 Materials 

Doxorubicin hydrochloride was obtained from Pharmacia & Upjohn.  Fmoc-L-

lysine(Fmoc)-L-alanine and Fmoc-L-lysine(Fmoc)-D-alanine dipeptides were synthesized 

by Genscript (≥98% purity).  Fmoc- L-alanine-OH and Fmoc- D-alanine-OH were 

purchased from NovaBiochem.  MRC-5, MCF7, and BT-549 cells were purchased from 

American Type Culture Collection (ATCC) and cell culture media was purchased from 

Gibco/Invitrogen.  All other chemicals used were purchased from Thermo Fischer 

Scientific.   

5.3.2 Synthesis of doxorubicin prodrugs 

Peptide prodrugs of doxorubicin were synthesized using the methods of Chung 

and Kratz (28) and Schmid et al. (8) with modifications.  Yields shown are for L-Lys-D-

Ala-Dox.  Briefly, doxorubicin hydrochloride (17.18 mg, 0.0296 mmol) and Fmoc-L-

lysine(Fmoc)-L-alanine-OH, Fmoc-L-lysine(Fmoc)-D-alanine-OH, Fmoc-L-alanine-OH or 

Fmoc-D-alanine-OH (0.0296 mmol) were mixed in 4 mL of dimethylformamide (DMF), 

and then treated with N,N-diisopropylethylamine (DIPEA) for 10 min.  HATU (2-(7-Aza-

1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) (12.38 mg, 

0.03256 mmol) was added and the reaction mixture was stirred at room temperature for 2 

h. The product was precipitated in ethyl ether and washed three times. The filtrate was 

collected and purified through chromatography on silica gel using chloroform/methanol 

93:7, affording 21.7 mg (62%) of red powder as pure product. 
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The Fmoc protecting group was removed by dissolving Fmoc-L-Lys(Fmoc)-L-

Ala-Dox, Fmoc-L-Lys(Fmoc)-D-Ala-Dox, Fmoc- L-Ala-Dox, and Fmoc-D-Ala-Dox in 

1.25 mL of DMF with 20% piperadine.  The blue mixture was stirred at room 

temperature for 5 min followed by precipitation of the product in 15 mL of diethyl ether.  

The pure product was filtered and vacuumed overnight to give 10.5 mg (78%) dark red 

powder.  Compound identity was confirmed by mass spec (ESI-MS: m/z 743.3 [M+H]+ 

for dipeptide prodrugs and m/z 637.1 [M+Na]+ for single amino acid prodrugs) and purity 

was determined by HPLC (>90%). 

5.3.3 HPLC analysis 

Samples were analyzed using an HPLC system (Agilent) consisting of a reverse-

phase column (Agilent Zorbax Eclipse XDB-C18, 3.5 µm, 4.6 × 150 mm), an 1100 series 

pump (Hewlett Packard), an 1100 series fluorescence detector (Agilent), and a 1200 

series autosampler (Agilent).  The mobile phase consisted of 8 mM triethylamine in 28 

mM sodium phosphate, pH 3.7 with 22-35% acetonitrile gradient with a flow rate of 1 

ml/min with fluorescence detection at 480ex/560em nm.  The amount of prodrug and 

doxorubicin present were calculated from standard curves based on peak areas.   

5.3.4 pH stability of prodrugs 

Prodrugs were incubated in 0.2 M sodium citrate/citric acid buffer (pH 4.0), 10 

mM Hepes, 100 mM NaCl (pH 7.4) or 0.1 M sodium borate buffer (pH 9.8) at room 

temperature for 24 hrs.  Samples were analyzed by HPLC as described above at 0 and 24 

hrs. 

5.3.5 Cell culture 

All Cells were maintained at 37°C in 90% humidity with 5% CO2.  HEK-293 
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were cultured in Dulbecco’s Modified Eagle Medium (DMEM) containing 10% heat-

inactivated fetal bovine serum (HI-FBS).  MRC-5, MCF7, and BT-549 cells were 

maintained in RPMI-1640 medium supplemented with 10% HI-FBS.  MRC-5, MCF7, 

and BT-549 cells were plated in black wall, clear bottom, tissue culture treated 96-well 

plates at a density that resulted in 5000 cells/well at the time of assay.   

5.3.6 Transfection of HEK-293 cells   

The human cDNAs for alanyl aminopeptidase (ANPEP), puromycin-sensitive 

aminopeptidase (NPEPPS), and dipeptidyl peptidase VII (DPP7) in the vector pCMV-

SPORT6 were purchased from OpenBiosystems.  Plasmids were prepared from 200 ml 

DH10B TonA cultures using a maxi-prep kit from Qiagen.  Plasmids were sequenced at 

the University of Michigan DNA Sequencing Core using the T7 and M13 reverse 

primers.  For mock-transfections, the empty pcDNA3.1 vector (Invitrogen) was also 

purified using a maxi-prep kit.  Approximately 20 min prior to plating cells, 0.32 µg 

DNA and 0.5 µL Lipofectamine 2000 (Invitrogen) in 50 µL OptiMEM were added to 

each well of a black wall with clear bottom 96-well plate with CellBIND® surface 

(Corning).  HEK-293 cells were trypsinized, counted, and plated at a density of 120,000 

cells/well in 100 µL DMEM containing 10% HI-FBS.  Cells were incubated at 37°C in 

5% CO2 with 90% humidity for 48-72 hrs prior to assaying.   

5.3.7 Hydrolysis of prodrugs 

L-Lys-L-Ala-Dox, L-Lys-D-Ala-Dox, L-Ala-Dox, and D-Ala-Dox were dissolved 

in methanol to obtain a stock concentration of 1 mM.  Cells were plated in black wall, 

clear bottom, tissue culture treated 96-well plates at a density that resulted in 5000 

cells/well at the time of assay.  For the assay with lysed cells, 0.2% Triton X-100 was 
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added 15 min prior to adding prodrug.  The prodrugs were added to wells containing cells 

at a final concentration of 1-20 µM.  At predetermined time points (0-24 hrs), 100 µL 

media or buffer was removed and quenched in 400 µL methanol.  Samples were placed 

on a vortex at 4°C for ≥30 min followed by centrifugation at 12000 × g for 8 min at 4°C.  

The supernatant was then analyzed by HPLC.  Data were fitted to one-phase exponential 

association curves in GraphPad Prism 4.0. 

5.3.8 Whole-cell hydrolysis of L-Lys-L-Ala-AMC  

L-Lys-L-Ala-AMC and AMC were dissolved in DMSO at a concentration of 10 

mM to create stock solutions.  A final concentration of 100 μM AMC compounds (1% 

DMSO) was added to the media and plates were incubated 30 min at 37°C with or 

without 100 µM bestatin.  AMC fluorescence was measured every 2 min at 400ex/508em 

nm in a BioTek Synergy HT plate reader. The fluorescence reading for the DMSO 

negative control was subtracted.  The amount of compound hydrolyzed to AMC was 

calculated from the fluorescence values and plotted against time.  The data were fitted to 

one-phase exponential association curves by GraphPad Prism 4.0.   

5.3.9 Cell viability 

Doxorubicin was added to the media at a final concentration of 0.01 - 100 µM and 

dox prodrugs were added to the media at a final concentration of 1 - 500 µM.  After 12 

hrs of incubation at 37°C, drug-containing media was replaced with fresh media and cells 

were incubated an additional 48 hrs.  Doxorubicin, prodrugs or solvent were added to the 

media at a final concentration of 10 µM and incubated with cells with or without 100 µM 

bestatin for 12 hours.  Cell viability was determined by adding 20 µL of CellTiter-Blue® 

(Promega) to each well and incubating at 37°C for 1 hr.  Fluorescence was measured at 
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530ex/590em nm on a BioTek Synergy HT plate reader and cell viability was expressed as 

percent of solvent-treated control.  Data were fitted to sigmoidal dose-response curves in 

GraphPad Prism 4.0 to determine IC50 values. 

5.3.10 Microscopy 

Glass cover slips were treated with poly-L-lysine for 1 hr at room temperature and 

then washed with PBS.  Cells were seeded at a density of ~13000 cells/cm2 

approximately 36 hrs prior to drug treatment.  Cells were treated with 15 µM prodrug or 

doxorubicin and incubated at 37°C for 6 hrs or 24 hrs.  Cover slips were washed in 

serum-free, phenol-free RPMI-1640 media and mounted on glass slides.  Cells were 

imaged with a Zeiss Axiovert 135 TV microscope (Carl Zeiss MicroImaging, LLC, 

Thornwood, NY) using a 63× oil immersion objective lens.  A xenon lamp with 490 nm 

excitation filter and an 83101m emission filter (Chroma Technology Corp, Bellows Fall, 

VT) was used to acquire images of doxorubicin and doxorubicin prodrugs.  Phase 

contrast and fluorescence images captured by a cooled CCD camera were overlayed 

using MetaMorph software. 

5.3.11 Statistical analysis 

Data were analyzed using GraphPad Prism 4 (GraphPad Software, Inc).  A P-

value of < 0.05 was considered statistically significant. 

5.4 Results 

5.4.1 Synthesis and pH stability 

L-Lys-L-Ala-Dox, L-Lys-D-Ala-Dox, L-Ala-Dox, and D-Ala-Dox were 

synthesized according to the scheme shown in Figure 5.1 and purified to >90% purity.  

All prodrugs were stable in acidic (pH 4.0) and physiologic (pH 7.4) buffers, but not in a 
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basic (pH 9.8) buffer.  When analyzed by HPLC, there was loss of total fluorescenceat 

pH 9.8, suggesting that doxorubicin itself is not stable in basic pH. 

5.4.2 Hydrolysis of L-Lys-L-Ala-Doxorubicin by lysed cells 

To verify that our screening system can be useful for rational prodrug design, we 

selected the promoiety lysine-alanine to make a doxorubicin prodrug.  Because we did 

not know the subcellular localization of the protease responsible for hydrolyzing the 

lysine-alanine promoiety or the permeability of the doxorubicin prodrug, we began with 

lysed cells.  MRC-5, MCF7, and BT-549 cells were lysed by incubating with 0.2% Triton 

X-100.  The metabolite L-Ala-Dox was detectable in the BT-549 samples starting at the 

10 min time point, while it was not detectable in the MRC-5 or MCF7 samples until the 

30 min time point (Figure 5.2).  This resulted in significantly higher amounts of L-Ala-

Dox in the BT-549 cell lysates as compared to MRC-5 or MCF7 cell lysates at 60 min. 

5.4.3 Hydrolysis of Dox prodrugs by whole cells 

L-Lys-L-Ala-Dox (10 µM) was added to the media of whole cells in 96-well 

plates and incubated 0 to 24 hrs.  The amount of prodrug and metabolites in the media 

was determined at several time points.  The amount of L-Lys-L-Ala-Dox in the media 

decreased over time, with a corresponding increase in L-Ala-Dox (Figure 5.3).  The rate 

at which this hydrolysis occurred was faster in the media of BT-549 cells compared to 

that in media of MRC-5 or MCF7 cells or media alone.  The hydrolysis of L-Lys-L-Ala-

Dox was significantly inhibited in all three cell lines by 100 µM bestatin (Figure 5.4); 

bestatin had no effect on the 48 hr cell viability (data not shown).  There was no 

detectable hydrolysis of the other prodrugs, L-Lys-D-Ala-Dox, L-Ala-Dox or D-Ala-Dox, 

after 12 hrs. 
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5.4.4 Hydrolysis of L-Lys-L-Ala-Dox by transfected cells 

HEK-293 cells were transfected with ANPEP, NPEPPS or DPP7 cDNA or mock-

transfected (control).  L-Lys-L-Ala-Dox (10 µM) was added to the media of the 

transfected cells and incubated 0 to 6 hrs.  As seen in Figure 5.5, cells transfected with 

ANPEP or NPEPPS were able to hydrolyze L-Lys-L-Ala-Dox significantly faster than 

mock-transfected cells.  This resulted in significantly shorter half-life values for L-Lys-L-

Ala-Dox in ANPEP- and NPEPPS-transfected cells compared to mock-transfected cells 

(1.9 ± 0.3 hrs and 7.4 ± 0.7 hrs vs. 14.4 ± 1.1 hrs, respectively).  There was no difference 

in hydrolysis rates of L-Lys-L-Ala-Dox in DPP7-transfected cells compared with mock-

transfected (pcDNA3.1) cells. 

5.4.5 Hydrolysis of L-Lys-L-Ala-AMC by transfected cells 

HEK-293 cells were transfected with ANPEP or DPP7 cDNA or mock-

transfected with empty pcDNA3.1 vector.  L-Lys-L-Ala-AMC (100 µM) was added cells 

and incubated 30 min.  As seen in Figure 5.5, cells transfected with ANPEP or DPP7 

were able to hydrolyze L-Lys-L-Ala-AMC significantly faster than mock-transfected 

cells.  When co-incubated with the inhibitor bestatin, hydrolysis of L-Lys-L-Ala-AMC 

was significantly inhibited in ANPEP-transfected cells, while bestatin had very little 

effect on L-Lys-L-Ala-AMC in DPP7-transfected cells. 

5.4.6 Cytotoxicity of prodrugs 

The IC50 of doxorubicin was similar for all three cell lines following a 12 hr 

incubation period (Figure 5.6).  L-Lys-L-Ala-Dox, L-Lys-D-Ala-Dox, L-Ala-Dox, and D-

Ala-Dox were incubated with cells for 12 hrs followed by a 48 hr incubation.  As shown 

in Figure 5.6, all of the prodrugs significantly decreased cell viability compared to the 
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vehicle-treated control cells; however, they were not as toxic as the parent compound 

doxorubicin.  The calculated IC50 values of the compounds are shown in Table 5.1.  The 

MCF7 cells tended to be more resistant to the prodrugs than the other two cell lines.  

Despite the more extensive hydrolysis of L-Lys-L-Ala-Dox to L-Ala-Dox by BT-549 cells 

compared to MRC-5 cells, the IC50 values for L-Lys-L-Ala-Dox in the two cells were not 

significantly different.  Furthermore, L-Ala-Dox had a lower IC50 value than L-Lys-L-Ala-

Dox and L-Lys-D-Ala-Dox in all cell lines.  The unhydrolyzed dipeptide prodrugs had 

higher IC50 values than their corresponding single amino acid prodrugs. 

5.4.7 Microscopy 

Fluorescence microscopy was used to image cells treated with dox and dox 

prodrugs.  Despite the lack of hydrolysis to the parent compound doxorubicin, the 

prodrugs were able to accumulate in cells. All four prodrugs exhibited similar patterns of 

accumulation, with no differences between 6 hr and 24 hr incubation (24 hr data not 

shown).  There was very little accumulation of the prodrugs in the nuclei of the cells, 

whereas the parent compound, doxorubicin, accumulated almost exclusively in the 

nuclei, as seen in the images in Figure 5.7.  These differences in accumulation patterns 

may partially explain the differences in cytotoxicity between the prodrugs and 

doxorubicin. 

5.5 Discussion 

The dipeptide promoiety L-Lys-L-Ala was selected as the most promising 

promoiety from the screen with AMC and ACC compounds in Chapter 4.  This 

promoiety was conjugated to doxorubicin to create the prodrug L-Lys-L-Ala-Dox.  The 

prodrug L-Lys-D-Ala-Dox was synthesized and used as a negative control, as mixed D/L 
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dipeptides have been shown to be more resistant to hydrolysis (36); furthermore, we saw 

no hydrolysis of D-Ala-AMC in our screening system (Chapter 4).  In addition, the 

potential intermediate metabolites L-Ala-Dox and D-Ala-Dox were synthesized.  An 

HPLC method was established to separate the dipeptide prodrugs from the single amino 

acid intermediates and the parent compound, doxorubicin.   All of the prodrugs were 

stable in acidic (pH 4.0) and physiologic (pH 7.4) buffers, so we would not expect to see 

any significant non-specific chemical hydrolysis in vivo. 

The L-Lys-L-Ala promoiety, when conjugated to AMC or ACC, was previously 

shown to be hydrolyzed faster by BT-549 cells compared to MRC-5 or MCF7 cells 

(Chapter 4).  We tested the hydrolysis of L-Lys-L-Ala-Dox in detergent-permeabilized 

MRC-5, MCF7, and BT-549 cells to ensure that hydrolysis was not limited by membrane 

permeability.  As seen with the AMC and ACC compounds, L-Lys-L-Ala-Dox was 

hydrolyzed faster by BT-549 cells compared to MRC-5 or MCF7 cells.  However, in the 

case of AMC or ACC conjugates, the entire peptide promoiety was removed from the 

parent compound.  In the case of L-Lys-L-Ala-Dox, the lysine amino acid was cleaved 

from the prodrug to leave the intermediate metabolite L-Ala-Dox.  Unfortunately, the 

cells appeared to be unable to remove the alanine amino acid from doxorubicin to 

generate the parent compound. 

We then tested the hydrolysis of all four prodrugs in whole cells.  Again, L-Lys-L-

Ala-Dox was the only prodrug hydrolyzed, but was only hydrolyzed to L-Ala-Dox and 

not the parent compound, doxorubicin.  The hydrolysis occurred significantly faster and 

to a greater extent in BT-549 cells compared to the other two cell lines or serum-

containing media.  As was shown in Chapter 4, alanyl aminopeptidase (APN, gene ID 
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ANPEP) is able to hydrolyze L-Lys-L-Ala-AMC and has greater mRNA expression in 

BT-549 cells.  This, combined with the fact that only the lysine amino acid is cleaved 

from L-Lys-L-Ala-Dox suggests that an aminopeptidase, possibly APN, is involved in the 

faster hydrolysis of the prodrug in BT-549 cells.  This conclusion is also supported by the 

observation that hydrolysis of L-Lys-L-Ala-Dox was significantly inhibited in cells that 

were preincubated with the aminopeptidase inhibitor bestatin.  The lack of hydrolysis of 

L-Ala-Dox is potentially due to steric hindrance and could possibly be overcome through 

the use of a linker, which would be hydrolyzed following cleavage of L-Lys-L-Ala.  One 

potential linker is the amino acid leucine.  The prodrug N-L-leucyl-doxorubicin (Leu-

Dox) has previously been synthesized and characterized and shown to be rapidly 

hydrolyzed in plasma following intravenous administration in humans (37-41).  In the 

case of the hypothetical prodrug L-Lys-L-Ala-L-Leu-Dox, the Lys-Ala promoiety would 

be preferentially cleaved by BT-549 cells followed by cleavage of Leu, most likely by a 

different protease. 

To further investigate which proteases might be involved in the prodrug hydrolysis, 

L-Lys-L-Ala-Dox was incubated with HEK-293 cells transfected with ANPEP, APP-S or 

DPP7 cDNA and the hydrolysis rates and half-lives were compared to the values from 

mock-transfected cells.  While the promoiety L-Lys-L-Ala is a known substrate of DPP 

VII (42), there was no difference in the hydrolysis of L-Lys-L-Ala-Dox between DPP7- 

and mock-transfected cells.  Alternatively, cells overexpressing the two aminopeptidases, 

APN and APP-S, were able to hydrolyze L-Lys-L-Ala-Dox to L-Ala-Dox significantly 

faster than mock-transfected cells.  Once again, the cells were not able to cleave L-Ala 

from doxorubicin to generate the parent compound.  Bestatin was able to inhibit 
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hydrolysis of L-Lys-L-Ala-AMC in ANPEP-transfected cells, but not in DPP7-transfected 

cells.  Taken together with the ability of bestatin to inhibit hydrolysis in BT-549 cells, an 

aminopeptidase is the most likely responsible for the hydrolysis of L-Lys-L-Ala-Dox in 

whole cells. 

Hydrolysis is only one factor in the design of a target-activated prodrug.  It is also 

important that the prodrug have little to no cytotoxicity until activated.  The IC50 values 

for all four prodrugs were significantly higher than the IC50 values for doxorubicin in 

MRC-5, MCF7, and BT-549 cells.  While the differences were not as dramatic, the IC50 

values for the single amino acid metabolites were significantly lower than the IC50 values 

for their corresponding dipeptide prodrugs, i.e. L-Ala-Dox compared to L-Lys-L-Ala-Dox 

and D-Ala-Dox compared to L-Lys-D-Ala-Dox.  This suggests that lengthening the 

peptide promoiety could further decrease the cytotoxicity of the prodrug.   

It was interesting that, despite the lack of hydrolysis, even L-Lys-D-Ala-Dox was 

able to affect the cell viability of all three cell lines.  While doxorubicin has many 

proposed mechanisms of action (33), they all involve intracellular targets.  Therefore, we 

hypothesized that the unhydrolyzed prodrugs were still able to permeate the cell 

membrane.  This was tested by incubating the cells with each prodrug and using the 

fluorescent properties of doxorubicin to image the cellular accumulation and distribution 

in live cells.  It appeared that all of the prodrugs and doxorubicin could permeate the cell 

membrane and accumulate inside the cells.  However, the prodrugs appeared to 

accumulate outside the nucleus of the cell while doxorubicin mostly accumulated in the 

nucleus.  The major mechanisms of doxorubicin action appear to be intercalation into the 

DNA helix and covalent binding to proteins involved in the replication and transcription 
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of DNA (33).  Doxorubicin enters the cell by simple diffusion, but is believed to bind to 

the 20S proteasome to translocate into the nucleus through nuclear pores (33).   The 

conjugation of amino acids or dipeptides to doxorubicin most likely prevents the binding 

of doxorubicin to the proteasome.  Hence, the lack of hydrolysis of the prodrugs is most 

likely preventing it from being transported to the nucleus, thus mitigating its ability to 

affect cell viability. 

While we were not able to achieve complete hydrolysis of the prodrugs to the 

parent compound, we did see differential hydrolysis of the lysyl group from L-Lys-L-Ala-

Dox.  It was encouraging to find that the screening with AMC/ACC compounds was 

partially able to predict differential hydrolysis.  The partial hydrolysis might be able to be 

overcome through the use of a linking group.  The prodrugs themselves retained some 

cytotoxicity, but were significantly less toxic than the parent compound doxorubicin.  

Also, the single amino acid prodrugs were more cytotoxic than their corresponding 

dipeptide prodrugs.  Therefore, we may be able to render doxorubicin inactive by 

attaching longer peptide sequences.  If that were the case, the single amino acid prodrug 

could then be the active metabolite at the target site.  The inability of DPP7-transfected 

cells to activate the prodrug L-Lys-L-Ala-Dox emphasizes the need for future screening 

systems to contain several parent compounds with different physical characteristics 

including molecular weight and charge. 
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Figure 5.1  Synthesis scheme for L-Lys-L-Ala-Doxorubicin 
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Figure 5.2  L-Lys-L-Ala-Dox is hydrolyzed significantly faster by detergent-
permeabilized BT-549 cells. 
L-Lys-L-Ala-Dox was incubated with MRC-5, MCF7, and BT-549 cells with detergent-
permeabilized membranes.  Samples (n = 3) were collected at 0, 5, 10, 15, 20, 30, 45, and 
60 min and analyzed by HPLC with fluorescence detection.  The amount of L-Lys-L-Ala-
Dox and the metabolite L-Ala-Dox were plotted against time and analyzed by non-linear 
regression. 
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Figure 5.3  BT-549 cells hydrolyze L-Lys-L-Ala-Dox to L-Ala-Dox significantly faster 
than MRC-5 or MCF7 cells. 
L-Lys-L-Ala-Dox was added to MRC-5, MCF7 or BT-549 cells or serum containing 
media.  At 0, 1, 2, 3, 6, 12, and 24 hrs, media were collected and analyzed by HPLC.  The 
amount of prodrug hydrolyzed to L-Ala-Dox was converted to the percent of total 
prodrug added at time 0 and plotted against time.  GraphPad Prism was used to fit curves 
to the data using one phase exponential association. 
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Figure 5.4  Bestatin inhibits whole-cell hydrolysis of L-Lys-L-Ala-Dox. 
L-Lys-L-Ala-Dox was added to wells containing MRC-5, MCF7 or BT-549 cells pre-
incubated with or without 100 µM bestatin, an aminopeptidase inhibitor.  After a 12 hr 
incubation at 37°C, media were collected and analyzed by HPLC.  The amount of 
prodrug (hashed bars) and the metabolite L-Ala-Dox (black bars) were calculated using a 
standard curve and converted to the percent of total compound recovered.  Asterisks 
represent significant differences between cells with and without bestatin (***P < 0.001). 
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Figure 5.5  L-Lys-L-Ala-Dox and L-Lys-L-Ala-AMC are hydrolyzed faster by 
ANPEP-transfected HEK-293 cells. 
HEK-293 cells were transiently transfected with ANPEP, NPEPPS or DPP7 cDNA or 
empty  plasmid-transfected (control), 48-72 hrs prior to assays.  (A) Following the 
addition of L-Lys-L-Ala-Dox, media were collected at 0, 1, 2, 4, and 6 hrs and analyzed 
by HPLC.  Data are expressed as the percent of prodrug hydrolyzed over time.  (B) L-
Lys-L-Ala-AMC was incubated with transfected cells in the presence or absence of the 
inhibitor bestatin.  Data are expressed as the percent of L-Lys-L-Ala-AMC hydrolyzed to 
AMC over time.  GraphPad Prism was used to fit curves to the data using one phase 
exponential association. 
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Figure 5.6  Prodrugs of doxorubicin retain some cytotoxicity. 
L-Lys-L-Ala-Dox, L-Lys-D-Ala-Dox, L-Ala-Dox, and D-Ala-Dox were incubated at a 
final concentration of 1 to 500 µM to MRC-5, MCF7 or BT-549 cells for 12 hrs.  
Similarly, doxorubicin was incubated at a final concentration of 1 to 100 µM.  Cell 
viability was determined by CellTiter Blue assay 48 hrs later.  The percent cell viability 
was plotted against the log transformed concentration of prodrug to determine IC50 values 
for each compound using GraphPad Prism 4.0. 
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Figure 5.7  Doxorubicin prodrugs accumulate outside the nucleus. 
Doxorubicin or L-Lys-L-Ala-Dox added at a final concentration of 15 µM MRC-5, MCF7 
or BT-549 cells and incubated at 37°C for 6 hrs.  Doxorubicin and doxorubicin prodrugs 
in live cells were imaged with a Zeiss Axiovert 135 TV microscope using a 63× oil 
immersion objective lens and a xenon lamp with a 490 nm excitation filter.  Phase 
contrast and fluorescence images were overlayed using MetaMorph software. 
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Table 5.1  IC50 values of doxorubicin and dox prodrugs in MRC-5, MCF7, and BT-549 cells 
L-Lys-L-Ala-Dox, L-Lys-D-Ala-Dox, L-Ala-Dox, and D-Ala-Dox were added at a final concentration of 1 to 500 µM to 96-well 
plates containing 5,000 MRC-5, MCF7 or BT-549 cells per well and incubated at 37°C.  Similarly, doxorubicin was incubated at a 
final concentration of 1 to 100 µM.  After 12 hrs, drug-containing media were replaced with fresh media and cells were incubated an 
additional 48 hrs.  Cell viability was determined by CellTiter Blue assay.  The IC50 values for each compound were compared by Two-
way ANOVA using GraphPad Prism 4.0. 
 

  MRC-5 MCF7 BT-549 

Compound 
Mean IC50 

(M) SD Diff.
Mean IC50 

(M) SD Diff. 
Mean IC50 

(M) SD Diff.
L-Lys-L-Ala-Dox 5.83E-05 5.78E-06 a,d,† 1.48E-04 1.40E-05 a,‡ 6.70E-05 3.97E-06 a,† 
L-Lys-D-Ala-Dox 1.21E-04 4.76E-06 b,† 1.59E-04 7.12E-06 a,‡ 9.00E-05 3.57E-05 b,§ 

L-Ala-Dox 3.31E-05 4.07E-06 c,†,‡ 5.88E-05 2.12E-06 b,† 2.34E-05 4.79E-06 c,‡ 
D-Ala-Dox 4.76E-05 3.84E-06 c,d,† 8.31E-05 2.38E-06 c,‡ 5.28E-05 4.48E-06 a,† 

Dox 4.48E-07 2.92E-07 e,† 3.30E-07 5.55E-08 d,† 1.33E-07 7.76E-08 d,† 
*Values with different letters within a column are significantly different from each other (P < 0.05) and values with different symbols 
within a row are significantly different from each other (P < 0.05). 
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CHAPTER 6  
 

 Conclusions   
 
6.1 Significance  

We identified puromycin-sensitive aminopeptidase (APP-S) as one of the major 

proteases involved in the activation of the prodrug Val-Ser-cHPMPC.  To our knowledge, 

we are the first to identify APP-S as an antiviral prodrug-activating enzyme.  The broad 

tissue distribution of APP-S and other neutral aminopeptidases, as well as their homology 

and expression in a variety of species (1-4) can be advantageous for ensuring complete 

and rapid prodrug activation upon absorption, as was previously noted for Val-Ser-

cHPMPC in situ (5).  Additionally, APP-S has been shown to have a broad substrate 

specificity, with preference for hydrophobic and basic amino acids, (6-10).  Thus, the 

amino acid/peptide promoiety of a prodrug could be modified to a variety of sequences to 

achieve desired chemical stability and/or solubility and still be a substrate of APP-S.  The 

wide-range of substrates of APP-S make it an attractive target for future design of orally 

absorbed prodrugs.  As evidenced by several leaving groups, APP-S appears to prefer the 

Ala residue over Val.  This suggests the rate of prodrug activation in vivo could be 

controlled by modifying the amino acid promoiety.   

APP-S has the potential to activate orally absorbed peptide prodrugs with a variety 

of sequences.  Another application of peptide prodrugs is to target a specific protease in a 

target tissue as a way to improve site-specific delivery.  We selected the cysteine 

endoprotease legumain, as it has been previously shown to be overexpressed in tumors 
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and effective in prodrug activation in cell culture and in vivo (11-13).  However, some of 

the experiments showed that prodrugs were more effectively cleaved by the purified 

protease than by cells overexpressing legumain (12).  To design a prodrug that is 

effectively cleaved at the target site, it would be useful to have a minimally invasive 

imaging agent to monitor cleavage of the promoiety in vivo.  We synthesized a peptide-

Gd-DTPA conjugate that, theoretically, should have been activated by legumain.  We 

found we could detect 1.5-2.5-fold differences in relaxivities between the procontrast 

agents and their theoretical metabolites.  Louie et al. (14) observed a 3-fold difference in 

relaxivity corresponded to a 57% enhancement in signal intensity in vivo when the 

procontrast agent EgadMe was activated by β-galactosidase.  This suggests the 1.5-2.5-

fold differences in the measured relaxivities for our peptide-Gd-DTPA procontrast agents 

should be sufficient to observe differences in signal enhancement upon activation in vivo.  

However, recombinant mouse legumain was unable to cleave the procontrast agent to a 

detectable amount.  The protein structure of legumain has not been solved, but it is 

possible steric hindrance prevented legumain from activating the procontrast agents.  The 

amino acid in the P1’ position seems to have very little effect on substrate hydrolysis 

(15), however, legumain does require Asn in the P1 position and at least two amino acids 

N-terminal to the Asn residue in order to hydrolyze the substrate (16).  In the case of Gd-

DTPA-NWAE, if Asn is the P1 amino acid, this positions Gd-DTPA is the P2 amino 

acid.  Gd-DTPA may be too dissimilar from a naturally occurring amino acid for 

legumain to recognize it as a substrate or the lack of an amino acid in the P3 position are 

also potential reasons for the lack of Gd-DTPA-NWAE activation by legumain.  These 

issues could possibly be overcome by altering the structure of the procontrast agent such 
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that Gd-DTPA is in the P1’ or P2’ position through the use of a linker such as 

propanediamine.  Additionally, we found that while purified recombinant legumain was 

able to efficiently hydrolyze the model substrate Z-AAN-AMC, there was minimal 

hydrolysis (<12% over 2 hrs) of the compound when incubated with legumain-expressing 

HEK-293 (HEK-LEG) cells.  While our procontrast agent may be an effective way to 

monitor protease activity in vivo, legumain may not be the best target for a prodrug 

approach.  Furthermore, screening the activity of a purified protease may not be the most 

effective strategy for rational prodrug design. 

As an alternative to producing and purifying recombinant proteases, we a more 

accurate approach would be to screen promoieties in a whole-cell system to account for 

the activity of other proteases as well as changes in protease activity in live cells 

compared to a purified recombinant protease.  The MRI procontrast agent has the 

potential to be used for in vivo monitoring of enzymatic activity, but a less labor intensive 

approach for was desired for promoiety screening purposes.  Therefore, we selected the 

fluorescent compound 7-amino-4-methylcoumarin (AMC), which allowed us to monitor 

hydrolysis in real-time in a 96-well format.  After verifying we could monitor the activity 

of artificially overexpressed proteases in live cells using known substrates, we began 

screening endogenously expressed proteases in cultured cells.  We selected MCF7 cells, a 

relatively noninvasive breast cancer cell line (17), BT-549 cells, a highly invasive breast 

cancer cell line (17), and MRC-5 cells, an immortalized fibroblast cell line.  A fibroblast 

cell line was chosen as our control cells because fibroblasts are known to express 

proteases involved in extracellular matrix (ECM) remodeling (18, 19), while highly 

invasive cancer cells have been shown to overexpress proteases needed for ECM 
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degradation (20-22).  Without knowing the exact expression levels of proteases, we were 

able to identify several substrates that were preferentially hydrolyzed by BT-549 cells 

compared to MCF7 and MRC-5 cells.  These substrate preferences held true even when 

the AMC leaving group was replaced with ACC (7-amino-4-carbamoylmethylcoumarin).   

There have been other attempts to determine whole cell proteolytic activity (23, 24) and 

coumarin-based compounds have been used to screen selectivity of purified proteases 

(25-27).  However, to our knowledge, this is the first time these fluorescent compounds 

have been used to determine proteolytic profiles of live whole cells.   

The screening with AMC and ACC conjugates showed select peptides such as Lys-

Ala were preferentially cleaved by the highly invasive BT-549 breast cancer cells, 

however, for this system to be useful in prodrug design, the screening results should be 

applicable to a pharmacologically active drug.  To test this, we synthesized L-Lys-L-Ala-

doxorubicin as well as the negative control L-Lys-D-Ala-doxorubicin and the theoretical 

metabolites L-Ala-doxorubicin and D-Ala-doxorubicin .  We found that the prodrug L-

Lys-L-Ala-doxorubicin was preferentially, but incompletely, hydrolyzed by BT-549 cells, 

while there was no hydrolysis of the other doxorubicin prodrugs.  Also, L-Lys-L-Ala-

doxorubicin did not appear to be hydrolyzed by dipeptidyl peptidase VII (DPP7), the 

expected protease, but was hydrolyzed by the aminopeptidases alanyl aminopeptidase 

(APN) and puromycin-sensitive aminopeptidase (APP-S).  The L-Lys-L-Ala promoiety 

was preferentially and completely cleaved by DPP7, APN, and BT-549 cells when 

conjugated to AMC, but hydrolysis was incomplete when conjugated to Dox.  The 

inability to hydrolyze L-Ala-Dox to Dox may be due to steric hindrance, thus, a linker 

between L-Lys-L-Ala and Dox may result in more complete hydrolysis.  The prodrug 
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leucine-doxorubicin (Leu-Dox) has previously been synthesized and characterized in 

vitro and in vivo (28-32).  Leu-Dox was shown to be rapidly converted to Dox as 

determined by plasma concentrations following intravenous administration in human 

subjects (31).  Based on the rapid hydrolysis of Leu-Dox, the use of leucine as a linker to 

form the prodrug L-Lys-L-Ala-L-Leu-Dox could result in more complete hydrolysis of the 

prodrug to the more active parent compound, Dox, while maintaining selective activation 

by BT-549 cells due to the L-Lys-L-Ala promoiety.   

The IC50 values for all four doxorubicin prodrugs were significantly higher than 

those of doxorubicin itself in each of the tested cell lines, but the unhydrolyzed prodrugs 

were still able to affect cell viability.  When drug distribution was visualized by 

microscopy, it was seen that the parent compound doxorubicin appeared to accumulate in 

the nuclei of cells while the prodrugs primarily accumulated in the cytosol of cells.  

Interestingly, even L-Lys-D-Ala-doxorubicin was able to accumulate in the cells.  As L-

Lys-D-Ala-doxorubicin was not hydrolyzed and L-D-dipeptides are poor substrates for 

transporters like PEPT1 (33, 34), it is most likely the prodrugs, like doxorubicin itself, 

enter the cell through passive diffusion.  It has been proposed that doxorubicin binds the 

20S proteasomal subunit for translocation into the nucleus, where is dissociates from the 

proteasome and binds DNA due to its higher affinity for DNA (35).  Conjugation of an 

amino acid or peptide to doxorubicin may affect its ability to bind to the proteasome, 

resulting in reduced accumulation in the nuclei of cells.  Furthermore, it has been shown 

that amino acid and dipeptide derivatives of daunorubicin, an anthracycline with a similar 

structure to doxorubicin as shown in Figure 6.1, have significantly reduced DNA binding 

affinities (36).  The reduced affinity for DNA may also play a role in the reduced 
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accumulation of doxorubicin prodrugs in cell nuclei.  The intracellular accumulation, 

reduced cytotoxicity, and limited hydrolysis to the parent compound seen with the 

doxorubicin prodrugs were similar to the results reported by Baurain et al. for amino acid 

and dipeptide prodrugs of daunorubicin (37).  When given intravenously, the 

daunorubicin prodrugs delayed tumor development significantly better than daunorubicin 

with reduced acute toxicity as determined by weight loss and mouse survival (37).  The 

results from Baurain et al. (37) suggest that L-Lys-L-Ala-doxorubicin has the potential to 

limit BT-549 tumor cell progression with reduced overall toxicity as compared to 

doxorubicin in vivo.     

6.2 Future Directions 

Rational prodrug design could be significantly improved with a better 

understanding of how proteases work together to activate a peptide prodrug.  As 

previously mentioned, the screening system should be composed of a variety of imaging 

agents with different physicochemical properties.  As previously noted by Harris et al. 

(26), the ability of ACC to be attached to Rink amide resin allows for the efficient solid-

phase synthesis of a library of amino acid and peptide conjugates of ACC.  Thus, 

synthesis of a more complete library for screening would be highly beneficial.  We were 

able to identify amino acid and dipeptide promoieties that were preferentially hydrolyzed 

by BT-549 breast cancer cells compared to the control cells, MRC-5 fibroblasts, from a 

very small subset of compounds.  Based on this, we would expect to find additional 

promoieties that are differentially activated in a more complete library of dipeptides.     

Any future screening should include screening proteolytic activity of serum and 

metabolic tissues such as liver cells.  As was seen in Chapter 4, there can be significant 
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hydrolysis of peptide prodrugs in serum and liver cells, two potential sites of metabolism 

in vivo, and a targeted prodrug should have minimal hydrolysis prior to reaching the 

target tissue.  It would also be useful to explore the use of N-terminal protecting groups 

such as Boc (tert-Butyl carbamate) or Ac (acetyl) to improve the enzymatic stability of 

the prodrugs in plasma to limit the activation of the prodrug prior to reaching the target 

site. 

ACC and many ACC conjugates are readily able to permeate cell membranes and 

are useful in determining the proteolytic profile of the entire cell, including intracellular 

proteases.  However, not all prodrugs are cell-permeant.  To distinguish between 

intracellular and extracellular proteolytic activity, it would be useful to have an imaging 

agent that does not permeate the cell membrane.  The contrast agent Gd-DTPA is non-

cell permeant, and we were able to distinguish between peptide conjugates of Gd-DTPA 

and the parent compound by changes in NMR signal enhancement.  A procontrast agent 

would also be useful in determining enzymatic activity in vivo in a minimally invasive 

manner.  However, it is not very practical to synthesize and analyze a complete library of 

contrast agents; therefore, a procontrast agent approach might be more suitable for 

confirming activation of lead promoieties.  A compound that might better suit our 

screening needs is aminoluciferin.  Luciferin and aminoluciferin are substrates for firefly 

luciferase and emit light when oxidized by luciferase  (38).  However, when an amino 

acid or peptide is conjugated to aminoluciferin, it is no longer a substrate for luciferase 

(38, 39).  Cleavage of the peptide bond can therefore be monitored by the subsequent 

oxidation of aminoluciferin by luciferase and emission of bioluminescence, as illustrated 

in Figure 6.2.  Similarly to AMC and ACC, this bioluminescence can be assayed in a 96-
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well format and protease activity measured in real-time.  Unlike AMC and ACC, 

however, aminoluciferin does not require excitation by an external light source; thus it 

has a lower background signal and is more suitable for in vivo imaging in luciferase-

transgenic small animals (40-42).   Aminoluciferin has different physicochemical 

properties from AMC and ACC and does not permeate the cell membrane as easily (42).  

This was evidenced when Gly-Pro-aminoluciferin was incubated with HEK-293 cells 

expressing the cytosolic dipeptidase DPP9.  Gly-Pro-aminoluciferin hydrolysis was 

similar in mock-transfected and DPP9-transfected cells, but significantly enhanced in 

DPP9-transfected cells that were co-transfected with the peptide transporter PepT1 (Z. 

Walls and K-D Lee, unpublished data). 

In conclusion, we believe this screening system can be applied to select promoieties 

for the design of target-activated prodrugs with a wide range of chemical structures.  

While doxorubicin contains a primary amine group for direct conjugation of peptides, 

this strategy does not exclude drugs without a primary amine group.  The lack of a 

primary amine group could be overcome through the use of a linker, which may also be 

useful in overcoming steric hindrance.  Finally, a similar screening strategy could be 

applied to ester peptide prodrugs with variations of the screening compounds previously 

mentioned.  For example, a valylester conjugate of D-luciferin has been shown to be 

preferentially hydrolyzed by E. coli expressing valacyclovirase (Z. Walls, J. Sun, and K-

D Lee, unpublished data).  Once the proteolytic profiles of all cells are more clearly 

understood, the in vivo activation of targeted peptide prodrugs can be more accurately 

predicted. 
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Figure 6.1  Structures of doxorubicin (Dox) and Daunorubicin (DNR) 
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Figure 6.2  Activation of Gly-Pro-Aminoluciferin 
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APPENDIX A  
 

Effect of pH and serum starvation on proteolytic profiles of cells 
 

A.1 Summary 

In addition to being targets for anticancer compounds, proteases have been used for 

prognostic purposes.  While many proteases have already been identified, there are 

probably many more yet to be identified.  We used cell lysates to determine whether pH 

had an effect on the hydrolysis of a simple compound such as AMC (7-amino-4-

methylcoumarin) conjugated to a single amino acid.  To better mimic the conditions of a 

solid tumor, we then measured the hydrolysis of Ala-AMC in whole cells under serum-

starvation conditions at two different pHs.  Finally, we chose cell lines from three 

different tissue sources known to play a role in metabolism and examined their 

proteolytic profiles.  Based on whole-cell data, we found that a simple compound such as 

X-AMC (where X equals an amino acid) can be used to differentiate the extent of 

substrate hydrolysis between cell lines.  Furthermore, we found that differences in the 

initial velocities of hydrolysis do not always correlate with differences in extent of 

hydrolysis.  There were less significant differences in the initial velocities of hydrolysis 

among culture conditions and cells lines, making it the more conservative parameter for 

determination of differences in protease activity. 

A.2 Introduction 

It has been established there is a need to better understand the proteolytic profiles 
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of cells, especially in the diseased state (1).  However, in diseased tissue such as tumors, 

the microenvironment is often very different from that of normal tissue.  The extracellular 

matrix of tumors, for example, tends to be more acidic, and there is poor diffusion of 

nutrients between the circulatory system and the interior of the tumor (2).  Researchers 

have recognized the importance of proteases in cancer progression and have begun 

identifying proteases associated with cancer progression for diagnostic and therapeutic 

purposes (3).  These proteases are often identified by mRNA or immunohistochemistry of 

tumor cells, but protease activity might be more useful for the development of 

therapeutics.  For a more high-throughput analysis of proteolytic profiles, it would be 

useful to use cell cultures rather than tumor tissue.  Unfortunately, the proteases of 

interest may not be differentially expressed under normal cell culture conditions, as was 

the case with legumain (4).  We have attempted to mimic some of these physiological 

changes in cell culture by manipulating pH and nutrient availability in cell culture to see 

what effect, if any, they have on protease activity against select substrates.  We used cell 

lines from different tissue sources to determine if these cells react differently to changes 

in environment. 

A.3 Methods 

A.3.1 Materials 

NIH-3T3, MCF7, HepG2, and Caco-2 cells were purchased from ATCC.  HEK-

LEG cells were generously provided by Dr. G. David Roodman (University of 

Pittsburgh).  Cell culture reagents were purchased from Gibco/Invitrogen.  Amino acid 

conjugates of 7-amino-4-methylcoumarin (AMC) were purchased from Bachem.   
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A.3.2 Cell Culture 

HEK-293 cells stably overexpressing legumain (HEK-LEG), NIH-3T3, MCF7, 

HepG2, and Caco-2 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) 

containing 10% heat-inactivated fetal bovine serum (HI-FBS).  Cells were maintained at 

37°C in 90% humidity with 5% CO2.  Cells were plated in black wall, clear bottom, 

tissue culture treated 96-well plates at a density of 50,000 HEK-LEG cells/well and 

100,000 MCF7 cells/well for serum-starvation and pH experiments.  For assays with 

HEK-LEG, HepG2 and Caco-2 cells, RPMI-1640 medium with 10% HI-FBS was used to 

plate the cells at a density of 10,000 cells/well. 

A.3.3 AMC Hydrolysis in cell lysates 

NIH-3T3, MCF7, and NIH-3T3 cells were washed and pelleted in PBS and stored 

at -20°C until time of assay.  Cell pellets were thawed, resuspended, and sonicated on ice 

for 3× 5 sec.  Protein concentration was determined using the Pierce BCA assay (Thermo 

Fisher Scientific) after adding 2% SDS to prevent lipid interference with assay.  For the 

hydrolysis assay, cell lysates were diluted to 65 µg/ml in 10 mM Hepes, 100 mM NaCl 

(pH 7.4) or 50 mM MES, 0.25 M NaCl (pH 5.5) in black 96-well plates.  AMC 

compounds were added at a final concentration of 100 µM.  Rate of hydrolysis was 

measured by fluorescence detection of AMC at 480ex/560em nm in a BioTek Synergy 

Plate Reader maintained at 37°C.  Fluorescence values were converted to concentration 

using AMC standards and plotted against time to obtain the initial velocity of hydrolysis 

(V0, nmol/min•mg protein). 

A.3.4 AMC Hydrolysis in whole cells 

HEK-LEG and MCF7 cells were plated in serum-containing media in black wall 
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clear bottom 96-well plates (Costar) ~24 hrs prior to assay.  For serum-starved cells, the 

media werereplaced with serum-free media approximately 4 hrs prior to beginning the 

assay.  Immediately prior to adding AMC compounds the media were replaced with 10 

mM Hepes, 100 mM NaCl (pH 7.4) or 50 mM MES, 0.25 M NaCl (pH 5.5).  AMC 

compounds were added at a final concentration of 100 µM.  HEK-LEG, MCF7, HepG2, 

and Caco-2 cells were plated in black wall, clear bottom 96-well plates in serum-

containing RPMI-1640 media approximately 2.5 hrs prior to beginning the assay.  AMC 

compounds were added to the media at a final concentration of 100 µM.  Rate of 

hydrolysis was measured by fluorescence detection of AMC at 480ex/560em nm in a 

BioTek Synergy Plate Reader maintained at 37°C.  Fluorescence values were converted 

to concentration using AMC standards and plotted against time to obtain the initial 

velocity of hydrolysis (V0, nmol/min). 

A.4 Results 

A.4.1 Effect of pH on hydrolysis in cell lysates 

Cells were collected and lysed by sonication.  The hydrolysis rate of three AMC 

conjugates were measured in two different buffers at pH 7.4 and pH 5.5.  There were no 

significant differences in the initial velocity of hydrolysis (V0) between the lysates of 

HEK-293 cells and the lysates of HEK-293 cells overexpressing legumain (HEK-LEG) 

as shown in Figure A.1.  However, there was a slightly faster rate of hydrolysis of Z-

AAN-AMC by HEK-LEG cell lysates at pH 5.5.  In the pH 7.4 buffer, Leu-AMC was 

hydrolyzed significantly faster by MCF7 cell lysates than by NIH-3T3 cell lysates, with a 

similar trend at pH 5.5. 
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A.4.2 Effect of serum-starvation on hydrolysis by whole cells 

Serum-starved HEK-LEG and MCF7 cells were incubated with several AMC 

conjugates in buffers of pH 7.4 and pH 5.5.  The extent and rate of hydrolysis were 

compared to those of non-serum-starved cells (Figure A.2).  Interestingly, the extent of 

hydrolysis of Ala-AMC was decreased in serum-starved MCF7 cells at pH 7.4 and pH 

5.5, whereas it was increased in serum-starved HEK-LEG cells at pH 5.5.  Conversely, 

the initial velocity of hydrolysis of Ala-AMC was not significantly different in MCF7 

cells, although there was a slightly increased rate in serum-starved cells at pH 5.5.  There 

was a significantly increased rate of hydrolysis of Ala-AMC in serum-starved cells at pH 

5.5. 

A.4.3 Proteolytic profiles of cells from different tissue sources 

The extent and rates of hydrolysis of several AMC conjugates were compared in 

three different cell lines: HEK-LEG, Caco-2, and HepG2 (Figure A.3).  Once again the 

rates of hydrolysis did not coincide with the extent of hydrolysis.  The extents of 

hydrolysis of Leu-, Phe-, and Ala-AMC were significantly different between all three cell 

lines, with the lowest hydrolysis extent of all three compounds in MCF7 cells.  There 

were no significant differences in the initial velocity of hydrolysis among the cell lines 

for any of the compounds.  However, there was a trend toward faster V0’s for Leu-, Phe-, 

and Ala-AMC by MCF7 cells. 

A.5 Conclusions 

We have shown that pH does not have a profound effect on the rates of hydrolysis 

of three AMC substrates in the cell lysates of three different cell lines.  While the 

hydrolysis of Z-AAN-AMC was not significantly faster in HEK-LEG cells at pH 5.5, 
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there did appear to be a trend toward increased initial velocity.  This was expected as 

legumain, which hydrolyzes Z-ANN-AMC, is more active at acidic pH (5-7).  While we 

only used three substrates, there were significant differences in the hydrolysis rate of 

Leu-AMC by MCF7 and NIH-3T3 cell lysates at pH 7.4.  This led us to believe that we 

might be able to detect differences in proteolytic profiles of whole cells. 

As mentioned previously, the microenvironment of solid tumors is often deprived 

of nutrients.  This microenvironment can cause stress-induced changes in protein 

expression and localization.  For example, while legumain is not usually detectable in 

cells under normal culture conditions, its expression appears to be upregulated during 

serum-starvation or when cells are implanted in vivo (4).  We hypothesized that the 

expression and activity of other proteases might also be affected by conditions such as pH 

and serum-starvation.  The extent of, as well as the initial velocity of, Ala-AMC 

hydrolysis were determined in two cell lines with and without serum at physiologic and 

acidic pH.  When comparing the extents of hydrolysis, the MCF7 breast cancer cell lines 

appeared to have the opposite reaction to serum-starvation compared to the HEK-LEG 

cells.  However, when comparing the initial velocities of hydrolysis, the two cell lines 

appeared to behave more similarly.  In order to avoid overestimating differences in 

protease activity between cells, it may therefore be best to compare the initial velocities 

of hydrolysis rather than extents of hydrolysis.   

When the extent and rates of hydrolysis of Val-, Z-AAN-, Leu-, Phe-, and Ala-

AMC were compared among three cell lines, there were significant differences in the 

extents of hydrolysis.  However, when the initial velocities of hydrolysis were compared 

there were no significant differences.  This further suggests the initial velocity of 
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hydrolysis might be the more conservative estimate of differences in protease activity.  

Based on these data, we monitored rates of hydrolysis in all future studies. 

  



172 
 

 

Figure A.1  pH has minimal effect on proteolytic profiles of cell lysates. 
HEK-293, legumain-expressing HEK-293 (HEK-LEG), MCF7, and NIH-3T3 cell pellets 
were lysed and diluted to the same protein concentration in buffers at pH 7.4 (A) and pH 
5.5 (B).  Val-AMC, Z-AAN-AMC, and Leu-AMC were incubated with cell lysates and 
fluorescence was measured over time.  Fluorescence values were converted to amount of 
AMC and plotted against time to determine the initial velocity of hydrolysis (V0, 
nmol/min).  Data were analyzed by two-way ANOVA and asterisks indicate significant 
differences (*P < 0.05). 
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Figure A.2  Serum starvation has the opposite effect on extent of Ala-AMC 
hydrolysis in MCF7 and HEK-LEG cells. 
HEK-LEG and MCF7 cells were serum-starved and media were replaced with buffer (pH 
7.4 or 5.5) just prior to adding AMC conjugates.  Fluorescence was measured over 2 hrs 
and values were converted to amount of AMC.  The percent of Ala-AMC hydrolyzed to 
AMC at 2 hrs is plotted in the graphs on the left and the initial velocity of hydrolysis (V0, 
nmol/min) is plotted in the graphs on the right.  Data were analyzed by two-way ANOVA 
and asterisks indicate statistically significant differences (*P < 0.05, **P < 0.01). 
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Figure A.3  Cells from different tissue sources have different proteolytic profiles at 
physiologic pH. 
AMC compounds were added to wells containing the same number of HEK-LEG, Caco-
2, and HepG2 cells in pH 7.4 or 5.5 buffer and fluorescence was measured over time.  
Fluorescence values were converted to amount of AMC and plotted against time to 
calculate the initial velocity of hydrolysis (V0, nmol/min).  Data were analyzed by two-
way ANOVA and asterisks indicate statistically significant differences (***P < 0.001). 
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