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The mermaids were fascinating and demonic inhabitants of an island to the West of the

Great Sea. Half women and half birds, they were said to seduce, by the irresistible charm of

their voice, the sailors who navigated those sea straits, all of whom perished, crushed against

the rocks.

Ulysses, on his journey home, plugged his companions ears with wax to prevent them from

hearing and being overwhelmed by the mermaids song. As for himself, he commanded that

he be securely tied to the mainmast so he could hear their voices without undergoing the

deadly consequences.

Orpheus instead sang a poem so soothing that it enchanted the mermaids and left them

amazed, and silent.

(Silvano Fausti)
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CHAPTER I

Introduction

The work presented in this dissertation is composed of three separate and rather inde-

pendent sections: the first one dealing with phonon polariton and plasmon phonon coupled

modes in semiconductors; the second one discussing a novel phenomenon occurring when

squeezed phonon states are excited; and the last one focused on the study and development

of high frequency diamagnetic materials.

Spontaneous Raman scattering and impulsive stimulated Raman scattering (ISRS) have

been extensively employed to study phonon modes in a wide variety of materials. For some

time it was thought that coherent phonons in absorptive materials were excited through a

mechanism (DECP) different than stimulated Raman scattering [1]. Stevens et al. [2] were

able to prove that, in both transparent and opaque materials, the generation mechanism is

ISRS. Particularly, by introducing two distinct Raman tensors (Chap. II), one for generation

and one for detection, they showed that the scattering intensities extracted from frequency

domain and time domain experiments were the same. More recently, the two Raman tensor

theory was expanded to account for the fact that in absorptive materials the force driving

coherent phonons is no longer impulsive but rather exponentially decaying with a decay

rate ΓR [3]. Up to this point, the theoretical predictions have been exclusively validated on

absorptive materials (mainly semi metals). The experiments described in the first part of

this dissertation were aimed to explore both the transparent and the opaque regime in the

same material (a semiconductor with the gap in the visible range). In addition to that, the

theoretical model was tested on vibrational modes of different symmetry (A and E) and

polarization (TO and LO). The experimental measurements displayed several anomalies,
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namely inconsistencies both in spontaneous Raman and ISRS when varying the excitation

wavelength or measuring longitudinal phonons. To make sense of the new data, another

aspect needed to be considered: the interaction of the electromagnetic field with polar lat-

tice vibrations and free carriers. In Chap. IV the new observed features were interpreted

within the framework of phonon polaritons and plasmon phonon modes. In particular, it

was shown that, when the hybrid nature of a polariton mode is taken into account, the new

results were still consistent with the ISRS and two Raman tensor theory.

Squeezed phonon states are introduced in Chap. V, highlighting similarities and differ-

ences with coherent phonon modes. The chapter focuses primarily on a novel phenomenon

associated with squeezed phonon modes and named “phonon echo”. Both a classical and

quantum mechanical analysis revealed that when a squeezed phonon state is excited in a

double pump experiment a new oscillatory signal arises at twice the time delay between the

pump beams. It should be noted that this novel phenomenon takes place in a harmonic

system, as opposed to the photon or spin echo case. Numerical simulations were provided

to confirm the validity of the theoretical predictions. The feasibility of experimental mea-

surements aimed at detecting the echoes is discussed at the end of the chapter.

The search for negative refraction and the recent developments in the metamaterial field

have motivated the interest in high frequency diamagnetism, discussed in Chap. VI. Natural

materials exhibit extremely weak diamagnetic character: the highest magnetic susceptibil-

ity is χ ≃ 10−4 (SI units) [4]. Following the work of Lewin [5], the magnetic properties of

a particular structure, a matrix of spherical particles embedded in a host material, were

investigated theoretically. Numerical simulations carried out on this particular structure

predicted an enhanced diamagnetic character around 10GHz. Samples made up of different

size copper spheres were built and measured in the microwave range using a Gaussian beam

telescope. The extracted effective parameters confirmed the theoretical estimates. The

novel metamaterial featured a magnetic susceptibility (χ ≃ 0.5) three orders of magnitude

higher than any natural material and fairly constant in the ≃ 4GHz measured range.
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CHAPTER II

Spontaneous and Impulsive Stimulated Raman Scattering by

Lattice Vibrations

The first part of this dissertation is entirely devoted to the study of lattice vibrations

and, in particular, of their interaction with coherent light. The intent of this chapter is

to remind the reader of the necessary theoretical background needed to interpret the ex-

perimental results and appreciate the significance of the conclusions reached thereafter,

especially in Chap. III.

Sec. 2.1 provides a rigorous review of the theory of lattice vibrations: the initial ap-

proach, based on classical mechanics, is successively developed into a fully quantum me-

chanical treatment of the subject. Particular attention is paid to identifying the normal

modes of vibration and to show their connection with the relevant physical quantities such

as energy and momentum. The phonon-photon interaction is discussed in Sec. 2.2 and

employed to introduce spontaneous Raman scattering. The theoretical analysis is accom-

panied by a description of the experimental details of Raman experiments, i.e. scattering

cross section and detection geometry. The last part of the chapter, Sec. 2.3, addresses the

broad topic of coherent phonons and Impulsive Stimulated Raman Scattering (ISRS): the

generation and detection processes are examined in the case of both transparent and opaque

materials. The section is concluded by a short mention of the two-Raman tensor theory [2]

and its implications for pump probe experiments.
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2.1 Lattice Vibrations

The usual physical setting to properly describe lattice vibrations is a crystal of volume

V with r atoms per unit cell, spanned by lattice vectors an. Since the atoms can depart

from their equilibrium sites, it is customary to indicate by un,j the displacement of the

jth ion in the n unit cell from its rest position. If the potential energy of the lattice at

equilibrium is U0, the change in energy due to the ions’ movement can be Taylor-expanded

in the following way:

U − U0 =
∑

j,j′

∑

n,n′

1

2
Aj,n;j′,n′un,jun′,j′ +

∑

j,j′,j′′

∑

n,n′,n′′

1

6
Bj,n;j′,n′;j′′,n′′un,jun′,j′un′′,j′′ + ...

(2.1)

As expected, the linear term in the Taylor expansion, ∝ uj,n, is missing because the equi-

librium state is an energy minimum. Since the energy of the crystal does not vary due to

a rigid translation of all the atoms, the A tensor must depend only on an − an′ and not

on an and an′ separately. The equation of motion for un,j can be deduced using standard

classical mechanics procedures [6]:

Mjüj,n = −
∑

j′

∑

n′

Aj,j′(an − an′)un′,j′ (2.2)

The general expression for uj,n can be arrived at by searching first for a harmonic solution

of the type:

uj,n = e−iωt+ik·anvj (2.3)

where vj is the displacement of the jth atom in the n = 0 cell at time t = 0. In the end,

Eq. 2.3 and its complex conjugate will be added together to ensure that the ion displacement

is a real quantity. After replacing uj,n with Eq. 2.3, Eq. 2.2 becomes:

Mjω
2vj =

∑

j′

∑

n

Aj,j′(an)e
ik·anvj′ (2.4)

Since j ranges from 1 to r and vj is a vector, Eq. 2.4 associates to each value of k a system

of 3r equations, each one related to a different phonon mode. The solutions can thus be

labeled by two indexes s = 1, 2, ...3r and k, and be written as ω(k, s). Imposing periodic
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boundary conditions [7] at the edges of the crystal (L1, L2, L3) the k vector becomes:

k =
2π

L1
n1x̂+

2π

L2
n2ŷ +

2π

L3
n3ẑ (2.5)

where n1, n2, n3 are three integer indexes. In the case of a 1D chain with only one atom

per unit cell [8], Eq. 2.4 simplifies into a more tractable expression:

Mω2 =
∑

n

A(n)eikna (2.6)

where a is the distance between adjacent atoms. When only the interaction between nearest

neighbors is taken into account, the simplest possible phonon dispersion relation is retrieved:

ω =

√

2A(0)

M

∣

∣

∣

∣

sin

(

ka

2

)∣

∣

∣

∣

(2.7)

Eq. 2.7 is plotted in Fig. 2.1-A with k confined within the first Brillouin zone (πa ≤ k ≤ π
a )

[8].

- /a

 

 

k- /a
FIRST BRILLOUIN ZONE

*

A B

 

 

k0 /a

Figure 2.1: (A) Phonon dispersion relation of a one dimensional chain with one atom per

unit cell, ω∗ =
√

2A(0)
M (B) Phonon dispersion relation of a one dimensional chain with two

atoms per unit cell (M1 and M2 with M2 > M1), ω0 =
√

A(0)( 1
M1

+ 1
M2

), ω1 =
√

A(0)
M2

,

ω2 =
√

A(0)
M1

.

Analogously, it is possible to solve Eq. 2.4 when two atoms, with masses M1 and M2

(M2 > M1), are present in the unit cell. In this case two distinct branches arise, as shown

5



in Fig. 2.1-B: an acoustic branch (ω = 0 at the center of the Brillouin zone) and an optical

branch (ω = ω0 at the center of the Brillouin zone).

The general solution of Eq. 2.2 is obtained by writing a linear combination of all possible

vibrational modes given by Eq. 2.3:

uj,n =
∑

k,s

qk,s(t)e
−iω(k,s)t+ik·anvj(k, s) (2.8)

qk,s are called normal coordinates and satisfy an equation similar to Eq. 2.2:

q̈k,s + ω2(k, s)qk,s = 0 (2.9)

In Eq. 2.8 the branch index, s, has been introduced. It is worth noting that qk,s, with the

corresponding vj(k, s), and uj,n carry the same amount of information: they just represent

displacement in different spaces (direct or reciprocal). Hence, the normal coordinates can

be adopted to express any relevant physical quantity like, for instance, kinetic and potential

energy:

T = 1
2M

(N)
∑

k,s

|q̇(k, s)|2

U − U0 = 1
2M

(N)
∑

k,s

ω(k, s)2 |q(k, s)|2
(2.10)

if M (C) is the unit cell mass and N the number of cells in the volume V , M (N) = N ·M (C)

is the total mass of the crystalline solid.

Since uj,n is a real quantity, q(k, s) satisfies:

q(−k, s) = q(k, s)∗ (2.11)

Using the so far developed formalism, the lattice vibrational problem can now be treated

in purely quantum mechanical terms, namely it can be proved [9] that q(k, s) obeys the

following commutation relationship:

[q(k, s), q(k′, s′)∗] =
~

2M (N)ω(k, s)
δk,k′δs,s′ (2.12)

It is now possible to appreciate the close similarity with the creation and annihilation
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operator (a† and a−) adopted to describe a quantum harmonic oscillator [10]. The analogy

can be brought even further realizing that, if
〈

N | represents the quantum state characterized

by the presence of N phonons, then:

〈

N |Q(k, s)|N + 1
〉

=
〈

N + 1|Q(k, s)∗|N
〉

=

√

~

2M (N)ω(k, s)
(N + 1) (2.13)

All the results so far achieved can thus be rephrased in the quantum mechanical formalism

using the new quantum operators. An example is that of the total energy of the crystal,

T + U , given by Eq. 2.10:

E =
∑

k

∑

s

[

N(k, s) +
1

2

]

~ω(k, s) + U0 (2.14)

2.2 Spontaneous Raman Scattering

Lattice vibrations in a crystal can be studied by different techniques including but

not limited to Raman scattering, Infrared Spectroscopy, effective only to investigate infrared

active modes and Neutron Scattering. Neutrons have energies of a few meV and, as opposed

to electrons, are uncharged and can consequently penetrate deeply into most materials. As

a result, neutron scattering is a valuable probe to study low energy, bulk excitations like

lattice vibrations. In fact, it is widely employed to retrieve phonon dispersion relations.

Since the work carried on in this dissertation relies heavily on Raman scattering, it will be

useful to review the fundamental cornerstones of Raman spectroscopy, particularly when

applied to crystal lattices.

In this spirit, the goal of this brief section is to utilize the mathematical tools developed

in the previous section to describe the process of light scattering by phonons. This will

be accomplished in two steps: first the calculation of the Raman tensor and secondly the

definition of the Raman scattering cross section.

2.2.1 The Raman tensor

Since phonons have much lower energy than infrared and visible photons, the interaction

of light with lattice vibrations has to be mediated by a third particle: free carriers (electrons
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and holes). This ultimately implies that the scattering process takes place through three

different steps. The Feynman diagram in Fig. 2.2-B illustrates these steps for the case of

Stokes scattering (see section 2.2.2): the incident photon creates an electron (or hole), the

electron (or hole) scatters and generates/annihilates a phonon, the electron (or hole) emits

the outgoing photon. Momentum (Fig. 2.2-A) and energy (Fig. 2.2-B) are conserved:

ωS = ωI − Ω

kS = kI − q
(2.15)

the subscripts S and I stand for “incident” and “scattered”, Ω and q are the phonon

frequency and momentum.

kIN

kS q

e-ℏωI ℏωS

ℏΩ

A B

Figure 2.2: Raman scattering: conservation of momentum (A) and conservation of energy
(B), ωI (kI) and ωS (kS) are the incident and scattered electric field frequencies (momenta),
Ω (q) is the phonon field frequency (momentum).

The physical variable that most properly characterizes a scattering process is the scattering

probability: the probability, usually per unit time, that a photon with energy ~ωI scatters

into a photon with energy ~ωS. This quantity can be calculated using the total Hamiltonian

of the lattice:

H = H0 +HER +HEL (2.16)

Here, H0 is the Hamiltonian of the unperturbed system:

H0 = HL +HE = U0 +
∑

k

∑

s

[

N(k, s) +
1

2

]

~ω(k, s) +
∑

α,k

ǫα,kc
†
α,kcα,k (2.17)

which includes the phonon energy, HL, given by Eq. 2.14 and the electron energy, HE. ǫα,k
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is the energy of an electron located in the α band and having momentum k, cα,k and c†α,k

are the electron creation and annihilation operators. On the other hand, HER and HEL are

the electron-radiation and the electron-phonon Hamiltonian respectively. After introducing

the creation (a†
k
) and annihilation (a−

k
) operators for photons with wave vector k:

〈

nk − 1|a−k |nk

〉

=
〈

nk|a†k|nk − 1
〉

=
√
nk (2.18)

where nk indicates the number of photons, it is possible [11] to derive the electron-radiation

Hamiltonian:

HER =
e

m

∑

j

∑

k

(

2π~

ǫV ωk

)

1

2
[a−

k
eik·rj + a†

k
e−ik·rj ]ǫk · pj (2.19)

where pj and rj are the electron momentum and position, ǫ is the dielectric constant, V

the volume of the crystal and ǫk the polarization of the photon with wave vector k. The

matrix elements of HER are non zero only when the initial (|α >) and final (|β >) state

differ by a single electron or hole; in both cases the momentum matrix element is written

like pαβ =< α|pj |β >.

The electron-optical phonon interaction can be easily described in the simple case of a

crystal with two atoms, with masses M1 and M2, per unit cell. The relative displacement

at position R of the two ions produced by a phonon belonging to the s branch and with

wave vector q can be written, analogously to Eq. 2.8, as [12]:

U(R) =

(

~

2MNωsq

)
1
2

vsqe
iq·R(b†s−q + b−sq) (2.20)

where b†sq and b−sq are related to Q∗(s,q) and Q(s,q) by:

b†sq = q∗(q, s)
√

2M (N) ω(q,s)
~

b−sq = q(q, s)

√

2M (N) ω(q,s)
~

(2.21)

and M = M1M2
M1+M2

is the effective mass of the unit cell. In [13] it is shown that the matrix

elements of the electron phonon interaction are a function of the deformation potential

which accounts for the change in the lattice energy produced by an excited phonon q,
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Ξ ≡ ∂H
∂q :

〈

α|HEL|β
〉

= Ξi
αβ

Ūi

a
(2.22)

where Ūi is just Eq. 2.20 without the exponential term and a is the lattice constant.

The probability that, within time T , a photon (ω1,k1) will be scattered into a photon

(ω2,k2) generating a phonon (Ω,q) can be computed employing time dependent perturba-

tion theory [12, 14]:

W (T ) =
4π3Te4

~3m4ǫ2a2MN

∑

q,k2

n1(n0 + 1)

Ωω1ω2

∣

∣vi0qR
i
12(−ω1, ω2,Ω)

∣

∣

2

×(2π)3

V
δ(k1 − q− k2) δ(ω1 − Ω− ω2)(2.23)

where n1 and n0 represent the number of photons and phonons present. Ri
12 is given by

summing over all possible electronic states α and β:

Ri
12(−ω1, ω2,Ω) =

1

V

∑

αβ

{

p20βp
1
βαΞ

i
α0

(ωβ +Ω− ω1)(ωα +Ω)
+

p10βp
2
βαΞ

i
α0

(ωβ +Ω+ ω2)(ωα +Ω)

+
p20βΞ

i
βαp

1
α0

(ωβ +Ω− ω1)(ωα − ω1)
+

p10βΞ
i
βαp

2
α0

(ωβ +Ω+ ω2)(ωα + ω2)

+
Ξi
0βp

2
βαp

1
α0

(ωβ + ω2 − ω1)(ωα − ω1)
+

Ξi
0βp

1
βαp

2
α0

(ωβ + ω2 − ω1)(ωα + ω1)

}

(2.24)

The superscripts 1 and 2 on the elements of the p matrix indicate that the component of p

along the direction of polarization of ω1 or ω2 has to be taken. Ri
12 is the “Raman tensor”

and its subscripts refer to the polarization of the incident and scattered photon while the

signs in front of the frequencies in parenthesis (left hand side of Eq. 2.24) are chosen so that

a positive frequency corresponds to creation and a negative frequency to destruction of the

corresponding photon or phonon. Each of the six terms making up Ri
12 can give rise to a

resonance in the scattering process [15, 16]; in practice, this happens, for example, when

the energy of the incident photon matches the material band gap. It is also important to

notice that in Eq. 2.23 the two delta functions guarantee the conservation of momentum

and energy as depicted in Fig. 2.2. As suggested by the name, R is a second-order tensor

whose structure is subject to the crystal symmetry transformations. Using group theory

[17], it is possible to construct the tensors for the modes (irreducible representations) of all
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existing point groups [18]. It turns out that the Raman tensor can be alternatively defined

as Ri
mn = ∂χmn

∂qi
[19], where χmn is the electric susceptibility and qi = qk,svi(k, s), following

Eq. 2.8 notation.

2.2.2 Scattering cross section

IS

V

dΩ

ϕ

dϴ

φ

υII
II

IS

Figure 2.3: Raman scattering experiment, from [20].

The Raman tensor defined in Eq. 2.24 is usually included into another physical quantity,

the Raman scattering cross section, which is particularly appropriate to characterize Raman

scattering from an experimental viewpoint. In order to introduce this new function, it is

necessary to briefly outline the main features of a standard Raman scattering experiment,

see Fig. 2.3. The incident laser light with intensity II is shined against a sample of volume

V . Only a fraction of it, II , penetrates the sample and excites a smaller volume υ so

that part of it, IS , is scattered by an angle φ into a solid angle dΩ. The scattered light

is then transmitted outside the sample, IS , and collected by a lens which is at an angle

ϕ from the incident light direction and covers the solid angle dΘ. In general, it is rather
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involved to calculate the relationship between II and II , IS and IS , φ and ϕ. Hence, it is

usually preferable to treat the scattering experiment “inside” the sample in order to avoid

the intricacies caused by taking refraction into account.

The traditional approach to identify a particular scattering geometry is through the

use of Porto notation [21]: x1(y1y2)x2. x1 and x2 indicate respectively the incident and

scattered beam propagation direction, whereas y1 and y2 label the incident and scattered

beam electric field polarization with respect to crystal axes. This compact notation fully

defines a Raman scattering experiment and allows using the Raman tensors to calculate the

selection rules of a particular mode.

ELASTIC

ANTI-STOKES

ASS

 

 

 

I S

I

STOKES

Figure 2.4: Raman scattering spectrum, from [20].

A typical Raman spectrum looks like Fig. 2.4; the different features present can be

grouped into three different categories: elastic scattering at the same frequency, ωI , as the

incident laser; Stokes scattering at a lower frequency, ωS, than the incident laser frequency;

and anti-Stokes scattering a higher frequency, ωAS , than the incident laser frequency. Stokes

scattering corresponds to the excitation of a new particle (in this work usually a phonon)

with consequent loss of energy by the incident light and has already been discussed in

the previous section, see in particular Eq. 2.15. On the other hand, anti-Stokes scattering

corresponds to the annihilation of an existing particle, so that the scattered radiation has
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a higher frequency than the incident radiation. In analogy with Eq. 2.15:

ωAS = ωI +Ω

kAS = kI + q
(2.25)

where again Ω is the frequency of the absorbed phonon.

Within the Raman scattering experiment context so far illustrated, the concept of a

scattering cross section can now be introduced:

σ =
Power Removed

II
(2.26)

defined as the rate at which energy is removed from the incident beam divided by the

incident intensity. The rate of scattering into a solid angle dΩ with scattering frequency

between ωS and ωS + dωS is then given by II
d2σ

dΩdωS
dΩdωS .

d2σ
dΩdωS

quantifies the scattering

efficiency of a particular excitation inside the sample and can be exactly derived following

a standard electromagnetic approach [20] and invoking the fluctuation-dissipation theorem

[22]. In the Stokes case, the differential scattering cross section is:

d2σ

dΩdωS
=

~ωIω
3
SυV nS|ǫ0xiSx

j
IRij(−ωI , ωS ,Ω)|2(n(Ω) + 1)

(4πǫ0)22c4nIΩ
gΩ(ωS) (2.27)

where nI and nS are refractive index of the sample at the incident and scattered light

frequency, Rij(−ωI , ωS ,Ω) is the Raman tensor defined in Eq. 2.24 and xiI and xjS are the

ith and jth component of unit vectors parallel to the incident and scattered field. Eq. 2.27 is

valid solely for a non-degenerate phonon mode, hence the omission of the superscript (Rl)

present in Eq. 2.24. In the general case, Rij should be replaced by
∑

l

vls,κR
l
ij, see Eq. 2.23.

The shape of the Raman line, in the specific case of scattering by a phonon, can be described

by a Lorentzian [20]:

gΩ(ω) =
Γ/2π

(Ω− ω)2 + (Γ/2)2
(2.28)

where Γ is the phonon decay rate. n(Ω) is the Bose-Einstein factor:

n(Ω) =
1

e~Ω/kBT − 1
(2.29)
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and is what is mainly responsible for the d2σ
dΩdωS

dependence on temperature. The scattering

cross section remains unchanged in the case of anti-Stokes scattering except for the n(Ω)+1

term which is replaced by n(Ω). The ratio of the anti-Stokes and Stokes cross sections for

the same mode is given by:

n(Ω)

n(Ω) + 1
= e−~Ω/kBT (2.30)

It is obvious that Stokes scattering is always dominant except at very high temperature

when the two phenomena have comparable strength. For this reason, Stokes scattering has

always been preferred to anti-Stokes in all the experiments discussed later on.

2.3 Impulsive Stimulated Raman Scattering (ISRS)

k1

k2q

ω1 ω2

Ω

B

C

Figure 2.5: (A) Temporal profile of the phonon amplitude, q(t), in a pump probe experi-
ment (B) Momentum conservation (C) Energy conservation. (k1, ω1) and (k2, ω2) are the
“incident” and “scattered” field (both part of the pump pulse), (q,Ω) is the phonon field.

Spontaneous Raman scattering is fundamentally an incoherent process: there is no

correlation between the phase of each quantum of vibration and the generated phonons

are emitted in all directions. The consequent difficulty in the collection of the scattered

radiation has substantial repercussions on the signal to noise ratio which is sometimes

already jeopardized by the presence of strong interferences (elastic scattering from surface

roughness or fluorescence in the sample).
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Similarly to what happens in the stimulated emission of photons process in a laser,

phonons can also be excited coherently. Since two beams, with wave vector k1 and k2,

are involved in the generation process of a coherent phonon, its wave vector is uniquely

determined: q = k1 − k2. Consequently, the phonon amplitude, q(t), oscillates with a

very well defined phase. Coherent Raman spectroscopy takes care of a lot of the issues

affecting spontaneous Raman: the signal achieved is orders of magnitudes higher than in

the spontaneous Raman case and can be easily detected and, if needed, spatially filtered.

Coherent Raman scattering is implemented in several different experimental geometries

whose names and features are given, for example, in Levenson’s review paper [23]. With

the advent of pulsed lasers a new technique, Impulsive Stimulated Raman Scattering, has

imposed itself on the scene of Raman spectroscopy thanks to the enormous peak power

achievable and the consequent potential for even higher intensity signals. Fig. 2.5 portrays

an intuitive picture of a typical ISRS experiment: the pump beam, whose pulse width is

significantly shorter than the phonon frequency, excites a coherent phonon, q(t), which is

then detected by the probe beam, delayed by a time tD with respect to the pump. In this

way, adjusting tD by means of a translation stage, it is possible to follow the time evolution

of the phonon amplitude. The rest of the chapter substantiates this qualitative description

with a more rigorous analysis culminating in the expression for the differential transmission

or reflection.

2.3.1 ISRS in transparent materials

In transparent materials coherent phonons give rise to a bulk contribution and to bound-

ary effects as well; moreover, given the absence of absorption inside the sample, it is possible

to detect the phonon field measuring either the transmitted or the reflected probe. Thus,

ISRS will be discussed first in the case of transparent materials. The results obtained will

be then extended to the case of absorbing materials, where only the boundary effects on

reflection have to be taken into account.
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2.3.1.1 Generation of coherent phonons

To describe the generation of coherent phonons process, two coupled equations have to

be solved: the lattice vibration normal mode equation (see Eq. 2.9) and Maxwell’s equation

for the pump electric field. Including damping in Eq. 2.9 and assuming that the incident

and scattered field propagate along z and are linearly polarized along y, the two equations

are given by [24]:

d2q
dt2

+ 2γ dq
dt +Ω2q = 1

2RE2

d2E
dz2

− n2

c2
d2E
dt2

= 4π
c2
R d2

dt2
(qE)

(2.31)

E is the electric field and Ω is just one of the ω(k, s) defined by Eq. 2.4 evaluated at the

center of the Brillouin zone, i.e. k = 0. Since both the incident and scattered electric field

are polarized along y, R in Eq. 2.31 is just R22 as defined in Eq. 2.24. The two equations

in 2.31 are usually solved in the case of a Gaussian-like laser pulse:

EL = Ae(t−zn/c)2/2τ2Lcos[ωL(t− zn/c)] (2.32)

where ωL is the laser frequency and τL its temporal width. Under the assumption of

undepleted electric field, i.e. |EL(t)| constant, the phonon amplitude can be written as:

q(z > 0, t > 0) = Q0e
−γ(t−zn/c)sin[Ω(t− zn/c)] (2.33)

where Q0 is given by:

Q0 =

√
π

4Ω
RA2τLe

−Ω2τ2
L
/4 =

2πI

Ωnc
Re−Ω2τ2

L
/4 (2.34)

I is, in this case, the pump beam intensity:

I =
ncA2τL
8
√
π

(2.35)

Eq. 2.33 and Eq. 2.34 highlight some of the most important aspects shared by any pump

probe experiment. The phonon field oscillates like a sine. As will be discussed later, this is

the expected response in the case of impulsive excitation. The phonon amplitude is a linear
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function of the pump intensity (I): the linear regime is exited only whenever the pump

power is so high to drive some kind of higher order process. q(t) depends exponentially on

(Ω τL)
2, therefore the laser pulse width has a very pronounced impact on the amplitude of

the coherent phonon oscillations.

2.3.1.2 Detection of coherent phonons: bulk contribution

In order to detect the coherent phonons launched by the pump, it is necessary to probe

the sample with another pulsed laser beam. This beam tracks the impact of the lattice

vibrations on the sample optical parameters at different instants subsequent to the pump

arrival (normally called time zero). The change induced in the probe intensity and spectrum

can be quantitatively calculated solving again Maxwell’s equations in the presence of a

coherent phonon oscillation. If tD is the time delay between pump and probe beam (see

Fig. 2.5), it is convenient to rewrite Eq. 2.33 as:

q(t′) = Q′
0e

−γt′sin[Ω(t′ + tD)] (2.36)

where t′ = t − zn/c, Q′
0 = Q0e

−γtD and the pump beam is assumed to hit the sample at

time t = −tD. The differential equation governing the probe electric field is [24]:

∂2E

∂z2
− 2n

c

∂2E

∂z∂t′
=

4π

c2
R

∂2

∂t′2
[q(t′)EL(t

′)] (2.37)

As in Eq. 2.31, EL is the incident pulse whose temporal profile is defined in Eq. 2.32. For

a sample of thickness l, the Fourier Transform of the solution of Eq. 2.37 reads:

E(z, ω) = EL(ω) +Bω[eiΩtDEL(ω +Ω)− e−iΩtDEL(ω − Ω)] (2.38)

with B = π
cnR lQ′

0. It is important to notice that the transmitted electric field contains

three different components, see Fig. 2.6-A: the unperturbed probe, EL(ω), and two out of

phase terms shifted in frequency by ±Ω with respect to EL(ω). It is immediate to recognize

in these extra components the Stokes and anti-Stokes fields already discussed in Sec. 2.2.2.

Since photo detectors are usually only sensitive to the field power, it is necessary to calculate
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the spectrum of the transmitted field intensity:

IT (ω) ≃ ae−(ω−ωL)
2τ2

L + 2aBωe−Ω2τ2
L
/4cos(ΩtD)

{

e−[ω−(ωL−Ω/2)]2τ2
L − e−[ω−(ωL+Ω/2)]2τ2

L

}

(2.39)

where a = ncA2τ2L/16π. Eq. 2.39 is graphed in Fig. 2.6-B together with the intensity of the

incident probe field, I0(ω) =
nc
4π |EL(ω)|2.
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Figure 2.6: (A) Different spectral components present in the probe transmitted electric field
(see Eq. 2.38): unperturbed probe (black), Stokes term (shifted by −Ω), anti-Stokes term
(shifted by Ω) (B) Spectrum of the incident and transmitted probe intensity: the outgoing
pulse is distorted and shifted to lower or higher frequencies depending on the value of tD.
σ is the FWHM of the laser spectrum.

When cos(ω0tD) > 0, the phonon field shifts in frequency the probe spectrum by adding low

frequency components (Stokes) and subtracting high frequency components (anti-Stokes),

in accordance with the expression within brackets in Eq. 2.39. Since the shift is in the

opposite direction when cos(ω0tD) < 0, the red Gaussian in Fig. 2.6-B oscillates back and

forth around the black one at frequency Ω. If I0 is the unperturbed transmitted probe

intensity, the differential transmitted probe ∆IT
I0

= IT−I0
I0

, which is the physical quantity

measured in a pump probe experiment, can be obtained subtracting I(ω) from Eq. 2.39 and

integrating in dω:

∆IT
I0

= −l Ipump e
−Ω2τ2L/2 e−γtD cos(ΩtD)

(

2π

cn

)2

R2 (2.40)
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At this point, it ought to be noticed that when the intensity is measured by a photon

counting detector, IT and I0, obtained integrating the spectrum divided by ~ω, do not

differ from each other: the presence of a coherent phonon does not modify the number of

photons but only their frequency. This poses a serious experimental issue since it would

not be possible to measure effectively ∆IT employing a semiconductor photo diode or a

PMT [19, 25]. To overcome this difficulty it is common practice to spectrally resolve the

probe, i.e. to band pass filter the transmitted probe so that the photo detector integration

is performed only in the range where the difference between the number of transmitted and

unperturbed probe photons is the largest.

2.3.1.3 Detection of coherent phonons: Boundary effects

The probe beam can be affected by the presence of a coherent phonon in a way different

than the one described by Eq. 2.37. Whenever light encounters an interface between media

with different refractive index, it experiences reflection and refraction (or transmission).

Since both phenomena depend on the value of the refractive index, any physical process

affecting n will automatically leave a mark on the reflected and transmitted field. The

relationship between a phonon, q(t), and the dielectric constant, ǫ, in general can be written,

in first order, as:

ǫ = ǫ0 + 4π
∂χ

∂q
q(t) + ... (2.41)

where χ is the electrical susceptibility. As pointed out at the end of Sec. 2.2, it is possible

to write:

∂χ

∂q
= R =

∑

ij

eiejRij (2.42)

where ei and ej are the direction cosines of the probe field and Rij is defined in Eq. 2.24. Re-

calling that n(ω) =
√

ǫ(ω) and using the Fresnel coefficients for transmission and reflection

in the case of normal incidence [26], leads to:

∆IR
I0

=
−4π

n0(n2
0 − 1)

RQ0 e
−γtD sin(ΩtD) (2.43)
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for reflection and:

∆IT
I0

=
4π(n0 − 1)

n2
0(n0 + 1)

RQ0 e
−γtD sin(ΩtD) (2.44)

for transmission. Eq. 2.40 is different from Eq. 2.43 and Eq. 2.44 in two respects: the

length of the sample l does not enter the expression of the differential transmission and

reflection when the boundary effects are considered; the bulk signal has a sine dependence

while the boundary one has a cosine dependence. This latter aspect has been discussed and

experimentally verified in the case of LaAlO3 by Liu et al. [27].

2.3.2 The two Raman tensors

The generation equation, Eq. 2.31, and the detection equation, Eq. 2.37, contain the

Raman tensor which, so far, has been assumed to be the same in both cases. However, a

more careful examination of the two processes [2] reveals that the tensor involved in the

equation of motion driving term (right hand side of Eq. 2.31) is profoundly different from

the one that accounts for the impact of the lattice vibration on the dielectric constant, see

Eq. 2.41. In 2002 Stevens and coworkers published a comprehensive work that analyzed

in detail the nature of the two tensors and provided an analytical expression for both of

them. The final result will be reported here in the case of a two band process, assuming a

constant deformation potential (Ξmn = Ξ0) and retaining only the most resonant terms in

the fractions in Eq. 2.24. The non zero elements of the generation Raman tensor are:

πR
ij ≈

Ξ0

4π~

[

dRe(ǫ)

dω
+ 2i

Im(ǫ)

Ω

]

(2.45)

while the detection Raman tensor components are:

χR
ij ≈

Ξ0

4π~

[

dRe(ǫ)

dω
+ i

dIm(ǫ)

dω

]

(2.46)

Hence R2 in Eq. 2.40, Eq. 2.43 and Eq. 2.44 is actually:

R2 =





∑

ij

eiπ
R
ijej



 ·





∑

ij

ēiχ
R
ij ēj



 (2.47)
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where ei and ēi are respectively the pump and probe direction cosines. The distinction

between the two Raman tensors manifests itself almost exclusively in the case of absorbing

materials, Im(ǫ) >> Re(ǫ), when χR
ij ∝ dIm(ǫ)

dω , while πR
ij ∝ Im(ǫ)

Ω . When there is no

absorption, i.e., when the laser frequency is below the material band gap in the case of

semiconductors, χR and πR are equal and coincide with the Raman tensor defined in Eq. 2.24

and Eq. 2.27. Hence, in transparent materials spontaneous and stimulated Raman scattering

are governed by the same tensor.

2.3.3 ISRS in opaque materials

In Eq. 2.31 the driving term, F (t), has been treated as a replica of the electric field

intensity, F (t) ∝ |E|2. Yet, this is not always the case as can be seen looking at the

expression of the driving force [2, 28]:

F (t) ∝
∑

kl

+∞
∫

−∞

+∞
∫

−∞

e−iΩtEl(ω)π
R
kl E

∗
k(ω − Ω)dωdΩ (2.48)

Adopting the simplified form for πR
kl reported in Eq. 2.45, it is instructive to calculate

the temporal profile of F (t) in the two different conditions so far considered: transparent

material (πR
kl ∝

dRe(ǫ)
dω ) and absorbing material (πR

kl ∝
Im(ǫ)
Ω ). Assuming for simplicity a

delta-like field intensity, in the former case F (t) ∝ |E(t)|2 and thus the force exhibits an

impulsive character, in the latter F (t) ∝
∫ t
−∞|E(t′)|2 dt′ and the force behaves more like a

step function, whence the term “displacive”. The time evolution of the phonon amplitude

can be computed in the case of displacive excitation, similarly to what done for the impulsive

case, see Eq. 2.33. If the right hand side of Eq. 2.33 is replaced by:

F (t) = F0Θ(t) (2.49)

where Θ(t) is the Heaviside step function and F0 is a coefficient that depends on πR
kl, q(t)

becomes:

q(t) =
F0

Ω2 + γ2
− F0e

−γtcos(Ωt+ ϕ)

Ω
√

Ω2 + γ2
(2.50)
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with

ϕ = −atan
( γ

Ω

)

(2.51)

Eq. 2.50 clearly shows that in absorptive materials q(t) exhibits a predominant cosine de-

pendence (if Ω >> γ) as opposed to the pure sine present in Eq. 2.33. A step like driving

force generates also a DC term which physically corresponds to a rigid displacement of all

the lattice ions from their equilibrium position. Moreover, the oscillatory part in Eq. 2.50

depends on 1
Ω2 , while in Eq. 2.33 is proportional to 1

Ω

Although it may seem that Eq. 2.48 is encompassing all the conceivable scenarios, it has

recently been shown [3] that, in the displacive excitation case, it is necessary to contemplate

another possibility: a decay in the step-like force exciting the lattice vibrations. It is in

fact natural to expect that, even in opaque materials, the driving term gradually vanishes,

concomitantly for instance with the recombination of the excited carriers generated in the

conduction and valence band. Introducing a new decaying constant (ΓR), F (t) can be

written as:

F (t) = F0e
−ΓRtΘ(t) (2.52)

Following the same procedure that led to Eq. 2.50, a new expression for q(t) is found:

q(t) =
F0e

−ΓRt

Ω2 + (ΓR − γ)2
− F0e

−γtcos(Ωt+ ϕ)

Ω
√

Ω2 + (ΓR − γ)2
(2.53)

with

ϕ = atan

(

ΓR − γ

Ω

)

(2.54)

Eq. 2.50 and Eq. 2.53 are very similar but not identical: the presence of a non zero decay ΓR

affects both the amplitude and the phase of the phonon mode. Performing both stimulated

and spontaneous Raman scattering on the same material, it is possible to extract experi-

mentally the value of the decaying constant for a specific phonon mode and to identify its

connections with the semiconductor properties and the particular vibrational mode group

symmetries [3].
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CHAPTER III

Experimental Procedures

Despite the involved concepts underlying the coherent phonon theory introduced in

Chap. II and the intricacies of the data analysis and interpretation, the greatest hindrance

to the completion of this dissertation turned out to be the series of experimental challenges

faced in the lab and, sometimes, only partially overcome. This chapter is aimed at intro-

ducing the optical equipment and the principal techniques adopted during the course of the

experiments with a special emphasis on their impact on the collected data quality. Since

the laser sources, both pulsed and CW, have been amply discussed elsewhere [29, 30], they

will not be described here but just mentioned in passing whenever needed in the context of

the different topics. The chapter is structured to follow the laser path through a standard

pump probe setup: the beam, loaded with different kinds of noise (Sec. 3.1), undergoes

phase or amplitude modulation (Sec. 3.4), is focused onto the sample, transmitted through

or reflected by it (Sec. 3.5), collected by a photo detector (Sec. 3.2) and finally amplified

and filtered by a lock-in amplifier (Sec. 3.3). The last section (Sec. 3.6) is dedicated to

another major experimental issue in ultrafast optics: pulse width measurement techniques.

3.1 Noise

The most established index for evaluating the reliability of any experimental measure-

ment is probably the signal to noise ratio (SNR), a thorough review of SNR employment

in various scientific fields can be found, for instance, in [31]. When the SNR falls below a

certain threshold it is no longer possible to meaningfully analyze the data collected or to

fit it satisfactorily with an appropriate mathematical function. The signal intensity often
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times depends on parameters that are not fully controllable: sample properties (thickness,

purity, defect concentration, etc.) and intrinsic limitations of the experimental equipment

(e.g. laser bandwidth and fluence). It is thus natural, when attempting to optimize the

SNR, to mainly try to reduce the noise. Minimizing disturbances is a far from trivial task

and requires an accurate knowledge of the sources to which the noise can be ascribed.

This first section addresses therefore the issue of noise reduction in optical measurements

presenting first a characterization of the noise spectrum and successively outlining all the

feasible strategies adopted to improve the SNR.

3.1.1 Noise spectrum

The noise present in optical measurements can almost always be attributed to three

sources:

• mechanical noise

• laser noise

• electronic noise

Mechanical noise is directly related to any vibration that can couple to the optical table

and potentially trigger one or multiple resonances. As can be observed in Fig. 3.1, the

resonances are relatively narrow band and are confined to a very low frequency range (<

1kHz): attention should consequently be paid, when choosing the reference frequency in

any heterodyne detection scheme, to avoid exciting any of them. Laser noise is a fairly

complicated phenomenon and to be properly explained would require a long discussion

which is beyond the scope of this dissertation. Oversimplifying, it can be broken down into

amplitude noise (fluctuations in the power of the laser beam), phase noise (instability in

the laser line frequency location) and, as in the case of mode-locked lasers, timing jitter, i.e.

random variation in the time separation of the laser pulses. The primary remedy adopted to

mitigate amplitude noise is to resort, whenever possible, to balanced detection techniques.

Before directing the laser to the sample under test the beam can be split into two components

of equal power, one is focused onto the sample and then steered to a photo diode, the other

one is sent directly to a second photo diode with the same responsivity: if the outputs of
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Figure 3.1: Compliance (displacement of a loaded unit per unit load) for the Newport 2000
Optical Table, from [32].

the two diodes are subtracted electronically the laser noise features shared by both beams

are canceled out. In order to test the effectiveness of the just described method the noise

spectrum of a Coherent Regenerative Amplifier (RegA) was recorded through a HP3561A

Signal Analyzer. A ≈ 5mW beam centered at 800nm was split into two beams: one was

transmitted through a 5mm thick KTaO3 sample and then directed to the “signal” port of

a balanced silicon photo detector, while the other was sent first through a neutral density

filter, necessary to zero the photo detector output voltage, and then to the “reference” port

of the detector. A sample was included in this test setup to gain a better insight into what

the noise in a realistic experiment looks like. The noise spectral density in the balanced and

unbalanced configuration was measured by the Signal Analyzer connected to the output

port of the detector (see Fig. 3.2). The benefit of using a balanced detection scheme is

quite evident and results in about one order of magnitude reduction of the noise floor over

the entire frequency range measured. It is curious to notice how the balanced spectrum in

Fig. 3.2 is not simply an attenuated duplicate of the unbalanced case. The new features,

clearly noticeable, are most likely due to the sample that, as noted above, is itself a source

of noise. Along this line, it should be pointed out now that the choice of some of the noise
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controlling settings (integration time, number of average scans, dynamic reserve) has always

been very dependent on the specific sample under test.
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Figure 3.2: Noise spectral density in balanced and unbalanced detection.

The noise arising from the electronic devices making up our detection setup is the last one

to be addressed. In the noise spectrum shown in Fig. 3.3 three different components can be

identified: flicker or 1/f noise, dominant at low frequencies; white noise kicking up once the

1/f noise fades; and the power line harmonics at integer multiples of 60Hz [33]. The 1/f

noise is in great part attributable to the laser and can be, at least partially, reduced through

balanced detection (see Fig. 3.2). In a passive circuit the electronic noise can usually be

classified into two categories: shot noise (or Schottky noise) and thermal noise (or Johnson

noise). Shot noise is due to the randomness in the number of carriers that flow through a

photodiode p-n junction and is characterized by the following current spectral density [34]:

SI = 2qI = 2q(R · P ) (3.1)

here q is the electronic charge while I is the diode current, i.e. the product of the diode

responsivity (R) and the incident power (P ).
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Figure 3.3: Noise spectrum of the Coherent Regenerative Amplifier.

Thermal noise, on the other hand, is caused by the thermal fluctuations of carriers inside a

conductor and is defined, for a resistor of value R, by the following current spectral density:

ST =
4kBT

R
(3.2)

kB is the Boltzmann constant, T the temperature in degrees Kelvin. There is a fundamental

difference in the two power densities just introduced: the shot noise is directly affected by

the signal power (I), while the thermal noise is just an intrinsic property of a specific

electronic component. In order to develop an effective noise reduction strategy, it is key

to determine what is the predominant nature of the electronic noise and this is easily

accomplished studying the spectral density dependence on the laser intensity. In Fig. 3.4

the power density at 800Hz (far away from the 1/f region and from any of the power line

harmonics) is shown for five different values of the laser power in a very simple case: resistor

(10kΩ) and silicon photo diode (see Fig. 3.5-A). As the incoming beam intensity changes

the noise power is neither constant (consistent with Eq. 3.2) nor is it a linear function of

the laser power (in accordance with Eq. 3.1). The experimental data are then affected

conjunctively by thermal and shot noise and hence both of them have to be taken into
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account.
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Figure 3.4: Noise Power Density dependence on the laser beam power.

3.2 Detector

Getting acquainted with the noise features allows us to define the guidelines followed

when building the photo detectors used in our experiments. Since the photo diodes were

always operated in current mode, from a circuit viewpoint our detectors functioned as

current to voltage converters, i.e. they acted like a resistor. Fig. 3.5-A shows the most

basic type of this kind of detector: a photodiode in parallel with a resistor of value R. The

resistor value was chosen to minimize the SNR, computed with the aid of the noise equivalent

circuit shown in Fig. 3.5-B, where IS is the current generated by the photo diode, IN the

shot noise current density (see Eq. 3.1) and IR = 4kBT/R is the thermal noise produced

by the resistor. The SNR can be written by gathering all the different contributions:

SNR =
I2S

(2qIS + 4kBT/R) ∗∆f
(3.3)
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where ∆f is the bandwidth of the circuit.

R
hν

(A)

R
IS IN IR

(B)

Figure 3.5: (A) Passive current to voltage converter. (B) Noise equivalent circuit.

According to Eq. 3.3 the SNR can be boosted both by increasing IS and making R larger.

As already noted in the previous section, IS is proportional to the laser power which is

limited by the damage threshold of the samples under test or by the specific nature of the

experiment performed (too much power can, for instance, drive a phonon mode out the

linearity range, see Chap. II). In general, provided that these limits are not exceeded, it

is always a good policy to use as much power as possible. There are limitations on the

maximum value of R as well since, if the voltage drop across the resistor gets too high,

the diode will start working in forward mode and consequently VOUT will no longer be

linearly related to the incident power [35]. To optimize the SNR within the just mentioned

constraints two different designs were developed. The first kind of detector, see Fig. 3.6-A,

was assembled employing only passive elements: two silicon PIN photo diodes, FDS100,

purchased from Thorlabs [36] were connected back to back and the difference current was

injected into a 9.2kΩ resistor. The FDS100 featured the largest sensor area in a TO-5 can

and granted a ≃ 0.5A/W responsivity at 800nm. The chosen resistor value extended the

detector linear range to about 400mV so that a reasonable compromise between gain and

linearity was achieved. Since only passive components were employed in the scheme shown

in Fig 3.6-A, this circuit turned out to be practically noise free and hence it was always the

preferred choice whenever dealing with a signal surrounded by a strong noise background.

It worked especially well when operated in a fully balanced configuration: zero average
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voltage across the resistor.
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Figure 3.6: (A) Passive balanced detector (B) Transimpedance amplifier.

In order to improve even further the SNR without running up against the non linearity

issue, a transimpedance amplifier [37] was used. Fig 3.6-B shows the standard layout of

this circuit: two photo diodes (S6775 from Hamamatsu) were connected to a virtual ground

pin (the negative OpAmp pin) so that the change in the voltage across R2 did not affect the

diode voltage bias. A TLO82 Dual BiFet OpAmp was used as a gain stage: this amplifier

has a JFET (rather than a MOSFET) input stage and thus a better performance in terms

of noise. The OpAmp was internally compensated and differentially biased through a power

supply (±9V). To gain some extra flexibility, a 2Ω − 2kΩ potentiometer was used in place

of R2. Irrespective of the value of the feedback resistor the high Gain Bandwidth Product

(GBWP) of the OpAmp (4MHz) guaranteed a large enough bandwidth to handle any kind

of audio frequency modulation. The circuit in Fig. 3.6-B suffered from a higher noise floor

than its passive counterpart due to the presence of the OpAmp, but could adapt to different

signal intensity levels thanks to the variable gain and maintained an excellent linearity even

when only one photodiode was illuminated.

3.3 Lock in amplifier

Detection constitutes only the first stage in the signal processing chain. This section

is entirely dedicated to discussing the different techniques adopted to filter the noise and
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amplify the signal measured by the photo detector. From Fig. 3.2 and Fig. 3.3 it is quite

evident that the noise is more intense in the DC region of the spectrum (where the 1/f

contribution dominates) and decreases significantly moving to higher frequencies. Since the

signal of interest is also in the DC region this is particularly detrimental: any disturbance

accompanying the signal can easily saturate the amplifying circuits leading to a forced

choice between distortion and lower gain. The most suitable method to overcome this issue

is heterodyne detection. The main idea behind this particular technique is rather simple:

the useful signal is transferred away from the 1/f area to a lower noise region (through

some kind of modulation technique), it is amplified and then brought back to DC through a

digital or analog mixer where a final filtration and amplification takes place. Separating the

signal from the 1/f noise makes it possible to selectively amplify the former and attenuate

the latter so that only the white noise (shot and thermal) present around the modulating

frequency affects the final output signal. Heterodyne detection is practically implemented

by lock-in amplifiers. Rather than embarking into a lengthy technical discussion about

lock-ins, a brief overview will be given of the instrument’s different components [38], see

Fig. 3.7, trying to highlight the impact that each one has on the overall SNR.
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Figure 3.7: Lock in amplifier schematic diagram, from [38].

The lock-in circuit is split into two separate arms: the signal and the reference. As already
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anticipated, the signal, in our case the laser beam, is somehow modulated upstream before

getting into contact with the noise sources. The reference signal is generated by the same

device that modulates the signal (a chopper, for instance) and the lock-in records the fre-

quency and phase of the modulating signal for use in the down conversion stage. Focusing

first on the signal side, it can be observed that the amplification is performed via three

separate stages: two of them located before the mixer, when the signal is still modulated

and one after, when the signal has already been converted back to DC. The lock-in available

in our lab (SR830 by Stanford Research System) allows one to set both the overall gain of

the amplifier (the product of the gain of the individual blocks) and the distribution of the

gain before and after the mixer (dynamic reserve). In general it is good practice to keep the

dynamic reserve LOW so that the signal is mostly amplified before the mixer: delaying the

amplification too much can make the internal lock-in noise no longer neglectable. However,

sometimes the noise floor at the lock-in input is so high that it would cause the first two gain

stages to saturate unless their gain is reduced. In this case it is only possible to raise the

signal amplitude to the desired value after the low pass filter, when the noise is significantly

attenuated. This shift in amplification stage is accomplished by raising the dynamic reserve

to a higher setting. In general, the dynamic reserve was kept on LOW unless the laser was

malfunctioning or the sample surface was damaged.

The first block encountered in the reference signal arm is a phase shifter. This device,

connected to the mixers, controls the phase of the demodulating sinusoidal signal and thus

regulates the amount of signal transfered to the X output (component of the input signal in

phase with the reference) and the Y output (component of the input signal in quadrature

with the reference). It is crucial to identify in each experiment the value of the reference

phase that minimizes disturbances; the useful signal is, in fact, often accompanied by slowly

decaying backgrounds associated with various perturbing phenomena (e.g. recombination

of photo excited electrons) that take place in the sample under test. Through a careful

choice of the phase value, the useful signal can be locked to one channel (typically X) and

all the additional interference signals moved to the other one (typically Y ). Even in the

complete absence of interference signals, the reference phase should be used to make sure

that the signal is entirely transfered to only one channel: if this were not the case, in order
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to recover the full signal amplitude, both channels should be processed (R =
√
X2 + Y 2)

doubling the noise content of the final output.

The last functional block to be addressed is the low pass filter: this stage is respon-

sible for eliminating the high frequency components of the spectrum once the signal has

been shifted back to DC. This operation is equivalent to a time domain integration and

the low pass filter bandwidth coincides approximately with the inverse of the integration

time: narrow bandwidth is equivalent to longer integration time. Since the signal has been

translated to high frequency and then moved back to DC, the low pass filter acts effectively

as a band pass filter centered at the modulation frequency and this is, in some sense, the

key signature of a lock-in: filtering and amplifying a very narrow band at high frequency by

means of a low pass filter. Needless to say, it is critical to carefully choose the integration

time according to the specific experimental conditions. A long integration time averages

out a consistent fraction of noise but increases the time required to complete a scan: drifts

in the laser power, temperature and humidity can induce a signal change within the same

scan introducing distortion and making it more challenging to recover the desired features.

Hence, a single scan should never exceed a few minutes: the higher noise level can be

reduced by averaging out multiple scans.

3.4 Amplitude and phase modulation

As pointed out at the beginning of this section, heterodyne detection requires that the

signal is somehow modulated before it reaches the sample and is detected by the photo

diodes. There are basically two ways of doing this: modulate the amplitude [39] or the

phase [40] of the laser beam. Amplitude modulation is easily performed through any kind

of device that modifies the laser intensity in a periodic fashion. The most common choice

is usually a mechanical chopper (a rotating wheel with equally spaced blades), capable of

modulating the signal from a few Hz up to about 3kHz. Phase modulation, in contrast,

is commonly attained by varying the laser pulses arrival time at the sample. It turns out

that, by doing so, the signal fed into the lock-in is the derivative of the original signal. In

order to elucidate this concept, let’s imagine that the measured signal has an amplitude

(A) dependent on the relative time delay between the pump and the probe beam (δ), as
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depicted in Fig. 3.8. The probe path length can be adjusted, for instance, by moving one

of the mirrors in the probe path back and forth at frequency ωM in such a way that the

pump probe-delay becomes an oscillatory function:

δ = ∆cos(ωM t) (3.4)

here ∆ is the shaker stride divided by the speed of light. If ∆ is much shorter than any of

the signal features, A(δ) can be expanded in a Taylor series truncated at the first order:

A(δ) ≃ A(δ0) +
dA

dδ

∣

∣

∣

∣

δ=δ0

∆cos(ωM t) +O(δ) (3.5)

where δ0 is the delay between pump and probe when the moving mirror is at rest. If the lock

in reference frequency is set to ωM , the output will be proportional to the signal derivative

computed at δ0.

A(δ)

δ

δ0

A(δ0)

Δ

Γ

Figure 3.8: Phase modulation.
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To better appreciate the peculiarities of these two approaches, their advantages and

drawbacks will be compared. The main benefit of phase modulation lays in its offset can-

cellation capability. This is especially advantageous when the signal of interest is mixed

with a spurious, slowly decaying interference: computing the derivative will remove any low

frequency component in the spectrum and deliver a background free signal, see Fig. 3.9.
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Figure 3.9: Differential transmittance through a ≃ 50µm thick GaSe sample at 514nm
measured by amplitude and phase modulation techniques.

It could be objected that the same result can be accomplished by numerically differentiating

the digitized signal trace. Yet, if the derivation is not performed in real time, any DC

offset enters the lock-in and tends to saturate it unless the gain is reduced with substantial

repercussions on the SNR. In addition, once the signal is hidden underneath a very large

background, the optimization process becomes very cumbersome because the effect of any

change in the setup or the alignment is barely noticeable on the signal amplitude. The

great potential of the phase modulation technique is fully expressed in another recurrent
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experimental context: a weak signal superimposed onto other stronger, lower frequency

sinusoids. As already pointed out in Chap. II, the amplitude of a vibration decreases

exponentially with its frequency (e−Ω2τ2L/2), hence the higher frequency modes are usually

the most difficult to measure. Since the derivative of a sinusoid is proportional to its

angular frequency, a phase modulation approach will favor high frequency modes at the

expense of slowly varying oscillations. The drawbacks of this technique are related to the

mechanical handicap of the shaker used to change the beam path: namely the fact that the

shaking frequency cannot exceed a few hundred Hertz. With such a low carrier frequency the

rejection of the 1/f noise can be very poor unless the time constant is increased significantly

at the price of a longer measurement time. An additional potential complication deserves a

mention: the shaker vibrations can couple to the table mechanical resonances, see Fig. 3.1,

and degrade the SNR considerably. Amplitude modulation does not suffer from these

limitations: a mechanical chopper can modulate the signal up to 3kHz, does not couple

mechanically to the optical table and is not as bulky as a shaker (and its mount) so it can

be accommodated even in very crowded setups. This technique’s main drawback resides in

the inability to reduce high backgrounds and, for this reason, falters whenever the desired

signal is buried into a much stronger, slowly drifting offset.

3.4.1 Special techniques

Before concluding this section, it is worth adding a quick note about possible variations

on some of techniques so far described. Since the shaker can be driven by a square or triangle

wave rather than a sine wave it is possible to lock the amplifier to one of the harmonics

rather than to the fundamental frequency fed into the reference channel. In this way, the

modulation frequency can be increased way above the noisy 1/f region. The price to pay is

a reduced signal intensity due to the smaller amplitude of the harmonics compared to the

fundamental frequency as indicated in Eq. 3.6 for the case of a square wave of period 2L

[41]:

S(x) =
4

π

∞
∑

n=1,3,5,...

1

n
sin

(nπx

L

)

(3.6)

Relying on the fact that it is possible to selectively lock to the harmonics of the reference

signal, in some experiments the pump was chopped and the probe shaken. In order to do so,
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the sync signal, at frequency ωM , provided by the signal generator controlling the shaker,

was used to drive the chopper at frequency n · ωM , n being just an integer number. Since

the ISRS signal depends on the product of the pump and probe intensity, it contains both

the sum and the difference of the chopper and shaker frequencies:

Y (t) ∝ IPROBE ·IPUMP ∝ cos[ωM t]·cos[nωM t] =
cos[(n− 1)ωM t] + cos[(n+ 1)ωM t]

2
(3.7)

The signal at the frequency sum can be retrieved by setting the lock-in reference to the (n+

1)th harmonic. Besides increasing the carrier frequency, this approach offers the additional

advantage of making the lock-in insensitive to those signals that contain only the pump

or the probe modulation, a trenchant strategy to immunize the detection scheme from any

scattered pump beam that may leak into the detector.

3.5 Experimental setups

DELAY RAIL

SHAKER
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PHOTO

DETECTOR

CHOPPER

ND FILTER

Figure 3.10: Reflection pump-probe setup with standard balanced detection.
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This section is intended to briefly describe the different setups I employed to collect

the pump-probe data presented in this dissertation. The experiments performed can be

divided into two groups: reflection, Fig. 3.10 and transmission, Fig. 3.11. In both cases the

pump and the probe beams were focused on the sample through a 125mm and a 100mm

double-convex lens respectively. This choice of the focal lengths resulted in corresponding

spot sizes of ≃ 25µm and ≃ 15µm. The two beams converged at the sample at ≃ 20◦ and

were about 10◦ off from normal incidence, so that, accounting for the refraction taking place

at the interface, they propagated almost collinearly inside the sample.
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Figure 3.11: Transmission pump-probe setup with polarization sensitive detection.

The reflection signal was sent straight to the detector, while the transmitted beam was

filtered by an interference band pass filter (labeled F in Fig. 3.11) to spectrally resolve the

probe and enhance the pump induced signal [19].

Two detection schemes, i.e., the setup part following the sample, were adopted and re-

ferred to here as standard balanced detection (Fig. 3.10) and polarization sensitive detection

(Fig. 3.11). In the former, the probe is split into two beams, one is sent to the sample and

then to the “signal” port of the detector while the other is sent directly to the “reference”
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port of the detector. The neutral density filter (label ND in Fig. 3.11) is needed to equalize

the intensity of the two beams and maximize the benefits of balanced detection. The po-

larization sensitive setup [42, 43] is particularly useful when the signal to measure contains

two components (e.g. two phonon modes): a weaker mode whose intensity is dependent on

the angle φ between the pump and probe electric field polarization and a stronger mode

unaffected by the polarization of either beam. If the difference in the modes strengths is

pronounced, the weak mode is completely obscured by the strong one.
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Figure 3.12: A
′

1 and E
′

modes in GaSe measured at 800nm using the polarization sensitive
setup, Fig. 3.11. The A

′

1 mode is the only one visible when one detector port is blocked
(red line), while it is almost completely canceled when both ports are open (black line).

If the non isotropic mode intensity is proportional to cos(2φ), as it happened in several of

the samples presented in this dissertation, the φ = 0 and φ = 90◦ components have the same

intensity but opposite sign. In order to measure the weaker mode, φ should be set to 45◦

using a half wave plate so that the φ = 0◦ and φ = 90◦ components can be separate after the

sample through a cube beam splitter (see Fig. 3.11) and electronically subtracted one from
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the other via the balanced detector. This approach does not ultimately affect the intensity

of the weaker mode, but completely cancels out the isotropic one. To better appreciate the

advantages offered by the detection scheme shown in Fig. 3.11, it was tested on a GaSe

sample. GaSe is the ideal candidate since its phonon spectrum includes two optical phonon

modes that can be measured by pump-probe: A
′

1, 6.3THz, isotropic and E
′

, 0.6THz, whose

intensity depends on cos(2φ). Fig. 3.12 shows the signal measured when φ = 45◦ and only

one detector port or both are open: in the first case there is no cancellation effect and only

the A
′

1 mode is evident, in the second the cancellation can take place and the predominant

frequency is the E
′

. It is worth mentioning that the effectiveness of the just described

scheme is heavily dependent on the birefringence of the sample: if the probe polarization

is scrambled or rotated by the sample the isotropic mode leakage may be considerable and

the cancellation is only partial.

3.6 Pulse width measurement

A crucial parameter to constantly monitor in any ultrafast time domain experiment is

the width of the laser pulses. The duration of the individual pulses, in fact, ultimately

determines the achievable resolution which, in the case of optical excitation of coherent

phonons, defines the highest detectable frequency. Yet, this is not the only reason why it is

vital to accurately measure the laser pulse width. Since in our setups there are inevitably

dispersive elements (lenses, filters, polarizers) it is necessary to compress the pulse width

[44, 45] in order to compensate for the added chirp: a reliable pulse measurement device

is required to properly adjust the settings of the pulse compression apparatus (prism pair

or gratings). Moreover, even when the pulse width is short enough to observe the desired

phenomenon, it is still critical to know the exact width value to correctly interpret the

experimental data and to compare them with the theoretical predictions. To this regard,

an instructing example is the dependence of a coherent phonon amplitude on the laser pulse

width [46], already discussed in Chap. II. Three main techniques were employed to measure

the pulse width: Sum Frequency Generation (SFG), Two Photon Absorption (TPA) and

Frequency Resolved Optical Gating (FROG); each one will be shortly described throughout

the rest of the chapter.
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3.6.1 Sum Frequency Generation

When two beams at frequency ω1 and ω2 are focused on a crystal exhibiting second

order non linearity, χ(2) 6= 0, a non linear polarization, P , is generated [47]:

P (ω1 + ω2) = 2ǫ0χ
(2)E1E2 (3.8)

where E1 and E2 are the electric fields of the two incident beams. Hence, when two suffi-

ciently energetic beams with the same frequency (ω1 = ω2 = ω) propagating along k1 and

k2 travel through a second order non-linear crystal a third beam emerges from the sample.

Its frequency and wave vector are forced by the conservation of energy and momentum (see

Fig. 3.13) to be:

ω = 2ω

k = k1 + k2

(3.9)
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Figure 3.13: Autocorrelator.

As opposed to the two rays, at ω and 2ω, that exit the sample parallel to the incident ones,

the k = k1 + k2 beam is generated only if the incident beams overlap on the crystal both

spatially and temporally, hence the insertion of a translation stage that can adjust the time

delay between the beams. The setup in Fig. 3.13, commonly known as an autocorrelator,

41



is also equipped with an iris to select only the frequency sum beam, a short pass filter to

attenuate any residual radiation at ω and a Photo Multiplier (PMT), especially necessary

when the second harmonic frequency falls in the UV range. Naming t′ the time delay

introduced by the translation stage, the intensity of the detected beam is given by [48]:

I(t′) ∝
∫

I1(t)I2(t− t′) dt (3.10)

where I1 and I2 are the intensities of the beams incident on the second harmonic crystal.

Since the temporal profile of I1 and I2 is the same, Eq. 3.10 just constitutes the convolution

of the laser pulse with itself. In the case of a Gaussian pulse with standard deviation σ:

I1(t) = I2(t) ∝ e−
t2

2τ2 (3.11)

the convoluted pulse is:

I(t) ∝ e−
t2

4τ2 (3.12)

Using Eqs. 3.11 and 3.12 the actual pulse width, τp, can be related to the autocorrelation

width, τAC = 2τ
√
ln2:

τp =
τAC√

2
(3.13)

Eq. 3.13 is rigorously correct only in the case of a Gaussian beam. Despite the uncertainty

about the real pulse shape, the correction indicated in Eq. 3.13 has always been preferred

to other options (e.g. 0.315τAC coming from a Sech2 approximation of the pulse).

The intensity of the signal generated in an autocorrelation experiment depends on the

sample thickness (∆L) and phase matching |k1+k2−k|∆L ∼ 0. Phase matching is usually

met by exploiting birefringence and, hence, requires the non linear crystal axes to be oriented

properly relative to the incident radiation [49]. Even though a thicker sample (i.e. a greater

volume of active material) would, in principle, generate a stronger signal, phase matching

is more easily achieved in thin samples ∆L
L << 1. Given the difficulties in accurately

orienting a second order crystal, phase matching is usually the most stringent constraint.

As a result, a ∼ 50µm thick β − BaB2O4 (BBO) crystal was used when measuring the

weak output (< 80mW) of the visible Optical Parametric Amplifier, whereas a ∼ 0.5mm
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thick BBO crystal was preferred when measuring the Coherent RegA amplifier, capable of

generating up to 1.1W. Both the BBOs were glued on a rotation mount so that they could

be oriented to meet the proper phase matching angles. The most obvious disadvantage that

an autocorrelator presents is its relative complexity, due mainly to the number of optical

components needed and the consequent alignment involved, see Fig. 3.13. In addition to

that, since the only physical parameter measured is the intensity, no information is recovered

about the phase of the electric field and thus the type of chirp affecting the laser pulses.

3.6.2 Two Photon Absorption

A clever way to make the bulky setup in Fig. 3.13 more compact would be to incorporate

the non linear medium and the photo detector into the same device. This approach has been

practically implemented in what is usually referred to as Two Photon Absorption. Standard

semiconductor detectors [50] operate by converting photons with energy greater than the

band gap into electron-hole pairs. If the energy of the incident photons falls below the gap

but exceeds half the band gap energy (2hν > EGAP ), see Fig. 3.14-A, it is still possible to

generate free carriers in the conduction and valence band if two photons are simultaneously

absorbed [51, 52]. When two pulsed laser beams are focused on the same semiconductor

photo diode the two photons absorbed can come from the same beam but also from the

two different beams provided that they are overlapped temporally. So, in addition to a

constant background, a small photo current spike arises whenever the pulses “mix” in the

semiconductor.

The detector built in our lab was made up of a Hamamatsu GaAsP photo diode whose

responsivity curve is shown in Fig. 3.14-B. GaAsP is an ideal candidate for a Ti:Sapphire

laser (780nm − 820nm) [55] since it absorbs around 400nm but it is almost completely blind

at 800nm. Hence, the detector is insensitive to the main laser radiation that needed to be

filtered out in the autocorrelation set up (see Fig. 3.13). Since phase-matching is not an

issue here and the signal of interest is generated and measured in the same medium, the

only alignment required consists in overlapping the beams at focus on the GaAsP crystal.

A small inconvenience is caused by the fact that the two photon absorption signal may be

very tiny (in the nA range) and, consequently, needs to be amplified before being processed
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Figure 3.14: (A): two-photon absorption process in a semiconductor with band gap EGAP

(B): GaAsP spectral response, from [53] (C): 2-channel transimpedance amplifier board,
from [54].

by the lock-in and the computer. Thus, the GaAsP photo diode has been connected to a

variable gain amplifier board, purchased from Boston Electronics and shown in Fig. 3.13-C,

which converts the photo current into a voltage signal and increases its amplitude to the

desired value.

3.6.3 FROG

Neither the autocorrelator nor the two photon detector are capable of retrieving any

information on the phase of the measured pulse and this is, sometimes, a serious limitation

especially when trying to identify the best approach to compensate for chirp. Frequency-

resolved optical gating takes care of this issue providing a 2D trace in which both time

and frequency are recorded and displayed for real time observation of the pulse width

and spectral width [56]. The basic idea behind this technique is to calculate the signal
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spectrogram [57]:

S(ω, τ) =

∣

∣

∣

∣

∣

∣

+∞
∫

−∞

E(t)g(t − τ)e−iωt dt

∣

∣

∣

∣

∣

∣

2

(3.14)

where E(t) is the electric field and g(t) a gate function, see Fig. 3.15-A. Eq. 3.14 is just

the Fourier transform of that portion of the electric field sampled at time τ by the function

g(t). Once S(ω, τ) is known, it is possible to calculate both the intensity and the phase of

the electric field [56].
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Figure 3.15: (A): spectrogram of the electric field function E(t) (B): Polarization gate
FROG, from [58].

Several alternatives are available to implement experimentally the spectrogram algo-

rithm but only one will be discussed here: the polarization gate FROG sketched in Fig. 3.15-

B. In this type of FROG the laser beam is transmitted through a beam splitter and sent

to two separate paths, the signal (S in Fig 3.15) and the gate (G in Fig. 3.15). The gate

beam polarization is set to ±45◦ by a wave plate while its time delay (τ) is controlled by a

delay stage similar to the one shown in Fig. 3.13 but not included in Fig. 3.15-B. Through

the electronic Kerr effect the gate beam induces birefringence in a non linear crystal, χ(3),

so that when the signal beam, linearly polarized, goes through the crystal its polarization

is slightly rotated. Only when the signal and gate beam overlap in time, does part of the

transmitted signal beam go through the analyzer (cube polarizer located after the non lin-

ear crystal) and this is how the gating process is accomplished. The electric field of the

signal beam is finally dispersed by a prism so that its spectrum can be collected by a CCD

camera. Since the change in the refractive index induced by the Kerr effect is ∆n ∝ |EG|2,
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the gate function g(t− τ) is proportional to |EG(t− τ)|2 which, being a real quantity, does

not perturb the phase of ES(t).

The FROG layout illustrated in Fig. 3.15-B works only when the two beams are prop-

erly aligned and requires expensive components (polarizers, wave plates, beam splitters)

that operate usually in a narrow range of frequencies. Thus, this basic scheme has been

improved throughout the years and modified to be more compact and easy to use. The

FROG utilized in our experiments belongs to one of these upgraded versions of the polar-

ization FROG relying heavily on the Transient Grating technique, and has been suggestively

named GRENOUILLE (GRating-Eliminated No-nonsense Observation of Ultrashort Inci-

dent Laser Light E-fields). The particular model used is manufactured by Swamp Optics,

operates in the 700− 1100nm wavelength range and is able of retrieving 20− 200fs pulses

at 800nm, [59]. The GRENOUILLE turned out to be particularly handy both to validate

the autocorrelation measurements and to accurately align and tune the RegA stretcher and

compressor gratings.
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CHAPTER IV

Phonon Polaritons: theory and experiments

This chapter’s focus is on the experimental activity carried out during the course of my

PhD and its physical interpretation in light of the Raman scattering theory illustrated in

Chap. II. The chapter is centered around the study of the interaction of electromagnetic

radiation with polar lattice vibration modes, i.e. phonon polaritons. Relying on the math-

ematical formalism developed in Chap. II for purely mechanical phonons, the theory of

phonon polaritons is introduced in Sec. 4.1 and extended to two particular cases: plasmon

modes, Sec. 4.2, and surface polaritons, Sec. 4.3. The experimental part of the chapter aims

at showing how Raman scattering proved to be a valuable tool to investigate these differ-

ent polariton types in well known semiconductors: plasmon polaritons in GaAs, Sec. 4.5;

phonon polaritons in GaSe, Sec. 4.6; and surface polaritons in CdSe, Sec. 4.7.

4.1 Phonon polaritons

4.1.1 Coupling of light to lattice vibrations: phonon polaritons

Interaction of light with matter can be adequately described once the optical proper-

ties of a solid medium are lumped into one frequency dependent operator: the dielectric

constant, ǫ(ω). The dielectric constant relates the electric field (E) and the electric dis-

placement (D) [60]:

D(ω) = ǫ(ω)E(ω) (4.1)

The expression of ǫ(ω) can be exactly derived in simple prototypical cases like a cubic crystal

with two ions per unit cell, having mass M+ and M− (see Fig. 4.1).
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Figure 4.1: Anion, u+, and cation, u−, displacement in a unit cell of volume VC .

Denoting by u+ and u− the displacement of the two ions from their equilibrium position

and introducing the reduced mass, MR = M+M−

M++M−
, the “effective” displacement W in the

unit cell of volume VC can be written as:

W =

√

MR

VC
(u+ − u−) (4.2)

Hence, the dipole moment becomes:

PD = z∗e

√

VC

MR
W (4.3)

where z∗e is the effective charge. The dipole moment expression is needed to define the

energy of a crystal of volume V :

H =
V

2
(P 2

W + ω2
TOW

2) +
1

VC

∫

V

PD ·E dV +

∫

V

Pe ·E dV (4.4)

The Hamiltonian in Eq. 4.4 contains three major contributions: the potential (12ω
2
TOW

2)

and kinetic (12P
2
W ) energy of the ions; the interaction of the positively charged ions with

the electric field, PD ·E, and the interaction of the electrons with the electric field, Pe ·E.
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ωTO is the resonance frequency of the coupled ions system shown in Fig. 4.1 and coincides

with the transverse phonon mode frequency [8]. Pe is the dipole moment of the electronic

cloud:

Pe =
α+ + α−

VC
E (4.5)

Two different coefficients (α+ and α−) are required here to take into account the different

response of the electron shell associated with the two ions in the unit cell [61]. It is natural

to use W as the generalized coordinate and write down the Lagrange equation which, after

some simplifications, reads:

d2W

dt2
= −ω2

TOW +
z∗e√
MRVC

E (4.6)

Eq. 4.6 is coupled to the equation for the total dipole moment per unit volume P = PD+Pe:

P =
z∗e√
MRVC

W+
α+ + α−

VC
E (4.7)

The solution to Eq. 4.6 and Eq. 4.7 can be found for a harmonic electric field (E ∝ eiωt).

Expressing W as a function of E using Eq. 4.6 and then inserting it in Eq. 4.7, an explicit

relationship between E and P can be found:

P =
ǫ(ω)− 1

4π
E (4.8)

with

ǫ(ω) = 1 +
4π(α+ + α−)

VC
− 4π(z∗)2e2

MRVC (ω2 − ω2
TO)

(4.9)

Eq. 4.9 can be rewritten in a more familiar form:

ǫ(ω) = ǫ∞
ω2 − ω2

LO

ω2 − ω2
TO

= ǫ∞ +
ω2
p

ω2
TO − ω2

= ǫ∞ +
ǫ0 − ǫ∞

1− ( ω
ωTO

)2
(4.10)
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where

ǫ∞ = 1 + 4π(α++α−)
VC

ǫ0 = ǫ∞ + 4π(z∗)2e2

(MRVC)ω2
TO

ω2
p = 4π(z∗)2e2

MRVC

ωLO

ωTO
=

√

ǫ0
ǫ∞

(4.11)

The last of the four equalities is commonly known as the Lydanne-Sachs-Teller (LST)

equation. The choice to name ωLO the frequency at which the dielectric constant vanishes

will be explained later. Eq. 4.10 has been derived without considering losses which can be

phenomenologically incorporated in our model adding a damping term to Eq. 4.6.
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Figure 4.2: (A): Dielectric constant ǫ(ω) as a function of frequency, see Eq. 4.10 (B): Phonon
polariton dispersion relation.

To study the interaction of the lattice vibrations with the electromagnetic radiation it

is necessary to introduce Maxwell’s equations:

∇×E = −1

c

∂B

∂t
(4.12)

∇×H =
1

c

∂D

∂t
(4.13)

The constituent relations are given by Eq. 4.1 and its counterpart for the magnetic field:

B(ω) = µ(ω)H(ω) (4.14)

In principle both ǫ and µ should be tensors: they collapse to scalar coefficients only in the
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case of isotropic materials, as the cubic crystal currently under examination. Since in the

context of this work the focus is exclusively on the optical frequencies regime, the frequency

dependence of µ can be safely neglected. The combined solution of Eq. 4.12 and Eq.4.13

can be found, in the case of a plane wave ei(k·r−ωt), by looking for the roots of the following

equation:

k× [µ−1k×E] +
ω2

c2
ǫ(ω)E = 0 (4.15)

There are two allowed solutions:

• If k ‖ E, Eq. 4.15 can be satisfied only if ǫ(ω) = 0. Since in this case the electric

field is parallel to the propagation vector, the solution is commonly referred to as

the longitudinal mode. This mode oscillates, irrespective of the value k, at only one

frequency: ωLO.

• If k ⊥ E, Eq. 4.15 becomes ω = kc√
ǫ(ω)

which, in turn, can be satisfied by two different

sets of ω−k values showed in Fig 4.2-B. The lower branch exhibits an electromagnetic

character when k is small and turns into the optical transverse phonon dispersion curve

for large values of the wave vector. On the contrary, the upper branch behaves like an

LO phonon around k = 0 and tends asymptotically to the light line with propagation

velocity c√
ǫ(∞)

.

It is evident from Fig. 4.2-B that there is no solution to Eq. 4.15 between ωTO and ωLO:

no electromagnetic waves can propagate inside the medium at frequencies ωTO ≤ ω ≤ ωLO.

This range of frequencies is known as the Reststrählen band and is responsible for the close

to 100% plateau observable in reflectance curves.

4.1.2 Phonon strength function

Since, as just discussed, a polariton has a dual nature, it is convenient to define a

function that “weights” the wave and the phonon contribution. The natural starting point

to accomplish this goal is to work out the energy density (kinetic and potential) associated

to the phonon field in the hypothesis that it is oscillating at frequency ω:

UL =
1

2
Ẇ 2 +

1

2
ω2
TOW

2 =
1

2
(ω2 + ω2

TO)W
2 (4.16)
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The energy density can be analogously written for the electric field as:

UE =
ǫ∞
8π

E2 +
1

8π
H2 =

1

8π
(ǫ∞ + ǫ)E2 (4.17)

Finally, the total energy can be determined adding up Eq. 4.16 and Eq. 4.17:

UT =
1

2
(ω2 + ω2

TO)W
2 +

1

8π
(ǫ∞ + ǫ)E2 (4.18)

Furthermore, recalling Eq. 4.6, UT can be recast in this form:

UT = W 2(ǫ+
ω

2

∂ǫ

∂ω
)
(ω2

TO − ω2)2

ω2
p

(4.19)

where ǫ is defined in Eq. 4.10. Eq. 4.19 was obtained through a purely classical mechanics

approach but can be generalized to the quantum mechanics case provided W is replaced

by < W >: the expectation value of the generalized displacement. The simple harmonic

oscillator model can now be invoked to express the energy density as:

UT =
~ω

V
(N +

1

2
) (4.20)

where N represents the number of phonons. < W 2 > can be found by equating Eq. 4.19 to

Eq. 4.20:

< W 2 >=
~ω

2V

ω2
p

(ω2
TO − ω2)2

1 + 2N

ǫ+ 1
2ω(

∂ǫ
∂ω )

(4.21)

This apparently intimidating expression turns into a more familiar form in the limit ω 7→

ωTO:

< W 2 >0=
~

2V ωTO
(1 + 2N) (4.22)

In a harmonic oscillator, this is the expectation value of W 2 at the presence of N quanta.

Eq. 4.21 and Eq. 4.22 are the last piece required to define the Phonon Weight Function,

LP :

LP (ω) =
< W 2 >

< W 2 >0
=

ω ω2
p ωTO

(ω2
TO − ω2)2

1

ǫ∞ + ω2
p ω

2
TO(ω

2
TO − ω2)−2

(4.23)
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LP is graphed in Fig 4.3-A in the case ωLO

ωTO
= 2. As expected, when the polariton exhibits an

electromagnetic nature (ω 7→ ∞), the function is zero. On the other hand, LP (ω) becomes

unitary at ω = ωTO when the polariton behaves like a phonon. LP is not defined in the

Reststrählen band where polaritons do not exist.

Analogously, recalling that UT = ǫ∞ < E2 >0 /4π, the Electric Field Strength Function

[62], LE(ω), can be found:

LE(ω) =
< E2 >

< E2 >0
= ǫ∞

(

ǫ∞ +
ω2
pω

2
TO

(ω2
TO − ω2)2

)−1
(4.24)
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Figure 4.3: (A): Phonon Strength Function LP (B): Fraction of the energy of the electro-
magnetic wave stored in the lattice motion.

The physical significance of LP and LE can be better appreciated after considering the

following sum rule:

ωLE + ωTOLP = ω (4.25)

Multiplication of both sides of Eq. 4.25 by ~ leads to an energy balance: the total energy of

the incident photon (~ω) is stored into an electromagnetic field and a phonon field. Thus,

the percentage fraction of the total energy transferred to the phonon mode can be defined

as:

fP =
ωTO

ω
LP (4.26)

fP is plotted in Fig. 4.3-B and resembles in great part FP with only one exception: the

region close to ω = 0. Although LP = 0 at ω = 0, the phonon field still carries some energy
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whose value depends exclusively on the material parameters (ωTO, ωLO and ǫ∞).

4.2 Plasmon phonon coupled modes

In this section the effect of free carriers will be included in the treatment developed so

far. Rather than again going over the lengthy procedure outlined in the previous section, the

well known Drude model [63] will be invoked. According to Drude’s theory, in the absence

of losses the dielectric constant of a material with a carrier density n can be written as:

ǫ(ω) = 1−
ω2
p

ω2
(4.27)

Here ω2
p = 4πe2n/mR (mR is the carriers’ effective mass) and it is the carriers’ plasma

frequency analogous to the one which was introduced in Eq. 4.11 for phonons. Assuming

that the carriers do not interact with the lattice ions, the lattice Hamiltonian has to be

modified by including an additional term: H = HPHONON +HCARRIER, with HPHONON

given by Eq. 4.4. Without retracing all the steps previously followed, it is possible to

predict, within the rotating phase approximation [64], that the electrical susceptibility will

be χ = χPHONON + χCARRIER. Since ǫ = 1 + 4πχ, the dielectric constant becomes

ǫ = ǫPHONON + ǫCARRIER − 1, i.e.:

ǫ = ǫ∞
ω2 − ω2

LO

ω2 − ω2
TO

−
ω2
p

ω2
(4.28)

In Fig. 4.4-A ǫ(ω) is plotted as a function of frequency. Eq. 4.15 can now be solved with the

new expression for the dielectric constant. Once again there will be two branches for the

transverse mode (k ⊥ E) and, as opposed to the case of a simple polariton, two branches for

the longitudinal mode (k‖E) as well. This is due to the fact that the equation ǫ(ω) = 0 has

two different solutions. Even though the frequency of the LO phonon remains independent

of the wave vector k, it is strongly related to the plasma frequency (ωp ∝ √
n). Fig. 4.4-B

depicts the effect of an increase in carrier concentration: the higher branch frequency keeps

raising while the lower branch bends down until it reaches asymptotically the TO mode

frequency. This is the ultimate manifestation of the free carrier mediated coupling between

the electromagnetic field and the LO phonon mode: the Coulomb field of the electrons
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Figure 4.4: (A): Dielectric constant calculated according to Eq. 4.28 (B): LO phonon
dependence on the plasma frequency ωp.

interacting with light can drive the longitudinal mode and deeply affect its frequency.

4.3 Surface polariton

ε=1

EZ

z

x

z

ε<0

Figure 4.5: Surface plasmon propagating at the interface between AIR and a dielectric with
ǫ < 0

Looking both at Fig. 4.2 and Fig. 4.4, it is evident that there is a range of frequencies

in which the dielectric constant is negative. This aspect becomes particularly significant

when considering the propagation of an electromagnetic wave at the interface between two

media with different dielectric constants (see Fig. 4.5). Normally this “boundary” problem

is treated within the classical reflection-transmission framework. When a wave traveling
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in air encounters the interface with a dielectric medium, part of it is reflected away from

it, part of it is transmitted inside the medium where it propagates over a length scale

defined by the material penetration depth. In the case of p-polarized electric field though,

Maxwell’s equations admit another solution [65] which is commonly referred to as Surface

Plasmon Polariton (SPP) and whose signature is an electric field decaying on both sides

of the interface, see Fig. 4.5. Surface plasmon modes are easily identified in the simplest

possible geometry: the interface between a metal (dielectric constant given by Eq. 4.27)

and air. Adopting the reference frame indicated in Fig. 4.5, the electric and magnetic field

are written as:

E = [Ex, 0, Ez ] H = [0,Hy, 0] (4.29)

Maxwell’s equations without sources read:



















∇×E = −1
c
∂B
∂t

∇×H = 1
c
∂D
∂t

(4.30)

Postulating a solution of the type ei(kx−ωt), the system in Eq. 4.30 can be reduced to:



















ǫω2

c2 Ex +
∂2Ex

∂z2 = ik ∂Ez

∂z

Ez =
ik

ǫω2/c2−k2
∂Ex

∂z

(4.31)

The solution is different in air (z > 0) and in the dielectric medium (z < 0):















Ex = E+e−αz, if z > 0

Ex = E+eβz, if z < 0

(4.32)

α2 = k2−ω2/c2 and β2 = k2− ǫω2/c2; the air dielectric constant has been assumed unitary.

Eq. 4.32 is physically meaningful only is α and β are positive. If this were not the case,

the wave would be carrying an exponentially growing power. Imposing the appropriate
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boundary conditions at x = 0 on Ex and Ez leads us to:

β

α
= −ǫ (4.33)

Since both α > 0 and β > 0, the only way to satisfy Eq. 4.33 is to have ǫ < 0. This

justifies our initial interest in materials with a negative dielectric constant. Eq. 4.33 can be

rewritten in a more explicit form:

k2 =
| ǫ |

| ǫ | −1

ω2

c2
(4.34)

P
/ 2

 

 

k

k c

Figure 4.6: Dispersion relation of a surface plasmon propagating at the interface metal-air.

In the case of a metal, ǫ is given by Eq. 4.27 and the dispersion relation is shown in Fig. 4.6.

A few observations can now be made. First, the plasmon mode exists only in the region

ω < ωp where the dielectric constant is negative. Further, when k ≃ 0 the dispersion curve

is well approximated by the light line (ω = kc). Finally, when k >> kp = ωp/c, ω 7→ ωp/
√
2.

It is also worth noticing that ǫ(ωp/
√
2) = −1. As a result, in the short wavelength range,

the plasmon tends to the frequency at which the dielectric constant is −1. From now on

this frequency will be called ωD.
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One last piece can be added to the general picture by discussing the case of surface

plasmons excited in a dielectric material with an infrared active mode (dielectric constant

given by Eq. 4.10). In this case the plasmon frequency has to be confined in the ωTO−ωLO

range where ǫ < 0 (see Fig. 4.2-A) and the asymptotic value ωD is now

√

ǫ∞ω2
LO

−ω2
TO

1+ǫ∞
as

visible in the plot of the dispersion relation (Fig. 4.7-A). The situation does not vary much

when dealing with a stack of thickness a of the same dielectric medium surrounded by air

(see inset of Fig 4.7-B). The presence of two interfaces gives rise to two distinct plasmon

polariton branches (the red and black curves in Fig. 4.7-B). The two curves converge to the

same ωD of Fig. 4.7-A in the limit k‖a 7→ ∞. This is because when λ 7→ 0 or a 7→ ∞ the

two interfaces are completely decoupled and there is no longer any difference between the

two geometries in Fig. 4.7-A and Fig. 4.7-B.

A

D

TO

 
 

k
TO

D

B

LO

 

 

k a

Figure 4.7: (A): dispersion relation for a surface plasmon propagating at the interface
dielectric-air (B): surface plasmon mode for a air-dielectric-air stack.

4.4 Raman Scattering by polaritons

All the different polariton modes introduced so far can be measured experimentally

through Raman spectroscopy. An overview of the milestones in the field of Raman scattering

by polariton is thus necessary, especially to discuss how it is actually possible to probe the

polariton dispersion curve by a proper choice of the scattering geometry. As seen in Chap. II,

Raman scattering always requires the conservation of energy and momentum. If (kI , ωI),

(kS , ωS) and (q, ω) are the wave vectors and frequencies of the incident, scattered and
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polariton field, it is always possible to write:

kIc = nIωI

kSc = nSωS

(4.35)

where c is the speed of light, while nI and nS are the refractive of the scattering medium

at ωI and ωS respectively.
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Figure 4.8: Accessible region in the q − ω plane for Stokes scattering of incident light at
frequency ωL in a medium with refractive index n. The light line is in red.

Following [20], conservation of momentum and energy can then be rewritten as:

q2 = k2I + k2S − 2 kI kS cos(φ)

ω = ωI − ωS

(4.36)

Fig. 4.8 inset helps to visualize the wave vector arrangement predicted by Eq. 4.36. Using
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Eq. 4.35, Eq. 4.36 can be condensed into a compact expression:

c2q2 = n2
Iω

2
I + n2

S(ωI − ω)2 − 2nInSωI(ωI − ω)cos(φ) (4.37)

where the only variables are the wave vector (q) and the frequency (ω) of the polariton.

Eq. 4.37, graphed in Fig. 4.8 together with the light line, defines a line in the q−ω plane, so

that, by varying the value of φ from 0◦ (forward scattering) to 180◦ (backward scattering),

it is possible to identify the region accessible through Raman spectroscopy. The excited

polariton branch and frequencies are thus found simply intersecting the previously discussed

dispersion relations with the curve in Fig. 4.37 corresponding to the collection angle φ. A

pioneering work in the field of Raman scattering by polaritons is the paper by Henry and

Hopfield [66], who were able to reproduce experimentally the dispersion relation shown in

Fig. 4.2-B for GaP. Following a similar approach, Davydov et al. [67] recovered the graphs

in Fig. 4.7 by measuring the surface plasmon dispersion in the case of a thick and thin

dielectric layer of GaN.

4.5 GaAs
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Figure 4.9: (A): GaAs band gap (the two dips at 869nm and 874 are due to condensation
onto the Si photo detector) (B): (111) GaAs phonon peaks, λL = 488nm .

GaAs was the first material that was measured in order to verify experimentally some

of the theoretical conclusions drawn in the previous section. GaAs is a III-V direct band
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gap semiconductor which crystallizes in the zinc blend structure, space group Td. At room

temperature the gap is located at ≃ 871nm (see Fig 4.9-A) and, as it is usually the case

with the majority of semiconductors, gets wider when the temperature is lowered. The

particular sample used in our measurements was a semi-insulating, undoped crystal ori-

ented along the (111) direction. The GaAs crystal structure allows for a triply degener-

ate optical phonon mode, belonging to the T2 (or Γ5) representation, which is both Ra-

man and infrared active [68]. The three Raman tensors relative to the coordinate system

(X,Y,Z) = ([110], [112̄], [111]) are [18, 69]:

R(X) =
d√
3













0
√
2 −1

√
2 0 0

−1 0 0













R(Y ) =
d√
3













√
2 0 0

0 −
√
2 −1

0 −1 0













R(Z) =
d√
3













−1 0 0

0 −1 0

0 0 2













(4.38)

When light is incident along the (111) direction, both the TO and LO mode can be observed

through Raman spectroscopy, as opposed to the (100) case where only the LO mode can be

excited. The Raman tensors that were just introduced can be employed to determine the

selection rules relative to the z(xy)z̄ geometry (shown in the inset of Fig 4.9-B):

σ(TO) ∝ 2
3d

2

σ(LO) ∝ d2

3 cos
2(φ)

(4.39)

where σ is the scattering cross section for the two different modes.

The Raman spectra collected at room temperature with excitation wavelength λL = 488nm

are shown in Fig 4.9-B. The LO and TO mode are clearly visible at ≃ 268.2cm−1 (8THz)

and at ≃ 291.5cm−1 (8.74THz). The dependence on the angle between the incident and

scattered electric field is verified for three different values of φ.

ISRS measurements at 800nm were carried out on the same sample. Since this wave-

length is above the gap, coherent phonons were detected by measuring the differential

change in the probe beam reflected by the sample (see Fig. 3.10). The pulse width was

always below ≃ 80fs, while the pump and probe beam power was 100mW and 30mW re-

spectively. In order to minimize the background arising from pump leakage, the pump

and probe polarizations were set perpendicular to each other and inserted a polarizer with
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Figure 4.10: GaAs differential reflection ISRS signal at 100K and relative Fourier Tranform.

the axis parallel to the probe polarization in front of the detector. Employing the Raman

tensors (Eq. 4.38), it is possible to calculate the selection rules pertaining to the impulsive

stimulated case. The LO mode can alway be excited regardless of the detection geometry,

while the TO mode amplitude has an intensity ∝ cos(2φ), where φ is now the angle between

the pump and probe field. The differential reflection signal measured at 100K is shown as a

function of the pump-probe time delay together with its Fourier Transform in Fig. 4.10. It

is evident that only one mode at the TO frequency (8THz) is observable. The oscillations

do not disappear when φ is varied, so that the signal observed, even though at the TO mode

frequency, seems to obey the LO mode selection rules. This apparent anomaly has been

consistently verified at other temperatures. In Fig. 4.11-A the signal at 10K, 50K and 300K

is reported and in Fig. 4.11-B the oscillation frequency, extracted through linear prediction

[70], is plotted as a function of temperature. The absence of the LO mode from our data

can be explained in the context of the plasmon polariton theory, introduced in Sec. 4.2.

Since the excitation energy is above the semiconductor band gap, whenever a laser pulse

hits the sample new carriers are photo excited. Thus, the originally intrinsic semiconductor

experiences a sudden increase in the concentration of free carriers, which ultimately reflects

in an augmented value of the plasma frequency (Eq. 4.27). The LO mode, which is now
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Figure 4.11: (A): Reflection pump probe data on (111) GaAs at different temperatures,
λL = 800nm (B): Frequency of the measures signal as a function of temperature.

split into two separate branches (Fig. 4.4-B), undergoes a frequency shift induced by the

variations in the carrier density. When ωp becomes sufficiently large, the lower branch ap-

proaches asymptotically the TO mode frequency, while the higher branch keeps increasing

in frequency as visible in Fig. 4.4-B. Given the large power used in our experiments and

the considerable fluence of the laser pulses, it can be inferred that the observed frequency

is precisely the LO mode oscillating at the TO frequency due to the presence of carriers.

In principle, the upper branch frequency should be detected as well, but the pulse width

of the laser source (80fs) is not short enough to excite such a rapidly oscillating signal

(f > 8.7THz).

4.5.1 Literature discussion

The experimental results presented so far seem to be in contradiction with some work

from the literature. Cho et al. [43], among others, were able to measure the LO phonon

by ISRS in a bulk GaAs sample. To understand why this was not possible in our case, it

is necessary to first identify the different physical mechanisms [42, 71, 72, 73, 74] through

which an LO mode can be excited in GaAs and then establish whether or not each one of

them is active in a specific experimental condition.

Pfeifer et al. [74] correctly pointed out that the force driving a longitudinal phonon
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mode includes, in addition to the Raman tensor, a non linear polarization term, PNL:

Fj = R
(i)
kl EkEl −

4πze∗

ǫ∞
PNL
j (4.40)

where Ek and El are the incident and scattered field. PNL contains three main contribu-

tions:

PNL
j = χ

(2)
jklEkEl + χ

(3)
jklmEkElEm +

t
∫

−∞

Jj(t
′) dt′ (4.41)

where χ
(2)
jkl and χ

(3)
jklm are the second and third-order nonlinear susceptibilities and Jj(t)

is a current associated with the drift of photoexcited carries in surface-space-charge fields.

The last term is responsible for longitudinal phonon excitation in GaAs and other III-V

semiconductors.

hν

ΔEs

ENERGY
ELECTRIC 

FIELD

ΔXs

A B

Figure 4.12: Energy band diagram (A) and electric field (B) within the space charge layer
of an n-doped semiconductor before (continuous line) and after (dashed line) the arrival of
the optical pulse of energy hν > EGAP .

By solving Eq. 4.6 in the static case, it is possible to see that a static electric field (E)

induces an atomic displacement given by:

W =
z ∗ e√

MRVCω2
TO

E (4.42)

Hence, the depolarization of the static field, caused by ultrafast photocurrents J(t), perturbs

the lattice arrangement and acts as an impulsive driving force in the equation of motion

of the phonon amplitude, q(t), see Eq. 2.31. This is precisely what happens when the
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surface space-charge electric field gets screened by photo excited carriers. Fig. 4.12 shows

how the absorption of photons with energy hν leads to a change in the energy band profile

(Fig. 4.12-A) and, consequently, in the electric field (Fig. 4.12-B). Given the pivotal role

played by the static electric surface field (ES), its expression will be reported [75]:

ES =

√

2eND

ǫ(0)
(Vbi − U − kBT

e
) (4.43)

where e is the electron charge, ǫ(0) the static dielectric constant, Vbi the junction built-in

voltage, ND the doping level and U the externally applied bias voltage. Several experiments

performed on (100) GaAs provide strong evidence to confirm this theory.

A B

Figure 4.13: (A): Time domain signal of a p-doped (100) GaAs sample (NA = 1018cm−3)
as a function of the photo excited carrier density, from [74] (B): Time domain signal for a
n-doped (100) GaAs sample as a function of the static surface field, from [74].

In Fig 4.13-A phonon oscillations are plotted as a function of the photo excited carrier

density, which is controlled by changing the intensity of the incident laser beam (λL =

620nm). In contrast, Fig 4.13-B shows the LO oscillatory signal as a function of the surface

static electric field. In the latter case, the GaAs sample was grown on a transparent Indium

Tin Oxide (ITO) Schottky contact so that an external bias voltage (U) could be applied to

control the electric field in the depleted region.

The scenario is substantially different when the excitation wavelength is increased. Cho

et al. [73] performed ISRS on GaAs at λL = 844nm (very close to the wavelength used in

our experiments, 800nm) with a significantly different outcome (see Fig. 4.14). In this case,

the incident photon energy is so low that the penetration depth (≃ 1µm) exceeds by far the
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surface depletion layer (< 100nm). The photons are consequently absorbed mainly in the

neutral bulk region of the semiconductor where the electron-hole pairs, created through the

doping process and the photon absorption, do not affect the charge-depleted-layer electric

field. The interaction between the free carriers and the LO phonon gives rise to a plasmon

mode which is now driven exclusively by the Raman-like force in Eq. 4.40. As discussed in

Sec.4.2, the LO frequency depends strongly on the carrier density (n). In Fig. 4.14-B it is

indeed shown that the frequency of the measured phonon oscillations is a function of the

total carrier concentration (photo excited and majority carriers). In particular, it can be

observed that, in accordance with our experiments, for high enough values of n the plasmon

lower branch approaches 8THz, the transverse mode frequency.

A

B

Figure 4.14: (A) Oscillatory part of the reflectivity change in differently doped n-GaAs
at a constant excitation density ≃ 4× 1017cm−3, from [73] (B) Plasmon-phonon dispersion
curve as a function of the optically excited density (crosses), the doped density (squares)
and the sum of both (circles); the solid line is the theoretical prediction, from [73].

66



4.6 GaSe

The second material that was considered is another very popular semiconductor: GaSe.

This material was originally chosen to verify the theoretical prediction about the Raman

Tensor expression in the case of spontaneous and stimulated Raman spectroscopy [2] dis-

cussed in Chap. II. However, after a first round of experiments, it became obvious that, in

order to make sense of the measurements’ outcome, it was necessary to develop a broader

and more exhaustive model than simple Raman scattering by phonons. Once again, the

correct interpretation of the experimental data seems to be closely connected to the phonon

polariton theory discussed in Sec. 4.1.

4.6.1 Material properties

GaSe is a III-VI indirect gap layered semiconductor. The different layers, visible in

Fig. 4.15, interact through the weak van der Waals force, while the atoms belonging to the

same layer are tied together through the much stronger covalent bonds. This fundamental

spatial anisotropy is responsible for, among other phenomena, the material birefringence.

The fundamental gap of this semiconductor is centered around 600nm and changes as a

function of temperature, ranging between ≃ 590nm at 10K and ≃ 620nm at 300K [76].

Figure 4.15: Ga (full circles) and Se (empty circle) coordination in the hexagonal GaSe,
from [77]

Hence, GaSe turns out to be particularly attractive given the ability to probe it at wave-

lengths above (Argon laser and optical OPA) and below (Ti:Sapphire and RegA) the gap.

GaSe crystallizes in three different polytypes: ǫ and β (hexagonal structure) and γ
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(rhomboedral structure). The β and ǫ types, shown in Fig. 4.15, have the same crystal

structure in the layers’ plane but are characterized by a different stacking sequence. While

the β polytype has an inversion center located in the mid plane between layers, such a

symmetry is not present in the ǫ polytype. Thus, the Raman modes are not infrared active

in the β structure [78].

4.6.2 Sample preparation

All the GaSe samples used in this dissertation were prepared starting from a bulk

1cm × 1cm × 0.5cm crystal oriented along the c-axis. The weak attraction between layers

makes it extremely easy to peel thin sheets off the main surface using scotch tape. These

films were then glued to a copper substrate using a low temperature conductive varnish and

peeled again until the desired thickness was obtained. When aiming for a thicker (≃ 100µm)

sample, a piece was cleaved from the bulk sample with a razor blade, glued on the substrate

and finally peeled with scotch tape to remove any roughness.
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Figure 4.16: (A): Transmission curve through a ≃ 50µm thick GaSe sample (B): Differential
transmission as a function of time for a ≃ 240µm GaSe sample, λL = 800nm.

The ISRS measurements were all performed in the transmission geometry shown in Fig. 3.11.

As a result, it was critical, especially when the laser was above the gap, to choose the sam-

ple thickness in such a way that the transmitted beam could be measured by our photo

detectors (P ≥ 10µW). In Fig. 4.16-A the transmission curve is plotted as a function of the

laser wavelength at 300K. The sample under examination was kept under vacuum inside

a cryostat and the relative transmission was obtained by normalizing each data point by
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the power transmitted through the empty cryostat to remove the influence of the CaF2

windows. The data was fit using the Fresnel equations for normal incidence [26]. The ab-

sence of Fabry-Perot interference fringes, the inaccuracy of the GaSe optical constants and

the coarse distribution of points made it challenging to get a good fit. Nevertheless, the

thickness of the sample was estimated to be

≃ 50µm ± 5µm. This thickness guaranteed adequate transmission at the visible wavelengths

of interest and was thus used in all the above the gap experiments.

A different issue arises when the sample is tested below the gap. The differential trans-

mission through the sample as a function of the pump-probe time delay is shown in Fig. 4.16-

B. Here an extra coherent artifact, displaced by about 5ps from the main one, can be seen.

The presence of this and other additional peaks located before and after time zero has al-

ready been observed and explained [19] by the interaction between the incident laser beam

and its reflections at the back and front surface of the sample. The reflection coefficient at

the interface GaSe-air is ≃ 0.23 due to the high refractive index of the material (n ≃ 2.84);

consequently, the extra peaks are relatively strong and can interfere with the coherent

phonon signal. To prevent these spikes from distorting the phonon-induced signal, a much

thicker sample was prepared using the razor blade cleaving technique. This time it was

possible to more accurately calculate the exact thickness of the sample knowing that the

spacing between two consecutive peaks is given by 2nL
c , with c being the speed of light, n

the refractive index and L the sample thickness. After a few trials, a ≃ 240µm thick sample,

granting a 4ps spacing between successive coherent artifacts, was obtained.

4.6.3 Phonon dynamics

The GaSe unit cell contains 4 molecules and thus there are 24 normal vibrations in

total. Since our sample is a ǫ-polytype, the phonon modes (at Γ) can be decomposed into

the following irreducible representations of the D3h point group [81]:

Γ ≡ 4A
′

1 + 4A
′

2 + 4E
′

+ 4E
′′

(4.44)

A unit cell is made up of two layers; however, it is easier to get an intuitive picture of what

the different phonon modes look like by considering first only a single layer (2 molecules) as
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A

B

Figure 4.17: (A): Dispersion curves, experimental (symbols) and fitted (solid lines), for the
∆ and Σ directions in ǫ-GaSe, from [79] (B): Schematic displacement of the cations (• )
and anions (◦) in one layer of GaSe, from [80].

shown in Fig 4.17-B. The vibrations in the neglected layer are either the same or out of phase

[80]. Looking at the quadratic functions by which each vibration transforms (Fig 4.17-B),

it is possible to identify the Raman active modes, namely A
′

1, E
′

and E
′′

. The fact that

E
′

is also infrared active, since it transforms like (x, y) [77], confirms the lack of inversion

symmetry of the ǫ polytype. The phonon frequencies and their dispersion relations relative

to the [011] and [100] directions are shown in Fig 4.17-A.

4.6.4 Spontaneous Raman scattering

Before discussing the experimental results, the Raman tensors associated to the phonon

modes introduced in the previous section will be quickly described. The strongest mode
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detected is the A
′

1 mode:

RA′

1 =













a 0 0

0 a 0

0 0 b













(4.45)

In the backscattering geometry (incident and scattered light along the c-axis of the sample)

the intensity of this Raman peak is ∝ a2cos2(φ) where, as before, φ indicates the angle

between the incident and scattered electric field polarization vectors. The other vibration

present in the Raman spectra exhibits E
′

symmetry:

RE
′

1 =













0 f 0

f 0 0

0 0 0













RE
′

2 =













f 0 0

0 −f 0

0 0 0













(4.46)

This mode is infrared active and obviously doubly degenerate. In the back scattering geom-

etry only the TO branch can be excited and its intensity is independent of the orientation

of the incident and scattered electric field polarization. E
′′

is the representation of the last

Raman active mode and its Raman tensors are:

RE
′′

1 =













0 0 0

0 0 d

0 e 0













RE
′′

2 =













0 0 −d

0 0 0

−e 0 0













(4.47)

Inspection of the two matrices in Eq. 4.47 immediately reveals that the mode cannot be

excited in the back scattering configuration, z(xy)z̄.

A brief description of the experimental setup is necessary to correctly interpret the

experimental data. The sample was mounted inside a cryostat in such a way that the c-axis

(labeled Z from now on) was oriented toward the entrance port of the spectrometer. The full

back scattering geometry was the preferred choice since the sample was too thin to access it

from the X or Y direction. The linear polarization of the incident electric field was changed

through a λ/2 plate while the scattered light polarization was forced through a broad band

polarizer to be perpendicular to the grating grooves to achieve the maximum diffraction

efficiency. The focusing lens had a 150mm focal length while the collimating lens a 50mm
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focal length to collect the largest possible solid angle. Raman data was recorded by a Dilor -

XY multichannel spectrometer and a SPEX 1404 single channel spectrometer. The latter

was particularly useful when measuring modes very close to the laser line. The entrance

and exit slits of both spectrometers were set at 200µm. A prism based monochromator was

inserted into the laser path to attenuate the Argon laser plasma lines and narrow the broad

Ti:Sapphire spectrum. An additional ≃ 3nm band pass filter centered around 780nm was

placed after the Ti:Sapphire output coupler to filter out even further the elastic scattering.

Fig. 4.18 shows the room temperature Raman spectrum for the 514.5nm laser line; the

incident power was set at ≃ 5.2mW. By changing the polarization of the incident electric

field, the different behavior of two A
′

1 and two E
′

1(TO) modes can be easily recognized.
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Figure 4.18: (A): Raman spectrum of GaSe at 300K measured by a SPEX 1404 spectrometer,
λL = 514.5nm (B): Raman spectrum measured by a Dilor -XY spectrometer.

The frequencies of the peaks marked in Fig. 4.18 are summarized in the first column of

Table 4.1 and match closely values already reported in the literature [82]. A similar exper-

iment was carried out after shifting the laser wavelength to 476.5nm. The result is that

the mode frequencies and their relative amplitudes remained unchanged. In contrast, the

Raman spectrum undergoes two significant changes when the laser line is moved below the

gap to 780nm (see Fig. 4.19 and the second column of Table 4.1). The 213cm−1 peak splits

into a doublet and a new mode emerges at 252cm−1. This latter feature has been observed

previously [82] and associated to either the A
′′

2 mode or the LO branch of the E
′

mode.

It turns out that the A
′′

2 is Raman forbidden and the LO mode cannot be detected in the

back scattering geometry. Therefore the presence of either one is attributable to leakage
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or disorder induced-scattering. It is more challenging to make sense of the 208cm−1 and

212cm−1 peaks especially because, to the best of our knowledge, this is the first time they

have been observed and discussed. At first it may appear that the doublet is simply due

to the lifted degeneracy of the E
′

mode; that is, the laser could induce in the sample a

mechanical stress, for instance by heat transfer, sufficient to break the symmetry in the

XY plane. However, this argument falls apart after noticing that the same splitting does

not occur when the sample is probed by the 514.5nm Argon line (see Fig. 4.18-B). In fact,

at this wavelength, a significant fraction of the power is transfered to the sample given

the large absorption coefficient of GaSe (see Fig. 4.16-A) and thus the symmetry breaking

process should be even more efficient.
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Figure 4.19: Raman spectrum of GaSe at 300K, λL = 780nm.

A more convincing explanation can be found by approaching the problem within the frame-

work of the phonon polariton theory discussed in Section 4.1. Since the E
′

mode is infrared

active, when it interacts with light it turns into a phonon polariton mode with the disper-
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FREQUENCY FREQUENCY SYMMETRY

λL = 514.5nm λL = 780nm MODE

20cm−1 20cm−1 E
′

134cm−1 133cm−1 A
′

1

208cm−1

213cm−1 212cm−1 E
′

(TO)

252cm−1 A
′′

2

307cm−1 306cm−1 A
′

1

Table 4.1: Summary of observed Raman modes at 300K at two different laser wavelengths,
514.5nm (above the gap) and 780nm (below the gap).

sion relation shown in Fig. 4.2-B. As seen in Sec. 4.4, polaritons can be probed through

Raman spectroscopy. Fig. 4.20 shows the E
′

polariton lower branch dispersion curve and

the points in the ω− k plane accessible through Raman spectroscopy in the case of forward

scattering and backward scattering. It is evident that in the backward scattering geometry

the dispersion curve is intersected near the asymptotic values (ωTO) while, in the forward

scattering case, a lower frequency is detected. Using the optical constants of GaSe (i.e. n

and dn
dω ) the two frequencies already measured experimentally were recovered: 208cm−1 and

212cm−1. Hence, both these modes are attributed to the lower branch of the transverse E
′

phonon polariton mode.
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Figure 4.20: GaSe E
′

phonon polariton dispersion and intersection with the Raman line in
forward (208cm−1) and backward scattering (212cm−1).

It is crucial to note here that the forward scattering signal, in principle incompatible with

74



the z(xy)z̄ geometry, is generated by the laser beam reflection at the back interface of the

sample and, as a result, it is present only when the sample is transparent. This ultimately

explains the difference between Fig. 4.18 and Fig. 4.19. It would be an oversimplification

to examine solely the perfect backward and forward scattering case: the collimating lens is

capable of collecting the light scattered in a cone whose aperture is determined by the focal

length and the diameter of the lens.
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Figure 4.21: (A) Backward scattering wave vector arrangement (B) Collection geometry
(C) Excited polariton wave vector surface.

Accounting for all the collected scattered wave vectors, a range of allowed polariton q-

vectors, ∆q, and frequencies, ∆ω, can be identified around the two intersections shown in

Fig. 4.20. All the possible combinations of the three Cartesian components of the polariton

q vector can be seen in Fig. 4.21-C for the backscattering geometry, shown in Fig. 4.21-A.

This curve has been derived considering the setup sketched in Fig 4.21-B. The collimating

lens focal length h = 5cm and diameter D = 2.5cm result in an external collection angle
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φEXT ≃ 14◦ and an internal angle φINT ≃ 4.89◦. The wave vector of the polariton defines

a paraboloid surface in the reciprocal space: when φ = 0 q is parallel to the c-axis so

qx = qy = 0 while for larger collection angles the in-plane components (qx and qy) are

excited as well. The continuous range of frequencies (∆ω) that can be excited on the

polariton dispersion is obviously related to the width of the two peaks in Fig. 4.19.

4.6.5 Faust-Henry coefficient

The Raman scattering cross section, presented in Sec. 2.2.2, can be extended to the case

of phonon polaritons. A polariton, as opposed to a purely mechanical phonon, carries a

time-varying transverse electric field that, analogously to a lattice vibration, can induce a

change in the dielectric susceptibility:

δχµν =
∑

λ

aµνλǫλ

√

VC

MR
W + bµνλǫλE (4.48)

where ǫ̂W was defined in Eq. 4.2, ǫ̂E is the electric field, while aµνλ and bµνλ are respectively

the deformation potential and the electro optic coefficient. Using Eq. 4.6, E can be expressed

as a function of W so that Eq. 4.48 becomes:

δχµν =
∑

λ

ǫλ[aµνλ +
MR

e∗
(ω2

TO − ω2)bµνλ]

√

VC

MR
W (4.49)

δχµν is then used to write the Raman scattering cross section:

dσ

dΩdωS
=

~ωIω
3
SV υnS

(4πǫ0)22c4nIωTO

∣

∣

∣

∣

∣

∣

∑

µνλ

xµSx
ν
I ǫλ[aµνλ +

MR

e∗
(ω2

TO − ω2)bµνλ]

∣

∣

∣

∣

∣

∣

2

LP (ω)(1 + nω)gω(ωS) (4.50)

where x̂I and x̂S are unit vectors parallel to the polarization of the incident and scattered

electric field. To establish whether the Raman and the electro optic effect add up or subtract

and to identify the relative strength of the two processes, it is customary to refer to the

Faust-Henry coefficient [83]:

C =
a

b

e∗

MRω
2
TO

(4.51)
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In Eq. 4.51, for the sake of simplicity, aµνλ and bµνλ have been assumed to be scalar

quantities (a and b). The Faust-Henry coefficient of several materials, such as GaAs, GaP,

ZnS, ZnSe, has been measured [83, 84, 85, 86, 87] or theoretically calculated [88]. In

order to estimate C, it is necessary to measure the Raman cross section at two different

frequencies. This is usually possible when the TO and LO mode can both be detected

in the same geometry. Although the LO mode is forbidden by the selection rules, two

separate frequencies stemming from the same mode are nonetheless available in the Raman

data and thus the value of C can be extracted. After defining x =
A(ωf )
A(ωb)

1+n(ωf )
1+n(ωb)

, A being

the area underlying the peaks at frequencies ωf (208cm−1) and ωb (212cm−1) and n the

Bose-Einstein coefficient, C can be written as:

C =
1− ω2

f

ω2
b

√

x
RLP

− 1
(4.52)

where R ≃ 0.23 is the reflection coefficient for normal incidence. Substitution of the nu-

merical values acquired from the Raman spectrum leads to C ≃ 0.044.

4.6.6 Stimulated Raman scattering

The study of GaSe will be concluded by presenting the pump probe experimental data

and interpreting it according to the model used for spontaneous Raman. As previously

mentioned, the measured variable was always the differential transmission (∆T
T ) of the

probe beam as a function of the pump-probe time delay.

Experiments performed above the gap were done by employing a visible OPA whose output

was compressed through a prism pair to compensate for dispersion (the pulse width was

consistently τ ≃ 80fs). The Regenerative Amplifier, used in measurements below the gap,

provided a shorter compressed pulse τ ≃ 75fs. The pump and probe power were set at

1.7mW and 600µW respectively to avoid burning the sample or saturating the photo detec-

tor. The Raman tensors introduced in Eq. 4.45 and Eq. 4.46 can be employed to calculate

the selection rules, namely, the intensity of the E
′

mode is ∝ cos(2φ) while the A
′

1 mode is

isotropic. The A
′

1 signal was dominant and tended to obscure the weaker E
′

oscillations.

The polarization sensitive detection scheme depicted in Fig. 3.11 was thus used to cancel
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Figure 4.22: 30K pump probe data (A) and FFT (B) on GaSe at λL = 514nm.

the A
′

1 mode and enhance the E
′

one. The time domain signal at 30K relative to a 514nm

laser line is shown in Fig. 4.22-A. The data was collected in the φ = 45◦ balanced configu-

ration. The FFT spectrum (Fig. 4.22-B) reveals the presence of three distinct frequencies

which correspond to the two A
′

1 modes at 4THz and 9THz and the E
′

mode at 6.3THz (see

Table 4.1). The lower frequency E
′

peak (0.6THz) was not observed.
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Figure 4.23: 30K pump probe data (A) and FFT (B) on GaSe at λL = 800nm.

The same experiment carried out at 800nm (Fig. 4.23-A) led to a substantially different

spectrum (see Fig 4.23-B). The presence of two additional features, the 0.6THz mode and

the 7.5THz Raman forbidden A
′′

2 mode, makes the pump probe spectrum closely comparable

to the spontaneous Raman one shown in Fig. 4.19. The absence of a doublet at the E
′

mode

frequency seems to confirm our theory: only the lower frequency peak (Fig. 4.20) can be
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excited in a forward scattering measurement, like ISRS.

Taking advantage of the tunable wavelength output of the OPA, it was possible to study

the dependence on the laser wavelength of the oscillation amplitude of the A
′

1 and 0.6THz

E
′

modes. Fig. 4.24 gives a summary of the results when T = 10K. The strength of both

modes reaches a maximum around the band gap frequency where the absorption is the

highest. This behavior is consistent with the two Raman tensor theory and has already

been extensively discussed by Stevens et al. [2]. Moreover, it is possible to note the drastic

drop in the E
′

mode amplitude once the wavelength is lower than 600nm. In contrast to its

counterpart at 6.3THz, in ISRS experiments the 0.6THz E
′

mode vanishes above the gap.
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Figure 4.24: 10K A
′

1 (A) and 0.6THz E
′

(B) oscillation amplitudes as a function of the
laser wavelength.

4.6.7 Spontaneous and Stimulated Raman scattering Comparison

The conclusions drawn at the end of the previous section make it clear that it was not

possible to compare the deformation potentials of the two phonon modes. However, the

initial plan was not completely abandoned: the same kind of comparison was performed

between a purely mechanical phonon mode (A
′

1) and a phonon polariton (6.3THz E
′

). In

order to correctly extract the Raman matrix element (including both deformation potential

and electro optic contribution) from the experimental data, it is critical to scale the mea-

sured oscillation amplitude by the proper coefficients. In the case of spontaneous Raman,

it is necessary to take into account the dependence of the scattering cross section on three

factors. They can be identified looking at Eq. 2.27: the Bose Einstein term (n), the phonon
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frequency (ωσ) and, in the case of the E
′

mode, the fact the mode is not generated by the

incident beam but rather by its reflection from the back surface. As regards ISRS, since the

interface effects are negligible, the only required correction is the one relative to the finite

pump and probe pulse width, see Eq. 2.40. The 780nm (Raman) and 800nm (pump probe)

data will be first analyzed. According to the discussion in Sec. 2.3.1, it seems reasonable to

expect that the ratio of the A
′

1 and E
′

deformation potentials calculated from Raman and

pump probe data should essentially be the same.
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However, the experimental data contradicted our predictions. Fig. 4.25-A shows the ratio of

the A
′

1 and E
′

matrix elements as a function of temperature for pump probe and spontaneous

Raman. It can be seen that the two sets of data differ by a factor greater than 5. To verify

the validity of our mathematical analysis and test the accuracy of our fitting routines,

the two A
′

1 modes’ deformation potentials were compared as well. Fig. 4.25-B shows that

the Raman and pump probe trends, as expected, almost overlap. Noting that in the ISRS

experiments the E
′

amplitude is somehow lower than in Raman’s, a possible interpretation of

the data can be developed . The starting point is, once again, the realization that polaritons

display both a phonon-like and a wave-like nature, that is, they can be treated as the field of

an an electromagnetic wave. Accordingly, the pump beam traveling through the sample at

the group velocity of the laser pulse (vg) generates a point-like cluster of radiating dipoles. It

turns out that the dipoles, oscillating at Ω = 6.3THz, propagate through the medium faster
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than the speed of light at their oscillating frequency, c
n(Ω) . A charged particle (in our case

an oscillating dipole) traveling faster than the speed of light generates what is commonly

referred to as Cherenkov radiation [89, 90, 91, 92]. When dealing with Cherenkov radiation

it is customary to distinguish between two different regimes: subluminal (vg > c
n(0)) and

superluminal (vg < c
n(0)) [93]. Recalling the dispersion of the dielectric constant in the

vicinity of a phonon resonance (Fig. 4.2-A), it becomes evident that in the former case the

entire polariton branch is engaged, while in the latter one, only those frequencies Ω > Ωc

are involved in the radiation process; Ωc is defined such that vg =
c

n(Ωc)
.

Figure 4.26: Results of a calculation of the Cherenkov electric field due to a point dipole
located at ρ = 0 and z − vt = 0 traveling to the right at speed v through a medium with
dispersion given by 4.10, from [94].

In both cases the electric field is not emitted isotropically but rather within a cone whose

aperture angle is given by:

θc = cos−1(
c

vgn
) (4.53)

for the superluminal case and by:

θc = tan−1(4

√

(η − ζ)/ξ3

γ
) (4.54)

for the subluminal case, where γ = 1√
1−ǫ∞v2/c2

, ζ = 2 − √
4− 3η and η = 1 − (Ωc/ΩTO)

[95]. Fig. 4.26 shows the simulated electric field spatial and temporal intensity in the

superluminal regime and clearly portrays the Cherenkov angle. It is important to observe

that the polariton field is confined mainly to the edge of the Cherenkov cone and tends to
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fade in the center region right behind the traveling dipoles. The field distribution illustrated

in Fig 4.26 is relative to a point source distribution of dipoles. In our experiments the

focused spot size of the pump is ≃ 40µm and is thus effectively point-like compared to the

wavelength of the polariton ( c2πnΩ ). Since the probe spatially overlaps with the pump to

enhance the signal strength and is even smaller in size, only the central region of the cone

(θ = 0 in Fig. 4.26) is actually scanned. Thus, the scattering cross section extracted from

our measurements includes only a portion of the polariton field. As a result, the E
′

mode

Raman matrix element is underestimated, consistently with what is shown in Fig. 4.25.

It would be possible, in principle, to reconstruct the field profile moving the probe beam

along the radial direction (ρ) for each value of the pump probe time delay [93]. The E
′

mode spread across the Cherenkov cone could then be fully accounted for by integrating

the experimental data along the ρ direction. This procure would eventually result in a more

accurate value for the scattering cross section.

4.7 CdSe

The last section of this chapter is dedicated to CdSe; a II-VI semiconductor known

mainly for its applications in quantum dots [96, 97, 98]. Since CdSe has been extensively

studied over the years [99, 100, 101] and its Raman and infrared properties are fully un-

derstood, it seems unnecessary to review the details of the vibrational spectrum of the

material. Rather, only one particular feature, shared by both time domain and frequency

domain measurements, will be examined here because it appears to be ascribable to the

interaction of light with a surface polariton mode of CdSe.

4.7.1 Material properties

CdSe crystallizes in the wurtzite structure and belongs to the C6v point group [100]. The

vibrational representation of CdSe can be decomposed into the irreducible representation

[99]:

Γvib ≡ A1 + 2B1 + E1 + 2E2 (4.55)

The A1 and E1 modes are both Raman and infrared active and transform according to Z

and (X,Y ) respectively; the E2 is only Raman active; while the B mode is neither Raman
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nor infrared active. The gap of CdSe is located at ≃ 730nm at room temperature and shifts

to ≃ 690nm at 75K [102]. The sample used in our measurements is a (0001) double-side

polished 1cm × 1cm × 1mm CdSe crystal purchased from MTI Corporation. CdSe has a

natural tendency to be slightly n-type even when no dopants have been added during the

growing process [100]. This was presumably the case for our sample as well.

4.7.2 Experimental data

The Raman scattering spectrum for 514.5nm laser excitation line is shown in Fig. 4.27.
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Figure 4.27: CdSe Raman spectrum at 100K in back scattering geometry z(xy)z̄,
λL = 514.5nm

The experimental setup is the same one used for GaSe (Sec. 4.6). The incident power is

≃ 40mW. In the back scattering geometry, z(xy)z̄, only two modes can be detected, namely

the A1(LO) and the E2, both visible in Fig. 4.27. The longitudinal character of the A1 mode

is displayed by the presence of several peaks at frequency multiples of the fundamental one

at 210cm−1 [103, 104, 105]. The accuracy of our peak labeling has been confirmed by the

modes’ selection rules tested at two different choices of the incident field polarization. Yet,

a closer look at the spectrum reveals the presence of an additional feature which mingles
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with the E2 peak (see Fig. 4.28). The frequency of this unexpected peak coincides very well

with the A1(TO) frequency which should be forbidden in this geometry.
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Figure 4.28: Raman spectrum of CdSe at 100K: extra feature at ≃ 169cm−1, λL = 514.5nm.

Before attempting to justify the anomalous presence of the A1(TO) mode in the spontaneous

Raman spectrum, the corresponding pump probe data will be presented. Since CdSe is

highly absorptive at 514.nm, the parameter measured was the differential reflectance (∆R
R ).

Fig. 4.29 shows the normalized differential reflectance when the pump and probe power is

1.66mW and 620µW respectively. The linear prediction fitting of the time domain data

(inset of Fig. 4.29) reveals the presence of two modes; the A1(TO) at ≃ 169cm−1 and a

second mode at ≃ 200cm−1.

The key to explain these additional features lies in the surface plasmon polariton theory.

The first evidence that surface modes had to be included in the picture came from the

realization that 200cm−1 is the frequency at which the dielectric constant of CdSe equals

−1, as can be easily verified using Eq. 4.10 with ΩLO = 211cm−1, ΩTO = 169cm−1 and

ǫ∞ = 7.9 [106]. As shown in Fig. 4.7-A, a surface plasmon mode is confined between two

frequencies, ΩTO and ΩD, and requires a wave vector parallel to the sample surface in

order to be launched. In both Raman and pump probe experiments, the laser beam is not
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perfectly perpendicular to the GaSe crystal and, as a result, the incident k vector has a

non vanishing component along the surface (k‖). Moreover, a continuum of k‖ values is

generated whenever a collimated laser beam is focused down by a lens.
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Figure 4.29: ISRS signal on CdSe at 300K, λL = 514nm and, in the inset, frequency spec-
trum, calculated after fitting the data through the Linear Prediction algorithm.

Since both ΩTO and ΩD are detected, it is obvious that all the other frequencies along the

surface plasmon curve can be equally excited. Yet, Fig. 4.29 inset shows only two distinct

peaks at ωD and ωTO and none of the intermediate frequencies. To reconcile the theoretical

picture with the experimental data, it is necessary to reconstruct the time domain signal,

S(t), assuming that all frequencies on the surface polariton branch, shown in Fig. 4.7-A, are

excited. Each point on the dispersion relation results in a sinusoidal signal, sin(ωt), in the

time domain. Hence, assuming for the sake of simplicity that all oscillators have the same

strength, the final signal can be obtained by adding up the contribution from all frequencies
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in the ωTO − ωD range:

S(t) ∝
ΩD
∫

ΩTO

sin(ωt) dt =
cos(ΩTOt)

t
− cos(ΩDt)

t
(4.56)

The beating of the two sinusoidal signals in Eq. 4.56 can be clearly observed in Fig. 4.29.
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CHAPTER V

Two Pulse Squeezing: Phonon Echo

This chapter is somewhat of a detour from the general theme of the previous three

chapters of this thesis: coherent phonons and their interaction with light. The topic is,

in fact, a peculiar phenomenon, suggestively named “phonon echo”, that characterizes a

different kind of vibrational state squeezed phonons. The theory of squeezed phonons,

first demonstrated by Garrett and coworkers in 1997 [107], is developed in Sec. 5.1 in close

analogy with the concepts introduced in Chap. II. Sec. 5.2 shows how the echo effect emerges

when squeezed phonons are generated in the context of a double pump experiment. The

chapter concludes with a review of a set of simulations carried on to validate the theory

and set the guidelines for a potential experiment designed to measure the echoes.

5.1 Coherent and Squeezed Phonons

5.1.1 Coherent Phonons Revisited

In order to discuss again coherent phonons, it is helpful to rewrite the equation of motion

neglecting damping:

d2q

dt2
+ ω2q = 2F (t) (5.1)

A factor of two has been added to the right hand side of Eq. 5.1 for computation convenience.

The driving term, that was derived formally in Eq. 2.48, can be related to the electrical

susceptibility recalling that the energy density stored in a medium is given by E = 1
2P · E

and the polarization vector can be written as P = χE. Similarly to what was done in
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Eq. 2.41, it is possible to expand χ as a function of the normal mode coordinate q(t):

χ(t) = χ0 +
∂χ

∂q

∣

∣

∣

∣

0

q(t) +
1

2

∂2χ

∂q2

∣

∣

∣

∣

0

q2(t) + ... (5.2)

In the case of coherent phonons, only the second term in the expansion, the one depending

linearly on q(t), is retained and the force becomes:

2F (t) =
1

2

∂χ

∂q

∣

∣

∣

∣

0

|E|2 (5.3)

After replacing 2F (t) with Eq. 5.3 and using a delta function approximation for the electric

field intensity, i.e. F (t) = λδ(t), the solution of Eq. 5.1 is:

q(t) = Dsin(ωt+ ϕ) (5.4)

where Dsin(ϕ) = q0 and Dcos(ϕ) = q̇0
ω + 2 λ

ω , q0 and q̇0 are here the initial value of the

phonon position and momentum. Eq. 5.4 is the analog of Eq. 2.33 and describes the dynamic

of a coherent phonon: when the laser pulse hits the sample the phonon mode amplitude

remains unchanged, but its derivative, i.e., the phonon momentum p, undergoes a sudden

increase as shown in Fig. 5.1-A.

t=0+
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t=0-

|
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|

t=0+

t=0-

 

P

Figure 5.1: Eigenfunction of a coherent (A) and squeezed (B) phonon in the momentum
space before and after t = 0, when the laser pulse reaches the sample.

The behavior of a coherent phonon can be more clearly visualized in phase space, i.e., the
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q− p plane. The energy equipartition principle [108] states that the energy associated with

a single lattice mode with frequency ω is given by:

< p >2

2m
+

< q >2 ω2m

2
= kT (5.5)

wherem is the ion mass (assuming that all the ions are the same), k the Boltzmann constant

and T the temperature in degree Kelvin. <> indicates the thermal average. Operating in

the microcanonical ensemble and renormalizing q and p:

P = p 1√
2kTm

Q = qω
√

m
2kT

(5.6)

an unperturbed phonon mode is represented by a sequence of points rotating at angular

velocity ω on a unitary radius circumference, see Fig. 5.2-A.

ω ω

t=0
-

t=0
+

Q

P P

Q

A B

Figure 5.2: Representation of a coherent phonon in the phase space: the circle associated
to a particular phonon mode is displaced along the momentum axis by an impulsive driving
force and starts rotating around the center at angular velocity ω, so that < Q >∝ sin(ωt).

After the arrival of the laser pulse the circumference is shifted along the momentum axis

and starts orbiting around the axes center, as shown in Fig. 5.2-B, so that Q and P oscillate

harmonically at frequency ω. Comparing Fig. 5.2-A and Fig. 5.2-B, it can be noted that,

even though the interaction with the laser light modifies the phonon expectation value,
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< Q >, its variance < Q2 > remains unaffected: the circle shape and area do not change.

5.1.2 Squeezed Phonons

A substantially different scenario is encountered when the force is calculated considering

the second order term in Eq. 5.2:

2F (t) =
1

2

∂2χ

∂q2

∣

∣

∣

∣

0

q(t)|E|2 (5.7)

Maintaining the same notation used in the coherent phonon case, the driving force can be

written as F (t) = λq(t)δ(t) so that the solution of Eq.5.1 reads:

q(t) = Wsin(ωt+ ϕ) (5.8)

where nowWsin(ϕ) = q0 andWcos(ϕ) = q̇0
ω + 2λ

ω q0. Hence a broadening, rather than a rigid

translation, is induced in the phonon momentum, as depicted in Fig. 5.1-B. Equivalently,

in phase space, a driving term linearly dependent on q deforms the original circle into an

ellipse (hence the name “squeezing”) which keeps rotating at angular velocity 2ω.

ω

t=0
-

t=0
+

ω

Q

P

Q

PA B

Figure 5.3: Representation of a squeezed phonon state in phase space: the circle associated
to a particular phonon mode is deformed into an ellipse that rotates around the center at
angular velocity 2ω so that < Q >= 0 but < Q2 >∝ sin(2ωt).

As opposed to < Q > and < P > which remain constantly zero since the ellipse is not off
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centered, < Q2 > and < P 2 > begin to oscillate in time at twice the mode frequency as

shown in Fig. 5.3. The detection of squeezed phonons, in exact analogy with their coherent

counterpart, takes place reversing the generation mechanism: probing the changes that an

oscillation in < Q2 > induces in the dielectric constant, see Eq. 5.2. Obviously this is

more easily accomplished in materials where ∂χ
∂q

∣

∣

∣

∣

0

≃ 0 so that only squeezed phonons are

effectively generated and their detection is not obscured by other stronger interferences. It

turns out that this is actually the case in several perovskite crystals, such as KTaO3 and

SrTiO3 [25]. In 1997 Garrett et al. [107] performed several ISRS experiments on KTaO3

detecting a signal at a frequency, ≃ 3.5THz, which is very close to twice the frequency of one

of the TA modes of the material at the X-point of the Brillouin zone, see Fig. 5.4. Through

careful comparison with second order spontaneous Raman scattering, the authors proved

that they effectively measured the squeezed phonon field, extracted the squeezing factor,

1 − <u2(t)>
<u2(0)> (where u(t) is the ions’ displacement introduced in Chap. II), and showed its

linear dependence on the pump power consistently with the theoretical predictions.
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Figure 5.4: Room temperature normalized differential transmittance through a ∼ 1mm
thick KTaO3 sample. The frequency retrieved, see FFT trace displayed in the inset, is
KTaO3 and corresponds to twice the frequency of the KTaO3 TA mode at the X-point of
the Brillouin zone.
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5.2 Echo

The novelty of this work consists in studying the behavior of squeezed phonons when

they are generated by two distinct light pulses separated by a time delay t∗. Although the

mathematical formulation of the “two pump” experiment is fundamentally the same as the

previous section’s, the final outcome of the analysis is unexpected. In fact, both theory and

simulations show that when a squeezed phonon field is generated by two pulses separated

by a delay ∆t, an oscillatory signal arises at time 2∆t after the initial excitation. To get a

broader perspective on the matter, the two pump generation process will be treated both

classically, along the lines of Sec. 5.1, and quantum mechanically.

5.2.1 Classical approach

Considering now excitations by two pulses arriving successively, the only modification

needed in the equation of motion, Eq. 5.1, pertains to the driving force, F (t):

F (t) = q(t) [λδ(t) + µδ(t− t∗) ] (5.9)

When t < t∗ the solution is given by Eq. 5.8, while, when t > t∗, q(t) can still be written

as:

q(t) = Zsin(ω(t− t∗) + θ) (5.10)

and by applying the boundary conditions it is possible to determine Z and θ:

Zsin(θ) = sin(ωt∗)
(

q̇0
ω + 2λ

ω q0

)

+ q0cos(ωt
∗)

Zcos(θ) = cos(ωt∗)
(

q̇0
ω + 2λ

ω q0

)

− q0sin(ωt
∗) + 2µ

ω Zsin(θ)
(5.11)

Inserting Eq. 5.11 in Eq. 5.10 leads to the final expression of q(t) when t > t∗:

q(t)

∣

∣

∣

∣

t>t∗
= sin(ωt)

(

q̇0
ω

+
2λ

ω
q0

)

+q0cos(ωt)+
2µ

ω
sin(ω(t−t∗))

[

sin(ωt∗)

(

q̇0
ω

+
2λ

ω
q0

)

+ cos(ωt∗)q0

]

(5.12)
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q2 is obtained by squaring Eq. 5.12:

q2(t) =

[

sin(ωt)

(

q̇0
ω

+
2λ

ω
q0

)

+ q0cos(ωt)

]2

+
4µ

ω
sin(ω(t− t∗))

[

sin(ωt)

(

q̇0
ω

+
2λ

ω
q0

)

+ q0cos(ωt)

] [

sin(ωt∗)

(

q̇0
ω

+
2λ

ω
q0

)

+ cos(ωt∗)q0

]

+
4µ2

ω2
sin2(ω(t− t∗))

[

sin(ωt∗)

(

q̇0
ω

+
2λ

ω
q0

)

+ cos(ωt∗)q0

]2

(5.13)

The first and second term represent oscillations respectively at t = 0 and t = t∗. The third

term, on the other hand, produces an oscillatory signal that arises at t = 2t∗ and can be

rewritten, taking a thermal average and using Eq. 5.5, as:

< q2ECHO(t) >

< q20 >
=

µ2

ω2

[

2λ

ω
sin(2ω(t− 2t∗)) +

2λ2

ω2
cos(2ω(t− 2t∗))

]

(5.14)

The name “echo” refers to the fact that the oscillations in Eq. 5.14 are delayed with respect

to the first pump arrival by twice the time difference between the pumps, t∗, and thus

resembles the familiar phenomenon of acoustic echo. It is crucial to emphasize that the

echo effect is exclusively associated to the squeezed phonon field and would thus not be

observable when just a coherent phonon state is generated.

5.2.2 Quantum mechanical approach

In order to further confirm the validity of the conclusions reached so far, the two pump

problem will be now approached from a quantum mechanic viewpoint. When only one

phonon mode at frequency ω is considered, the relevant Hamiltonian can be written as:

H =
P 2

2
+
[

ω2 − 2F (t)
] Q2

2
(5.15)

where P and Q are defined in Eq. 5.6 and F (t) in Eq. 5.9. Recalling that, given a time

dependent operator A, the commutator [H,A] is given by [10]:

[H,A] = −i~
dA

dt
+

∂A

∂t
(5.16)
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the equations of motion for σ =< Q2 > can be retrieved:

...
σ + 4σ̇

[

ω2 − 2F (t)
]

− 4Ḟ (t)σ = 0 (5.17)

The boundary conditions at t = 0, when the first impulse arrives, are:

∆σ = 0

∆σ̇ = 4λσ(0)

∆σ̈ = 2λ [σ̇(0−) + σ̇(0+)]

(5.18)

The solution of Eq. 5.17 when t < t∗ is:

σ = σ0[A+ sign(λ)
√

A2 − 1 sin(2ωt+ ϕ)] (5.19)

where A = 1 + 2 λ2

ω2 and ϕ = −atan( λω ). When t > t∗, Eq. 5.17 has to be solved applying

the boundary conditions, listed in Eq. 5.18, at t = t∗:

σ(t)

σ0

∣

∣

∣

∣

t>t∗
= A(1 + 2

µ2

ω2
) + 2

µ

ω

√

A2 − 1 cos(2ωt∗ + ϕ) + 2
µ2

ω2

√

A2 − 1 sin(2ωt∗ + ϕ) +

+(1− µ2

ω2
)
√

A2 − 1 sin(2ωt+ ϕ) − 2
µ

ω

√

A2 − 1 cos(2ωt+ ϕ) +

+2
µ

ω
A sin(2ω(t− t∗))− 2

µ2

ω2
A cos(2ω(t − t∗)) +

+
µ2

ω2

√

A2 − 1 sin(2ω(t− 2t∗)− ϕ) (5.20)

The last term represents the echo arising at time t = 2t∗ and matches exactly what was

obtained classically in Eq. 5.14.

5.3 Simulations

In this last section the theoretical results are tested through different simulations de-

signed to mimic the behavior of a distribution of phonons when excited by an impulsive

force. Within the framework of the microcanonical ensemble, in the absence of any pertur-

bation, a phonon mode with characteristic frequency ω can occupy a variety of states all

with the same energy kBT , see Fig. 5.5-A.
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Figure 5.5: (A) Thermal distribution of P and Q for a phonon mode of frequency ω (B)
Phonon density of states adopted in the simulations.

These different combinations of Q and P values constitute the allowed initial conditions

necessary to solve Eq. 5.1. In this perspective a thermal average is equivalent to averaging

the solutions obtained with the system in different initial states. Another aspect that has

to be included in the simulations is the phonon spread in frequency: each phonon mode

has associated a particular dispersion relation with a corresponding range of frequencies.

Since the phonon density of states [7], which indicates which frequencies are the most likely

to be excited, has a peak at any existing van Hoove singularity [109], it was approximated

by a Gaussian function centered around f0 = 3.5THz, see Fig. 5.5-B. Fig. 5.6 shows a

numerical simulation of < Q2(t) > as defined in Eq. 5.13, obtained by averaging over

No = 100 oscillators distributed like in Fig 5.5. The others parameter were chosen as

follows: λ = µ = ω0, t
∗ = 10ps. Three distinct oscillation bursts at frequency 2ω0 can

be observed: at t = 0, when the first pump arrives; at t = 10ps, when the second pump

reaches the sample; and at t = 20ps, the echo signal. The interaction between sinusoids with

different frequency, commonly known as dephasing, is responsible for the decaying character

of the oscillatory signal. The decay constant is consequently proportional to the inverse of

the phonon density width, Fig. 5.5-B. Both Eq. 5.20 and Eq. 5.13 suggest that the ratio

between the echo and the first oscillation amplitude is ∝ µ2

ω2 . This is actually confirmed in

Fig. 5.7 where < Q2(t) > has been simulated for the case λ = µ = ω0/2. The simulations

presented so far constitute the necessary framework to guide any future experimental effort

aimed at measuring the echo signal. In particular, the very pronounced dependence of the
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echo amplitude on the pump intensity shows how critical it is to estimate the required

conditions, in terms of power, pulse width, repetition rate, in order to successfully carry on

the experiments.

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

20

ECHO

SECOND PULSE

10ps

 

 

<Q
2 (t

)>
/<
Q

02 >

t (ps)

10ps

FIRST PULSE

Figure 5.6: Simulated time evolution of < Q2(t) > when λ = µ = ω0.

5.4 Experimental Feasibility

The main challenge encountered when trying to measure experimentally the echo signal

consisted in detecting its very small amplitude. As both Eq. 5.14 and Eq. 5.20 indicate,

the echo is a factor (µω )
2 smaller than the oscillations generated directly by the two pumps.

Since the frequency of the lattice vibrations (ω) cannot be changed, the primary concern in

the experiments was to maximize µ.

Both µ and λ depend linearly on the laser intensity I0 [107]:

I0 =
P

fRA
(5.21)
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Figure 5.7: Simulated time evolution of < Q2(t) > when λ = µ = ω0/2.

where P is the laser average power, fR the repetition rate and A the pump spot size. All

these three parameters were optimized in the course of the measurements. An 800nm Coher-

ent RegA amplifier was always preferred to a Ti:sapphire oscillator due to its significantly

higher fluence. The maximum available power was ≃ 400mW for the pump beams and

≃ 80mW for the probe. Short focal length lenses were used to reduce the spot size which

ended up being ≃ 20µm for the pump and ≃ 10µm for the probe. The amplifier is optimized

for a 250kHz repetition rate. Even though it is possible to modify the repetition rate, this

usually resulted in a substantial loss of power: when operating the amplifier at 150kHz

the average intensity dropped by 30%. Moreover, using the RegA at a frequency different

than the one it is designed for always introduces additional noise and power fluctuations.

Thus, it turned out to be more effective in terms of overall signal to noise ratio to set fR

to 250kHz.

At 800nm KTaO3 is transparent [110], so the differential transmittance was the physi-
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cal quantity measured in all the pump probe experiments. Despite the exceptionally high

amplitude of the main oscillations (see Fig. 5.4), the echo could never be detected. This

suggests that a further increase in the laser fluence is required to raise the signal ampli-

tude above the noise floor. A possible approach would be to employ a kHz amplifier which

could easily provide a more energetic pump beam: 8µJ/pulse [111]. It is instructive to

estimate the echo signal amplitude achievable using such an amplifier. If ∆T
T ≃ 4 · 10−3

was obtained at 250kHz repetition rate, 4µJ pulses at 1kHz will increase the first pump

oscillations to ≃ 4 · 10−2. To calculate the echo signal strength, it is necessary to recall the

exact expression for µ [107]:

µ =
RπI0
nc

(5.22)

where R is the Raman tensor (≃ 6 · 1015cm/g in KTaO3), n = 2.24 the refractive index and

c the speed of light. This results in (µω )
2 ≃ 10−4 and sets the echo amplitude around ∆T

T ≃

5·10−6. This sensitivity is definitely achievable with a heterodyne detection scheme. In fact,

signals of lower intensity (10−7) have successfully been detected in our lab. In conclusion,

considering the consistent improvement obtainable by reducing the laser repetition rate,

future attempts to measure the echo should be pursued with a kHz amplifier.
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CHAPTER VI

High-Frequency Diamagnetic Metamaterials

In the last few years, metamaterials have been an area of rapidly increasing interest.

Beyond the attractive potential applications offered by these novel materials, the main moti-

vation underlying the massive effort sustained by the scientific community can be attributed

to the possibility of building left-handed (or negative refraction) materials [112, 113, 114].

One of the main difficulties hindering the achievement of negative refraction [115] lays in the

weak magnetic response, even in the presence of a resonance, of natural materials especially

at high frequencies [116]. To overcome this obstacle, several approaches have been pro-

posed, one of the most famous being perhaps assemblies involving split rings [117]. Another

popular method to achieve negative refraction [118] is to employ a matrix of resonators

embedded in a host material: this artificial structure can exhibit both negative permittiv-

ity and permeability taking advantage of the well known Mie resonances [119, 120, 121].

Keeping in mind the aforementioned pioneering works, another aspect of magnetism will

be examined here: diamagnetism, i.e., µ < 1, µ being the magnetic permeability. This

phenomenon is extremely weak in natural materials: the magnetic susceptibility, χ = µ−1,

of the majority of common materials does not exceed ≃ −10−5 and reaches ≃ −5 · 10−4

only in pyrolytic graphite (see Table 6.1). Diamagnetism has certainly not received much

attention in the scientific literature, but it is responsible for several remarkable phenomena:

magnetic levitation is probably the most noteworthy [122, 123, 124].

The present chapter describes a novel metamaterial based on the well known sphere-

in-a-host structure whose magnetic permeability can be selectively varied in the microwave

frequency range up to a point where a strongly diamagnetic character (µ ≃ 0.4) is achieved.
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MATERIAL χ (SI UNITS)

Water −8.8 × 10−6

Bismuth metal −1.7 × 10−4

Graphite rod −1.6 × 10−4

Pyrolitic graphite ⊥ axis −4.5 × 10−4

Pyrolitic graphite ‖ axis −8.5 × 10−5

Table 6.1: Magnetic susceptibility for different materials present in nature, from [4].

The first part of the chapter (Sec. 6.1) lays down the necessary mathematical tools to

address a classic problem in physics: the scattering of electromagnetic radiation by a sphere

(Sec. 6.2). The solution to the isolated sphere problem is then generalized in Sec. 6.3 to

the case of multiple spheres arranged in a cubic lattice. The expression for the effective

optical constants of a medium loaded with a matrix of such spheres is attained at the end of

Sec. 6.3 and used in Sec. 6.4 to estimate the magnetic permeability of the new metamaterial.

Sec. 6.5 is dedicated to outlining the fabrication procedure followed to build our samples,

reporting the experimental data and discussing their relevance in light of the simulations

previously carried out.

6.1 Expansion of a vector plane wave in spherical wave functions

The main difficulty that arises when dealing with the problem of a plane wave interacting

with an object with spherical symmetry is to choose a convenient set of basis functions that

provide the proper frame to solve Maxwell’s equations and, particularly, to satisfy the

required boundary conditions. In the case of a plane wave incident on a sphere, it turns out

that the best choice are the Spherical Wave Functions l e
mn
o

, m e
mn
o

, n e
mn
o

, defined as follows
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[125]:

l e
mn
o

=
∂

∂R
zn(kR)Pm

n (cosθ)
cos

sin
mφ i1 +

1

R
zn(kR)

∂

∂θ
Pm
n (cosθ)

cos

sin
mφ i2

∓ m

Rsinθ
zn(kR)Pm

n (cosθ)
sin

cos
mφ i3 (6.1)

m e
mn
o

= ∓ m

sinθ
zn(kR)Pm

n (cosθ)
sin

cos
mφ i2 − zn(kR)

∂Pm
n

∂θ

cos

sin
mφ i3 (6.2)

n e
mn
o

=
n(n+ 1)

kR
zn(kR)Pm

n (cosθ)
cos

sin
mφ i1

+
1

kR

∂

∂R
[Rzn(kR)]

∂

∂θ
Pm
n (cosθ)]

cos

sin
mφ i2

∓ m

kRsinθ

∂

∂R
[Rzn(kR)]Pm

n (cosθ)
sin

cos
mφ i3 (6.3)

where i1, i2 and i3 are the three unit vectors in the spherical coordinate system, zn(kR)

represents one of the Spherical Bessel functions (j, n, h(1) or h(2)), while Pm
n are the

Associated Legendre Polynomials [126]. In order to take advantage of the benefits offered

by the Spherical Wave Functions, it is necessary to expand a plane wave in terms of Eq. 6.1,

Eq. 6.2 and Eq. 6.3. Let us thus consider a plane wave propagating in a medium with optical

constants ǫ and µ, assuming that it is traveling along the z direction and that its electric

field is polarized along a:

E = aeikz = aeikRcosθ (6.4)

where k = 2π
λ

√
ǫµ is the magnitude of the wave vector, while θ is the angle between the

radial vector R and the z axis. The vector a can be decomposed into its three Cartesian

components:

ax = sinθcosφ i1 + cosθcosφ i2 − sinφ i3 (6.5a)

ay = sinθsinφ i1 + cosθsinφ i2 + cosφ i3 (6.5b)

az = cosθ i1 − sinθ i2 (6.5c)

Each of them can now be rewritten in terms of the Spherical Wave Functions. The math-

ematical procedure will be shown in detail only for ax; the result obtained will then be

generalized to ay and az. Since ∇ · ax = 0, only the zero divergence Spherical Wave Func-
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tions, namely m and n, need to be included in the expansion. Moreover, given the ax

dependence on φ and the fact that the electric field does not diverge when R 7→ 0, m has

to be set to 1 and zn has to be restricted to the Spherical Bessel functions of the first kind

(jn). The appropriate parity (e or o) for Eq. 6.2 and Eq. 6.3 can be chosen by keeping in

mind the φ dependence of ax :

axe
ikz = axe

ikRcosθ =

∞
∑

n=0

(

anm
(1)
o1n + bnn

(1)
e1n

)

(6.6)

an can be found by first projecting Eq. 6.6 on the m
(1)
o1n vector space:

π
∫

0

2π
∫

0

ax ·m(1)
o1ne

ikRcosθsinθ dθ dφ = 2πinn(n+ 1)[jn(kR)]2 (6.7)

and then using the orthogonality properties of the Spherical Bessel Functions and the

Associated Legendre Polynomials:

an

2π
∫

0

π
∫

0

m e
mn

o

·m e
mn

o

sin(θ) dθ dφ = an(1+δ)
2π

2n + 1

(n+m)!

(n−m)!
n(n+1)[zn(kR)]2 (6.8)

where δ = 0 if m > 0, δ = 1 if m = 0. Equating Eq. 6.7 to Eq. 6.8 leads to:

an = in
2n+ 1

n(n+ 1)
(6.9)

Since ne1n shares the same orthogonality properties of me1n, bn can be promptly found:

bn = −in+1 2n+ 1

n(n+ 1)
(6.10)

Hence, ax can be written as:

axe
ikz =

∞
∑

n=0

in
2n+ 1

n(n+ 1)

(

m
(1)
o1n − in

(1)
e1n

)

(6.11)
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The y component of the a vector can be expanded in a similar way:

aye
ikz = −

∞
∑

n=0

in
2n+ 1

n(n+ 1)

(

m
(1)
e1n + in

(1)
o1n

)

(6.12)

The z component has to be treated somehow differently. Since az has a non-vanishing

divergence, only the l function has to be included in its expansion. Repeating the same

procedure outlined for ax results in:

aze
ikz =

1

k

∞
∑

n=0

in−1(2n+ 1)l
(1)
e0n (6.13)

6.2 Diffracted field by a sphere

Figure 6.1: Plane wave incident on a dielectric sphere.

The spherical wave expansion so far developed can now be employed to solve the

scattering-by-sphere problem [127, 128, 129]. If a sphere of radius a with dielectric constant
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ǫ2 and magnetic permeability µ2 is located in a medium with constants ǫ1 and µ1, a plane

wave propagating along the z direction and polarized along the x direction has a propa-

gation vector given by k1 = 2π
λ

√
ǫ1µ1 in the medium and k2 = 2π

λ

√
ǫ2µ2 inside the sphere.

The goal is now to calculate the electric and the magnetic field both inside and outside the

sphere. The standard approach to this problem consists in splitting the electric field into

three different parts (see Fig. 6.1): the incident plane wave Ei; the field inside the sphere,

Et; and the field that the sphere itself radiates due to the interaction with the incoming

wave, Er. As pointed out at the beginning of the previous section, the boundary conditions

are easily handled if Ei, Er and Et are written in terms of vector spherical wave functions.

The incident field has already been expanded in Eq. 6.11 and the result is restated here for

convenience:

Ei = axE0e
ik1z−iωt = E0e

−iωt
∞
∑

n=1

in
2n+ 1

n(n+ 1)

(

m
(1)
o1n − in

(1)
e1n

)

Hi = ay
k1
µ1ω

E0e
ik1z−iωt = −k1E0

µ1ω
e−iωt

∞
∑

n=1

in
2n+ 1

n(n+ 1)

(

m
(1)
e1n + in

(1)
o1n

)

(6.14)

E0 is the plane wave amplitude. The field inside the sphere and the “diffracted” one have

the same functional form just with different coefficients an and bn (see Eq. 6.6).

Er = E0e
−iωt

∞
∑

n=1

in
2n+ 1

n(n+ 1)

(

arn m
(3)
o1n − ibrn n

(3)
e1n

)

Hr = −k1E0
µ1ω

e−iωt
∞
∑

n=1

in
2n + 1

n(n+ 1)

(

brn m
(3)
e1n + iarn n

(3)
o1n

)

(6.15)

Et = E0e
−iωt

∞
∑

n=1

in
2n+ 1

n(n+ 1)

(

atn m
(1)
o1n − ibtn n

(1)
e1n

)

Ht = −k2E0
µ2ω

e−iωt
∞
∑

n=1

in
2n+ 1

n(n+ 1)

(

btn m
(1)
e1n + iatn n

(1)
o1n

)

(6.16)

m and n in the incident and transmitted field contain spherical Bessel functions of the first
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kind (jn):

m
(1)

e
1n

o

= ± 1

sinθ
jn(k1R)P 1

n(cosθ)
sin

cos
mφ i2 − jn(k1R)

∂P 1
n

∂θ

cos

sin
mφ i3 (6.17)

n
(1)

e
1n

o

=
n(n+ 1)

k1R
jn(k1R)P 1

n(cosθ)
cos

sin
mφ i1 +

1

k1R
[k1Rjn(k1R)]′ (6.18)

∂

∂θ
P 1
n(cosθ)

cos

sin
mφ i2 ±

1

k1Rsinθ
[k1Rjn(k1R)]′P 1

n(cosθ)
sin

cos
mφ i3

In Eq. 6.16 k2 replaces k1, while in m(3) and n(3), h
(1)
n (the spherical Hankel function of the

first kind) takes the place of jn. In order to find the value of an and bn, the continuity of

the tangential component of the electric and magnetic field has to be enforced:

i1 × (Ei +Er) = i1 ×Et

i1 × (Hi +Hr) = i1 ×Ht

(6.19)

These two vector equations generate a system of four scalar equations that can be solved to

find the unknown coefficients an and bn. Only arn and brn are needed to find the field outside

the sphere (Er) and they are given by:

arn = − µ2jn(Nρ)[ρjn(ρ)]
′ − µ1jn(ρ)[Nρjn(Nρ)]′

µ2jn(Nρ)[ρh
(1)
n (ρ)]′ − µ1h

(1)
n (ρ)[Nρjn(Nρ)]′

(6.20)

brn = − µ2jn(ρ)[Nρjn(Nρ)]′ − µ1N
2jn(Nρ)[ρjn(ρ)]

′

µ2h
(1)
n (ρ)[Nρjn(Nρ)]′ − µ1N2jn(Nρ)[ρh

(1)
n (ρ)]′

(6.21)

where two new variables have been introduced: ρ = k1a and N = k2
k1
.

6.3 Scattering by a material loaded with spherical particles

The mathematical framework defined in the previous section can be now adopted to

address a more involved problem: a plane wave incident on a material loaded with a matrix

of spherical particles (see Fig. 6.2). The negative semi space (z < 0) contains a medium with

permittivity ǫ1 and permeability µ1, so that a plane wave propagating through is denoted
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by the following electric and magnetic field:

Exi = E0ie
−ikz

√
ǫ1µ1

Hyi = H0ie
−ikz

√
ǫ1µ1 = −

√

ǫ1
µ1

E0ie
−ikz

√
ǫ1µ1

(6.22)

where, as usual, k is the magnitude of the propagating vector. The same medium is filled

in the positive half space (z > 0) by spherical particles of radius a, with permittivity ǫ2,

permeability µ2, spaced from each other by a length s.

s

a

ε1 μ1

ε2 μ2

INCIDENT FIELD

EH

k

xy

z

Figure 6.2: Electromagnetic wave incident on a medium loaded with a matrix of spherical
particles.

Assigning to the sphere matrix effective optical constants ǫ and µ is equivalent to saying

that the reflected and transmitted fields are related to the incident field by the reflection

(r) and transmission (t) coefficients [26]:

r =
Er

Ei
=

√

µ
ǫ −

√

µ1

ǫ1
√

µ
ǫ +

√

µ1

ǫ1

t =
Et

Ei
= 1 + r (6.23)

The reflected field is:

Exr = rE0ie
−ikz

√
ǫ1µ1

Hyr = r

√

ǫ1
µ1

E0ie
−ikz

√
ǫ1µ1

(6.24)

106



while the transmitted field is:

Ext = tE0ie
−ikz

√
ǫµ

Hyt = −t

√

ǫ

µ
E0ie

−ikz
√
ǫµ

(6.25)

6.3.1 Scattered field by a sphere in the small wavelength approximation

The rather cumbersome problem defined above can be considerably simplified by consid-

ering spheres with a radius much smaller than the incident plane wave wavelength. When

a << λ√
ǫ1µ1

(or, equivalently, ρ << 1), all n > 1 terms in the Eq. 6.15 summation can be

neglected and the coefficients ar1 and br1 can be recast in a new form:

a1 = i
2

3
(k2µ1ǫ1)

3
2 a3

µ1 − µp

2µ1 + µp

b1 = i
2

3
(k2µ1ǫ1)

3
2a3

ǫ1 − ǫp
2ǫ1 + ǫp

(6.26)

ǫp and µp are defined as follows:

ǫp
ǫ2

=
µp

µ2
=

2(sinθ − θcosθ)

(θ2 − 1)sinθ + θcosθ
(6.27)

and θ = ka
√
ǫ2µ2. Eq. 6.26 can be obtained from Eq. 6.20 and Eq. 6.21 recalling the

following approximations for small arguments of the Bessel functions [126]:

j1(ρ) ∼
1

3
ρ [Nρj1(Nρ)]′ ∼ 1

3
ρ

h
(1)
1 (ρ) ∼ i

ρ2
[ρh

(1)
1 (ρ)]′ ∼ i

ρ2

(6.28)

The x component of the electric field generated by a single sphere located at (x0, y0, z0) can

be now computed from Eq. 6.15:

Exr = a3
[

E(z0)
ǫp − ǫ1
ǫp + 2ǫ1

(
∂2

∂x2
+ k2µ1ǫ1)− ikµ1H(z0)

µp − µ1

µp + 2µ1

∂

∂z

]

e−ikr0
√
ǫ1µ1

r0
(6.29)

r0 indicates the distance between the particle and the point at which the field is investigated.

A similar approach leads to the corresponding equation for the magnetic field polarized along

107



the y axis:

Hyr = a3
[

H(z0)
µp − µ1

µp + 2µ1
(
∂2

∂y2
+ k2µ1ǫ1)− ikµ1E(z0)

ǫp − ǫ1
ǫp + 2ǫ1

∂

∂z

]

e−ikr0
√
ǫ1µ1

r0
(6.30)

6.3.2 Scattering by an array of spherical particles

The total scattered field includes the contributions from all the other spheres located at

Ri = lsax +msay + nsaz where l, m, n are three integer indexes. The field at (x0, y0, z0)

is given by:

E(z0) = Eie
−ikz0

√
ǫ1µ1 +

+∞
∑

l′=−∞

+∞
∑

m′=−∞

+∞
∑

n′=0

a3

[

E(ns)
ǫp − ǫ1
ǫp + 2ǫ1

(
∂2

∂x20
+ k2ǫ1µ1)− jkµ1H(ns)

µp − µ1

µp + 2µ1

∂

∂z0

]

e−ikR0
√
ǫ1µ1

R0

(6.31)

l′, m′, n′ are used to indicate that the 0 term has to be omitted from the summation,

while R0 =
√

(ls − x0)2 + (ms− y0)2 + (ns− z0)2 is the distance of the ith sphere from

(x0, y0, z0). Defining α = ls, β = ms and γ = ns, the sum can be replaced by the following

integral:

1

s3

+∞
∫

−∞

+∞
∫

−∞

+∞
∫

0

−
x0+

s
2

∫

x0− s
2

y0+
s
2

∫

y0− s
2

z0+
s
2

∫

z0− s
2

dα dβ dγ

[

E(γ)
ǫp − ǫ1
ǫp + 2ǫ1

(
∂2

∂x20
+ k2ǫ1µ1)− jkµ1H(γ)

µp − µ1

µp + 2µ1

∂

∂z0

]

e−ik
√
ǫ1µ1

√
(α−x0)2+(β−y0)2+(γ−z0)2

√

(α− x0)2 + (β − y0)2 + (γ − z0)2

(6.32)

When dealing with the integration around the (x0, y0, z0) sphere, only the highest 1
R0

power,

which arises from the ∂2

∂x2
0
term, has to be retained:

∂2

∂x20
[
e−ikR

√
ǫ1µ1

R0
] ∼ 3(α− x0)

2 −R2
0

R5
0

(6.33)

The integral of Eq. 6.33 is easily computable by substitution:

x0+
s
2

∫

x0− s
2

y0+
s
2

∫

y0− s
2

z0+
s
2

∫

z0− s
2

3(α − x0)
2 −R2

0

R5
0

dα dβ dγ = −4

3
π (6.34)
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The first integral in Eq. 6.32 can be carried out more easily addressing first the dα and dβ

part and switching to cylindrical coordinates:

+∞
∫

−∞

+∞
∫

−∞

e−ikR
√
ǫ1µ1

R0
dα dβ =

−2πi

k
√
ǫ1µ1

e−ik|γ−z0|
√
ǫ1µ1 (6.35)

The integration in dγ can be performed more straightforwardly after setting ∂
∂z0

= − ∂
∂γ ,

the substitution is allowed since the integrand is a function of γ − z0. This finally leads to

the expression for the electric field:

E(z0) = Eie
−ikz0

√
ǫ1µ1 +

4

3

πa3

s3
E(z0)

ǫp − ǫ1
ǫp + 2ǫ1

− 2πi

k
√
ǫ1µ1

a3

s3

+∞
∫

0

[

k2ǫ1µ1E(γ)
ǫp − ǫ1
ǫp + 2ǫ1

+ ikµ1H(γ)
µp − µ1

µp + 2µ1

∂

∂γ

]

e−ik|γ−z0|
√
ǫ1µ1dγ

(6.36)

6.3.3 Effective electrical constants

To conclude the analysis, it is necessary to compute explicitly the electric and magnetic

field in the medium filled by spheres and infer from their expression the value of the effective

optical constants. By applying the operator △ = ∂2

∂z2
+ k2ǫ1µ1 to both Eq. 6.36 and

the corresponding equation for the magnetic field, the following system of two differential

equations is obtained:

△E(z0)(Q− f) = −3k2ǫ1µ1f

[

E(z0) +
1

ikǫ1

Q

R

∂

∂z0
H(z0)

]

△H(z0)(R − f) = −3k2ǫ1µ1f

[

H(z0) +
1

ikǫ1

R

Q

∂

∂z0
E(z0)

] (6.37)

where

Q =
ǫp + 2ǫ1
ǫp − ǫ1

R =
µp + 2µ1

µp − µ1
(6.38)

and f = 4
3πa

3/s3 is the filling factor, i.e. the ratio between the volume filled by the

spheres and the volume filled by the hosting material. The system in Eq. 6.37 can be solved

postulating the following functional form of the solution:

E(z0) = Ae−iKz0 H(z0) = Be−iKz0 (6.39)
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Some tedious algebraic manipulation leads eventually to the propagation constant K and

the reflected electric field Er:

K = k2ǫ1µ1
(Q+ 2f)(R + 2f)

(Q− f)(R− f)
(6.40)

Exr = Eie
ikz

√
ǫ1µ1

√

Q−f
Q+2f

R+2f
R−f − 1

√

Q−f
Q+2f

R+2f
R−f + 1

(6.41)

The effective dielectric and magnetic constant are found by setting K = k2ǫµ and comparing

Eq. 6.41 with Eq. 6.23:

ǫ = ǫ1

(

1 +
3f

ǫp+2ǫ1
ǫp−ǫ1

− f

)

(6.42)

and

µ = µ1

(

1 +
3f

µp+2µ1

µp−µ1
− f

)

(6.43)

6.3.4 Approximation for metal spheres

Even though Eq. 6.42 and Eq. 6.43 are exact and perfectly general, they are quite

involved and tend to hide the dependence of the optical constants on the different parameters

involved. The physical picture can be greatly simplified limiting our analysis to metal

spherical inclusions. In this case the dielectric constant, in accordance with the Drude

model [63], is large and almost purely imaginary at low frequencies, while the magnetic

constant is approximately equal to one. If ǫ2 = −iα with α >> 1, F (θ) ∼ 2
iθ , ǫp and µp are

reduced to:

ǫp =
2

i

√

ǫ2
µ2

λ

2πa
µp =

2

i

√

µ2

ǫ2

λ

2πa
(6.44)

Since ǫp is now smaller than ǫ2 but still significantly larger than ǫ1, Eq. 6.42 becomes:

ǫ = ǫ1

(

1 +
3f

1− f

)

(6.45)

On the other hand, a quick glance at Eq. 6.44 reveals that µp << µ1, as a result Eq. 6.43

becomes:

µ = µ1

(

1− 3f

2 + f

)

(6.46)
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Eq. 6.45 and Eq. 6.46 clearly show that, in the particular case of metal spheres, the effective

permeability of the composite depends only on the filling factor (f) and the permeability

(µ1) of the host medium. This can be more intuitively understood by noticing that the

condition |θ| >> 1 can be also expressed, after some manipulations, as δ << a. δ =
√

2
σωµ0

is the skin depth of the metal particles and accounts for the ability of a material to repel

an AC electric field. If the electromagnetic field barely penetrates the spheres (δ << a)

and propagates only through the background matrix, the effective permeability will be

dependent only on the ratio of the volume filled by the metal spheres and the host material.

6.4 Simulations
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Figure 6.3: (A): Simulated real part of the magnetic permeability of a non magnetic medium
loaded with 5µ spherical inclusions made out of copper, silver and aluminum. (B): pene-
tration depth for copper, silver and aluminum.

As pointed out in the introduction, diamagnetism (µ < 1) is a recurrent but rather

weak phenomenon in nature, and it is thus important to estimate beforehand how far the

permeability of a material loaded with spheres deviates from the µ ∼ 1 case. The optical

constants of perfect spherical particles made up of three different metals (silver, aluminum

and copper) embedded in a medium with ǫ = 2.25 and µ = 1 were theoretically investigated.

Since only frequencies much lower than the metal plasma frequency were simulated, the

metal spheres permittivity was estimated using the Drude model [63]. Fig. 6.3 shows the

real part of µ for spheres having a radius a = 5µm and spacing s = 10µm. It is encouraging

to note that around 10GHz both silver and copper spheres exhibit a permeability as low as
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≃ 0.5 corresponding to χ ≃ −0.5, much higher in magnitude than any of the values listed

in Table 6.1. The two main assumptions of our model (a >> λ√
ǫ1µ1

and δ << a) will be

verified later on for the particular choice of parameters (a, s, λ) adopted in the experiments.

6.5 Experiments

Several experiments were carried out to extract the magnetic permeability of different

samples mimicking the previously discussed sphere-in-a-host model. The experiments were

conceived to achieve two goals: demonstrate the possibility of obtaining pronounced dia-

magnetic properties, at least in a narrow frequency range; and identify a specific trend in

the permeability of our samples when a particular parameter, the sphere diameter in our

case, is varied.

6.5.1 Sample preparation

Figure 6.4: 10µm copper sphere sample.

All samples were made up of copper spheres because copper demonstrates a lower per-

meability in the microwave range, see Fig. 6.3, and it is not excessively expensive. The

copper spherical particles (99% purity) were purchased from Sigma-Aldrich in three differ-

ent sizes: 10µm, 75µm and 475µm, see Fig. 6.5. The penetration depth of copper at 10GHz

is ≃ 500nm as can be inferred from Fig. 6.3 and, thus, it is much smaller than the sphere

radius in all three cases. L-Menthol (C10H20O) bought from Alpha Aesar was used as a
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host material for the spherical inclusions. Menthol, as opposed to other binding materials,

exhibits all the required properties for this specific application: it is transparent in the mi-

crowave frequency range; it is not magnetic; and it is very easy to manipulate given its low

melting point (43◦ − 45◦C). In addition, the effective medium approximation (a << λ√
ǫ1µ1

)

is valid at 10GHz. In fact, since menthol’s refractive index is ≃ 1.5 in the microwave range,

λ at this frequency is ≃ 2cm.

Figure 6.5: From left to right: optical microscope image of a 425µm sphere sample, SEM
picture of a 10µm sphere sample with two different magnifications.

All the samples studied in this work were prepared following the same procedure. The

menthol crystals were first melted in an oven at 100◦C and then mixed with the copper

powder keeping a mass ratio of approximately 1 : 5. The composite was left in the oven and

stirred repetitively until it became a uniform mixture. The mixture was then poured into

an aluminum mold, left at 100◦C for about 10 minutes to facilitate the particles’ settling,

then cooled down at room temperature until it completely solidified. To prevent the sample

from sticking to the mold and cracking once it was opened, the mold walls were coated

with a release agent before being in contact with the mixture. The samples were roughly

20cm × 21cm × 0.74cm size (Fig 6.4) and presented a surface roughness of less than 500µm.

6.5.2 Experimental setup

The electrical constants were extracted using a Gaussian Beam Telescope (see Fig. 6.6),

[130, 131]. The setup is composed of four lenses mounted on a rail and two antenna horns

manufactured by Dorado. The lenses, made out of Teflon (almost transparent in the mi-

crowave), were moved relative to each other with mm accuracy by a mechanical driver

controlled remotely and were able to focus the beam down to a ≃ 10cm waist spot. The
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setup was designed in such a way that the frequency dependent beam waist location varied

over a range much smaller than the Rayleigh range [132].

NETWORK 

ANALYZER

LENSES LENSES

HORN ANTENNA HORN ANTENNA

SAMPLE

Figure 6.6: Gaussian Beam Telescope setup.

The large sample surface area (20cm × 21cm) prevented the beam from being clipped and

ensured that the incident power was entirely confined within the sample. As has been

amply discussed by several authors [133], it is crucial to avoid Fabry-Perot resonances to

be able to extract meaningful optical parameters. If d is the sample thickness, the Fabry-

Perot resonances occur at frequency multiples of c/2nd [26], where c is the speed of light in

vacuum and n the refractive index of the sample. Given the sample thickness, d ≃ 7.4mm,

and the effective refractive index of our medium, n ≃ 2.8 − 3, the Fabry-Perot resonances

are thus safely confined to the edges of the explored frequency range and do not affect

significantly our measurements; see Fig. 6.7. The data was acquired via an Agilent Network

Analyzer connected to the two horns. Driving one of the two horns, the Network Analyzer

launches a sinusoidal signal (7GHz ÷ 12GHz) toward the sample and collects the fraction

of it that is reflected (back to the same horn) and transmitted (to the horn on the other

side of the rail). Since both sides of the sample are tested, each measurement provides four

variables, commonly known as scattering parameters: S11, S12, S21 and S22 [134]. To better

understand their physical significance the experiment can be modeled using the transmission

line formalism, see Fig. 6.8. A material with unknown ǫ2 and µ2 is fully characterized by its

wave impedance Z2 =
√

µ2

ǫ2
and propagation constant k2 = ω

√
ǫ2µ2. When a voltage wave

propagating through the medium surrounding the unknown material hits the sample, part
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of it is reflected and part transmitted; hence two parameters can be defined: S11 =
Vrefl

Vinc

and S12 =
Vtrans

Vinc
.
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Figure 6.7: Amplitude of the scattering parameters, S11 and S22, in the 10µm spheres
sample. Two Fabry-Perot resonances are visible at the edges of the explored frequency
interval.

S21 and S22 are the analogues of S11 and S12 when the incoming wave propagates in the

direction opposite to the one indicated in Fig. 6.8. Following a standard network analysis

approach, it can be shown that [134]:

cos(kd) =
1− S2

11 + S2
21

2S21

Z = Z0

√

(1 + S11)2 − S2
21

(1− S11)2 − S2
21

(6.47)

where Z0 = 376.73Ω is the free space impedance. k2 and Z2 can be found by using the

definition of wave impedance and propagation constant:

k2Z2 = ω
√
ǫ2µ2

√

µ2

ǫ2
= ωµ2

k2
Z2

= ω
√
ǫ2µ2

√

ǫ2
µ2

= ωǫ2

(6.48)

Eq. 6.47 and Eq. 6.48 highlight the connection between the unknown optical constants (ǫ2
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and µ2) and the scattering parameters provided by the Network Analyzer and have been

used to extract the effective parameters of our samples.

Figure 6.8: Transmission line and scattering parameters.

6.5.3 Experimental results and comparison with the theory

Experimental measurements were taken on three samples differing from each other only

by the size of the spherical inclusions, see Fig. 6.5. Before measuring the sample, a per-

fectly conducting plate and a λ/2 transmission line were tested to properly calibrate the

setup. Fig. 6.9 shows a comparison between experimental data and simulation results. In

the simulations, the filling factor was set to π
6 (close packing) and the host material was

assumed to have ǫ ≃ 2.5 and µ ≃ 1 for all the frequencies considered. Two observations

are necessary at this point: as anticipated, a very low permeability (≃ 0.5) was achieved;

the spheroid size strongly affected the value of µ, specifically, a larger size corresponded to

a lower permeability. This last remark is in perfect accordance with the simulations and

reflects the µ dependence on θ already illustrated in Eq. 6.43: a larger radius produces a

bigger values of θ and, consequently, a lower µ (see the discussion in Sec. 6.3.4). However,

a pronounced discrepancy between the simulated and measured permeability is clearly no-

ticeable, especially for the samples containing the smallest spheres. The mismatch between

simulations and experimental data can be accounted for by considering that the actual size

of the particles was, on average, smaller than the nominal one (see Fig.6.5) and that the

density of copper particles in our sample was, in general, smaller than the simulated one.

This explains why the measured permeability is higher than expected especially in the sam-
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ples made up of smaller particles (10µm and 75µm): lighter particles require a longer time

than heavier ones to deposit and to arrange in a dense matrix. Another factor that cannot

be ignored is that, as evident in Fig. 6.5, the particles making up the samples were not

perfectly spherical and, consequently, the theoretical predictions apply only marginally.
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Figure 6.9: Measured (left) and simulated (right) permeability and permittivity for the
10µm, 75µm, 425µm diameter samples.
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CHAPTER VII

Conclusions and Future Work

In Chap. IV the interaction of light with vibrational modes was investigated by spon-

taneous Raman and ISRS experiments carried out in three different semiconductors. The

measurements performed on GaAs helped to clarify a highly controversial topic: the exci-

tation of coherent longitudinal phonons. The seemingly contradictory outcomes of different

experiments, conducted both in this dissertation and elsewhere [42, 43, 73, 74], were ex-

plained by an analysis of the various generation mechanisms of coherent phonons. The

better understanding of ISRS in GaAs paves the way for a particularly attractive oppor-

tunity. GaAs undoubtedly constitutes an extremely good candidate to validate the two

Raman tensors theory and, especially, some of its recent expansions [3]. As opposed to

other materials, in (111) GaAs the deformation potential of two substantially different

modes (a longitudinal and a transverse one) can be compared. In order to excite two dis-

tinct frequencies in ISRS experiments, it will be necessary to prevent the photoinjected

carriers from driving the plasmon mode toward its asymptotic frequency, ωTO. This can be

accomplished, for instance, by employing a Ti:Sapphire oscillator rather than an amplifier.

The experiments on GaSe highlighted the impact of a polariton mode both on spon-

taneous Raman and pump probe measurements. The complications introduced by the

presence of a spatially non uniform field were discussed especially in regard to the accuracy

of the Raman tensor extraction process. The analysis on the temperature dependence of

the A
′

1 and E
′

deformation potentials can be completed provided that the intensity of the

E
′

field is fully recovered. A spatially resolved ISRS experiment [94] would probably be the

most effective approach to achieve this goal.
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Raman scattering turned out to be a valuable tool to detect surface plasmons in CdSe.

Even though the collected data already provided sufficient evidence of the existence of sur-

face modes, it would be interesting to examine the polariton frequency dependence on the

surface wavevector (k‖). This can be accomplished by controlling the laser incident angle

on the CdSe crystal as previously shown in some well known studies on GaN [67].

In Chap. V the focus is changed from coherent phonons to squeezed phonon states.

Both a classical and quantum mechanical description of double pump experiments led to

the discovery of a new phenomenon, named phonon “echo”. Even though the echo signal

could not be measured experimentally, several suggestions are presented at the end of the

chapter to guide future attempts in this direction. Recent studies on KTaO3 [111, 135, 136]

indicate that a kHz amplifier is the proper tool to bring the weak echo signal intensity

withing the detectable range.

In Chap. VI a high frequency diamagnetic metamaterial is discussed within the frame-

work of Lewin’s model [5]. The experimentally extracted optical constants appeared to

match to a good extent with the theoretical predictions. The great potential of this novel

material could be fully displayed in a levitation experiment [4]. Due to the high value of

the magnetic susceptibility (χ = −0.5, SI units), the magnetic field intensity required to lift

this composite would be significantly lower than for any other natural material. In pursuing

this attempt, special attention should be paid to estimate beforehand the intensity of the

Eddy currents induced in the metal inclusions. The heat generated by Joule’s effect could

easily melt the menthol and, at very high current density, the copper spheres as well.
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[42] Dekorsy T., Pfeifer T., Kütt W., and Kurz H. Subpicosecond carrier transport in
GaAs surface-space-charge fields. Phys. Rev. B, 47(7):3842, February 1993.

[43] Cho G.C., Kutt W., and Kurz H. Subpicosecond Time-Resolved Coherent-Phonon
Oscillations in GaAs. Phys. Rev. Lett., 65(6):764, August 1990.

[44] Fork R.L., Martinez O.E., and Gordon J.P. Negative dispersion using pairs of prisms.
Opt. Lett., 9(5):150, May 1984.

[45] Treacy E.B. Optical Pulse Compression with Diffraction Gratings. IEEE J. Quant.
Electron., 9(QE-5):454, September 1969.

[46] Merlin R. Generating coherent THz phonons with light pulses. Solid State Commun.,
102:207–220, 1997.

[47] Shen Y.R. The principles of nonlinear optics. John Wiley & Sons, University of
California, Berkeley, 1984.

[48] Diels J.C.M., Fontaine J.J., McMichael I.C., and Simoni F. Control and measurement
of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy. Appl.
Opt., 24(9):1270, May 1985.

[49] Boyd R.W. Nonlinear optics. Academic Press, 3 edition, 2009.

[50] Bhattacharya P. Semiconductor Optoelectronic Devices. Prentice Hall, 2 edition, 1997.
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[74] Pfeifer T., Dekorsy T., Kütt W., and Kurz H. Generation Mechanism for Coherent
LO Phonons in Surface-Space-Charge Fields of III-V Compounds. Appl. Phys. A,
55:482–488, August 1992.

124



[75] Neamen D. Semiconductor physics and devices: basic principles. Chicago Irwin, 2
edition, 1997.
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