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ABSTRACT
a-Pinene Organic Nitrate Synthesis, Formation, and Simulation
by
Judy Shau-yuh Yu

Co-Chairs: Mary Anne Carroll and Jack Hunter Waite, Jr.

a-Pinene (C1oHss), @ hydrocarbon emitted by vegetation, is the dominant monoterpene in
the Earth’s atmosphere. With estimated annual global carbon emissions of ~50 Tg yr', a-
pinene emissions are comparable to anthropogenic hydrocarbon emissions - making its
atmospheric oxidation products and reaction pathways a significant component of
tropospheric chemistry. The major oxidation pathway of a-pinene is reaction with the
hydroxyl radical (OH) during the daytime. One important product of OH and a-pinene
reactions is B-hydroxynitrates (HOC1o,H160NO), which represent a terminating step in
the a-pinene reaction pathway. The formation of these hydroxynitrates prevents the
production of NO,, a tropospheric ozone precursor, effectively suppressing ozone while
sequestering NOx. With organic nitrates from BVOCs estimated to account for 10-20% of
tropospheric ozone generation, organic nitrate chemistry is an important source in the
accounting of global ozone concentrations. Results from the first-known organic

synthesis of a-pinene B-hydroxynitrates are presented in this work. The synthesis

XiX



standard supported a series of photochemical reaction chamber studies that reacted pure
a-pinene with OH in a high NOy environment. The results from these experiments were
analyzed to identify for the first time individual a-pinene hydroxynitrate isomers,
calculate formation yields, and determine the relative branching ratios of the precursor
peroxy radical RO, reacting with NO. A chemistry model was also created to simulate the
reaction chamber experimental conditions to compare how well the currently accepted
reaction mechanism for the production of these a-pinene hydroxynitrates matches
experimental results. Lastly, a new portable comprehensive GCxGC (or “two-
dimensional GC”) was deployed to evaluate its usefulness in gas-phase atmospheric

chemistry applications.
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