
RAPID EVOLUTION OF CIS-REGULATORY 
ARCHITECTURE AND ACTIVITY

IN THE DROSOPHILA YELLOW GENE

by

Gizem Kalay

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Molecular, Cellular and Developmental Biology)

in the University of Michigan
2012

Doctoral Committee:

 Associate Professor Patricia J. Wittkopp, Chair
 Professor Kenneth M. Cadigan
 Professor Robert J. Denver
 Professor Jianzhi Zhang
 Associate Professor Scott E. Barolo



“Yurtta Baris, Dunyada Baris”

“Peace at home, peace in the world”

                     Mustafa Kemal Ataturk



© Copyright by Gizem Kalay 2012

All Rights Reserved



Dedications

To my two grandmothers who thought me the value of working hard and

loving life regardless of any condition.

To my father from whom I learnt the value of wisdom, patience and tolerance.

To my mother for her endless love and teaching me how to be practical.

To my sister and brother, whom I know never stopped believing in me and will 

continue to do so no matter what happens.

To all my dearest friends without whose support I would not be where I am 

personally and professionally.

To Jonathan, for being the sweetest person I have ever met and making my life 

such a warm and happy place.

ii



Acknowledgments

I would like to, first of all, thank Patricia Wittkopp for being such a good teacher 

and sharing her great mind and open heart with me, always making me feel very 

lucky to be working with her. Initially, being able to benefit from her mentorship 

firsthand and later on from the highly intellectual and friendly lab environment she 

created were invaluable in my scientific and personal growth throughout graduate 

school. I also would like to thank Xiaowei Heng and Mackenzie Dome for their 

contributions to Chapter 2 and 3, respectively, of this thesis and for being such 

good colleagues, collaborators, and friends; Soochin Cho for supporting me 

personally and professionally during first two tough years of graduate school; 

Barry WIlliams for his generous share of knowledge on yeast as I juggled through 

my first project; my committee members Ken Cadigan, Bob Denver, Jianzhi 

Zhang, and Scott Barolo, for their invaluable support and guidance in the past 

five years; Bart Deplancke and his lab members for their contribution to Chapter 

3 and their friendship; all past and current members of the Wittkopp Lab, 

particularly, Belinda Haerum, Adam Neidert, Jonathan Gruber, Arielle Cooley and 

Elizabeth Walker for making the lab such a fun and happy place to work for me; 

Karishma Collette, Anita Guedea and Pia Bagamasbad for being there for me 

physically and emotionally; Duygu Tosun and Ozlem Keles to whom I know I can 

and will always rely on; Juanita Cabello and Sally Haines for ever so gently 

showing and teaching me how to lead a happy life and for being very generous 

with their warmth and love; Atilgan Yilmaz, Nezaket Turkel, Ilker Oztop and 

Didem Goz, and my friendship with them for being so sincere, easy, tolerant and 

FUN; Mina and Banu Riolo for loving me for what I am; Burcu Bayirli and Chris 

Riolo for their encouragement and support; Kara Vogel and her boys for being 

iii



the most open-hearted family I have ever seen and caring for me so sincerely; 

Seda Guler and Berra Sagun, whom I am so glad are a part of my life; Ita Reyes 

for helping me discover my love for yoga and being one of most wonderful 

people I have ever met; Ali Benli for cheering me up and sharing his positive 

energy towards life each time I talked to him; Emily, Chris and Curtis Morgan, 

Andrea Morris and Collin Spencer for being such sweet and supportive friends. 

The research in this thesis was funded by University of Michigan, National 

Science Foundation, Rackham Graduate School and Ecole Polytechnique 

Federale de Lausanne.

iv



Table of Contents

Dedication          ii

Acknowledgements        iii

List of Figures         vi

     

List of Tables         viii

Abstract          ix

Chapter 1: Introduction        1

Chapter 2: Nomadic enhancers: Tissue-specific    48
cis-regulatory elements of yellow have divergent 
genomic positions among Drosophila species.

Chapter 3: Dissecting cis and trans regulatory factors    90
affecting yellow regulation in three Drosophila species 

Chapter 4: Conclusion        171

v



List of Figures

Figure 2-1. The Drosophila melanogaster yellow gene is    71
regulated by multiple, tissue-specific enhancers.

Figure 2-2. DNA sequences tested for enhancer activity    72
vary in length among species.

Figure 2-3. Location and activity of the yellow body and wing   74
enhancers is highly divergent among Drosophila species.

Figure 2-4. yellow sequences show no evidence of large    76
duplications or transpositions.

Figure 2-5. Dynamic yellow cis-regulatory architecture among   78
Drosophila species. 

Figure 2-6. Conserved region of non-coding sequence    80
defines an orthologous endpoint for 5’ intergenic regions.

Figure 2-7. D. subobscura 5’ intergenic and intronic yellow   82
sequences both contain epidermal cell enhancers.

Figure 2-8. Alternative sequence alignment parameters    84
also show primarily collinear sequence similarity.

Figure 3-1. Sub-elements of yellow 5’ intergenic and intronic   141 
regions from three Drosophila species were tested for 
enhancer activity.

vi



Figure 3-2. yellow enhancer sub-elements drive diverse    143
expression patterns some of which are “cryptic”.

Figure 3-3. (Courtesy of collaborator Bart Deplancke and his lab)  146
 The Drosophila high-throughput Y1H platform.

Figure 3-4. Distributions of the transcription factors identified by   148
Y1H as candidate binders of yellow 5’ intergenic and intronic 
enhancers

Figure 3-5. There is not a strong correlation between the    150
transcription factor binding profiles and the activities of yellow 
enhancer sub-elements.

Figure 3-6. Change in abdominal pigmentation upon knock down   152
of six transcription factors

vii



List of Tables

Table 2-1. BAC clones containing yellow and flanking genes.   85

Table 3-1. D. melanogaster transcription factors that were    154
found to activate yellow enhancer sub-elements in a 
yeast-one-hybrid assay.

Table 3-2. Gene Ontology characteristics of transcription factors   159
identified by yeast-one-hybrid to bind to yellow enhancers.

Table 3-3. List of fly lines harboring UAS-RNA interference    165
transgenes used to knock down Drosophila melanogaster 
transcription factors.

viii



Abstract

In the last 10 years, an increasing number of case studies showed that changes 

in cis-regulatory elements, mainly enhancers, are one of the main causes of 

altered phenotypes, but the mechanisms underlying enhancer evolution remain 

to be elucidated. More specifically, what is the relationship between changes in 

enhancer sequence, transcription factor binding and activity? In this thesis, I 

used evolution of yellow enhancers among Drosophila species as a model to 

shed light onto how cis-regulatory architecture and activity change over time. I 

first identified the enhancer activities lying in the 5’ intergenic and intronic regions 

of yellow from six Drosophila species spanning the Drosophila evolutionary 

history, using a reporter gene assay. I found that yellow epidermal-cell and wing-

vein, but not bristle enhancers, have different positions, with respect to the 

coding sequence, in different Drosophila species. This was the first systematic 

demonstration of altered enhancer position between species and suggested that 

enhancer position can be labile. Sequence comparisons failed to show any 

indication of translocation or duplication suggesting gradual compensatory 

changes in the transcription factor binding profiles of yellow enhancers is the 

likely mechanism underlying altered enhancer position. Subsequent subdivision 

of yellow 5’ intergenic and intronic regions showed a complex distribution of 

enhancer activities among sub-elements, where some drove expression in 

patterns that were not part of the expression pattern driven by the full region. 

Existence of such “cryptic” epidermal-cell enhancer activities suggests that 

yellow cis-regulatory regions were primed for facilitating the rapid evolutionary 

changes in the position and activities of this enhancer. Lastly, for the first time, I 

identified a large set of candidate transcription factors binding to yellow 
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enhancers. This thesis shows that position and activity of yellow enhancers 

diverged rapidly among species, perhaps by taking advantage of the cryptic 

activities lying in the yellow cis-regulatory sequences. Further in vitro and in vivo 

tests validating the direct binding of the identified transcription factors on yellow 

enhancers and characterizing their functional effects on yellow expression 

among species can elucidate the evolutionary changes underlying altered 

position and activity of the particular yellow enhancers.
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Chapter 1

Introduction

Genes need to be expressed in order to give rise to the product they encode. 

This expression step is highly regulated at multiple levels, including but not 

limited to change in chromatin packaging, transcription, post-transcriptional 

processing, translation and post-translational processing. Each level of control 

adds a layer of complexity to gene regulation which allows fine tuning of gene 

expression. It is known that changes in gene expression may give rise to 

changes in phenotype and even to disease states. These changes in gene 

expression can occur due to changes at any of the steps controlling it. Hence, it 

is crucial to understand the intricacies of the regulatory mechanism underlying 

gene expression in order to understand organismal evolution and physiology.

Controllers of gene expression can be categorized as cis and trans acting 

factors. At the transcriptional level, cis-acting factors mainly consist of cis-

regulatory sequences, such as promoters, enhancers and insulators. These are, 

typically, non-coding DNA regions that harbor a certain combination of short 

sequence motifs, which are distributed with a particular composition within the 

cis-regulatory element and are bound by trans acting factors that affect 

transcription (i.e., transcription factors). Among the cis-regulatory elements, 

enhancers harbor the majority of the information that determine when, where and 

how much the corresponding gene will be transcribed. As a result, as compared 
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to other cis-regulatory elements, enhancers affect gene expression more 

prominently. Transcription factors, on the other hand, are diffusible molecules, 

typically proteins, that affect transcription by binding to the short sequence 

motifs, i.e., binding sites, found in the cis-regulatory elements in a sequence-

specific manner. Overall, specific interactions between cis-regulatory elements 

and transcription factors control a gene’s transcription, hence, changes in the 

activities of either or both can alter expression patterns.

Between the changes in the activities of enhancers versus transcription factors, it 

is proposed that the former is likely to cause phenotypic changes more often than 

the latter one. This is because enhancers have a modular organization where 

each module controls a gene’s transcription in a specific developmental time and 

tissue/cell type. Hence, for instance, a change in the activity of an enhancer 

module would be very specific since it would affect the expression of only the 

corresponding gene, only in a subset of the cells and only in the specific 

developmental time frame the gene is expressed. On the other hand, a change in 

the activity of a transcription factor would be broader and affect the expression of 

all the genes it controls. In other words, as compared to the changes in 

transcription factors, changes in enhancers are less pleiotropic. As a result, 

changes in enhancer sequences are less likely to be destructive to the organism 

and, hence, are less likely to be selected against by natural selection. Because of 

this it is proposed that changes in the activity of enhancer sequences, as 

compared to changes in the activity of trans acting factors, make up the majority 

of the genetic changes underlying morphological evolution.

In the following sections I will first give an overview of the molecular mechanism 

enhancers work through in order to regulate transcription. This will be followed by 

how enhancer sequence and activity changes over time, and what some possible 

consequences of these changes are at the organismal level. Afterwards, different 

ways enhancers can be gained and lost will be discussed with examples. Next 

will come how different enhancer modules, in other words the whole cis-
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regulatory architecture of a gene, can be organized and altered over time. And 

lastly, I will talk about the function as well as the cis and trans acting factors that 

affect regulation of the Drosophila yellow gene and the knowledge accumulated 

so far about its cis-regulatory architecture and its evolution.

How do enhancers interact with different cis-regulatory elements and trans 

factors to affect gene transcription in eukaryotes?

In enhancer sequences, the information for a particular expression pattern is 

encoded in the form of transcription factor binding sites, where the type and 

number of as well as the spacing between these binding sites constitute the 

grammar of the particular enhancer. The size of an enhancer on average ranges 

between 100 base pairs (bp) to several kilo base pairs (kbp). It can be located in 

the 5’ or 3’ intergenic sequence of a gene as well as in intronic regions or 

hundreds of kilo base pairs away in the genome (Kleinjan and van Heyningen 

2005), even in different chromosomes (Lomvardas et al. 2006).

For proper functioning of enhancers, their appropriate interaction with 

transcription factors as well as other cis-regulatory elements is crucial. Hence, 

before describing the mechanism of how enhancers regulate transcription, it is 

important to introduce the other components of the eukaryotic cis-regulatory 

system such as promoters and boundary elements (insulators). This will be 

followed by a summary of the current model for the mechanism of enhancer 

function. This summary will include, but will not be limited to, how the interactions 

among transcription factors and cofactors and their effects on chromatin states 

and nucleosome organization influence enhancers and, ultimately, transcription.

Promoters consist of a core promoter and a promoter-proximal region. Core 

promoter can extend up to 40 base pairs(bp) in either direction of the +1 position 

(Blackwood and Kadonaga 1998; Baumann et al. 2010). It contains transcription 

initiation site as well as several of other sequence motifs like the TATA box, 
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initiator (Inr), TFIIB recognition element (BRE), downstream core promoter 

element (DPE) and the downstream core element (DCE). Different combinations 

of these motifs are found in core promoters, where they are essential for proper 

transcriptional activation. For instance, although not exclusively, DPE and Inr, 

together, are commonly found in TATA-less promoters and are shown to be 

functional counterparts to TATA-box, such that they are bound by the general 

transcription factor TFIID and are required for transcriptional activation (Smale 

and Kadonaga 2003; Baumann et al. 2010). Under appropriate conditions, the 

core promoter is sufficient to initiate transcription by recruiting the RNA 

polymerase II (Pol II) basal transcriptional machinery, which consists of RNA 

polymerase II and various general transcription factors. These general 

transcription factors are responsible for proper positioning of the polymerase as 

well as interacting with other specific transcription factors and cofactors.

Proximal promoter region, located immediately 5’ of the core promoter 

(approximately from -40 to -250 relative to the transcription start site), is essential 

for the proper expression of genes (Blackwood and Kadonaga 1998; Baumann et 

al. 2010). It contains binding sites for tissue specific transcription factors and can 

be encompassing enhancer elements. Even though the promoter proximal region 

is tissue specific, due to its close proximity of the to the core promoter, the two 

elements tend to be collectively referred to as the “promoter”.

Insulators are another type of cis-regulatory element that when located between 

a promoter and an enhancer, block the gene activating or repressing effects of 

the enhancer; however if they are flanking the enhancer-promoter pair they do 

not affect the interaction between the two. Different insulator elements vary in 

sequence as well as the specific proteins that bind them (Nègre et al. 2010). In 

fact the blocking activity of insulators is dependent on their binding by sequence-

specific proteins (e.g. CCCTC-binding factor in vertebrates (CTCF), Supressor of 

Hairy wing (Su(Hw)) in Drosophila) (Bell et al. 1999; Parnell et al. 2003). 

Insulators can also block spreading of the silencing effects of heterochromatin 
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and some, but not all, insulator elements are capable of executing both functions 

(West et al. 2002).

As cis-regulatory elements that can affect transcription from distant locations in 

the genome, with respect to their cognate gene, enhancers require a particular 

mechanism to be able to directly interact with the core promoter. The most 

commonly accepted model for the mechanism of how enhancers interact with the 

core promoter is called “looping” (Blackwood and Kadonaga 1998; Schoenfelder 

et al. 2010). In this model, the DNA between an enhancer and the promoter loops 

out in order to facilitate the direct interaction between the trans factors that are 

bound to the enhancer element and those that are bound to the promoter. It is 

not known through what mechanism DNA looping occurs, but one prominent 

model is called “facilitated tracking”, where an enhancer bound complex 

comprising transcription factors and cofactors moves along DNA via small steps, 

as opposed to a continuous movement, while scanning the DNA for insulator and 

promoter elements (Blackwood and Kadonaga 1998). A 30-subunit protein 

complex called the Mediator, which is crucial for activation of transcription in 

many genes by mediating the interaction between the Pol II basal transcriptional 

machinery and gene specific transcription factors (Malik and Roeder 2010), 

cohesin and a particular type of non-coding RNA molecule (eRNA) have been 

suggested to take part in the looping of the DNA (Ong and Corces 2011). 

Regardless of the exact mechanism of how the DNA region containing the 

enhancer loops out onto the promoter, colocalization of many enhancer and 

promoter regions has been shown by chromosome conformation capture (3C) 

assays (Dekker et al. 2002; Visel et al. 2009). This assay involves crosslinking to 

capture interacting loci, DNA fragmentation, intermolecular ligation and PCR 

analysis of the resulting ligated products and measures the frequency of two 

genomic loci detected in close proximity to each other. This frequency is inversely 

correlated to the distance between the two genomic loci. Hence, for instance, if a 

distal enhancer is detected in close proximity to the promoter more frequently 
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than expected given its distance from the promoter, then this suggests direct 

interaction between this distal enhancer and the promoter.

Another “challenge” caused by enhancers not always being located in close 

proximity to their cognate gene, and at times nearby other genes that they do not 

regulate, is potential unspecific effects of the enhancers on genes other than 

their cognate gene. There are two known mechanisms that prevent unspecific 

enhancer-gene interactions. One of them is enhancer-promoter specificity. That 

is to say, some enhancers are selective in what type of promoter they interact 

with. For instance in the Drosophila melanogaster genome, autoregulatory 

element-1 (AE1) enhancer is equidistant from both Sex combs reduced (Scr) and  

fushi tarazu (ftz)  promoters, but it selectively activates ftz expression only 

(Ohtsuki et al. 1998). In vitro studies showed that in the absence of a competing 

TATA-containing promoter, AE1 is capable of activating a TATA-less promoter, but 

in the presence of both a TATA-containing and TATA-less promoters, AE1 

preferentially activates the TATA-containing promoter. Intriguingly, ftz promoter 

harbors a TATA box whereas Scr promoter does not. This shows the importance 

of enhancer-promoter specificity for proper regulation of gene expression. Not all 

enhancers, however, show selectivity on what type of promoter they interact with. 

For instance, Butler and Kadonaga (Butler and Kadonaga 2001) compared the 

activities of eighteen D. melanogaster enhancers when they interacted with a 

TATA versus a DPE containing core promoter connected to a common reporter 

gene, where each time the compared transgenes were inserted in the same 

genomic location. They found that only four of the eighteen enhancers interacted 

with one and not the other type of promoter, whereas the remaining fourteen did 

not show a noticeable preference between the two types of promoters to activate 

transcription. It is possible that the enhancers that do not show promoter 

specificity, prevent unspecific enhancer-gene interactions by using the second 

mechanism, where an insulator element between an enhancer and a promoter 

blocks the enhancer from acting on the promoter.
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Besides their interactions with other cis-regulatory elements, in order to function 

properly, it is also crucial for enhancers to interact with the appropriate 

combination of trans factors. These trans factors include transcription factors, 

which bind to enhancer DNA directly as well as cofactors that do not bind to DNA 

themselves, but interact with DNA binding transcription factors (Näär et al. 2001; 

Orphanides and Reinberg 2002).

At least some of the transcription factors and cofactors recruited to an enhancer 

have enzymatic activities that facilitate chromatin remodeling (Blackwood and 

Kadonaga 1998; Näär et al. 2001; Orphanides and Reinberg 2002). This is 

important for decondensation of chromatin to allow assembly of the basal 

transcriptional machinery at  the promoter. The trans factors with enzymatic 

activity facilitate chromosome remodeling by catalyzing ATP dependent 

nucleosome repositioning to make the enhancer and promoter regions 

accessible to transcription factors. The enzymatic activities of the trans factors 

can also covalently modify various histone proteins (e.g., acetylation or 

deacetylation of H3 and H4) and lead to, for instance, change in the electric 

charge of the histone proteins which affects how tightly the negatively charged 

DNA is wrapped around histones. This in turn alters the accessibility of 

transcription factor binding sites to their binding factors and influences 

expression.

Besides chromosome remodeling, some transcription factors and cofactors have 

enzymatic activities and can catalyze phosphorylation and acetylation of other 

transcription factors, modifying proteins’ activities and properties (Blackwood and 

Kadonaga 1998; Näär et al. 2001; Orphanides and Reinberg 2002). For instance, 

in vitro, the form of p53 tumor suppressor protein that is virtually inactive in site-

specific DNA binding, gets activated only after being acetylated by its coactivator 

(p300) (Gu and Roeder 1997). These types of modifications on proteins that are 

recruited to the enhancer elements are crucial for proper expression of genes.
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Studies have also proposed that enhancers may be targeting their corresponding 

genes to specialized nuclear domains that have high local concentrations of 

transcription factors. For instance, in mammalian erythroid cells, the 

chromosomal territory harboring the ß-globin genes is relocalized in the nucleus 

via an extrusion. This extrusion occurs prior to high-level ß-globin gene 

expression and was found to be dependent on the existence of the enhancers of 

this locus (Locus Control Region - LCR) that are also required for high-level ß-

globin gene expression (Ragoczy et al. 2003; Bulger and Groudine 2011). This 

suggested that LCR directs the ß-globin locus to a part of the nucleus that 

perhaps has necessary transcription factors for the activation of ß-globin 

transcription.

Enhancers work together with other cis-regulatory elements as well as trans 

acting factors in order to regulate transcription in a time, place and quantity 

specific manner. Some of the underlying mechanisms of enhancer function, and 

how enhancers interact with other cis-regulatory elements and trans acting 

factors have been revealed. However, this area of research still bears important 

questions that will be elucidated in the coming years.

How do sequence and function of enhancers change over time?

It has been shown that changes in enhancer sequences can alter gene 

expression, which in turn can lead to changes in phenotypes (reviewed in (Carroll 

2008; Wittkopp and Kalay 2012)) or even disease states (reviewed in (Visel et al. 

2009)). Hence for a complete understanding of organismal evolution and 

physiology, it is important to understand how enhancer sequence and activity 

change over time. More specifically, what types of mutations alter enhancer 

activity?

It is a well-known fact that continual occurrence of mutations subject DNA 

sequences to incessant change. Some of these sequence changes occur in 
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functional DNA regions and can alter their activity. The change in the activity of 

the functional element may be beneficial or disruptive for the organism, making 

the causal mutation beneficial or disruptive. Other mutations occur either in 

putatively nonfunctional DNA regions or in functional regions but without leading 

to a change in activity. These mutations are regarded to be neutral. Over time 

beneficial mutations are selected for, or kept in the population, whereas 

disruptive mutations are selected against, removed from the population. Neutral 

mutations, on the other hand, are not selected for or against and are likely to 

accumulate in the population over time.

In coding DNA sequences, mutations that do not change the amino acid 

sequence (synonymous) of a gene are generally more likely to be neutral than 

mutations that change the amino-acid sequence (non-synonymous) of the gene. 

There are exceptions, however; for instance, a synonymous mutation can 

change the codon encoding for the same amino acid to one that is not preferred 

by the organism and this may change the expression level of the corresponding 

protein, which in turn may be beneficial or disruptive for the organism (Hershberg 

and Petrov 2008; Sauna and Kimchi-Sarfaty 2011).

As functional elements in the genome, mutations in enhancer sequences can 

also be beneficial, deleterious or neutral for the activity of the particular enhancer, 

and potentially for the whole organism. Compared to the coding sequences, 

however, it is harder to make an assessment on whether any given mutation is 

beneficial, deleterious or neutral just by looking at the enhancer sequences. This 

is because there is no known universal code underlying enhancer activity. That is 

to say, for any given enhancer sequence one cannot distinguish essential pieces 

from nonessential ones in the absence of functional assays. There are several 

different reasons lying behind this: 
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Firstly, transcription factor binding sites are known to be the essential subunits of 

enhancers, but the knowledge on these sites is still limited, i.e., there is a 

substantial number of unidentified transcription factor binding sites (Bulyk 2003).

Secondly, transcription factor binding sites are degenerate, meaning one or more 

nucleotides in them are interchangable with other nucleotides (Stormo 2000). 

Thirdly, there may be other essential sequences in enhancer elements, besides 

transcription factor binding sites. Some of these can affect nucleosome 

positioning as exemplified by the work of Tirosh and colleagues (Tirosh et al. 

2008). The authors showed that changes in the sequences flanking an essential 

transcription factor binding site (Ste1) in the promoters of several genes from 

three yeast species (Saccharomyces cerevisiae, S. paradoxus and S. mikatae) 

affected nucleosome occupancy of this transcription factor binding site, which 

strongly correlated with the changes in the expression level of the genes 

investigated. There are also other sequences in enhancer regions, that have not 

been shown to bind to transcription factors or nucleosomes so far, but affect 

enhancer activity, suggesting they may have functions that are not yet identified 

(Swanson et al. 2010).

Last but not the least, the distance between transcription factor binding sites as 

well as their orientation with respect to each other and the coding sequence, may 

be essential for proper enhancer activity (Senger et al. 2004; Williams et al. 

2008), however there is currently no universal rule about the orientation and 

composition of transcription factors in enhancer sequences and their relations to 

enhancer activity. Hence, once again, investigating the enhancer sequence alone 

cannot give a conclusive assessment without conducting functional assays. 

 As compared to the coding sequences, the above features of enhancers make it 

hard to identify the functional units that came together to form a particular 

enhancer. Additionally, the same features make it hard to find enhancers in the 
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genome. Fortunately, availability of genomic sequences from multiple species 

proved very useful for both of the above-mentioned problems.

One method that makes use of genomic sequences from multiple species and 

has proved very helpful in investigating enhancers is called phylogenetic 

footprinting (Prabhakar et al. 2006; Elgar and Vavouri 2008; Loots 2008; Woolfe 

and Elgar 2008). In this method, researchers compare sequences from multiple 

species to find highly similar regions in the genome. Since disruptive mutations in 

functional elements are selected against over time, parts of the genome that 

have highly similar sequences are thought to have function. Among the regions 

with highly similar sequences between species, the non-coding ones are typically 

regarded as candidate enhancers ready to be tested for activity. The majority of 

the time these conserved non-coding sequences show tissue specific enhancer 

activity in vivo (Shin et al. 2005; Woolfe et al. 2005; Pennacchio et al. 2006; 

Peterson et al. 2009; O'Quin et al. 2011). Hence, phylogenetic footprinting is a 

useful method for finding enhancers in the genome. 

In addition to finding enhancers in the genome, sequence similarity data is useful 

also for conferring functional similarity. This is because many orthologous 

enhancers that have higher sequence similarity to each other than to other parts 

of the genome also have conserved activity (Hadzhiev et al. 2007; Peterson et al. 

2009).

This is not always the case, however. That is to say, sequences of two 

functionally homologous enhancers (located in physically homologous positions 

and harbor comparable activities affecting the same gene) can be highly similar, 

but the few changes between them can be sufficient to alter their activity (Goode 

et al. 2011). When this is the case, changes in enhancer activity can be mapped 

to a handful of nucleotide differences using sequence comparisons between 

closely related species as well as an outgroup species (Booth et al. 2010; 

Frankel et al. 2011; Rebeiz et al. 2011a). This outgroup species should be 
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evolutionarily equidistant from the two other species being compared and it 

should also have enhancer activity similar to one of them. This way one can 

determine the divergent nucleotides in the enhancer sequence that drives the 

divergent expression pattern. In order to find the actual causal mutations these 

candidate causal sequence changes then can be tested by being introduced into 

the enhancer of the opposite species individually, and in groups, and testing the 

activity of the hybrid enhancer using a reporter gene in transgenic animals.  

For instance, despite the high sequence similarity between the shaven baby E6 

enhancer from D. melanogaster and D. sechelia, the D. sechelia E6 element fails  

to drive dorsolateral expression in stage 14 embryos, which in turn leads to lack 

of larval trichomes in the corresponding body part in D. sechelia. This is due only 

to a handful (14) of sequence substitutions observed between D. melanogaster 

and D.secehelia E6 elements. Replacing the D.sechelia-like causative mutations 

in the E6 element with their D. melanogaster counterparts is sufficient to restore 

dorsolateral expression of reporter gene in Drosophila embryos, and 

consequently to recover larval dorsolateral trichomes (Frankel et al. 2011).

Once causal mutations are identified, one can investigate the mechanism 

through which these mutations led to change in enhancer activity, e.g.; whether 

they lead to gain or loss of transcription factor binding sites (Gompel et al. 2005a; 

Jeong et al. 2006a), or perhaps change in nucleosome positioning (Tirosh et al. 

2008; Tsankov et al. 2010), etc. Multiple causal mutations can also be tested 

individually as well as mutually to test whether there is epistasis between them or 

their effects on expression are additive (Frankel et al. 2011).

Sequences of functionally homologous enhancers, however, do not always have 

higher similarity than the sequence around them. In fact, there are many cases 

where sequences of two functionally homologous enhancers are highly different, 

such that there is not enough similarity between them for sequence alignment 

programs to align them. By default, one would expect that these enhancers with 
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highly dissimilar sequences to have equally dissimilar activity as well. 

Surprisingly, an increasing number of case studies are showing that this is not 

necessarily true. Some functionally homologous enhancers have highly divergent 

sequences in different species, even though they drive essentially identical 

expression patterns (Romano and Wray 2003b; Fisher et al. 2006; Wratten et al. 

2006; Hare et al. 2008c). For instance, there is minimal sequence similarity 

between the sequences of even-skipped enhancers from D. melanogaster and 

Sepsis cynipsae, but the expression patterns they drive in a common trans acting 

environment (D. melanogaster) is virtually identical (Hare et al. 2008c). As an 

early developmental gene, improper expression of even-skipped can be 

detrimental for the organism (Ludwig et al. 2005; Ludwig et al. 2011). Hence it is 

intriguing to find that throughout evolution a high number of mutations in an 

enhancer that is essential for the organism were passed onto the next generation 

without being selected against.  

One interpretation of the above observation is that stabilizing selection conserves 

function despite sequence turnover. This can happen through the combination of 

two mechanisms. 

Firstly, degeneracy of transcription factor binding sites can allow sequence 

turnover despite functional conservation in enhancers. As mentioned previously, 

this is to say, a transcription factor can bind to multiple sequence motifs that 

share only part of their sequence (Bulyk 2003). As a result not all sequence 

changes would change the identity of a transcription factor binding site.

Degenerate nature of transcription factor binding sites were first shown in vitro, 

however it is also in vivo. Odom and colleagues (Odom et al. 2007) compared 

binding profiles of four highly conserved transcription factors (FOXA2, HNF1A, 

HNF4A, and HNF6) in mouse versus human hepatocytes using chromatin 

immuno precipitation (CHIP) followed by microarrays (chip) for over 4,000 

orthologous regulatory regions. The authors found that the location of the 
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majority of the transcription factor binding events, with respect to the coding 

sequences, were divergent between the two species. Moreover, among the 

binding events detected close to the promoter of orthologous genes, sequences 

of approximately two thirds of the regions that were found to bind the same 

transcription factor failed to align between human and mouse. This result is 

consistent with a previous analysis, where a similar comparison was made using 

a smaller set of genes (51 genes) (Dermitzakis and Clark 2002).

Subsequent studies showed that the above results were not caused by changes 

in (the sequence preference of) the transcription factors. Wilson and colleagues 

(Wilson et al. 2008) compared the binding of three of the above transcription 

factors on human chromosome 21 placed in human versus mouse hepatocytes. 

They saw that despite the differences in the arrangement of the binding events of 

the three transcription factors on human and mouse chromosomes in their native 

trans environment, when the human chromosome was put in mouse environment 

the human binding events were recapitulated. This suggests that trans regulatory 

factors were conserved and that despite diverged binding site sequence, the 

mouse transcription factors were able to recognize and bind to the human 

binding sites. This is also consistent with previous observations that transcription 

factors evolve slowly (Carroll 2008) and the amino acid sequences of DNA 

binding domains tend to be conserved (Luscombe and Thornton 2002). This is 

important since changes in transcription factor activity can affect multiple genes 

and, hence, have a higher chance to cause detrimental effects on the phenotype 

than changes in cis-regulatory sequences (Brickman et al. 2001).

Secondly, sequence divergence between functionally homologous enhancers, 

despite functional conservation, can also occur through gradual compensatory 

gain and loss of transcription factor binding sites. For instance, it has been 

shown that loss of one type of binding site can be compensated by the gain of 

the same or a different type of binding site somewhere else in the enhancer 

without changing its activity (Swanson et al. 2011). This can happen through 
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gradual nucleotide substitutions as well as small insertion/deletions. For instance 

Shirangi and colleagues (Shirangi et al. 2009) showed that the expression of 

desatF gene was conserved between D. melanogaster, D. sechelia, and D. 

erecta, but there were differences in the sequences of the corresponding 

functionally homologous enhancers. D. melanogaster desatF enhancer harbored 

eight hexamer repeats that were essential for its activity in D. melanogaster, but 

were lacking in the desatF enhancers of the other two species. Intriguingly, these 

hexamers were created through a series of small deletions. These deletions likely 

removed regions that were essential for the expression of desatF in the ancestral 

species, which was compensated by the formation of the hexamer motifs in D. 

melanogaster.

Similar to the enhancers of some putatively orthologous genes with conserved 

expression, enhancer elements of co-regulated genes within an organism can 

show a substantial amount of variation in the grammar of the transcription factor 

binding sites they harbor (Brown et al. 2007; Weirauch and Hughes 2010), even 

though they drive highly similar expression patterns. The first case, however, is 

thought to result from divergence of the sequence of a common ancestral 

enhancer, whereas in the latter case two enhancers start different, potentially 

both at the sequence and functional level, but change over time to attain the 

same activity through different mutational events. The second case is still 

important in showing that different combinations or arrangements of transcription 

factor binding sites can result in the same enhancer activity.

For instance, comparison of the transcription factor binding site motifs between 

the promoters of twenty four ribosomal genes, from S. cerevisiae or Candida 

albicans, showed that despite tight co-expression, the arrangement of the 

identified binding motifs differed substantially (Weirauch and Hughes 2010). 

Similarly, this was true for nineteen enhancers that drive co-expression of muscle 

genes in two different species of Ciona, C. savignyi and C. intestinalis. Brown 

and colleagues (Brown et al. 2007) showed that, despite strict co-expression in 
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the embryonic tail muscle, the organization of the same three transcription factor 

binding sites is different in all nineteen enhancers of either species. In these two 

cases it is not known if there are additional sites other than the previously 

identified ones, however it is possible for compensatory mutations to give rise to 

binding sites for other appropriate transcription factors (i.e., that are expressed 

under the appropriate conditions for the gene they affect).

Given the importance of enhancers for organismal physiology and evolution, it is 

important to understand how enhancer sequence and activity changes over time. 

All of the above cases and interpretations suggest that enhancer activity can be 

conserved with or without being accompanied by sequence conservation. This is 

achieved thanks to the degeneracy of transcription factor binding sites and 

compensatory mutations that lead to gradual gain and loss binding sites. On the 

other hand, even few sequence changes can alter enhancer activity, through 

changes in transcription factor binding sites, as well as in their spacing and 

orientation or nucleosome positioning. Currently, functional assays are still the 

golden criteria for studying the effects of changes in enhancer activity.

How are enhancer activities gained and lost?

Just as mutations can lead to changes in existing enhancer activity they can also 

lead to the complete loss or gain of an enhancer element. Enhancer gain and 

loss is an important mechanism for evolution of gene expression because it 

typically leads to more drastic changes in expression than alterations of 

enhancer activities. For instance, loss of enhancer activity can lead to lack of 

gene expression in a tissue and developmental time where the gene used to be 

expressed. Similarly, a gene can gain an enhancer that drives expression in a 

domain where it did not used to be expressed before. These types of changes, 

arguably, may be more likely to affect phenotypes than altered activity of an 

existing enhancer.
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So what are some of the different types of mutational mechanisms that can lead 

to gain or loss of enhancer activity? Below, I describe some of these mechanisms 

with examples.

How can an existing enhancer activity be lost?

The first mechanism that comes to mind for loss of enhancer activity is mutations 

that inactivate one or more essential transcription factor binding sites in an 

enhancer resulting in loss of its function. This was exemplified by Pan and 

colleagues (Pan et al. 2001), where the authors showed that nucleotide 

substitutions in an essential transcription factor binding site, cyclic AMP 

responsive element (CRE), in the mouse Ren-1c enhancer disrupts binding of 

the corresponding transcription factor (CREB/CREM), resulting in complete loss 

of enhancer activity under cell culture conditions. Similarly, Sporn and colleagues 

(Sporn and Schwarzbauer 1995) inactivated essential transcription factor binding 

sites in the fibroblast enhancer of the fibronectin (FN) gene by deleting a 27 bp-

region that harbors them. This eliminated the expression of the FN gene 

fibroblast cells. Also, in vivo (transgenic D. melanogaster), Jeong and colleagues 

(Jeong et al. 2006a) showed that only a total of seven nucleotide substitutions in 

two essential binding sites, both for Abdominal-B, results in loss of Abd-B binding 

as well as subsequent loss of male specific abdominal activity of the yellow body 

enhancer.

Another mechanism, perhaps not as common as inactivation of transcription 

factor binding sites, is a deletion that is big enough to remove a whole enhancer 

and hence its activity. Such an event can presumably take place during cellular 

processes such as chromosomal rearrangements, DNA repair through non 
homologous end joining, or imprecise transposon movement. Regardless of the 
molecular mechanism, case studies show that both evolution and diseases have 

taken advantage of deletion of enhancers.
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For instance, Chan et al. (Chan et al. 2010) showed that a 501 bp 5’ sequence, 

which is sufficient to drive Pituitary homeobox transcription factor 1 (Pitx1) 

expression in the pelvic region of transgenic three spine sticklebacks, when 

deleted abolished enhancer activity as well as formation of pelvic spines in the 

corresponding body part. This deletion in fact makes up the majority of the 

genetic basis lying behind lack of pelvic spines in freshwater sticklebacks as 

compared to the marine populations.

In terms of deletions of enhancers resulting in disease states, Loots and 

colleagues (Loots et al. 2005) discovered that a 52 kb 5’ element, missing in Van 

Buchem patients and is genetically linked to this disease, is responsible for 

driving sclerostin (SOST -- a negative regulator of bone formation) expression in 

the rib, skull, and femur, but not in kidney or heart in transgenic mice. This 

showed that this region harbored a bone specific enhancer, lack of which is 

potentially responsible for Van Buchem disease, a disorder that leads to 

progressive increase in bone density (Wergedal et al. 2003).

There are also studies showing deletion of tissue specific enhancers at a 

genomic level. For instance, McLean et al. (McLean et al. 2011) found over 500 

genomic regions that are conserved between chimp and macaque, but are 

missing in humans. These conserved (between chimp and macaque) and 

deleted (in humans) regions (CONDELs) have a median size of 2,804 bp and the 

authors showed that all except for one of these CONDELs correspond to non-

coding DNA elements, suggesting that these deleted regions may harbor cis-

regulatory activity . This was further supported by the fact that two of the 

CONDELs showed tissue specific enhancer activity in transgenic mice, in a 

pattern that correlated with the expression pattern of the genes (androgen 

receptor - AR) nearby. Expression of these genes are thought to be important for 

formation of sensory vibrissae and penile spines in mice, which are anatomical 

features lost in the human lineage.
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Other possible alternative mechanisms that can lead to loss of enhancer activity 

include insertions of various sizes that can disrupt an existing transcription factor 

binding site rendering it nonfunctional and insertions and deletions of big or small 

size that can inactivate an enhancer not by disrupting or removing transcription 

factor binding sites, but by changing the spacing between them. This changes 

the grammar of the enhancer module, which can, for instance, affect the protein-

protein interactions between transcription factors necessary for proper 

functioning of enhancers.

How can an enhancer activity be gained?

There are several different ways a gene can gain a new enhancer activity: de 

novo evolution, change in enhancer-promoter interactions, chromosomal 

rearrangements, transposable element insertion and co-option. The mutational 

mechanisms underlying these different process, however, can be the same. 

Below I describe each of the above listed ways of enhancer gain, with examples 

whenever possible, and list some of the possible mutational mechanisms that 

can facilitate those processes.

A certain genomic region lacking enhancer activity can gain this function de novo 

through an accumulation of sequence substitutions, insertions and deletions 

creating a functional sequence environment for an enhancer, e.g., a combination 

of transcription factor binding sites that will be bound by tissue specific 

transcription factors, which will recruit appropriate cofactors and act 

synergistically to alter the expression of a gene in a time, place and quantity 

specific manner. Even though, in theory, over time mutations can create such a 

functional regulatory environment (Stone and Wray 2001), to date, there is only 

one empirical examples of de novo gain of enhancer activity that I am aware of. 

Eichenlaub and Ettwiller (Eichenlaub and Ettwiller 2011) made use of the 

vestigial coding sequences that in teleosts, as compared to mammals, lost their 
coding ability following whole genome duplication, and through few sequence 
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changes evolved into enhancers that drive part of the total expression pattern of 
their flanking genes. The ancestors of these de novo enhancers (that preserved 
coding ability) did not appear to have enhancer activity in teleost or mammals 
confirming the novelty of these cis-regulatory elements. This type of enhancer 
evolution may be hard to detect in other cases, because, for instance, in order to 

state that a certain enhancer was gained de novo in one species, this or any 

other enhancer activities should not be found in the orthologous region in its 

ancestor. Since the ancestor of a species cannot be investigated, one can look at 

the current relatives of the species to see if the orthologous genomic regions in 

those species have any kind of enhancer activity. This involves doing a 

comprehensive functional analyses of this orthologous region from multiple 

species, at various developmental stages (Rebeiz et al. 2011a), which is quite 

laborious and the stopping point is not clear. Hence, there are not even many 

case studies that conducted such an analyses and proved against de novo gain 

of enhancer activity.

Another mechanism for gain of enhancer activity can occur through changes in 

promoter-enhancer interactions. An enhancer and a promoter that did not used to 

communicate due to incompatibilities (e.g., existence/absence of TATA box or 

initiator sequences in the promoter) or existence of an insulator element between 

them, can start interacting if appropriate mutations occur in and around the 

enhancer and/or the promoter sequences such that they allow communication 

between the enhancer and the promoter. These mutations can be nucleotide 

substitutions, insertions or deletions that, for instance, convert a promoter without 

a TATA box to one with TATA box, which would allow this promoter and its 

corresponding gene be able to interact with enhancers that they did not used to 

communicate with. Else, mutations can inactivate an insulator between an 

enhancer and a promoter that did not used to interact with each other, allowing 

the enhancer to communicate with the promoter.
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Changes in promoter-enhancer interaction can also occur due to chromosomal 

rearrangements, such as inversions, which can relocate cis-regulatory elements, 

such that an enhancer specific to one gene can have access to another gene. 

Cande and colleagues (Cande et al. 2009c) documented such an inversion. They 

showed that the early promoter of the D. melanogaster ladybird gene also has 

insulator activity such that the 3’ cardiac enhancer of the gene, which drives 

dorsal mesoderm expression in the embryos, cannot affect the expression of 

ladybird’s 5’ neighbor, C15 gene. The authors found that, the ladybird locus is 

inverted in a distantly related species, Tribolium castaneum (the flour beetle), 

such that the insulator element is not located between the cardiac enhancer and 

the C15 gene anymore. This allows the cardiac enhancer to control the 

expression of C15, and the C15 gene to gain a new enhancer.

Even in the absence of enhancer-promoter incompatibilities, chromosomal 

rearrangements can relocate an enhancer or a gene such that the gene comes 

under the control of a new enhancer. For instance, Lettice and colleagues 

(Lettice et al. 2011) showed that in a patient with holoprosencephaly spectrum 

syndrome, sonic hedgehog (Shh) gene came under the control of a new 

enhancer due to an intrachromosomal inversion. This resulted in the enhancer 

driving ectopic expression of the gene in the developing limb bud, which leads to 

footplate expansion and eventual polydactyly in transgenic mice.

Transposon insertions provide another way through which genes can gain new 

enhancers. This typically requires the transposable element (TE) to have 

autonomous enhancer activity, but it can also function in combination with the 

flanking sequence of its insertion site. In the case (Daborn et al. 2002) of D. 

melanogaster cytochromoe P450 gene Cyp6g1, insertion of the long terminal 

repeat of the Accord retrotransposon 5’ to the gene’s coding sequence, resulted 

in highly upregulated expression of the gene in larval tissues that show basal 

level expression in the lack of the retrotransposon. These tissues are the midgut, 

Malpigian tubules and the fat body, all of which are important for detoxification in 
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Drosophila. Increased expression of Cyp6g1 in these tissues also brings about 

insecticide resistance to the fly.

A similar example is from plants. Data collected by Studer and colleagues 

(Studer et al. 2011) strongly suggests that the insertion of the Hopscotch 

retrotransposon upstream of the teosinte branched 1 (tb1) gene, which encodes 

a transcription factor involved in growth repression, is responsible for the two-fold 

increase in the gene’s expression in the axillary branches in maize versus its wild 

ancestor teosinte. Upregulated expression of tb1 in this tissue is thought to be 

responsible for the reduced growth of branches in maize as compared to 

teosinte.

It is important to note that in the above two examples, the “gain of enhancer” was 

not expression of the gene at a new domain or developmental time, but rather a 

drastic increase in quantity, such that this led to a change in organismal 

phenotype. Overall, the mechanism of gaining an enhancer via transposon 

insertion is limited by the enhancer activities transposons can have as well as by 

their preferences on where to insert in the genome. 

Co-option is another mechanism through which genes can gain new enhancers 

and be expressed in new tissue types. It requires a sequence fragment with an 

already existing enhancer activity to gain new transcription factor binding sites 

which work in collaboration with the already existing binding sites in the region 

and drive expression of the corresponding gene in a new domain. This new 

domain is determined by where the new binding factors are expressed. Co-option 

of enhancer function typically takes only a few mutations (Rebeiz et al. 2011a) 

and hence is suggested to be the most common mechanism for gain of enhancer 

activity. Consistent with this expectation, there is a growing number of case 

studies showing that gain of few transcription factor binding sites in and around 

an existing enhancer can lead to enhancer activity in new domains.
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One of the best shown examples of co-option of enhancer function comes from 

the Drosophila yellow gene. A 5’ wing enhancer drives the expression of this 

gene at low level throughout the pupal wing in both male and female D. 

melanogaster. However, in D. biarmipes, in addition to the dim expression 

throughout the pupal wing, the same region also drives elevated expression in 

the anterior distal wing spot, where D. biarmipes flies show elevated 

pigmentation as well. This high expression in the wing spot is due to a handful of 

nucleotide substitutions in the yellow wing enhancer of D. biarmipes as 

compared to the orthologous enhancer in D. melanogaster (and D. 

pseudoobscura). Some of these causative nucleotide changes led to gain of 

binding sites for the transcription factor Engrailed in D. biarmipes wing-spot 

enhancer, which has an expression domain that encompasses the anterior distal 

region of the wing (Gompel et al. 2005a), and is responsible for part of the 

observed wing-spot expression of yellow.

Another detailed study documenting co-option of enhancer activity investigated 

expression of the Neprilysin1(Nep1) gene among Drosophila species. Rebeiz 

and colleagues (Rebeiz et al. 2011a) found that this gene is expressed only in 

the mushroom bodies in the third instar larval brains in all nine species 

investigated except for D. santomea. In D. santomea, in addition to the 

mushroom bodies, Nep1 is expressed also in the laminar neuroblasts of the optic 

lobe. They found that this new expression domain was acquired through only few 

(four) nucleotide substitutions that led to gain of new transcription factor binding 

sites neighboring the enhancer that drives expression in the central nervous 

system (CNS) and retinal field.  The newly gained transcription factor binding 

sites worked together with the CNS-retinal field enhancer to drive expression in 

the optic lobe. In other words, the CNS-retinal field enhancer of Nep1 was co-

opted to gain novel activity in the optic lobe.

All in all, both gain and loss of enhancer activity are important evolutionary 

trajectories that can lead to phenotypic changes. It is intriguing that even though 
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in general loss of enhancer activity is likely to lead to disruptive phenotypes, as 

exemplified by the resulting disease states, over evolutionary time some of the 

losses of enhancer activities brought about adaptive phenotypes. It is also 

intriguing that gain of enhancer activity, despite bearing the default expectation of 

requiring numerous mutational steps to get to, can actually be achieved even 

through few nucleotide substitutions. These examples overall show that 

enhancer structure and activity can be dynamic.

How does the cis-regulatory architecture of a gene change over time?

Genomic position of enhancers and how it changes over time has not been 

widely studied, and in fact, there is only few case studies focused on evolution of 

enhancer position specifically. Nevertheless, with respect to the coding 

sequences, enhancer position is generally thought to be conserved between 

species. That is to say, if an enhancer is located in the 5’ intergenic region of a 

gene in one species it is expected to be found in the physically homologous 

genomic region, and not, for example, in the intron or the 3’ intergenic region of 

the gene or in a different chromosome, in other species. This conservation of 

enhancer position has been documented either as a main (Cande et al. 2009c) or 

a side result (Hare et al. 2008a) in a number of case studies looking at 

orthologous enhancers.

For instance, Cande and colleagues (Cande et al. 2009c) found that the relative 

genomic positions of Dorsal target enhancers of several genes (twist, brinker, 

cactus, single-minded, short-gastrulation, ventral nervous system defective), 

which are necessary for dorsoventral patterning, were conserved through long 

evolutionary distances. The authors identified clusters of Dorsal binding sites 

around the target genes from the mosquito Anopheles gambiae and the flour 

beetle Tribolium castaneum. Reporter gene assays showed that regions 

harboring clusters of Dorsal binding sites from Anopheles and Tribolium harbor 

homologous enhancer activities to their D. melanogaster counterparts, i.e., they 
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drive expression in the same developmental domain and time, despite few 

changes in specific expression patterns and lack of sequence similarity. 

Intriguingly, the authors also found that despite the long evolutionary distances of 

Anopheles and Tribolium from Drosophila (~250 mya (Yeates and Wiegmann 

1999; Gaunt and Miles 2002) and 300 mya (Kristensen 1999), respectively) at 

least one of the enhancers for each gene identified in the former two species 

were located in the same position in the corresponding genomes, as they are in 

the D. melanogaster genome, with respect to the coding sequences of the 

cognate and neighboring genes in that region.

Consistent with the above study, Hare and colleagues (Hare et al. 2008a) 

documented, this time in only one locus, that the genomic organization of the four 

enhancers regulating expression of the even-skipped gene were conserved 

between several Drosophila and Sepsis species, split approximately 100 million 

years ago. This conservation of enhancer location was matched with 

conservation of activity, despite the high level of sequence divergence between 

enhancers from Drosophila and Sepsis species.

One can think of several reasons for why enhancer position, with respect to the 

coding sequences, would be conserved over time. Firstly, enhancers that 

regulate the expression of a cognate gene in the same manner and have the 

same genomic positions in different species can be orthologous, i.e., 

descendants of the same ancestral enhancer. In this case the reason for why 

their genomic positions, with respect to the coding sequences, are conserved 

may simply be because not enough number of appropriate mutations 

accumulated to change the location of the enhancer in one or more species. 

Here, an appropriate mutation would be one that contributes to altering the 

location of the particular enhancer, but does not negatively affect the fitness of 

the organism. Hence, in theory, any of the mutational mechanisms that can 

cause enhancer gain and loss can also lead to change in enhancer position as 

long as they are not disruptive to the organism.
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Without excluding the above reasoning, one can think of a second explanation 

for conserved enhancer position. This explanation can involve orthologous or 

independently evolved enhancers that regulate a particular expression pattern of 

the same gene in different species. Basically, it is possible that at least for some 

genes, genomic position of the enhancers, with respect to the coding sequences, 

is essential in coordinating proper expression and changes in the position of an 

enhancer can potentially disrupt enhancer activity. In this case, mutations that 

alter the position of an enhancer in the genome would be selected against over 

time. This is in contrast to the textbook definition of enhancers, which states that 

enhancers show the same activity on their cognate gene independent of their 

position and orientation in the genome relative to the coding sequences. Even 

though some of the earlier case studies show that this assumption may be true 

for some enhancers (Banerji et al. 1981), it has not been directly tested until 

recently.

Intriguingly, Swanson et al. (Swanson et al. 2010) showed, in fine detail, that 

certain enhancer elements are position dependent for proper activity. The 

sparkling (spa) enhancer, which drives cone cell specific expression of the dpax2 

gene, has a “remote control element” that functions properly only when located at 

a distance from the basal promoter. Lack of this remote control element leads to 

loss of enhancer activity in cone cells when spa is placed far from the basal 

promoter (800bp). However, when spa is located in close proximity (121bp) to the 

basal promoter, lack of this element does not affect expression in cone cells. This 

shows that the proper functioning of the spa enhancer at a distance from the 

transcription start site is dependent on the remote control element.

Functional restrictions as above can lead evolutionary forces to conserve the 

genomic location of an enhancer element. However, currently we do not know 

how often enhancers have a position dependent components to them and how 

often there will be relaxed constrain on their positions.
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Thirdly, observed conservation of enhancer position between species can be a 

by product of ascertainment bias. When scientists identify an enhancer and are 

looking for it in different species, they typically look at the physically homologous 

genomic sequence for high similarity to the already identified enhancer 

sequence. If they cannot find sequence similarity in the corresponding genomic 

region, they typically either interpret this as lack of the specific enhancer in that 

species or simply not report existence or absence of the enhancer. This leads to 

a level of ascertainment bias towards the reported cases where cis-regulatory 

architecture is conserved. More thorough research studies conduct functional 

assays to look whether the physically homologous regions of an enhancer in 

other species also have the same enhancer activity. This helps identify 

enhancers, the relative genomic locations of which are conserved, but are 

lacking sequence similarity. However, if a genomic region, physically homologous 

to a verified enhancer in another species, lacks enhancer activity then the 

possibility of change in enhancer location is rarely considered. These types of 

negative results also tend to not be included in publications, hence contributing to 

the possible ascertainment bias against altered cis-regulatory architectures. 

Occasionally, however, researchers look for sequence conservation (Sanges et 

al. 2006) or a certain binding site grammar (Pan et al. 1994b) at other possible 

genomic regions in and around the corresponding gene. This type of search 

helpsed researchers find cis-regulatory elements that are organized differently in 

different species. For instance, Pan et colleagues (1994), showed that the 

proximal enhancer of the twist gene that drive expression in embryonic 

mesoderm, is located in the 5’ intregenic region of the coding sequence in D. 

melanogaster, but not in D. virilis. Search for the specific binding site grammar of 

this enhancer, identified in D. melanogaster, in and around the twist gene from D. 

virilis, found an enhancer in the intron that is functionally equivalent to the 

proximal enhancer. This indicated that the proximal enhancer of twist has 

different locations in different species.
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Even in the absence of identifying similar sequences or binding site grammars, 

one needs to test candidate regions in and around a gene for enhancer activity to 

reveal a complete picture of the overall cis-regulatory architecture of a gene.

Dynamic structure and activity of yellow cis-regulatory sequences can be 

used as a model to understand how enhancers change over time

yellow expression patterns are highly divergent among Drosophila species, and 

many of these divergent patterns are attributed to differences in the cis-

regulatory architecture (sequence, transcription factor binding profile, activity, 

position) of the gene (Wittkopp et al. 2002c; Gompel et al. 2005a; Jeong et al. 

2006a; Prud'homme et al. 2006a). This diversity provides a great opportunity for 

addressing a long standing questions in the field: How do enhancers evolve? 

More specifically, how do their sequence, transcription factor binding profile, 

genomic organization, and activity change over time and how do these three 

features correlate with each other?

What is the function of the yellow gene?

yellow was first identified in D. melanogaster as a gene required for black 

pigment (melanin) formation in the larval mouthparts and the adult body and 

bristles (Morgan and Bridges 1916; Brehme 1941; Biessmann 1985). Later on, it 

was also found to be necessary for proper male courtship behavior (specifically 

for the wing extension part of the male courtship ritual) (Bastock 1956; Burnet et 

al. 1973; Drapeau et al. 2003).

The molecular function of the Yellow protein is still not known, however there are 

studies suggesting various different activities for it. For instance, temporal and 

spatial expression of yellow gene is in correlation with cuticle formation and dopa 

decarboxylase enzyme activity in Drosophila development (Walter et al. 1991). 
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However, in an insect cell/baculovirus expression system Yellow failed to show 

Dopachrome-conversion enzyme (DCE) activity, which accelerates insect 

melanization reactions significantly (Han et al. 2002). Based on its sequence, it is 

also thought to be a secreted protein (Geyer et al. 1986). 

Based on sequence similarity, there are 13 additional yellow-like genes found in 

D. melanogaster (yellow-b, -c, -d, - d2, -e, -e2, -e3, -f, -f2, -g, -h, -k) (Maleszka 

and Kucharski 2000; Drapeau 2001). Among these Yellow-f and Yellow-f2 were 

found to have DCE activity in an insect cell/ baculovirus expression system (Han 

et al. 2002). yellow and yellow-like genes have been found to contain a shared 

domain with “major royal jelly” proteins (major royal jelly protein domain - MRJP), 

which are required for eusocial behavior in honey bees (Apis mellifera). As a 

result of searches based on the existence of MRJP domain there were no yellow-

like genes found in non-insect metazoans, except for the putative sequences in a 

basal eukaryote (Naegleria), a primitive chordate (Amphioxus), and a crustecean 

(the Salmon Louse) (Ferguson et al. 2011). Interestingly yellow-like genes have 

been identified in 45 different species of bacteria as well as both ascomycete and 

basidiomycete fungal species (Maleszka and Kucharski 2000; Drapeau et al. 

2006a; Ferguson et al. 2011), which led to speculations about horizontal gene 

transfer. yellow-like genes are also common in different species of insects. So far, 

yellow-like genes have been identified from Apis mellifera (20 genes, (Drapeau et 

al. 2006a)), Bombyx mori (seven genes, (Xia et al. 2006)), Tribolium castaneum 

(14 genes, ), Nasonia vitripennis (25 genes, (Werren et al. 2010)), pea aphid 

Acyrthosiphon pisum (14 genes, (Ferguson et al. 2011)). A phylogenetic tree 

based on the sequence similarity of all inferred yellow-like proteins showed that 

yellow family expansion took place through gene duplications and is associated 

with insect diversification (Ferguson et al. 2011).  

In many Drosophila species (Wittkopp and Beldade 2009) as well as other insect 

species (B. mori, (Ito et al. 2010), T. casteneum, ), yellow has been found to be 

associated to pigmentation of different body parts, including body cuticle and 
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wings. In Aedes aegypti the protein product of a yellow-like gene was even found 

to have DCE activity (Johnson et al. 2001). Further studies will show the specific 

functions of the yellow gene as well as different members of its gene family.

How is yellow regulated?

In D. melanogaster, yellow has two exons and a lone intron. Previous studies 

showed that both 5’ intergenic and intronic regions of this gene harbor enhancer 

activities; the former drives expression in the body (epidermal cells in the 

abdomen, thorax and head), and wings (wing epidermal and vein cells) (Geyer 

and Corces 1987b; Martin et al. 1989a; Wittkopp et al. 2002c; Gompel et al. 

2005a) as well as cells in the 3rd instar larval CNS harbors (referred to as mating 

success regulatory sequence MRS - necessary for proper male mating success, 

(Drapeau et al. 2005))  whereas the latter in the bristle associated cells (Geyer 

and Corces 1987b; Martin et al. 1989a).

Expression patterns of yellow are highly divergent between species, mostly due 

to changes in its cis-regulatory elements. Changes in yellow expression in the 

body between D. melanogaster, D. subobscura and D. virilis (Wittkopp et al. 

2002c), in the wings between D. melanogaster, D. biarmipes and D. 

pseudoobscura (Gompel et al. 2005a), in the wings between D. elegans, D. 

gununcola, D mimetica and D. tristis (Prud'homme et al. 2006a) have been 

(partially or fully) attributed to altered activity of yellow enhancers. It is notable, 

however, that the differences in the yellow wing expression patterns between D. 

melanogaster and D. guttifera were caused by changes in the trans environment 

of the two species (Werner et al. 2010a).

So far there are only a handful of transcription factors that have been shown to 

directly or indirectly affect yellow expression. Transcription factor Fruitless (Fru) 

(Drapeau et al. 2003), was found to be genetically upstream of yellow in D. 

melanogaster, such that it has upregulatory effects on Yellow expression. Other 
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transcription factors, Abdominal-B (Abd-B) (Jeong et al. 2006a) and Engrailed 

(En) (Gompel et al. 2005a) have been shown to affect yellow expression directly 

by binding to its 5’ cis-regulatory elements. Abd-B binding events were shown in 

vivo for D. melanogaster yellow 5’ intergenic region and in vitro for D. santomea, 

D. biarmipes, D. kikkawai, D. bipectinata, D. subobscura (spanning ~25 my of 

evolutionary history) (Jeong et al. 2006a). En was shown to bind directly to 5’ 

intergenic region of yellow in vivo in D. biramipes only (Gompel et al. 2005a). 

Despite the advantage the diversity of yellow cis-regulatory regions provides in 

understanding cis-regulatory evolution, limited knowledge on the transcription 

factors binding to those regions is a challenge to overcome, before addressing 

questions about how transcription factor binding profiles change over time and 

how those changes are correlated to changes in enhancer activities.

The dynamic structure and activity of yellow enhancers make evolution of yellow 

cis-regulatory architecture a good prospective model for understanding how 

enhancers change over time. A global comparison of yellow cis-regulatory 

architecture between species can shed light onto some of the general trends or 

trajectories evolution takes to alter enhancers (structure and/or activity). 

Intriguingly, even though there is considerable knowledge, even at the nucleotide 

resolution, about differences between the cis-regulatory regions of yellow among 

several groups of species, an extensive comparison of structure and activity of 

yellow enhancers among Drosophila species has not yet been done. Moreover, 

again, despite the current ample knowledge on yellow cis-regulation, there are 

only a handful of trans factors shown to directly or indirectly regulate yellow 

expression. This raises another long standing question in the gene regulation 

field: How do cis-regulatory changes correlate to trans changes, i.e., what is the 

relationship between the trio of cis-regulatory sequences, transcription factor 

binding profiles, and cis-regulatory activities?

In order to address the above-mentioned questions, and as described in Chapter 

2, I first identified the body, wing and bristle associated cell enhancer activities 
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lying in the 5’ intergenic and intronic regions of yellow from multiple species 

spanning the Drosophila evolutionary history. This also allowed me to determine 

the genomic organization of these enhancers with respect to the yellow coding 

region. Subsequently, as described in Chapter 3, in order to find how the 

identified enhancer activities were partitioned within the full yellow 5’ intergenic 

and intronic regions, i.e., what types of enhancer activities came together to 

make up the expression pattern the full region drives, I tested sub-fragments of 

the full regions for enhancer activity. With the goal of investigating the 

relationship between differences in enhancer activities and differences in the 

corresponding transcription factor binding profiles, I used a yeast-one-hybrid 

screen and found, at least part of, the transcription factors that bind to yellow 

enhancer sub-elements, some of which had strong similarities or differences in 

their enhancer activities. Based on this work, and as described in Chapter 4, I 

propose that under appropriate conditions enhancer position and activity can 

change rapidly and understanding the underlying mechanism of this change 

requires a comprehensive analysis of how similarities and differences in 

sequence and transcription factor binding grammars correlate to or cause 

similarities and differences between enhancer activities.
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CHAPTER 2

Nomadic enhancers: Tissue-specific cis-regulatory 
elements of yellow have divergent genomic positions 

among Drosophila species.

Abstract 

cis-regulatory DNA sequences known as enhancers control gene expression in 

space and time. They are central to metazoan development and are often 

responsible for changes in gene regulation that contribute to phenotypic 

evolution. Here, we examine the sequence, function, and genomic location of 

enhancers controlling tissue- and cell-type specific expression of the yellow gene 

in six Drosophila species. yellow is required for the production of dark pigment 

and its expression has evolved largely in concert with divergent pigment patterns. 

Using Drosophila melanogaster as a transgenic host, we examined the 

expression of reporter genes in which either 5’ intergenic or intronic sequences of 

yellow from each species controlled the expression of Green Fluorescent Protein.  

Surprisingly, we found that sequences controlling expression in the wing veins, 

as well as sequences controlling expression in epidermal cells of the abdomen, 

thorax, and wing, were located in different genomic regions in different species. 

By contrast, sequences controlling expression in bristle-associated cells were 

located in the intron of all species. Differences in the precise pattern of spatial 
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expression within the developing epidermis of D. melanogaster transformants 

usually correlated with adult pigmentation in the species from which the cis-

regulatory sequences were derived, which is consistent with cis-regulatory 

evolution affecting yellow expression playing a central role in Drosophila 

pigmentation divergence. Sequence comparisons among species favored a 

model in which sequential nucleotide substitutions were responsible for the 

observed changes in cis-regulatory architecture. Taken together, these data 

demonstrate frequent changes in yellow cis-regulatory architecture among 

Drosophila species. Similar analyses of other genes, combining in vivo functional 

tests of enhancer activity with in silico comparative genomics, are needed to 

determine whether the pattern of regulatory evolution we observed for yellow is 

characteristic of genes with rapidly evolving expression patterns. 

The work in Chapter 2 is published with the following citation:

Kalay, G. and P. J. Wittkopp (2010). "Nomadic enhancers: tissue-specific cis-regulatory elements 
of yellow have divergent genomic positions among Drosophila species." PLoS genetics 6(11): 
e1001222.
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Author summary
In order for a gene to be active, it must be turned on, or “expressed”. Instructions 

determining when, where, and how much a gene will be expressed are encoded 

by DNA sequences known as enhancers. The precise DNA sequence of a 

particular enhancer changes over evolutionary time, which may or may not 

change its effects on gene expression. Many genes are controlled by multiple 

enhancers and prior work has shown that the location of these enhancers within 

the genome tends to remain stable for long periods of evolutionary time. Here, 

we examine the enhancers controlling expression of a gene (yellow) involved in 

generating pigmentation diversity among fruit fly (Drosophila) species. 

Surprisingly, we find that not only have the sequence and function of individual 

enhancers changed among Drosophila species, but so has the location of these 

enhancers within each the genome of each species. This finding is important 

because it demonstrates a type of evolutionary change affecting DNA sequence 

elements critical for gene expression that is currently under appreciated and 

should be considered when searching for enhancers in future studies.
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Introduction

The production of a complex, multi-cellular organism requires transcription of a 

subset of the genome in each cell. This process, known as gene expression, is 

controlled by cis-regulatory DNA sequences that interact with trans-regulatory 

proteins and RNAs. These cis-regulatory sequences include “enhancers”, which 

contain binding sites for transcription factors. The specific combination of 

transcription factor binding sites within an enhancer determines its activity and 

specifies the timing, location, and abundance of expression for the gene it 

regulates. Many genes, especially those involved in development, are controlled 

by multiple enhancers, each of which controls a subset of the gene’s total 

expression pattern and can be located 5’, 3’ or in an intron of the gene whose 

transcription it regulates. Like all DNA, cis-regulatory sequences are subject to 

the unavoidable process of mutation, which – over evolutionary time – can 

change enhancer sequence, enhancer function, and the genomic location of 

enhancers relative to the gene whose expression they control. 

Comparing the cis-regulatory architecture of orthologous genes among species 

reveals how they evolve as well as which features are essential for their activity. 

Conserved sequences between orthologous enhancers represent putatively 

functional elements (e.g., (Langeland and Carroll 1993; Lukowitz et al. 1994)), 

but conservation of DNA sequence is not strictly required for conservation of 

enhancer function: transcription factor binding sites are often degenerate and 

comparable enhancer functions can be produced by multiple arrangements of 

these sites (Ludwig et al. 1998; Romano and Wray 2003a; Hare et al. 2008b). 

Compared to enhancer sequence, enhancer location within the genome (relative 

to exonic sequences of the associated gene) appears to be more constrained. 

For example, the location of enhancers is conserved for the even-skipped gene 

between Drosophila and Sepsid species (Hare et al. 2008b), which diverged over 

100 million years ago, and for six Dorsal target genes between Drosophila and 
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Anopheles or Tribolium (Cande et al. 2009b), which diverged over 200 million 

years ago. Indeed, conservation of enhancer location within the genome is 

something that many researchers rely upon in their search for orthologous 

enhancers. 

Here, we investigate the evolution of cis-regulatory architecture controlling 

expression of the Drosophila yellow gene. Yellow is required for the production of 

dark melanic pigment in insects (Arakane et al. ; Wittkopp et al. 2002b; Futahashi 

et al. 2008), and its expression during late pupal stages has evolved in a manner 

that often correlates with the distribution of melanins in adults (Wittkopp et al. 

2002d; Gompel et al. 2005b; Jeong et al. 2006b; Prud'homme et al. 2006b). In D. 

melanogaster, yellow expression is controlled by multiple tissue-specific 

enhancers, with enhancers driving expression in the pupal wing, abdomen, and 

thorax located 5’ of the yellow gene and an enhancer driving expression in 

bristle-associated cells located within its lone intron (Geyer and Corces 1987a; 

Martin et al. 1989b; Wittkopp et al. 2002d; Jeong et al. 2006b) (Figure 2-1). 

Comparisons of yellow expression and regulation among species suggest that 

changes in cis-regulatory activity are most often responsible for divergent yellow 

expression patterns (Wittkopp et al. 2002d; Gompel et al. 2005b; Jeong et al. 

2006b; Prud'homme et al. 2006b; Werner et al. 2010b), although changes in 

trans-regulatory factors also contribute to expression divergence in some species 

(Wittkopp et al. 2002d; Werner et al. 2010b)). Changes in the spatial pattern of 

yellow expression within the developing abdomen result from changes in 

orthologous enhancers located in the 5’ intergenic sequences of yellow (Wittkopp 

et al. 2002d; Jeong et al. 2006b), and convergent yellow expression in “spots” on 

the developing wing results from enhancers that evolved in the 5’ intergenic 

region of one species and in the intron of another (Gompel et al. 2005b; 

Prud'homme et al. 2006b; Werner et al. 2010b). 

To examine the evolution of yellow cis-regulatory architecture more 

comprehensively and systematically, we determined the enhancer activity of 
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sequences 5’ of yellow and in its intron for six species spanning the phylogenetic 

tree of the genus Drosophila. These species include members of both the 

Drosophila (D. mojavensis, D. virilis, and D. grimshawi) and Sophophora (D. 

melanogaster, D. pseudoobscura, and D. willistoni) subgenera and have pairwise 

divergence times ranging from approximately 20 to 40 million years ago (Russo 

et al. 1995; Spicer and Bell 2002). Surprisingly, we found that the location of 

yellow enhancer activity controlling expression in a particular tissue- or cell-type 

differed frequently among species, with only the enhancer controlling bristle-

associated expression located in the same genomic region of all species. These 

differences in cis-regulatory architecture were accompanied by differences in 

enhancer activity that often correlated with species-specific pigment patterns, as 

expected based on prior studies (Wittkopp et al. 2002d; Gompel et al. 2005b; 

Jeong et al. 2006b; Prud'homme et al. 2006b; Werner et al. 2010b). Sequence 

comparisons between pairs of species showed no clear evidence of duplications 

or transpositions near yellow, suggesting that differences in enhancer location 

among species evolved by sequential sequence substitutions, one or a few 

nucleotides at a time. To the best of our knowledge, such extensive and rapid 

turnover in the genomic location of enhancers has not been observed for any 

other eukaryotic gene.

Results

To determine the cis-regulatory architecture of yellow in each of six Drosophila 

species, we constructed reporter genes that used species-specific 5’ intergenic or 

intronic sequences of yellow to drive expression of a nuclear Green Fluorescent 

Protein (GFP) in transgenic D. melanogaster. The 5’ intergenic regions surveyed 

began near a highly-conserved region of sequence (Figure 2-6) located 5’ of the 

previously characterized wing and body enhancers of D. melanogaster yellow 

(Geyer and Corces 1987a; Martin et al. 1989b; Wittkopp et al. 2002d; Jeong et 

al. 2006b; Werner et al. 2010b) and extended 3’ to the beginning of the first exon 
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of yellow (Figure 2-2). This region includes all of the 5’ intergenic DNA contained 

within yellow transgenes that fully rescue yellow null mutant phenotypes in D. 

melanogaster (Geyer and Corces 1987a) and D. virilis (Wittkopp et al. 2002d), 

suggesting that these constructs are likely to contain all 5’ enhancers affecting 

yellow expression. The intronic constructs began and ended with sequences in 

the first and second exons, respectively. DNA fragments tested ranged from 4 to 

9.8 kb for the 5’ intergenic regions and from 2.7 to 6.7 kb for the intronic regions 

(Figure 2-2). Each of the twelve reporter genes was independently integrated into 

the same pre-determined location of the D. melanogaster genome using the 

phiC31 integrase system (Groth et al. 2004), and expression of the GFP reporter 

gene in transgenic pupae 70-80 hours after puparium formation was examined 

by confocal microscopy. 

[Note: Reporter genes containing 5’ intergenic and intronic sequences from D. 

subobscura were also constructed and analyzed; however, because the 5’ 

intergenic region surveyed in D. subobscura did not extend to the highly-

conserved region, these data are presented and discussed only in Figure 2-7 and 

its associated legend.] 

Genomic location of tissue-specific enhancers differs among species 

All DNA fragments tested were sufficient to activate GFP expression in at least 

one tissue during the pupal stage examined (Figure 2-3). Reporter genes 

containing 5’ intergenic and intronic sequences from D. melanogaster drove 

expression patterns consistent with prior studies (Geyer and Corces 1987a; 

Martin et al. 1989b; Wittkopp et al. 2002d; Jeong et al. 2006b; Werner et al. 

2010b): the 5’ intergenic sequence drove expression in the epidermal cells of the 

abdomen, thorax and wing (Figure 2-3B), whereas the intronic sequence drove 

expression in bristle-associated cells (Figure 2-3C). We also observed faint 

expression in wing veins activated by the D. melanogaster intronic sequence 

(Figure 2-3C, arrows) -- an enhancer activity that (to the best of our knowledge) 
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has not previously been reported in D. melanogaster. Reporter gene expression 

was similarly used to infer the location of tissue- and cell-type specific enhancers 

in each of the other five species. Locations for enhancers that drive expression in 

the epidermal cells of the abdomen, thorax, wing, and head; in the wing veins; 

and in bristle-associated cells are summarized in the following paragraphs.

For each species, enhancers driving expression in epidermal cells of the 

abdomen, thorax, wing, and (when expression was present) head were typically 

found in the same genomic region; however, the location of this region differed 

among species and half of the species showed evidence of epidermal cell 

enhancers in both the 5’ intergenic and intronic regions. Enhancers driving 

expression in epidermal cells of the abdomen, thorax, and wing were observed in 

the 5’ intergenic regions of all three Sophophora species (i.e., D. melanogaster, 

D. pseudoobscura, and D. willistoni) and D. virilis from the Drosophila subgenus 

(Figures 2-3B, E, H, N) as well as in the introns of D. pseudoobscura and all 

three species from the Drosophila subgenus (i.e., D. mojavensis, D. virilis, and D. 

grimshawi) (Figures 2-3F, L, O and R). In addition, the intron from D. willistoni 

drove expression in the epidermal cells of the thorax and wing (Figure 2-3I), and 

the D. grimshawi 5’ intergenic region drove expression in a small region of 

epidermal cells flanking two of the wing veins (Figure 2-3Q, arrows). Expression 

in head epidermal cells was observed only in D. pseudoobscura and D. virilis, 

with the enhancer controlling this expression located in the 5’ intergenic or 

intronic regions of these species, respectively (Figures 2-3E and O).  

The genomic location of enhancers driving expression in wing veins was also 

variable among species. In the subgenus Sophophora, the two most closely 

related species, D. melanogaster and D. pseudoobscura, both showed this 

enhancer activity in the intron (Figures 2-3C and F, arrows), whereas the more 

distantly related D. willistoni showed wing vein enhancer activity in the 5’ 

intergenic sequence (Figure 2-3H, arrow). In the subgenus Drosophila, both 5’ 

intergenic and intronic sequences from D. mojavensis and D. virilis drove 
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expression in the wing veins (Figures 2-3K, L, N, and O, arrows), but no wing 

vein expression was observed from either reporter gene containing D. grimshawi 

sequence (Figures 2-3Q and R). 

Expression in bristle-associated cells of both the body and wing was controlled 

by intronic sequences from all six species, making it the only yellow enhancer 

activity whose genomic location appears to be conserved within the genus 

Drosophila (Figure 2-3C, F, I, L, O, and R). 

Divergent activity of yellow enhancers often correlates with divergent 

pigmentation

 

The spatial patterns of reporter gene expression in epidermal cells of the 

abdomen, thorax, and (less frequently) wing often differed between species 

(Figure 2-3). With few exceptions (noted below), sequences from each species 

activated GFP expression in transgenic D. melanogaster hosts in patterns that 

correlated with adult pigmentation of the species from which the enhancer 

sequences were derived. In the abdomen, for example, D. melanogaster, D. 

willistoni, and D. grimshawi all have dark stripes at the posterior edge of each 

dorsal abdominal segment (Figures 2-3A, G, and P) and show similar stripes of 

reporter gene expression in each abdominal segment driven by either their 5’ 

intergenic or intronic sequences (Figures 2-3B, H, and R). D. mojavensis, 

however, also has pigment stripes on its dorsal abdomen, but the weak 

abdominal reporter gene expression observed was not restricted to these stripes 

(Figure 2-3L). In addition, D. mojavensis has a series of pigment spots on its 

head and thorax (Figure 2-3J), and D. grimshawi has dark pigments along the 

dorsal midline in the abdomen and in the thorax (Figure 2-3P), neither of which 

are reflected in the expression patterns of the corresponding species-specific 

reporter genes (Figures 2-3K, L, Q, and R). Finally,D. pseudoobscura and D. 

virilis have an overall dark body color and faint stripes on the thorax (Figures 
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2-3D and M), all of which are reflected in the reporter gene expression patterns 

for both species (Figures 2-3E, F, N, and O). 

Partial correlations between reporter gene expression and adult pigmentation 

were also seen in the wing. D. virilis has a visible spot of dark pigment 

surrounding one of its cross-veins (Figure 2-3M), and D. grimshawi has an 

elaborate pattern of pigment spots (Figure 2-3P). The 5’ intergenic region from D. 

virilis drove higher levels of expression in cells that will give rise to the pigmented 

spot surrounding L4-L5 cross-vein than in the rest of the wing (Figure 2-3N, 

arrowhead), whereas the D. grimshawi intron drove elevated expression in a 

subset of wing epidermal cells in a pattern that did not correlate well with adult D. 

grimshawi wing pigmentation (Figure 2-3R). Interestingly, the D. pseudoobscura 

intron drove elevated expression in an anterior spot of the wing (Figure 2-3F, 

arrowhead) despite the fact that D. pseudoobscura lacks any obvious dark 

pigment patterns in this region. 

Nomadic enhancers: moving existing elements or de novo construction 

and destruction?

 

As described above, similar tissue-specific enhancer activities were found in 

different genomic regions among the species surveyed. Such changes in cis-

regulatory architecture can be achieved through (1) the movement of existing 

enhancers via duplications and/or transpositions of DNA sequence or (2) the de 

novo construction or destruction of transcription factor binding sites individually 

via sequential nucleotide substitutions. Each of these mechanisms is expected to 

produce a different pattern of sequence similarity between species. For example, 

consider D. melanogaster, which has an enhancer driving expression in 

abdominal epidermal cells in its 5’ intergenic region (Figure 2-3B), and D. 

pseudoobscura, which has two enhancers driving expression in abdominal 

epidermal cells located in its 5’ intergenic and intronic regions (Figures 2-3E and 

F). If the intronic enhancer in D. pseudoobscura resulted from a duplication of the 
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5’ enhancer shared with D. melanogaster, sequence similarity is expected 

between the 5’ region of D. melanogaster and the intron of D. pseudoobscura as 

well as between the 5’ intergenic and intronic sequences of D. pseudoobscura 

itself. If, however, a more gradual sequence substitution process caused either 

the loss of abdominal epidermal cell enhancer activity in the D. melanogaster 

intron or the gain of this activity in the D. pseudoobscura intron, regions of 

sequence similarity are expected to be collinear between species. That is, the 

introns of both species should share greater sequence similarity with each other 

than either does with the other species’ 5’ intergenic sequence and vice versa. 

To try to distinguish between these mechanisms, we performed pairwise 

comparisons of yellow genes and their 5’ intergenic sequences for all six species. 

As expected, significant sequence similarity was observed between homologous 

exons for all pairs of species (Figure 2-4). Outside of these regions, very little 

sequence similarity was observed for all but the most closely related pairs of 

species in each subgenus: D. melanogaster and D. pseudoobscura in the 

Sophophora subgenus, and D. mojavensis and D. virilis in the Drosophila 

subgenus. These two pairs of species provide the most power for investigating 

the molecular mechanisms responsible for interspecific differences in enhancer 

location. In both cases, one species in the pair has enhancer activity driving 

epidermal cell expression in the abdomen, thorax, and wing only in the 5’ 

intergenic region or only in the intron, whereas the other member of the pair has 

similar activities in both the 5’ intergenic region and the intron. Despite these 

differences in the genomic location of enhancers with similar tissue-specificity, we 

observed only collinear regions of sequence similarity (Figure 2-4, red and blue 

arrows). Such a pattern favors a model in which enhancers have been gained or 

lost through sequential sequence substitutions. 
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Discussion

We found that the cis-regulatory architecture of yellow has changed repeatedly 

during the ~40 million years since the six Drosophila species we examined last 

shared a common ancestor. This includes changes in the activity of homologous 

tissue-specific enhancers as well as changes in their relative genomic location. 

Sequence comparisons between the most closely related species examined 

showed no evidence of duplications or transpositions, suggesting that this 

diversity may have arisen through the gradual accumulation of sequence 

differences one (or a few) nucleotides at a time. As discussed below, these data 

provide insight into the independence of tissue-specific enhancers, the 

relationship between yellow enhancers and pigmentation divergence, and the 

evolution of cis-regulatory architecture. 

Evolutionary constraint suggests interactions between tissue-specific 

enhancers

Comparative studies that examine cis-regulatory sequences in an evolutionary 

context can uncover features overlooked by dissecting cis-regulatory sequences 

from a single species. For example, studies of D. melanogaster yellow identified 

non-overlapping DNA sequences that are necessary and sufficient to activate 

expression in epidermal cells of the body (i.e., abdomen and thorax) or wing, 

suggesting the presence of two distinct tissue-specific enhancers (Geyer and 

Corces 1987a; Wittkopp et al. 2002d). We found that these “wing” and “body” 

enhancer activities colocalize to the same genomic region in most species 

despite frequent evolutionary changes in the relative position of this region 

(Figure 2-5). This suggests that these enhancers are not fully independent, but 

rather interact in a way that constrains their evolution. For example, they might 

require close proximity to function properly at the native yellow locus because 

they share transcription factor binding sites and/or chromatin structure that 
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promotes expression in pupal epidermal cells. Such colocalization was not 

observed for enhancers driving expression in bristle-associated cells or wing 

veins. Therefore, we propose that three evolutionarily independent enhancer 

modules regulate yellow expression: one controlling expression in bristle-

associated cells, one controlling expression in the wing veins, and one controlling 

expression in the epidermal cells of the abdomen, thorax, head, and/or wing. 

Consistent with this proposal, a DNA fragment containing both the previously 

defined “body” and “wing” enhancers drives reporter gene expression in 

epidermal cells of the abdomen that is more representative of endogenous D. 

melanogaster yellow expression in those cells than that driven by a fragment 

containing the “body” enhancer alone (Jeong et al. 2006b).

yellow enhancer activity often, but not always, evolves with pigmentation 

In Drosophila, cis-regulatory changes affecting yellow expression often correlate 

with changes in pigmentation among species (Wittkopp et al. 2002d; Gompel et 

al. 2005b; Jeong et al. 2006b; Prud'homme et al. 2006b; Werner et al. 2010b), 

suggesting that they have contributed to the evolution of this trait. Indeed, we 

observed a correlation between pigmentation and enhancer activity in most of 

our dataset; however, not all pigment patterns were reflected in reporter gene 

expression. For example, pigment spots on the body of D. mojavensis and on the 

wings of D. grimshawi were not observed in the expression pattern of either of 

the reporter genes from these species. This could be because these particular 

pigment patterns are controlled by another pigmentation gene such as tan (True 

et al. 2005; Jeong et al. 2008; Wittkopp et al. 2009). Alternatively, enhancers 

driving yellow expression in these patterns may be located outside of the regions 

surveyed; an additional wing enhancer was found in D. grimshawi 5’ of intergenic 

region we tested (T. Werner and S.B. Carroll, personal communication). Finally, 

trans-acting factors controlling yellow expression may have diverged between D. 

melanogaster and D. mojavensis or D. grimshawi such that sequences drive 

expression in a different pattern when inserted into the D. melanogaster genome 
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than they do in their native species. Such trans-regulatory changes are known to 

exist between D. melanogaster and D. virilis (Wittkopp et al. 2002d) and between 

D. melanogaster and D. guttifera (Werner et al. 2010b). 

In addition to pigment patterns not reflected in reporter gene expression, we also 

observed reporter gene expression not reflected in pigment patterns. Intronic 

sequences from D. pseudoobscura activated reporter gene expression in an 

anterior region of D. melanogaster wings despite the fact that adult D. 

pseudoobscura lack pigmentation in this area (Figure 2-3F, arrowhead). This 

expression pattern does not appear to be an artifact of the heterologous 

transgenic host because a similar pattern is seen in native D. pseudoobscura 

Yellow expression (see Figure 1 in (Gompel et al. 2005b)). Interestingly, D. tristis, 

which is a member of the obscura group to which D. pseudoobscura also 

belongs, has a similar pattern of yellow expression in pupal wings controlled by 

an intronic enhancer and does display a corresponding spot of pigmentation on 

its adult wings (Prud'homme et al. 2006b). This spot of wing pigmentation 

appears to be a derived trait in the obscura group (Prud'homme et al. 2006b), 

thus the presence of this expression pattern in D. pseudoobscura suggests that 

the novel yellow enhancer activity in this wing spot preceded other changes, 

such as a coincident decrease in Ebony protein expression (Wittkopp et al. 

2002b; Gompel et al. 2005b), that are also required for wing spot formation.

Evolutionary changes responsible for the dynamic cis-regulatory 

architecture of yellow 

Examining divergent phenotypes in concert with a phylogenetic tree allows 

inferences to be made about the evolutionary changes that led to the observed 

trait diversity. To this end, Figure 2-5 shows the phylogenetic relationships among 

the species surveyed alongside a summary of the genomic locations of yellow 

enhancers from each species. Enhancer activity was considered present if 
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reporter gene expression was observed in the tissue- or cell-type indicated 

regardless of the precise spatial pattern within that tissue. 

To determine the evolutionary changes that gave rise to the observed diversity of 

cis-regulatory architecture, we must first infer the genomic locations of enhancers 

in the common ancestor of the six species studied. To do this, we considered 

each enhancer activity independently. The historical genomic location of bristle 

enhancer activity could be inferred with the most confidence: all six species 

showed bristle enhancer activity only in the intron, strongly suggesting that the 

common ancestor of these six species also had a bristle enhancer in this region. 

The ancestral locations of the wing vein and epidermal cell enhancers is less 

clear; these enhancer activities were found in the 5’ intergenic region, in the 

intron, and in both of these regions depending on the species surveyed. 

Inferring the most likely genomic location(s) of wing vein and epidermal cell 

enhancers in the common ancestor requires an assumption about the relative 

likelihood of enhancer gain and enhancer loss in different lineages. Because 

mutations are expected to disrupt transcription factor binding sites more often 

than they are expected to create new ones, we assume that the loss of enhancer 

activity is more likely in all lineages than the gain of a novel tissue-specific 

enhancer. On the basis of this assumption, the most parsimonious explanation 

for the observed data is that the common ancestor had enhancers in both the 5’ 

intergenic and intronic regions of yellow that drove expression in the wing veins 

as well as in the abdomen, thorax, and wing epidermal cells. Such a scenario 

involves at least one loss of enhancer activity in the lineage leading to each of 

the species surveyed except D. virilis, as shown in Figure 2-5. While we find a 

common ancestor with redundant enhancers in the 5’ intergenic and intronic 

regions for both the wing veins and epidermal cells surprising, overlapping 

enhancers with similar tissue- and cell-type specific activities have been 

identified for other genes (e.g., (Helms et al. 2000; Pappu et al. 2005; Uemura et 

al. 2005; Jeong et al. 2006c; Cretekos et al. 2008; Hong et al. 2008; Frankel et 
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al. 2010b)) and scenarios involving a common ancestor with wing vein and/or 

epidermal cell enhancer activity in only one genomic region include multiple 

gains and losses in most lineages, which is presumably even less likely.

Regardless of the specific gains, losses, and/or relocations of yellow enhancers 

that occurred over the last 40 million years, it is clear that the genomic location of 

enhancer activities within and surrounding the yellow gene has changed multiple 

times. This finding is contrary to recent studies of seven other genes showing 

conserved genomic locations of Drosophila enhancers in species that diverged 

over 100 million years ago (e.g., (Hare et al. 2008b; Cande et al. 2009b)) , and 

challenges the assumption of conserved enhancer location that often underlies 

searches for orthologous enhancers. At least one other Drosophila gene (i.e., 

twist) has analogous differences in enhancer location between species (Pan et 

al. 1994a); however, the frequency of such changes on a genomic scale remains 

unknown. Given the rapid sequence divergence of even functionally conserved 

enhancers (reviewed in (Wittkopp 2006)), changes in enhancer location are 

unlikely to be detected by sequence alignments alone, underscoring the 

importance of supplementing in silico comparative genomics with in vivo 

functional tests. 

Materials and Methods:

Isolating yellow BAC clones

For five of the six species used in this study (D. pseudoobscura, D. willistoni, D. 

mojavensis, D. virilis, and D. grimshawi), BAC libraries (CHORI-222, DW_Ba, 

DM_CBa, DV_VBa and DG_Ba, respectively) were screened for clones 

containing yellow as well as its flanking genes. Nylon filters containing arrayed 

clones from the BAC libraries were obtained from BACPAC Resources 

(CHORI-222) and Arizona Genomics Institute (AGI) (DW_Ba, DM_CBa, DV_VBa 

and DG_Ba), and screened with [alpha-32-P]-labeled, random hexamer-primed 
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probes synthesized using PCR amplicons from exons of the yellow gene; the 

CG3777 gene, which is located 5’ of yellow; and either the CG4165 (D. 

mojavensis) or achete (all other species) gene, both of which are located 3’ of 

yellow. (Primers and PCR conditions used to amplify the DNA template for each 

probe are available upon request.) Probe synthesis was performed as described 

in Molecular Cloning (Sambrook and Russell 2001). Unincorporated 

radionucleotides were removed using CentriSpin columns (Princeton 

Separations). Purified radioactive probes were denatured at 1000C for 5 minutes 

and placed on ice until they were added to the hybridization buffer containing the 

appropriate species specific BAC filter. BAC filter screening conditions and buffer 

recipes were as described in the AGI BAC Filter Manual available from the 

Arizona Genomics Institute (http://www2.genome.arizona.edu/research/

protocols_bacmanual). After hybridizing each filter with a radioactive probe, the 

filter was washed and exposed to Kodak BioMax XAR films for 72 hours @ -800C 

and developed. 

Radiographs were used to identify clones as directed by the filter manufacturers 

(Arizona Genomics Institute and BACPAC Resources), and BACs that hybridized 

to all three probes were ordered. Upon receipt, each BAC clone was tested for 

the presence of CG3777, yellow, and achete or CG4165 using PCR 

amplification. Table 2-1 lists all BAC clones found to contain yellow and at least 

one flanking gene. For D. willistoni, D. mojavensis, D. virilis, and D. grimshawi, 

BAC clones with code numbers 10L5, 4J24, 1A7 and 23K7, respectively, were 

used for reporter gene construction. For D. melanogaster, the RP98-13J2 BAC 

clone from the Roswell Park Cancer Institute Drosophila BAC Library, which was 

identified computationally and confirmed by PCR to contain CG3777, yellow and 

achete, was used for reporter gene construction. Note that none of the D. 

pseudoobscura BAC clones containing yellow had sufficient 5’ sequence to be 

used for reporter gene construction. 
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Constructing reporter genes

For each species, 5’ intergenic and intronic regions of yellow were cloned into a 

plasmid containing piggyBac transposable element arms, a 3xP3-Enhanced 

Green Fluorescent Protein (EGFP) marker driving cytoplasmic GFP expression in 

the eyes (Horn and Wimmer 2000), and a 300 bp attB site (Groth et al. 2004; 

Bischof et al. 2007) that we amplified from the pTA-attB plasmid provided by 

Michele Calos (Stanford University) and inserted into the unique XbaI site. As 

described in the main text, the 5’ end of the 5’ intergenic sequences was defined 

by the highly conserved region shown in Figure 2-6. The 5’ intergenic and intronic 

sequences from D. melanogaster, D. subobscura, D. pseudoobcsura, and the 

intron of D. virilis yellow were PCR amplified from BAC RP98-13J2, plasmid 

ysub-pBac (Wittkopp et al. 2002d), genomic DNA extracted from D. 

pseudoobscura (UCSD stock number 14011-0121.94), and plasmid yvir-pBac 

(Wittkopp et al. 2002d), respectively. Primer sequences used for these 

amplifications are available upon request. PCR products were ligated to the PCR 

2.1 TOPO vector (Invitrogen), fully sequenced to identify clones with no PCR 

introduced mutations, and subcloned into the piggyBac-EGFP vector described 

above using the unique AscI restriction site. 

For D willistoni, D. mojavensis, D. grimshawi, and the D. virilis both the 5’ 

intergenic and intronic regions were cloned into the piggyBac-EGFP vector using 

recombineering (http://recombineering.ncifcrf.gov/). Briefly, PCR was used to 

amplify 450-500 bp homology arms corresponding to the 5’ (left arm) and the 

3’ (right arm) end of each target DNA sequence. PCR sewing was used to 

combine the left and right arms into a single fragment with a unique NheI 

restriction site between them. These DNA fragments were subcloned into PCR 

2.1 TOPO, fully sequenced to identify clones without PCR introduced mutations, 

and subcloned into the piggyBac-EGFP vector using the unique AscI restriction 

site. Each piggyBac vector containing a species-specific pair of homology arms 

was linearized using the introduced NheI restriction site and electroporated into 

SW102 cells containing the yellow BAC from the appropriate species. 
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Electroporation was conducted using Eppendorf Electroporator 2510 at 1250 

Volts, with time constants ranging between 4.5-5. Following electroporation, 

SW102 cells were incubated in 1 ml LB at 300C rotator for 1-1.5 hours, spread on 

LB agar plates supplemented with ampicillin (50 ug/ml), and grown overnight at 

300C to select for cells containing a circularized piggyBac-EGFP plasmid 

harboring the DNA of interest. Primers located in the piggyBac vector and in the 

target DNA sequences were paired to screen colonies for the existence and the 

direction of the DNA region of interest using PCR. Positive clones were 

confirmed by diagnostic digests using restriction enzymes specifically chosen for 

each construct, and the inserted DNA was completely sequenced to confirm once 

again that no experimentally introduced mutations were present. Next, a DNA 

fragment derived from pSLfa1180fa-nEGFP (Ernst Wimmer, Georg August 

University, Göttingen) containing an hsp70 promoter and the coding sequence for 

a nuclear EGFP protein was cloned into each piggyBac plasmid using the unique 

FseI restriction site. The resulting DNA transgene constructs were confirmed 

using appropriate diagnostic digests with restriction enzymes and sent to 

Genetics Services, Inc. (Cambridge, MA) where they were injected into the w-; 

attP-40 line of D. melanogaster (Markstein et al. 2008). This line contains a 

transgene expressing the φC31 site-specific integrase enzyme (Bischof et al. 

2007), which causes the targeted integration of each attB-containing piggyBac 

construct into the attP site on the D. melanogaster 2nd chromosome. An “empty” 

piggyBac plasmid lacking any yellow sequence was also transformed into D. 

melanogaster and analyzed as a control to determine background levels of GFP 

expression.

Analysis of reporter gene expression patterns

Homozygous transgenic D. melanogaster lines were obtained by crossing each 

transgenic D. melanogaster genotype to a 2nd chromosome balancer line (w[*]; Kr

[If-1]/CyO; D[1]/TM6B, Tb[+]; Bloomington stock number 7197), intercrossing the 

F1 offspring, and then intercrossing selected homozygous F2 individuals.  

Homozygous transgenic animals were imaged at 70-80 hours APF, a stage which 

66



is recognized by pigmented wings as well as the presence of visible malpigian 

tubes on the anterior sides of the abdomen. The pupal case was removed prior 

to imaging using a probe and a pair of fine forceps. 

To prepare the pupal bodies for confocal microscopy, the transparent pupal 

cuticle was kept in place without any tears and the pupa was mounted on a 

microscope slide with a drop of water and a coverslip. To prepare the pupal 

wings for confocal microscopy, the transparent pupal cuticle was removed and 

the whole fly was submerged in Milli-Q water. After the wings had unfolded, 

which took about one minute, they were carefully detached from the rest of the 

pupa at the base of the wing where it connects to the thorax. Using a wide mouth 

pipette tip, each wing was transferred onto a microscope slide with a drop of 

water. A coverslip was applied and pressed gently to achieve full expansion of 

the wings. All specimens were imaged immediately after mounting using a Leica 

SP5 confocal microscope. Identical settings (e.g., laser power, pinhole size, etc) 

were used on the confocal microscope for all samples, and all raw confocal 

images of the same tissue (e.g., wings or bodies) were processed identically in 

Photoshop.

Sequence analysis

yellow sequences and 5’ intergenic DNA from all species except D. willistoni were 

downloaded using the UCSC Genome Browser (Rhead et al.). Specific 

assemblies and coordinates for each species were as follows: D. melanogaster, 

Apr. 2006 (BDGP R5/dm3) Assembly, chrX:246,727-255,037; D. pseudoobscura, 

FlyBase release r2.11, chrXL_group1e:4227884-4238281; D. willistoni, FlyBase 

release r1.3 scf2_1100000004909:5315142-5325379; D. mojavensis, Aug. 2005 

(Agencourt prelim/droMoj2) Assembly, scaffold_6359:2,460,150-2,478,221; D. 

virilis, Aug 2005 (Agencourt prelim/droVir2) Assembly, 

scaffold_13042:3,903,783-3,920,981; D. grimshawi, Aug 2005 (Agencourt prelim/

droGri1) Assembly, scaffold_24821:2,532,826-2,547,390. Homologous D. 

willistoni sequences were identified and downloaded using the BLAST 
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implementation on FlyBase. These sequences were subject to repeat masking 

prior to analysis.

Alignments were performed using LASTZ (Release 1.02.00, built January 12, 

2010), which was downloaded from Webb Miller’s laboratory website (http://

www.bx.psu.edu/). This unpublished software replaces the BLASTZ program 

developed by the same group (Schwartz et al. 2003). Default settings were used 

except for the ”--mismatch=2,23” option that sets an alternative threshold for the 

gap-free extension step. The basic structure of this analysis is as follows: all 

sequences 19 nucleotides long with matches in 12 specific positions were 

identified as “seeds”; seeds were extended in both directions without gaps until 

two mismatches were found in each end; extended seeds at least 23 nucleotides 

long were treated as “high scoring segment pairs” (HSPs); HSPs were converted 

into anchor points; anchor points were extended in both directions using gapped 

local alignments; and the coordinates of local alignments output by LASTZ were 

plotted using R statistical software (Team 2005). The decision to allow a 

maximum of two mismatches during the gap-free extension stage was arbitrary, 

whereas the minimum length of extended seeds treated as HSPs (i.e., 23 

nucleotides) was determined empirically by randomizing concatenated multi-

species yellow sequences with the “Shuffle DNA” tool in the web-based 

“Sequence Manipulation Suite” (Stothard 2000) and iteratively testing length 

thresholds to find the smallest value that failed to identify any stretches of 

significant sequence similarity in the randomized sequence. Figure 2-8 shows the 

result of the same analysis with a decreased length threshold (”--

mismatch-2,19”); 40 regions of significant sequence similarity were identified 

between the real and randomized sequences using these parameters. 

Supporting Text

yellow enhancer activity often, but not always, evolves with pigmentation 

In Drosophila, cis-regulatory changes affecting yellow expression often correlate 

with changes in pigmentation among species (Wittkopp et al. 2002b; Gompel et 
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al. 2005; Jeong et al. 2006; Prud'homme et al. 2006; Werner et al. 2010), 

suggesting that they have contributed to the evolution of this trait. Indeed, we 

observed a correlation between pigmentation and enhancer activity in most of 

our dataset; however, not all pigment patterns were reflected in reporter gene 

expression. For example, pigment spots on the body of D. mojavensis and on the 

wings of D. grimshawi were not observed in the expression pattern of either of 

the reporter genes from these species. This could be because these particular 

pigment patterns are controlled by another pigmentation gene such as tan (True 

et al. 2005; Jeong et al. 2008; Wittkopp et al. 2009). Alternatively, enhancers 

driving yellow expression in these patterns may be located outside of the regions 

surveyed; an additional wing enhancer was found in D. grimshawi 5’ of intergenic 

region we tested (T. Werner and S.B. Carroll, personal communication). Finally, 

trans-acting factors controlling yellow expression may have diverged between D. 

melanogaster and D. mojavensis or D. grimshawi such that sequences drive 

expression in a different pattern when inserted into the D. melanogaster genome 

than they do in their native species. Such trans-regulatory changes are known to 

exist between D. melanogaster and D. virilis (Wittkopp et al. 2002b) and between 

D. melanogaster and D. guttifera (Werner et al. 2010). 

In addition to pigment patterns not reflected in reporter gene expression, we also 

observed reporter gene expression not reflected in pigment patterns. Intronic 

sequences from D. pseudoobscura activated reporter gene expression in an 

anterior region of D. melanogaster wings despite the fact that adult D. 

pseudoobscura lack pigmentation in this area (Figure 2F, arrowhead). This 

expression pattern does not appear to be an artifact of the heterologous 

transgenic host because a similar pattern is seen in native D. pseudoobscura 

Yellow expression (see Figure 1 in (Gompel et al. 2005)). Interestingly, D. tristis, 

which is a member of the obscura group to which D. pseudoobscura also 

belongs, has a similar pattern of yellow expression in pupal wings controlled by 

an intronic enhancer and does display a corresponding spot of pigmentation on 

its adult wings (Prud'homme et al. 2006). This spot of wing pigmentation appears 
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to be a derived trait in the obscura group (Prud'homme et al. 2006), thus the 

presence of this expression pattern in D. pseudoobscura suggests that the novel 

yellow enhancer activity in this wing spot preceded other changes, such as a 

coincident decrease in Ebony protein expression (Wittkopp et al. 2002a; Gompel 

et al. 2005), that are also required for wing spot formation.
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Figure 2-1. The Drosophila melanogaster yellow gene is regulated by 
multiple, tissue-specific enhancers.  
The 5’ intergenic region contains enhancers (open ovals) that drive expression in 
the wing and body of adult flies (Geyer and Corces 1987a; Martin et al. 1989b; 
Wittkopp et al. 2002d; Jeong et al. 2006b) as well as sequences known to 
influence male mating success (MRS, (Drapeau et al. 2006b)). It also contains 
sequences necessary for expression of yellow in the larval mouthparts, larval, 
denticle belts, microsatae, tarsal claws and sex combs (Geyer and Corces 
1987a; Martin et al. 1989b). The intron contains the bristle enhancer as well as 
sequences necessary for yellow expression in larval mouthparts and larval 
denticle belts, tarsal claws, sex combs and aristae (Geyer and Corces 1987a; 
Martin et al. 1989b). Solid black boxes indicate the two exons of yellow, the 
arrow indicates the transcription start site, and vertical black lines indicate the 5’ 
and 3’ ends of sequence shown to fully rescue a D. melanogaster yellow mutant 
(Geyer and Corces 1987a).
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Figure 2-2. DNA sequences tested for enhancer activity vary in length 
among species. 
The size of each 5’ intergenic and intronic region tested, which ended and began, 
respectively at exon 1, is shown in kilobases (kb). Filled black boxes indicate 
exons, whereas open boxes indicate the region of conserved sequence shown in 
Figure 2-6. The black lines indicate the DNA included in each construct. Note that 
only D. willistoni includes the entire conserved 5’ block. Phylogenetic 
relationships among Drosophila species are indicated on the left.
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Figure 2-3.  Location and activity of the yellow body and wing enhancers is 
highly divergent among Drosophila species. 
Expression (shown in green) of nuclear Green Fluorescent Protein (GFP) 
activated in transgenic D. melanogaster by the 5’ intergenic (5’) and intronic 
(intron) fragments of DNA shown in Figure 2 from the six species indicated is 
shown. For each species, the panel of six images includes pictures of the dorsal 
side of the body (top) and wings (bottom).  From left to right, panels show an 
adult specimen of the species indicated (images provided by N. Gompel), a 
transgenic D. melanogaster pupa carrying the corresponding 5’ intergenic 
sequence-GFP reporter gene, and a transgenic D. melanogaster pupa carrying 
the corresponding intronic sequence-GFP reporter gene. Expression patterns 
indicated with arrows and arrowheads are described in the main text. Divergence 
times (Russo et al. 1995; Spicer and Bell 2002) between lineages are shown in 
blue in millions of years ago (mya). Fluorescence observed in the body (top) and 
wing (bottom) of a D. melanogaster pupa carrying the GFP reporter gene without 
any putative yellow enhancer sequences cloned upstream is shown in the top left 
of the figure, and serves as a negative control. In each case, the GFP-expressing 
image shown is from female pupae, 70-80 hours old, and is representative of the 
at least 10 individual specimens examined of each genotype. Note that bright 
GFP expression in eyes and ocelli (located between eyes on each head) in all 
images, including the control, is activated by the transformation marker gene and 
not the yellow 5’ intergenic or intronic sequences. 
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Figure 2-4. yellow sequences show no evidence of large duplications or 
transpositions. 
Pairwise comparisons of yellow genes and their associated 5’ intergenic regions 
from each species to each other species (and to themselves) are shown in the 
lower left, and a comparison of each species’ sequence to a randomized version 
of these sequences is shown in the upper right. Sequence of each gene is from 
5’ to 3’ from left to right and from top to bottom. Solid black lines separate one 
species’ sequence from the next, and regions corresponding to sequences from 
exon 1 and exon 2 are shaded grey in the lower left half. Comparisons among 
species within the subgenus Sophophora are outlined in blue, whereas 
comparisons among species within the subgenus Drosophila are outlined in 
orange. The remaining black pixels indicate blocks of sequence similarity 
identified using LASTZ, as described in the Materials and Methods. The red and 
blue arrows indicate regions of collinear sequence similarity discussed in the 
main text.
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Figure 2-5. Dynamic yellow cis-regulatory architecture among Drosophila 
species. 
The schematic summarizes enhancer activity of 5’ intergenic and intronic 
sequences from each of the six species shown. In the bristle and epidermal cell 
schematics - the latter of which shows a head, thorax, abdomen, and wing - 
regions shaded in black showed GFP expression. For the wing vein schematics, 
pictures of wings including visible veins indicate vein enhancer activity. A 
phylogenetic tree showing the relationship among species is shown to the left of 
the enhancer expression summary. A hypothetical cis-regulatory architecture of 
the common ancestor of these six species is shown with wing vein and epidermal 
cell enhancers in both the 5’ intergenic and intronic regions. Vertical black bars 
on the branches of the phylogenetic tree indicate losses of enhancer activity. The 
asterisk next to “- 5’ vein activity” is because unpublished data from T. Werner 
and S.B. Carroll indicates that an enhancer driving expression in the wing veins 
(as well as additional wing epidermal cells) is located upstream of the 5’ 
intergenic region we examined; no information about the expression of this 
reporter gene in epidermal cells of the head, thorax, or abdomen was available.
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Figure 2-6. Conserved region of non-coding sequence defines an 
orthologous endpoint for 5’ intergenic regions. 
(A) A schematic of the yellow gene is shown in yellow in which arrowheads point 
toward 3’ end of the gene, thicker yellow boxes indicate the protein coding 
sequences with the two exons, and narrower yellow boxes indicate the 5‘ and 3‘ 
UTRs. Below this image is a histogram representing the extent of sequence 
conservation among 12 Drosophila species, mosquito, honeybee, and beetle, as 
determined using a Multiz alignment (Blanchette et al. 2004) and phastCons 
Scores (Siepel et al. 2005) and reported on the D. melanogaster  UCSC Genome 
Browser (Rhead et al., 2010), (http://genome.ucsc.edu/). The region shown is 
located on the X chromosome and extends from position 245,638 to 258,882 in 
the April 2006 (BDGP R5/dm3) assembly. Taller bars indicate greater sequence 
conservation. Below this histogram is a density plot indicating the amount of 
sequence conservation between each species and D. melanogaster; darker bars 
indicate higher degrees of conservation, as scored by phastCons (Siepel et al. 
2005). Vertical green and blue lines in these density plots indicate a lack of 
collinearity with D. melanogaster. The red box indicates the conserved region 
used to determine an orthologous 5’ end to the intergenic fragments tested. (B) 
An alignment of sequences from the species examined in this study is shown for 
the boxed conserved region, which extends from positions 246,638 to 246,882 in 
the D. melanogaster genome (April 2006 (BDGP R5/dm3) assembly). Dashes 
indicate insertions or deletions among the twelve Drosophila species and 
honeybee sequence.
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Figure 2-7. D. subobscura 5’ intergenic and intronic yellow sequences both 
contain epidermal cell enhancers. 
(A) A schematic of the D. subobscura yellow gene is shown with the amount of 5’ 
integenic (2.0 kb) and intronic (3.2 kb) DNA included in the reporter genes 
indicated. (B) Images of dorsal bodies (top row) and wings (bottom row) from an 
adult wild-type D. subobscura (left) and D. melanogaster transformant pupae 
carrying a GFP reporter gene controlled by sequences from the 5’ intergenic 
(middle) or intronic (right) region of D. subobscura yellow shown in (A). Like D. 
pseudoobscura, its closest relative among the species surveyed, expression in 
epidermal cells of the wing, abdomen, and thorax is driven by both the 5’ 
intergenic and intronic regions. Overall, the pattern of expression is similar 
between the two species, although some differences are apparent. For example, 
expression in the head cuticle is driven by intronic sequences from D. 
subobscura, but 5’ intergenic sequence from D. pseudoobscura; the 5’ intergenic 
region of D. subobscura drives expression in the wing veins whereas the D. 
pseudoobscura 5’ intergenic region does not; and the D. subobscura intron lacks 
the elevated spot of expression in the anterior part of the wing seen in D. 
pseudoobscura.
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Figure 2-8. Alternative sequence alignment parameters also show primarily 
collinear sequence similarity. 
Relaxing alignment parameters identified more regions of sequence similarity 
between species, but still showed no evidence of large duplications or 
transpositions. Figure format is as described in the legend to Figure 4 in the main 
text, and analysis conditions are as described in the Materials and Methods.
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Species BAC clone number1

CG3777 consv2 yellow achete CG4165
D. pseudoobscura CH222-46B19 - NA3 + - NA

CH222-11G23 - NA + - NA
CH222-11H21 - NA + - NA

D. willistoni DW18M19 - NA - - NA
DW14D14 - NA + + NA
DW10L5 + + + + NA

D. mojavensis DM32A21 + + + NA +
DM14M10 + + + NA +
DM4J24 + + + NA +
DM1M5 + + + NA -
DM1C16 + NA - NA -
DM9D16 + + + NA +
DM2K5 + NA - NA -
DM31I1 + NA - NA -
DM9O22 + + + NA -

D. virilis DV98O14 - + + + NA
DV106J1 - + + + NA
DV1A7 - + + + NA
DV50B1 - + + + NA
DV2K10 - + + + NA
DV30O8 - + + + NA
DV88F9 - + + + NA
DV22J8 - + + + NA
DV52F20 - - + + NA
DV124G7 - - + + NA
DV20J7 - + + + NA
DV136F3 - + + + NA

D. grimshawi DG8L1 + + + + NA
DG18J1 + + + + NA
DG27E24 + + + + NA
DG41C3 + + + + NA
DG3B4 + + + + NA
DG3M22 + + + + NA
DG8J4 - NA + + NA
DG38N3 - NA + + NA
DG4G9 - NA - - NA
DG23K7 + + + + NA

3 NA=Not Available (ie., untested)

Table 2-1: BAC clones containing yellow and flanking genes

1 BAC clones used for reporter gene construction are shown in bold
2 conserved region of sequence 5' of yellow shown in Supplementary Figure 1

Sequences included in the BAC clone
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Chapter 3

Dissecting cis and trans regulatory factors 
affecting yellow regulation in three Drosophila species

Abstract

Using the yellow gene and the changes in its enhancers as a model to 
understand how cis-regulatory elements change over evolutionary time, I 
previously found that the position and activity of yellow epidermal-cell enhancer 
has diverged rapidly among species. In order to understand the changes 
underlying this rapid evolution I conducted detailed comparisons between 
enhancer activities and the corresponding binding factors. Therefore, I 
subdivided yellow 5ʼ intergenic and intronic regions from three Sophophora group 
species, Drosophila melanogaster, D. pseudoobscura and D. willistoni into 1-
kilobasepair pieces. I then tested these sub-elements for enhancer activity using 
the Green Fluorescent Protein gene as the reporter and D. melanogaster as the 
common transgenic host. I found that some sub-elements drove expression that 
partially or fully recapitulated the expression pattern driven by the full region, 
whereas some failed to drive expression above background levels. Intriguingly, 
some sub-elements (~half of the total) drove epidermal-cell expression in spatial 
patterns that were not part of the pattern driven by the full region. This might 

suggest that the cryptic expression patterns observed when yellow enhancer 
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sub-elements were tested in isolation are repressed by the surrounding 

sequences when in the native genomic position. The existence of such cryptic 

epidermal-cell enhancer activities may have facilitated the rapid divergence of 
the activity and position of yellow epidermal-cell enhancers, as the 5ʼ intergenic 
and intronic regions of yellow were already primed for epidermal-cell enhancer 
activity (i.e., had a collection of appropriate transcription factors for epidermal-cell 
enhancer activity). Using a yeast-one-hybrid assay, I identified a set of 204 

transcription factors that appear to be binding to yellow enhancer sub-elements 

previously tested for enhancer activity. The transcription factors identified suggest 
that yellow is a target of the ecdysone pathway and is also regulated by genes 
that are important for bristle development, for expression throughout the X 
chromosome (where yellow is located), and even by a well-known tumor 
suppressor gene conserved between humans and flies. RNA interference 
experiments so far showed four of the identified transcription factors affecting 
pigmentation, and two of these are novel pigmentation genes. Comparing 
similarities between transcription factor binding profiles and enhancer activities 
revealed that yellow enhancer sub-elements that drive male-specific abdominal 
expression tend to be bound by similar sets of transcription factors. Further tests 
are necessary to make the list of transcription factors binding to yellow 
enhancers more comprehensive, to validate their direct binding, and to elucidate 
their functional effects on enhancer activity. Only then, using evolution of yellow 
enhancers, one can understand how changes in enhancer sequence, 
transcription factor binding and activity affect each other throughout evolution.
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Introduction

Enhancers harbor a certain combination of transcription factor binding sites, with 

specific spacing and orientation, as the building blocks of the regulatory 

information encoded in them. This regulatory information controls the 

transcription of their corresponding gene in a time, place and quantity specific 

manner. In addition to this primary structure, groups of transcription factors within 

an enhancer act together to create modules that have independent enhancer 

activity (Yuh and Davidson 1996; Yuh et al. 1996; McGregor et al. 2007; Frankel 

et al. 2010a). Each module typically drives a complementary expression pattern 

to the rest of the modules, such that all modules together make up the 

expression pattern of the full enhancer, although it is possible for different 

enhancer modules to have partially (McGregor et al. 2007) or highly overlapping 

activities (e.g., shadow enhancers) (Frankel et al. 2010a).

Over time mutations can alter transcription factor binding sites which may or may 

not change the activities of modules as well as complete enhancers. Relatively 

few changes in enhancer sequence can lead to changes in activity and especially 

between closely related species one can identify the responsible nucleotide 

changes by comparing the sequences of two orthologous enhancers. Frankel 

and colleagues (Frankel et al. 2011) were able show that only 14 nucleotide 

changes within a 1-kb enhancer module of the shaven baby (svb) gene can 

explain majority of the expression difference in the dorsolateral larval epidermis 

cells and the resulting phenotypic difference observed in trichome number 

between D. melanogaster and D. sechelia. Similarly, Williams et al. (Williams et 

al. 2008) showed that the male-specific abdominal expression of the bric-a-brac 

(bab) gene observed in D. melanogaster, but not in D. willistoni, is mostly due to 

changes in the number, polarity and composition of few Abdominal-B and 

Doublesex binding sites within one enhancer module. It is important to note, 

however, that since typically multiple enhancer modules together control the 

92



complete expression pattern of a gene, it is not atypical to find combination of 

changes in multiple enhancer modules responsible for changes in gene 

expression (McGregor et al. 2007; Frankel et al. 2010a).

The relationship between enhancer sequence and activity, however, is more 

complex than the case mentioned above, such that enhancers showing virtually 

identical activities in the same trans environment can have highly dissimilar, even 

unalignable, sequences. For instance, the four enhancers of the even-skipped 

gene (stripe 3+7, stripe 2, stripe 4+6 and muscle-heart) from D. melanogaster 

versus a distantly related fly species, Sepsis cynipsea, drive virtually identical 

expression patterns in the same trans environment, but there are few if any 

similarities in their sequences(Hare et al. 2008c). This is partly due to the 

degeneracy of transcription factor binding sites and partly to gradual 

compensatory gain and loss of transcription factor binding sites, where the 

sequence of an enhancer changes but its activity stays the same. This type of 

enhancer evolution, unfortunately, makes it harder to separate the functional 

sequence changes from neutral ones and, hence, to shed light onto the currently 

unknown code underlying enhancers.

Another (complex) feature of enhancer evolution, besides the changes in the 

sequence and function of existing enhancers, is the evolution of novel 

enhancers. This can happen several ways. A gene can gain a novel expression 

pattern through the insertion of a transposable element with enhancer activity, 

promoter-switching, de novo formation of an enhancer, or co-option of an existing 

enhancer (to drive a novel expression pattern, e.g., in a new domain). Previously, 

spread of cis-regulatory information in the genome via transposable elements 

has been proposed to be the prevalent mechanism for evolution of new gene 

expression patterns (Britten and Davidson 1971). However, examples of all four 

aforementioned trajectories of gaining novel expression patterns have now been 

idetified and the current number of studies do not allow making an assessment 

about the prevalent mechanism for evolution of novel enhancers. It is notable, 
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however, that in the recent years examples of de novo enhancer formation and 

co-option of existing enhancers to create novel expression patterns have shed 

more light onto the possible molecular mechanisms underlying these two 

trajectories and showed that under appropriate selective conditions few 

nucleotide changes can result in novel gene expression patterns (e.g., 

expression in a different tissue type).

Eichenlaub and Ettwiller (Eichenlaub and Ettwiller 2011) found that following 

whole genome duplication, ancestrally coding sequences lost their coding ability 

and acquired enhancer activities through few mutational changes in teleosts. The 

orthologous regions of these de novo enhancers in mammals preserved coding 

ability, but did not appear to have enhancer activity in teleost or mammals, 

confirming the novelty of these cis-regulatory elements. In general, de novo 

evolution of enhancer activities is hard to detect and confirm, which may be one 

reason why there are so few examples of it. Nevertheless, it is important to 

consider it as a viable possibility when looking at how gene expression changes 

over time.

Co-option of existing enhancers to create novel expression patterns has also 

been shown to occur through a handful of mutations. One of the best and most 

recent examples of enhancer co-option is the gain of optic lobe expression by the 

D. santomea Neprilysin-1 (Nep-1) gene as compared to its sister species D. 

yakuba (Rebeiz et al. 2011a). In this case the novel optic lobe enhancer gained 

activity by co-opting the preexisting enhancers, central nervous system (CNS) 

and retinal field, in its vicinity, with which it shared half of its sequence. Only four 

nucleotide changes were sufficient to explain the majority of the gain of enhancer 

activity in the optic lobe. 

All of the above case studies showing enhancers with highly dissimilar 

sequences (but highly similar activities), orthologous enhancers harboring few 

nucleotide changes (but significant differences in activity), and evolution of 
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enhancers with novel activity, document the dynamism and complexity of how 

enhancer sequence and function change over evolutionary time. With these 

features of enhancers in mind, in order to get a comprehensive understanding of 

their evolution, one needs to combine sequence comparisons with functional 

tests to identify the enhancer activities lying in candidate genomic regions and to 

identify the identity, composition and affinity of the corresponding transcription 

factor binding sites.

Previously, I studied yet another feature of enhancers, their genomic position 

relative to the coding sequence, in the Drosophila yellow gene. Genomic 

organization of enhancers are typically assumed to be conserved between 

species partly due to bias against publishing negative results like the failure to 

find enhancer conservation. This assumption is not always true: in the literature 

there are a few examples of enhancer position change(Pan et al. 1994b; Sanges 

et al. 2006); however, the assumption about conservation of enhancer position 

had not been explicitly and systematically tested before.

Using reporter transgenes, I identified the regions harboring epidermal-cell, wing-

vein and bristle enhancers, of the yellow gene from six Drosophila species (D. 

melanogaster, D. pseudoobscura, D. willistoni, D. mojavensis, D. virilis, D. 

grimshawi). These enhancers primarily drive expression during the late pupal 

stage and are important for the pigmentation of the tissue types where they drive 

expression.

One of the most intriguing findings of this study was the high variability observed 

in the positions of the epidermal-cell and wing-vein enhancers with respect to the 

coding sequence. The locations of these two enhancers seemed to have 

changed between the intron and the 5’ intergenic region of yellow multiple times 

in the Drosophila evolutionary history. In some species both 5’ intergenic and 

intronic regions of yellow seemed to have epidermal-cell and wing-vein enhancer 

activity, whereas in other species these activities were located in one of the two 
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regions only. In contrast, bristle enhancer was located in the intron of yellow in all 

six species investigated. Subsequent sequence comparisons showed no sign of 

a transposition or duplication event in or around yellow between closely related 

species that may have lead to the enhancer position changes observed. This 

suggested that these yellow enhancers must have been gained and lost between 

5’ intergenic and intronic regions via gradual compensatory gain and loss 

transcription factor binding sites multiple times int he evolutionary history.

The other important result was the divergence of the spatial pattern and strength 

of expression driven by yellow epidermal-cell enhancers which was correlated 

with the diverse cuticle pigmentation observed in species the enhancers were 

isolated from.

Hence, overall, I observed an abundance of diversity in the sequence, position 

and activity of two yellow enhancers among Drosophila species.

In order to elucidate how yellow cis-regulatory architecture changed rapidly over 

evolutionary time one needs to be able to do more detailed comparisons 

between sequence, activity and transcription factor binding profiles of yellow 

enhancers among Drosophila species. The size of the previously tested 5’ 

intergenic and intronic regions of yellow are significantly bigger than a typical 

enhancer. To identify the specific changes causing altered enhancer activity and/

or position, functional and sequence comparisons among smaller DNA fragments 

are necessary. Hence, I dissected the 5’ intergenic and intronic regions of yellow 

from the Sophopora group species: D. melanogaster, D. pseudoobscura and D. 

willistoni, into sub-elements, tested them for enhancer activity as well as for their 

binding factors, and then compared these findings among sub-elements to 

understand overall how the cis-regulatory architecture of yellow has evolved.

As a result, I discovered that at the late pupal stage most sub-elements from the 

5’ intergenic regions of yellow showed epidermal cell enhancer activity, indicating 
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that this activity is spread widely throughout the whole region. I found that some 

enhancer sub-elements drove expression patterns that almost recapitulate the 

expression driven by the full region they are isolated from. Some enhancer sub-

elements, however, drove a fraction of the expression pattern coming from the 

full region, some sub-elements failed to drive expression above background 

levels and some drove expression patterns that were not part of the pattern 

driven by the full region they were isolated from suggesting they harbored cryptic 

enhancer activities. Finding cryptic activities was intriguing as they may have 

facilitated the observed rapid change in the activity and position of the yellow 

epidermal-cell enhancer.

I also identified a large set of candidate transcription factors binding to yellow 5’ 

intergenic and intronic regions from the three Sophophora group fly species. I 

found that similar number of transcription factors interacted with D. 

pseudoobscura and D. willistoni yellow enhancers as it did with D. melanogaster 

ones suggesting that the transcription factor binding sites are mostly conserved 

between these three species. Only ~10-20% of the transcription factors were 

shared binders between regions from different species even though they 

harbored similar enhancer activities (e.g. epidermal-cell enhancer activity), which 

may be partly due to the high false negative rate of Y1H. I also found that despite 

the transcription factors that Y1H potentially missed, a set of enhancer sub-

elements showing sexually dimorphic expression pattern in the abdomen, had 

high similarity in their transcription factor binding profiles. More detailed analysis 

of activities and transcription factor binding profiles of yellow enhancers can 

elucidate whether enhancers with similar expression patterns are bound by 

similar sets of transcription factors.

Overall, these results shed more light onto how yellow cis-regulatory architecture 

rapidly changed over evolutionary time and also lead the way to further 

investigations on how changes in the transcription factor binding profiles of 

yellow enhancers affect enhancer activity and position.
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Results

yellow enhancer sub-elements were tested for activity

In order to understand how enhancer activities are distributed within the 5’ 

intergenic and intronic regions of yellow from D. melanogaster, D. 

pseudoobscura and D. willistoni, I subdivided these regions into into 

approximately 1000 bp sub-elements (Figure 3-1). From 5’-to-3’, each sub-

element overlaps with the flanking ones by approximately 100 bp (Figure 3-1). I 

obtained 29 enhancer sub-elements to test for enhancer activity (using the 

reporter gene assay described in Chapter 2). In this test, nuclear enhanced 

green fluorescent protein (nEGFP), whose codons are optimized for expression 

in Drosophila, was used as the reporter and D. melanogaster was the common 

transgenic host. Enhancer activity was documented for transgenic lines that 

harbor 21 out of the 29 sub-elements of yellow enhancers from aforementioned 

three Drosophila species, as well as five transgenic lines that harbor full 5’ 

intergenic or intronic regions of yellow and one negative control transgenic line 

that harbors the reporter gene with a basal promoter, but no putative enhancer, at 

the late pupal stage (70-80 hours after puparium formation (APF)) in individuals 

hemizygous for the transgene. In order to eliminate effects of chromosomal 

position on the expression of transgenes, attB-attP targeted insertion system was 

used to insert all transgenes in the same site on the chromosome arm 2L (25C6) 

(see Materials and Methods for full description of the genotype of the transgenic 

host). GFP expression in the eyes and ocelli was used to mark transformants, but 

was not recorded as part of the expression pattern driven by yellow enhancers. 

As a result, this experimental design allows comparison of reporter gene 

expression, and hence enhancer activity, among transgenic lines that harbor the 

full 5’ intergenic or intronic regions of yellow from either of the three species as 

well as the transgenic lines that harbor the sub-elements of the 5’ intergenic and 
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intronic regions. Moreover, the expression differences observed between 

different transgenic lines are due to cis-regulatory differences between different 

enhancer regions tested since the trans environment, D. melanogaster, has been 

consistent among all transgenic lines.

How are enhancer activities distributed within the 5’ intergenic and intronic 

regions of yellow?

Enhancer activities can be distributed within the 5’ intergenic and intronic regions 

of yellow in several different patterns such that sub-elements within a region may 

harbor:

1- enhancer activity that recapitulates the expression patterns driven by the full 

region the sub-element is isolated from. (This can be referred to as the minimal 

enhancer.)

2- no activity above background levels. 

3- enhancer activity that drives a fraction of the expression pattern driven by the 

full region the sub-element is isolated from.

4- cryptic enhancer activity driving additional expression not seen in the full 

element

Typically, in the gene regulation field, an enhancer region is thought to harbor 

sub-elements of the first three kinds mentioned above. This was true in the case 

of yellow 5’ intergenic and intronic regions as well, but additionally I discovered 

that all but one 5’ intergenic and intronic regions dissected also harbored at least 

one sub-element with cryptic activity, and overall, almost half of the sub-elements 

tested harbored some cryptic enhancer activity.
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More specifically, as a result of analyzing activities of 21 enhancer sub-elements, 

I found that most, but not all, of the 1-kb-sub-elements tested so far showed 

enhancer activity in the epidermal cells in the abdomen, thorax or head or in 

bristle associated cells in the late pupal stage (Figure 3-2). Expression in the 

wing epidermal and vein cells was not documented in this analysis. I found that 

enhancer activities were mostly spread throughout the full DNA regions 

dissected, rather than being restricted to one or few sub-elements. Part or all of 

the spatial expression pattern driven by over one third (nine) of the sub-elements 

tested appeared to be a fraction of the enhancer activity driven by the full 5’ 

intergenic or intronic region of yellow. On the other hand, about half (ten) of the 

sub-elements tested so far harbored cryptic activity such that the spatial 

expression pattern or the intensity of expression they drove in the epidermal cells 

was not a subset of the expression pattern driven by the intact 5’ intergenic or 

intronic regions of yellow (Figure 3-2, asterisks). A little less than one third (six) of 

the sub-elements tested so far did not appear to show enhancer activity above 

background levels. Enhancer activities of individual sub-elements is described in 

more detailed below.

Enhancer activities lying in the sub-elements of 5’ intergenic region of yellow from 

D. melanogaster

Among the five sub-elements from the 5’ intergenic region of yellow from D. 

melanogaster, four showed enhancer activity in the epidermal cells in the late 

pupal stage, whereas one did not drive expression above background levels as 

compared to the negative control (Figure 3-2A). One out of the four sub-elements 

appeared to recapitulate the expression pattern driven by the full 5’ intergenic 

region, albeit not completely (imperfect/incomplete minimal enhancer). One 

appeared to harbor fraction of the total expression pattern driven by the full 

region. Three sub-elements (including the one harboring a minimal enhancer) 

appeared to drive expression in spatial patterns that were not part of the pattern 

driven by the full region (cryptic enhancer activities). More detailed description of 

the expression patterns driven by D. melanogaster yellow 5’ intergenic sub-

100



elements are below. These sub-elements are shown in Figures 3-2A1, 2A2, 2A3, 

2A4, 2A5 (from now on referred to as mel_A1, mel_A2, mel_A3, mel_A4, mel_A5 

respectively).

Minimal enhancer mel_A2 drives expression in a spatial pattern that is highly 

reminiscent of the pattern driven by the full 5’ intergenic region of yellow from D. 

melanogaster where abdominal expression is observed mainly at the posterior 

end of each tergite as a horizontal stripe with a peak in the middle pointing 

towards the anterior (compare Figure 3-2A2 to 3-2A6). Moreover, both the full 5’ 

intergenic region of D. melanogaster yellow as well as mel_A2 drives sexually 

dimorphic expression in tergites A5 and A6, where in males, as compared to 

females, the posterior horizontal stripe with the middle peak is replaced by 

expression driven through out the width and length of both tergites. This type of 

male-specific abdominal yellow expression pattern correlates with and is one of 

the causes of the widely observed male-specific melanization patterns in A5 and 

A6. It is notable that as compared to the A5 and A6 expression the full element 

drives, mel_A2 enhancer activity does not completely fill these two tergites, 

which makes this enhancer sub-element an “incomplete minimal enhancer”. This 

may be because the breaking points of mel_A2 may have separated a functional 

element driving expression throughout A5 and A6. The rest of this activity may be 

located in one or more of the flanking sub-elements (mel_A1 and/or mel_A3) as 

well as in the other two (mel_A4 and mel_A5) that are not neighbors to mel_A2.

Cryptic enhancer activity Sub-element mel_A2 also appears to drive expression 

in the thorax, particularly in the scutellum, and head, which is not observed as a 

prominent part of the spatial expression pattern driven by the full 5’ intergenic 

region of D. melanogaster yellow (Figure 3-2A6). This can be regarded as 

“cryptic” enhancer activity and is observed also in sub-elements mel_A1 and 

mel_A3, where expression in the epidermal cells in the thorax and head is 

stronger as compared to the transgenic line harboring the full 5’ intergenic region 

of D. melanogaster yellow (in this transgenic line, expression in head epidermal 
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cells appears to be absent). More noticeable cryptic expression patterns are 

driven by sub-elements mel_A1 and mel_A3, where reporter gene expression is 

observed in the epidermal cells throughout the length and width of each 

abdominal tergite, as opposed to the horizontal stripe at the posterior end of each 

of tergite as driven by the intact 5’ intergenic region of D.melanogaster yellow. 

Fraction Sub-element mel_A4 appears to drive sexually dimorphic expression, 

such that in males expression driven in abdominal tergites A4, A5 and A6 appear 

stronger than the expression driven in the rest of the abdomen. Similarly, in 

females, mel_A4 appears to drive stronger expression in abdominal tergites A5 

and A6 as compared to the rest of the abdomen. However, in this case the 

expression observed in the rest of the abdomen  in females appear stronger than 

the expression observed in the corresponding tergites in males. The male 

specific expression pattern can be regarded as a fraction of the total expression 

pattern driven by the full 5’ intergenic region in male abdomens.

Enhancer activities lying in the sub-elements of 5’ intergenic region of yellow from 

D. pseudoobscura

Among the six D. pseudoobscura yellow 5’ intergenic sub-elements, enhancer 

activities of two are yet to be determined. Within the remaining four, one appears 

to drive expression in a spatial pattern highly reminiscent of the one driven by the 

full 5’ intergenic region (minimal enhancer). Two sub-elements appear to drive 

fraction of the total expression driven by the full region and one sub-element 

appears to drive cryptic expression in the epidermal cells encircling the head and 

with higher intensity, as compared to the expression driven by the full region, 

throughout the epidermal cells in thorax and abdomen.

Minimal enhancer pse_B1 drives expression in a spatial pattern that is highly 

similar to that of the spatial expression pattern driven by the full 5’ intergenic 

fragment (Figure 3-2B7), where epidermal cells along the length and width of 

each abdominal tergite show enhancer activity. Moreover, in both transgenic 
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lines, abdominal tergites A5 and A6 show stronger expression in males than 

females, suggesting a sexually dimorphic spatial expression pattern. Both 

pse_B1 sub-element and the full D. pseuodoobscura yellow 5’ intergenic region 

also drive expression in the epidermal cells on top of the head in a circle. The 

similarity between the thoracic expression pattern driven by these two regions is 

harder to asses due to virtually absent or weak activity observed in the two lines, 

respectively.

Fraction It is notable that the expression patterns driven by the sub-elements 

pse_B2 and pse_B3 can together recapitulate the expression pattern driven by 

the full 5’ intergenic region of D. pseudoobscura yellow. Hence on their own they 

drive fraction of the expression driven by the full region, but together they can be 

regarded as a minimal enhancer. In this case, pse_B2 virtually lacks enhancer 

activity in the epidermal cells in the abdominal tergites A1, A2, A3, A4, but drives 

expression in A5 and A6, whereas pse_B3 virtually lacks enhancer activity in the 

epidermal cells in the abdominal tergites A5 and A6, but drives expression 

throughout the length and width of A1, A2, A3 and A4 as well as on the top of the 

head, complementing the expression pattern driven by pse_B2 to encompass the 

whole abdomen. Additionally, pse_B2 appears to drive sexually dimorphic 

expression throughout tergites A5 and A6 only in males; in females expression in 

these two tergites is restricted to their posterior halves.

Cryptic enhancer activity Sub-element pse_B5 appears to have stronger 

enhancer activity than that of the full 5’ intergenic region of D. pseudoobscura 

yellow despite the fact that the spatial expression pattern it drives throughout 

each abdominal tergite is reminiscent of the pattern the intact 5’ region drives. 

The spatial expression pattern that pse_B5 drives in the head and thorax is 

different than that of the full 5’ intergenic region,  however, where the strong 

expression pse_B5 sub-element drives encircles the eyes and ocellum in the 

head, and encompasses the length and width of the thorax, whereas the full 5’ 

intergenic region drives expression only in a round spot on top of the head and in 
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a weak manner in the thorax. This suggests that there may be “cryptic” enhancer 

activity in the 5’ intergenic region of D. pseudoobscura yellow, similar to what 

was observed in D. melanogaster yellow 5’ intergenic region.

Enhancer activities lying in the sub-elements of 5’ intergenic region of yellow from 

D. willistoni

Among the seven enhancer sub-elements of D. willistoni yellow 5’ intergenic 

region the activities for two of them remain to be determined. Another two do not 

appear to drive expression above background levels. Part of the expression 

pattern driven by one sub-element can be regarded as a fraction of the activity 

driven by full region, but the rest is cryptic, i.e., it is not a part of the expression 

pattern driven by the full region. The rest of the (two) sub-elements harbor cryptic 

enhancer activities only.

Minimal enhancer Among the five out of seven D. willistoni 5’ intergenic sub-

elements tested, so far there is none that drives abdominal expression in a 

spatial pattern very similar to the pattern driven by the intact D. willistoni 5’ 

region, where expression is observed at the posterior end of each abdominal 

tergite as a horizontal stripe with a peak pointing towards the anterior in the 

middle. 

Fraction Sub-elements will_C1 and will_C2 appear to drive expression 

throughout the length and width of each abdominal tergite, although it is notable 

that will_C1 seems to drive higher expression at the posterior halves of tergites 

A3, A4, A5 in females and A3 and A4 in males, which is reminiscent of the 

horizontal stripe observed in the expression pattern driven by the full D. willistoni 

yellow 5’ intergenic region. 

Cryptic enhancer activity In females, will_C1 does not seem to drive expression 

above background levels in tergite A6, whereas in males tergite A5 and A6 show 

enhancer activity throughout their length and width, suggesting male-specific 
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enhancer activity in the abdomen. It is harder to asses any sexual dimorphism in 

the expression driven by will_C2 due to weak activity, however in this transgenic 

line also males appear to show stronger expression in tergites A4, A5 and A6 as 

compared to females. Sub-element will_C4 also appears to show sexually 

dimorphic enhancer activity in the abdominal epidermal cells since males show 

significantly higher expression in tergites A4, A5 and A6 as compared to females, 

where enhancer activity appears close to absent in the epidermal or bristle cells. 

It is intriguing to find these sub-elements to show the above-mentioned activities 

since the full 5’ intergenic region of D. willistoni yellow does not appear to have 

sexually dimorphic activity in the abdomen (Figure 3-2C8) indicating the 

existence of cryptic enhancer activity in this region. The thoracic expression 

observed in line will_C1 and the head expression observed in both will_C1 and 

will_C2 also are also cryptic since they do not appear in the expression driven by 

the intact 5’ intergenic region of D. willistoni yellow.

Enhancer activities lying in the sub-elements of intron of yellow from D. 

melanogaster

Among the three sub-elements of D. melanogaster yellow intron one (mel_D2) 

remains to be tested. One (mel_D1) harbors a minimal enhancer as well as 

cryptic enhancer activity and one (mel_D3) does not seem to drive expression in 

epidermal or bristle associated cells above background levels.

Minimal enhancer  mel_D1 drives expression in bristle associated cells 

throughout the abdomen and thorax in a spatial pattern highly similar to the one 

driven by the intact intron and hence can be regarded as a minimal bristle 

enhancer.

Cryptic enhancer activity Intriguingly, mel_D1 appears to drive expression also in 

the epidermal cells of the abdominal tergites A5 and A6 in males, but not 

females, suggesting sexually dimorphic activity. This is interesting because the 

full D. melanogaster yellow intron does not appear to drive any epidermal-cell 
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expression, neither does its activity change between males and females. Hence 

the sexually dimorphic epidermal cell enhancer activity can be regarded as 

cryptic.

Enhancer activities lying in the sub-elements of intron of yellow from D. 

pseudoobscura

Among the four sub-elements from D. pseudoobscura yellow intron, enhancer 

activity of one (pse_E3) remains to be determined. Within the remaining three, 

one (pse_E1) does not appear to drive expression above background levels and 

one (pse_E4) appears to drive epidermal cell expression in the body in a spatial 

pattern highly reminiscent of the one driven by the full intron. The expression 

driven by the other sub-element (pse_E2) is in part a fraction of the total 

expression driven by the full intron, but part of it is cryptic.

Minimal enhancer pse_E4 appears to have enhancer activity highly reminiscent 

of that of the full intron such that both pse_E4 and the full D. pseudoobscura 

yellow intron drive expression in the epidermal cells in the thorax where there are 

eight fields of expression in a symmetrical pattern. Moreover, in the abdomen, 

both regions appear to drive expression in all tergites A2, A3, A4, A5, A6, more 

prominently on the anterior edge of each. The full intron, however, appears to 

drive stronger expression also laterally (on the two sides) in the male abdomen 

as compared to females, which is not observed in the expression pattern driven 

by pse_E4, making it an “incomplete” minimal enhancer.

Fraction pse_E2 drives sexually dimorphic expression, where in males 

abdominal tergites A5 and A6 show strong reporter gene expression throughout, 

and in A3 and A4 only laterally, but in females expression is not detectable in any 

of the abdominal tergites. This male-specific expression in the abdomen can be 

detected in the pattern driven by the full D. pseuodoobscura yellow intron as well, 

where males seem to show stronger reporter gene expression laterally in 

abdominal tergites A3, A4, A5 and and A6, as compared to females. 
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Cryptic enhancer activity pse_E2 also drives expression in the epidermal cells 

encircling the head, which is not observed as part of the expression driven by the 

full D. pseudoobscura yellow intron. This suggests existence of “cryptic” 

enhancer activity in the D. pseudoobscura yellow intron.

Enhancer activities lying in the sub-elements of intron of yellow from D. willistoni

Among the four sub-elements of D. willistoni yellow intron, two remain to be 

tested for enhancer activity. One (will_F4) does not appear to drive expression 

above background levels in the body epidermal or bristle associated cells at the 

late pupal stage. One (will_F3) appears to harbor cryptic enhancer activity.

Cryptic enhancer activity will_F3 drives sexually dimorphic expression in the 

abdominal epidermal cells in a pattern highly similar to the one sub-elements 

pse_B2, will_C4 and pse_E2 drives, where tergites A4, A5 and A6 show strong 

expression in males as compared to the lack of expression in the whole 

abdomen in females. will_F3 also drives expression in the epidermal cells 

encircling the head in a pattern similar to the one observed from pse_E2. Neither 

of these two expression patterns are part of the one driven by the full D. willistoni 

yellow intron, suggesting cryptic enhancer activity lying in D. willistoni yellow 

intron.

Next I sought to identify the transcription factors that bind to yellow enhancer 

sub-elements in order to start understanding how these binding factors differ 

between different sub-elements.

Identifying sets of transcription factors that bind to yellow enhancer sub-

elements

Previously, there were two transcription factors, Abdominal-B (Abd-B) and 

Engrailed (En), that were shown to bind yellow 5’ intergenic region in D. 
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melanogaster and D. biarmipes, respectively. In order to broaden the known set 

of transcription factors binding to yellow enhancers, I used a yeast-one-hybrid 

(Y1H) assay to screen yellow enhancer sub-elements from D. melanogaster, D. 

pseudoobscura and D. willistoni with a D. melanogaster transcription factor 

library, which is thought to harbor ~85% of all transcription factors in this species 

(Figure 3-3).

Briefly, using Y1H, I was able to screen 25 out of the 29 sub-elements from 5’ 

intergenic and intronic regions of yellow from the three species with 647 D. 

melanogaster transcription factors (~85% of all D. melanogaster transcription 

factors). 19 out of the 25 sub-elements that were assayed with Y1H were also 

functionally tested for enhancer activity (Figure 3-5). Each of the 25 yellow 

enhancer sub-elements (the “bait”) were put 5’ of a reporter gene (His3) 

necessary for Histidine biosynthesis. Each transcription factor (the prey) was 

fused to a Gal4 activation domain (AD) to ensure activation of the reporter gene 

upon binding even if the transcription factor is a repressor. The bait and prey 

were put in the yeast cellular environment and the presence of interaction 

between a sub-element and a transcription factor was observed through the 

activation of the reporter gene, which is expected to happen through the direct 

binding of the transcription_factor-Gal4AD fusion protein to the bait DNA, 

however it may also happen indirectly and be mediated by an endogenous yeast 

protein. We were able to use two negative controls (no transcription factor-Gal4-

AD construct and no transcription factor, but only Gal4-AD construct) to ensure 

that the endogenous yeast transcription factors or Gal-AD alone were not 

activating the reporter gene. Reporter gene activation was assayed on plates that 

contain increasing levels of 3-Amino-1,2,4-triazole (3-AT), a competitive inhibitor 

of the His3 enzyme. In order to be able to grow on increasing concentrations of 

3-AT, transformants need to make higher amounts of the His3 enzyme than what 

is provided by basal level expression of HIS3 gene.
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For each yellow enhancer sub-element screened with Y1H, transcription factors 

showing interaction at only one level of 3-AT were marked as weaker interactors 

( Table 3-1, light blue shaded boxes) and transcription factors that showed 

interaction in more than one level of 3-AT were marked as stronger interactors 

(Table 3-1, dark blue shaded boxes). Overall, 204 out of the 647 D. melanogaster 

transcription factors tested were found to interact with at least one sub-element 

from the 5’ intergenic or intronic enhancers of yellow from D. melanogaster, D. 

pseudoobscura or D. willistoni (Figures 3-4A and 3-4B). A total of 280 interaction 

events were detected since some transcription factors (41) were found to interact 

with more than one yellow enhancer sub-element screened (Table 3-1, Figure 

3-4B). In total, the 5’ intergenic regions of yellow from D. melanogaster, D. 

pseudoobscura and D. willistoni interacted with 154 transcription factors whereas  

the intronic regions interacted with 68. Separately, 73 transcription factors were 

found to interact with D. melanogaster yellow 5’ intergenic region, 27 with D. 

pseudoobscura and 76 with D. willistoni yellow 5’ intergenic regions. Moreover, 

24 transcription factors were found to interact with D. melanogaster yellow intron, 

21 with that of D. pseudoobscura and 27 with D. willistoni yellow intron. There 

were 18 transcription factors that were shared interactors among one or more 5’ 

intergenic and intronic yellow enhancer sub-elements (Figure 3-4C).

Did Y1H identify the transcription factors that were previously shown to be 

real or candidate regulators of yellow expression?

Besides Abd-B and En, which are known to bind to yellow body and wing 

enhancers, respectively, there are few other transcription factors, which, based 

on prior knowledge, are good candidates as trans regulators of yellow 

expression. These transcription factors are Fruitless (Fru), Doublesex (Dsx), Bric-

a-brac (Bab), Optomotor-blind (Omb) and T cell factor (TCF). Fru and TCF are 

known to be genetically upstream of yellow (Drapeau et al. 2003; Werner et al. 

2010a) and Dsx, Bab, and Omb are previously shown regulators of pigmentation 
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patterns in flies (Kopp and Duncan 1997; Kopp et al. 2000) and as it is a 

pigmentation gene, they may be regulating yellow as well.

All of the above seven candidate transcription factors exists in the transcription 

factor library used in Y1H (Hens et al. 2011). Among them, only Abd-B, En, Dsx 

and Fru were found to interact with some of the yellow enhancer sub-elements 

tested. This may be due to the high false positive rate of Y1H (see Discussion), 

or because Omb, Bab and TCF are not direct regulators of yellow or, else, 

because these transcription factors are divergent enough in D.pseudoobscura 

and D. willistoni such that the D. melanogaster proteins cannot recognize their 

binding sites. Interestingly, unpublished data showed that Omb fails to bind D. 

melanogaster yellow 5’ enhancers in vitro (personal communication, P.J.W.), 

suggesting that Omb may have been a true negative in the Y1H assay.

Abd-B interacted with sub-elements mel_A2, will_C2, and will_C4, Dsx was 

shown to interact with will_C4 and will_C5, Fru was shown to interact with 

will_C2 and En was shown to interact with will_C7. It is intriguing to find none of 

the candidate binders to interact with any of the D. pseudoobscura sub-elements 

even though some of them appear to drive male-specific expression pattern in 

abdominal tergites A5 and A6 (Figure 3-2B), which is one of the features of 

expression that Abd-B and Dsx have been shown to regulate. Moreover, Abd-B 

was able to bind D. subobscura yellow enhancer in vitro and D. pseudoobscura 

yellow 5’ intergenic region carries the same binding site (Jeong et al. 2006a). 

This may be due to any of the three reasons stated in the previous paragraph. It 

is also interesting to find that all four of the above mentioned transcription factors 

were found to interact with D. willistoni sub-elements, not a species that was the 

subject of any of the studies involving Abd-B, Dsx, Fru or En. Last but not least, 

Abd-B and En were found to interact with 5’ sub-elements, and not with any of 

the intronic elements, which is consistent with the previous studies showing they 

bind to 5’ intergenic region of yellow.
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Are enhancers with similar activities bound by similar sets of transcription 

factors?

Next, I sought to identify whether there is a correlation between the set of 

transcription factors that were shown to interact with a yellow enhancer sub-

element and the enhancer activity of the particular sub-element. I grouped yellow 

enhancer sub-elements based on the similarity of the pool of transcription factors 

that were found to interact with them using the program Cluster (de Hoon et al. 

2004) with default settings (Figure 3-4 - top tree). Complementarily, I grouped the 

transcription factors based on the similarity of the set of yellow enhancer sub-

elements that they interact with (Figure 3-4 - left tree). Both cluster analyses 

were meaningful only for the 41 transcription factors that were found to interact 

with more than one yellow enhancer sub-element and hence were conducted 

only for those. Subsequently, enhancer activities of the yellow sub-elements were 

matched with their transcription factor binding profiles (Figure 3-4). A qualitative 

assessment of the similarities and differences between the expression patterns 

driven by different yellow sub-elements at the late pupal stage were determined 

based on the spatial pattern and strength of expression in the epidermal as well 

as bristle cells in the abdomen, thorax and head as well as based on whether the 

enhancer activity is male-specific in abdominal tergites A5 and A6.

The results can be described in three categories:

1- yellow enhancer sub-elements with similar transcription factor binding profiles 

but different enhancer activities

2- yellow enhancer sub-elements with similar transcription factor binding profiles 

and similar enhancer activities

3- yellow enhancer sub-elements with different transcription factor binding 

profiles, but similar enhancer activities
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1- yellow enhancer sub-elements with similar transcription factor binding profiles 

but different enhancer activities

The two yellow enhancer sub-elements that have the most similar transcription 

factor binding profiles are 5’ intergenic pse_B6 and intronic pse_E4, however 

since enhancer activity of pse_B6 is not yet determined, one cannot evaluate 

how the transcription factor binding profiles of the two sub-elements relate to 

their enhancer activities. Transcription factor binding profiles of pse_B6 and 

pse_E4 appear to have equal level of similarity to that both of pse_B5 and 

pse_E1, where the latter two also share the same level of similarity. This is the 

second highest similarity in transcription factor binding profiles observed between 

yellow enhancer sub-elements. It is intriguing that all four of these sub-elements 

belong to D. pseudoobscura. 

Additionally, both pse_B5 and pse_E4 drive expression in the epidermal cells in 

the abdomen and thorax, where there are both similarities and differences in 

spatial patterns. (For instance, both sub-elements drive expression through the 

length and width of each abdominal tergite, and throughout most of the thorax. 

However, pse_B5 appears to drive equally strong expression thorughout 

abdomen and thorax and encircling the head, but pse_E4 appears to drive 

stronger expression not throughout each abdominal tergite, but mainly in the 

circumference of each abdominal tergite. Also this sub-element does not drive 

expression throughout the thorax, but in a symmetrical pattern that encompasses 

8 separate rectangular patches, and seems to lack enhancer activity driving 

expression in the head.) Moreover the strength of expression coming from 

pse_B5 appears stronger than the one coming from pse_E4. The difference in 

enhancer activity is even more drastic when pse_E1 is compared to pse_B5 and 

pse_E4, since the former sub-element does not seem to drive visible expression 

at the late pupal stage in any of the cell types investigated. This suggests that 

even though the transcription factor binding profiles of the three D. 

pseuodoobscura yellow enhancer sub-elements showed higher similarity among 

each other as compared to the rest of the yellow enhancer sub-elements that did 
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not group with them, differences between the pools and the binding composition 

of the transcription factors that bind to pse_B5, pse_E4 and pse_E1 were 

sufficient to alter enhancer activity.

The level of similarity between the transcription factor binding profiles of pse_B4, 

will_C7 and will_F2 are close to the level of similarity observed among the 

above-mentioned four D. pseudoobscura yellow enhancer sub-elements. 

However, the enhancer activities of these three sub-elements are not yet 

identified hence we cannot interpret how the similarity in transcription factor 

binding profiles correlates to enhancer activities. Interestingly these three sub-

elements, as well as mel_A1, will_C4 and mel_D2 overall appear to be more 

similar to each other (Figure 3-4, blue rectangle), based on their transcription 

factor binding profiles, than they do to the rest of the sub-elements. This appears 

to be mostly due to one shared transcription factor, Neurofibromin 1 (Nf1) among 

these six sub-elements.

2- yellow enhancer sub-elements with similar transcription factor binding profiles 

and similar enhancer activities

The most intriguing result of this analysis is the similarity in the transcription 

factor profiles of five yellow enhancer sub-elements that drive sexually dimorphic 

expression in the abdomen, mel_A2, mel_A4, will_C2, pse_B1 and will_C1, with 

respect to their proximity to each other in the tree (Figure 3-4, red rectangle). All 

five of these sub-elements appear to drive stronger expression in one or more of 

the abdominal tergites A4, A5 and A6 in males as compared to females. Even 

though sexual dimorphism is a shared feature of the expression patterns driven 

by the five sub-elements, these enhancer activities differ in other spatial patterns 

of expression. For instance, between mel_A2 and will_C2, both of the sub-

elements drive expression in the epidermal cells in the abdomen and head, 

whereas only mel_A2 appears to drive expression in the epidermal cells of the 

thorax. The spatial pattern of expression driven by the two sub-elements seem to 

differ both in the abdomen and head, where mel_A2 drives expression at the 
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posterior end of each abdominal tergite and both on top of the head and around 

the eyes, whereas will_C2 drives expression throughout the length and width of 

each abdominal tergite and only on top of the head but not around the eyes.

3- yellow enhancer sub-elements with different transcription factor binding 

profiles, but similar enhancer activities

Two intronic sub-elements, mel_D1 and will_F3, show male-specific enhancer 

activity in the abdomen, but share only one transcription factor, Suppressor of 

variegation 3-7 (Su(var)3-7), which has not previously shown to be expressed in 

a sexually dimorphic manner. In my Y1H analysis Su(var)3-7 was found to also 

interact with sub-elements that do not appear to have sexually dimorphic activity 

and hence may be necessary for general epidermal-cell activity.

pse_B2 and will_C4, which also show same type of sexually dimorphic 

expression in abdominal tergites (part of) A4, A5 and A6, did not group with the 

rest of the sexually dimorphic sub-elements based on transcription factor binding 

profile similarity. They appear to share some transcription factors with some of 

the other sexually dimorphic enhancer-sub-elements. For instance, pse_B2 

shares two transcription factors, Jun-related antigen (Jra) and Nubbin (nub) with 

two other sexually dimorphic elements, pse_B1 and will_C2, respectively. Since 

pse_B1 and pse_B2 are neighboring overlapping sub-elements from D. 

pseudoobscura yellow 5’ intergenic region, Jra may be binding to the region 

overlapping between the two sub-elements. pse_B2 and will_C2 both have 

epidermal cell enhancer activity, for which Nub may be important for. Moreover, 

these two sub-elements correspond to neighboring sub-elements, but in different 

species. Hence the two sub-elements may be sharing ancestral binding sites for 

transcription factors, including Nub and others that Y1H missed.

Other sub-elements that showed highly similar enhancer activities also failed to 

show similarity in their transcription factor binding profiles. For instance, mel_A3 

and pse_B5 both show strong expression in the epidermal cells throughout the 
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abdomen and thorax and encircling the head, however their transcription factor 

binding profiles look highly different in that they do not seem to share any binding 

factors. These two sub-elements are particularly interesting because they are 

both located in the 5’ intergenic region of yellow and are similar in their proximity 

to transcription start site.

Evaluating the in vivo phenotypic effects of some of the transcription 

factors identified in Y1H as possible interactors of yellow enhancers

Y1H is a hypothesis generating technique rather than a definitive one. Because 

of this, it is important to test Y1H results using an independent technique. One of 

these approaches is to test whether the transcription factors that were shown to 

interact with a certain enhancer element using Y1H also do so in the cellular 

environment of the organism they come from. An indirect way of testing this is to 

knock down a candidate transcription factor and look for phenotypic effects 

related to the putatively regulated gene.

I conducted an experiment to look at changes in pigmentation caused by 

knocking down transcription factors that were shown to interact with yellow 

enhancer sub-elements from D. melanogaster, D. pseudoobscura and D. 

willistoni. Pigmentation is an appropriate phenotype to look at since yellow gene 

is required for black pigment formation in the body, wings and bristles in adult 

flies and it is straightforward to score. I used the pannier(pnr)-Gal4 driver with 43 

UAS-RNAi lines (Table 3-3) from the TRIP (Transgenic RNAi Project) collection 

against 40 transcription factors (out of 204 total) identified as a result of Y1H. 

Among these 41 transcription factors, 29 were found to interact with more than 

one yellow enhancer sub-element whereas the rest (12) appeared to interact with 

a single yellow enhancer sub-element (Table 3-1, transcription factors highlighted 

in yellow). In adult flies pnr drives expression in the dorsal midline along the 

dorsal anterior-posterior length of the flies ((Heitzler et al. 1996): Figure 3-4; 

(Wittkopp et al. 2002a): Figure 3-3D), which is very useful for looking at effects 
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on pigmentation in body epidermal and bristle cells (though not wing cells) since 

that is the most highly pigmented part of the adult fly. As a result, any phenotypic 

effects of transcription factor knockdowns should be observed in the dorsal 

midline, whereas the part of the abdomen, thorax and head that are left outside 

of the dorsal midline, i.e., outside the pnr-expression domain, should have wild-

type pigmentation, which can be used as an internal control.

As a result of knocking down 41 different transcription factor genes using pnr-

Gal4 driver, I did not observe lethality in the progeny of any of the crosses, but I 

did find that the line harboring a UAS-RNAi transgene for the transcription factor 

Jra, when activated by pnr driver, gave rise to females only. I found four 

transcription factors which upon getting knocked down affected pigmentation in 

the abdomen or thorax. These four transcription factors are Abd-B, Dsx, Fru and 

Ventral veins lacking (Vvl) (Figure 3-5). Among these four, Abd-B and Dsx were 

previously shown to affect abdominal pigmentation, whereas the effects of Fru 

and Vvl on pigmentation are documented for the first time. Below I describe the 

observed pigmentation phenotypes after knocking down the above-mentioned 

four transcription factors.

Abd_B As a result of Y1H, this transcription factor was found to interact with sub-

elements mel_A2, will_C2 and will_C4. When knocked down with RNAi in D. 

melanogaster, male flies carrying pnr->abd-B-RNAi showed lack of male-specific 

black pigment in the dorsal midline of abdominal tergite A5. Hence in this region 

pigmentation looked similar to that of females. Abdominal pigmentation in female 

flies carrying pnr->abd-B-RNAi did not seem to be affected (Figure 3-5). This is 

consistent with previous studies showing that loss of function mutation in abd-B 

leads to loss of male-specific pigmentation in the abdomen (tergites A5 and A6) 

(Celniker et al. 1990; Hopmann et al. 1995), but the phenotypic effect of knocking 

down Abd-B is not as strong as the effect of its knock-out mutant.
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Dsx As a result of Y1H, this transcription factor was found to interact with only D. 

willistoni 5’ intergenic yellow enhancer sub-elements, will_C4 and will_C5. When 

knocked down with RNAi in D. melanogaster, female flies carrying pnr->dsx-

RNAi showed male-specific black pigment formation in the dorsal midline of 

abdominal tergite A6. Males carrying pnr->dsx-RNAi did not seem to have altered 

body pigmentation (Figure 3-5). This is consistent with studies showing that loss 

of function in dsx cause ectopic pigmentation in female abdominal tergite A5 and 

A6 (Baker and Ridge 1980; Couderc et al. 2002), but similar to the case in Abd-

B, the phenotypic effect of knocking down Dsx is not as strong as the effect of its 

knock-out mutant.

Fru Y1H showed that this transcription factor interacted with sub-element will_C2 

only. When knocked down with RNAi in D. melanogaster flies, females carrying 

pnr->fru-RNAi appeared to have decreased pigmentation in the dorsal midline of 

abdominal tergites A5 and A6, however in males the phenotype appeared to be 

weaker such that only a thin line (red arrow) in the middle of abdominal tergite A5 

had faded pigmentation. Fru is known to be genetically upstream of yellow 

affecting its function on male mating behavior (Drapeau et al. 2005). However, 

effects of Fru on pigmentation is identified for the first time. 

Vvl As a result of Y1H, this transcription factor was also found to interact with 

will_C2 only. When knocked down by RNAi in D. melanogaster, both male and 

female flies carrying pnr->vvl-RNAi showed a very clear phenotype where in the 

dorsal midline of the adult cuticle black pigment was virtually lacking in all 

abdominal tergites whereas the two sides of the dorsal midline had wild type 

pigmentation (Figure 3-5). Effects of Vvl on yellow regulation or pigmentation has 

never been previously documented.

It is important to note that looking at the effects of knocked-down transcription 

factors, which were shown to interact with yellow enhancer sub-elements, on 

pigmentation, particularly black pigment formation, has limitations in validating 
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Y1H results. Any effects seen on pigmentation upon knocking down a 

transcription factor does not validate direct binding of the particular transcription 

factor with the yellow cis-regulatory region. There may be intermediate genes/

proteins between the particular transcription factor and yellow. Moreover, the 

knocked-down transcription factor may be showing its effect on pigmentation by 

affecting another pigmentation gene (such as tan that is required for brown 

pigment formation) without affecting yellow expression at all. This is not known 

since expression of yellow or other pigmentation genes were not measured in 

this study. However one may be able to sort this out by specifically looking at 

reduction or increase in black pigment formation or better, in future work, 

reduction or increase in GFP activity in the relevant reporter genes.

The rest of the 37 transcription factors tested did not seem to affect pigmentation 

in adults when knocked-down (Figure 3-6). For example, Figure 3-6 shows 

knock-down phenotypes for transcription factors Hr78 and Hr38, both of which 

appeared to interact with one or more yellow enhancer sub-elements from the 

yellow 5’ intergenic region, and not the intron of all three species. Hr78 was found 

to interact with 7 sub-elements in total, whereas Hr38 interacted with 6. Neither 

of the two transcription factors appeared to alter pigmentation in the dorsal 

midline upon getting knocked-down. This may be due to the fact that they are 

false positives and do not actually interact with yellow cis-regulatory elements. 

However, they may be real direct regulators of yellow, but could be missed by 

this type of RNAi study because the RNAi constructs may not have effectively 

knocked down the transcription factors, or these transcription factors may be real 

regulators of yellow at developmental stages that were not investigated in this 

study (for instance during larval stage, where yellow is necessary for black 

pigment formation in larval mouthparts), else knocking down only one 

transcription factor may not be sufficient to change yellow expression strongly 

enough to affect pigmentation.
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Discussion

Overall, using D. melanogaster as the common transgenic host, I identified the 

enhancer activities lying in 21 out of 29 1-kb sub-elements spanning 5’ intergenic 

and intronic regions of yellow from three Sophophora group species, D. 

melanogaster, D. pseudoobscura and D. willistoni. As a result, I found that most 

(15/21) of the tested sub-elements of yellow 5’ intergenic and intronic regions 

harbor enhancer activities that drive expression in body epidermal cells in the 

late pupal stage. Among these, as compared to the total expression pattern 

driven by the full region that they are isolated from, some sub-elements drive 

expression that almost recapitulates the total expression pattern (minimal 

enhancer), some drive only a fraction of the total expression pattern and some 

drive expression in spatial patterns that are not part of the total expression 

pattern (cryptic enhancer).

A yeast-one-hybrid screen (Y1H), where the above-mentioned enhancer sub-

elements were assayed with a D. melanogaster transcription factor library, which 

harbored ~85% of all transcription factors in this species, identified a large set of 

candidate transcription factors binding to yellow 5’ intergenic and intronic regions 

from the three Sophophora group fly species. As was already indicated by a 

correlation between the expression pattern driven by D. pseudoobscura and D. 

willistoni yellow enhancers in the common host D. melanogaster and the 

pigmentation patterns of the donor species, Y1H also showed that the trans 

environment appeared to be conserved between D. melanogaster and the other 

two species. I found that similar number of transcription factors interacted with D. 

willistoni yellow 5’ intergenic and D. pseudoobscura and D. willistoni intronic 

regions as did with D. melanogaster ones, suggesting that the transcription factor 

binding sites are conserved between these three species. Only ~10-20% of the 

transcription factors were shared binders between physically homologous 

regions from different species even though they drive similar expression. This 
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may be due to the high false negative rate of Y1H. In fact RNAi validation 

showed that some of the transcription factors that were shown to bind to D. 

willistoni yellow enhancers only, have effects on pigmentation in D. melanogaster 

suggesting that these proteins control yellow expression D. melanogaster as 

well. Overall, RNAi validation identified two transcription factors (Abd-B and Dsx) 

that were previously shown to affect pigmentation in Drosophila, but it also 

identified two other transcription factors (Fru and Vvl), whose effects on 

pigmentation are novel.

Enhancer activities of D. melanogaster yellow 5’ intergenic sub-elements 

are consistent with previous functional analyses

D. melanogaster yellow enhancers were first identified by Geyer et al. (Geyer 

and Corces 1987b) and Martin et al., (Martin et al. 1989a) using pigmentation in 

the abdomen, wings and bristles as a readout of yellow expression. As a result, it 

was shown that the yellow 5’ intergenic region is necessary for the gene’s 

expression in the body and wings whereas the intron is necessary for bristle 

expression. Subsequent studies characterized the enhancers, especially in the 

5’ intergenic region of yellow from D. melanogaster (Wittkopp et al. 2002c; 

Drapeau et al. 2003; Jeong et al. 2006a), Chapter 2) as well as from other 

species (Wittkopp et al. 2002c; Jeong et al. 2006a), Chapter 2). Among these 

studies Jeong and colleagues (Jeong et al. 2006a) dissected the 5’ intergenic 

region of D. melanogaster yellow in detail and the results of my study are 

consistent with their results.

First of all, Jeong and colleagues did not look beyond -2869 relative to the 

transcription start site, which corresponds to the 5’ end of mel_A2. However, in 

my study the enhancer activities up to -3815 were identified, hence the enhancer 

activity of mel_A1 was described for the first time here. Despite the lack of 

mel_A1, the full 5’ intergenic region Jeong and colleagues looked at drove 

virtually identical expression to the full 5’ intergenic region investigated in my 
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study. This suggests that the activity of mel_A1 is not necessary for the full 

expression pattern driven by D. melanogaster yellow 5’ intergenic region. They 

found that a 5’ intergenic element extending to position -1867, which, in my study, 

corresponds to sum of sub-elements mel_A3, mel_A4 and mel_A5, drives 

expression through the length and width of all abdominal tergites with increased 

strength in tergites A5 and A6 in males as compared to females. This locates the 

“stripy” expression pattern, i.e., expression only in the posterior half of each 

abdominal tergite with a middle peak pointing towards the anterior, to between 

-2869 and -1867, which approximately corresponds to sub-element mel_A2, 

consistent with the identified enhancer activity of this region in my study. Lastly, 

Jeong and colleagues localized a sexually dimorphic enhancer activity to where 

mel-A4 corresponds to, again consistent with my study. The authors also found, 

through in vitro EMSA and in vivo binding site deletion assay, that Abd-B directly 

binds to mel_A4 region and contributes to the sexual dimorphic expression that 

this region drives in the abdomen. Interestingly, the Y1H experiment I conducted 

did not confirm this, perhaps due to high false negative rate of the technique. I 

found, however, that Abd-B binds to mel_A2, which was not widely investigated 

by Jeong et al. (2006). It is likely that Abd-B is a major regulator of male-specific 

abdominal expression (tergites A5 and A6) driven by both mel_A2 and mel_A4.

Possible reasons for observing cryptic enhancer activity in the sub-

elements of yellow 5’ intergenic and intronic regions

Besides the sub-elements that recapitulate (almost) all (minimal enhancer) or a 

fraction of the total enhancer activity of the full region they are isolated from, it 

was particularly intriguing to observe sub-elements that drove expression in 

patterns that were not part of the expression pattern driven by the full region 

(cryptic enhancer activity). This may have several explanations:
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1- Change in the proximity of a sub-element to the transcription start site can 

alter its enhancer activity.

Enhancer elements typically act independent of their proximity to the transcription 

start site. However, we know that for certain enhancer elements this proximity is 

important for their function, such that decreased proximity results in elevated 

levels of expression (Swanson et al. 2010). Among the yellow enhancer sub-

elements that show cryptic enhancer activities, this may be particularly true for 

the ones that drive expression in spatial patterns that are similar to but stronger 

than the expression pattern driven by the full region. The thoracic and abdominal 

expression driven by sub-element pse_B5 sets a good example for this 

possibility. (It is worth noting however, that the spatial pattern of pse_B5 driven 

expression is not fully identical to the one full D. pseudoobscura 5’ intergenic 

region drives, especially in the head.) One can assess if this possibility is real by 

testing the particular sub-element for enhancer activity when located equally 

distant from the transcription start site of the reporter gene as it is from the yellow 

transcription start site.

2- The altered genomic position of the sub-element from the endogenous 

position can alter the expression pattern it drives.

It is possible that the foreign genomic locus on the 2nd chromosome, where the 

reporter gene constructs are integrated, is adjacent to sequences that harbor 

information that drives expression in the epidermal cells in the body at the late 

pupal stage, and that is why some sub-elements drive expression in spatial 

patterns that are not part of the expression pattern driven by the full region. The 

fact that some sub-elements failed to drive expression above background levels 

and the full region was tested in the same genomic location complicates this 

possibility such that the sequences flanking the integration site activate 

expression in body epidermal cells only in combination with the appropriate 

sequences within a sub-element (and they don’t have the same combinatorial 

effect with other sub-elements or the full region). Testing the activity of yellow 
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enhancer sub-elements in other integration sites would assess the veracity of this  

possibility.

3- The cryptic activities of yellow enhancer sub-elements may be repressed in 

their native loci and be revealed when they are tested in isolation.

It is possible that part or all of the expression pattern driven by yellow enhancer 

sub-elements with cryptic activity, when they are located in their native loci, is 

repressed or simply altered by the surrounding sequences. The break points of 

sub-elements may separate certain transcription factor binding sites from each 

other, which, when together drive expression that is part of the total expression 

pattern driven by the full region.

This third possibility is particularly intriguing because recent examples show how 

existing enhancer activities in a region can accelerate change in gene expression 

patterns. In one example a latent enhancer activity is repressed due to few point 

mutations and revealed as a result of changes in these repressive sequences 

(Prabhakar et al. 2008; Sumiyama and Saitou 2011). In another case an 

enhancer activity started out weak and over time became fully repressed or 

stronger due to repressing or activating mutations, respectively (Rebeiz et al. 

2011a).

Changing latent enhancer activities may be a common trajectory especially for 

rapidly changing enhancers. Despite the fact that transcription factor binding 

sites can be created rapidly, relative to the evolutionary distances between 

species (Stone and Wray 2001), arguably fewer mutations are needed for an 

enhancer activity to come about in a region that is already primed for it (i.e., if it 

already harbors part of the transcription factor binding sites necessary to drive a 

certain expression pattern) than the ones needed to create binding sites from 

putatively non-functional sequence (i.e., from scratch). This is because there is a 

particular set of transcription factors that are expressed in the right tissue and 

time to affect a cognate gene’s expression, and the number of mutational events 

123



necessary to create all the appropriate transcription factor binding sites from 

scratch would be a multiplicate of the few mutations needed to add onto an 

existing group of appropriate transcription factors.

If one can eliminate the first two possibilities with appropriate experimentation, 

the third possibility, existence of latent activities in the 5’ intergenic and intronic 

regions of yellow, can explain the dynamic architecture and activity of yellow 

enhancers.

A large set of candidate transcription factors regulating yellow expression 

was identified

Despite its widely used mutant form and relatively well studied cis-regulatory 

elements, until this study there was limited knowledge on the transcription factors 

regulating yellow expression. The conducted Y1H experiment found that 204 out 

of the 647 transcription factors from the D. melanogaster library bind to at least 

one enhancer sub-element tested. This is perhaps not all of the transcription 

factors that bind to yellow enhancer sub-elements tested since Y1H is known to 

have a high false negative rate (~74%, (Hens et al. 2011)). For instance, among 

the 154 transcription factors that were found to bind to 5’ intergenic regions of 

yellow from D. melanogaster, D. pseudoobscura and D. willistoni, only 19 (~12%) 

were shared between species, which is arguably less than expected given the 

similarities in the expression these three regions drive, i.e., same cell type, 

developmental stage, etc. This was true for introns as well, among the total of 68 

transcription factors found to interact with yellow introns from D. melanogaster, 

D. pseudoobscura and D. willistoni, only 3 (~4.5%) were shared between 

species. This percentage is even lower than that of shared binding factors for 5’ 

intergenic region partly because of the 4 (out of 11) intronic sub-elements that 

were not assayed with Y1H.
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It is important to also note that the false positive rate of Y1H has been estimated 

to be ~23% (Hens et al. 2011). Hence not all of the 204 transcription factors 

identified are real binders of yellow enhancers. Further validation assays can 

eliminate these false positives to reveal a more accurate set of transcription 

factors controlling yellow expression.

Transcription factors that were found to bind more than one yellow enhancer sub-

element

From the 204, 163 transcription factors interacted with a unique enhancer sub-

element, and 41 interacted with more than one and up to eight sub-elements. 

These “multiple binders” are of particular interest because they may be 

responsible for some of the commonalities observed between the expression 

patterns of 5’ intergenic or intronic regions of yellow among Drosophila species. 

So far Y1H identified Neurofibromin 1 (Nf1) to bind to eight yellow enhancer sub-

elements, Hormone-receptor-like-in-78 (Hr78) and Suppressor of variegation 3-7 

(Su(var)3-7) appear to bind 7, Hormone-receptor-like-in-38(HR38) binds to 6, 

and CG5591, Ecdysone-induced protein 78C (Eip78C), sequoia (seq) and 

Regulatory factor X (Rfx) appear to bind 4 different enhancer sub-elements 

(Figure 3-4). These transcription factors have not previously been implicated in 

regulation of yellow or pathways that yellow is known to be involved in 

(pigmentation and male mating behavior). However, knowing what these proteins  

do can aid a better understanding of yellow regulation as well as function. To set 

a starting point to investigating the trans regulators of yellow and the biological 

pathways the gene may be involved in, below I give descriptions of the above 

mentioned “multiple binders” and their possible associations to yellow regulation:

An important tumor suppressor gene as the regulator of yellow:

Nf1 This protein was found to bind to at least one sub-element from all yellow 5’ 

intergenic and intronic regions dissected. Namely mel_A1, pse_B4, will_C2, 

will_C4, will_C7, mel_D2, pse_E1, and will_F2, were found to interact with Nf1. 
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Nf1 is a known tumor suppressor gene that encodes for a highly conserved 

GTPase activating domain as well as a C-terminal domain that regulates 

cyclicAMP levels. In humans null mutations are responsible for 

Neurofibromatosis type 1 disease which leads to learning defects, small stature, 

tumors and skin pigmentation abnormalities (Lee and Stephenson 2007). Null 

mutations of Nf1 in flies are not lethal but lead to overall reduction in body size 

throughout all postembryonic stages (The et al. 1997). These mutants also show 

defects in learning and circadian rest-activity rhythm, loss in short and long-term 

memory (Guo et al. 2000; Ho et al. 2007) as well as increased sensitivity to 

oxidative stress, and shortened life spans (Tong et al. 2007). Overexpression of 

the gene leads to increased life span, improved reproductive success and 

increased resistance to oxidative stress. Except for improved reproductive 

success, none of the above mentioned functions of Nf1 appear to be directly 

related to yellow’s known roles in pigmentation and behavior (male mating 

success). However given that Nf1 binds to a relatively high number of yellow 

enhancer sub-elements and is expressed throughout fly development, perhaps it 

is a major regulator of yellow and yellow is involved in some of the pathways that 

Nf1 is involved. If in vitro and in vivo direct binding and functional assays confirm 

Nf1 as a direct regulator of yellow, this would open a new area of research 

looking at new roles of yellow in fly development and physiology.

Regulation of yellow by the ecdysone pathway:

Hr78 This transcription factor was found to bind to only yellow 5‘ intergenic sub-

elements from all three species, namely mel_A2, mel_A3, mel_A4, mel_A5, 

pse_B1, will_C1 and will_C5. This gene is a target of the only steroid hormone in 

flies, ecdysone (also known as 20-hydroxyecdysone - 20E), which is a critical 

temporal signal for the major postembryonic developmental transitions in flies, 

such as molting of the larval cuticle and puparium formation. Hr78 is expressed 

throughout development with peaks during third instar larva and prepupal stages, 

which correlate with ecdysone pulses in the animal. The expression peaks of 

yellow (16-24hr embryo, L2-12hr L3 larva and 2-3 day post puparium formation) 
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and Hr78 do not perfectly match, but Hr78 is expressed in high amounts during 

all yellow peak expression times. Its precise function is not known, but null 

mutations of Hr78 lead to lethality during third instar larval stage and polytene 

chromosome studies during the prepupal stage showed the colocalization of the 

protein with known ecdysone regulated puff loci. None of these loci correspond to 

that of yellow’s, but the authors looked at only previously identified ecdysone 

regulated loci (Fisk and Thummel 1998). Intriguingly, in the butterfly species 

Papilio xuthus, 20E was found to promote yellow expression and affect black 

pigment formation in the cuticle (Futahashi and Fujiwara 2007) suggesting the 

ecdysone pathway may be partly responsible for regulation of yellow in 

pigmentation in Drosophila as well. This suggests that some of the ecdysone 

target genes may regulate yellow for its role in pigmentation.

Hr38 This transcription factor was found to bind to sub-elements of yellow 5’ 

intergenic regions, but no intronic regions, from all three Drosophila species. 

Namely these sub-elements are mel_A2, mel_A4, pse_B6, will_C2, will_C3, 

will_C5. Similar to Hr78, Hr38 is also downstream of the ecdysone pathway. 

Specifically, a null mutation in the gene leads to lethality as a result of reduced 

cuticle gene expression and consequent loss of cuticular integrity (ruptured 

cuticle) at the late pupal stage (Kozlova et al. 2009). It is expressed at low levels 

throughout development, but, similar to yellow, appears to peak during the late 

pupal stages (Kozlova et al. 2009). yellow is not included in the group of cuticle 

genes investigated by Kozlova and colleagues (Kozlova et al. 2009) since it is 

not known to have a role in cuticle formation, but rather it is important for the 

pigmentation of this structure. Regardless, given that the developmental time and 

tissue of expression of the cuticle genes are similar to that of yellow, yellow may 

also be regulated by the transcription factors controlling cuticle formation genes. 

In addition to its role in cuticle formation, Hr38 is also involved in muscle 

carbohydrate homeostasis. Moreover, it is also expressed at high levels in adult 

brain and regulates DOPA decarboxylase (Ddc) expression suggesting also a 

neurological role for Hr38. Interestingly, both yellow and Ddc have major roles in 
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pigmentation (Wittkopp et al. 2002a) in addition to their neurological functions, 

and now my data shows that they also share at least one regulator.

Eip78C This transcription factor was found to bind to sub-elements from D. 

melanogaster and D. pseudoobscura yellow 5’ intergenic and intronic regions. 

Namely these sub-elements are mel_A2, pse_B6, mel_D3, pse_E4. Eip78C is 

also a target of the ecdysone pathway, but not as widely studied as Hr78 and 

Hr38. It is expressed in the embryo, larva and pupa. Its expression peaks during 

the late pupal stages, which parallels yellow expression. Absence of Eip78C did 

not cause any abnormalities under laboratory conditions (Russell et al. 1996), 

which suggests that it is not a master regulator, but perhaps is responsible for 

fine tuned regulation of other ecdysone target genes.

Regulation of yellow at the chromosomal level:

Su(var)3-7 This protein was found to bind to sub-elements from all yellow 5’ 

intergenic and intronic regions dissected except for D. melanogaster 5’ intergenic 

region. Namely these sub-elements are, pse_B5, pse_B6, will_C1, will_C7, 

mel_D1, pse_E1, pse_E4, and will_F3. Su(var)3-7 is known to be mainly 

associated with (pericentromeric) heterochromatin and telomeres (but also some 

euchromatic sites) (Reuter et al. 1990). It is a modifier of position effect 

variegation (PEV) (gene silencing induced by heterochromatin), and changing 

doses of Su(var)3-7 can enhance or suppress PEV (Cléard and Spierer 2001). It 

has a particular role on X chromosome morphology and expression in males, 

such that reduced levels of Su(var)3-7 leads to a bloated X chromosome, 

whereas increased levels of Su(var)3-7 cause highly condensed (and silenced) X 

chromosome. This is thought to be because changes in Su(var)3-7 levels disrupt 

the correct distribution of the dosage compensation complex in males and lack of 

Su(var)3-7 cause male lethality (Spierer et al. 2008). Based on this information 

Su(var)3-7 appears to be a chromosomal level transcriptional regulator of, 

perhaps all, genes on the X chromosome. Being located on the X, yellow may be 
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one of the targets of Su(var)3-7, but this trans regulator does not appear to be 

specific to yellow only.

Regulation of yellow in bristle associated cells:

seq This transcription factor was found to bind to three 5’ intergenic sub-elements  

mel_A2, mel_A5, will_C2 and one from D. willistoni yellow intron, will_F2. Seq is 

expressed throughout fly development, but most highly during embryonic stages. 

It is crucial for normal morphogenesis (of axons and dendrites) of almost all 

neuronal types studied (Brenman et al. 2001). It has also been found to be 

important for external sensory organ (bristle) development, such that absence of 

Seq leads to loss of bristles (and gain of extra socket cells, one of the five types 

of bristle associated cells) (Andrews et al. 2009). We know that yellow is required 

for bristle pigmentation and hence can be controlled by transcription factors 

expressed in bristle associated cells, such as Sequoia. Notably, however, Y1H 

showed that Seq does not only bind to intronic regions that harbor the yellow 

bristle enhancer, but it also appears to bind 5’ intergenic regions that harbor 

epidermal cell enhancer activity as well as necessary regulatory sequences for 

male mating success, suggesting that the regulatory role of this transcription 

factor is not restricted to bristle associated cells.

Rfx This transcription factor was found to bind to 5’ intergenic sub-elements 

mel_A2, mel_A4, wil_C2 and will_C3. It is expressed in the peripheral nervous 

system and brain throughout Drosophila development and in testis in adults 

(Durand et al. 2000; Vandaele et al. 2001). It is also expressed in sensory organ 

precursor cells after puparium formation. Rfx, in Drosophila, is identified as an 

essential regulator of ciliated sensory neuron differentiation and lack of it leads to 

defects in chemosensory and mechanosensory behaviors during larva and adult 

stages. These defects are in part due to aberrations in mechanosensory bristle 

electrophysiology. This suggests that, similar to Seq, Rfx may also be a regulator 

of yellow expression in bristle associated cells (Dubruille et al. 2002) even though 

Y1H did not find it to bind any intronic sub-elements, perhaps an effect of the 
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false negative rate of Y1H. The fact that Rfx was found to bind yellow 5’ 

intergenic regions, suggests that its regulatory role on yellow is not restricted to 

bristle associated cells.

Transcription factors with minimal knowledge known about them:

CG5591 This transcription factor was found to bind to sub-elements from D. 

melanogaster and D. pseudoobscura yellow 5’ intergenic regions only. Namely, 

these sub-elements are mel_A2, mel_A4, mel_A5, pse_B1. There is limited 

knowledge about this particular transcription factor. It was found to be a muscle 

specific lipid regulator and was implemented as one of the genes that may affect 

metabolic disorders (Pospisilik et al. 2010). Given the relatively high number 

yellow enhancer sub-elements it was found to interact with, this transcription 

factor remains as a strong candidate regulator of yellow expression, and further 

studies can show which function of yellow CG5591 is important for. We have 

limited information on many more candidate transcription factors that were found 

by Y1H to bind yellow enhancers. Further functional studies can shed light onto 

both the physiological and regulatory roles of these previously unstudied 

transcription factors.

New and old interactors of yellow

I was able to test 29 out of the 41 “multiple binder” transcription factors (Table 

3-1), including Nf1, Hr78, Hr38 and Rfx. Interestingly, only few of the multiple 

binders showed an effect on pigmentation (Abd-B and Dsx), but none of the 

above strong candidates showed a phenotypic effect on pigmentation upon 

knock-down. This was perhaps because some RNAi lines used were not 

effectively knocking down the target gene, or perhaps these transcription factors 

do not control yellow expression at pigmentation related tissues and 

developmental time, or perhaps in some cases knocking down one transcription 

factor did not alter yellow expression enough to affect pigmentation. It is also 

possible that some of the multiple binder transcription factors were false 
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positives, but given the 23% estimate of the false positive rate of Y1H, it is 

plausible to think that most are true interactors of yellow enhancers. Further 

experiments testing direct binding of these transcription factors to yellow cis-

regulatory regions both in vitro and in vivo and their effects on yellow expression 

can shed light onto which of the above possibilities are true.

Regardless of whether they were shown to bind to multiple or single sub-

elements of yellow, the four transcription factors (Abd-B, Dsx, Fru, Vvl) that 

altered adult pigmentation in D. melanogaster upon knock down are intriguing.

Among the four transcription factors that showed an effect on pigmentation upon 

knock-down, Abd-B and Dsx have previously been shown to affect abdominal 

pigmentation in a sexually dimorphic manner and their knockdown phenotypes 

confirmed that result (lack of male-specific pigmentation in abdominal tergites A5 

and A6 in pnr->abd-B-RNAi, and increase in pigmentation domain in A6 and part 

of A5 in females harboring pnr->dsx-RNAi). 

It is known that Abd-B shows its effect on pigmentation by directly regulating 

yellow. In vitro binding and in vivo functional tests showed that this transcription 

factor binds to sub-element mel_A4 (Jeong et al. 2006a). However, Y1H 

conducted in my study found Abd-B to bind mel_A2, but not mel_A4. Additionally, 

even though in vitro binding of Abd-B to D. subobscura yellow 5’ intergenic region 

was previously shown (Jeong et al. 2006a), Y1H did not find Abd-B binding the 

yellow 5’ intergenic region of yellow from the closely related species D. 

pseudoobscura. These seemingly missed binding events are perhaps a result of 

the high false negative rate of Y1H. As a novel binding event, however, Y1H did 

show that Abd-B binds to two sub-elements of D. willistoni yellow 5’ intergenic 

region (will_C2 and will_C4). Functionally, in D. melanogaster, Abd-B is 

necessary for the male-specific expression of yellow in abdominal tergites A5 and 

A6, which is necessary for the male-specific melanization of these tergites in 

adults (Celniker et al. 1990; Jeong et al. 2006a). Unlike D. melanogaster, D. 
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pseudoobscura and D. willistoni do not show male specific melanization, but sub-

elements of the yellow 5’ intergenic region from these species drive sexually 

dimorphic expression in the abdomen (e.g., will_C4). It is not possible to 

understand the full picture with the current data, but, if Abd-B is a real binder of 

D.pseudoobscura and D. willistoni yellow 5’ intergenic regions, perhaps the 

effects of Abd-B leading to male-specific yellow expression in tergites A5 and A6 

are counteracted by neighboring transcription factor binding sites.

There is no previous knowledge about a direct relationship between dsx and 

yellow. In my study, Dsx was found to interact with two D. willistoni yellow 

enhancer sub-elements (will_C4 and will_C5), but also showed a pigmentation 

phenotype in D. melanogaster when knocked down with RNAi. Dsx has been 

shown to alter pigmentation through directly regulating another pigmentation 

gene bab, where it suppressed male-specific pigmentation in abdominal tergites 

A5 and A6 in females (Williams et al. 2008). Y1H now presents Dsx as a 

candidate binder of yellow 5’ intergenic region in D. willistoni and given the false 

negative rate of Y1H, this may be true for D. pseuodoobscura and D. 

melanogaster as well. Further in vitro binding and in vivo functional tests can 

shed light onto these possibilities.

Fru was found to interact with a D. willistoni yellow enhancer sub-element 

(will_C2), but affected pigmentation in D. melanogaster. This is, again, perhaps 

due to high false negative rate of Y1H and Fru is actually an interactor of yellow 

enhancers in D. melanogaster (and even D. pseudoobscura) as well. The effect 

of lack of Fru on pigmentation is particularly intriguing because this is the first 

time it was documented and it caused a bigger reduction in pigmentation in 

females than males. Previous studies showed that fru is genetically upstream of 

yellow in D. melanogaster males, albeit not related to pigmentation, but mating 

behavior. A male isoform of Fru (FRUM) and Yellow were found to colocalize in 

the 3rd instar larval brain (Drapeau et al. 2003) and mutants that lack the DNA 

binding domain of FRUM show reduced levels of of Yellow in male CNS only 

132



(Drapeau et al. 2003). The same mutant line showed wild-type pigmentation in 

the body parts that harbor Yellow-induced pigmentation (e.g., abdomen, thorax, 

bristles, etc). The RNAi line used in my study appears to be targeting both male 

and female splice forms of Fru. With that in mind, it is perhaps not surprising to 

see a barely noticeable reduction of abdominal pigmentation in males upon 

knock-down of Fru (Drapeau 2006). The function of the female isoform of Fru is 

not known, but based on its sequence it appears to have a dimerization and a 

zinc-finger like DNA binding domain. Moreover, in females, fru mRNA is found at 

very low levels in the CNS and lack of fru does not appear to have any 

behavioral effects (Baker et al. 2001). Given that knock down of Fru in females 

leads to reduced abdominal pigmentation, perhaps the female isoform of this 

transcription factor is important, not for behavior but for the pigmentation 

pathway, possibly through affecting yellow expression.

   

Last, but not least, vvl was identified as a gene with a novel effect on 

pigmentation in D. melanogaster even though Y1H identified it to bind sub-

element will_C2. Previous studies showed that lack of this gene prevents 

differentiation of longitudinal veins 2 and 4 which form on the ventral surface of 

the wing (Diaz-Benjumea et al. 1989). Overall, Vvl has been shown to be crucial 

for wing vein differentiation (de Celis et al. 1995), proper development of the 

tracheal system (Llimargas and Casanova 1997) and specific structures in the 

central nervous system such as the embryonic brain (Meier et al. 2006). It is 

expressed throughout development, with a peak during embryonic stages. It is 

known be expressed throughout the wing during pupa. It is downstream of genes 

such as wingless and decapentaplegic (dpp) (de Celis et al. 1995), which have 

been shown to specify (together with epidermal growth factor) the dorso-ventral 

pigmentation patterning of the abdominal segments in Drosophila by regulating 

downstream genes like yellow (Kopp et al. 1999; Wittkopp et al. 2003). Moreover, 

Vvl has been shown to be a direct binder of a 5’ shortvein enhancer that drives 

dpp expression in the wing veins (Sotillos and de Celis 2006) reinforcing that it is 

involved in the same regulatory signaling pathways as yellow. In my study, Vvl 
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was found to interact with a D. willistoni yellow enhancer sub-element (will_C2), 

but showed a pigmentation phenotype in D. melanogaster. This may again be 

due to the false negative rate of Y1H and perhaps Vvl binds to D. melanogaster 

yellow enhancers as well. Regardless, previous studies combined with my 

current data suggest roles for Vvl in abdominal pigmentation since it is 

downstream of the master regulators of this trait (Dpp and Wingless), is found to 

bind to yellow 5’ intergenic harboring epidermal cell enhancer and upon knock 

down it leads to reduced abdominal pigmentation. Vvl is perhaps important for 

wing vein expression of yellow as well, since it is known to be expressed in the 

wing-veins throughout pupal stage. We do not yet know if sub-element will_C2 

harbors wing vein enhancer activity. Further functional tests can show us how Vvl 

is involved in the regulation of yellow and the pigmentation pathway.

Enhancers with similar expression patterns can be responsive to similar or 

dissimilar sets of transcription factors

In understanding how enhancers change over evolutionary time, it is important to 

address whether enhancers with similar activities are bound by similar or different 

sets of transcription factors. If different, are there only few differences in the set 

or is the whole set different? As a result of Y1H, I defined a large set of 

transcription factors binding to different yellow enhancer sub-elements, which 

allowed me to make the aforementioned comparison. The preliminary 

comparison between the transcription factor binding profiles of yellow enhancer 

sub-elements conducted in my study was able to give one correlation. That is, I 

observed a similarity of transcription factor binding profile between half (five out 

of ten) of the enhancer sub-elements that drive male-specific expression pattern 

in abdominal tergites A5 and A6. This type of enhancer activity was fairly 

common among sub-elements tested (ten out of 21 showed it), and it is intriguing 

to find that it is a result of similar sets of transcription factors half of the time, but 

not all of the time (five out of ten had diverse transcription factor binding profiles).
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My comparison remains preliminary, however, because the two datasets, activity 

and binding factors of yellow enhancer sub-elements, used in my study have 

aspects that are yet to be completed. Ideally, one needs to conduct a quantitative 

analysis of the complex expression patterns driven by enhancer sub-elements at 

multiple developmental stages to get a precise understanding of which activities 

are more similar to each other. It is also necessary to have a more 

comprehensive set of interactions between transcription factors and yellow 

enhancer sub-elements, because Y1H, with a high false negative rate, is likely to 

have not identified all true interactions. Without such a comprehensive set of 

transcription factors one cannot deduce how similar and different the 

transcription factor binding profiles of two enhancers are.

Materials and Methods

Constructing reporter genes

Previously identified 5’ intergenic and and intronic regions of yellow from D. 

melanogaster, D. pseudoobscura and D. willistoni (Chapter-2) were dissected 

into approximately 1000 bp sub-elements using PCR (except for mel_A5, 

pse_B6, will_C7, which varied between 423 bp, 641 bp, 345 bp, respectively). 

Each sub-element overlapped with the flanking ones by approximately 100 bp 

(Sub-elements at the 5’ and 3’ ends of a 5’ intergenic or intronic region overlap 

only with the element that is following or preceding them, respectively). PCR was 

conducted using a mix of Taq DNA polymearse and Phusion High-Fidelity DNA 

Polymerase (New England Biolabs) in order to prevent PCR-introduced 

mutations. Asc-1 restrictions enzyme site was introduced to the ends of each 

PCR product using primers with 5’ Asc-1 tails. Subsequently, the PCR products 

for yellow enhancer sub-elements were subcloned into the sequencing vector 

pGEM-T, and sequenced using M13 Forward and M13 Reverse primers. 

Sequence-confirmed yellow enhancer sub-elements were then sub-cloned into a 

piggyBac-attB vector (as described in Chapter-2) using the Asc-1 unique site, 
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which was followed by cloning nuclear Enhanced Green Fluorescent Protein 

(nEGFP) gene 3’ to each sub-element using the Fse-1 unique restriction site. The 

resulting construct was diagnostic digested and upon confirmation was prepared 

in high concentration using Zyppy Plasmid Maxi kit, reconfirmed with diagnostic 

digest and sent to Genetic Services, Inc, Cambridge, MA for injections into the 

attP-40 line of D. melanogaster (as described in Chapter-2)

Analysis of reporter gene expression patterns

For each line, transformant flies were crossed into w1118 line in order to ensure 

hemizygosity of the transgenes. Subsequently, pupa hemizygous for the 

transgenes were prepared 70-80 APF and imaged immediately using Leica SP5 

confocal microscope as described previously (Chapter-2). All images were 

processed identically in Adobe Photoshop CS4.

Screening yellow enhancer sub-elements for binding factors using yeast-one-

hybrid (Y1H)

Sub-elements of yellow tested for enhancer activity were cloned into Y1H-

compatible pMW2 (“HIS3�) vector using Gateway cloning system (Invitrogen). In 

brief, yellow sub-elements were amplified with PCR using primers that had 5’ 

overhang attB sequences (25 bp) that were compatible with the attP site in the 

pDONR vector. A BP reaction was used to subclone the enhancer sub-element 

into the pDONR vector to create an Entry clone. The Entry clones were sequence 

confirmed which was followed by LR reactions to subclone the enhancer 

subelements into Y1H compatible pMW2 (“HIS3�) vector. These final constructs 

were mini-prepped and transformed (using lithium acetate (LiAc) - polyethylene 

glycol (PEG)) into the Y1H-aS2 yeast strain, where they were integrated into the 

mutant his3-200 locus (Hens et al. 2011). Transformants were selected on SC -

His, -Ura plates.

Four out of the 29 sub-elements were not assayed with Y1H due to lack of 

unique restriction enzyme site that was necessary to linearize the vector 
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harboring the DNAbait::HIS3 fusion construct prior to genome integration. The 

four sub-elements that were not assayed with Y1H correspond to D. 

pseudoobscura and D. willistoni yellow introns (pse_E2, pse_E3, will_F1 and 

will_F4).

In order to test whether the sub-elements of yellow enhancers integrated into the 

yeast genome activate expression of the HIS3 gene in the absence of any D. 

melanogaster transcription factors, i.e., under the influence of endogenous S. 

cerevisiae transcription factors, a self-activation test was conducted. For each of 

the 25 sub-elements that were integrated into the yeast genome, 8 transformants  

were picked and spotted onto plates containing varying concentrations  of 3-

Amino-1,2,4-triazole (3-AT) (0 mM to 100 mM) , a competitive inhibitor of the His3 

enzyme. In order to be able to grow on increasing concentrations of 3-AT, 

transformants need to make higher amounts of the His3 enzyme than what is 

provided by basal level expression of HIS3 gene. For all 25 sub-elements, 

among the 8 transformants spotted, one that was not able to grow on plates with 

10, 20 or at the most 40 mM of 3-AT was selected for use in the rest of the 

experiments.

Subsequent yeast transformations to put each of the 647 the D. melanogaster 

transcription factors (prey) and 25 yellow enhancer sub-elements (bait) in the 

same cellular environment, yeast transformations were conducted in 384-well 

format using the LiAc-PEG method (Hens et al. 2011). The transformants in 384-

well format were later on arrayed and converted to 1536-well format quadrupling 

each transformant strain (Figure-3) Subsequently the 1536-well format 

transformant plates were replica plated onto at least three increasing 

concentrations of 3-AT. On a 3-AT plate, a quadrant of transformants that grew 

above background levels indicate higher than basal level expression of the HIS3 

gene under the influence of the D. melanogaster transcription factor-Gal4AD 

fusion protein. This implies binding of the particular D. melanogaster transcription 

factor to the yellow enhancer sub-element being tested (Figure 3). All 
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transformation plates were incubated at 30°C. Both 384-well and 1536-well 

format transformation plates were imaged after 3 days of growth using BioRad 

geldoc camera. The transformation plates containing 3-AT were imaged after 7 

days as well as 10 days of growth at 30°C.

In order to conduct an unbiased analysis of all 3-AT plates for all of the 25 yellow 

enhancer sub-elements tested, the 3-AT plates were imaged and the images 

were analyzed using a MatLab program called TIDY (Transcription factor-DNA 

Interaction Detection in Yeast) (Hens et al. 2011). In a plate image, TIDY 

assesses the background level of colony growth and determines the quadrant of 

colonies that show growth above background levels. It also filters out the 

quadrants of colonies where there is non-uniform growth, i.e., only one or two out 

of the four colonies show growth above background levels. As a result it marks 

quadrants of colonies that show uniform and above background levels of growth 

as potential interaction between the particular bait being assayed and the 

transcription factor that correspond to that particular quadrant.

Using Cluster 3.0 to group yellow enhancer sub-elements based on the similarity 

of their transcription factor binding profiles

Cluster 3.0 (de Hoon et al. 2004) is a software designed to analyze microarray 

data by conducting various types of clustering. Even though it can analyze 

substantially more complex datasets, in this study Cluster was used to group the 

yellow enhancer sub-elements tested based on the similarity of their transcription 

factor binding profiles. In doing so the strength of interaction between a sub-

element and transcription factor was ignored, and presence of interaction was 

designated by the number “1”, whereas the absence of interaction was 

designated by the number “0”. In the program, default settings were used and 

hierarchical clustering with centroid linkage was applied to the data set. The 

clustering results were visualized using Java Tree View (Alok Saldanha - http://

jtreeview.sourceforge.net/)
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Testing the in vivo effects of the identified transcription factors in D. melanogaster 

using RNAi

In order to test whether the transcription factors, which were found to bind 

various yellow enhancer sub-elements through Y1H, affect black pigment 

formation in adults, the UAS-GAL4 system was used to knock-down transcription 

factors, where when UAS-RNAi transgenes are crossed to a strain harboring a 

GAL4 driver, the RNAi is expressed in a pattern comparable to that of the GAL4 

driver. Hence, RNAi lines for 40, out of the 204, transcription factors were 

obtained from Bloomington Drosophila Stock Center (Table 3-2 for the full list of 

RNAi lines used). All of the RNAi lines belonged to the TRIP (Transgenic RNAi 

Project, Harvard Medical School, NIH/NIGMS R01-GM084947) collection, where 

RNAi transgenes are integrated in the genome in a site directed manner (using 

the phiC31 mediated integration) rather than randomly, which prevents position 

effects on RNAi expression. Moreover, the vectors harboring the RNAi 

transgenes have multiple UAS sites 5’ to the RNAi sequence, introns within RNAi 

transgenes, SV40 polyadenylation signal at the 3’ end, and insulators flanking the 

RNAi element, all of which helps make the expression of the RNAi transgene 

consistent and strong when activated. Hence upon activation, RNAi lines 

constructed using these vectors are expected to result in more robust knock-

downs than randomly inserted RNAi transgenes (Ni et al. 2008; Ni et al. 2009). 

This allowed choosing sites with low basal activity and also made this basal 

activity consistent among RNAi lines their expression consistent. In this study, all 

RNAi transgenes used were integrated in the attP2 site on the third chromosome.

The crosses between specific RNAi lines and the line harboring the pnr-Gal4 

driver were carried out as follows: virgin females from RNAi lines with the 

genotype y, sc, v; attP2 (y1, sc1, v1; P{y[+t7.7]=CaryP}attP2), P{UAS-RNAi y+ v+} 

were crossed to males with the genotype y1, w1118; P{GawB}pnrMD237/TM3, P

{UAS-y.C}MC2, Ser1. In the progeny females that have the y, sc, v /y1, w1118 ; 

attP2 (y1, sc1, v1; P{y[+t7.7]=CaryP}attP2), P{UAS-RNAi y+ v+} / P{GawB}
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pnrMD237 and males that have genotype y, sc, v ; attP2 (y1, sc1, v1; P{y[+t7.7]

=CaryP}attP2), P{UAS-RNAi y+ v+} / P{GawB}pnrMD237 were selected based on 

the red eye color (rescue of the vermillion mutation), which indicates presence of 

the RNAi transgene, and lack of humeral phenotype (travels with TM3), which 

indicates the presence of the pnr-Gal4 transgene. These flies were the “test” flies 

since in the presence of the Gal4 driver they should express the RNAi transgene 

and the knock-down of the transcription factor is expected to occur. On the other 

hand “control” flies (y, sc, v /y1, w1118 ; attP2 (y1, sc1, v1; P{y[+t7.7]=CaryP}attP2), 

P{UAS-RNAi y+ v+} /TM3 in females and y, sc, v ; attP2 (y1, sc1, v1; P{y[+t7.7]

=CaryP}attP2), P{UAS-RNAi y+ v+} / TM3 in males) had red eyes (presence of 

RNAi transgene), but also showed the humeral phenotype and, hence, were not 

expected to express the RNAi transgene or a related phenotype. All flies were 

raised at 20°C. Progeny from the aformentioned crosses were collected 

everyday, sorted based on sex as well as eye color and humeral phenotypes, 

aged 3-5 days, and put in 1:10 Glycerol:Ethanol mix. After being kept in 

Glycerol:Ethanol mix at least for 3 days, abdominal cuticle of flies from all four 

lines where altered pigmentation was observed as well as of flies from two other 

lines that did not appear to show a pigmentation phenotype were dissected, 

mounted in polyvinyl alcohol mounting medium (Sigma-Aldrich), baked at 65°C 

overnight and imaged using Schott Leica mz-6 microscope camera and “Scion 

Visicapture” version 1.2 software.
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Figure 3-1. Sub-elements of yellow 5’ intergenic and intronic regions from 
three Drosophila species were tested for enhancer activity. 
Schematics of yellow 5’ intergenic and intronic regions from D. melanogaster, D. 
pseudoobscura and D. willistoni. Each 5’ intergenic and intronic region was sub-
divided into DNA elements ~1000 base pairs (bp) long, that overlapped with the 
flanking sub-element by ~100 bp. The resulting sub-elements were used to drive 
reporter gene (nuclear enhanced green fluorescent protein gene) expression in 
the attP40 line of D. melanogaster.
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Figure 3-2. yellow enhancer sub-elements drive diverse expression 
patterns some of which are “cryptic”. 
Confocal images of pupa harboring one copy (hemizygous) of a transgene where 
a 5’ intergenic or intronic yellow enhancer sub-element drives expression of the 
reporter gene (nEGFP in green). GFP expression in the eye and ocelli is driven 
by the transformation marker (3xp3-EGFP) and not a yellow enhancer sub-
element. The negative control line harbors a transgene where nEGFP is not 
driven by a putative enhancer (basal level expression). Red arrows point to the 
male-specific expression in tergites A5 and A6 (sometimes A4) pattern in ten 
transgenic lines. White arrow points to the expression in the scutellum in mel_A2. 
Abdominal tergites A4, A5 and A6 are indicated in panel 2A6. Orange asterisks 
(*) indicate the ten enhancer sub-elements that drove expression in spatial 
patterns that were not part of the pattern driven by the full region they were 
isolated from (cryptic enhancer activity). The white asterix (*) indicates he 
transgenic line harboring the full D. willistoni yellow intron was lost and hence 
could not be imaged in hemizygous from. A previous image of a homozygous fly 
from the same line is used in place. Question marks indicate the sub-elements 
for which a trangenic line has not been acquired yet.
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Figure 3-3
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Figure 3-3. (Courtesy of collaborator Bart Deplancke and his lab) The 
Drosophila high-throughput Y1H platform. 
A yeast DNA bait strain is distributed over a 384-well plate. Each well of this plate 
is then transformed with a different Gal4-Activation Domain(AD)-transcription 
factor clone from the Drosophila Y1H AD-transcription factor library by a robotic 
yeast transformation platform which spots the 384 individually transformed yeast 
strains on a permissive agar plate. A colony- pinning robot subsequently transfers  
the yeast colonies onto a permissive and a selective plate, quadruplicating each 
colony in a square pattern in the process. Transcription factor- DNA bait 
interactions are identified based on growth on a selective, 3-AT-containing yeast 
plate
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Figure 3-4. Distributions of the transcription factors identified by Y1H as 
candidate binders of yellow 5’ intergenic and intronic enhancers
A) Out of the 647 D. melanogaster tested with Y1H, only 204 were shown to bind 
to at least one yellow enhancer sub-element from any of the three Drosophila 
species studied.
B) Histogram showing the number of transcription factors that were found to bind 
0, 1, 2, 3, 4, 5, 6, 7, 8 yellow enhancer sub-elements. Names of the transcription 
factors that were found to bind 4 or more yellow enhancer sub-elements are 
indicated above their corresponding column.
C) Venn diagrams showing the number of shared and unique binders between 
physically homologous regions in different species. On the left, a total of 154 
transcription shown to bind 5’ intergenic regions of yellow from D. mel (D. 
melanogaster), D. pse (D. pseudoobscura), and D. will (D. willistoni) were 
distributed among the three species. On the right a total of 68 transcription 
shown to bind introns yellow from D. mel, D. pse, and D. will were distributed 
among the three species. Overall there are 18 transcription factors shared 
between 5’ intergenic and intronic regions.
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Figure 3-5. There is not a strong correlation between the transcription 
factor binding profiles and the activities of yellow enhancer sub-elements. 
Using the program Cluster 3.0, yellow enhancer sub-elements were grouped 
based on the similarity of their transcription factor binding profiles (of only the 
transcription factors (43 of them) that were shown to interact with more than one 
sub-element) (top tree). Transcription factors were grouped based on the 
similarity between the groups of yellow enhancer sub-elements they bind to (side 
tree). Red rectangle is around the group of yellow enhancer sub-elements, where 
five (out of the eight in the group) show sexually dimorphic enhancer activity in 
the abdomen. Blue rectangle is around a group of yellow enhancer sub-elements 
that appear to be bound by the transcription factor Nf1. Names of the 
transcription factors are listed on the right side of the cluster figure. yellow 
enhancer sub-elements were referred to as following from Figure 2, e.g., D. 
melanogaster 5’ intergenic sub-elements are mel_A1, 2, 3, 4, 5. Questions marks 
indicate the sub-elements whose enhancer activity has not been identified yet.
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Figure 3-6. Change in abdominal pigmentation upon knock down of six 
transcription factors
Control flies lack a Gal4 driver activating of UAS-RNAi transgene against the 
particular transcription factor. Knock-down flies harbor pannier-Gal4 driver that 
drives UAS-RNAi expression in the dorsal midline, which is where change in 
pigmentation is expected it to be observed.
A) pannier expression pattern in the dorsal midline of a fly carrying pannier-Gal4 
and UAS-GFP transgenes.
B) Abdominal cuticle dissections of flies harboring UAS-RNAi constructs for the 
four transcriptions that appear to affect pigmentation. Abd-B (Abdominal-B), Dsx 
(Doublesex), Fru (Fruitless), Vvl (Ventral veins lacking). Red arrows point to 
regions showing altered pigmentation. 
C) Abdominal cuticle dissections of flies harboring UAS-RNAi constructs for two 
of the many transcription factors that did not appear to affect pigmentation when 
knocked down with a single UAS-RNAi line. Hr38 (Hormone receptor like in 38), 
Hr78 (Hormone receptor like in 78) were shown to bind 6 and seven yellow 
enhancer sub-elements, respectively.
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Hr78
Hr38
Nf1
CG5591
Eip78C
CG4575
CG13424
E2f
CG33695
CG15435
Abd-B
seq
H
Rfx
Oaz
ab
nub
CG11033
Su(var)3-7
lmd
CG6765
stwl
chn
Jra
ind
bigmax
CrebB-17A
gl
CG7928
Hey
CG2052
CG8359
vis
slp2
CG7101
dac
CG31392
CG33221
CG18619
dsx
nau
CG1233
NFAT
CG4936
YL-1
CG15710
foxo
sima
CG16779
Psc
CG11966
ftz-f1
mld
CG17829
scrt
CG18599

Table 3-1 D. melanogaster transcription factors that were found to activate yellow enhancer sub-elements  in a              
yeast-one-hybrid assay

D. melanogaster yellow 
5' intergenic region

D. pseudoobscura yellow 5' 
intergenic region

D. willistoni yellow 5' intergenic 
region

D. 
melanogaster 
yellow intron

D. pseudoobscura 
yellow intron

D. willistoni yellow 
intron

D. melanogaster trancription 
factors that activated at least 
one 1-kb enhancer fragment
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Table 3-1 D. melanogaster transcription factors that were found to activate yellow enhancer sub-elements  in a              
yeast-one-hybrid assay

D. melanogaster yellow 
5' intergenic region

D. pseudoobscura yellow 5' 
intergenic region

D. willistoni yellow 5' intergenic 
region

D. 
melanogaster 
yellow intron

D. pseudoobscura 
yellow intron

D. willistoni yellow 
intron

D. melanogaster trancription 
factors that activated at least 
one 1-kb enhancer fragment

dl
mamo
CG1647
dimm
kn
org-1
CG33396
ush
Hmgz
brm
Hmx
CG9932
CG9727
CG7987
CG30020
CG17361
psq
HLH106
CG15011
D19A
CG14667
Med
grau
dei
disco-r
CG31510
CG6791
CenP-C
Chrac-14
tef
CG11617
Her
Oli
Snoo
BEAF-32
CG8944
CG6686
ato
HLH4C
CG9650
Kr-h1
dve
bowl
Lmpt
Ro
Gsc
CG17806
HGTX
Scr
CG17287
net
CG2790
Su(z)12
CG17836
CG11085
retn
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Table 3-1 D. melanogaster transcription factors that were found to activate yellow enhancer sub-elements  in a              
yeast-one-hybrid assay

D. melanogaster yellow 
5' intergenic region

D. pseudoobscura yellow 5' 
intergenic region

D. willistoni yellow 5' intergenic 
region

D. 
melanogaster 
yellow intron

D. pseudoobscura 
yellow intron

D. willistoni yellow 
intron

D. melanogaster trancription 
factors that activated at least 
one 1-kb enhancer fragment

CG9797
AP-2
HLHm&ggr
cas
vvl
E(bx)
hang
CG31782
CG2120
lbl
fru
p53
ovo
CG32772
sd
rgr
pros
jing
CG30431
C15
Lim3
pdm2
otp
h
CG13287
yem
Dref
CG1845
CG4854
CG2678
pnt
CG11984
CG10431
Tip60
esc
CG17803
CG8765
l(1)sc
en
Dsp1
CG18619
Hp1c
CG15073
H2.0
Hr4
Doc2
caup
cyc
crm
CG3815
cg1529
cg9437
gt
CG11676
CG17195
CG10462
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Table 3-1 D. melanogaster transcription factors that were found to activate yellow enhancer sub-elements  in a              
yeast-one-hybrid assay

D. melanogaster yellow 
5' intergenic region

D. pseudoobscura yellow 5' 
intergenic region

D. willistoni yellow 5' intergenic 
region

D. 
melanogaster 
yellow intron

D. pseudoobscura 
yellow intron

D. willistoni yellow 
intron

D. melanogaster trancription 
factors that activated at least 
one 1-kb enhancer fragment

Blimp-1
achi
hb
D1
CG16801
eve
CG4282
dmrt99B
nej
Hr46
NC2&agr
Ets65A
knri
CG17359
cro1
bun
pho
CG11247
SoxN
CG12744
toe
CG31666
lab
Aef1
CG2202
HLH54F
Dr
d4
CG9571
Met
CG18446
CG12054
CG16863
run
CG4496
Max
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Table 3-1. D. melanogaster transcription factors that were found to activate 
yellow enhancer sub-elements in a yeast-one-hybrid assay
List of Drosophila melanogaster transcription factors with the matching yellow 
enhancer sub-elements (from the 5' intergenic and intronic regions of D. 
melanogaster, D. pseudoobscura and D. willistoni) that they were found to 
activate in a yeast-one-hybrid assay. Blue shaded boxes indicate interaction 
between a particular transcription factor and yellow enhancer sub-element. Light 
shaded blue indicate interaction found in only one (out of three) test plates, dark 
shaded blue boxes indicate interaction found in more than one test plate. 
Transcription factors in pink font were among the ones that were frequently found 
to activate different enhancer elements tested by the Deplancke Lab, hence, they 
may be showing unspecific activation (personal communication). Transcription 
factors shaded in yellow were knocked-down using RNA interference in D. 
melanogaster.

158



Transcription 
factor that 

putatively binds to 
yellow enhancers

molecular function biological process it is 
involved in

mutant phenotypes 
annotated with expression mel 5' mel 

intron pse 5' pse 
intron will 5' will 

intron

1 Hr78 
(Hormone-receptor-like in 
78 --> ligand dep nuclear 
receptor activity)

autophagic cell death; liquid 
clearance, open tracheal system; 
open tracheal system 
development; salivary gland cell 
autophagic cell death

embryonic/larval trachea; 
embryonic/larval tracheal system

moderately high expression 
throughout development 4/5 NB 1/6 NB 2/7 NB

2 Hr38
(Hormone-receptor-like in 
38 --> ligand dep nuclear 
receptor activity)

cuticle development; 
phagocytosis, engulfment.

alleles are annotated with: leg; 
adult epidermis; adult cuticle; 
pupal epidermis; joint; pupal 
cuticle

expression peaks at 2-day pupae 
to/through adult stage 2/5 NB 1/6 NB 3/7 NB

3 Nf1 Neurofibromin1 --> Ras 
GTPase activator activity

biological regulation; response to 
stimulus; learning or memory; 
response to stress; system 
process; intracellular signal 
transduction; regulation of 
multicellular organismal process; 
cognition; cellular component 
organization or biogenesis; 
associative learning; 
determination of adult lifespan; 
locomotory behavior; short-term 
memory

pupa; wing disc; surface 
associated glial cell; embryonic 
heart; eye photoreceptor cell; 
wing

moderate expresion throughout 1/5 1/3 1/6 1/4 3/7 1/2

4 CG5591 predicted: DNA binding; 
zinc ion binding phagocytosis, engulfment no data high in embryo, moderate 

thorughout pupae and adult x3 NB x1 NB NB NB

5 Eip78C
Ecdysone-induced protein 
78C --> ligand-dependent 
nuclear receptor activity

instar larval or pupal 
development

eye; ommatidium; dorsal 
appendage

sharply peaks to "high" 
expression on 2-day-old pupae x1 x1 x1 x1 NB NB

6 CG4575

predicted: sequence-
specific DNA binding 
transcription factor 
activity; protein 
homodimerization activity

predicted: regulation of 
transcription, DNA-dependent no data

sharply peaks to "low" expression 
from extremely low on 2-day-old 
pupae (highest in 2-4hr embryo 
and 2-d old pupae

x1 NB x1 NB NB NB

7 CG13424

lateral muscles scarcer 
(lms) --> predicted: 
sequence-specific DNA 
binding transcription factor 

larval somatic muscle 
development; flight wing moderate during embryo, steady 

"very low" throughout adult x1 NB x1 NB NB NB

8 E2f
E2F transcription factor --
> protein binding; DNA 
binding

positive regulation of gene 
expression; cellular process; 
dendrite morphogenesis; neuron 
development; positive regulation 
of nurse cell apoptosis; muscle 
tissue development; antimicrobial 
humoral response; regulation of 
cell cycle; DNA 
endoreduplication

organ system subdivision; organ 
system; nervous system; 
peripheral nervous system; 
external compound sense organ; 
primordium; female germline 
cyst; egg; adult segment; 
imaginal precursor

highest in embryonic stages, 
moderate-to-moderate-high 
throughout the rest

x1 NB x1 NB NB NB

9 CG33695 predicted: DNA binding no data no data

highest(mod high) in early 
embryo and adult female, 
moderate for the rest of the 
stages and adult males

x1 NB x1 NB NB NB

10 CG15435 predicted: zinc ion binding no data no data
highest in early embryo and adult 
female, moderate for the rest of 
the stages and adult males

x1 NB x1 NB NB NB

11 Abd-B

Abdominal B --> 
sequence-specific DNA 
binding transcription factor 
activity

anatomical structure 
development; organ 
development; biological 
regulation; multicellular 
organismal reproductive process; 
multicellular organismal process; 
open tracheal system 
development; development of 
primary male sexual 
characteristics; regulation of 
multicellular organismal 
development; genital disc 
development; cellular process 
involved in reproduction; 
segment specification; gonadal 
mesoderm development; 
regulation of developmental 
process

organ system subdivision; adult 
segment; organ system; 
abdominal ventral denticle belt; 
spiracle; late extended germ 
band embryo; embryonic 
segment; abdominal segment 7; 
embryonic abdomen; thoracic 
segment

highest(mod) 4-24 hr embryo, low 
for most of the rest, very low for 0-
2 hr embryo, L3 1-2, pupa 4d, 
adult fem

x1 NB NB NB x2 NB

12 seq
sequoia --> predicted: 
zinc ion binding; nucleic 
acid binding

negative regulation of axon 
extension; axon guidance; 
sensory organ development; 
dendrite morphogenesis; 
axonogenesis

no data
very high in 6-8-hr old embryo, 
moderate during larvae, pupae 
and adult

x2 NB NB NB x1

Table 3-2 Gene Ontology characteristics of transcription factors identified by yeast-one-hybrid to bind to yellow enhancers 
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Transcription 
factor that 

putatively binds to 
yellow enhancers

molecular function biological process it is 
involved in

mutant phenotypes 
annotated with expression mel 5' mel 

intron pse 5' pse 
intron will 5' will 

intron

Table 3-2 Gene Ontology characteristics of transcription factors identified by yeast-one-hybrid to bind to yellow enhancers 

13 H Hairless --> transcription 
corepressor activity

negative regulation of Notch 
signaling pathway; sensory 
organ boundary specification; 
regulation of cell death; sensory 
organ precursor cell fate 
determination; imaginal disc-
derived wing margin 
morphogenesis; imaginal disc-
derived wing vein 
morphogenesis; wing disc 
dorsal/ventral pattern formation

organ system subdivision; adult 
segment; peripheral nervous 
system; nervous system; adult 
mesothoracic segment; external 
compound sense organ; eo 
support cell; primordium; 
imaginal precursor; eo sensory 
structure; dorsal thoracic disc; 
embryonic hindgut; adult cuticle; 
external sensory organ 
precursor cell; adult external 
prothorax; late extended germ 
band embryo; postalar bristle

highest(mod high) until 10hr-
embryo and adult females, low to 
moderate the rest of the stages 
and low in adult males

x2 NB NB NB x1 NB

14 Rfx Rfx --> predicted: DNA 
binding

sensory perception of sound; 
nervous system development

antenna; macrochaeta; 
abdominal lateral 
pentascolopidial chordotonal 
organ lch5

moderate at all stages except for 
late ebryo and all larvae where it 
is low

x2 NB NB NB x2 NB

15 Oaz

O/E-associated zinc finger 
protein--> predicted: zinc 
ion binding; nucleic acid 
binding

spiracle morphogenesis, open 
tracheal system

filzkorper; embryonic/larval 
tracheal system; wing

highest(low) during embryo, larva, 
whiteprepupa, "very low" for the 
rest

x1 NB NB NB x1 NB

16 ab

abrupt --> predicted:  
sequence-specific DNA 
binding transcription factor 
activity

border follicle cell migration; 
dendrite morphogenesis; neuron 
development; muscle organ 
development

hypodermal muscle of larval 
abdomen; organ system; adult 
segment; organ system 
subdivision; peripheral nervous 
system; larval abdominal 
segment; abdominal dorsal 
oblique muscle 3; hypodermal 
muscle of larval abdominal 2; 
sensory cluster; abdominal 6 
oblique muscle

highest(high) during 6-16-hr 
embryo, moderately high during 
white prepupae, moderate during 
pupae and adult male

x1 NB NB NB x1 NB

17 nub
nubbin --> sequence-
specific DNA binding 
transcription factor activity

wing disc development

organ system subdivision; adult 
segment; adult antennal lobe; 
peripheral nervous system; 
organ system; embryonic/larval 
neuron; antennal olfactory 
receptor neuron; thoracic 
segment; integumentary 
specialisation; adult 
uniglomerular antennal lobe 
projection neuron adPN

high to modearte during embryo, 
moderate during white prepupa, 
low during pupae and adult

NB NB x1 NB x2 NB

18 CG11033

Lysine (K)-specific 
demethylase 2 --> histone 
demethylase activity (H3-
trimethyl-K4 specific)

histone H3-K4 demethylation, 
trimethyl-H3-K4-specific nucleolus

highest (mod high) during 4-16-hr 
embryo and white prepupa, 
moderate for the rest

NB NB x1 NB x1 NB

19 Su(var)3-7
Suppressor of variegation 
3-7 --> predicted: DNA 
binding; zinc ion binding

dosage compensation, by 
inactivation of X chromosome

macrochaeta; humeral bristle; 
sex comb; wing; ommatidium

highest (high)during early 
embryo, mod high the rest of 
pupa, moderate during larva and 
pupa, mod high in adult fem

NB x1 x2 X2 x2 X1

20 lmd

lame duck --> predicted: 
sequence-specific DNA 
binding transcription factor 
activity

myoblast fusion; somatic muscle 
development; skeletal muscle 
tissue development; muscle 
organ development

pharyngeal muscle; embryonic 
muscle system; embryonic 
somatic muscle; embryonic 
myoblast; embryonic visceral 
muscle

highest(high) 6-10hr embryo, mod 
until 14 hr embryo, very low or 
low for the rest except for white 
prepupa 24 hr where it is mod

x2 NB NB NB NB NB

21 CG6765
predicted:  zinc ion 
binding, zinc finger like 
domain

no data no data
Peak expression observed within 
12-24 hour embryonic stages, 
during early larval stages

2/5 NB NB NB NB NB

22 stwl stonewall --> predicted: 
DNA binding

germ-line stem cell maintenance; 
chromatin organization ovary; germline cell

highest(mod high) during 0-10hr 
embryo, mod during 10-16 hr 
embryo, L3 through 2d pupa, 5d 
old adult male, adult female, and 
the rest is low.

x2 NB NB NB NB NB
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Table 3-2 Gene Ontology characteristics of transcription factors identified by yeast-one-hybrid to bind to yellow enhancers 

23 chn

charlatan --> protein 
binding; sequence-
specific DNA binding; 
sequence-specific 
enhancer binding RNA 
polymerase II transcription 
factor activity

progression of morphogenetic 
furrow involved in compound eye 
morphogenesis; eye 
development; positive regulation 
of transcription from RNA 
polymerase II promoter; sensory 
organ development; embryonic 
development via the syncytial 
blastoderm; negative regulation 
of compound eye cone cell fate 
specification; peripheral nervous 
system development

adult segment; organ system 
subdivision; peripheral nervous 
system; organ system; external 
compound sense organ; 
integumentary plate; postalar 
bristle; imaginal precursor; 
embryonic heart; epithelial 
furrow

highest(high) during 0-8hr 
embryo, mod high during white 
prepupa and 2d pupae as well as 
rest of the embryonic stages, 
moderate for the rest 

x2 NB NB x1 NB NB

24 Jra Jun-related antigen --> 
protein binding

negative regulation of 
antimicrobial humoral response; 
micropyle formation; JNK 
cascade; synaptic growth at 
neuromuscular junction; imaginal 
disc fusion, thorax closure; 
dorsal appendage formation; 
phagocytosis, engulfment.

external compound sense organ; 
organ system subdivision; 
peripheral nervous system; 
nervous system; imaginal 
precursor; rhabdomere; 
primordium; commissure; cell 
projection; ommatidial precursor 
cluster

highest (high) at 18-20 hr embryo, 
and new white prepupa, mod high 
for the rest

NB NB x2 NB NB NB

25 ind

intermediate neuroblasts 
defective --> sequence-
specific DNA binding 
transcription factor activity

regulation of transcription from 
RNA polymerase II promoter; 
negative regulation of 
transcription from RNA 
polymerase II promoter

RP2 neuron; neuroblast of 
ventral nerve cord primordium; 
intermediate ventral 
neurectoderm

highest (mod high) at 4-6-hr 
embryo, very low or non-existent 
for the rest

NB NB NB NB x2 NB

26 bigmax
sequence-specific DNA 
binding transcription factor 
activity

dendrite morphogenesis; muscle 
organ development; autophagic 
cell death; salivary gland cell 
autophagic cell death

no data
highest(high) during 18-24-hr 
embryo and white prepupae 12 
hr, mod high for the rest

NB X1 NB NB x2 NB

27 CrebB-17A

Cyclic-AMP response 
element binding protein B 
at 17A --> sequence-
specific DNA binding

regulation of transcription, DNA-
dependent; positive regulation of 
transcription from RNA 
polymerase II promoter; long-
term memory; medium-term 
memory; sleep

adult; cuprophilic cell; synapse mod high during embryo and 
adult, mod for the rest NB x1 NB x1 NB NB

28 gl

glass --> predicted: 
sequence-specific DNA 
binding transcription factor 
activity

entrainment of circadian clock; 
response to red light; ring gland 
development; compound eye 
photoreceptor fate commitment; 
entrainment of circadian clock by 
photoperiod

organ system subdivision; 
peripheral nervous system; 
nervous system; external 
compound sense organ; multi-
cell-component structure; adult 
segment; endocrine system; late 
extended germ band embryo; 
primordium; adult brain

highest(low) larva through adult 
male, very low for the rest NB NB NB x2 NB NB

29 CG7928
predicted: zinc ion 
binding; nucleic acid 
binding

no data no data
highest(high) at 2-4-hr embryo, 
mod high for the rest of embryo, 
mod for the rest

NB NB x1 NB NB x2

30 Hey

Hairy/E(spl)-related with 
YRPW motif --> predicted: 
sequence-specific DNA 
binding transcription factor 
activity

negative regulation of Notch 
signaling pathway (predicted) no data highest(mod) during 6-16 hr 

embryo, vry low for the rest NB NB NB NB NB x2

31 CG2052
predicted:  zinc ion 
binding; nucleic acid 
binding

no data no data no data x1 x1 NB NB NB NB

32 CG8359 predicted: DNA binding no data no data

highest(mod high) during 6-12 hr 
embryo, moderate for most of the 
rest, low during 3 and 4 day old 
pupa

x1 x1 NB NB NB NB

33 vis

vismay --> predicted: 
sequence-specific DNA 
binding transcription factor 
activity; transcription 
corepressor activity

positive regulation of 
transcription, DNA-dependent; 
spermatogenesis

no data
highest (low-mod) during L3 
through adult male, low for the 
rest and adult female

x1 x1 NB NB NB NB

34 slp2

sloppy paired 2 --> 
sequence-specific DNA 
binding transcription factor 
activity

 regulation of transcription, DNA-
dependent

abdominal segment 4; 
abdominal segment 1; 
embryonic/larval dorsal vessel; 
cuticle; abdominal segment 2; 
abdominal segment 3; denticle 
belt

highest(mod high) during 6-10 hr 
embryo, low to mod for the rest of 
the embryo, low L3 through 2d 
pupa, very low for the rest

x1 NB NB x1 NB NB
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Table 3-2 Gene Ontology characteristics of transcription factors identified by yeast-one-hybrid to bind to yellow enhancers 

35 CG7101 predicted:  zinc finger like 
domain, DNA binding no data no data

highest (mod high) during 0-2hr 
embryo and adult fem, moderate 
during 2-18hr embryo and white 
prepupae, low for the rest

x1 NB NB NB NB x1

36 dac dachshund --> protein 
binding

axon guidance; compound eye 
photoreceptor development; 
compound eye development; 
neuron differentiation; mushroom 
body development; 
photoreceptor cell fate 
specification; antennal joint 
development; genital disc 
sexually dimorphic development

organ system subdivision; adult 
segment; external compound 
sense organ; peripheral nervous 
system; synaptic neuropil 
subdomain; multi-cell-
component structure; 
metathoracic metatarsus; 
antennal segment; metatarsus; 
imaginal precursor

highest(mod) during 10-24hr 
embryo and L3 through 2d pupae, 
low to very low for the rest.

x1 NB NB NB NB x1

37 CG31392 no data no data no data no data NB NB NB NB x1 x1

38 CG33221
predicted: zinc ion 
binding, nucleic acid 
binding

no data no data
highest (very low) during L3 
through adult male, extremely low 
for the rest and adlut fem

NB x1 NB NB x1 x1

39 CG18619 basic leucine zipper 
transcription factor

regulation of transcription, DNA-
dependent no data

highest(high) during embryo and 
L3 through end of white prepupa, 
moderate to mod high for the rest

NB NB NB NB x1 x1

40 dsx

doublesex --> protein 
binding; protein 
homodimerization activity, 
DNA binding

imaginal disc-derived female 
genitalia development; imaginal 
disc-derived male genitalia 
development; genital disc 
development; axon midline 
choice point recognition

organ system subdivision; organ 
system; adult segment; gland; 
imaginal precursor; portion of 
tissue; hub cell; larval abdominal 
segment 8; nervous system; 
external compound sense organ; 
female germline cyst

Peak expression (moderate) 
observedin early pupal and in 
adult male stages. Moderate 
expression throughout the rest of 
the pupa.

NB NB NB NB x2 NB

41 nau

nautilus --> DNA binding; 
sequence-specific DNA 
binding transcription factor 
activity

muscle organ development

myoblast; egg; abdominal dorsal 
oblique muscle 4; midgut 
constriction; somatic mesoderm; 
embryonic muscle system; 
abdominal 1 dorsal acute 
muscle 3; egg chamber; 
cardioblast; embryonic/larval 
somatic muscle

highest(mod) 6-16hr embryo, low 
for the rest of the embryo, very 
low until 2d pupae, low2d pupae 
through adult male, very low in 
adult fem

NB NB NB x1 x1 NB

42 foxo

forkhead box, sub-group 
O --> sequence-specific 
DNA binding transcription 
factor activity

biological regulation; response to 
stress; regulation of insulin 
receptor signaling pathway; 
cellular process; regulation of 
growth; response to DNA 
damage stimulus; cellular 
component organization or 
biogenesis; response to 
bacterium; response to nutrient 
levels; determination of adult 
lifespan; sensory organ 
development; primary metabolic 
process

organ system subdivision; organ 
system; adult; external 
compound sense organ; adult 
segment; region of integument; 
thoracic segment; peripheral 
nervous system; ectoderm 
derivative; muscle cell; 
mushroom body neuroblast; 
portion of tissue

Peak expression observed within 
00-06 and 18-24 hour embryonic 
stages, during late pupal stages

x1 NB NB NB NB NB

43 ftz-f1

ftz transcription factor 1 --
> DNA binding, Nuclear 
hormone receptor, ligand-
binding

olfactory behavior; pupation; 
metamorphosis; instar larval or 
pupal development; imaginal disc-
derived leg morphogenesis; 
periodic partitioning

organ system; abdominal ventral 
denticle belt; thoracic segment; 
cuticle; gland; organ system 
subdivision; portion of tissue; 
larval abdominal segment; larval 
thorax; sensillum; heart 
primordium; abdominal 5 ventral 
denticle belt; dorsal thoracic 
disc; parasegment 14; 
parasegment 2; 
cephalopharyngeal skeleton; 
spiracle; adult segment

Peak expression observed within 
12-24 hour embryonic stages 
(very high). Expressed at 
moderately high level at the late 
pupal stage

x1 NB NB NB NB NB

44 mld
molting defective --> zinc 
ion binding; nucleic acid 
binding

determination of adult lifespan; 
positive regulation of circadian 
sleep/wake cycle, sleep; long-
term memory; ecdysone 
biosynthetic process

trichogen cell; mesothoracic 
tergum; ring gland x1 NB NB NB NB NB

45 Med
Medea --> protein binding; 
sequence-specific DNA 
binding

anatomical structure 
development; biological 
regulation; cellular process 
involved in reproduction; 
regulation of developmental 
process; post-embryonic 
appendage morphogenesis; 
regionalization; multicellular 
organismal reproductive process; 
post-embryonic organ 
morphogenesis; cell proliferation; 
cellular component organization 
or biogenesis; dorsal/ventral axis 
specification

organ system; organ system 
subdivision; adult segment; 
nervous system; germarium; 
synapse; adult mesothoracic 
segment; appendage segment; 
somatic cell; thoracic segment

Peak expression observed during 
early pupal stages x1 NB NB NB NB NB
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Table 3-2 Gene Ontology characteristics of transcription factors identified by yeast-one-hybrid to bind to yellow enhancers 

46 Snoo
Sno oncogene --> 
predicted: nucleotide 
binding

negative regulation of 
decapentaplegic signaling 
pathway; neuron development; 
negative regulation of 
transforming growth factor beta 
receptor signaling pathway

organ system subdivision; adult 
segment; organ system; thoracic 
segment; external compound 
sense organ; adult; imaginal 
precursor; embryonic/larval 
imaginal precursor; larval head 
segment; integumentary plate; 
peripheral nervous system

NB NB x1 NB NB NB

47 cas castor --> DNA binding

central nervous system 
development; mushroom body 
development; post-embryonic 
development; neuroblast 
development; negative regulation 
of transcription, DNA-dependent

organ system subdivision; 
nervous system; multi-cell-
component structure; synaptic 
neuropil subdomain; adult 
segment; sensillum; somatic 
cell; peripheral nervous system; 
organ system; sense organ

Peak expression observed within 
06-18 hour embryonic stages, 
very low during pupa

NB NB NB NB x1 NB

48 vvl

ventral veins lacking --> 
sequence-specific DNA 
binding transcription factor 
activity

motor axon guidance; brain 
development; brain 
segmentation; peripheral 
nervous system development.

organ system subdivision; organ 
system; adult segment; larval 
abdominal segment; non-
connected developing system; 
sensory cluster; portion of 
tissue; adult; peripheral nervous 
system; region of integument

Peak expression (moderately 
high) observed within 06-18 hour 
embryonic stages, moderate 
during pupa

NB NB NB NB x1 NB

49 E(bx)
Enhancer of bithorax --> 
ligand-dependent nuclear 
receptor binding

cellular component organization 
or biogenesis; biological 
regulation; chromatin 
organization; organelle 
organization; anatomical 
structure development; 
chromosome organization; 
cellular component organization 
or biogenesis at cellular level; 
cell-cell signaling; gene 
expression; prepupal 
development

dendrite; polytene chromosome; 
mesothoracic tergum; melanotic 
mass

Peak expression (moderately 
high to high) observed within 00-
12 hour embryonic stages, 
moderate to moderately high 
expression during pupa

NB NB NB NB x1 NB

50 fru
fruitless --> sequence-
specific DNA binding 
transcription factor activity

mating; behavioral interaction 
between organisms; anatomical 
structure development; 
multicellular organismal 
reproductive process; multi-
organism process; cellular 
component organization or 
biogenesis; male courtship 
behavior, veined wing extension; 
developmental process involved 
in reproduction; muscle organ 
development; central nervous 
system development

organ system subdivision; adult 
segment; synaptic neuropil 
subdomain; embryonic/larval 
neuron; nervous system; 
antennal segment; adult 
mesothoracic segment; 
embryonic/larval glial cell; 
presumptive embryonic/larval 
nervous system; gland; external 
compound sense organ

Peak expression observed within 
18-24 hour embryonic stages, 
during early larval stages, during 
late pupal stages, in adult male 
stages

NB NB NB NB x1 NB

51 cyc
cycle --> protein 
heterodimerization 
activity; DNA binding

response to starvation; regulation 
of circadian sleep/wake cycle, 
sleep; circadian regulation of 
gene expression

LN period neuron

Peak expression observed within 
00-06 hour embryonic stages, in 
adult female stages, moderate to 
moderately high during pupa

NB x1 NB NB NB NB

52 crm cramped --> DNA binding segment specification

adult segment; organ system 
subdivision; antennal segment; 
appendage segment; somatic 
cell; external compound sense 
organ; adult mesothoracic 
segment; thoracic segment; 
organ system; prothoracic leg; 
compound cell cluster organ; 
pigment cell; metatarsus

Peak expression observed within 
00-06 hour embryonic stages, in 
adult female stages

NB x1 NB NB NB NB

53 gt
giant --> sequence-
specific DNA binding 
transcription factor activity

torso signaling pathway; terminal 
region determination; 
specification of segmental 
identity, labial segment; ring 
gland development; axon 
guidance; regulation of gene 
expression; regulation of cell 
size; negative regulation of 
multicellular organism growth; 
phagocytosis, engulfment

organ system; abdominal 
segment 7; abdominal ventral 
denticle belt; embryonic 
segment; thoracic segment; 
embryonic abdomen; organ 
system subdivision; larval 
abdominal segment; multicellular 
structure; cephalopharyngeal 
skeleton; external compound 
sense organ; late extended 
germ band embryo

Peak expression observed within 
00-06 hour embryonic stages, low 
expression during pupa

NB x1 NB NB NB NB

163



Table 3-2. Gene Ontology characteristics of transcription factors identified 
by yeast-one-hybrid to bind to yellow enhancers
Gene Ontology characterizations of transcription factors that were shown to 
interact with more than one yellow enhancer sub-element and/or were knocked-
down using RNA interference in D. melanogaster. The 5' intergenic or intronic 
regions of yellow from three Drosophila species and the number of sub-elements 
from each that interactedwith the corresponding transcription factor is indicated in 
columns on the right side (e.g., x1 interacted with only one sub-element, 4/5 --> 
interacted with four out of five subelements in the particular region, NB: not 
binding)
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Chapter 4

Conclusion

Gene expression is a crucial step on the way from DNA to the ultimate gene 

product. Changes in gene expression patterns during development can lead to 

aberrant phenotypes (Schneuwly et al. 1987), but for evolution these changes 

have been shown to be a major source of phenotypic diversity (Carroll 2008). 

Gene expression is controlled by cis and trans regulatory factors. cis-regulatory 

elements are linked to the gene they affect whereas trans-regulatory factors are 

typically diffusible molecules, unlinked to the gene(s) they affect. In order to 

elucidate how regulation of gene expression works and evolves, one needs to 

understand the changes in both cis and trans regulatory factors as well as the 

relationship between the two. In this thesis, I focused on the changes in cis-

regulatory elements, particularly enhancers, and studied them using functional in 

vivo assays combined with sequence comparisons and in vitro analyses. As a 

model, I used enhancers regulating the rapidly diverging expression patterns of 

the Drosophila yellow gene.

I first set out to identify three enhancers of yellow that drive the gene’s 

expression in the body, wings and bristle associated cells from six species (D. 

melanogaster, D. pseudoobscura, D. willistoni, D. mojavensis, D. virilis, D. 

grimshawi) that span the Drosophila evolutionary history. In order to assess if the 

genomic organization of yellow enhancers was conserved over evolutionary time, 
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in each species I tested yellow 5’ intergenic and intronic regions of yellow, where 

the above-mentioned three enhancers are typically located, for enhancer activity. 

I found that the location of body and wing enhancers are highly variable among 

Drosophila species, such that several species have these enhancer activities in 

both regions tested, whereas in some species only one of the tested regions 

have body and wing enhancer activities. Overall, this suggests that the positions 

of yellow body and wing enhancer activities were altered, with respect to the 

coding sequence, multiple times in the evolutionary history. Most intriguingly, 

these results showed, against conventional wisdom, that enhancer position is not 

always conserved among species, and in fact it can be quite labile. They also 

showed that in all but one species (D. grimshawi), yellow body and wing 

enhancers were in the same relative genomic position, suggesting these two 

enhancers are sharing a large number of transcription factor binding sites and 

perhaps can be referred to as a single enhancer called the “epidermal-cell” 

enhancer. This recategorized enhancers of the yellow gene as “epidermal-cell”, 

“wing-vein”, and “bristle”. Over evolutionary time, the first two appeared to have 

changed positions independent of each other, whereas the bristle enhancer was 

stably located in the intron. Among these three enhancers, I also found that the 

spatial expression patterns driven by the epidermal-cell enhancer was highly 

variable among species. Lastly, sequence comparisons of yellow enhancers 

between closely related Drosophila species did not show signs of any large scale 

genomic rearrangements suggesting that yellow epidermal-cell and wing-vein 

enhancer activities changed position through gradual compensatory sequence 

changes.  

Even though the above findings addressed important questions (e.g., what are 

the activities and genomic positions of yellow enhancers and are they conserved 

among species?) identifying how activity and position of yellow enhancers 

changed over evolutionary time requires more detailed functional analysis of 

these enhancers as well as comparisons among them. In order to achieve that I 

first subdivided the previously tested yellow 5’ intergenic and intronic regions 
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from three Sophophora subgroup species, D. melanogaster, D. pseudoobscura, 

D. willistoni, and tested the resulting sub-elements for enhancer activity. This 

study revealed sub-elements that fully or partially recapitulate the expression 

pattern driven by the full region they are isolated from as well as sub-elements 

that do not drive expression above background levels. In addition, and most 

intriguingly, I found that about half of the sub-elements tested harbored cryptic 

enhancer activities, such that the sub-element drove expression in spatial 

patterns that were not part of the expression pattern driven by the full 5’ 

intergenic or intronic region the sub-element was isolated from. This may be an 

effect of the change in the proximity of the particular sub-element to the 

transcription start site when being tested for enhancer activity or the effect of the 

foreign genomic location where all transgenes were tested. Both of these are 

viable possibilities that need to be tested, however, at the same time, they are 

unlikely possibilities because a little less than one third of the sub-elements 

tested did not show enhancer activity despite change in proximity and genomic 

position. Thus, if there is a relationship, for example between the flanking 

sequences of the transgene insertion site and the sequences of some, but not all, 

sub-elements, this relationship is quite complex. It is therefore possible that the 

cryptic enhancer activities observed in certain (about half of the) sub-elements 

are real and repressed by the neighboring sequences when the sub-element is in 

its native position (i. e., in the yellow 5’ intergenic or intronic regions that it is 

isolated from). Existence of cryptic activities in the 5’ intergenic or intronic regions 

of yellow presents a possible scenario for how and why position and activity of 

yellow enhancers have diverged rapidly. That is, when a region is primed for a 

certain enhancer activity (i.e., harbors part of the necessary set transcription 

factor binding sites) it takes arguably fewer mutational steps to attain that 

enhancer activity than it would have taken if the same activity was created from 

non-functional sequence.

The next step in understanding how enhancers change over time is to identify the 

transcription factors that bind to them and subsequently shed light onto how 
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changes in the binding factors of enhancers affect their activity. In order to 

identify the sets of transcription factors that bind to yellow enhancers, I screened 

the previously tested yellow enhancer sub-elements using yeast-one-hybrid 

(Y1H) with an extensive D. melanogaster transcription factor library (85% of all 

transcription factors, n=647)). As a result, I identified a large set of candidate 

transcription factors binding to yellow enhancers from three different Drosophila 

species. Only ~10% of these were shared between physically homologous 

regions between species even though these regions had similar enhancer 

activities (e.g., epidermal-cell enhancer). This is in part due to the false negative 

rate of Y1H, and further validation assays may show transcription factors that 

interacted with yellow enhancers in only one species are interactors of yellow 

enhancers in other Drosophila species as well. Some of the identified 

transcription factors suggest that yellow appears to be a target of the ecdysone 

signaling pathway, which, in flies, is responsible for the major postembryonic 

developmental transitions. It also appears to be regulated by genes important for 

bristle development, ones that are important for transcription from the X 

chromosome (where yellow is located) overall and even by a gene that causes 

tumors in humans. Preliminary validation assays, for the first time, identified two 

transcription factors, Fruitless and Ventral veins lacking, to affect abdominal 

pigmentation, potentially through regulating yellow expression. Functionally 

validating these candidate transcription factors identified by Y1H as real direct 

binders of yellow enhancers, will likely identify new pathways that yellow is a 

target or part of.

After identifying the transcription factors binding to yellow enhancers, in order to 

elucidate the relationship between transcription factor binding and enhancer 

activity, one can ask whether enhancers with similar activities are bound by the 

similar or dissimilar sets of transcription factors. Even though the enhancer 

activity and transcription factor binding profile datasets I acquired were not fully 

completed/validated, I still conducted a preliminary comparison between a 

qualitative assessment of the activities of yellow enhancer sub-elements and 
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their transcription factor binding profiles. The only strong relationship I observed 

was the similarity of transcription factor binding profiles of yellow enhancer sub-

elements that showed male specific abdominal enhancer activity (higher 

expression in male abdominal tergites A5 and A6 as compared to that of 

females). Comparing a quantitative assessment of the expression patterns driven 

by yellow enhancer sub-elements at different developmental stages to a more 

complete and validated list of transcription factors binding to these sub-elements 

can help come to a more general conclusion about whether enhancers with 

similar activities are bound by similar sets of transcription factors.

How common is enhancer position change?

One of the most intriguing results of this thesis is that enhancer position, with 

respect to the coding sequences, can be labile. This is the first time enhancer 

position was systematically analyzed among species and the results are against 

the general assumption that functionally homologous enhancers have conserved 

positions among species, i. e., if an enhancer is found at a certain position in one 

species, it is expected to be located in the physically homologous region in a 

related species. The commonality of this finding is not yet known. It is possible 

that yellow is unique because it is located at the tip of the X chromosome where 

recombination rate is lower and chances of accumulating deleterious mutations is  

higher than it is in other genomic regions. Also as compared to the early 

developmental genes, as a late developmental gene, mutations changing yellow 

expression patterns may be more tolerable for the organism and transitionary 

expression states may have a higher chance of surviving in nature until finding a 

new optimal state.

It is also possible, however, that enhancer position change is not unique to yellow 

and the reason for the rarity of its examples in the literature is the ascertainment 

bias towards not publishing negative results. For instance, if an enhancer is not 

found in the same position (relative to the coding sequence) as it was in another 
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species this type of negative result is typically not documented. In that sense, the 

results of this thesis directly affect future searches for functionally homologous 

enhancers, by showing that they may be in different positions in different species. 

Forthcoming studies that conduct exhaustive analyses to find all regions 

harboring a certain type of enhancer activity contributing to a gene’s full 

expression pattern (for instance at a particular tissue type) in different species 

can shed light onto the generality of enhancer position change. 

Do redundant enhancers change position more readily?

It is important to note that in some Drosophila species epidermal cell enhancer 

activity is distributed between the 5’ intergenic and intronic regions of yellow in a 

partially overlapping and partially complementary manner, such that some spatial 

patterns are driven by only one region, but some are driven by both regions. In 

the case of D. virilis yellow, for instance, both the 5’ intergenic and intronic 

regions harbor similar enhancer activities such that (if pigmentation is taken as a 

proxy for yellow expression) either one could recapitulate the expression of the 

gene in the body epidermal cells. In fact, in Chapter 2, epidermal-cell and wing-

vein enhancer activities are inferred to exist in both the 5’ intergenic and intronic 

regions of yellow in the (hypothetical) common ancestor of Drosophila species, 

and perhaps this redundancy relaxed the selective constraint on yellow 

enhancers such that loss or change of activity in one region (e.g., 5’ intergenic) 

was compensated by the other region (e.g. intron) harboring a similar enhancer 

activity. Bristle enhancer, however, was unique in the yellow intron and remained 

that way throughout Drosophila evolution, arguably because transitionary states 

towards changing its position and activity could not be compensated by a 

secondary bristle enhancer, and hence, such changes were selected against. 

This third feature may in fact not be unique to yellow, but may not have been 

revealed for other genes as it requires a comprehensive analysis of the cis-

regulatory regions of a gene.
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Interestingly, in recent years, studies showed that for a particular expression 

pattern, the cis-regulatory regions of an increasing number of genes harbor more 

enhancers than minimally necessary (Perry et al. 2010; Frankel et al. 2011; Perry 

et al. 2011). Among such enhancers, even though some appear “informationally” 

redundant (Barolo 2012) with each other, they in fact act synergistically to 

contribute to the robustness of the particular expression pattern, especially under 

stress conditions. These enhancers have so far been found in only one (Perry et 

al. 2010; Perry et al. 2011) or few species (Frankel et al. 2010a) that are closely 

related and among which the position of the redundant enhancers were 

conserved. There is one study, however, where the authors investigated 

conservation of location of Dorsal target enhancers among distantly related 

species (Cande et al. 2009a). Among the six genes they looked at, three (short 

gastrulation (sog), brinker (brk) and ventral nervous system defective (vnd)) 

harbored two informationally redundant Dorsal target enhancers in one species 

(D. melanogaster) but in the other species (Anopheles gambiae or Tribolium 

castaneum) one of the redundant enhancers was lost, indicating a similar case to 

yellow epidermal-cell enhancers. The other three genes (cactus (cact), twist (twi) 

and single-minded (sim)) appeared to harbor a single Dorsal target enhancer, the 

position of which was conserved among species, suggesting that there is more 

selective constraint on positions of “single” enhancers as compared to 

informationally redundant enhancers. It is notable, however, that among the latter 

three genes twi has a proximal and a distal enhancer that appear to drive 

overlapping expression patterns and the proximal enhancer has been found to be 

located in the intron of the gene in D. virilis as opposed to the 5‘ intergenic 

location in D. melanogaster (Pan et al. 1994a). This, once again suggests, that 

enhancer position change between species may be allowed by the partial 

redundancy between the two enhancers. With careful and unbiased experimental 

designs, elucidating positions of more of these “informationally” redundant 

enhancers between distantly related species (e.g., D. melanogaster and D. 

pseudoobscura or even further) can shed light onto whether redundant 

enhancers are more likely to change their positions over evolutionary time. At the 
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experimental level this would require comprehensively testing all candidate 

regions that may harbor enhancer activity without stopping after finding one 

(minimal) enhancer. For instance, in the case of D. virilis yellow epidermal cell 

enhancer: if one were to find the 5’ enhancer, looking in the intron for more 

enhancer activity of the same type would seem unnecessary, which would result 

in incomplete knowledge of enhancers and how they affect gene expression. 

Future studies that conduct comprehensive analyses of cis-regulatory sequences 

can help us better understand the full structure and function of enhancers. 

Fortunately new methods for in vivo testing of candidate regions for enhancer 

activity in a high throughput manner (Pennacchio et al. 2006; Weiszmann et al. 

2009) are up and coming.

Cryptic enhancer activities

Recent studies showed examples of cryptic enhancer activity that allowed 

different evolutionary trajectories, which resulted in altered gene expression 

patterns. These were initially thought to be new enhancer activities prior to the 

discovery of the latent activity. In one case a partial ancestral enhancer lost its 

activity fully due to repressive mutations in some lineages, but became a full 

enhancer in other lineages through gaining activating mutations and co-opting 

neighboring enhancers (Rebeiz et al. 2011b). In another case, disruption of 

ancestral repressive sequences revealed latent cis-regulatory activity (Sumiyama 

and Saitou 2011). As discussed in Chapter 3 and earlier in this chapter, if the 

cryptic enhancer activities observed in almost half of the tested yellow enhancer 

sub-elements are not experimental artifacts, then existence of these activities 

may have facilitated rapid change in the activity and position of yellow 

enhancers. This seems particularly evident in the epidermal-cell enhancer since 

all cryptic activities identified so far drove expression in body epidermal cells. 

That is to say, it is likely that the 5’ intergenic and intronic regions of yellow were 

ancestrally primed such that they harbored a collection of binding sites for 

appropriate transcription factors (e.g. that are expressed in a specific tissue at 
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appropriate developmental stages). With the existence of such a “basis” for 

regulatory information in a DNA region, evolution of altered enhancer activities (in 

the specific tissue type) would require fewer mutations than it would if the region 

harbored putatively non-functional sequence. So far, there are only few studies 

showing the presence and effect of cryptic enhancer activities, partly because it 

requires a detailed dissection of cis-regulatory regions to identify cryptic 

enhancer activities. However given the ability of enhancer activities to change as 

a result of few mutations and that primed sequences would need fewer 

mutational events (than non-functional sequences) to alter their enhancer activity, 

it is possible that cryptic enhancer activities are leading the way to evolutionary 

trajectories that change enhancer activities rapidly. Hence possible existence of 

cryptic enhancer activities should be taken into consideration when trying to 

understand the mechanism of how sometimes few changes can lead to drastic 

differences in enhancer activities.

How can we elucidate whether enhancers with similar activities are bound 
by similar sets of transcription factors?

For a full understanding of enhancer structure and activity and how they change 

over time, it is important to exhaustively identify the transcription factors that, in 

vivo, bind to enhancers with different or similar activities to see how changes in 

transcription factor binding profiles affect enhancer activity. Subsequently, it is 

also important to determine the composition of transcription factor binding sites 

within an enhancer as well as the kinetics of the binding events and how changes 

in these two affect enhancer activity. So far scientists have collected substantial 

data on in vitro binding of certain transcription factors to particular DNA 

sequences, however it was found that properties of in vitro binding were not 

necessarily accurate predictors of in vivo binding (Wilczynski and Furlong 2010). 

This is because the cellular environment brings together DNA packaged in 

chromatin as well as co-factors and other binding partners that can all affect the 

binding kinetics and specificities of transcription factors. Fortunately, new, more 
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powerful and faster techniques, such as PICh (Proteomics of Isolated Chromatin 

segments), which can isolate the in vivo transcription factor bound DNA regions 

followed by identification of the bound factors using mass-spectrometry (Déjardin 

and Kingston 2009), are starting to emerge and will possibly be put in high 

throughput use in the near future. Overall, in-depth data on the in vivo binding 

specificities of transcription factors can help us understand and perhaps predict 

the sequence changes that make enhancer activities different or similar. This 

would involve building more accurate models (than the ones available so far, 

(Wilczynski and Furlong 2010)), which, based on primary sequence data, can 

find cis-regulatory elements in the genome, predict the expression patterns they 

would drive as well as how these expression patterns would change as a result 

of different types of mutations.

Elucidating roles of Y1H-identified transcription factors in regulation of 

yellow expression

Y1H identified, for the first time, a large list of transcription factors binding to 

yellow enhancers from multiple species. This is, however, “only the beginning”. 

Further functional tests and sequence analyses are necessary to get a full 

understanding of whether and how a Y1H-identified transcription factor regulates 

yellow expression. Below is a brief description of the appropriate tests and 

analyses necessary to identify a transcription factor as a direct regulator of and 

characterizing its role on yellow expression.

Does knocking down the transcription factor affect the activity of a particular 

enhancer sub-element during the developmental stages yellow is expressed?

Testing effects of a transcription factor on a phenotype (e.g., pigmentation) 

known to be related to a cognate gene’s function is important for understanding 

the in vivo effects of the transcription factor, at least on the biological pathway the 

cognate gene is involved in if not directly on the gene itself. However, this type of 

assay is not sufficient to precisely identify whether and how this transcription 
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alters the gene’s expression. One of the best ways of understanding if a 

transcription factor affects a gene’s expression is to knock down the transcription 

factor in the whole organism, or a particular tissue, and compare the gene’s 

expression in the absence versus presence of the transcription factor. The 

measurement of expression can be done via a solely quantitative technique (e.g., 

Reverse Transcription Quantitative Polymerase Chain Reaction), but in order to 

detect changes in spatial patterns one can use a reporter gene driven by the 

enhancer of the gene that the transcription factor is thought to control. In the 

case of yellow, one can use the enhancer sub-element-reporter-constructs to 

document the expression pattern of each enhancer sub-element in the presence 

versus absence of a particular transcription factor. To be comprehensive, this 

should be done at various developmental stages important for yellow function 

(e.g., larval and pupal stages).

Does the transcription factor bind to a particular yellow enhancer sub-element in 

vitro and/or in vivo?

Testing whether a transcription factor alters the activity of an enhancer does not 

show that it directly binds to the enhancer region; it may have indirect effects 

through regulating other genes upstream of the cognate gene. One can elucidate 

whether this transcription factor directly binds to the enhancer region using in 

vitro as well as in vivo assays. In vitro, Electro Mobility Shift (typically requires 

that the binding site of the transcription factor being tested is known) or DNase I 

footprinting (typically requires the transcription factor protein in purified form) 

assays give a qualitative assessment of direct binding between a protein and 

DNA molecule. However newer techniques, such as MITOMI (Mechanically 

Induced Trapping of Molecular Interactions), do not need prior information on the 

binding site of the transcription factor or the protein itself in purified form, and 

they can give occupancy data up to 12 bp resolution, which is helpful in 

identifying the binding site of the transcription factor (Maerkl 2011). MITOMI also 

gives quantitative binding data by providing the affinity of the transcription factor 

to different DNA sequences in vitro, which is also important for gene expression.
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Even though the in vitro binding assays are very useful in identifying candidate 

binding sites and affinity of the transcription factors to certain DNA sequences, 

not all of these properties prove to be true in vivo. Hence, in vitro binding assays 

need to be complemented by in vivo assays to fully characterize transcription 

factor binding. Given the availability of an antibody against a particular 

transcription factor, Chromatin Immuno Precipitation (ChIP) is very useful in 

identifying binding and binding sites in vivo. However in the absence of proper 

antibodies, up and coming techniques like PICh can be used to gather in vivo 

binding information. Once a candidate binding site is determined with in vitro 

techniques, one can also delete or mutate (with nucleotide substitutions) the 

binding site within the enhancer to see how it affects reporter gene expression 

when compared to the expression driven by a wild type enhancer.

The above functional tests identifying direct binding and binding sites of a 

transcription factor within an enhancer, as well as looking at the activity of the 

enhancer at different developmental stages in the presence versus absence of 

the transcription factor or its binding site, are the golden standards for 

determining the role of a transcription factor on an enhancer’s activity. 

Conducting such functional tests for all candidate transcription factors with all 

yellow enhancer sub-elements that they were found to bind to can identify the 

molecular changes underlying the observed differences in enhancer activities. 

Overall, understanding how enhancers work and change over evolutionary time 

requires first identifying enhancers and their corresponding transcription factors, 

followed by elucidating how changes in enhancer sequences alter transcription 

factor binding and how this in turn affects enhancer activity.

Conclusion

Given their importance for organismal development, physiology and evolution, I 

set out to understand how enhancers change over evolutionary time at the 
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molecular and functional level. This is a complex question because there is no 

known universal code underlying enhancer elements. As a result it is non-trivial 

to find enhancers in the genome or understand their function because knowledge 

on such features cannot definitively be achieved in the absence of functional 

assays. This limits the scope of studies examining enhancers because the 

necessary functional assays for such studies are typically laborious and time 

consuming. On the other hand, acquiring more knowledge on enhancer structure 

and activity and how it changes over evolutionary time necessitates conducting 

experiments with a broader scope with bigger sample sizes, ideally genome-wide 

and in multiple species. Only these types of in-depth experiments can help inform 

in silico models to make confident predictions about the complex relationship 

between the sequence and activity of enhancers.
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