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ABSTRACT 
 

HIGH-PERFORMANCE MICROMACHINED  
VIBRATORY RATE- AND RATE-INTEGRATING GYROSCOPES  

 
by 

 
Jae Yoong Cho 

 
Chair: Khalil Najafi  
 

The performance of vibratory micromachined gyroscopes has been continuously 

improving for the past two decades.  However, to further improve performance of the 

MEMS gyroscope in harsh environment, it is necessary for gyros to reduce the sensitivity 

to environmental parameters, including vibration and temperature change.  In addition, 

conventional rate-mode MEMS gyroscopes have limitation in performance due to 

tradeoff between resolution, bandwidth, and full-scale range.   

In this research, we aim to reduce vibration sensitivity by developing gyros that 

operate in the balanced mode.  The balanced mode creates zero net momentum and 

reduces energy loss through an anchor.  The gyro can differentially cancel measurement 

errors from external vibration along both sensor axes.  The vibration sensitivity of the 

balanced-mode gyroscope including structural imbalance from microfabrication reduces 

as the absolute difference between in-phase parasitic mode and operating mode 

frequencies increases.  The parasitic sensing mode frequency is designed larger than the 
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operating mode frequency to achieve both improved vibration insensitivity and shock 

resistivity.  A single anchor is used in order to minimize thermoresidual stress change.  

We developed two gyroscope based on these design principles.  The Balanced 

Oscillating Gyro (BOG) is a quad-mass tuning-fork rate gyroscope.  The relationship 

between gyro design and modal characteristics is studied extensively using finite element 

method (FEM).  The gyro is fabricated using the planar Si-on-glass (SOG) process with a 

device thickness of 100µm.  The BOG is evaluated using the first-generation analog 

interface circuitry.  Under a frequency mismatch of 5Hz between driving and sense 

modes, the angle random walk (ARW) is measured to be 0.44°/sec/√Hz.  The 

performance is limited by quadrature error and low-frequency noise in the circuit.   

The Cylindrical Rate-Integrating Gyroscope (CING) operates in whole-angle mode.  

The gyro is completely axisymmetric and self-aligned to maximize mechanical isotropy.  

The gyro offers a large frequency ratio of ~1.7 between parasitic and the wineglass 

modes.  The CING is fabricated using the 3D Si-on-glass (SOG) process with a device 

thickness of 300µm.  The 1st and 2nd generation CINGs operate at 18kHz and 3kHz, 

respectively and demonstrate a frequency mismatch of <1% and a large Q (~20,000 at 

18kHz and ~100,000 at 3kHz under exact mode matching).  In the rate-sensing mode, the 

first-generation CING (18kHz) demonstrates an Ag of 0.05, an angle random walk 

(ARW) of 7°/√hr, and a bias stability of 72°/hr without temperature compensation.  The 

performance is limited by the Ag, white noise in the phase-lock loop (PLL) in the 

interface circuitry, and temperature control.  In the rate-sensing mode, the second-

generation CING measures an Ag of 0.0065, an ARW of 0.09°/√hr, and a bias stability of 

129°/hr without temperature compensation.  The performance is limited by Ag and 
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temperature compensation.  In the rate-integration mode, the gyro demonstrates 

precession with an Ag of 0.011±0.001 under a frequency mismatch of 20~80mHz during 

several hours of operation. 
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CHAPTER 1.  
 

INTRODUCTION TO MEMS GYROSCOPES 
 

 
Gyroscopes are sensors for measuring rotation [1].  There exist several types of 

gyroscopes based on various physical principles.  Typical applications include military, 

automotive, guidance, and consumer electronics.  Based on physical principles, 

gyroscopes can be categorized as: 1) mechanical gyroscopes [2-31], 2) optical gyroscopes 

[32, 33], 3) nuclear magnetic resonance (NMR) gyroscopes [34, 35], and 4) cold atom 

gyroscopes [36, 37], as summarized in Figure 1.1.    

Mechanical gyroscopes measure the Coriolis force.  This force is named after the 

French scientist Gaspard-Gustave Coriolis who discovered it in 1835.  The Coriolis force 

acts on a moving body under rotation and is perpendicular to both the velocity and the 

rotation directions.  Depending on designs, mechanical gyroscopes can detect either 

precession angles [29] or rotation rates [2-27].  They have a wide range of performance in 

terms of angle random walk (ARW, short-term rate noise density) and bias stability 

(long-term rate noise).  Among these, the Hemispherical Resonator Gyroscope (HRG) 

provides one of the best ARW and bias stability [29, 40].  The operation of optical 

gyroscopes is based on the Sagnac effect [32].  This effect refers to rotation-induced 

path-length differences for oppositely-traveling lights through an optical loop.  Ring laser 

gyroscopes (RLG) and fiber optic gyroscopes (FOG) belong to this category, and are 
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widely used in high-performance applications [33, 41].  Other gyroscopes are still under 

development, including nuclear magnetic resonance (NMR) gyroscopes and cold atom 

gyroscopes.  The former is based on the change in the precession frequency of noble-gas 

molecules’ magnetic moment (the Larmor frequency) due to rotation [34, 35], and the 

latter is based on rotation-induced path-length change for two oppositely-traveling atomic 

waves (the Broglie wave) at extremely low temperature [36, 37].    

 
Figure 1.1.  Classification of gyroscopes. 

Gyroscopes have to satisfy certain requirements dictated by the particular 

application.  These specifications include ARW, bias stability, scale factor accuracy, full-
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scale range, maximum endurable shock, and detection bandwidth.  The typical 

requirements for rate-grade, tactical-grade, and inertial-grade gyroscopes are summarized 

in Table 1.1 [3].  Rate-grade applications include automotive rollover protection and 

image stabilization for camcorders.  Tactical-grade applications include missile guidance, 

radar stabilization, and autonomous vehicle guidance.  Inertial-grade applications include 

inertial references for aircrafts or spacecrafts.  ARW and bias stability are often 

considered as the two most important performance indicators because they directly 

represent the minimum detectable rotation rate of a given gyroscope.  The HRG, RLG, 

and FOG satisfy tactical and inertial requirements, but they are too large and expensive 

for portable applications [40].  Micromachined gyroscopes, on the other hand, were 

originally developed and used for rate-grade applications such as automotive stabilization 

or jitter compensation because of their compactness, affordability, and acceptable 

performance [30, 31, 42-44].  Their performance has continuously improved during the 

past two decades and has reached near-inertial grade, as shown in Figures 1.2 and 1.3, 

due to advances in design, electronics, fabrication technology, and packaging.  Figure 1.4 

shows the comparison of the size and the bias stability for different types of gyroscopes 

[1, 3-29, 37-39].  As this figure indicates, micro-gyroscopes have considerably smaller 

size compared to the others, and their performance is still being improved.   

Table 1.1.  Performance requirements for different classes of gyroscopes [3] 
Parameter Rate Grade Tactical Grade Inertial Grade 
Angle Random Walk* (°/√hr) >0.5 0.05-0.5 <0.001 
Bias Drift (°/hr) 10-1000 0.1-10 <0.01 
Scale Factor Accuracy (%) 0.1-1 0.01-0.1 <0.001 
Full Scale Range (°/sec) 50-1000 >500 >400 
Max. Shock in 1msec, g’s 103 103-104 103 
Bandwidth (Hz) >70 ~100 ~100 
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Figure 1.2.  Trend of angle random walk (ARW) improvement [4-27, 45, 
46]. 

 

 
Figure 1.3.  Trend of bias stability improvement [11, 12, 15, 18, 20, 23-27, 
45-49]. 
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Figure 1.4  Comparison of the dimensions and the bias stability of different types of 
gyroscopes (optical gyroscopes: after [41]; meso-scale mechanical gyroscopes: after [1], 
[28, 29]; NMR gyroscopes: after [39]; cold atom gyroscopes: after [37], MEMS 
gyroscopes: after [3-27]. 

1.1.  Mechanical Gyroscopes 

Vibratory micro-gyroscopes utilize the Coriolis force to sense the rate of rotation [7].  

The relationship between the Coriolis force ( FCoriolis
 

), effective mass (M), velocity ( v


), 

rotation rate ( Ω


), and angular gain factor (k) is given by:  

 FCoriolis
 

= 2kMv

×

Ω  (Equation 1.1) 

The angular gain factor k depends on whether the gyro is a lumped mass gyro or a solid 

wave gyro.  The k of a lumped mass gyro, like the tuning fork gyro, is 1.  For a 

continuous mass gyro, like ring gyro or the cylindrical gyro operating in the nth flexural 

mode (wineglass mode), k is equal to nAg, where Ag is named the angular gain.  They will 

be explained in Chapter 2.   
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The Coriolis force is utilized by micro-gyroscopes, because it can be easily detected 

using masses of several micro-grams and the displacements induced by the Coriolis force 

can be easily detected using standard electronics.  Optical gyroscopes are more difficult 

to be scaled down, because they typically require long optical paths and lasers [32], NMR 

gyroscopes use special gas molecules and strong magnetic shields [34, 35], and cold atom 

gyroscopes need cryogenic coolers [36], making them large and difficult to minimize.     

Mechanical micro-gyroscopes are generally divided in two different types.  The first 

type is vibratory micro-gyroscopes, such as a tuning-fork micro-gyroscope shown in 

Figure 1.5 [4].  This type of device consists of masses, flexures, and supporting anchors.  

The operation of the device relies on oscillating the masses along their drive axes to 

generate momentum, and measuring the Coriolis-induced oscillations along their sense 

axes to measure rotation.  Detection schemes include capacitive [4-9], electromagnetic 

[10], piezoelectric [42, 43], piezoresistive [50], and tunneling [14].  The second type is 

electrically-suspended spinning-mass micro-gyroscopes.  This type of device consists of 

rotors, frames, and stators [51, 52] (Figure 1.6).  The device generates momentum by 

spinning the rotor that is placed inside the cavity created between the top stator, the 

frame, and the bottom stator.  Under rotation, the Coriolis force tilts the rotor along the 

direction normal to the spin and the rotation axes, and the angle is electronically detected.  

When the two types are compared, the former is advantageous by being mechanical 

stability, better vibration and shock resistivity, batch producibility, and simpler control.  

The proposed research focuses on vibratory micro-gyroscopes with electrostatic actuation 

and capacitive detection.  Capacitive gyroscopes are easy to fabricate using conventional 
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micro-fabrication technologies, easy to scale down, provide good sensitivity, and require 

low power. 

 
Figure 1.5.  SEM picture of the vibratory tuning fork micro-gyroscope 
(TFG) [4]. 

 
Figure 1.6.  Schematic of electrically-suspended micro-gyroscope [51]. 

Figure 1.7 shows a simplified diagram of a single-mass vibratory rate-sensing 

gyroscope, interface circuit, and the Fourier representations of the processed signals.  The 

gyroscope’s mass is driven along its drive axis, and the amplitude of the drive oscillation 

is sustained using a positive feedback loop.  Under rotation, the mass will also oscillate 

along its sense axis, and the amplitude of the sense oscillation is detected.  The output 

signal contains the rotation rate which modulate the mass along its sense axis.  The 

rotation rate is extracted by demodulating this signal using a reference signal derived 

from the driving motion of the gyro.  
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Figure 1.7.  Simplified diagram of a vibratory capacitive gyroscope, showing device, 
interface circuitry, and Fourier representation of the processed signals.  

1.2.  Sensitivity of Micromachined Gyroscopes to Vibration and Temperature  

When a vibratory gyroscope is subjected to forces due to shock or vibration, the 

deflection creates drift.  This creates an error signal indistinguishable from the deflection 

due to the Coriolis force.  The frequency of the shock and vibration that affect the 

gyroscope’s operation need to be close to the resonance frequency of the gyroscope, 

otherwise the signal is filtered out at the sensor’s demodulation unit.  Since most of the 

vibration from environment exists up to a few hundred Hertz, a MEMS gyroscope is 

designed to have an operating frequency of at least a few thousand Hertz. 

Another source of error due to the environment is frequency shift and the resultant 

scale factor change due to temperature change.  The resonance frequency of a mechanical 
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resonator changes with change in thermoresidual stress.  For example, the thermal 

coefficient of frequency (TCF) of a clamped-clamped beam undergoing the fundamental 

bending motion is expressed as [53]:  

 

[TCE (Si): -37.48 ppm/K (thermal coefficient of elasticity),  
 α (Si): 2.6 ppm/K  (thermal coefficient of expansion)] 

  
(Equation 1.2) 
 

In this equation, the first term accounts for thermoresidual stress change, which is 

strongly related to the geometry of the resonator.  The second and third terms account for 

material properties.  In a mechanical gyro, the difference between drive and sense mode 

frequencies needs to be kept constant to achieve a constant scale factor.  In order to keep 

the frequency difference constant, it is necessary to minimize thermoresidual stress 

change.  The amount of thermoresidal stress can be minimized if a gyro has a single 

anchor at the center of the device and the size of the anchor is minimized to the level 

allowed by microfabrication process.   

A gyro’s vibration sensitivity can be reduced with a mechanical isolation stage.  The 

isolation stage is basically a flexible spring-mass system with its resonance frequency 

located at a fraction of the resonance frequency of the gyroscope mounted on it.  The 

stage transmits low-frequency vibration, containing rotational data, and filters high-

frequency vibration (above its resonance frequency).  The isolation platform also plays a 

role in reducing temperature sensitivity.  A gyro’s temperature sensitivity can be reduced 

by oven-controlling the temperature of the sensor, similar to an Oven-Controlled Crystal 

Oscillator (OCXO).  In order to reduce the input power to sustain with tens of milliwatts 

for industrial temperature range (-40~85°C), it is necessary to include a thermal-isolation 

stage with a thermal resistivity of 1000s of K/W.  Such a vibration and thermal isolation 

TCF (C −C Beam) ≈0.151 L
w

⎛
⎝⎜

⎞
⎠⎟
2

(α sensor −α substrate )+
TCE

2
+ α
2



 10 

stage can be realized using conventional MEMS materials like glass, as in [54] (Figure 

1.8); however, the dimensions of the isolation stage do not tend to be comparable to the 

sensor dimension, so the system size with the isolation stage becomes uneconomical for 

many commercial applications.   

 
Figure 1.8.  HERMIT package containing crab-leg shaped thermal and vibration isolating 
tethers [107]. 

The vibration sensitivity can be reduced by differentially canceling the vibration due 

to environmental effects.  In order to distinguish the vibration from the environment from 

the Coriolis force, a gyro needs to have balanced operating mode shapes, where all linear 

and rotational momentum of the gyro with respect to the center of the mass sums to be 

zero.  The sensitivity to vibration from environment can be further reduced by increasing 

the ratio between the parasitic and operating modes.  In order to increase this frequency 

ratio, it is crucial to design a coupling beam that is flexible to a desired movement pattern 

and is stiff to parasitic mode pattern.  More detailed analysis of the vibration and shock 

sensitivity of the developed gyroscope will be provided in Chapter 7.  

1.3.  Review of Gyroscope Designs 

In order to suppress vibration-induced bias drifts, micro-gyroscopes need to be able 

to differentially cancel the vibration-induced displacements using balanced drive and 
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sense modes.  In the balanced mode, the center of the mass is constant and there is zero 

net momentum.  When the gyro has ideal uniformity (mass, stiffness and damping), the 

balanced mode cannot be actuated by linear or rotational acceleration from the 

environment.  This section discusses the relationship between the mode shapes and 

vibration immunity.  Analyses will be made using the two most widely adopted designs, 

the single-mass [8, 13-16, 21, 24, 47, 55-71] and the double-mass designs [4, 6, 25, 72-

79].  Structures and characteristics of existing vibration-immune micro-gyroscopes will 

be analyzed.   

1.3.1.  Vibration Sensitivity of the Single-Mass Micro-Gyroscope 

The single-mass micro-gyroscope typically has a mass at the center of the device and 

multiple springs that support the mass.  The mass is made to oscillate either linearly or 

angularly along the drive and the sense axes.  Figure 1.9 shows the structure of a yaw-rate 

sensing single-mass micro-gyroscope [80], and Figure 1.10 shows the lumped-mass 

representation of its drive and sense resonance modes.  The net momentum in the 

resonance modes is determined by the mass and the oscillation velocity, and neither of 

these resonance modes has zero momentum.  Single-mass micro-gyroscopes based on 

decoupled drive and sense resonance modes are available [21, 55, 57-60, 65, 66, 69, 80], 

but they also have non-zero momentum for both of their resonance modes.   

Suppose the device in Figure 1.9 is subjected to vibrations along the drive (x) axis. 

The vibration will alter the amplitude of the drive oscillation, change the velocity, and 

change the magnitude of the Coriolis force leading to an error in the sensed rate of 

rotation.  This situation is shown in Figures 1.11 (a) and (b).  The magnitude of the 

interference reaches the maximum when the vibration frequency is identical to the 
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resonance frequency.  When vibration is applied along the driving axis (x), the amplitude 

change caused by the vibration in the same phase to driving oscillation is restored by 

amplitude controlling circuitry.  When the phase of the applied vibration has a quadrature 

relationship with the driving motion, the driving control loop automatically adjusts the 

phase of driving motion to keep the zero phase shift around the loop.  As a result, the 

effect of vibration in the driving loop can be reduced by the interface circuitry.  However, 

when this sensor is subjected to vibration along the sense (y) axis in the same phase with 

the Coriolis force, the sense (y) axis displacement from vibration becomes 

indistinguishable from the displacement caused by the Coriolis force.  Vibration along 

the sense axis therefore introduces larger error than the vibration along the drive axis 

(Figure 1.12).  In the next case, effects of vibrations for double-mass micro-gyroscopes 

will be discussed.  That case will show a different trend because double-mass micro-

gyroscopes have zero momentum in their drive axes.     

 
Figure 1.9.  Structure of single-mass yaw-sensing micro-gyroscope [80]. 
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Figure 1.10.  Lumped-mass representation of a single-
mass yaw- sensing micro-gyroscope. 

 

  
(a) (b) 

Figure 1.11.  Lumped-mass representations of (a) external vibrations added along the 
drive (x) axis under a yaw-rotation rate (Ωz) and (b) change in the Coriolis force. 

 

 
Figure 1.12.  Lumped-mass representation of the 
vibration-induced displacement along the sense (y) axis. 
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1.3.2.  Vibration Sensitivity of the Double-Mass Micro-Gyroscope 

The operation principle of the double-mass micro-gyroscope is typically based on 

that of tuning forks [4, 6, 27, 72-79].  The device consists of two identical masses at 

equal distances from the center and springs that allow them to move either linearly or 

angularly along drive and the sense axes.  Figure 1.13 shows a yaw-rate-sensing tuning-

fork micro-gyroscope which drives the masses along the x-axis and senses the Coriolis 

force along the y-axis [27].  Figures 1.14 (a) and (b) show the lumped-mass 

representations of the drive and the sense resonance modes.  In the drive mode, the 

masses oscillate in opposite phase along the centerline of the device with complementary 

momentums and therefore achieve zero net momentum.  In the sense mode, the masses 

oscillate in opposite phase along the sense (y) axis.  However, in this case, the masses 

oscillate along two different lines that are apart by a certain distance from the center of 

the device.  Therefore, the momentum of masses are not complementary to each other, 

and there is a net angular momentum along the yaw axis.  Double-mass micro-gyroscopes 

with decoupled drive and sense resonance modes are also available [72, 74], but they also 

have zero net momentum for their drive resonance modes and non-zero net momentum 

for their sense resonance modes.  

Suppose this device is subjected to vibration along the drive (x) axis.  Similarly to 

the single-mass device, the masses will have extra displacements along the drive (x) axis.  

However, the displacements are in the same direction, as opposed to complementary 

directions.  In other words, the drive oscillation and the displacement from the external 

vibration are out-of-phase.  Thus, the Coriolis force from the drive oscillation and the 

Coriolis force from the vibration are also out-of-phase.  As a result, the displacement 
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from the vibration is canceled using the sense electrode configuration for measuring the 

original Coriolis oscillation (Figures 1.15 (a) and (b)).  Suppose this device is subjected 

to angular vibrations along the yaw axis.  The masses will then move in the opposite 

directions along the sense (y) axis.  In this case, the displacement is in the same direction 

as the existing angular momentum, and the displacement by the vibration and 

displacement by the Coriolis force are not distinguishable (Figure 1.16).  Note that the 

frequency of the yaw-axis angular vibration that introduces noise to the gyro is near the 

sense mode frequency (>5kHz), which is much higher than the signal that the frequency 

of rotation that the sensor measures (<100Hz).  

Based on the cases above, existing vibratory micro-gyroscopes are categorized 

according to: 

• Whether the device is vulnerable to vibration along both the drive and the sense 

axes (Type-I), immune to vibration along only the drive axis (Type-II), immune to 

vibration along only the sense axis (Type-III), or both (Type-IV). 

• Whether the device is vulnerable to linear vibration (Type-A) or angular vibration 

(Type-B).   

Tables 1.2 and 1.3 show the result of this categorization. 

 
Figure 1.13.  Yaw-sensing tuning fork micro-gyroscope [27]. 
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(a) Drive mode 

 

 
(b) Sense mode 

Figure 1.14.  Lumped mass representations of the (a) drive and (b) sense modes of 
double-mass yaw-sensing micro-gyroscope. 

 

 
 (a) Drive mode 

 

 
 (b) Sense mode 
Figure 1.15.  Lumped-mass representations of (a) displacement due to vibration along the 
drive (x) axis and (b) differential cancellation of Coriolis force from external vibration 
along drive axis (springs and dampers are omitted). 
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Figure 1.16.  Lumped-mass representation of non-cancellable displacement due to yaw 
angular vibration (springs and dampers are omitted). 
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and 3) balanced bulk-acoustic-wave (BAW) gyroscope.  The designs of these sensors are 

discussed here. 

Degenerate micro-gyroscopes utilize drive and sense resonance modes which ideally 

occur at the same frequency and have indistinguishable mode shapes.  Degenerate mode 

gyros include those with symmetric shells or volumes, such as hemispheres [29], rings [7, 

19], or disks [26].  The ring (Figure 1.17) and the disk (Figure 1.18) micro-gyroscopes 

measure yaw rates by utilizing the fundamental (n=2) or higher (n=3) flexural modes, 

also known as the wineglass mode.  In the flexural mode, the position of the center of the 

mass is conserved, so these are not actuatable with external vibrational input.  The 

displacement pattern of the n=2 wineglass mode is shown in Figure 1.19.  There are two 

n=2 modes occurring at 45 degrees apart with identical expansion and contraction 

profiles.  The ring and the disk micro-gyroscopes use these modes as their drive and 

sense resonance modes.  

The advantages of this type of device include symmetry of the physical parameters 

(effective mass, damping, stiffness, actuation and sensing area), simple design, and fewer 

parasitic modes near the wineglass mode.  The degenerate-type gyros are ideal geometry 

 
Figure 1.17.  SEM picture of vibratory ring gyroscope [19]. 
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for a rate-integrating gyroscope (RIG) due to the innate physical isotropy.  The 

drawbacks of these gyroscopes include lower effective mass compared to its sensor 

footprint and smaller driving range due to the use of parallel plates.   

 
Figure 1.18.  SEM picture of bulk acoustic wave disk gyroscope [26]. 

 

  
(a) First mode  (b) Second mode  

(Separated from first mode by 45 degrees) 
Figure 1.19.  Displacement pattern of two n=2 flexural modes (wineglass modes). 

1.4.  Non-Degenerate-Type Balanced-Mode Gyroscopes 

Non-degenerate micro-gyroscopes use two distinguishable resonance modes that 

occur at different frequencies.  They consist of separate masses and springs, and they 

have less symmetric shapes compared to degenerate micro-gyroscopes.  Previously 

published examples include the butterfly micro-gyroscope [83, 84], the trident-tuning-
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fork micro-gyroscope [85], the quad-tuning-fork micro-gyroscope [45, 86], and the 

balanced bulk-acoustic-wave (BAW) gyroscope [87].  

1.4.1.  Butterfly Micro-Gyroscope 

The butterfly micro-gyroscope measures planar rotation rates.  The original butterfly 

gyroscope was developed by Imego Institute in 1999 (Figure 1.20) [83].  An improved 

design was developed by researchers at SensNor and SINTEF in 2001 (Figure 1.21) [84].  

 
Figure 1.20.  Photograph of the 
Butterfly micro-gyroscope from Imego 
[83]. 

 
Figure 1.21.  SEM picture of the Butterfly 
micro-gyroscope from SensNor and SINTEF 
[84]. 

The device shown in Figure 1.20 consists of two masses, a beam that connects the 

masses, and anchors that hold both ends of the beam.  The device shown in Figure 1.21 

improved the former design by adding lateral springs.  The drive and sense resonance 

modes of the two gyros are shown in Figures 1.22 and 1.23, respectively.  In the drive 

mode (Figures 1.22-(a) and Figure 1.23-(a)), the masses angularly oscillate along the z-

axis in opposite phase.  In the sense mode (Figures 1.22-(b) and 1.23-(b)) (under x-axis 

rotation rate), the masses angularly oscillate along the y-axis, again in opposite phase.  

In the butterfly gyroscope, a straight beam along the y-axis serves as both the drive 

and sensing springs.  The spring is made to be tilted intentionally from the sensor plane 
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(using anisotropic etching and two-step DRIE) so that the masses can be dithered along 

planar directions using the bottom electrode (Figure 1.24). 

  
(a) Drive mode (b) Sense mode 

Figure 1.22.  Resonance mode patterns of the butterfly micro-gyroscope from Imego 
[83]. 

  
(a) Drive mode (at 9.0 kHz) (b) Sense mode (at 9.3 kHz) 

Figure 1.23.  Resonance modes of the butterfly micro-gyroscope from SensNor and 
SINTEF [84]. 

 
(a) Cross-sectional figure of Imego’s butterfly micro-gyroscope (patterned 
using anisotropic wet etch) 

 
(b) SEM picture near the beam of SensNor and SINTEF’s butterfly micro-
gyroscope (patterned using DRIE) 

Figure 1.24.  Illustration and SEM picture of the intentionally-tilted beams. 

 



 22 

One of the advantages of the butterfly gyro architecture is that due to the simplicity 

of the spring design fewer parasitic modes exist.  The drawbacks of this design may 

include geometrical variation due to misalignment of multiple masks used for defining 

the gyro and possibly larger temperature sensitivity due to clamped-clamped-beam shape 

of the sensor spring. 

1.4.2.  Trident-Tuning-Fork Micro-Gyroscope 

The trident-tuning-fork gyroscope is a planar micro-gyroscope consisting of three 

silicon tines of an identical size.  It was developed by researchers at Tohoku University in 

2000 [85] (Figure 1.25).  In the drive resonance mode, the outer tines oscillate in-phase 

along the z-axis at identical velocities, but the center tine oscillates in opposite-phase at 

twice their velocities (Figure 1.26-(a)).  Under a y-axis rotation rate, the outer tines 

oscillate in-phase along the x-axis at identical velocities, but the center tine moves in 

opposite-phase at twice their velocities (Figure 1.26-(b)).  It uses both bottom electrodes 

for driving the tines and sensing the Coriolis oscillation.   The advantage of this design is 

extreme design simplicity.  Challenges in this design may include small driving range, 

mode tuning, and separation of the parasitic modes from drive and sense modes. 

 
Figure 1.25.  Trident tuning-fork micro-gyroscope [85]. 
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(a) Drive mode  (b) Sense mode under y-axis rotation  

Figure 1.26.  Resonance modes of the trident tuning-fork gyroscope. 

1.4.3.  Quad-Tuning-Fork Micro-Gyroscope 

The quad tuning-fork micro-gyroscope is a yaw gyroscope developed by Analog 

Devices [86] (Figure 1.27).  The gyro is constructed with four framed-masses, coupling 

springs, and supporting springs.  The structure of the framed-mass is identical to the one 

used for their earlier tuning-fork micro-gyroscope [31].  The framed-mass consists of 

mass, drive spring, and frame.  The mass is allowed to move along the drive (x) axis and 

kept from moving along the sense (y) axis.  The frames are coupled to each other using 

supporting springs and coupling springs.  Figures 1.28-(a) and 1.28-(b) show its drive and 

sense resonance modes, respectively.  In the drive resonance mode, the masses oscillate 

along the x-axis in the opposite phases to the adjacent ones.  Under a yaw rotation rate, 

the masses oscillate along the y-axis in opposite phases to the adjacent ones.  A similar 

quad-mass gyroscope architecture is used by researchers at UC Irvine as a rate-

integrating gyroscope (Figure 1.29) [45].  The Irvine gyro was designed to be exactly 

symmetric along the x- and y- axes, so that the resonance frequencies for the two 

operating modes are ideally the same.  The Irvine gyro operates at 2kHz, where Si has a 

high quality factor (Q) due to lower thermoelastic damping (TED).  They have 
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demonstrated a Q of 1.6 million (decay time comstant of 150 seconds), which remains the 

highest reported damping time among the presented Si resonators.   

  
(a) Die photo (b) Simplified mechanical model  

(Some anchors are omitted) 
Figure 1.27.  Die photograph and simplified mechanical model of Analog Device’s 
quad tuning-fork micro-gyroscope [86]. 

  
(a) Drive mode  (b) Sense mode under yaw rotation  

Figure 1.28.  Resonance modes of the quad tuning-fork micro-gyroscope (some of the 
anchors are omitted). 

 
Figure 1.29.  Drive and sense modes of UC Irvine’s quad mass tuning-fork gyroscope 
[45]. 
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The attractive features of this design include mode-decoupling and large sensing and 

actuation area.  Drawbacks of this design include design complexity and number of 

coupling springs that increase the number of parasitic modes. 

1.5.  Balanced Bulk-Acoustic-Wave (BAW) Gyroscope  

Similar to the balanced electrostatic gyroscopes mentioned above, balanced modes 

can be found from a solid piece of a piezoelectric material.  One example is the PZT 

bulk-acoustic-wave (BAW) gyroscope, developed by researchers at Hyogo University 

[87] (Figure 1.30).  This gyroscope uses the 29th mode of a PZT block (3 ×4×5mm3), 

located at 415kHz (Figure 1.30).  In this mode, mass components of the PZT block 

displace symmetrically along x-axis, with respect to the center plane of the block.  Under 

y-axis rotation, due to the Coriolis force, compressive and extensive stresses develop at 

different parts of the mass.  The direction of the stress aligns with the polarization of the 

PZT block and output voltage is developed.  The driving, driving readout, and sensing 

electrodes are patterned on the top and bottom surface of the block.  Since the drive mode 

is a balanced mode, the developed z-axis stress is also balanced with respect to the center 

of the mass.  In addition, the gyro operates at a high frequency range, where the 

environmental noise density is low.  The gyroscope is attractive in terms of design and 

packaging.  The drawbacks of this design include low Q, small driving distance and 

effective mass.  Unlike the other vibratory gyroscopes, this gyroscope does not have a 

resonance to amplify the Coriolis force along the sense axis.  Therefore, this gyro may 

not be suitable for high-accuracy applications.  
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Figure 1.30.  Photograph of the PZT bulk-acoustic wave 
(BAW) gyroscope [87]. 

  
(a) Drive mode (b) Direction of Coriolis force (in purple) 

Figure 1.31.  Resonance modes of the BAW PZT micro-gyroscope [87]. 

1.6.  Research Objective  

The goal of the presented work is to understand the performance-limiting factors of 

conventional MEMS gyroscopes and to develop, fabricate, and demonstrate new gyro 

designs that will lead to better performance in real applications.  Another goal of this 

research is to develop a rate-integrating gyroscope (RIG) to overcome the issue of the 

tradeoff between resolution to bandwidth and full-scale factor for conventional rate-

sensing gyroscopes (RG).    

The devices are designed to operate in balanced modes.  In the balanced modes, the 

momentum of the sum of the mass always exists at the center of the device.  The gyro can 

fully differentially cancel in-phase acceleration from environment.  The gyros are 

designed to achieve large ratios between parasitic mode and the operating mode to reduce 
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the sensitivity to environmental vibration under mismatch in mass and stiffness from 

manufacturing imperfection and to increase shock resistivity.  The devices have a single 

anchor at the center of the device, minimizing the development of thermoresidual stress 

from temperature fluctuation.   

We develop two types of gyroscopes: the Balanced Oscillating Gyroscope (BOG) 

and the Cylindrical Rate-Integrating Gyroscope (BOG).  The BOG is a planar-rate-

sensing quad-mass tuning-fork gyroscope.  The CING is a whole-angle-mode gyroscope.  

We analyze the design of the gyros using finite element method (FEM) extensively to 

improve their frequency characteristics.  We study the dominant energy loss mechanism 

of the gyro.  The gyroscopes are made using Si-on-glass (SOG) process to achieve large 

Q, large transduction area, and small parasitic capacitance.  We demonstrate the 

feasibility of these gyroscopes by controlling them using off-chip interface circuitry.   

1.7.  Contribution  

The presented research provides the following contributions:   

• Analysis of gyro parameters for low vibration sensitivity and large quality factor 

(Q). 

• Development of new gyroscope architectures, namely the Balanced Oscillating 

Gyroscope (BOG) and the Cylindrical Rate-Integrating Gyroscope (CING), aimed 

for low environmental sensitivity.   

• Understanding the performance limits of the BOG and CING and extending 

performance through appropriate selection of device structure and fabrication 

technology. 
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• Improvement of the Si-on-glass (SOG) process for creating high-aspect ratio single 

crystal-Si sensors for the BOG and CING, with low parasitic capacitance, high-Q, 

self-alignment, and in the future, easier vacuum packagibility.  

• Demonstration of sensor operation, including: 

§ CING: demonstration of perfectly axisymmetric and self-aligned MEMS 

sensor aimed at rate-integrating applications, with small original mode 

mismatch (<10Hz), long decay time (~10 seconds), and large transduction 

area.  Operation in both rate-sensing mode (closed-loop) and rate-

integration mode.  

§ BOG:  demonstration of preliminary sensor characteristics.  

1.8.  Organization of Thesis  

Chapter 1 presents the objectives and contributions of the proposed research.  

Chapter 2 explains the physics of the rate gyroscope (RG) and rate-integrating gyroscope 

(RIG) and compares them from the standpoint of critical error sources and design.  

Chapter 3 discusses the steps to calculate the physical parameters (effective mass, angular 

gain, centrifugal mass) of a 3-dimensional wineglass mode gyroscope using FEM.  

Chapter 4 discusses the design, fabrication, and evaluation of the Balanced Oscillating 

Gyroscope (BOG).  Chapter 5 discusses the design, fabrication and evaluation of the 

first-generation (high-frequency) Cylindrical Rate-Integrating Gyroscope (CING).  

Chapter 6 discusses the design, fabrication, and evaluation of the second-generation (low-

frequency) CING.  In Chapter 7, the relationship between the vibration sensitivity of 

BOG and CING under mechanical anisotropy and their mode characteristics is studied.  

Chapter 8 summarizes the presented research and discusses future work.  Appendix A 
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derives the stiffness and damping coefficients of a gyro along an arbitrary sensor axis that 

is separated from fundamental stiffness and damping axes.  Appendix B shows the 

ANSYS simulation codes used for analyzing physical parameters of 3D wineglass mode 

gyroscopes.  Appendix C discusses the design of the vertical comb-drive (VC) electrode 

developed using the Si-on-Glass (SOG) process.  
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CHAPTER 2.  
 

THEORY OF VIBRATORY RATE- AND RATE-INTEGRATING 
GYROSCOPES  

 
 

A mechanical can gyroscope can be controlled to measure rotation rate or rotation 

angle.  Depending on whether a gyro measures rates or angles, the gyro can be 

categorized as the rate gyro (RG) or the rate-integrating gyro (RIG).  The operating 

principles of the RG and RIG are similar in many aspects.  In this chapter, the motion 

equations for the two types of gyroscopes will be described, control methods for RG and 

RIG will be compared, and typical sources of error of the RG and RIG will be described.  

2.1.  Basics of Rate and Rate-Integrating Mode Operation 

A rate-integrating gyroscope (RIG) measures rotation angle from the precession 

angle between the direction of the moving vibration pattern and a reference point on the 

rotated coordinate.  The phenomenon that the gyro’s linear or rotational movement lags 

the input rotation is called precession.  Precession can be understood by viewing from 

both the inertial frame and the rotating frame.  First, from the inertial frame, from 

Newton’s First Law, an ideal gyro with isotropic stiffness (k) and damping (c) along the 

two principal axes oscillates along a fixed direction.  The oscillation is unaffected by 

rotation of the rotating frame.  Thus, one can simply measure rotated angle from the 

angle between the oscillation direction and a reference point on the rotating frame. 
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When viewing from the rotating frame, we can understand precession as continuous 

energy transfer between motions along the two principal axes through the Coriolis force.  

The momentum of the gyro mass can be projected onto the two principal axes.  The 

momentum along one axis is deviated by the Coriolis force that is proportional to the 

velocity along the other axis.  Unless the change in the momentum on one axis is 

canceled by a reaction force from a control system, the momentum will continue to 

deviate under continued rotation due to the Coriolis force.  One can read the rotated angle 

from ratio of the momentum in the two principal axes.   

An example of the angular measurement using an ideal Foucault pendulum is 

described in Figure 2.1.  The pendulum is located on a rotation table.  At the initial time 

point (to), the swinging pattern aligns with the axis 0°-180°.  The stage rotates by 30 

degrees between to and t1.  The swinging pattern is viewed both from Camera 1, located 

on the ceiling (inertial coordinate), and Camera 2, located right above the center point of 

the rotating stage.  Figure 2.2 illustrates the swinging pattern at to and t1.  The direction of 

the swinging pattern does not change, and one can calculate the precessed angle by 

reading the change in the tick on the rotating stage that aligns with the reference point on 

the inertial coordinate.  The precessed angle can be read from Camera 2 (Figure 2.3).  

Figure 2.3-(a) illustrates the original swinging pattern at to; Figure 2.3-(b) illustrates the 

path of the swinging motion at a time between to and t1; and Figure 2.3-(c) illustrates the 

swinging pattern at t1.  The precessed angle can be calculated from the change of the 

angle read by the ruler on the stage.  In the actual RIG, control circuitry is required to 

cancel the effect of non-ideal properties of the gyroscope.  
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Figure 2.1.  Illustration of ideal Foucault pendulum located on rotation table, spinning at 
a constant rate Ω.  The swinging pattern is viewed from Camera 1 (in inertial coordinate) 
and Camera 2 (in rotating coordinate). 

 

  
(a) Swing direction at to (b) Swinging direction at t1 

Figure 2.2.  Precession of swinging pattern of a Foucault pendulum seen by Camera1 
(from inertial space): (a) at initial time point (to) and (b) time point (t1) when the stage has 
rotated by 30 degrees. 
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(a) Swinging direction 
at to 

(b) Swinging path between to 
and t1 

(c) Swinging path at t1 

Figure 2.3.  Precession of swinging pattern of a Foucault pendulum, seen from Camera 
2 (in rotating coordinate): (a) at initial time point (to), (b) between to and t1, and (c) time 
point (t1) when the stage has rotated by 30 degrees. 

The RG measures the rotation rate, which is proportional to the Coriolis force.  Any 

RIG can operate as a RG, when the vibrating pattern is held along a fixed direction using 

feedback control.  The feedback force to prevent precession is directly proportional to the 

Coriolis force.  This kind of operation mode is called closed-loop rate-sensing mode.  The 

RG can also operate in the open-loop mode without force balancing if damping is 

allowed to cancel the momentum on only one axis. 

The choice of RIG or RG mode operation affects a number of different sensor 

characteristics.  The RIG achieves wider bandwidth and full-scale range than the RG, and 

these parameters are not related to Q as they are in RG.  However, the angular accuracy 

of the RIG is limited by mechanical anisotropy which is difficult to control.  In both 

open-loop and closed-loop RG, the bandwidth and the full-scale range are degraded as Q 

increases.  The bandwidth and the full-scale range for the closed-loop RG are larger than 

those of the open-loop RG, because the effective sense-mode Q of the sensor under force-

feedback is smaller than the open-loop Q.   
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In the next section, the physics of the general vibratory gyro will be described, and 

the dynamic characteristics of the RIG and RG will be compared. 

2.2.  Dynamics of Vibratory Rate- and Rate-Integrating Gyroscopes   

2.2.1.  General Two-Dimensional Motion Equation  

The physics for both the rate-integrating gyroscope (RIG) and rate gyroscope (RG) 

are described using two-dimensional Lagrange equations, which are coupled by the 

Coriolis force.  The vibrating motion in the Cartesian coordinate is expressed as the sum 

of the product of the normalized mode shape parameters (φx1, φy1, φz1, φx2, φy2, φz2) and the 

generalized displacement of the two modes (q1, q2). 

 
(Equation 2.1) 

 
(Equation 2.2) 

 
(Equation 2.3) 

The axes where the generalized displacements are calculated are named the q1- and 

q2- axes, and since the vibrating pattern of the whole location of the device can be 

calculated by knowing the displacements along these axes, they are named the principal 

axes of motion.  For a Foucault pendulum gyroscope, since the motion is described as the 

sum of linear vibrating mode of a solid mass along x- and y- axes, the generalized 

displacements (q1, q2) are simply ux and uy.  In the case of a fundamental (n=2) flexural 

mode (wineglass mode) gyro, the shell serves both as a mass and the spring, so the shape 

factors (φx1, φx2, φy1, φy2) are not equal to 1.  In this mode, q1 and q2 are the displacement 

along the two n=2 flexural modes, which are separated by 45 degrees in the Cartesian 

coordinate. 

ux = φx1q1  + φx2q2

uy = φ y1q1  + φ y2q2

uz = φz1q1  + φz2q2
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The stiffness along any direction in the 2-DOF system is determined by two stiffness 

parameters [7].  Since the stiffness of the entire system is determined by these two 

parameters, the axes where the maximum and minimum stiffness are aligned are called 

the principal elasticity axes.  The relationship between the principal elasticity axes and 

the principal motion axes are shown in Figure 2.4.  In this figure, the motion axes are 

rotated from the sensor axes by an angle θω.  Similarly to the elasticity axes, the axes 

where the largest and smallest damping factors are located are called the principal 

damping axes.  Figure 2.5 illustrates the principal damping axis of a Foucault pendulum, 

which are separated from the sensor axes by an angle θτ.   

The stiffness parameters along the principal motion axes can be calculated with a 

coordinate transform as a two-by-two matrix, containing on-axis and off-axis stiffness 

terms.  These equations are found from applying an arbitrary displacement along the 

principal stiffness to generate a certain mechanical energy (Estiffness) and performing 

coordinate transfer between the sensor coordinate and the principal stiffness coordinate.  

 
Figure 2.4.  Principal elasticity axes, separated from motion axes sensor 
axes by θω. 
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The in-axis stiffness terms along the two axes in the sensor coordinate are named k11, k12, 

respectively.  The cross-axial stiffness terms between the two axes are named k12 and k21. 

The stiffness matrix for the Foucault pendulum gyro is found as: 

 
Figure 2.5.  Principal damping axes, separated from the sensor axes by θ τ. 

The stiffness parameters along the principal motion axes can be calculated with a 

coordinate transform as a two-by-two matrix, containing on-axis and off-axis stiffness 

terms.  These equations are found from applying an arbitrary displacement along the 

principal stiffness to generate a certain mechanical energy (Estiffness) and performing 

coordinate transfer between the sensor coordinate and the principal stiffness coordinate.  

The in-axis stiffness terms along the two axes in the sensor coordinate are named k11, k12, 

respectively.  The cross-axial stiffness terms between the two axes are named k12 and k21. 

The stiffness matrix for the Foucault pendulum gyro is found as: 

 

(Equation 2.4) 

 

(Equation 2.5) 
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(Equation 2.6) 

 

(Equation 2.7) 

The damping parameter matrix along the principal motion axes can be found by 

applying a damping energy (Edamping) with respect to the principal damping coordinate 

and performing a coordinate transformation between the sensor coordinate to the 

principal damping coordinate.  The in-axis damping terms along the two axes in the 

sensor coordinate are named c11 and c12, respectively.  The cross-axial damping terms 

between the two axes are named c12 and c21.  The damping matrix for the Foucault 

pendulum gyro is found as: 

 

(Equation 2.8) 

 
(Equation 2.9) 

 
(Equation 2.10) 

 
(Equation 2.11) 

 
(Equation 2.12) 

  The derivation of stiffness and damping matrices that are separated from the principal 

stiffness and damping coordinates by θω and θτ, respectively, is shown in Appendix A.  In 
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the calculation of the 2D motion equation, the inertial force, elastic force, damping, 

Coriolis force, centrifugal force, and angular acceleration are considered [7].  The 2D 

Lagrangian equation is summarized in Equation 2.13.  Detail derivation of effective mass 

(M), Corioliolis mass (γ), and centrifugal mass (α, β, µ) to the two-dimensional 

gyroscope is found in [7].  The expanded derivation of these parameters accounting for 

3D motional patterns instead of 2D patterns is shown in Chapter 3. 

 

                                                                                                                   (Equation 2.13) 

• q1, q2: Generalized displacement. 

 (Equation 2.14) 

 (Equation 2.15) 

 (Equation 2.16) 

• M1, M2: Effective mass of two modes. 
 (Equation 2.17) 

 (Equation 2.18) 

• kij matrix: Effective stiffness with respect to the sensor axis.  

 (Equation 2.19) 

• cij matrix: Effective damping coefficients with respect to the sensor axis. 
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 (Equation 2.20) 

•  γ: Coriolis mass 
 (Equation 2.21) 

•  Kij: Centrifugal stiffness of two modes. 
Kc1 = −α1Ωx

2 − β1Ωy
2 − µ1Ωz

2  (Equation 2.22) 

Kc2 = −α 2Ωx
2 − β2Ωy

2 − µ2Ωz
2  (Equation 2.23) 

•   α, β, µ: Centrifugal mass of two modes. 
α1 = ρ(φy1

2 +φz1
2 )

V
∫ dV  (Equation 2.24) 

α 2 = ρ(φy2
2 +φz2

2 )
V
∫ dV  (Equation 2.25) 

β1 = ρ(φx1
2 +φz1

2 )
V
∫ dV  (Equation 2.26) 

β2 = ρ(φx2
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∫ dV  (Equation 2.27) 
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V
∫ dV  (Equation 2.28) 

µ2 = ρ(φx2
2 +φy2

2 )
V
∫ dV  (Equation 2.29) 

In Equation 2.13, the parameters M, α, β, and γ are related to the mass distribution of 

the resonator and are dependent on the mode shapes.  Especially, M is named as the 

effective mass, and it relates to the amount of inertia it creates; whereas γ is named the 

Coriolis mass, which is the amount of effective mass that creates the Coriolis force under 

rotation.  
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2.2.2.  Specific Case for Gyros with Identical Effective Mass 

Equation 2.13 can be further simplified in the case of the RIG whereas due to the 

mechanical isotropy, the effective masses along the two axes are typically identical.  In 

addition, some of the parameters in the general motion equation can be related to more 

physically meaningful terms of resonance frequencies (ω) and decay time constants (τ) 

as:  

 
(Equation 2.30) 

 (Equation 2.31) 

 (Equation 2.32) 

 (Equation 2.33) 

Using these parameters, the motion equation for the RIG can be further developed as 

shown in Equation 2.34 [88]:
 

k1 =ω1
2M

k2 =ω2
2M

τ1 =
2M
c1

τ 2 =
2M
c2
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 (Equation 2.34) 
 

 

(Equation 2.35) 

 

(Equation 2.36) 

 

(Equation 2.37) 

 
(Equation 2.38) 

2.3.  Oscillation Pattern of Gyroscopes  

2.3.1.  Response of Gyroscope with Stiffness and Damping Isotropy  

When gyros have the same effective mass along the two axes, and when the rotation 

rate is sufficiently lower than the resonance frequency, the effect of centrifugal force and 

angular acceleration become negligible.  In addition, we assume that the control circuitry 

cancels damping.  The approximated motion equation is shown in Equation 2.39.  This 
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coupled equations is difficult to be solved analytically.  However, a specific set of 

solutions for this equation is known to be Equations 2.40-2.43, and one can confirm it by 

substituting them into Equation 2.39 [89].  

 

                                                                                                                   (Equation 2.39) 

 (Equation 2.40) 

 (Equation 2.41) 

 q1 = −ωa(t)cos(θ(t))sin(ωt +φ(t))−ωq(t)sin(θ(t))cos(ωt +φ(t))  (Equation 2.42) 

 q2 = −ωa(t)sin(θ(t))sin(ωt +φ(t))+ωq(t)cos(θ(t))cos(ωt +φ(t))  (Equation 2.43) 

Equations 2.40-2.43 are called the canonical pendulum equation.  In these equations, a 

denotes the amplitude of the in-phase motion, q denotes the amplitude of the out-of-phase 

motion, θ denotes the angle between the main axis of the vibrating motion to the q1 axis, 

and φ denotes the phase of the motion.  The trajectory of the vibrating motion on the 

principal motion axis, under zero input rotation, is illustrated in Figure 2.6.  The motion 

described by Equations 2.40-2.43 can be more easily understood by numerically plotting 

using a PDE program like MATLAB.   

The motion illustrated in Figure 2.6 is represented with two different amplitudes at 

the orthogonal axes.  To reduce drift and stabilize the scale factor of the vibratory 

gyroscope, a is set to be constant and q set to be zero.  For further analysis, the 

interrelationships between the changes of the parameters in Equations 2.44-2.47 over 

time can be described in terms of slowly-varying motional parameters.  The details of the 

mathematical derivation are shown in [89].   
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Figure 2.6.  Trajectory of free canonical motion, described by Equations 
2.37-2.40.  Mass is shown in black. a is called the in-phase amplitude 
and q is called the quadrature amplitude. 

 

 
(Equation 2.44) 

 
(Equation 2.45) 

 
(Equation 2.46) 

 
(Equation 2.47) 

When the rotation rate is much slower than the vibration frequency (Ωz<<ω), the 

canonical parameters can be approximated by averaging the change of these parameters 

over a period.  When the quadrature amplitude q of these parameters is kept to be zero 

with the control circuitry, the parameters in Equations 2.48-2.51 become the expressions 

that are basically the behavior of an ideal rate-integrating gyroscope, where the a 

precessing rate of a gyro  θ  is proportional to an applied rotation rate (Ωz).   
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 (Equation 2.48) 

 
(Equation 2.49) 

 

(Equation 2.50) 

 
(Equation 2.51) 

2.3.1.1.  Response of Ideal Gyro Under Large Input Rate  

Under large input rotation, the centrifugal force term cannot be neglected, and 

reduces the frequency of the oscillation.  At the ultimate input rate (Ωultimate), the 

centrifugal force becomes equal to the elastic force, and the vibration stops.  By relating 

the motion equation with the centrifugal force, such condition can be found (Equation 

2.52).  In Equation 2.52, the amplitude of the gyro is sustained and the quadrature 

amplitude is canceled to zero.  Equations 2.53 and 2.54 show the solution to the equation, 

showing the reduction in the resonance frequency is found by equating ω' to zero in 

Equation 2.55.  Practically, the maximum input rate is typically limited by the dynamic 

range of the control circuitry. 
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(Equation 2.55) 

 

(Equation 2.56) 

The Coriolis mass γ is a function of modal shape.  For the lumped mass gyroscope, 

like the tuning fork gyroscope, γ is 1; for flexural mode gyro (n=2), it ranges from 

roughly 0.02M to 0.6M.  Chapter 3 will describes the procedure for numerically 

calculating the γ of arbitrary-shaped wineglass-mode gyroscope.  

2.3.2.  Angular Gain (Ag) 

The parameters in Equation 2.13 depend on the resonance mode in which the gyro 

operates.  The two most widely used modes are the translational mode, in the case of the 

Foucault pendulum, and the wineglass mode, in the case of the Hemispherical Resonator 

Gyro (HRG) or the cylinder gyro.  In the case of the translational mode, the entire mass 

moves in a single direction.  The relationship between the motion along principal mode 

axes (q1, q2) and the Cartesian axis (ux, uy), shape functions ϕ, and Coriolis mass γ is 

shown in Equations 2.57-2.63.  
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(Equation 2.62) 

 
(Equation 2.63) 

So far, we have derived the motion of a gyro along the sensor coordinate, so the 

precession angle θ, found from integrating Equation 2.50 with time, is measured in the 

sensor coordinate.  The angle measured in the sensor coordinate is related to the angle 

measured in Cartesian coordinate (θCartesian) by Equation 2.64: 

θCartesian =
1
n
θ

 
(Equation 2.64) 

In Equation 2.64, n is related with the number of nodes in the oscillation pattern.  In the 

translational mode, like the Foucault pendulum, n is 1.  Therefore, the angle θCartesian is 

equal to θ.  In the n=2 flexural mode, the motional axes are separated by 45 degrees in the 

Cartesian coordinate, so θCartesian becomes a half of θ.  Similarly, for n=3 flexural mode, 

θCartesian becomes a third of θ.  The rotation rate (Ωz), in Equation 2.64, is measured in the 

Cartesian coordinate.  By naming the angle calculated from the integration of Ωz with 

time as θinput_Cartesian, from Equations 2.50 and 2.64, θCartesian and θinput_Cartesian are related 

by: 

θCartesian = − γ
nM

θinput _Cartesian  (Equation 2.65)
 

The angular gain (Ag) is defined as the ratio between θCartesian and θinput_Cartesian [7], [118].  

The Ag is expressed as:  

Ag =
γ
nM  

(Equation 2.66) 

In the translational mode gyro, γ/M is 1, so the Ag of the Foucault pendulum gyro 

becomes 1.  Axisymmetric gyros like the Cylindrical Rate-Integrating Gyroscope 
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(CING), γ/M ratio is calculated using ANSYS as 0.14~0.7 for an aspect ratio (= 

height/radius) of 0.05~1.  The Ag for the calculated aspect ratio range is therefore 

0.007~0.35.  For a given geometry, Ag means what portion of the effective mass (M) 

actually contributes to generate the Coriolis force, so it directly affects the resolution of 

the gyro.  The Ag becomes the scale factor in the rate-integrating gyro (RIG).  In Chapter 

5, the a number of axisymmetric sensor geometries are compared in terms of mechanical 

characteristics, including Ag, and microfabricational accuracy and simplicity to find an 

optimal geometry for the MEMS RIG.  

2.3.3.  Response of Gyroscope with Mechanical Anisotropy 

In an actual vibratory gyroscope, there are several nonideality components that affect 

stable precession of the pattern.  These include anisotropy in the stiffness, anisotropy in 

damping, and nonlinear stiffness.  The effects of stiffness and damping anisotropy are 

studied.   

2.3.3.1.  Effect from Anisotropy in Stiffness 

Using Equation 2.13, the motion equation with elasticity anisotropy, under zero 

rotation, can be constructed as [89]:   

 

(Equation 2.67)
 

 

(Equation 2.68) 

 
(Equation 2.69) 

A set of solution to Equation 2.69 are found to be Equations 2.70-2.75:   
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(Equation 2.70)

 

 
(Equation 2.71)

 

 
(Equation 2.72)

 

 
(Equation 2.73)

 

where,  

 
(Equation 2.74)

 

 
(Equation 2.75) 

Equations 2.70-2.75 indicate that all the canonical variables are affected by the elasticity 

anisotropy.  The canonical parameters ( a ,  q ,  θ ,  
φ ) are functions of in-phase amplitude 

(a), quadrature amplitude (q), angular position of the oscillation θ, angular separation 

between the sensor axis and principal stiffness axis θω, and the difference in the square of 

the resonance frequencies ω1
2 −ω 2

2 .  Among the parameters, we focus on the drift in the 

output angular position  θ , because this parameter is the output signal of the sensor.  The 

amount of drift is proportional to cos(2(θ −θω )) , so it becomes zero when the oscillation 

wave pattern is aligned to the principal stiffness axes and becomes the largest when the 

wave pattern is separated from the stiffness axes by π/4 radians.   The  θ  is proportional 

to ω1
2 −ω 2

2  and q.  Therefore, to reduce the drift due to stiffness mismatch, the gyro 

needs to have electrostatic tuning method to match the two frequencies to match them to 

closest possible distance and cancel the q using force feedback control.  The tuning and 
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feedback control circuitry can be easily realized in the capacitive gyroscope, so the drift 

due to stiffness mismatch can be compensated relatively easily.  Equation 2.72 also 

indicates that the drift rate is proportional to nominal frequency change Δω. 

ω1
2 −ω 2

2

ω
∝ Δω  (Equation 2.76)

 

For a constant thermal coefficient of frequency (TCF), a gyro with a smaller nominal 

frequency (ω) has smaller frequency drift (Δω) over the same amount of temperature 

change, so it is advantageous to design a RIG with a small ω.   

2.3.3.2.  Effect from Anisotropy in Damping  

Using Equation 2.13, the motion equation with anisotropy in damping can be 

expressed as Equation 2.77.  In this expression, the rotation rate is also considered to be 

much slower than the resonance frequency (Ωz << ω).   

 

(Equation 2.77) 

The canonical parameters of the gyroscope considering only the damping anisotropy can 

be solved as [89]:      
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(Equation 2.80) 

 
(Equation 2.81) 

, 
(Equation 2.82) 

 
(Equation 2.83) 

The parameters ( a , q , θ , 
φ ) are functions of in-phase and quadrature amplitudes (a, q), 

average of inverse decay time (1/τ) and difference between the inverse of decay time 

(Δ1/τ).  The  θ  decreases with the decrease in q and Δ1/τ.  The q can be reduced using 

quadrature feedback control.  However, the parameter Δ1/τ is dependent on the quality 

factor (Q) of the system, and it cannot be reduce easily with tuning or feedback control.  

Since Δ1/τ parameter is inversely proportional to the inverse of the nominal damping time 

(τo), it is necessary to increase τo.  The τo is proportional to the Q and inversely 

proportional to the resonance frequency ω:  

τ o =
2Q
ω

 (Equation 2.84) 

The low-frequency gyro is advantageous due to the inverse relationship between the τo 

and ω.  Si gyroscopes with a small ω (<5kHz) is advantageous from Q, too, because the 

gyros have a higher Q (close to 1 million) due to reduction in thermoelastic damping 

(TED).  The relationship between the ωo and TED will be discussed further in Chapter 5.  

To achieve a small Δ1/τ, it is ideal to use a degenerate mode in order to have the same 

damping parameters for both modes.  Combining the effect of anisotropy in elasticity and 
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damping, the drift of the vibrating motion is described with the motion parameters as 

shown in Equations 2.85-2.90 [89].  

 
(Equation 2.85)

 

 
(Equation 2.86)

 

 
(Equation 2.87)

 

 
(Equation 2.88)

 

 (Equation 2.89)
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To summarize our findings, to improve the RIG performance, it is necessary to 

reduce the operating frequency ωo (to reduce ω1
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2  and Δ1/τ), match the frequencies 

of the two modes (ω1 = ω2), increase Q, and have very close Q for the two modes.   

2.3.4.  Rate-Gyroscope (RG) Under Stiffness and Damping Anisotropy 
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motion along the sense axis is close to zero.  The motion of an open-loop mode rate-

sensing gyroscope can be derived from the general motion equation (Equation 2.34).  In 

this discussion, we assume that the rotation rate (Ωz) is small, so we neglect the effects of 

angular acceleration and centrifugal force.  In the open-loop operation, the input force 

along sense axis (f2) is zero, the amplitude and velocity along the sense axis (q2 ,  q2 ) are 

much smaller than those along the driving axis (q1 ,  q1 ).  For this reason, the cross-
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coupling forces along the drive axis can be neglected.  The motional equations for a 

general open-loop rate gyroscope are expressed using Equations 2.91-2.92.  
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 (Equation 2.92) 

We find that unlike the rate-integrating mode operation, the motion along the drive axis 

(Equation 2.91) has effectively zero Coriolis force, so the motion along the drive axis 

becomes independent from the sense axis motion (Equation 2.92).  The motion along the 

sense axis is affected by the Coriolis force that is generated from motion along drive axis, 

because q1  and  q1  are much larger than q2  and  q2 .  The force that has the same phase 

with q1 is called the quadrature force due to 90° phase shift from the Coriolis force.  The 

quadrature force can be reduced by aligning the principal stiffness axes to the sensor 

axes.  This can be relatively easily done using electronic tuning method [7].  The 

remaining quadrature error can be canceled out using feedback force.  The forces that has 

the same phase with  q1  include forces from damping anisotropy and the Coriolis force.  

When we compare the behavior of the rate-integrating gyro (RIG) and the rate gyro 

(RG), the influence of stiffness anisotropy can be minimized in both cases easily using 

electrostatic tuning and quadrature feedback.  In the case of the RIG, the anisotropy in 

damping results in bias drift ( θ ) that depends on the position between the vibrating 

pattern to the principal damping axis (θτ).  In the case of the RG, the anisotropy in 
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damping results in a constant rate bias.  Both of these bias needs to be canceled using 

calibration method.  

2.4.  Performance Parameters of the Vibratory Rate and Rate-Integrating Gyro 

The performance of gyros is characterized by many parameters.  Among them are 

short-term accuracy, long-term accuracy, dynamic range, and bandwidth.   Short-term 

accuracy is named the angle random walk (ARW) ( ° / hr  or ° / hr / Hz )[90].  The 

ARW is caused from Brownian motion of a gyro and white noise from interface circuitry.  

The spectral density of the Brownian force is [91]:  

  (Equation 2.93)
 

 
(Boltzmann Constant) (Equation 2.94) 

 (Damping constant) (Equation 2.95) 

The effect of the Brownian noise is calculated by entering the noise term in the right hand 

side of the 2-DOF motion equation (Equation 2.13).  Especially, for a RG where the 

motions along the two axes are weakly coupled and in the case when the two mode 

frequencies are matched, the noise-equivalent rotation rate (ΩBrownian) is expressed as: 

 

ΩBrownian

BW
=

4kBTR
2γ Adriveω

= 1
nAgAdrive

kBT
MωQsense

(rad/sec/ Hz )
 

[Adrive: driving amplitude, n: mode number, Ag: angular gain,  
M: effective mass, ω: resonance frequency, Qsense: effective sense 
mode quality factor] 

(Equation 2.96) 

Equation 2.96 indicates that ΩBrownian reduces as Coriolis mass (γ), driving amplitude 

(Adrive), and resonance frequency ωo increase.  The white noise from interface circuitry 
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also contributes to the short-term noise.  The noise equivalent rotation rate from the 

circuitry (ΩCircuitry) can be calculated by dividing its output-referred circuit noise by the 

scale factor (SF) (Equation 2.97): 

 

Ωcircuitry

BW
=

vn
2 (output)
SF

(rad / sec/ Hz )  (Equation 2.97) 

Typically, a capacitive gyro uses parallel plates along the sense axis to maximize SF.  For 

transimpedance amplifier with a feedback resistance of Rfb, a DC polarization voltage of 

Vp across the parallel plates, nominal sense capacitance of Csense, and a parallel plate gap 

of gsense, SF is calculated as: 

SF =
2VpRfbnAgAdriveQsenseCsense

gsense
 (Equation 2.98) 

The overall noise-equivalent rotation rate is calculated as:  

 

Ωnoise

BW
=

ΩBrownian
2 +ΩCircuitry

2

BW
(rad/sec/ Hz )  (Equation 2.99) 

In the RIG, the bias drift is caused by physical parameters such as anisotropy in 

elasticity and damping and nonlinear stiffness.  The 1/f noise from the readout and 

control circuitry also causes drift.  The anisotropy can be calibrated out, but it changes 

with temperature and pressure.  The drift is also caused by environmental vibration, 

which couples into the 2-DOF dynamics.  In the rate-gyroscope (RG), the drift is caused 

by quadrature error and scale factor change.  This can occur from the change in operating 

pressure or temperature, since they affect the frequency difference between driving and 

sense mode and Q.  The maximum scale factor sensitivity occurs when the modes are 

exactly matched.  Therefore, depending on the application, the RG is operated with slight 

mode mismatch or under feedback. 
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The full-scale range is the maximum input range where the scale factor is kept within 

a linearity range.  For the rate-integrating gyro (RIG), the scale factor is the angular gain 

(Ag).  For the rate gyro (RG), the scale factor is the rate sensitivity.  The factors affecting 

Ag is the deviation of the motion parameters as the rotation rate (Ω) gets closer to the 

resonance frequency (ωo).  The bandwidth of the demodulation block from the control 

circuitry also affects the Ag.  For the RG, the scale factor is affected by the nonlinearity in 

the amplitude or amplitude sensing of the motion along the sense axis.  The dynamic 

range of the rate gyroscope, defined as the ratio between the full-scale range and the 

noise-equivalent rotation rate, is related with the geometry and the physical parameter of 

the gyros as [92]: 

Dynamic Range ≅ gsenseω
10

πM
kBT  

[gsense: electrode gap (parallel plate), ω: operating frequency, M: 
effective mass, kB: Boltzmann constant, T: temperature]     

 

(Equation 2.100) 

Equation 2.100 indicates that the dynamic range increases as the capacitance gap and the 

stiffness of the gyro increase and as the temperature decreases.  The bandwidth of the 

gyroscope is the maximum bandwidth of the input rotation where the output is kept under 

a certain linearity range.  In the RIG, the bandwidth is limited by the bandwidth of the 

demodulation block of the control circuitry.  The gyro dynamics itself is unrelated with 

the frequency of input rotation.  In the RG, the bandwidth is the effective bandwidth of 

the sense mode dynamics. 
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2.5.  Control of Vibratory Gyroscope  

2.5.1.  Control Parameters of the Vibratory Gyroscope 

From the previous section, it is shown that in order to accurately measure the 

precessed angle (θ) it is important to cancel the quadrature (q) of the trajectory, sustain 

the main amplitude (a), and have the right phase relation between the input forces to the 

dynamics of the gyro.  A feedback system can be used to maintain these conditions.  

Additionally, using pre-calibrated system properties measured at different locations of the 

samples, a control system can compensate the effects of the stiffness and damping 

mismatch. 

Control variables of RIG are derived in [93] and [94].  In this section, we introduce 

the control variables in [117].  A positive feedback loop creates the vibration pattern.  In 

the loop at steady state, the overall phase difference is zero and the overall loop gain is 1.  

Motion parameters such as in-phase mechanical energy (E), quadrature mechanical 

energy (K), and angle (θ) can be introduced from the motion amplitude, velocity, and 

phase.  They can be individually controlled using separate control loops.  The parameters 

can be expressed in terms of the position (q1, q2) and velocity terms ( q1 ,  q2 ) as [93]: 

  

E = a2 + q2

∝ q1
2 + q2

2 + q1
2 + q2

2 (low-pass filtered)
 (Equation 2.101) 

  

K =ωaq
∝ q1 q2 − q2 q1 (low-pass filtered)

 (Equation 2.102) 
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(when Q ≈ 0)
 (Equation 2.103) 

The feedback forces are applied from both sensor axes and are proportional to the 

position or velocity of oscillation.  The perturbation forces to individually control E, K, 

and θ can be constructed using feedback loops.  These perturbation forces are expressed 

as [93]: 
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In Equations 2.104-2.108, the parameters c, d, ψ, and n indicates control parameters, 

calculated from PI controllers.  In Equation 2.104, C controls the phase between the input 
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the velocity of the respective axis; 2) the quadrature signal of the vibration (K) can be 

controlled by applying feedback signal that is proportional to the displacement along the 

opposite axes; 3) the angle of the precession (θ) can be controlled by applying the forces 

that are proportional to the velocity from the opposite axes; and 4) the phase difference 

between the reference signal and motion signal can be adjusted by applying forces that 

are proportional to the displacement of the same axis, which is basically the idea for the 

electrical tuning.  

2.6.  Difference Between Control and Design of Rate-Integrating Gyroscope (RIG) 

and Rate Gyroscope (RG) 

2.6.1.  Difference in the Control of RIG and RG 

In the rate-integrating gyro (RIG), the controller consists of the main phase-control 

loop to have self-oscillation, amplitude control circuitry to sustain the E, and quadrature 

control to null the K.  The output signal of the RIG is θ.  When the frequency difference 

between the two modes is small, electrical tuning methods can be used.  The stiffness 

anisotropy is compensated mechanically and electrically to nearly zero.  Anisotropic 

damping and stiffness create drift rate that is a sinusoidal function of θ.  Thus, by finding 

out the positions of the principal damping axes and the maximum drift rate at the 

maximum damping axis, one can compensate the drift due to anisotropic damping, given 

that the gyro is operated under controlled temperature and pressure level.  This 

compensation method was adopted in the HRG to improve its bias stability sufficient for 

the inertial grade applications [95]. 
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In the closed-loop mode of RG, there is an additional control for θ.  The output 

signal of this mode is the amplitude of ψ in Equation 2.104, which is an output voltage of 

a PI controller for θ.  In the open-loop mode of the RG, the control circuitry controls the 

E of one axis (q1) and mechanical damping limits the amplitude on the second axis (q2).  

The mode frequencies are either exactly tuned or matched to a close value.  In case the 

two frequencies are exactly matched, the sense mode displacement (q2 ) becomes in-

phase with the displacement of mass in the driving axis (q1 ).  When the two frequencies 

are intentionally mismatched to achieve wide bandwidth and smaller bias drift, q2  

becomes in-phase with the velocity along the drive axis  q1 .  The difference is made from 

the fact that when the two modes are mismatched, the Coriolis motion does not cause 

resonance in the motion along the sense axis.   

2.6.2.  Difference in the Structural Design of RIG and RG 

The rate-integrating gyroscope (RIG) and the rate gyroscope (RG) have different 

physical parameters that affect their performances.  The accuracy of the RIG is limited by 

the drift from stiffness and damping mismatch, so it is critical to closely the stiffness and 

damping.  However, when the principal stiffness axes are aligned closely to the sensor 

axes, the RG offers good performance in the existence of stiffness and damping 

anisotropy.  The performance of the RG is typically limited by the noise from circuitry 

(white and 1/f noise), from the body (Brownian motion), quadrature error, and scale-

factor change from temperature change.  

The difference in the error sources for the RG and RIG leads to different design 

strategy.  First, in the RIG, a symmetrical shape is required.  Degenerate-type resonator 

shapes are generally preferred due to the innate symmetry.  The resonators are built with 
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either a polycrystalline material or a material with isotropy along the directions where the 

shell deforms.  In the RIG, the Brownian noise from the mass has less influence than the 

structural anisotropy.  The amplitude of the RIG does not influence the scale factor of the 

sensor, so the amplitude of the sensor can be kept at a relatively small level.   

On the other hand, for the RG, a symmetrical structure shape is not needed.  There is 

no restriction in the crystallography of materials to create a RG.  Many designs adopt 

lumped-mass structures, like a tuning-fork gyroscope, because these structures have 

much larger effective mass and larger gain factor and it is much easier to control their 

gyro frequencies to a desired value than in a degenerate-mode gyroscope.  Folded springs 

are used to reduce nonlinear stiffening in order to have large oscillation amplitudes.  

Comb-drive electrodes are used to induce large actuation amplitude with low 

nonlinearity.  Comb-drive electrodes are not suitable for the RIG, because they create off-

axis attracting forces when the oscillation motion deviates from the direction of the 

electrodes (Figure 2.7).  Parallel electrodes do not produce such off-axis force, so they 

are adopted in the RIG (Figure 2.8).   

A number of advanced design techniques are available for the RG.  Mode-

decoupling designs are proposed for reducing quadrature error caused by the 

microfabrication process [21, 55, 57-60, 65, 66, 69, 80].  The decoupled gyro typically 

has two sets of springs with strong directional compliancy, i.e. the drive-mode spring is 

compliant along only the driving axis and the sense-mode spring is compliant along only 

the sensing axis.  A decoupled gyro is typically constructed by having a gyro mass 

connected a single set of directional springs.  The springs are connected to a frame with 

strong rigidity in all directions.  The frame is connected to another set of directional 
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springs.  Finally, the directional springs are connected to an anchor.  With multiple 

masses (main mass, frame) and multiple springs, the structure of the decoupled gyroscope 

is asymmetric with respect to the principal motion axes.  In addition, the vibration 

sensitivity of a tuning-fork gyroscope is reduced by using balanced modes for driving and 

sensing modes, where the components of motion from environmental vibration can be 

differentially canceled.  In order to create a balanced-mode gyroscope, multiple sets of 

masses and springs are used, and the shapes of these springs are often not the same for 

the two axes.  Because of this, although many balanced mode gyros can become a good 

RG, they may not be suitable as RIG.  

2.7.  Summary  

In this chapter, the principle of vibratory rate gyro (RG) and rate-integrating 

gyroscopes (RIG) are explained.  The rate-integrating gyro measures angular position (θ), 

and the advantage of the RIG include large full-scale range and wide bandwidth, both of 

which are fraction of its operating frequency (ω).  The RIG also has a stable scale factor, 

angular gain (Ag), which is determined sorely from the geometry of the gyro.  The RIG 

has these characteristics because of equal coupling of Coriolis force to both motional 

axes.  When a gyro has identical stiffness and damping along both motional axes, the 

motional responses of the two motional axes under the Coriolis force become identical, 

resulting in zero drift.  However, there is always a certain amount of mismatch in 

stiffness and damping, and the mismatch in these parameters cause drift in vibrational 

pattern ( θ ).  The mismatch in the stiffness factors can be suppressed relatively easily 

using electrical tuning and quadrature-control algorithm.  The drift due to the mismatch 

in damping coefficient is difficult to suppress, and it needs to be compensated using 
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calibrated drift data over two-dimensional space.  The bias drift rate is also inversely 

proportional to the nominal decay time (τo), so it is also important to design a device with 

a large Q and a small operating frequency (<5kHz).  Due to the requirement of isotropy 

in stiffness and damping, the geometries for the RIG are typically limited to those with 

degenerate modes.  Axisymmetric geometries are preferred due to innate matching in 

stiffness and damping.   

  The RG is a subset of RIG.  The output signal of the RG is rotational rate ( ).  The 

advantage of the RG is simpler control and high accuracy in rate measurement.  The 

principle of the RG is unequal coupling of Coriolis force in the two motional axes.  In 

this mode, the vibrational amplitude along only the driving axis is kept large, and the 

sense mode motion is influenced by the Coriolis force.  However, since the vibrational 

amplitude along the sense axis is much smaller than the amplitude in the driving axis, so 

 θ

  
(a) Initial position of the mass 
with respect to the x and y comb 
drive electrodes. 

(b) Parallel (blue) and perpendicular (red) force 
components from x- and y-axis comb-drive 
electrodes and resultant actuation direction (black) 

Figure 2.7.  Comb drive actuation of mass:  (a) Initial state of a rectangular mass with x- 
and y- comb-drive electrodes and (b) force diagram when the mass (at GND) is actuated 
from x-axis electrode (at Vx + Vp) and y-axis electrode (at Vy + Vp).  The actuation 
direction of the mass deviates from the intended direction due to the off-axis force 
components (in red) from both electrodes. 
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negligible amount of Coriolis force is generated along the driving axis.  The RG does not 

require isotropic stiffness or damping coefficients along the driving and sense mode axes.  

In fact, the resonance frequencies of the two modes are typically slightly mismatched to 

achieve wider bandwidth and prevent large change in its scale factor over temperature or 

pressure change.  In addition, the Q of the sense mode is typically kept lower than the Q 

of the drive mode to increase the bandwidth.  The geometry of the sensor and the 

vibrational mode shapes of the RG are much less restricted than the RIG, since the 

accuracy of RG is not limited by the anisotropy in stiffness or damping.  The rest of the 

comparison between the RG and the RIG are included in Tables 2.1-2.3. 

In later chapters, the design, fabrication, and testing of a RG, Balanced Oscillating 

Gyroscope (BOG) and a RIG, Cylindrical Rate-Integrating Gyroscope (CING), will be 

described.  Especially, for the CING, due to the strict requirement for stiffness and 

damping isotropy, we focused on developing a gyro with an entirely axisymmetric 

  
(a) Initial position of the mass with 
respect to the x- and y- parallel 
drive electrodes 

(b) Parallel (blue) force components from x- 
and y- parallel electrode and resultant actuation 
direction 

Figure 2.8.  Parallel-plate actuation of mass: (a) Initial state of a rectangular mass with 
x- and y- parallel plate electrodes and (b) force diagram when the mass (at GND) is 
actuated from x- electrode (at Vx + Vp) and y- electrode (at Vy + Vp).  The direction of 
vibration is controlled more precisely because there are no off-axis forces. 
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geometry, self-alignment of the anchor and the resonator body, low operating frequency 

(~3kHz), and large Q (~100,000). 

 

Table 2.1.  Comparison of mechanical properties and designs of the vibratory rate 
gyroscope (RG) and rate-integrating gyroscope (RIG) from viewpoint of sensor 
property and sources of error 
A.  Sensor Property and Sources of Error 
Category Rate Gyroscope (RG) Rate-Integrating Gyroscope 

(RIG) 
1.  Sensor 
output  

Amplitude along sense axis (q2) (open 
loop), counterbalancing force amplitude 
(ψ) (closed loop). 
 

Rotation angle (θ). 

2.  Scale factor 
∝
VpRfbnAgAdriveQsenseCsense

gsense
  

(from Equation 2.97). 
 

Angular gain (Ag). 

3.  Bandwidth 
∝ ω
Qsense

. 

 

Bandwidth of low-pass filter of 
demodulator (fraction of ω). 

4.  Dynamic 
range  ≈ gsenseω

10
πMeff

kBT
 (from Equation 2.99). 

Bandwidth of low pass filter of 
demodulator (fraction of ω) 
divided by minimum angular 
resolution. 
 

5.  Physical 
sources 
limiting the 
accuracy  

a.  Short term:  Brownian noise. 
 
b.  Long term accuracy (>1sec) 

-  Quadrature error. 
-  Electrical feedthrough. 
-  1/f noise.     
-  Scale factor change due to pressure or 

temperature change. 
- Shock and vibration. 
 

Stiffness and damping mismatch, 
Brownian motion, circuit noise, 
and control error.   
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Table 2.2.  Comparison between mechanical properties and designs of the vibratory rate 
gyroscope (RG) and rate-integrating gyroscope (RIG) from viewpoint of structural 
requirements 
B.  Structural Requirements 

Category Rate Gyroscope (RG) Rate-integrating gyroscope (RIG) 

1.  Effective 
mass (M) 

a. Large M needed for better 
resolution. 
 

b. M for two modes do not need to be 
the same.  

a. M for two modes need to be 
identical. 
 

b. Large M reduces Brownian 
noise, but it is not the 
performance-limiting factor. 

 
2.  Frequency 
(ω) 

a. Larger ω helps increasing 
bandwidth and shock resistivity, 
but typically leads to lower SNR 
(due to limitation in the 
transduction area).   
 

b. Lower ω simplifies fabrication 
process and leads to larger SNR, 
and increases electrical tuning 
range, but more fragile and more 
sensitive to environmental 
vibration.   
  

c. Frequency mismatch (Δω) 
decreases SNR but increases BW. 

 

a. Lower ω improves τ and leads 
to lower drift due to anisotropic 
damping, but more fragile and 
sensitive to vibration. 
 

b. Larger ω improves sensor 
bandwidth and full-scale range. 

 
c. Exact mode matching is needed. 

3.  Quality factor 
(Q) 

a. Large Q improves SNR but lowers 
the BW and increases drift under 
pressure or temperature change. 
 

b. Sense-mode Q determines sensor’s 
BW. 

 

a. Large Q improves bias stability. 
 

b. Q does not affect bandwidth or 
full-scale range. 
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Table 2.3.  Comparison between mechanical properties and designs of the vibratory rate 
gyroscope (RG) and rate-integrating gyroscope (RIG) from viewpoint of sensor design 
and control 
C.  Sensor Design and Control 
Category Rate Gyroscope (RG) Rate-integrating gyroscope 

(RIG) 
1.  Operating 
mode shapes 

a. Modes with low vibration 
sensitivity (balanced mode), low 
quadrature error (decoupled 
design), and large Q (low anchor 
loss) are required. 
 

b. Degenerate modes are not required. 
   

a. Mode with low vibration 
(balanced mode) and large Q 
(low anchor loss). 
 

b. Degenerate modes are 
required. 

  

2.  Mass Multiple masses are typically used for 
mode decoupling and creating balanced 
modes. 

 

Axisymmetric geometry is 
typically used.  Multiple masses 
can be used for balanced mode 
shapes and lower the anchor loss.   
 

3.  Spring design a. Directional springs are used in 
decoupled gyros. 
 

b. Spring designs for drive and sense 
modes can be different. 

 
c. Springs with large deflection, small 

nonlinearity, and low temperature 
sensitivity are required.  

 
d. Coupling springs are used to 

separate parasitic modes from 
operating modes. 

 

a. Spring shapes needs to be 
symmetric. 
 

b. Springs with large deflection 
amplitude may not be as 
important as in the RG. 

 
c. Coupling springs are equally 

important as in the RG. 

4.  Anchor 
design 

Needs to be designed for low anchor 
loss and low temperature sensitivity. 
 

a. Anchor positions need to be 
symmetric. 

 
b. Needs to be designed for low 

anchor loss and low 
temperature sensitivity. 

 
5.  Electrode 
design 

Comb drive electrodes are typically 
used along driving axis, and parallel 
plate electrodes are typically used along 
sensing axis. 

 

Parallel plate electrodes are used 
along both axes.   

6.  Basic control  
blocks  

Main amplitude-control loop (E), 
quadrature-controlling loop (K), angular 
position controlling loop (θ). 

Main amplitude-control loop (E), 
quadrature-controlling loop (Q). 
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CHAPTER 3.  
 

DERIVATION OF PHYSICAL PARAMETERS OF  
3-DIMENSIONAL WINEGLASS-MODE GYROSCOPE 

 
 

In Chapter 2, we derived a general motional equation for a vibratory gyroscope.  The 

physical parameters of a gyro include effective mass (M), angular gain (Ag), and 

centrifugal mass (α, β, µ).  For a tuning fork gyroscope, it is straightforward to calculate 

these parameters, because there is a clear distinction between the spring and mass within 

the geometry and motional patterns (translation or torsion) are simple.  In a continuous-

shaped gyroscope, like the hemispherical resonator gyroscope (HRG), it is difficult to 

calculate these parameters, because the resonator shell serves as a mass and spring at the 

same time and the flexural motion is more complex than translational or torsional 

motions.  Their physical parameters need to be solved numerically.  In this chapter, the 

physical parameters of three-dimensional axisymmetric gyroscopes are derived in terms 

of their modal shape functions.  The procedures for numerically calculating them using 

ANSYS will be discussed.  

3.1.  Lagrangian Motional Equation 

The Lagrangian motional equation of a gyroscope is constructed using the 

generalized displacements of the two modes (qi), kinetic energy TE, potential energy VE, 

damping energy DE, and the externally applied force (Fi) as [96]:   
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d
dt

∂(TE −VE )
∂ q1

⎛
⎝⎜

⎞
⎠⎟
− ∂(TE −VE )

∂q1
+ ∂DE

∂q1
= F1      (Mode 1) (Equation 3.1) 

 

d
dt

∂(TE −VE )
∂ q2

⎛
⎝⎜

⎞
⎠⎟
− ∂(TE −VE )

∂q2
+ ∂DE

∂q2
= F2      (Mode 2) (Equation 3.2) 

3.1.1.  Kinetic Energy (TE) 

For a continuous geometry, TE is an integral of the kinetic energies of finite elements 

over the entire geometry, and it is given as:   

 
TE =

1
2

ρ v(p)
  2

dV
V
∫  (Equation 3.3) 

In Equation 3.3, ρ denotes density,  v(p)
 

 denotes the velocity vector of element p in the 

inertial coordinate system.  We consider a gyro located on a rotating coordinate, located 

at a position vector of  ra


 from the origin (Figure 3.1).  The coordinate rotates with an 

angular velocity vector  Ω


 and translates with a velocity vector  vo


.  When a finite 

element p, located at  xp


 from the origin of the sensor coordinate, is translating with a 

displacement vector  u(p)
 

, the velocity vector in the inertial coordinate  v


 is expressed as 

[97]:  

 v

= vo

+ u(p)
 

+Ω

× (ra

+ xp


+ u(p)
 

)  (Equation 3.4) 

In the Cartesian coordinate,  vo


 is expressed as (vxo, vyo, vzo),  u(p)
 

 is expressed as ( ux , 

 uy ,  uz ),  Ω


 is expressed as (Ωx, Ωy, Ωz),  ra


 is expressed as (xa, ya, za),  xp


 is expressed as 

(xp, yp, zp), and  u(p)
 

 is expressed as (ux, uy, uz).  The  v


 becomes: 



 69 

 

vx
vy
vz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

vxo + ux +Ωy(za + zp + uz )−Ωz (ya + yp + uy )

vyo + uy −Ωx (za + zp + uz )+Ωz (xa + xp + ux )

vzo + uz +Ωx (ya + yp + uy )−Ωy(xa + xp + ux )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

(Equation 3.5) 

 

 
Figure 3.1.  Finite element of a cylindrical gyro, located at  rp


 from sensor origin and has 

displacement vector  u(p)
 

.  The gyro is located at  ra


 from the origin of rotating 
coordinate, and rotating coordinate is located at  ro


 from the inertial coordinate origin. 

The motion of the gyro can be expressed as a sum of two normal modes (Figure 3.2), 

so we can express motion of the finite element using the modal parameters.  For an 

axisymmetric gyro, the two modes are flexural modes, also known as wineglass modes.  

The amplitudes of these modes are expressed in terms of modal coordinates (q1, q2).  In 

the wineglass mode, the finite element at different location has different oscillation 

amplitudes, and it is most useful to define q1 and q2 as the maximum displacements from 
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the two modes.  The amplitudes at the rest of the locations are normalized with q1 and q2, 

and they are defined as shape functions [(φx1, φy1, φz1) for mode 1, and (φx2, φy2, φz2) for 

mode 2].  The displacement of a finite element p for mode 1 and mode 2, (ux1(p), uy1(p), 

uz1(p)) and (ux2(p), uy2(p), uz2(p)), respectively, are expressed as: 

ux1(p)
uy1(p)

uz1(p)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

φx1(p)
φy1(p)

φz1(p)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

q1 (Mode 1)

 

(Equation 3.6) 

ux2 (p)
uy2 (p)

uz2 (p)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

φx2 (p)
φy2 (p)

φz2 (p)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

q2 (Mode 2)

 

(Equation 3.7) 

The displacement vector  u(p)
 

 is expressed as a superposition of displacements from the 

two modes. 

ux (p)
uy(p)

uz (p)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

φx1(p)
φy1(p)

φz1(p)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

q1 +

φx2 (p)
φy2 (p)

φz2 (p)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

q2

 

(Equation 3.8) 

Equation 3.8 can be combined with Equation 3.5 to find the square of the velocity 

amplitude of the finite element p: 

 

v(p) 2 = vx
2 (p)+ vy

2 (p)+ vz
2 (p)

= [vxo + ux +Ωy(za + zp + uz )−Ωz (ya + yp + uy )]
2

+[vyo + uy −Ωx (za + zp + uz )+Ωz (xa + xp + ux )]
2

+[vzo + uz +Ωx (ya + yp + uy )−Ωy(xa + xp + ux )]
2

,where
ux (p) = φx1(p)q1 +φx2 (p)q2
uy(p) = φy1(p)q1 +φy2 (p)q2
uz (p) = φz1(p)q1 +φz2 (p)q2  

(Equation 3.9) 
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The expanded form of the Equation 3.9 contains many terms, and it is not particularly 

physically meaningful.  However, after we integrate 
 
v(p)
  2

 over the entire geometry to 

calculate the |v|2 (Equation 3.10), several terms will be canceled out, and the equations 

can become much simpler. 

 
v
 2

= v(p)
  2

dV
V
∫  (Equation 3.10) 

The expression for |v|2 can be simplified first by canceling out the terms that do not 

contribute to the generation of inertial forces.  These terms will become zero after 

differentiation during the derivation of the motional equations (Equations 3.1-3.2).  The 

equations can be further simplified due to the symmetry in the modal shape and the 

orthogonality of the modes.   

The displacement pattern of the wineglass mode is symmetric with respect to the axis 

of symmetry.  The oscillation pattern along the azimuthal direction is expressed as 

sinusoidal wave function.  From these characteristics, we can derive several mathematical 

expressions for the displacement of the finite elements.  These expression become very 

useful in simplifying the 
 
v(p)
  2

.  Figure 3.2 shows a hemispherical resonator gyroscope 

(HRG) in the spherical coordinate.  The HRG oscillates in the n=2 wineglass mode.  The 

z-axis of the Cartesian coordinate is aligned to the symmetry axis of the gyro.  The 

antinodes of this mode in the mode 1 are located at azimuthal positions (ϕ) of 0, π/2, π, 

and 3π/2 radians.  In the spherical coordinate, the radial (ΔU1), tangential-to-azimuth 

(ΔV1), and tangential-to-altitude (ΔW1) displacements for the wineglass mode are 

sinusoidal functions of 2ϕ.  The subscript 1 denotes that the displacement is from mode 

1.  The azimuthal position ϕ with the maximum |ΔU1| always has the minimum |ΔV1|.  
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Therefore, |ΔU1| and |ΔV1| have a quadrature relationship.  The phase of ΔW1 matches the 

phase of ΔU1 to conserve the overall volume.  A general expression for the displacements 

ΔU1, ΔV1, and ΔW1 of an element p in the spherical coordinate (r, ϕ, θ), oscillating in the 

nth-order wineglass mode, can be expressed as [98]:  

ΔU1(r,ϕ,θ ) = f (r,θ )q1 cos(nϕ )  (Equation 3.11) 

ΔV1(r,ϕ,θ ) = −g(r,θ )q1 sin(nϕ )
 

(Equation 3.12) 

ΔW1(r,ϕ,θ ) = h(r,θ )q1 cos(nϕ )
 

(Equation 3.13) 

In Equations 3.11-3.13, f(r,θ), g(r,θ), and h(r,θ) are shape functions in terms of radial and 

altitudinal coordinates.  The mode has antinodes at ϕ of iπ/n (i: integer from 1 to 2n) 

radians.  The displacements of element p in mode 2 are: 

ΔU2 (r,ϕ,θ ) = f (r,θ )q2 cos n(ϕ −π 2n)( )
= f (r,θ )q2 sin nϕ( )

 (Equation 3.14) 

ΔV2 (r,ϕ,θ ) = −g(r,θ )q2 sin n(ϕ −π 2n)( )
= g(r,θ )q2 cos nϕ( )  

(Equation 3.15) 

ΔW2 (r,ϕ,θ ) = h(r,θ )q2 cos n(ϕ −π 2n)( )
= h(r,θ )q2 sin nϕ( )  

(Equation 3.16) 

The mode has antinodes at ϕ of π(2i-1)/2n (i: integer from 1 to 2n) radians.  The 

displacements in the spherical coordinate are converted into the Cartesian coordinate as: 

Δuxi (r,ϕ,θ )= ΔUi cosϕ sinθ − ΔVi sinϕ + ΔWi cosϕ cosθ  (Equation 3.17) 

Δuyi (r,ϕ,θ )= ΔUi sinϕ sinθ + ΔVi cosϕ + ΔWi sinϕ cosθ
 

(Equation 3.18) 

Δuzi (r,ϕ,θ ) = ΔUi cosθ − ΔWi sinθ
 

(Equation 3.19) 

The shape functions in the wineglass modes 1 and 2 are translated as: 
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φx1(r,ϕ, z) = f (r,θ )cos(ϕ )cos(2ϕ )sinθ − g(r,θ )sin(ϕ )sin(2ϕ )
+h(r,θ )cos(ϕ )cos(2ϕ )cosθ  

(Equation 3.20) 

φy1(r,ϕ,θ ) = f (r,θ )sin(ϕ )cos(2ϕ )sinθ + g(r,θ )cos(ϕ )sin(2ϕ )
+h(r,θ )sin(ϕ )cos(2ϕ )cosθ

 

(Equation 3.21) 

φz1(r,ϕ,θ ) = f (r,θ )cos(2ϕ )cosθ − h(r,θ )cos(2ϕ )sinθ
 

(Equation 3.22) 

φx2 (r,ϕ, z) = f (r,θ )cos(ϕ )sin(2ϕ )sinθ + g(r,θ )sin(ϕ )cos(2ϕ )
+h(r,θ )cos(ϕ )sin(2ϕ )cosθ  

(Equation 3.23) 

φy2 (r,ϕ,θ ) = f (r,θ )sin(ϕ )sin(2ϕ )sinθ − g(r,θ )cos(ϕ )cos(2ϕ )
+h(r,θ )sin(ϕ )sin(2ϕ )cosθ  

(Equation 3.24) 

φz2 (r,ϕ,θ ) = f (r,θ )sin(2ϕ )cosθ − h(r,θ )sin(2ϕ )sinθ  (Equation 3.25) 

 

   
(a) Finite element of a 
hemispherical gyro in 
spherical coordinate (in 
orange) 

(b) Oscillation pattern 
of the n=2 wineglass 
mode 1 

(c) Oscillation pattern of 
the n=2 wineglass mode 2 

Figure 3.2. Hemispherical resonator gyro (HRG) in n=2 the wineglass mode.  A finite 
element p is located at location vector (r,ϕ,θ) in the spherical coordinate.  The 
wineglass mode patterns are aligned at azimuthal positions (ϕ) of 0, π/2, π, and 3π/2 
radians in mode 1 and π/4, 3π/4, 5π/4, and 7π/4 radians in mode 2. 

Using Equations 3.20-3.25, the following four properties are found for the wineglass 

mode.  The first property is that the sum of displacement for the overall geometry 

becomes zero.  This property can be expressed using Equations 3.26-3.31. 
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• Property 3.1 

φx1(p)dV = 0
V
∫  (Equation 3.26) 

φx2 (p)dV = 0
V
∫  (Equation 3.27) 

φy1(p)dV = 0
V
∫  (Equation 3.28) 

φy2 (p)dV = 0
V
∫

 
(Equation 3.29) 

φz1(p)dV = 0
V
∫  (Equation 3.30) 

φz2 (p)dV = 0
V
∫  (Equation 3.31) 

  Property 3.1 is expressed using general displacement parameters (ux1, uy1, uz1, ux2, uy2, 

uz2) as: 

• Property 3.1-1.  

ux1(p)dV = 0
V
∫  (Equation 3.32) 

ux2 (p)dV = 0
V
∫  (Equation 3.33) 

uy1(p)dV = 0
V
∫

 
(Equation 3.34) 

uy2 (p)dV = 0
V
∫

 
(Equation 3.35) 

uz1(p)dV = 0
V
∫

 
(Equation 3.36) 

uz2 (p)dV = 0
V
∫

 
(Equation 3.37) 
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The second property is that the integration of multiplication of the shape functions on the 

same axis in two wineglass modes becomes zero.  This property can be expressed as:  

• Property 3.2 

[φx1(p)φx2 (p)
v
∫ ]dV = 0  (Equation 3.38) 

[φy1(p)φy2 (p)]
v
∫ dV = 0

 
(Equation 3.39) 

[φz1(p)φz2 (p)]
v
∫ dV = 0

 
(Equation 3.40)  

The third property is that the integration of the sum of the cross products of the shape 

functions on x and y axes in the two wineglass modes becomes zero.   

• Property 3.3   

φx1(p)φy2 (p)+φx2 (p)φy1(p)( )
v
∫ dV = 0  (Equation 3.41) 

The fourth property is that the integration of the product of the shape functions for two 

different axes in a single mode becomes zero.  

• Property 3.4   

φx1(p)φy1(p)⎡⎣ ⎤⎦dV = 0
V
∫  (Equation 3.42) 

φx2 (p)φy2 (p)⎡⎣ ⎤⎦dV = 0
V
∫

 
(Equation 3.43) 

φx1(p)φz1(p)⎡⎣ ⎤⎦dV = 0
V
∫  (Equation 3.44) 

φx2 (p)φz2 (p)⎡⎣ ⎤⎦dV = 0
V
∫  (Equation 3.45) 

φy1(p)φz1(p)⎡⎣ ⎤⎦dV = 0
V
∫  (Equation 3.46) 
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φy2 (p)φz2 (p)⎡⎣ ⎤⎦dV = 0
V
∫

 
(Equation 3.47) 

Additionally, the fifth property of the mode is defined using the orthogonality principle of 

motion in the resonance mode.  The orthogonality principle states that the product of the 

eigenvectors of finite elements in two different modes is integrated to become zero [96].  

This property can be expressed as: 

• Property 3.5 

φx1(p)φx2 (p)+φy2 (p)φy2 (p)+φz2 (p)φz2 (p)( )
V
∫ = 0  (Equation 3.48) 

The difference between Property 3.5 from Properties 3.1-3.4 is that is that Property 3.5 is 

valid regardless of the symmetry in the modal shapes, whereas Properties 3.1-3.4 are 

valid only if the mode shape is symmetric.  Now, Equation 3.9 is simplified using the 

abovementioned properties.  First, by canceling out the parameters that do not contribute 

to inertial force and by applying Property 3.1-1, v 2  can be simplified as:   

 

v 2

= ux
2 + uy

2 + uz
2( )dV

V
∫ (Group 1)  

 
+ (Ωx (−2 uyuz + 2uy uz )+Ωy(2 uxuz − 2ux uz )+Ωz (−2 uxuy + 2ux uy )
V
∫ )dV (Group 2)  

+ (Ωx
2 (uy

2 + uz
2 )+Ωy

2 (ux
2 + uz

2 )+Ωz
2 (ux

2 + uy
2 )

V
∫ )dV (Group 3)  

+ (−2ΩyΩzuyuz − 2ΩxΩzuxuz − 2ΩxΩyuxuy )
V
∫ dV (Group 4)  

 (Equation 3.49) 

  In Equation 3.49, Groups 1-4 in can be expressed in terms of modal parameters, and 

they will be further simplified using abovementioned properties.      
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• Group 1 (simplified using Property 3.5):  

 

ux
2 + uy

2 + uz
2( )

V
∫ dV

= (φx1
2 +φy1

2 +φz1
2 ) q1

2 + (φx2
2 +φy2

2 +φz2
2 ) q2

2 + 2(φx1φx2 +φx1φx2 +φx1φx2 ) q1 q2( )dV
V
∫

= (φx1
2 +φy1

2 +φz1
2 ) q1

2 + (φx2
2 +φy2

2 +φz2
2 ) q2

2
2( )dV

V
∫

 
 (Equation 3.50) 

• Group 2 (simplified using Property 3.4):  

 

(Ωx (−2 uyuz + 2uy uz )+Ωy(2 uxuz − 2ux uz )+Ωz (−2 uxuy + 2ux uy )
V
∫ )dV

= (−2Ωz (φx1φy2 −φx2φy1) q1q2 + 2Ωz (φx1φy2 −φx2φy1)q1 q2
V
∫ )dV

 

(Equation 3.51) 

• Group 3 (simplified using Property 3.2):  

[Ωx
2 (uy

2 + uz
2 )+Ωy

2 (ux
2 + uz

2 )+Ωz
2 (ux

2 + uy
2 )

V
∫ ]dV

= Ωx
2[(φy1

2 +φz1
2 )q1

2 + (φy2
2 +φz2

2 )q2
2 + 2(φy1φy2 +φz1φz2 )

V
∫ ]dV

+ Ωy
2[(φx1

2 +φz1
2 )q1

2 + (φx2
2 +φz2

2 )q2
2 + 2(φx1φx2 +φz1φz2 )

V
∫ ]dV

+ Ωz
2[(φx1

2 +φy1
2 )q1

2 + (φx2
2 +φy2

2 )q2
2 + 2(φx1φx2 +φy1φy2 )

V
∫ ]dV

= Ωx
2[(φy1

2 +φz1
2 )q1

2 + (φy2
2 +φz2

2 )q2
2

V
∫ ]dV

+ Ωy
2[(φx1

2 +φz1
2 )q1

2 + (φx2
2 +φz2

2 )q2
2

V
∫ ]dV

+ Ωz
2[(φx1

2 +φy1
2 )q1

2 + (φx2
2 +φy2

2 )q2
2

V
∫ ]dV

 

(Equation 3.52) 

• Group 4 (simplified using Properties 3.3 and 3.4):  
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(−2ΩyΩzuyuz − 2ΩxΩzuxuz − 2ΩxΩyuxuy )
V
∫ dV

= − 2ΩyΩz[φy1φz1q1
2 + (φy1φz2 +φy2φz1)q1q2 +φy2φz2q2

2 ]dV
V
∫

− 2ΩxΩz[φx1φz1q1
2 + (φx1φz2 +φx2φz1)q1q2 +φx2φz2q2

2 ]
V
∫ dV

− 2ΩxΩy[φx1φy1q1
2 + (φx1φy2 +φx2φy1)q1q2 +φx2φy2q2

2 ]dV
V
∫

= 0  

(Equation 3.53) 

  Combining Equations 3.50-3.53, the kinetic energy (TE) is expressed as: 

 

TE =
1
2
ρ v 2

= 1
2
ρ (φx1

2 +φy1
2 +φz1

2 ) q1
2 + (φx2

2 +φy2
2 +φz2

2 ) q2
2⎡⎣ ⎤⎦dV

V
∫

+ 1
2
ρ −2Ωz (φx1φy2 −φx2φy1) q1q2 + 2Ωz (φx1φy2 −φx2φy1)q1 q2⎡⎣ ⎤⎦dV
V
∫

+ 1
2
ρ Ωx

2 φy1
2 +φz1

2( )q12 + φy2
2 +φz2

2( )q22⎡⎣ ⎤⎦dV
V
∫

+ 1
2
ρ Ωy

2 φx1
2 +φz1

2( )q12 + φx2
2 +φz2

2( )q22⎡⎣ ⎤⎦dV
V
∫

+ 1
2
ρ Ωz

2 φx1
2 +φy1

2( )q12 + φx2
2 +φy2

2( )q22⎡⎣ ⎤⎦dV
V
∫

 (Equation 3.54) 

  These expressions will be used later in Section 3.4 in the derivation of Lagrangian 

motional equation.  

3.1.2.  Potential Energy (VE) 

Assuming that there is negligible nonlinear stiffness, potential energy (VE) can be 

expressed using effective stiffnesses along the two axes (k11, k22) and cross-axial stiffness 

(k12 (=k21)) as: 

VE =
1
2
(k11q1

2 + k22q2
2 + 2k12q1q2 )  (Equation 3.55) 
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In Chapter 2, we derived that the k11, k22, and k12 (=k21) for a sensor axes, separated from 

the principal stiffness axes by θω, are related to the principal stiffnesses k1 and k2, and θω 

by:  

k11 k12
k21 k22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

cos2θωk1 + sin
2θωk2 cosθω sinθω (k1 − k2 )

cosθω sinθω (k1 − k2 ) sin2θωk1 + cos
2θωk2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

(Equation 3.56) 

The principal stiffnesses (k1, k2) are contributed by mechanical and electrical stiffnesses.  

The mechanical stiffness of a complex 3D gyroscope is difficult to be found analytically, 

and we need to rely on the finite element method (FEM), where we can derive the 

stiffness from effective mass and a resonance frequency.  An electrical spring constant is 

generated from nonlinear electrostatic force between parallel plates, and they are used to 

tune the resonance frequencies of a gyro.  For parallel plate electrodes with area A, 

nominal gap gtuning, polarization voltage Vp, and displacement u perpendicular to the 

plates, the amount of electrical energy (Eenergy) stored across the plates is:  

Eelectrical =
1
2

εA
gtuning − u

Vp
2  (Equation 3.57) 

An electrical stiffness is found by differentiating the Eelectrical twice using u:  

kelectrical = − d
2EElectrical

du2

= − 1
4

εA
g3tuning

Vp
2
 (Equation 3.58) 

The kelectrical is always a negative value and lowers a resonance frequency.  According to 

where a tuning electrode is placed, k1 and k2 can be selectively controlled.  



 80 

3.1.3.  Damping Energy (DE) 

The change in the damping energy (dDE) is expressed using in-axis and off-axis 

damping constants (c11, c22, c12, c21), modal displacements (q1, q2), and modal velocities (

 q1 , q2 ) as: 

 dD = c11 q1dq1 + c22 q2dq2 + c12 q2dq1 + c12 q1dq2  (Equation 3.59) 

The effective damping constants in the sensor coordinate, separated from the principal 

damping axes by θτ, are: 

c11 c12
c21 c22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

cos2θτc1 + sin
2θτc2 cosθτ sinθτ (c1 − c2 )

cosθτ sinθτ (c1 − c2 ) sin2θτc1 + cos
2θτc2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (Equation 3.60) 

3.1.4.  Derivation of Lagrangian Equation 

The kinetic, potential, and damping energies (TE, VE, DE) from Sections 3.1.1-3.1.3 

are applied in Equations 3.1 and 3.2.  First, inertia terms in the wineglass modes 1 and 2 

are derived as:   

 

d
dt

∂TE
∂ q1

⎛
⎝⎜

⎞
⎠⎟
= ρ φx1

2 +φy1
2 +φz1

2( )dV
V
∫
⎡

⎣
⎢

⎤

⎦
⎥ q1

−Ωz ρ φx1φy2 −φx2φy1( )dV
V
∫
⎡

⎣
⎢

⎤

⎦
⎥ q2 − Ωz ρ φx1φy2 −φx2φy1( )dV

V
∫
⎡

⎣
⎢

⎤

⎦
⎥q2

 

 (Equation 3.61) 

 

∂TE
∂q1

=Ωz ρ φx1φy2 −φx2φy1( )dV
V
∫
⎡

⎣
⎢

⎤

⎦
⎥ q2

+Ωx
2 ρ φy1

2 +φz1
2( )dV

V
∫
⎡

⎣
⎢

⎤

⎦
⎥q1 +Ωy

2 ρ φx1
2 +φz1

2( )dV
V
∫
⎡

⎣
⎢

⎤

⎦
⎥q1 +Ωz

2 ρ φx1
2 +φy1

2( )dV
V
∫
⎡

⎣
⎢

⎤

⎦
⎥q1

 

 (Equation 3.62) 

 



 81 

 

d
dt

∂TE
∂ q2

⎛
⎝⎜

⎞
⎠⎟
= ρ φx2

2 +φy2
2 +φz2

2( )dV
V
∫
⎡

⎣
⎢

⎤

⎦
⎥ q2

+Ωz ρ φx1φy2 −φx2φy1( )dV
V
∫
⎡

⎣
⎢

⎤

⎦
⎥ q1 + Ωz ρ φx1φy2 −φx2φy1( )dV

V
∫
⎡

⎣
⎢

⎤

⎦
⎥q1

 

 (Equation 3.63) 

 

∂TE
∂q2

= −Ωz ρ φx1φy2 −φx2φy1( )dV
V
∫
⎡

⎣
⎢

⎤

⎦
⎥ q1

+Ωx
2 ρ φy2

2 +φz2
2( )dV

V
∫
⎡

⎣
⎢

⎤

⎦
⎥q2 +Ωy

2 ρ φx2
2 +φz2

2( )dV
V
∫
⎡

⎣
⎢

⎤

⎦
⎥q2 +Ωz

2 ρ φx2
2 +φy2

2( )dV
V
∫
⎡

⎣
⎢

⎤

⎦
⎥q2

 

 (Equation 3.64) 

Stiffness terms are calculated by differentiating the VE using q1 and q2:  

∂VE
∂q1

= k11q1 + k12q2  (Equation 3.65) 

∂VE
∂q2

= k22q2 + k22q1  (Equations 3.66) 

Damping terms are calculated by differentiating the DE using  q1  and  q2 : 

 

∂DE

∂q1
= c11 q1 + c12 q2  (Equation 3.67) 

 

∂DE

∂q2
= c22 q2 + c12 q1  (Equations 3.68) 

Then the motional equation for the two wineglass modes is derived as: 

 

M1 0
0 M 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

q1
q2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

0 −2γΩz

2γΩz 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

q1
q2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

c11 c12
c21 c22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

q1
q2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
k11 k12
k21 k22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

q1
q2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

0 −γ Ωz

γ Ωz 0

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

q1
q2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
α1Ωx

2 + β1Ωy
2 + µ1Ωz

2 0

0 α 2Ωx
2 + β2Ωy

2 + µ2Ωz
2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

q1
q2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

F1
F2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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 (Equation 3.69) 

Equations 3.70-3.78 show the relationship between the mode shape functions and the 

effective mass (M), Coriolis mass (γ), and centrifugal mass (α, β, µ) of a three-

dimensional gyroscope, operating in the wineglass mode.   

 
M1 = ρ(φx1

2

V
∫ +φy1

2 +φz1
2 )dV (Effective mass for mode 1)  (Equation 3.70) 

 
M 2 = ρ(φx2

2

V
∫ +φy2

2 +φz2
2 )dV (Effective mass for mode 2)

 

(Equation 3.71) 

 
γ = ρ(φx1

V
∫ φy2 −φx2φy1)dV (Coriolis mass)  (Equation 3.72) 

 
α1 = ρ(φy1

2 +φz1
2

V
∫ )dV (X-axis centrifugal mass for mode 1)  (Equation 3.73) 

 
α 2 = ρ(φy2

2 +φz2
2

V
∫ )dV (X-axis centrifugal mass for mode 2)

 

(Equation 3.74)

 

 
β1 = ρ(φx1

2 +φz1
2

V
∫ )dV (Y-axis centrifugal mass for mode 1)  (Equation 3.75) 

 
β2 = ρ(φx2

2 +φz2
2

V
∫ )dV (Y-axis centrifugal mass for mode 2)  (Equation 3.76) 

 
µ1 = ρ(φx1

2 +φy1
2

V
∫ )dV (Z-axis centrifugal mass for mode 1)  (Equation 3.77) 

 
µ2 = ρ(φx2

2 +φy2
2

V
∫ )dV (Z-axis centrifugal mass for mode 2)

 

(Equation 3.78) 

For an ideally symmetric gyroscope, effective mass and centrifugal mass for the two axes 

are the same.  For nth order wineglass mode, the angular gain (Ag) is calculated using M 

and γ as: 

Ag =
γ
nM

 (Equations 3.79) 
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Another property of a wineglass mode gyro is that the Coriolis mass for x- and y- axis 

rotation is zero from the symmetry in the modal shape (Property 3.4).  

[φy1(p)φz2 (p)−φy2 (p)φz1(p)]
v
∫ dV = 0 (Coriolis mass for x-axis rotation)  

 (Equation 3.80) 

[φx1(p)φz2 (p)−φx2 (p)φz1(p)]
v
∫ dV = 0 (Coriolis mass for y-axis rotation)

 
 (Equation 3.81) 

This is because under a single wineglass mode, all the cross-axial products of the shape 

functions φx1φz2, φx2φz1, φy1φz2, φy2φz1 are sinusoidal functions of azimuthal angle (ϕ), 

which becomes zero when they are integrated over the perimeter (ϕ from 0 to 2π 

radians).  Due to this property, a wineglass mode gyroscope operating in the wineglass 

modes of the same order can measure yaw rotation (direction parallel to the symmetry 

axis), but it cannot measure planar rotation.  To create nonzero Coriolis mass for x- and 

y- axis rotation, the gyro has to be operated in two different wineglass modes (order 

number n1 and n2), where the two mode orders are different by 1 (n1 - n2 = ±1) [99].  The 

effectiveness of using the wineglass modes of two different orders depends on whether or 

not the two modes have a small enough frequency difference so that they can be 

electrically tuned and matched, which depends entirely on the shape of a gyro.    

3.2.  Numerical Calculation of Physical Parameters Using ANSYS 

The physical parameters can be most easily calculated using ANSYS, because this 

program allows users to access displacement data of every element and perform 

arithmetic calculation using the data.  The steps to calculate the device parameters are the 

following.  First, the resonance frequencies are calculated from modal analysis.  During 

this calculation, ANSYS can save the displacement amplitudes of the elements.  Next, 
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shape functions (φx1, φy1, φz1, φx2, φy2, φz2) are calculated from the displacement 

amplitudes along x, y, and z axes (ux, uy, uz) by first evaluating the amplitude of the 

displacement vector of every element ( ux2+uy2+uz2 ) and then and normalizing ux, uy, and 

uz using the maximum value of ux2+uy2+uz2 .  Then, using the shape functions, the 

volume of elements (ΔV), and a density ρ, the physical parameters of each element (M(p), 

γ(p), α(p), β(p), µ(p)) are calculated.  The parameters of elements are added over the 

entire geometry to find the M, γ, α, β, and µ.  A batch code for calculating the M and γ of 

a Cylindrical Rate-Integrating Gyro (CING) is shown in Appendix B.   

3.3.  Summary  

In this chapter, the physical parameters of an arbitrary 3-dimensional wineglass 

mode gyro are derived from its modal shape functions.  The physical parameters include 

effective mass (M), angular gain (Ag), and centrifugal mass (α, β, µ).  The steps for 

calculating these parameters using ANSYS are introduced.  This method will be used to 

compare the physical parameters of several axisymmetric rate-integrating gyroscope 

(RIG) geometries in Chapter 5.  We also find that due to symmetry in the modal shape, a 

gyro operating in the wineglass mode of the same order has zero Coriolis mass (γ) for 

measuring planar rotation.  In order to measure planar rotation, a gyro has to be operated 

in the wineglass modes of two different orders that are different by 1.   
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CHAPTER 4.  
 

PLANAR-RATE-SENSING QUAD-MASS BALANCED 
OSCILLATING GYROSCOPE (BOG) 

 
 

In this chapter, the Balanced Oscillating Gyro (BOG) architecture, microfabrication 

technology, and the readout-and-control circuitry scheme are described.  The aim of the 

BOG design is to use balanced modes for their vibration immunity and to use only a 

single anchor at the center of the device to reduce drift due to changes in thermoresidual 

stress.  Reducing the number of anchors increases the difficulty of keeping parasitic 

resonance modes separated from the operational modes.  FEM is used extensively to 

study the impact of design choices on the BOG parameters.  The structure and placement 

of the coupling beams are studied in order to separate the parasitic modes from the 

operating modes.  

The BOG is fabricated using the Si-on-glass (SOG) process with better etch quality 

due to improved etch-heat dissipation and without the footing problem.  BOG prototypes 

are evaluated using analog interface circuitry.     

4.1.  Structure of the Balanced Oscillating Gyroscope (BOG) 

The BOG is a planar rate-sensing gyroscope.  The architecture of the BOG is shown 

in Figure 4.1.  The device is symmetric across the y-axis and is constructed with masses, 

drive springs, drive-coupling springs, sense springs, sense-coupling springs, and semi-
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open frames.   

The masses are connected to the semi-open frames via drive springs (folded beams), 

and the masses face each other across the y-axis via drive-coupling springs (folded 

beam).  The semi-open frames are connected to the anchor via the sense springs and the 

sense-coupling springs.  The anchor is located at the center of the device.  The sense 

springs are torsion beams, connected at each end to the midpoint of one of the frames.  

The sense-coupling beam has two sections of perpendicular beams connected in the 

middle.  The semi-open frame supports the masses, and it also serves as a coupling beam 

between the two pairs of masses.  The location of the semi-open frame is highlighted on 

the top view picture in Figure 4.2.  A lumped mass-spring representation of the BOG is 

shown in Figure 4.3.  The spring constant along the x-axis is provided by the driving 

spring, drive-coupling spring, and the semi-open frame.  The spring constant along the z-

axis is provided by sense spring and sense-coupling spring.   

 
Figure 4.1.  Architecture of the Balanced-Oscillating Gyroscope (BOG). 
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Figure 4.2.  Top view of the BOG showing sensor components.  Semi-open frame is 
highlighted in blue. 
 

 
Figure 4.3.  Lumped mass representation of the BOG along with driving, driving-sensing, 
and sense electrodes. 
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The BOG has three types of electrodes.  The electrodes to actuate the masses along 

the x-axis are named the driving electrodes.  The electrodes to measure the displacement 

of the masses along the x-axis are called the drive-sensing electrodes.  Both the driving 

and drive-sensing electrodes are comb-drive electrodes.  The bottom electrodes placed on 

the glass substrate are the rate-sensing electrodes.  The current (prototype) version of 

BOG uses bias voltages on the sensing electrodes to electrically tune the resonance 

frequency along the sense axis. 

4.2.  Resonance Mode Shapes of the BOG 

Figures 4.4 and 4.5 show the driving and the sensing mode shapes of the BOG 

simulated using ANSYS. 

 
Figure 4.4.  Displacement pattern in the 
driving mode  

 
Figure 4.5.  Displacement pattern in the 
sensing mode. 

In the driving mode, the masses oscillate linearly along the x-axis.  The masses linked 

with the drive-coupling springs oscillate in the opposite phase, and the two sets of masses 

along each side of the gyro oscillate in the opposite phase.  Due to the direction of the 

mass’s movement in the driving mode, the frames rotate around the z-axis in opposite 

directions.  When the sensor experiences y-axis rotation with a rate  Ωy

 
, the Coriolis 
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force developed for each mass along the z-axis is:  

 FCoriolis (z)
 

= 2kMv ×Ωy

 
 

[Mdrive: effective mass along drive axis,  v


: velocity vector,  Ωy

 
: y-

axis rotation rate vector, k: angular gain factor (1 for tuning-fork 
gyro)] 

 

(Equation 4.1) 

The Coriolis force induces the sensing mode.  In the sensing mode, the semi-open frames 

along with the masses oscillate torsionally along the sense springs in the opposite phase.  

Sensing mode signal is measured from the sum of capacitance change from first and third 

quadrants minus the sum of capacitance change from second and fourth quadrants 

(Equation 4.2).  The four quadrants of the gyro are shown in Figure 4.2.   

ΔCsense = ΔCz1 − ΔCz2 + ΔCz3 − ΔCz4  (Equation 4.2) 

In Equation 4.2, ΔCzn is the capacitance change measured from the bottom electrode in 

the nth quadrant.  There are three parasitic modes along the driving axis and one parasitic 

mode along the sensing axis.  In the first parasitic driving mode, the masses in the 1st and 

2nd quadrants move in phase with each other and in opposite phase with the masses in the 

3rd and 4th quadrants (Figure 4.6 (a)).  In the second parasitic driving mode, the masses in 

all quadrants move in phase (Figure 4.6 (b)).  In the third parasitic driving mode, the 

masses in the 1st and 2nd quadrants move in opposite phase and in phase with the masses 

in the 3rd and 4th quadrants (Figure 4.6 (c)).  In the parasitic sensing mode, the two semi-

open frames rotate in phase (Figure 4.6 (d)).  

The frequencies of the driving and sensing modes and the four parasitic modes of the 

BOG are determined by the dimensions of all the springs as well as the dimensions of the 

semi-open frames.  Due to the complexity of the sensor geometry, dimensions of each 

spring are designed using FEM.  The sensor is designed to operate in the vicinity of 



 90 

10kHz to optimize its scale factor and vibration insensitivity.  

  
(a) Parasitic driving mode 1 (b) Parasitic driving mode 2 

  
(c) Parasitic driving mode 3 (d) Parasitic sensing mode 1 

Figure 4.6.   Shapes of the three parasitic driving modes and one parasitic sensing mode. 

4.3.  Design of Driving and Sensing Coupling Springs  

A vibratory gyro’s sensitivity to shock or vibration reduces as the ratio between the 

parasitic frequency and the operating frequency increases.  Vibration and shock cause the 

largest error in the sensor when they are along the direction of the Coriolis force.  From 

this reason, the mode relationship between the parasitic sensing mode and the sensing 

mode is more important than the mode relationship between the parasitic driving modes 

and the driving mode.   

The separation between parasitic modes and operational modes can be controlled 

with the combination of anchor placement and the design of the coupling springs.  In the 
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BOG, it is challenging to have large mode separation because we try to achieve stable 

thermal characteristics by using only a single anchor, so we must rely only on the design 

of the coupling spring for mode separation.  In this section, the design of the drive and 

sense-coupling spring is discussed.   

4.3.1.  Driving Coupling Spring 

The driving coupling spring is a conventional folded spring, connecting the two 

masses in the middle.  The length and the width of the spring is designed to separate the 

driving and the parasitic modes by approximately 10%.   

4.3.2.  Sensing Coupling Spring 

The frequencies of the sensing and the parasitic sensing modes are affected by a 

number of parameters, including the length and the width of the semi-open frame and of 

the T-spring that connects the two semi-open frames in the middle of the sensor.  The 

frequencies have a large sensitivity to the dimension and placement of the T-spring.  

The geometry of the T-spring is shown in Figure 4.7.  It consists of a beam that is 

parallel to the x-axis (Section A and C) and a beam that is parallel to the y-axis (Section 

B).  The ends of Sections A, B, and C are connected.  Throughout this discussion we will 

call the beam in the T-spring parallel to the x-axis as the lateral beam and the beam in the 

T-spring parallel to the y-axis as the vertical beam.  The difference between the stiffness 

of the sensing and parasitic sensing modes is due to the torsional flexibility at the 

junction of the lateral and vertical beams.  Because of the torsional flexibility at this joint, 

the spring stores different amounts of elastic energy in the sensing mode and in the 

parasitic sensing mode. 
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Figure 4.7.  T-shaped sense coupling beam. 

By calculating the difference in the stored elastic energy under a given displacement, 

the effective stiffness for each mode can be calculated as [100]: 

 (Equation 4.3) 

In both the sensing and parasitic sensing modes, the sense-coupling beam is affected by 

z-axis bending at the outer ends of Section A and Section C. 

The elastic energy of the sense-coupling spring along z-axis bending can be 

calculated in the following way.  In the sensing mode, the ends of the lateral beam are 

deflected along complementary z-directions.  The deformation is made by first applying a 

positive force at the end of Section A to deflect the beam by dz (Figure 4.8 (a)) and then 

applying a negative force at the end of Section C to deflect the right end of the lateral 

beam by -dz (Figure 4.8 (b)).   

In Figure 4.8 (a), as the left end of the lateral beam is pushed upwards by dz, if the 

torsional stiffness of the lateral beam is much larger than the torsional flexibility of the 

vertical beam, the vertical beam will tilt with respect to the y-axis.  The lateral beam will 

stay almost flat, like a lever.  Due to the lever action, the amount of strain energy stored 

in the T-spring by deflection -dz at the end of section C from the original position, in 

� 

kz = 2 × Energy elastic
dz
2
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Figure 4.8 (b), is much smaller than the amount of energy stored in the step performed in 

Figure 4.8 (a).  This is because both the distance of deflection is smaller than the 

deflection distance in the previous step and the magnitude of the force in this step is 

smaller than the magnitude of the force needed at the previous step (Fz1 > Fz2). 

 
(a) Z-axis force (Fz1) applied from the left end of the lateral beam, causing z-axis 
deflection in the lateral beam (dz at the left end and dz’ at the right end). 

 
(b)  Z-axis force Fz2 is applied from the right end of the lateral beam and the left-end 
force is adjusted, causing z-axis deflection with the same amplitude (dz) at both ends of 
the lateral beam. 

Figure 4.8.  Steps of deforming the sense-coupling spring to have the complementary 
deflection (dz) at both ends of the lateral beam:  In step (a), z-axis force (Fz1) is applied 
upward, causing deflection of dz at the left end and dz’ (<dz) at the right end.  In step (b), 
another z-axis force (Fz2) is applied downward and the left-end force is adjusted (Fz1’), 
causing deflection of dz at both ends. (Fz1’=Fz2). 

A similar analysis can be made by deforming the T-spring to have the deflection at 

each end of the lateral beam in the same direction for the parasitic sense mode.  The steps 

of deforming the spring are illustrated in Figure 4.9.  First, a z-axis force is applied at the 

left end of the lateral beam which deflects the end of the beam by dz.  Due to the 

flexibility at the joint, the lateral beam will tilt like a lever, deflecting the beam by -dz’ at 

the right end of the lateral beam (Figure 4.9 (a)).  Then another force (Fz2’) is applied 



 94 

from the right end of the lateral beam in the upward direction (Figure 4.9 (b)).  At this 

time, the force at the left end is adjusted to (Fz2”).  The energy needed at step (b) is larger 

than the energy used at step (a), because the amount of deflection is larger (dz+dz’) and 

the force used in step (b) is stronger than the force used in step (a) because the moment 

caused by the two forces are in the opposite directions.  

 
(a) Z-axis force (Fz1) is applied from the left end of the lateral beam, causing z-axis 
deflection in the lateral beam (dz at the left end and dz’ at the right end). 

 
(b) Z-axis force is applied downward from the right end of the lateral beam, and the 
force applied at the left end of the beam is adjusted.  The lateral beam of the spring is 
deflected by the same amount (dz) at both ends (Fz1” = Fz2’). 

Figure 4.9.  Steps of deforming the lateral beam of the T-spring to have the same 
deflection in the same direction (dz) at both ends.  In step (a), z-axis force (Fz1) is applied 
upward, causing deflection dz at the left end and dz’ (<dz) at the right end.  In step (b), 
another z-axis force (Fz2’) is applied upward, overcoming the deflection made by the 
force applied at the left end of the beam.  The force at the left end of the beam is adjusted 
(Fz1”) to have the same deflection (dz) at both ends. 

This analysis indicates that the amount of elastic energy stored in the coupling beam 

in complementary bending along the z-axis at the ends of the lateral beam is smaller than 

the energy stored from bending both ends of the beam in the same direction.  This means 

that the stiffness of the coupling spring for the sensing mode is smaller than the stiffness 

for the parasitic sensing mode when we consider only the bending shapes along the z-
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axis.    

Next, we consider the difference in the stored energy through torsion along the x-

axis for the lateral beam.  In the sensing mode, the outer ends of the lateral beam are 

rotated by x-axis moments in the opposite directions.  In the parasitic sense mode, the 

outer ends of the lateral beam are rotated by x-axis moments in the same direction.  

Figure 4.10 shows the steps of the application of torques in order to have the deformation 

shape with complementary torsional angles at both ends of the lateral beam: first, a 

negative torque along x-axis (-Tx) is applied at the left end of the lateral beam (Figure 

4.10 (a)).  The torque rotates Section A by an angle -θx, and due to the torsional 

flexibility at the junction of the lateral and vertical beams, the torque also rotates the end 

of Section C by angle -θx’ (θx’ < θx).  Next, another x-axis torque Tx2 is applied from the 

right end of the lateral beam in the opposite direction (Figure 4.10 (b)).  The torque at the 

left end the lateral beam is adjusted to have rotation angle at Section A and Section C of -

θx and θx, respectively.  The amount of strain energy contained at step (b) is larger than 

the energy that is contained at step (a).  This is because of the larger torsion angle 

(θx’+θx) and because the torque applied at step (b) (Tx2) is larger than the torque applied 

at step (a) (Tx1), as the torques are acting in the opposite directions.  

Figure 4.11 shows the steps to apply torques to achieve an equal torsional angle from 

both sides of the lateral beam along the same direction.  This is the case for the parasitic 

sensing mode.  First, a negative x-axis torque (-Tx1) is applied at the left end of the lateral 

beam, and the beam is rotated by -θx at the left end and -θx’ at the right end of the lateral 

beam (Figure 4.11 (a)) (θx > θx’).  Next, another torque is applied at the right end of the 

lateral beam (-Tx2’), and the torque at the left end of the lateral beam is adjusted to a new 
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value (-Tx1”) to have deflection angle of -θx at both ends of the lateral beam (Figure 4.11 

(b)).  The amount of elastic energy contained in step (b) is smaller than the elastic energy 

contained in step (a).  This is because the angle of rotation is smaller (θx-θx’) and because 

the amount of torque applied at step (b) (-Tx2’) is smaller than the torque applied at step 

(a), as the two torques applied at the sides of the lateral beam are acting in the same 

direction.   

This analysis indicates that the torsion of the lateral beam of the sense-coupling spring in 

the opposite angle contains more energy than when the torsion is along the same 

 
(a)  X-axis torque Tx1 is applied at the left end of the lateral beam, causing rotation 
angle of -θx at the left end and -θx’ at the right end of the lateral beam (θx’ < θx) due to 
torsional flexibility at the joint. 

 
(b)  X-axis torque along positive direction Tx2 is applied at the right end of the lateral 
beam, and the torque at the left end of lateral beam is adjusted to Tx1’ to cause 
complemenatry rotation angles at both ends of the beam (-θx at left end and θx at right 
end of the beam) (Tx1’ = Tx2). 

Figure 4.10.  Steps of deforming the lateral beam of the T-spring to have same deflection 
in complementary rotation angle at both ends of the lateral beam of the T-spring (-θx at 
the left end and θx at the right end of the lateral beam).  In step (a), a negative torque -Tx1 
is applied at the left end of the lateral beam.  In step (b), another torque (Tx2) is applied 
along the positive direction at the end of the right end of the lateral beam, while the 
amount of the torque is adjusted to Tx1’. 
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direction.  Therefore, considering only the x-axis torsion, the stiffness of the coupling 

spring in the sensing mode is larger than the stiffness in the parasitic sensing mode.   

The dimension of the sense-coupling spring also affects the amount of stiffness 

contributed by the semi-open frame.  As the frame is made wider, its tensional and 

bending stiffness become smaller.  As the T-spring’s stiffness becomes comparable with 

the stiffness of the frame, the ratio between the amount of the elastic energy stored in the 

frame and the T-spring for a given displacement input increases.  The effective stiffness 

of the BOG in the sense mode and the parasitic sense mode is the combination of the 

different stiffness provided from the T-coupling spring and the frame. 

 
(a) X-axis torque -Tx1 is applied at the left end of the lateral beam, causing a rotation 
angle of -θx at the left end and -θx’ at the right end of the lateral beam (θx > θx’) due to 
torsional flexibility at the T joint. 

 
(b) Negative x-axis torque -Tx2’ is applied at the right end of the lateral beam, and the 
torque at the left end of lateral beam is adjusted to Tx1” to cause the same rotation 
angles of θx at both ends (Tx1” = Tx2’). 

Figure 4.11.  Steps of deforming the lateral beam of the T-spring to have the same 
deflection angle θx at both ends of the lateral beam of the T-spring.  In step (a), a 
negative torque -Tx1 is applied at the left end of the lateral beam.  In step (b), another x-
axis torque -Tx2’ is applied along the negative direction at the end of the right end of the 
lateral beam, while the torque at the left end is adjusted to Tx1”. 



 98 

Due to the complexity of the gyro geometry, it is difficult to form accurate analytical 

equations to explain the relationship between the geometry of the T-spring and the 

resonance frequencies of the various modes.  Thus, the relation is found using FEM 

analysis.  The relations are found by changing each of the geometrical parameters, while 

keeping others constant.  For the dimensions shown in Figure 4.7, the nominal 

dimensions are: ba (width of the lateral beam) = 10µm, la (half of length of the lateral 

beam) = 100µm, lb (length of the vertical beam) = 100µm, bb (width of the vertical beam) 

= 10µm, and h (height) = 100µm.  The rest of the geometry is shown later in Table 4.1.  

Figures 4.12-4.15 show the relation between the lateral beam of the spring (la, ba) 

and vertical beam (lb, bb) and the effect on the resonance frequencies.  The graphs 

indicate that the geometry of the sense coupling springs changes not only the sense and 

parasitic sense mode but also driving and parasitic driving mode frequencies.  However, 

the difference between the driving and the parasitic driving frequencies stays almost 

constant throughout the simulated range.  The simulation results show that the separation 

between the sense and parasitic sense mode increases as the lengths of both of the vertical 

and horizontal beams (  and ) increase and as the widths of both of the horizontal and 

vertical beams (  and ) decrease. 

4.4.  Relationship between the Driving Mode Coupling, Linearity of the Driving 

Mode Motion, and the Position of the Sense-Coupling Beam 

  The motion of the two sets of driving masses are coupled by the deflection of semi-

open frames.  This deflection influences the operation of the BOG in several ways.  First, 

when the amount of angular deflection increases, the orientation of the mass becomes 

increasingly nonparallel with respect to the comb-drive electrode.  Due to the increased 
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nonlinearity in the capacitive force, the driving range of the mass is decreased.  In turn, 

the z-axis rotation on the masses affects the amount of coupling for the two sets of the 

drive masses.  The minimum amount of mechanical coupling exists when there is no 

angular deflection of the frame.  Without this coupling, the two sets of the masses can 

oscillate at two different frequencies.  This frequency split creates challenges in control 

and reduces the scale factor.  In addition, the position of the sense-coupling spring with 

respect to the frame affects the amount of angular deflection significantly, and as the 

deflection changes, the frequency difference between the driving and sensing modes and 

their respective parasitic modes changes. 

  
(a) Sensing mode and parasitic sensing 
mode 

(b) Driving mode and parasitic driving 
mode 

Figure 4.12.  Relationship between the length of the lateral part of the sense coupling 
beam (la) and the sensing, parasitic sensing, driving, and parasitic driving mode 
frequencies.  The rest of the geometry is set as lb = 75µm, ba = 10µm, bb = 30µm, and h = 
100µm. 

The reaction diagram of the force and moment at the sense-coupling beam is shown 

in Figure 4.16.  When the masses are driven with x-directional force , the 

T-spring provides an x-directional axial force  and z-directional moment  

to the frame.  The sense torsional beam provides z-axis moment .  The forces and 

moments , , and  must sum such that the net forces and moments 
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are zero.  The reaction force and moment are also related by the deflection angle at the 

sense torsional beam and the deflection angle at the T-coupling spring.   

The minimum angular deflection is achieved when the horizontal part of the sense-

coupling spring is set parallel to the horizontal beam from the semi-open frame (yd = 0).  

In this configuration, the reaction force from the electrostatic actuation is applied along 

mostly the axial direction of the lateral beam of the T-spring.  Due to the large stiffness of 

  
(a) Sensing and parasitic sensing mode (b) Driving and parasitic driving mode 

Figure 4.13.  Relation between the length of the vertical part of the sense coupling 
beam (lb) and the sensing, parasitic sensing, driving, and parasitic driving mode 
frequencies.  The rest of the geometry is set as la = 200µm, ba = 10µm, bb = 30µm, and 
h = 100µm. 

  
(a) Sensing and parasitic sensing mode (b) Driving and parasitic driving mode 

Figure 4.14.  Relationship between the width of the horizontal part of the sense-
coupling beam (ba) and the sensing, parasitic sensing, driving, and parasitic driving 
mode frequencies.  The rest of the geometry is set as la = 200µm, lb = 75µm, bb = 
30µm, and h = 100µm. 
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the coupling spring along the axial direction, the sense coupling beam experiences 

negligible axial strain, and due to the angular relation between the deflection of the sense 

torsional beam and the sense coupling beam, the sense torsional beam also deforms by 

the minimal amount.  When the lateral beam of the sense-coupling spring is placed at a 

higher position from the lateral beam of the semi-open frame along the y-axis (yd > 0), 

the lateral beam experiences increasing z-axis moment.  Since the coupling spring is 

made narrow and long to have good separation between the parasitic sense mode and the 

sense mode, the coupling spring is highly compliant to z-axis moment.  As yd increases, 

the amount of the moment at the end of the horizontal beam increases, increasing the T-

spring deflection, resulting in larger angular deflection at the sense torsional beam. 

Figure 4.17 shows the relationship between yd and the ratio of vertical deflections 

found in the driving mass calculated with FEM simulation.  The deflection ratio increases 

linearly with the increase in yd.   

 
 

(a) Sensing and parasitic sensing mode (b) Driving and parasitic driving mode 
Figure 4.15.  Relation between the width of the horizontal part of the sense-coupling 
beam (bb) and the sensing, parasitic sensing, driving, and parasitic driving mode 
frequencies.  The rest of the geometry is set as la = 200µm, lb = 75µm, ba = 10µm, and h 
=100µm. 
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Figures 4.18 and 4.19 show the relationship between yd and the resonance 

frequencies of driving and parasitic driving modes and and sensing and parasitic sensing 

mode, respectively, again calculated using FEM simulation.  The rest of the geometry 

parameters used in this simulation are found in Table 4.1.  The figures indicate that the 

difference between the driving and the parasitic driving mode stay constant, whereas the 

difference between the parasitic sensing mode and the sensing mode increases with yd.   

 
Figure 4.16.  Reaction diagram of moment and forces in the driving mode. 

 
Figure 4.17.  Relationship between the y-axis distance between the horizontal beam of 
the semi-open frame and the lateral beam of the T-spring and the ratio of the y-axis 
and x-axis deflections in the driving mode (yd). 
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Based on the preceding analysis, the geometry of the BOG can be optimized using 

the FEM method to have a sufficient frequency difference between the sensing and 

parasitic sensing modes and also to have a small y-axis to x-axis deflection ratio for the 

driving mass in the driving mode.   

 
Figure 4.18.  Driving and parasitic driving mode frequencies versus the y-axis distance 
between the horizontal beam of the semi-open frame and the lateral beam of the T-spring 
(yd). 

 

Figure 4.19.  Sensing and parasitic sensing frequencies versus y-axis distance between 
the horizontal beam of the semi-open frame and the lateral beam of the T-spring (yd). 
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4.5.  Dimensions of the Fabricated BOG 

The dimensions of the fabricated BOG (Figure 4.20) are summarized in Table 4.1.  

Table 4.2 summarizes mechanical and electrical design values of the BOG.  The 

resonance frequency of a fabricated BOG is lower than the designed frequency due to 

lateral etching.  The degree of change in the bending and torsional resonance frequencies 

due to a fixed amount of lateral etch depends on the original bending and torsional 

stiffnesses as well as the effective mass (M) and moment of inertia (I) of the geometry.  

The changes in the driving, parasitic driving, sensing, and parasitic sensing frequencies 

for the current geometry are found using FEM (Figure 4.21).  The plot shows that the 

driving and parasitic driving frequency has higher sensitivity than the sense frequency.  

The larger sensitivity of driving mode to lateral etching is compensated by designing the 

driving mode frequency slightly higher than the sensing mode frequency.   
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(a) Overall view   

  
(b) Drive spring  (c)  Drive coupling spring 

  
(d) Sense spring (e) Sense coupling spring 

Figure 4.20.  Dimensions of the first-generation Balanced Oscillating Gyroscope (BOG). 
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Table 4.1.  Dimension of first-generation BOG 
H (height) 100µm Drivecouple_L1 316.5µm 
W (width (x)) 3052µm Drivecouple_W1 7.5µm 
L (length (y)) 3000µm Drivecouple_L1 317µm 
Mass_W (drive mass width) 735µm Drivecouple_W2 482µm 
Mass_L (drive mass length) 1100µm Drivecouple_L2 15µm 
Frame_L1  1100µm Sense_L (sense spring length) 18~20µm 
Frame_W1 100µm Sense_W (sense spring 

width) 
40µm 

Frame_L2 100µm Sensecouple_L1 75µm 
Frame_W2 1330µm Sensecouple_W1 20µm 
Frame_L3 546µm Sensecouple_L2 10µm 
Frame_W3 50µm Sensecouple_W2 400µm 
Anchor_L1 370µm Nominal comb drive gap 2µm 
Anchor_W1 2772µm Sense electrode gap  2~3µm 
Anchor_L2 1322µm Electrode area (each 

quadrant) 
116E4µm2 

Anchor_W2 390µm Sense electrode gap  2~3µm 
Drive_L 337µm   

Drive_W 12.5µm   
 
 
 
 
 
Table 4.2.  Mechanical and electrical design values of the BOG, neglecting lateral 
etching from DRIE 
Drive mass (each) 170µg Parasitic drive mode 2 frequency 11841Hz 
Sense moment of inertia with 
respect to the sense spring (x-
axis) 

2.2094E5 
(µg•µm) 

Parasitic drive mode 3 frequency 12404Hz 

Drive mode frequency 10683Hz Parasitic sense mode frequency 10737Hz 
Sense mode frequency 10411Hz Nominal driving capacitance  

(quadrant) 
0.5pF 

Parasitic drive mode 1 frequency 10085Hz Nominal sense capacitance 
(quadrant) 

3.4~5.4pF 
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Figure 4.21.  Change of the BOG’s drive and sense mode frequencies increase in lateral 
etching.  

4.6.  Si-on-Glass (SOG) Process for the BOG  

The Si-on-Glass (SOG) process is used to fabricate the BOG.  The advantages of the 

SOG process over thin-film based processes are that it provides higher-Q materials, it can 

create large sensor masses, and it produces structures with lower residual stress.  The 

advantages of the SOG process over the silicon-on-insulator (SOI) process are larger 

sensing area capacitance using the bottom electrodes, ability to control the gap between 

the mass and the bottom electrode, and lower parasitic capacitance due to glass substrate.  

The problems with a typical SOG process are footing and poor thermal-dissipation during 

the DRIE step needed to release the MEMS structures.  The footing problem occurs when 

the bottom of through-etched silicon structures are attacked by SF6 plasma molecules that 

are deflected by electric field developed by the trapped charges on the glass surface.  One 

can avoid this problem by placing a conductive layer underneath every etching region.  In 

the latest DRIE technology, the footing problem is avoided by releasing the charges by 
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using low-frequency-modulated SF6 plasma.  Improving thermal dissipation is more 

challenging.  

4.6.1.  Si-on-Glass (SOG) Process Using Glass Thermal Dissipation Bumps  

The thermal dissipation problem causes a drastic increase in the lateral etch rate 

during DRIE when the Si structures are close to being released.  Early in the etch, the 

structures are connected at the bottom with the Si layer which keeps the etched areas 

below the temperature where the sidewall-protecting polymer starts to weaken.  When the 

devices are nearly released, the heat conduction is poor, and the polymer is weakened.  

Because of this, Si structures are attacked by SF6 plasma in the lateral directions.  Due to 

glass’s low thermal conductivity (1.1W/mK as opposed to 149W/mK for Si), it also 

contributes to the thermal dissipation problem.  This problem occurs most significantly 

near springs or comb drives with a large length-to-width (L/W) ratio. 

The process development discussed here is done with a STS DRIE machine at the 

Lurie Nanofabrication Facility (LNF).  This machine clamps the process wafer using a 

mechanical clamp, and this machine provides only a high-frequency bias during the 

etching process.  Although newer generation DRIE machines reduced the footing and 

heat conduction issues, it is believed that the process presented here is still useful, 

because it is more compatible with general DRIE machines.  The SEM pictures of comb-

drive electrodes suffering from thermal-dissipation problem are shown in Figure 4.22. 

Other investigators have tried to overcome this problem by: 1) partially etching the 

front side of the Si wafer before bonding to glass, and etching or polishing the rest of the 

Si from the opposite side [19], or 2) recessing the glass wafer only after the DRIE step 

when the glass is etched for a long time to release the MEMS structure [56].  However, 
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the first method requires grinding and polishing step, which tends to increases cost and 

non-uniformity, and the second method is still prone to footing problems.  

Two different methods are tried to reduce the thermal dissipation problem.  In the 

first method, glass heat-dissipation bumps are patterned underneath the gyro mass.  The 

Si mass and the glass substrate are bonded at these bumps, so etch heat is more easily 

dissipated through the bumps.  The bumps are small enough to be etched using HF after 

the DRIE process.  In the second method, Al heat dissipation layers are patterned 

underneath all etch regions.  These Al dissipation layers are thick enough to physically 

contact the etched structures to the glass recess and can be easily removed by wet etching 

after the DRIE process.   

Figure 4.23 shows the process steps of a SOG process which uses glass bumps as 

heat sinks.  The process begins by defining 4µm-deep recessed areas on a borosilicate 

glass (Borofloat33) wafer from PlanOptik.  The non-recessed areas form the glass bumps 

and the contact area for the vertical electrodes.  A masking layer consisting of evaporated 

Cr with a thickness of 1000Å and AZ9260 with a thickness of 14µm is used to define the 

recessed areas.  The glass substrate is etched in non-diluted HF (49%) to avoid variation 

  
(a) Thinned down comb drive electrode (b) Curled comb drive electrodes 

Figure 4.22.  SEM photographs of comb drive electrodes damaged from over-heating 
during the typical SOG process. 
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in the etch-rate from the diluting step and to avoid the solution becoming saturated while 

processing multiple glass layers.  After patterning the glass, a 1000Å-thick Al layer is 

patterned with the Cr-AZ9260 layer as a liftoff mask.  After stripping the wet-etch mask, 

the glass substrate is blank etched in a BHF solution for 10 seconds to strip the Cr residue 

remaining on the surface of the glass.  This stripping step is crucial for good quality 

anodic bonding.   

Next, a 100µm-thick, double-side-polished, P-type (<0.005 ohm-cm), (100) Si wafer 

is cleaned using a Karl Suss CL200 megasonic wafer cleaner.  The Si and the glass 

wafers are anodically bonded at 300°C with a bonding voltage of -500V for center-pin 

bonding and -1300V for full wafer bonding using a Karl Suss SB6E bonder.  The 

 
(a) A recess with a depth of 4µm defines the glass bumps and the contact area for the 

vertical comb electrodes.  An Al layer with the thickness of 1000Å is deposited 
and patterned to form the shield layer 

 
(b) A 100µm-thick Si wafer is anodically bonded to the glass wafer 

 
(c) Si wafer is etched using DRIE 

 
(d) DRIE etch mask and metal shield layer are removed 

 
(e) Vertical comb (VC) electrodes are formed with local anodic bonding 

 
(f) Movable structures are released from the bumps 

Figure 4.23. SOG process using glass bumps and metal shields on the glass substrate. 
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bonding temperature is a critical process parameter, which affects the amount of 

curvature of the wafer.  The coefficient of thermal expansion (CTE) of the glass for our 

process stays almost constant over the process temperature at 3.25ppm/°C [101].  On the 

other hand, the CTE of Si changes significantly with temperature [102] (Figure 4.24).  

Figure 4.25 shows the calculated normalized difference between Si and Borofloat33 

wafers, accounting for the variation of CTE over a temperature range of 0 to 500°C.  

According to this analysis, a bonding temperature of 300°C will cause nearly zero overall 

deflection. 

After bonding, the Si wafer is through-etched using DRIE with a mask of 4µm-thick 

SPR220-3.0.  The patterns on the photoresist are exposed using I-beam lithography (λ: 

365nm, beam power: 1000W) with a GCA AS200 Autostep.  After the DRIE, the 

photoresist mask is dissolved in PRS2000, the Teflon residue on the sidewall of the 

patterned Si structures is removed using a Piranha (H2SO4:H2O2 = 1:1) solution, and the 

Al shield layer is completely removed using an Transene Type A etchant.  Then, the 

wafer is rinsed in DI water for more than 10 minutes to rinse away the Al etchant.  

Without drying, the wafer is dipped in isopropyl alcohol (IPA) for more than 4 hours, and 

then the wafer is dried on a hot plate at 115°C.   

Next, the wafer is flipped onto a clean dummy Si wafer, and is brought into the 

SB6E bonder where local anodic bonding is performed to form the vertical-comb (VC) 

electrodes.  A more detailed discussion of the VC electrodes is provided in Appendix C.  

An anodic bonding voltage of -600V is used with a full electrical contact to the wafer 

surface.  In this bonding step, suspended VC electrodes are pulled down on the glass 

substrate and form strong anodic bonds.  Then, the glass bumps are etched away with 



 112 

non-diluted HF to release the structures.  Note that the glass bumps have enough area to 

provide good thermal contact, but at the same time, individual bumps are small enough to 

be etched away in a relatively short time, limiting any damage to the anchors.  The 

maximum size of the bumps used in this process is 30µm. 

This fabrication method reduces the heating problem compared to the conventional 

SOG process.  However, one of the issues found here is that the bottom surfaces of the Si 

 
Figure 4.24.  CTE of Si over a temperature of 0°C ~500°C [102]. 

 
Figure 4.25.  Normalized expansion mismatch between Si and Borofloat 
33 with respect to bonding temperature (CTE of Borofloat33 and Si are 
found from [101] and [102], respectively).  
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structures are roughen by scattered SF6 plasma, resulting in weak anodic bonds between 

the VC electrodes and the glass surface.  Because of this, the VC electrodes cannot 

withstand the final HF etching step.  Figure 4.26 is a backside photograph of the bonding 

plate of the VC electrodes after the bumps are etched, indicating significant undercut due 

to bonding plate with roughened bottom surface.   

 
Figure 4.26.  Bottom side photograph of vertical comb drive (VC) electrodes showing 
excessive amount of lateral etch due to rough bottom surface of Si substrate.  

A modified process is introduced to solve the issue of the rough bottom surface.  In 

the modified process, a metal shield layer is patterned on the bottom surface of the Si 

wafer instead of on the glass substrate, similar to the method that is demonstrated by 

Alper et al. [103] so that the shield layer can protect the bottom surface of the silicon 

during DRIE.  The metal layer serves also as a thermal dissipation layer.  The improved 

process flow is shown in Figure 4.27.  

Using this method we are able to address the problems of footing and rough bottom 

surface, and we are able to solve the thermal gradient problem for most structures.  This 

process, however, still cannot provide optimal heat dissipation at critical etch spots such 

as thin comb drives or springs, because of the footing problem.  Figure 4.28 shows SEM 

photographs of the bottom sides of comb-drive electrodes which still suffered a 
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considerable amount of lateral etching.  This issue could be improved by using a several-

microns-thick metal layer.  Other issues of the process include excessive device area, 

primarily due to the VC electrodes, and the VC electrodes are significantly less sensitive 

than parallel-plate sensing.  Therefore, it is desirable to develop a process that can 

prevent footing, provide better protection from overheating, and have parallel plate 

electrodes in the vertical direction.  To accommodate these needs, the glass thermal 

dissipation bumps are replaced with a thick aluminum shield layer that can dissipate heat 

by contacting both the Si and the glass substrates.  

 
(a) An Al layer with a thickness of 1000 Å is evaporated on top of a 100µm-thick Si 

substrate 

 
(b) Recess with a depth of 4µm defines the glass bumps and the contact area for the 

vertical comb electrodes, and the glass substrate is anodically bonded to the 
silicon substrate 

 
(c) Si substrate is through-etched using DRIE. The bottom surface is protected by the 

Al layer 

 
(d) DRIE etch mask and metal shield layer are removed 

 
(e) Vertical comb electrodes are formed with local anodic bonding 

 
(f) Bumps are etched to release the moving structures 

Figure 4.27. SOG process with glass bumps and metal protection layer on the bottom 
surface of Si wafer. 
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(a) Near the lateral comb drives (drawn 
width: 3µm)  

(b) Near the lateral comb drives (drawn 
width: 6µm)  

Figure 4.28.  SEM photographs taken from the bottom of test device fabricated using 
the improved SOG process using glass bumps and metal protection layer on the bottom 
surface of Si wafer. 

 
Figure 4.29.   Etch profile of the improved SOG process using the glass bumps. 

4.6.2.  Si-on-Glass (SOG) Process Using Thick Aluminum Heat Sinks 

Figure 4.30 shows the process steps of the SOG process with thick Al heat sinks.  

The process begins by recessing the glass substrate by 1-3µm using non-diluted HF.  

Then, a stack of Cr/Pt/Au with thicknesses of 50/250/250Å is patterned to form the 

bottom electrodes and the signal lines.  On the top of a separate 100µm-thick Si wafer, Al 

is deposited to be slightly thicker (500~1500Å) than the recess and patterned to fit in the 
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recesses on the glass wafer and form the shield layer and the heat sink.  The Al layer is 

thin enough for the wafers to form good anodic bonds and also thick enough to have firm 

contact with the Si wafer.  The Si wafer is then anodically bonded to the prepared glass 

substrate and etched using DRIE.  The shield metal is wet etched to release the structures. 

  In this process, the heat sink can be placed directly below the spots where the Si is 

etched to achieve best thermal dissipation.  In addition, this process can create parallel 

plate electrodes in the vertical direction to achieve better sensitivity and allow the 

resonance frequency to be tuned more easily.  Figure 4.31 shows SEM photographs taken 

from the bottom and the side of a fabricated test device using the developed process, 

which demonstrate a good aspect ratio.  Figure 4.32 shows the DRIE etching profile from 

this process, having a lateral etch of 0.9~1.4µm at the bottom of the 100µm-thick Si 

 
(a) Recesses with a depth of 1-3µm are defined using wet etching 

 
(b) Cr/Pt/Au: 50/250/250Å is evaporated and patterned to form the bottom electrodes 

and underlining signal lines 

 
(c) On the 100µm-thick Si wafer, Al is deposited to be slightly thicker, by 

500~1500Å, than the recess depth, and it is patterned to form the shield layer as 
well as heat sink 

 
(d) Si and glass wafers are anodically bonded 

 
(e) Si wafer is etched using DRIE 

 
(f) Al layer is wet etched, and movable structures are released 

Figure 4.30.  SOG process using thick Al heat sink. 
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structure. 

A comparison between SOG processes with glass-bumps and thick Al heat sinks is 

made in Table 4.3.  Future work includes further improvement of the SOG process by 

fine-tuning the DRIE recipe to achieve an even better aspect ratio and a smaller feature 

size (<2µm) in order to reduce cross-axial stiffness.  An SEM picture of the fabricated 

BOG with the direct heat-dissipation process is shown in Figure 4.33.  The device has a 

size of 3mm (lateral) × 3mm (vertical) × 100µm (thickness), with a total mass of 

approximately 750µg. 

 
(a) Cross section of the parallel plate electrodes (drawn width: 9.5µm) 

 
(b) Cross section of a spring (drawn width: 21µm) 

Figure 4.31.  Cross-sectional SEM photograph of fabricated samples 
made using SOG process with thick Al heat sink. 
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Figure 4.32.  Etch profile of the SOG process using Al heat sink. 

 
Table 4.3.  Comparison of the etch profiles of developed SOG processes (based on 
100µm-thick Si wafer; same DRIE etch recipe is used) 
Process Flow  Figure 4.29 Figure 4.32 
Material for the heat sink Glass bumps Al shield layer 
Avg. lateral etch length: vertical 
etch depth 

1:45 1: 87  

Minimum feature size* (drawn) 5.5µm 3.5µm 
Minimum gap size** (drawn) <2µm <2µm 
Vertical Electrodes  VC electrodes Parallel plate electrodes 
*   Minimal feature size is defined as the width of a layout that will have the width of 1µm at 

the bottom of the Si substrate, so that the structure can possess enough strength 
** Minimum drawn gap size is limited by lithography 
 

 
Figure 4.33.  SEM picture of Balanced Oscillating Gyroscope 
(BOG) made with SOG process using Al heat sink. 
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4.7.   Resonance Characteristics of the Balanced Oscillating Gyroscope (BOG) 

The resonance characteristics of the Balanced Oscillating Gyroscope (BOG) with Al 

heat sink are tested in a Lakeshore FWP-6 vacuum probe station at a pressure of 

<5mTorr.  The temperature is left uncontrolled (~300K).  A transimpedance amplifier 

with JFET OPAMP (MC33184) with a feedback resistance of 10MΩ is used.  The gain-

phase measurement is done using an HP4194A. 

The gyro is actuated using one of the comb electrodes at the outer boundary of one 

of the driving masses.  By actuating from this electrode, all four modes along the planar 

direction can occur due to strong mechanical coupling.  Due to cross-axis stiffness, both 

modes along the z-axes can also occur.  Figure 4.34 shows the measured resonance 

peaks.  The mode located at the lowest frequency is the in-phase parasitic driving mode.  

In this mode, two pairs of masses connected by the drive coupling springs move in the 

opposite directions.  Very little elastic energy is stored in either the drive-coupling 

springs or the semi-open frames.  The next mode is the driving mode, where the masses 

connected with the drive coupling beams are oscillating out-of-phase.  In this mode, 

elastic energy is stored in the drive coupling spring, but little energy is stored in the semi-

open frame.  The third mode is the sense mode.  In this mode, the sense torsional beam 

and the sense-coupling beam are primarily responsible for the overall stiffness.  The 

drive-coupling spring provides minor contribution to the overall stiffness of the structure 

in this mode.  The fourth mode is the in-phase parasitic driving mode, where the two 

pairs of connected masses move in the same phase.  The fifth mode is the second out-of-

phase parasitic driving mode.  In this mode, the masses that are connected with the drive-

coupling beams move with the same phase, so the lateral stiffness of the semi-open frame 
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contributes to the overall stiffness.  Although this is a balanced mode with a large Q 

(>50,000), we cannot use this mode in practice, because no Coriolis force can be 

developed under y-axis rotation.  The sixth mode is the parasitic sensing mode, where 

two frames tilt in the same phase along the sense torsion beam.   

From the tested device, the driving mode is found at ~8500Hz and the sensing mode 

is found at ~8700Hz.  The driving mode is separated from the nearest spurious mode by 

about 300Hz.  The sensing mode is separated from the nearest spurious mode by about 

200Hz.  The Q of the driving and sensing modes are measured to be about 50,000 and 

20,000, respectively. 

 
Figure 4.34.  Gain plot of the BOG measured from 8,000Hz to 10,000Hz at room 
temperature (300K) and pressure under 5mTorr. 

The driving and the sensing mode frequencies can be brought close to each other 

using the electronic tuning method down to below their 3dB bandwidths (Figure 4.35) by 

applying a DC offset to the non-inverting input port of the transimpedance amplifier 
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connected to the bottom electrode.  The Q of the sense mode is found to decrease to 

7,422 due to cross-axial coupling.  The minimum frequency difference between the 

driving and sensing modes of the current gyro is limited by cross-axial stiffness, and it is 

necessary to include bottom electrodes dedicated for balancing cross-axial stiffness in the 

next generation gyro. 

 
(a) Frequency separation of ~5Hz between driving and sensing modes 
(nearly matched), body bias: 7.46V, bottom electrode voltage: 0V 

 
(b)  Frequency separation below the 3dB bandwidth (very closely 
matched), body bias: 7.56V, bottom electrode voltage: 0V 

Figure 4.35.  (a) Slightly mismatched matched (~5Hz difference) and 
(b) closely matched (within 3dB) resonance frequencies of the BOG. 
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4.8.  Temperature Dependency of Mode Frequency and Q  

The frequencies and the Q of the driving and sensing mode frequencies are measured 

over a temperature from -50 to 75°C, under a pressure of <1mTorr (Figure 4.36).  Both 

the driving and sensing mode frequencies drop as the temperature increases with thermal 

coefficients of frequency (TCF) of -14.6ppm/K and -9.1ppm/K, respectively. 

 
Figure 4.36.  Change of the BOG’s resonance frequency and the Q over the temperature 
range of 233K to 348K, measured at <1mTorr range. 

The temperature sensitivity of the BOG is approximately a half of the TCF values 

reported for Si micro-resonators on a SOI substrate [104, 105].  It is believed that the 

smaller TCF is contributed by thermoresidual stress from the mismatch between 

expansion coefficients of Si and glass.  The Q for the driving and sensing modes 

decreases with an average rate of -6000ppm/K and -5000ppm/K.  The negative slope of 

Q with temperature indicates thermoelastic damping (TED) is one of the dominant 

mechanism of the BOG.  In the TED mechanism, the amount of the temperature gradient 

generated in an oscillating beam from adiabatic expansion and compression is 



 123 

proportional to the ambient temperature, resulting in the increase in damping force with 

increase in ambient temperature [106].  

4.9.   Pressure Dependency of Mode Frequency and Q 

The Q of the driving and the sensing modes of the BOG are characterized from a 

pressure of 0.5 to 100mTorr at 293K (Figure 4.37). 

 
Figure 4.37.  Change of quality factor (Q) of the BOG from pressure of 0.5mTorr to 
100mTorr. 

The Q of the sensor has a maximum value of 50,000 at <2mTorr, which is highly 

likely limited by TED.  Above that pressure, the driving Q is increasingly affected by air 

damping.  On the other hand, the sensing Q did not show any peak, which indicates that 

the influence of air damping is more significant.  The difference in the pressure 

sensitivity of the Q is believed to be from the difference in the electrode configuration.  

In a comb-drive electrode, there is shorter path for air molecules to squeeze out than the 

parallel electrode during actuation.  
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4.10.  First-generation Readout-and-Control Circuitry 

The 1st-generation interface circuitry consists of an analog self-oscillation block, gain 

control block, instrument amplifier block, and demodulation block.  The architecture of 

the circuit is shown in Figure 4.38.  Note that this version of circuitry is built to mainly 

confirm the functionality of the prototype BOG.  In the future, the system will be 

improved with a better configuration for the amplitude controller block and will include a 

quadrature cancellation block.  This version of the BOG sensor does not have balancing 

electrodes to compensate for cross-axial stiffness difference, nor does it have force-

rebalancing electrodes for quadrature error and closed-loop rate operation.  

 
Figure 4.38.  Architecture of the first-generation circuitry. 
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4.10.1.  Self-Oscillation Block 

  The self-oscillation block consists of a transimpedance amplifier (TIA) and a 

buffer.  The circuitry uses a principle that at the resonance frequency, the phase of 

displacement lags the phase of the actuation force by 90°.  If the rest of the circuitry 

makes the overall loop phase of 360° and provides a loop gain of larger than 1, the 

amplitude of the vibration starts building up.  The amplitude is regulated with an 

automatic gain controller (AGC) block at certain amplitude range (typically several 

microns for tuning-fork gyros) to avoid large nonlinearity.  When a TIA is used, the 

output of the signal has the same phase as the velocity of oscillation.  In the resonance 

mode, the actuation signal has the same phase as the velocity.  Therefore, in resonance, 

the driving signal and the output signal from TIA have the same phase. 

4.10.2.  Automatic-Gain Controller (AGC) Block 

The automatic gain controller (AGC) consists of a half-wave rectifier, a comparator, 

and a low-pass filter [107].  This block rectifies the measured displacement signal and 

averages it to calculate a near-DC signal that is proportional to the vibration amplitude.  

The amplitude signal is then compared with a DC set point.  The output from the 

comparator is low-pass filtered.  The output of the low-pass filter is connected to the gate 

of a N-type MOSFET (NXP BSS83), which is connected in series with 10kΩ 

linearization resistor.  The MOSFET and resistor are connected in parallel with the 

10MΩ feedback resistor at the frontend TIA for the driving-amplitude-sensing electrode.  

The gain of the TIA is controlled by changing the gate bias of a discrete NMOS chip, 

operating in the linear region.  The threshold voltage of this NMOS chip is controlled 

with the substrate bias. 
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In this version of circuitry, the output signal from the TIA connected to the driving 

sensing electrode is currently used as the reference signal for the demodulation block.  

The reference signal contains low-frequency noise, which is generated from rectification 

and low-pass filter in the AGC, and the noise limits the accuracy of the sensor.  This 

problem can be solved by separating the reference-signal generator from the self-

oscillation block.  

 
Figure 4.39.  Automatic gain controller (AGC) circuitry.  The circuit consists of half-
wave detector, comparator, and low-pass filter. 

4.10.3.  Instrumentation Amplifier Block 

The instrumentation amplifier block combines the signal outputs of the TIA 

connected to each quadrant of the sensor to provide differential cancellation of signals 

due to capacitive feedthroughs and in-phase oscillation.   
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4.10.4.  Demodulation Block 

The demodulation block consists of a manual phase-shifter and a 2nd-order 

Butterworth filter.  The manual phase shifter block can adjust the reference voltage by 0° 

or 90°, depending on the frequency separation between the driving and sensing modes.  

When the driving and sensing modes are matched, the phase relationship between the 

reference voltage and the TIA connected to the sense electrode is 0°.  This is because the 

reference signal is in phase with the velocity of driving motion, the Coriolis force is in 

phase with the driving velocity, and the output signal from the TIA connected to the 

sense electrode is in phase with the Coriolis force, because the sensing mode is occurred.  

When unmatched, the output from the TIA to the bottom electrode has 90° separation 

from the Coriolis force, because the sensing mode is not occurred.  It is difficult to 

achieve exact phase using manual phase shifter, so this unit will be changed in the future.  

The parameters of circuit blocks in the first-generation circuitry are provided in Table 

4.4.    

 

 

Figure 4.40.  Manual phase shifter. Figure 4.41.  Second-order Butterworth low-
pass filter. 

4.11.  Testing Setup  

For testing, the BOG and front-end interface circuitry are mounted on an Ideal 
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Aerospace® 500 rotation table.  The BOG chip is wire-bonded to a ceramic DIP package, 

and the package is mounted vertically to align the rate table with the measuring axis of 

the BOG.  The package is connected to TIA built on a protoboard.  A metal bell jar is set 

on the top of the rotation stage to allow testing the device under vacuum.  The signal lines 

are fed out through slip rings.  The control circuitry is located on a separate protoboard 

outside the rotation table.  The system is pumped down to a high vacuum level of 

<5mTorr, read by a commercial Pirani gauge.  The temperature of the sensor is kept 

uncontrolled.   

Table 4.4.  Parameters of readout-and-control circuitry 
Circuitry Block  Property 
Frontend  Rdcfb: 10MΩ, Rlin: 10kΩ 
Auto-gain Controller (AGC) Half-wave detector:  

  - High-pass 3dB frequency: 700Hz 
  - Low pass filter’s 3dB frequency1: 1000Hz. 
  - Gain: -10 
Low-Pass filter 3dB frequency: <10 

Variable phase shifter Phase shift: >90° 
Sensing demodulator  Butterworth filter 3dB frequency: <50Hz 

4.12.  Scale Factor Measurement 

Due to cross axis stiffness, the minimum mode separation of the sensor is about 4Hz.  

The sensor is kept at a pressure below 5mTorr, and the scale factor of this gyro under DC 

rotation is tested from a rate of -100 to 100°/sec (Figure 4.42).  The measured scale factor 

was 5.65mV/°/sec with a linearity (R2) of 0.999.  The scale factor of the current device is 

limited by quadrature error, which saturates the output of the TIA.  The quadrature error 

can be reduced by aligning the stiffness axis electronically if alignment electrodes are 

added to the design.  The methods for reducing the quadrature error will be discussed 

later.  
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4.13.  Noise Equivalent Rotation Rate  

The power spectrum of the BOG with a resonance frequency gap of 5Hz between the 

driving and the sensing modes is measured with the rotation table rotating sinusoidally 

with an amplitude of 10°/s and a frequency of 5Hz.  Figure 4.43 shows the power 

spectrum plot of the output signal of the gyro, when it is tested under 5Hz and 10°/s 

peak-to-peak rotational signal.  The low pass filter is set to be about 20Hz.  

 
Figure 4.42.  Voltage output of the BOG over -100°/s to 100°/s at pressure below 
5mTorr. 

 
Figure 4.43.  Power spectrum density of the BOG measured using first-generation 
interface circuitry.  The device is tested under a rotation rate of 10°/s peak-to-peak at 
5Hz.  Under 10°/s peak-to-peak AC rotation at 5Hz, the signal output is -33.84dBV.  
The base noise level is -55dBV at 3Hz.  The noise equivalent rotational rate (ARW) is 
calculated as 0.44°/sec/√Hz.   
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The output signal of this gyro has peak amplitude of -33.84dBV, and the noise level 

is at -55dBV.  Harmonics of input rotation frequencies are found at 10Hz and 15Hz.  

These harmonics are caused from nonlinearity in capacitance measurement from parallel-

plate electrodes and low-frequency noise in the reference signal.  Based on the signal to 

noise ratio from this plot, the angle random walk (ARW) of this gyro is calculated as 

0.44°/sec/√Hz.     

 
Figure 4.44.  Output signal under a sinusoidal rotation of 10°/s at 5Hz. 

4.14.  Future Development  

4.14.1.  Cancellation of Quadrature Error 

One of the performance limiting factors of the current gyroscope is quadrature error.   

The quadrature error is created from non-zero cross-axial stiffness.  The cross-axial 

stiffness of the gyro is generated from mismatch between the principal stiffness axes and 

the sensor axes.  The sources of mismatch in the axes include asymmetric DRIE profile, 

device bowing, and levitation force in the comb-drive electrode [108].  

In the Si-on-glass (SOG) process, device is bowed due to mismatch in the TCE of Si 

and glass.  Figures 4.45 (a) and (b) show the SEM picture of the BOG and the vertical 
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profile of the BOG, measured using a Zygo Newview5000 optical interferometer, 

respectively.   

The SEM picture shows the locations of driving mass, driving electrode, driving 

sensing electrode, driving spring, and anchor.  The optical profile indicates that the gyro 

is bent upward by 0.4µm at the top edge of the device.  The electrode is anchored on the 

glass substrate, so it is not bent upward in the same way as the suspended gyro mass.  The 

principal stiffness axes are located in parallel to the mass.  Due to the bowing, the 

principal stiffness axes are misaligned from the sensor axes (Figure 4.46).  

  
(a) SEM picture (b) Vertical profile 

Figure 4.45.  SEM picture and vertical profile of BOG measured using Zygo.  The 
Zygo plot indicates that the edge of the BOG is bent up by 0.4µm due to mismatch in 
thermal coefficient of expansion (TCE) of Si and glass.  

  
(a) When gyro spring and electrodes 
are aligned 

(b) When gyro spring and electrodes are 
mismatched by θ 

Figure 4.46.  Relationship between sensor axes and principal stiffness axes: (a) spring 
and electrodes are aligned, and sensor and stiffness axes are aligned and (b) spring and 
electrodes are separated by angle θ. 

The cross-axial stiffness along the sensor axis also prevents mode matching.  When 

the damping of the system is small (Q > 10,000), the motion equation of a simple gyro 
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model, having effective mass M along driving and sense axes and effective stiffnesses 

k11, k22, k12, and k21 along the driving, sensing, and cross-axial directions, respectively, 

become: 
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(Equation 4.4) 

The resonance frequencies can be found by inserting Equations 4.5 and 4.6 into Equation 

4.4.   

x = X exp( jωt)  (Equation 4.5) 

y = Y exp( jωt)  (Equation 4.6) 

  The driving and sensing mode frequencies ω1 and ω2 are calculated as: 

ω1 =
M1k22 +M 2k11 − M1k22 −M 2k11( )2 + 4M1M 2k12

2

2M1M 2

 

(Equation 4.7) 

ω 2 =
M1k22 +M 2k11 + M1k22 −M 2k11( )2 + 4M1M 2k12

2

2M1M 2

 

(Equation 4.8) 

The square-root radicands of ω1 and ω2 are different by:  

M1k22 −M 2k11( )2 + 4M1M 2k12
2

M1M 2

 
(Equation 4.9) 

The necessary conditions to match the ω1 and ω2 are:  

M1k22 −M 2k11 = 0  (Equation 4.10) 

k 12= 0  
(Equation 4.11) 

This relationship shows that k12 (=k21) has to be reduced to zero in order to match the 

frequencies of the two modes.  In order to cancel the cross-axial stiffness, it is necessary 

to include an electrode that can provide a force along the sensing axis that is proportional 
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to the displacement along the driving axis.  This can be done using bottom electrodes that 

partially overlap the drive mass, as shown in Figure 4.48.  

 
 Figure 4.47.  Structure of partially overlapping electrodes.  The vertical force depends 
linearly on x-axis displacement, so the cross-axis stiffness of both polarities can be 
adjusted using V1 and V3.  

4.14.2.  Improvement of Interface Circuitry  

In the current interface circuitry, the reference signal contains low-frequency noise 

that is created from the automatic gain controller (AGC) (Figure 4.39).  The behavior of 

the current circuitry is simulated using Simulink.  Figure 4.49 shows a Simulink model 

that describes the dynamics of a gyro and the architecture of the current interface 

circuitry.   The displacement along the x- and y- axes are written as x and y, respectively.  

The effective masses along the two axes are set to be the same.  The dynamics along the 

two axes are described using resonance frequencies (ω11, ω22), damping time constants 

( τ11, τ22), cross-axial frequency (ω12, ω21), and the Coriolis force ( 2Ωx ,  2Ωy ).  The 

motion along the driving and sensing axes are coupled by the Coriolis force and force 

from cross-axial stiffness.  The cross-axial stiffness introduces quadrature error, which 

has 90° separation from displacement from the Coriolis force.  The purpose of this 

simulation is to demonstrate the instability in bias from the fluctuation in the reference 
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signal.  In the simulation, driving and sense frequencies are set to 10,000Hz and 

10,010Hz, and the cross-coupling stiffness is set to be the 0.1% of the in-axial stiffness.  

The Q of both modes are set to 1,000 to reduce the time for reaching to a steady state.  

The nominal Q value is found to introduce negligible difference in the amount of the 

amplitude fluctuation in the reference signal vref.   

Figure 4.49 shows the normalized waveforms of  x  (from TIA along driving axis),  y  

(from TIA along sense axis), reference voltage (vref),  y × vref , and the output from 2nd-

order Butterworth filter (vout) with a cutoff frequency of 50Hz.  From these signals, we 

find that  x (normalized) and  y (normalized) have much more stable amplitude than the 

vref.  This is due to the small bandwidth of the driving resonance mode.  The amplitude 

fluctuation in vref introduces error in  y × vref  and vout.  Improved accuracy can be achieved 

by using  x  as the reference signal. 

The current circuitry also has a challenge in the creation of accurate phase of the 

reference voltage.  More accurate in-phase and quadrature signals can be generated, for 

example, by using digital phase-lock loop (PLL) and digital frequency divider [7].  In 

addition, the parasitic capacitance at the non-inverting node of the frontend TIA can be 

reduced by mounting the gyro chip and by reducing the distance of the electrical line 

between the amplifier and the gyro chip.   

4.14.3.  Geometry Optimization for Mode Separation and Controllability 

The sensor design can be further optimized to have wider separation between the 

sensing mode and the parasitic sensing mode.  The structure and location of the sense-

coupling spring is closely related to the amount of angular deflection in the driving mode.  
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Devices with different coupling spring designs will be compared for their vibration 

sensitivity. 

4.15.  Summary 

This chapter described the design and fabrication of the Balanced Oscillating 

Gyroscope (BOG).  The relationship between the geometry of the gyro and the frequency 

separation between operational and parasitic modes is studied.  The first-generation BOG 

is built using high-aspect-ratio, high-accuracy Si-on-Glass (SOG) process with a device 

thickness of 100µm.  The BOG with a minimum mode separation of 5Hz is evaluated in 

the open-loop mode using analog interface circuitry.  The gyro has a sensitivity of 

5.6mV/°/s and an angle random walk (ARW) of 0.44°/sec/√Hz.  An addition of balancing 

electrodes and quadrature feedback electrodes will improve the performance of the 

device.    

 
Figure 4.48.  Simulink model of the gyro and first-generation circuitry.  This model is 
used to simulate bias instability due to fluctuation in reference signal.  The gyro model 
includes cross-coupling stiffness.  Cross-coupling damping is omitted for simplicity.  The 
output voltage (voutput) is proportional to the quadrature error signal. 
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(a) Normalized velocity along driving axis  
[ x (normalized)] 

(b) Normalized velocity along sense 
axis [ y (normalized)] 

  
(c)  Normalized reference voltage 
 [vref (normalized)] 

(d)  Normalized modulated voltage 
[ vref × y (normalized)] 

 

 

(e) Output voltage of the demodulation 
block after the low pass filter (cutoff 
frequency: 50Hz) 

 

Figure 4.49.  Simulated waveforms of normalized velocity along driving and sense 
axes ( x (normalized),  y (normalized)), reference voltage (vref (normalized)), modulated 
voltage ( vref × y (normalized)), and output voltage (vout).   
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CHAPTER 5.  
 

HIGH-FREQUENCY SINGLE-CRYSTAL-SILICON CYLINDRICAL 
RATE-INTEGRATING GYROSCOPE (CING) 

 
 

This chapter describes the design, fabrication, and evaluation a Single-Crystal-Si 

Cylindrical Rate-Integrating Gyroscope (CING).  The advantages of the CING are 

complete axisymmetry, easy frequency controllability, and larger ratio between parasitic 

frequencies and the wineglass frequency (fparasitic/fwineglass), which affects the response of 

the sensor under vibration and shock.  To improve the fabrication of CING, the Si-on-

glass (SOG) process is calibrated for creating 3D structures like the CING.  The gyro is 

tested in the rate- and rate-integrating modes using digital circuitry, developed within our 

group [129].    

5.1.  Geometries for the MEMS Rate-Integration Gyroscope (RIG) 

The vibratory rate-integrating gyroscope (RIG) serves either as a rate (RG) or a rate-

integrating gyro (RIG).  To have small drift, the vibratory RIG needs to have identical 

resonance frequencies and Q.  Many RG’s, like the BOG, are designed with non-

degenerated modes with innate mechanical anisotropy, so that they may be more accurate 

in the rate-sensing mode.  The drift rate due to anisotropic damping is inversely related to 

the damping time difference (Δ1/τ) of the gyro.  Due to the inverse proportional 
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relationship between the damping time (τo) and the operating frequency (fo), lower-

frequency gyro are expected to achieve a lower drift due to anisotropic damping.   

There has been only a single practical RIG so far [45].  The device in [45] is the 

quad-mass tuning-fork gyroscope.  The device is weakly decoupled with respect to the x- 

and y- axes.  The device operates at 2kHz with a Q of more than 1 million. The 

attractiveness of the non-axisymmetric gyro is the compatibility with conventional planar 

microfabrication processes.  The challenges of 2D low-frequency gyros include 

complicated structures and the existence of parasitic modes below the resonance mode, 

which increases sensitivity to environmental vibration and shock.  On the other hand, 

axisymmetric gyro designs like CING have advantages of simpler design, complete 

axisymmetry, and fewer parasitic modes.  The gyro has a single anchor at the center of 

the design, minimizing the effect of thermoresidual stress under temperature variation.   

However, the drawback of the CING is the lower angular gain (Ag), in the range of 0.07 

for 2500µm radius and 300µm tall device.   

Figure 5.1 shows a few axisymmetric resonator geometries considered in the 

presented study: hemisphere, half-toroid, ring, disk, simple cylinder, and multi-ring 

cylinder.  These geometries have either already been realized or are currently being 

attempted as vibratory gyroscopes.  The geometries are compared for simplicity of 

microfabrication and mode characteristics. 

The hemispherical resonator geometry is used in the Hemispherical Resonator 

Gyroscope (HRG), and the HRG serves as the state-of-art vibratory gyroscope [109].  

Due to the curvature of the sidewall, the placement of electrodes, and the vertical level of 

the edge of the shell and the anchor, it is difficult to micro-machine this geometry. 
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In the half-toroid shell geometry, the anchor is located at the same level as the top 

edge of the shell [110].  This is expected to simplify fabrication of this geometry 

compared to the hemispherical geometry.  The primary challenges in the fabrication of 

the half-toroid are isotropy and control of sidewall curvature. 

The ring geometry has been previously adopted to make vibratory rate gyroscopes 

[7].  Advantages of the ring geometry include simplicity of the microfabrication and 

controllability of the resonance frequency.  The main challenge in this geometry is 

achieving mechanical anisotropy because of the supporting springs. 

The disk geometry is used in the Si bulk-acoustic wave (BAW) gyroscope [26].  The 

advantages of the disk geometry include simplicity in fabrication and complete 

axisymmetry.  The challenge of the disk geometry is the difficulty of designing the 

geometry to operate at <10kHz with a small footprint, for use as a rate-integrating gyro. 

The cylinder geometry is used in [111].  This geometry provides complete 

symmetry, and the resonance frequency can be easily controlled by changing the wall 

thickness.  However, it is challenging to define such a geometry using a single masking 

step.   

The multi-ring-cylinder geometry (named the CING geometry) has a number of rings 

that fill the space between the innermost wall and the outermost wall of the cylinder 

[112].  This geometry is completely axisymmetric and a single-crystal-Si multi-ring gyro 

can be microfabricated relatively simply using the DRIE lag effect, with a single masking 

step.  
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(a) Hemisphere (b) Half-toroid (birdbath) 

  
(c) Ring (d) Disk 

  
(e) Simple cylinder (folded) (f) Multi-ring cylinder (folded) (CING) 

Figure 5.1.  Axisymmetric resonator shapes for the MEMS rate-integrating gyroscope 
(RIG). 

The relative frequencies of a gyro’s resonance modes are critical to its ability to 

reject environmental vibrations.  The types of resonance modes found near the n=2 

wineglass mode, include the tilting and vertical deflection mode.  In the tilting mode, the 

mass is rotated with respect to the planar (x-y) axes.  Due to the symmetry of these 

structures, two tilting modes with identical frequencies are found.  In the vertical mode, 

the mass of the gyro is deflected in the vertical direction.  The shapes of the wineglass 

mode, tilting mode, and vertical mode for the CING are illustrated in Figure 5.2.  Table 

5.1 compares fabrication simplicity, axisymmetry, wineglass mode frequency (fWG), 

ratios of tilting and vertical mode frequencies to the wineglass mode frequency (ftilting/fWG, 
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fvertical/fWG), effective mass (M), and angular gain (Ag) of range of device sizes for each 

geometry.  The range of the outer radius (R), anchor radius (AR), and height (H) are the 

same for all geometries.  The aspect ratio (H/R) of the considered geometries is set to be 

less than 0.2.  The thicknesses of the geometries are set to be in the range that can be 

created using conventional micromachining processes.  The n=3 wineglass mode also 

exists near the n=2 wineglass mode, but due to the balanced characteristics of the mode, 

it will not be excited by environmental vibration and so it is not considered in this 

comparison.  It should be noted that in the ring geometry, due to the flexibility of the 

support spring, lateral and rotational modes exist below the wineglass mode.  Among the 

considered geometries, the multi-ring geometry offers the greatest separation between 

parasitic and wineglass modes indicated by having the largest fparasitic/fWG.  

Large effective mass (M) and angular gain (Ag) are important for having a larger 

Coriolis mass (γ), which leads to a larger scale factor in both rate-sensing and rate-

integration modes.  Among the considered geometries, the disk and multi-ring geometries 

have the largest M.  The ring geometry has the largest Ag (0.4), which is 5 to 20 times 

larger than the Ag of the other geometries.  The shell, disk, and multi-ring geometries 

have small Ag because of large out-of-plane displacement in the wineglass mode.  In 

chapter 3, Ag is defined as:   

Ag =
γ
nM

 (for nth wineglass mode) (Equation 5.1) 

The M and γ are expressed using the shape functions of finite elements in the Cartesian 

coordinate for the two wineglass modes (φx1 , φy1 , φz1 , φx2 , φy2 , φz2 ) as: 

 
M1 = ρ(φx1

2

V
∫ +φy1

2 +φz1
2 )dV (Effective mass for mode 1)  

(Equation 5.2) 
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M 2 = ρ(φx2

2

V
∫ +φy2

2 +φz2
2 )dV (Effective mass for mode 2)  (Equation 5.3) 

 
(Equation 5.4) 

The difference between γ and M is that γ is not contributed by motion along the z-axis, 

whereas M increases with φz1  and φz2 .  This is because the out-of-plane (z-axis) motion 

does not contribute to create the Coriolis force.   

The Ag of a wineglass mode gyro increases as the aspect ratio of the gyro increases.  

Figures 5.3 (a) and (b) compare the flexural mode patterns of cylinder gyros with two 

different aspect ratios.  In the lower aspect-ratio gyro (Figure 5.3 (a)), the bottom plate 

has larger flexibility than the vertical sidewall (along the z-axis), so large displacement 

occurs from the bottom plate.  The direction of the displacement is along the z-axis.  In 

the higher aspect-ratio gyro (Figure 5.3 (b)), the vertical sidewall has larger flexibility 

than the bottom plate, so large lateral motion occurs from the vertical sidewall.  The 

lateral motion contributes to the creation of the Coriolis force, so the higher aspect-ratio 

gyro has a larger Ag. 

Table 5.2 compares the mechanical characteristics of the gyros as their aspect ratios 

become 1.  In this aspect ratio, the Ag of all the geometries become 0.3~0.4, but it is very 

difficult to fabricate these geometries using the conventional micromachining process. 

In this research, we develop the multi-ring cylinder gyro (CING) with a radius of 

2.5mm and height of 300µm, resulting in an aspect ratio of 0.12.  Although the CING 

geometry that we investigate has a small Ag, the complete axisymmetry and stable modal 

charactersitics makes it a useful rate-integrating gyroscope (RIG).   

γ = ρ(φx1φy2 −φx2φy1)
V
∫ dV (Coriolis mass)
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(a) Wineglass mode (b) Tilting mode 

 

 

(c) Vertical mode  
Figure 5.2.  Displacement pattern of wineglass mode, tilting mode, and vertical mode of 
the CING. 

 
Table 5.1.  Comparison of fabrication simplicity, axisymmetry, mode characteristics 
(fWG, ftilting/fWG, fvertical/fWG), effective mass (M), and angular gain (Ag) of the RIG shapes 
with aspect ratio (height/radius) less than 0.2 
Gyro shape  Hemisphere 

[109] * 
Half-toroid 
(birdbath) * 
[110] 

Ring [7] Disk 
[26] 

Simple 
cylinder  

[111] 

Multi-ring 
cylinder 
(CING) [112] 

Fabrication 
simplicity 

Very 
difficult 

Very 
difficult 

Easy Easy Difficult Easy 

Axisymmetry Yes Yes Not 
completely 

Yes Yes Yes 

Wineglass 
mode 
frequency (f

WG
) 

2.5~5.1 
kHz 

5.4~15 
kHz 

8.6~24.5 
kHz 

40.5~134 
kHz 

13~46 
kHz 

14~38 
kHz 

f
tilting

/f
WG

  0.8~3.1 1.1~1.7 0.4~0.9** 0.8~0.9 0.4~0.9 0.8~1.8 

f
vertical

/f
WG

 2.4~4.0 2.0~3.2 0.4~1 ~0.9 0.5~1.1 1.7~2.8 

Effective mass 
(M) 

< 80µg < 80µg < 800µg < 5mg < 300µg < 1mg  

Angular gain 
(A

g
) 

~0.03 ~0.05 ~0.4 ~0.02 ~0.06 ~0.08 

• Condition: material: Si, radius: 2~2.5mm, anchor radius: 500~1000µm, height: <500µm.  The 
thickness of the shell for hemisphere and birdbath gyro is 5~10µm.  The thickness of ring, cylinder 
wall, and multi-ring cylinder is 20~40µm. 

*: The ratios between tilting and vertical modes and wineglass mode (ftilting/fWG, fvertical/fWG) depend strongly 
on the curvature of gyro. 

**: In ring gyro, translational mode and rotational mode exist below the wineglass mode.  
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(a) Small aspect ratio (height/radius) 

 
(b) Large aspect ratio (height/radius) 

Figure 5.3.  Comparison of wineglass-mode displacement patterns of cylinder resonators 
with different aspect ratios (height/radius). 

 
Table 5.2. Comparison of fabrication simplicity, axisymmetry, mode characteristics 
(fWG, ftilting/fWG, fvertical/fWG), effective mass (M), and angular gain (Ag) of the RIG shapes 
with aspect ratio (height/radius) of 1 
Gyro shape  Hemisphere

* [109] 
Half-toroid 
(birdbath) * 
[110] 

Ring** 
[7] 

Disk*** 
[26] 

Simple 
cylinder 
****  [111] 

Multi-ring 
cylinder***
* (CING) 
[112] 

Fabrication 
simplicity 

Very 
difficult 

Very 
difficult 

Very 
difficult 

Very 
difficult 

Very 
difficult 

Very 
difficult 

Axisymmetry Yes Yes Not 
completely 

Yes Yes Yes 

Wineglass 
mode 
frequency (f

WG
) 

15.3kHz 11.2kHz 10.6kHz 88.9kHz 6.3kHz 6.2kHz 

f
tilting

/f
WG

  4.2 4 > 4 1.5 1.2 1.3 
f
vertical

/f
WG

 > 6 > 6 > 4 4 1.5 2.5 
Effective mass 
(M) 

160µg 180µg 3.2mg 46mg 460µg 2mg 

Angular gain 
(A

g
) 

0.3 0.3 0.4 0.43 0.34 0.35 

*: Radius:  2.5mm, anchor radius: 1mm, height: 2500µm, thickness: 10µm  
**: Radius: 2.5mm, anchor radius: 1mm, height: 2500µm, ring thickness 40µm.  Translational and 
rotational modes exist below the wineglass mode 
***: Radius: 2.5mm, anchor radius: 1mm, height: 2500µm.  Rotational mode exists below the wineglass 
mode 
****: Radius: 2.5mm, anchor radius: 1mm, height: 2500µm, thickness: 20µm 
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5.2.  Cylindrical Rate-Integrating Gyro (CING) 

5.2.1.  Overall Description 

The architecture of the CING is illustrated in Figure 5.4.  It consists of 1) a multi-

ring cylinder resonator; 2) side electrodes, surrounding the outer perimeter of the 

resonator; 3) a ring electrode, surrounding the inner perimeter of the resonator; and 4) 

bottom electrodes, located underneath the resonator.  The CING is fabricated from a 

(111) single-crystal Si wafer using the Si-on-glass (SOG) process. 

The multi-ring resonator faces downwards and bonds to the bottom substrate (glass) 

at its innermost ring.  The resonator faces 16 discrete side electrodes and bottom 

electrodes, each spanning almost 22.5°.  The ring electrode is surrounded by the 

innermost ring of the gyro.  Using the nonlinearity of the capacitive force, the ring 

electrode can actuate the resonator in the wineglass mode.    

 
Figure 5.4.  Single-Crystal-Si Cylindrical Rate-Integrating Gyroscope (CING). 
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5.2.2.  Dependency of Resonance Frequencies on Geometry 

The design parameters for the multi-ring cylinder include the radius (R), anchor 

radius (AR), height (H), ring thickness (T), bottom plate thickness (BT), anchor thickness 

(AT), and the number of rings (N) (Figure 5.5).  The relationships between the geometry 

parameters and the change in the wineglass frequency (fWG) and the parasitic frequencies 

(fvertical, ftilting) are found using FEM analysis.  

5.2.2.1.   Outer Radius (R) 

The dependency of the wineglass mode frequency (fWG), tilting mode frequency 

(ftilting), and vertical mode frequency (fvertical), and n=3 wineglass mode (fn=3) on the outer 

radius (R) is shown in Figure 5.6.  The relationship is studied with an R of 2mm to 4mm, 

while keeping the rest of the dimensions constant  (AR: 1 mm, H: 300µm, T: 30µm, AT: 

100µm, BT: 30µm).  In this study, we used approximate geometries that have fewer 

numbers of rings (N) so that ANSYS can successfully mesh and simulate the structure.  

The simulation results show that the as R increases, all of the frequencies drop, but fWG 

and fn=3 decrease slower than the parasitic modes. 

 

 
Figure 5.5.  Geometrical parameters of the CING. 
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5.2.2.2.  Inner Radius (AR) 

Figure 5.7 shows the simulated relationship between the mode frequencies and the 

anchor radius (AR), while other parameters are kept constant (R: 2.5mm, H: 300µm, T: 

30µm, AT: 100µm, BT: 30µm).  The fWG, fvertical, and ftilting increase with AR, but the 

parasitic modes are affected more than fWG and fn=3.  The fn=3 has smallest dependency on 

the change in AR.  As AR increases above ~1700µm, fn=3 is at a lower frequency than fWG. 

 
Figure 5.6.  Relationship between the outer radius (R) and the frequencies of wineglass 
mode (fWG), vertical mode (fvertical), tilting mode (fWG), and n=3 flexural mode (fn=3) 
(AR: 1mm, H: 300µm, T: 30µm, AT: 100µm, BT: 30µm). 

 
Figure 5.7.  Relationship between the anchor radius (AR) and the frequencies of 
wineglass mode (fWG), vertical mode (fvertical), tilting mode (fWG), and n=3 flexural mode 
(fn=3) (R: 2.5mm, T: 30µm, H: 300µm, AT: 100µm, BT: 30µm). 
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5.2.2.3.  Ring Thickness (T) 

Figure 5.8 shows the simulated relationship between the mode frequencies and the 

ring thickness (T), while other parameters are kept constant (R: 2.5mm, AR: 1mm, H: 

300µm, AT: 100µm, BT: 30µm).  The rings add stiffness to the bending stiffness of the 

bottom plate, so as T increases, all of the mode frequencies increase.  The increase in T 

also adds mass to the system.  The largest slopes in the frequencies versus T are found for 

smaller T.  As T increases, the ftilting and fvertical start to saturate, due to the saturation in the 

bending stiffness of the bottom plate and increase in the mass.  The fWG and fn=3 increase 

at nearly constant slopes, indicating that the effective mass for the wineglass modes 

increases more slowly than the ftilting and fvertical.  This simulation result indicates that 

relatively low fWG (<20kHz) and large gap between ftilting and fWG (>5kHz) can be 

achieved when T is smaller than 30µm.  A challenge in the reduction of T comes from 

lithography process.  Later in this chapter, we discuss the process conditions with 

AZ9260 photoresist that we developed for achieving such a high aspect ratio. 

 
Figure 5.8.  Relationship between the ring thickness (T) and the frequencies of 
wineglass mode (fWG), vertical mode (fvertical), tilting mode (fWG), and n=3 flexural mode 
(fn=3) (R: 2.5mm, AR: 1 mm, H: 300µm, AT: 100µm, BT: 30µm). 



 149 

5.2.2.4.  Height (H) 

Figure 5.9 shows the simulated relationship between the mode frequencies and 

device height (H), while other parameters are kept constant (R: 2.5mm, AR: 1 mm, T: 

30µm, AT: 100µm, BT: 30µm).  The resonance frequency of the gyro increases with the 

increase in H for 100µm to 300µm.  As H increases above 300µm, the frequencies start to 

drop.  This tendency can be understood as when H is low, the stiffness of the vertical 

walls is considerably higher than the stiffness of the bottom plate, so that as H increases, 

it adds stiffness to the bottom plate and increases the resonance frequency.  However, as 

H goes above 300µm, the flexibility of the vertical walls starts to influence the overall 

flexibility of the device. 

 
Figure 5.9.  Relationship between the height (H) and the frequencies of wineglass mode 
(fWG), vertical mode (fvertical), tilting mode (fWG), and n=3 flexural mode (fn=3) (R: 2.5mm, 
AR: 1 mm, AT: 100µm, BT: 30µm). 

5.2.2.5.  Bottom Thickness (BT) 

Figure 5.10 shows the simulated relation between the mode frequencies and the 

anchor radius (BT), while other parameters are kept constant (R: 2.5mm, AR: 1mm, H: 

300µm, T: 30µm, AT: 100µm).  The slope for the change of the flexural mode frequency 
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is found to be larger than for the parasitic frequencies.  A good mode separation is 

achieved with a BT of 20~30µm.  

 
Figure 5.10.  Relationship between the bottom plate thickness (BT) and the frequencies of 
wineglass mode (fWG), vertical mode (fvertical), tilting mode (fWG), and n=3 flexural mode 
(fn=3) (R: 2.5mm, AR: 1mm, H: 300µm, AT: 100µm). 

5.2.3.  Dimension of the 1st Generation CING 

The first-generation CING is designed to operate at 17~23kHz, with a frequency 

separation between the wineglass mode to the parasitic modes of more than 800Hz.  The 

height of the CING is 300~350µm.  The geometry, electrical properties, and calculated 

physical properties of the first-generation CING are included in Table 5.3. 

5.3.  Energy Loss Mechanism of the CING 

The major energy loss mechanisms for low-frequency, single-crystal-Si resonators in 

vacuum are thermoelastic damping (TED), anchor loss, and surface loss.  Thermoelastic 

damping (TED) is an energy loss mechanism occurring from strain changes following the 

temperature profile inside a vibrating structure.  The temperature profile is determined by 

the interaction of: 1) thermal gradient generation through adiabatic extension and 

compression and 2) thermal diffusion, following the generated temperature gradient 


