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[127].  The phase of the temperature gradient generation is the same as the phase of 

displacement.  The thermal diffusion is determined by the thermal conductivity (k), 

density (ρ), and specific heat (cp) of the material.  The energy loss due to TED is also 

proportional to the phase offset between the stress and strain profile during oscillation 

cycles.  

Anchor loss is due to the transfer of acoustic energy from the resonator to the 

substrate.  The amount of acoustic energy transferred to the substrate is proportional to 

the stress profile at the anchor interface.  The analytical expression of anchor loss for a 

simple cantilever was studied by Jimbo [113].  They first calculated the axial force, 

moment, and the shear force acting on a beam with an ideal anchor.  The forces were 

applied to the 2D wave equation to compute the amount of displacement at the anchor, 

with an assumption that the substrate is a half-infinite domain and no waves are reflected 

back to the resonator.  A similar analytical study was done by Hao [114] for a MEMS 

cantilever and clamped-clamped-beam resonator.  Bindel presented a method to calculate 

anchor loss using FEM [115].  To model zero reflection from the boundary to the model, 

Table 5.3.  Geometry, electrical properties, and physical properties of the 1st 
generation CING 
Geometry and Electrical Properties Calculated Physical Properties  
Outer radius 
(R) 

2.5mm Side electrode 
capacitance 
(gap: 9µm) 

290fF Wineglass 
mode freq. 
(fWG) 

17.3kHz (T=30µm) 
23.1kHz (T=40µm) 

Anchor 
radius (AR) 

1mm Bottom 
electrode 
capacitance 
(gap: 2.5µm) 

3.7pF Tilting mode 
freq. (ftilting) 

>30kHz 

Ring 
thickness (T) 

30, 40µm   Vertical mode 
freq. (fvertical) 

>50kHz 

Anchor 
thickness 
(AT) 

100µm   Angular gain 
(Ag) (ANSYS) 

0.07 

Bottom plate 
thickness 
(BT) 

30~50µm   Effective mass 
(M) 

~700µg 
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a mechanical Perfectly Matched Layer (PML) was included near the boundary.  The 

mechanical PML absorbs the incident elastic wave of all wavelengths from all angles, 

and is available in commercial FEM programs, including COMSOL.  One of the critical 

challenges in mechanical simulation with PML is excessive computing time.  The 

properties of the mechanical PML can be approximated by using a mechanical Matched 

Layer (ML) [116].  The difference between the ML and is the PML is that the ML only 

absorbs the wave that is along the normal direction to the surface.  By careful selection of 

the geometry for the ML region, very close matching of Qanchor using the ML and PML 

was found in [116].  In this study, we use FEM with a ML to calculate the anchor loss of 

the CING.   

Surface loss is caused by uneven stress distribution at the surface of a resonator due 

to surface roughness.  The approximation of the dependency of Qsurface on surface 

roughness, geometry, and mode can be obtained by modeling a resonator as a perfect 

resonator, surrounded by a thin, damaged material layer [117].  Following this analysis, 

we can find the location on the CING that provides the largest contribution to Qsurface.   

5.3.1.  Calculation of Thermoelastic Damping (TED) 

An approximate expression for QTED can be expressed in terms of the relaxation 

strength (Δ), frequency (ω), and the thermal diffusion time constant (τh), as shown in 

Equation 5.5-Equation 5.8.   

 (Equation 5.5) 

Δ = α 2TinitialE
cpρ

 (Equation 5.6) 

1
QTED

=
α 2TinitialE
cpρ

ωτ

1+ ωτ( )
2
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τ h =
b2

π 2χ
 (Equation 5.7) 

χ = κ
cpρ

 (Equation 5.8) 

In Equation 5.5, (K-1) denotes the linear thermal expansion coefficient, (K) 

denotes the nominal temperature, (Pa) denotes Young’s modulus, cp (J/kg/K) denotes 

the specific heat under a constant pressure, (kg/m3) denotes the density, (m) denotes 

the width of the beam where thermal field is generated, and (W/mK) denotes thermal 

conductivity.  The relationship between oscillation frequency ω normalized to τ and  

is plotted in Figure 5.11.  The loss, , reaches the maximum value when  is equal 

to .  At this frequency, the thermal gradient and the thermal conduction are balanced 

and create the largest out-of-phase stress.  When  is smaller than , the thermal 

diffusion process dominates the thermal gradient generation process.  In this region, 

thermal equilibrium is reached more quickly than the mechanical oscillation period 

leading to a more uniform temperature profile across the strained and compressed regions 

of the resonator.  As the temperature profile across the resonator becomes more uniform, 

the amount of thermal expansion per oscillation reduces, so less energy is dissipated 

during oscillation.  When  is larger than , the thermal gradient generation process 

dominates the diffusion process.  In this region, the oscillation period is small compared 

to the thermal equilibrium time constant leading to a more bipolar temperature profile.  

The phase of the strain due to thermal expansion matches the strain due to mechanical 

oscillation of the resonator which leads to less energy dissipated per oscillation.    

α Tinitial

E

ρ b

κ

QTED
−1

QTED
−1 ω

τ −1

ω τ −1

ω τ −1
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The QTED can be controlled by choice of material, width of critical beams (b) where 

the temperature gradient is created, and the oscillation frequency (ω).  MEMS materials 

with high thermal conductivity, such as Si (κ: 130W/mK) and diamond (κ: 2200W/mK), 

have lower nominal thermal diffusion time constants (τ) than other MEMS materials.  

With these materials, a higher QTED can be achieved by reducing both b, which increases 

τ-1 and ω, which increases the separation between the maximum damping frequency and 

the operating frequency.  On the other hand, MEMS materials with lower thermal 

conductivity, such as fused silica (κ: 1.3W/mK), have larger τ than other MEMS 

materials.  In this case, a larger QTED can be achieved by increasing b and increasing the 

ω.  

 
Figure 5.11.  Relationship between oscillation frequency normalized to thermal diffusion 
time constant (ωτ) and from [106]. 

 
The temperature profile of the cross-section of a CING in the n=2 wineglass mode is 

found using ANSYS for the geometry in Table 5.3.  In the simulation, the number of 

rings (N) is reduced to 30 to reduce the simulation time.  Using the meshing element in 

QTED
−1
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for calculating the TED loss, the wineglass mode is found at 25.7kHz.  In the harmonic 

analysis, pressures are applied from the bottom plate along the z-axis to deform the gyro 

in the shape closest to the wineglass mode.  Figure 5.12 shows that a temperature 

gradient is generated 1) at the interface between the bottom plate and the multiple rings, 

especially at the innermost ring, 2) across the ring, along the radial direction (x-axis), and 

3) parallel to its thickness (z-axis).  

  
(a) Temperature distribution for the 
cross-sectional plane of the CING 

(b) Temperature distribution of the bottom 
plate of the CING  

Figure 5.12.  Cross-sectional view of the temperature distribution of the CING, simulated 
from harmonic analysis after applying complementary Z-axis pressure from the bottom 
plate of the resonator.  The gyro dimension includes outer radius (R) of 2.5mm, anchor 
radius (AR) of 1mm, height (H) of 300µm, ring thickness (T) of 30µm, bottom plate 
thickness (BT) of 30µm, and number of rings (N) of 30.  The simulation is conducted at 
25.7kHz. 

The amount of TED is not uniformly distributed in the CING.  In Figure 5.13, the 

CING is divided into three regions to understand the amount of energy dissipation.  The 

regions are: 1) lower half of the bottom plate, 2) upper half of the bottom plate to the 

lower one-fifth of the ring, which includes the corner between the rings and the bottom 

plate, and 3) and the upper four-fifth of the ring.  Table 5.4 shows the ratio between the 

average stored energy (Eavg), average dissipated energy (ΔEavg) during a single oscillation 

cycle, and the ratio between the ΔEavg and Eavg for each region.  The ratio between the 
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average energy loss and the stored energy ΔEavg/Eavg is termed the local .  The FEM 

analysis calculated that the local  is largest in Region 2 followed by Region 1, and 

the Region 3.  The difference is attributed to the different amounts of stress concentration 

during an oscillation. 

 

 
Figure 5.13.  Divisions of regions used for local TED analysis. 

5.3.1.1.  Relation Between the Bottom Plate Thickness (BT) and QTED 

The bottom plate of the cylinder is the critical location for TED.  The dependency of 

the overall QTED on the bottom plate thickness (BT) is shown in Figure 5.14.  The 

simulation results are compared with the QTED from Zener’s expression, for a simple 

bending beam [106].  The two calculation results agree well for BT of >30µm, indicating 

that the dominant loss mechanism for the bottom plate at this BT range is due to thermal 

diffusion across the surfaces of the bottom plate, similar to a simple bending beam; 

however, as the BT becomes less than 20µm, the simulated QTED of the CING starts to be 

smaller than the QTED from Zener’s expression, indicating that a damping source, which 

QTED
−1

QTED
−1
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does not exist in the simple bending beam, starts to dominate the overall damping.  The 

source of damping at this region is believed to be the stress developed at sharp corners 

formed between the rings and the bottom plate.  In this case, QTED can be improved by 

rounding the corners, possibly by applying an isotropic etchant after the DRIE step.   

5.3.1.2.  Relationship Between the Number of Rings (N) and QTED 

The stress profile caused from the multiple rings has the same shape at each ring, so 

each ring is expected to have the same local QTED
−1 .  As the number of the rings (N) 

increases, the average energy loss ΔEavg  and the overall stored energy Eavg are both 

expected to increase with a constant rate.  As a result, an increase in N is not expected to 

affect QTED significantly.  Figure 5.15 shows the relationship between QTED and four 

different values of N (5, 10, 20, and 30).  The rest of the geometry is kept the same with 

the previous calculations.  Compared to BT, the influence of N on QTED is small.   

Table 5.4.  Normalized stored and dissipated energies from TED for three different 
regions of the CING (Section 1-3).  Gyro dimension includes outer radius (R) of 
2.5mm, anchor radius (AR) of 1mm, height (H) of 300µm, ring thickness (T) of 30µm, 
bottom plate thickness (BT) of 30µm, and number of rings (N) of 30.  The simulation 
is conducted at 25.7kHz. 

 
 

Average stored 
strain energy 
(Eavg,local / Eavg) 

Average 
dissipated energy  
(ΔEavg,local / Eavg) 

Ratio between and 
ΔE and Eavg_ 
(Local QTED

−1 ) 
Section 1  
(Lower half of the bottom plate) 

22.2% 33.1% 1.49 

Section 2  
(Upper half of bottom plate to 
the lower 1/5 of ring)    

34.8 % 54.7% 1.57   

Section 3  
(Upper 4/5 of the ring)    

43% 12.2% 0.28 

Total 100% 100% NA 
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Figure 5.14.  Relationship between the bottom plate thickness (BT) and the QTED, 
compared with Zener’s expression for simple bended beam [106].  Gyro dimension 
includes outer radius (R) of 2.5mm, anchor radius (AR) of 1mm, height (H) of 300µm, 
ring thickness (T) of 30µm, and number of rings (N) of 30. 

 
Figure 5.15.  Relation between the number of rings (N) and the QTED.  The dimension of 
the gyro includes outer radius (R) of 2.5mm, anchor radius (AR) of 1mm, height (H) of 
300µm, bottom plate thickness (BT) of 30µm, and ring thickness (T) of 30µm.  The QTED 
is evaluated at 25.7kHz. 

5.3.2.  Anchor Loss 

The anchor loss of the CING was calculated from a damped eigenvalue model of the 

gyro, where the substrate includes a matched layer (ML) to absorb the incident elastic 



 159 

wave normal to the surface of the layer.  To allow zero reflection at the interface between 

the glass and the ML, the acoustic impedance (Zacoustic) of the ML is matched to the 

acoustic impedance of glass.  The wave-absorbing characteristics of the ML can be 

modeled by introducing a negative exponential decay factor in the velocity of the incident 

wave.  The Young’s modulus EML, density ρML, and the Poisson’s ratio νML of the ML are 

related to the physical parameters of the substrate and the exponential decay factor (αdecay) 

by [116]:  

EML = jEsubstrate α decay

 
(Equation 5.9) 

ρML = − jα decayρsubstrate  (Equation 5.10) 

 (Equation 5.11) 

The bottom substrate in the model is built with a length larger than the wavelength of the 

elastic wave in glass (λglass).  The λglass is calculated by: 

 
(Equation 5.12) 

In Equation 5.12, cglass denote the speed of sound in glass (~4000m/sec).  The λglass for a 

20kHz resonator is about 0.2 meters.  The glass substrate is modeled with a half-sphere 

with a radius of 0.4 meters.  The outer boundary of the substrate is surrounded with a ML 

layer, with a side length of 0.4 meters.  The number of element divisions along the radial 

direction is set to 15, and the number of element divisions along the angular direction is 

set to 10.  The number of elements was limited by the computation speed.  Figure 5.16 

shows the cross-sectional view of the entire reduced-ring-count model.  

νML =ν substrate

λglass =
cglass
fo



 160 

 

 
(a) Cross-sectional view of the meshing  (element divisions along the radial direction is 
15, element divisions along the angular direction is 10). 

 

 
(b)  3D view of the meshing (latitudinal element divisions is 24). 

Figure 5.16.  Modeling of CING geometry with element with Matched Layer (ML). 

Figure 5.17 shows the cross-sectional picture of the simulated von-Mises stress in the 

wineglass mode for a device with an anchor radius (AR) of 1mm, outer radius (R) of 

2.5mm, ring thickness (T) of 30µm, and height (H) of 300µm.  The Qanchor based on the 

eigenvalue is roughly 50 million.  Change in the number of rings has negligible effect on 

Qanchor since the ring does not change the stress profile at the anchor of the device.  The 

Qanchor is analyzed for different anchor radii, ranging from 500 to 2000µm.  The rest of 

the geometry parameters are held constant at outer radius (R) of 2500µm, height (H) of 

300µm, and the anchor thickness (AT) of 100µm.  From the simulation, all of the 

geometries produce Qanchor above 10 million.  From the analysis results, the anchor loss is 
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not expected to limit the overall Q of the CING.  The accuracy of the current analysis, 

however, may be limited by the density of the mesh. 

 
Figure 5.17.  Von Mises stress plot of the cross-section of the CING in the wineglass 
mode.  The stress concentration at the boundary region is found to be negligibly smaller 
than the stress within the geometry. 

5.3.3.  Surface Loss 

The rough surface of the device can be approximated by a thin layer with a certain 

damping parameter surrounding the rest of the device, which can be considered 

completely elastic.  The Qsurface is the ratio between average stored energy over the entire 

geometry divided by the energy lost from the damaged layer over an oscillation cycle 

[117, 118].  The surface loss an arbitrary-shaped gyroscope can be simulated using 

Comsol.  Figure 1.18 shows a Comsol model of a hemispherical shell resonator, 

consisting of a perfectly elastic layer and a damaged layer with complex moduli of Eelastic 

and Eelastic + jEanelastic, respectively.  The thicknesses of the elastic and damaged layers are 

t and  δ, respectively.  The Qsurface can be calculated from the complex eigenvalue of this 

model.  For flexural mode resonators, the Qsurface is expressed as: 



 162 

Qsurface ∝
t

Eanelasticδ  (Equation 5.13) 

Note that Qsurface is determined sorely from t-to-δ ratio and Eanielastic.  When surface 

damping dominates the overall Q of a gyro, the measured Q will be linearly proportional 

to t-to-δ ratio.  In the case of the CING, the largest stress concentration is found at the 

bottom plate, and the surface roughness of the bottom plate makes the largest 

contribution to Qsurface.  The Qsurface of the CING can be increased by polishing the bottom 

surface using CMP and by increasing bottom plate thickness (BT). 

 
Figure 5.18.  Comsol model of hemispherical shell resonator, where perfectly elastic 
layer (thickness: t, elastic modulus: Eelastic) is surrounded by damaged layer (thickness: δ, 
complex elastic modulus: Eelastic + jEanelastic). 

5.4.  Three-Dimesional Si-On-Glass (SOG) Process  

The process steps of the Si-on-Glass (SOG) process, used to create the CING, are 

described in Figure 5.19.  The process begins with defining the geometry of the resonator 

and the electrodes using DRIE of a p-type (ρ < 0.005Ω-cm), (111), 550µm-thick Si 

wafer.  The bottom surface of the Si wafer is covered with 2000Å PECVD oxide 

protection layer.  As a masking material, 15µm-thick AZ9260 is used.  The photoresist 

was soft-baked on a 110°C hotplate for 4 minutes.  The PR is exposed by an I-line (λ= 



 163 

365nm) stepper (GCA Autostep).  The conventional developer for AZ9260, diluted 

AZ400k, induced stress in the PR layer causing it to peel off the PR mask for the thin 

rings during the developing step.  This problem is solved by using MIF300 or MIF319 

developer instead of AZ400K.  An optimal developing speed and near 100% yield is 

achieved by dividing the developing process into four steps, consisting of 1) first 

hydration (30 minutes), 2) first developing (5 minutes), 3) second hydration (10 minutes), 

and 4) second developing (~5 minutes).  Due to the high aspect ratio of the PR patterns, 

drying between the first and the second developing steps is avoided to ensure hydration 

of the PR.  In case there is thin PR layer left at the bottom of the trenches, the wafer is 

briefly descumed in O2 plasma.  The SEM of the patterned photoresist, with mask 

opening sizes of 2µm and 5µm, are shown in Figure 5.20.   

The wafer is then etched in a SPTS Pegasus 4 DRIE machine.  Compared to the 

older-generation STS DRIE machines, this machine provides superior wafer cooling by 

clamping the wafer using electrostatic force instead of mechanical clamping.  The 

machine also provides more stable etch rates by keeping the chamber at an elevated 

temperature (120°C) to prevent the deposition of the passivation polymer on the chamber 

walls which prevents unwanted re-deposition of that polymer on the wafer during the 

normal etching process.  The machine also provides both high-and low-frequency ICP, 

reducing the footing effect.  After 150 minutes of etching, the depths found for 2µm and 

5µm openings are measured to be 300µm and 370µm, respectively.  An etch aspect ratio 

of 1:75 to 1:87 is achieved.  The DRIE masks are stripped in PRS2000, and the Si wafer 

is further cleaned in the Piranha solution (H2SO4:H2O2 = 1:1) for more than 30 minutes.  
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The backside oxide protection layer is then etched using BHF.  The wafer is then rinsed 

in DI water for about 30 minutes. 

The glass substrate is a 550µm-thick glass wafer (borofloat33 from PlanOptiks).  

Recesses with a depth of 3µm are defined and the wet etching is done in straight HF 

(49%) with a stack of Cr (1000Å) and AZ9260 (15µm) as an etch mask.  After etching, 

the masks are removed, and the glass wafer is etched in BHF for about 30 seconds to 

remove the thin layer of Cr residue remaining on the surface of the wafer.  Then Cr/Pt 

(100Å/700Å) electrodes and electrical leads are patterned using the liftoff method.  The 

glass and Si wafers are then aligned and bonded with a Karl-Suss SB6E machine in 

vacuum.  A bonding temperature of 400°C and bonding voltages of -500 and -1300V are 

used for the first and second phases of the bonding process.  A bonding misalignment of 

less than 5µm is achieved.   

The bonded wafer is mounted on a supporting substrate using SPI Crystalbond555.  

The wafer is then etched using the SPTS Pegasus 4 machine to release the gyro structure.  

Due to the large etch area and thermal insulation by the thick glass wafer, there is 

considerable lateral etching during the final releasing step (step (e)) when a fast-releasing 

recipe was used.  To prevent excessive heating, the etch rate of the recipe in step (e) is set 

to be ~4µm/min.  The etch depth is calibrated to etch the bottom plate thickness (BT) to 

be less than 40µm.  After the release etching, the wafer is cleaned using high-pressure, 

low-bias O2 plasma to remove the passivation layer deposited on the sidewalls.  The 

natural oxide on the wafer from the O2 plasma step is removed with RIE.  The wafer is 

etched briefly in XeF2 (pressure: 3Torr, etch time per cycle: 20 seconds, number of 

cycles: 20) to remove thin Si filaments that were left at the edge of the electrode due to 
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the passivation polymer.  The wafer is also annealed at 400°C in vacuum for about 1 hour 

to remove the polymer and reduce residual stress.  The wafer is then cooled down at a 

rate of 2°C/min to minimize thermal shock to the device.  The top-side and cross-

sectional SEM pictures of the fabricated CING are shown in Figures 5.21 and 5.22.   

 
(a) Pattern DRIE PR mask on a 550µm P-type (111) Si wafer.  The gap between ring 
and ring is 3µm narrower than the gap between ring and electrode. 

 
(b) Define DRIE trenches, use DRIE lag to form bottom 80µm-thick bottom silicon. 

   

 
(c) Etch 3µm recess in borosilicate wafer, form bottom Cr/Pt electrodes. 

 
(d) Si and glass wafers are anodically bonded. 

 
(e) Etch Si backside, leaving 30~50µm at the bottom of the cylinder. 

Figure 5.19.  Silicon-on-Glass (SOG) process for the Cylindrical Rate-Integrating Gyro 
(CING). 
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(a)  SEM picture of 9260 patterns (ring width: 15µm).   

 
(b)  Cross-sectional view of 6µm-wide opening (between electrode and ring).  
Original mask opening size is 5µm. 

 
(c)  Cross-sectional view of 3µm-wide opening (between ring and ring).  Original 
mask opening size is 2µm. 

Figure 5.20.  SEM pictures of AZ9260 patterns used to pattern the CING.  The 
photoresist is exposed using I-line stepper and developed in MIF319 or MIF 300 
developer.  The thickness of the pattern is 14.2µm, and the opening sizes between ring 
and electrode and rings are 6.12µm and 3.03µm for mask opening sizes of 5 and 2µm, 
respectively. 
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Figure 5.21.  SEM picture of the first-generation CING.  The device measures outer (R) 
and anchor (AR) radii of 2.5mm and 1mm, respectively, ring thickness (T) of 30~40µm, 
bottom plate thickness (BT) of 30~50µm, and height (H) of 300µm. 

 

 
Figure 5.22.  Cross-sectional SEM picture of first-generation silicon-on-glass (SOG) 
CING after dicing.  The bottom plate thickness (BT) is 45µm, and the capacitive gap 
between the mass and the glass is 2.5µm. 

5.4.1.  Characterization of Anodic Bonding Process 

Due to the high-aspect-ratio pre-patterned features on the Si wafer, the conventional 

bonding recipe at 300°C, used in the SOG process of the BOG, did not produce strong-

enough bonding.  Figure 5.23 shows a photograph of the Si-glass bonding interface of the 
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CING, bonded at 300°C with a voltage of -1300V, after manually separating the Si layer 

from the glass layer.  The picture shows that anodic bonding occurred only at a part of the 

side electrode, with a preferential direction.  The boundary and the pads for the bottom 

electrodes are also only partially bonded.  Figure 5.24 shows a photograph of the Si-glass 

bonding interface of the CING, bonded at 400°C with a voltage of -1300V, after 

manually separating Si layer from the glass layer.  Significant improvement in the 

bonding quality is found by increasing the temperature to 400°C.   

The yield from the DRIE releasing step is found to be limited by the residual stress 

of the bonded wafer.  Wafers without proper annealing and slow temperature ramp-down 

are cracked during the release step by the thermally-induced stress due to the etch heat.  

Significant increase in the releasing yield is found after introducing an annealing step at 

400°C for more than an hour and reducing the cooling-down rate to 2°C/min.   

 
Figure 5.23  Anodic bonding interface of 550µm-Si and 500µm-thick glass bonded at a 
voltage of -500/-1300V at 300°C, indicating weak bonding strength (Si and glass are 
separated after the end of fabrication). 
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Figure 5.24.  Bonding interface of 550µm-Si and 500µm-thick glass bonded at a voltage 
of -500/-1300V at 400°C, indicating strong bonding strength (Si and glass are separated 
after the end of fabrication). 

5.5.  Device Evaluation 

5.5.1.  Modal Characteristics  

The modal characteristics of the first-generation CING are measured at <5mTorr at 

room temperature (uncontrolled).  The side electrodes are used to drive and sense the 

modes, and the bottom electrodes are used to balance the stiffness axis and perfectly 

match the resonance frequencies.  The two-channel gain-and-phase analyzer presented in 

[119] is used to simultaneously sense the gyro along both principal axes, which are 

separated by 45 degrees.  Among the tested devices (~100), the average mode separation 

ranged from 50~150Hz.  The smallest mode separation measured is 7Hz.  The Q of the 

gyros ranged from 20,000 to 70,000.  

5.5.2.  Mode Tuning 

The resonance frequencies of the two wineglass modes are electronically matched by 

applying DC voltages to the electrodes, following the method in [7].  The resonance 
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frequency of the CING is constantly evaluated by actuating from two axes (separated by 

45°) and measuring the capacitance change along the same axes.  Electric bias is applied 

to the balancing electrode, located in the middle of the actuation-and-sensing axes at 

22.5°, until the output amplitude from each axes due to an off-axis force is minimized.  

This is the condition when the principal axes are aligned to the two transduction axes.  

When the stiffness axes are aligned to the transduction axes, the resonance frequencies of 

the modes can be individually controlled with the bottom electrodes along the respective 

axes.  By applying DC bias to the axis of the larger stiffness, the modes are matched 

within 3dB frequency.  Figure 5.25 shows the mode matching of the CING, with a 

matched Q of 21,800.  Due to non-ideal cross axis effects of the balancing and tuning 

biases, the tuning is performed iteratively to achieve the minimum mode separation. 

The CING is tested in closed-loop mode.  Figure 5.26 shows the architecture of the 

interface circuitry [119, 120].  The front-end circuitry consists of TL082 JFET amplifier 

with a feedback resistance of 1MΩ, with additional signals to buffer driving signals and 

output signals of the transimpedance amplifier (TIA).  The digital control circuitry is 

implemented in a Universal Software Radio Peripheral (USRP) FPGA.  The digitally 

converted sense signals are demodulated with in-phase and quadrature reference signals, 

and the system calculates the phase, rate-feedback, quadrature-feedback, and amplitude-

controlling signals.  The amplitude control signal is modulated and sent to the driving 

axis.  The rate-feedback and quadrature control signals are modulated using in-phase and 

quadrature reference signals, respectively, and sent to the sense axis.  The phase signals 

are used to calculate the delay, and the delay signal is applied to the reference signal. 
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Figure 5.25.  Frequency and gain plots of matched n=2 wineglass mode peaks of the 
CING at 17.9kHz. 

 

 
Figure 5.26.  Rate-sensing mode control circuitry implemented in FPGA [119]. 

The testing is done for a gyro sample operating at nominal frequencies of 15,695.1 

and 15,695.6Hz, shown in Figure 5.27.  Based from the phase shift measured at the 

driving and the sensing mode, the Q of the two modes at this condition are about 8,865 

and 8,889, respectively.  The corresponding decay time constant is 0.18 seconds. 

The angular gain (Ag) of the device is evaluated from the ratios of amplitudes for 

actuation and force feedback under different rotation rates [7].  The Coriolis force for a 
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n=2 wineglass gyro is expressed using effective mass (M), driving velocity amplitude (

 qdrive ), Ag, and a rotation rate (Ωz) as:   

 FCoriolis = 4MAg qdriveΩz  (Equation 5.14) 

In the force feedback mode, the Ag is related to the feedback force (Ffeedback) to 

counterbalance the FCoriolis as: 

 
Ag =

FFeedback
4M qdriveΩz

 
(Equation 5.15) 

The relationship between the  qdrive  and the voltage amplitude (Econtrol) is: 

 

qdrive =ωqdrive

= ωQdrive

k11
Fdrive

= ωQdrive

k11

εAelec
g2

Vp
⎛
⎝⎜

⎞
⎠⎟
Econtrol

 
(Equation 5.16) 

The feedback force amplitude (Ffeedback) is related to the feedback voltage amplitude 

(θcontrol) by:   

Ffeedback =
εAelec
g2

Vp
⎛
⎝⎜

⎞
⎠⎟
θcontrol  

(Equation 5.17) 

The Ag can be expressed in terms of θcontrol, Econtrol, the damping time in the driving mode 

τdrive as:  

Ag =
θcontrol

4MΩz
ωQdrive

k11
Econtrol

⎛
⎝⎜

⎞
⎠⎟

= θcontrol

Econtrol

1
2τ driveΩz

 (Equation 5.18) 

Figure 5.28 shows the plot between the input rotation rate Ω from -45 to 45deg/s and 

the ratio between rate feedback amplitude and driving amplitude (θcontrol/Econtrol).  From 
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the slope of the curve, and with a τdrive of 0.18 seconds, the Ag is calculated as 0.05.  This 

is value is close to the theoretically calculated value of 0.07 using FEM.  

 
Figure 5.27.  Gain and phase plots of slightly mismatched CING, operating at 15695.1Hz 
and 15695.6Hz and Q of 8865 and 8889. 

 

 
Figure 5.28.   Input rotation rate (Ω) and ratio of rate feedback force (θcontrol) and driving 
voltage (Econtrol).  The Ag can be calculated from the slope of this figure and Equation 
5.18.  

The Allan variance plot of the first-generation CING is shown in Figure 5.29.  The 

bias stability of the sensor is 72deg/hr, and the stability is currently limited by the white 

noise of the PLL.  Figure 5.30 shows the power spectrum density of the white output 

noise of the sensor.  From the graph, the angle random walk (ARW) at 0.1Hz is measured 

as 7deg/√hr (420deg/hr/√Hz).  The output signal of the sensor under rotation rates of -45 
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to 45deg/s with 15deg/s steps is shown in Figure 5.31.  The output signal suffers from 

bias instability of the sensor.  The bias stability and ARW are currently limited due to the 

white noise signal in the phase lock loop (PLL) and small angular gain (Ag).  This 

introduces phase error that creates the bias noise of such level.  The small Ag of 0.05 is 

also responsible for the low resolution, since the scale factor of the rate-mode output is 

proportional to Ag. 

 
Figure 5.29.  Allan variance plot of first-generation CING.  Bias stability is 72 deg/hr. 

 

 
Figure 5.30.  Noise power spectrum plot, indicating angle random walk (ARW) of ~7 
deg/√hr at 0.1Hz. 
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Figure 5.31.  Open loop sensor response of the first-generation CING under -45deg/s to 
45deg/s rotation with step of 15deg/s. 

5.5.3.  Rate-Integration Mode (Whole-Angle-Mode) Operation 

In the whole-angle mode, the anti-nodal position of the wineglass mode precesses 

during rotation with an angular gain (Ag).  The rotation angle (θ) is found by the 

arctangent of the ratio of the amplitude of the two wineglass-mode axes, separated by 45 

degrees.  The architecture of the controlling system is shown in Figure 5.32.  The whole 

angle gyro control is performed following the HRG’s control system [88].   

The testing is done for the gyro with mode mismatch less than 1mHz, with a 

matched Q of 21,800 (Figure 5.25).  The main reference loop constrains the phase 

difference between the actuation signals and the output of the transimpedance amplifier 

(TIA) to be zero.  At this phase relationship the CING oscillates at its natural frequency.  

A software phase-lock-loop (PLL) generates in-phase (i) and out-of-phase (q) 
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components of the reference signal.  The reference signal is used to demodulate the main 

amplitude and quadrature amplitude of the CING’s oscillation.   

 
Figure 5.32. Interface/control circuitry algorithm for the whole-angle-mode operation of 
the CING. 

The in-phase and quadrature amplitudes of the vibrational signal measured from the 

two axes are used to calculate the overall in-phase amplitude, quadrature amplitude, and 

the angle (θ) of the 2-DOF pendulum equation.  For the whole-angle mode operation, the 

in-phase amplitude is set constant, and the quadrature amplitude is set zero, using a PID 

controller, while the drive signals are proportioned to the two axes with the same ratio as 

the sense signals, allowing the swinging pattern to precess freely.   

The CING is tested for whole-angle-mode operation on an Ideal Aerospace Aero900 

rotation table.  The CING is directly mounted on the front-end PCB board and wire-

bonded to the sense and drive amplifiers.  The output of the frontend circuitry connects to 

outside of the rotation table through slip ring electrodes.  The gyro is placed at a pressure 

of <5mTorr and at room temperature (uncontrolled).  Figure 5.33 shows the comparison 

of output signal of the interface circuitry as the CING switches from the rate mode and 

the whole-angle mode while the sensor is rotated at 15 deg/sec.  Before the time point (x-

axis) of 27.8 seconds, the sensor is operated in the rate mode.  The recorded rate-

measurement data is shown in red.  The measured angular position (blue) and projected 
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angular position (green), assuming an Ag of 0.3, in the whole angle mode are recorded for 

a time span of 7.2 seconds.  Note that the Ag used for projected angular position does not 

reflect the real Ag value of the device.  The precession angle (θ) follows the direction of 

the input rotation, but its scale factor does not match the scale factor calculated from the 

rate-mode operation.   

The accuracy of the first-generation CING system is believed to be limited by large 

loop delay in the PLL which has to be manually cancelled using a software phase-shifter.  

This issue is solved in the next version interface circuitry by moving the PLL unit into 

FPGA.  The improved interface circuitry is used in the evaluation of the second-

generation CING, discussed in the next chapter. 

 
Figure 5.33.  Switching between rate mode to whole-angle-mode of the first-generation 
CING.  After time point of 27.8 seconds, the gyro is operated in the whole-angle mode.  
The whole-angle-mode operation is limited by loop delay in the PLL unit.  

The bias drift in the angular position ( θ ) in whole angle mode is inversely 

proportional to the nominal damping time constant (τo), so the sensor accuracy will be 
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improved by increasing τo.  The τo (= 2Q/ω) can be improved by lowering ω and 

increasing Q.  As we discussed earlier in this section, due to large thermal conductivity of 

Si, lower thermoelastic damping (TED) is achieved as ω is lowered.  The second-

generation CING, which will be discussed in Chapter 6, has 6 times lower frequency than 

the first-generation (fWG: 3000Hz) and achieves 25 times increase in the τo.  However, a 

shortcoming of this approach is reduction in angular gain (Ag) due to decrease in the 

aspect ratio. 

5.6.  Summary and Conclusion 

Axisymmetric gyros are advantageous for rate-integrating gyroscopes (RIG) because 

of innate isotropy in stiffness and damping.  The Cylindrical Rate-Integrating Gyro 

(CING) offers complete axisymmetry, self-alignment of the resonator with anchor and 

electrodes, and a large ratio between parasitic and the wineglass mode frequencies 

(fparasitic/fWG), leading to better vibration insensitivity.  A challenge of the CING is a small 

angular gain (Ag: 0.05) due to a low aspect ratio.  From FEM simulation, the Ag of the 

sensor improves up to a maximum value of 0.3 as the aspect ratio reaches 1. 

The first-generation CING is fabricated using the Si-on-glass (SOG) process with 

550µm-thick (111) Si substrate.  The gyro measures a radius (R) of 2.5mm, anchor radius 

(AR) of 1mm, height (H) of 300µm, ring thickness (T) of 30~40µm, and bottom plate 

thickness (BT) of 30~50µm.  The Q (~22,000) is limited by thermoelastic damping 

(TED), which is calculated to be ~30,000 at 22kHz.  The largest TED loss occurs from 

the bottom plate.  

The CING is tested in rate- and rate-integrating modes using digital interface 

circuitry.  The CING measured an Ag of 0.05, similar to the simulated value of 0.07.  A 
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frequency mismatch (Δf) of <1mHz is demonstrated, and a mode-matched Q 21,800 is 

found.  An angle random walk (ARW) of 7deg/√Hr and a bias stability of 72deg/hr are 

measured.  The large bias stability is attributed to the white noise in the phase lock loop 

(PLL) adding phase noise to the system.  The whole-angle mode operation is limited by 

large delay in PLL in the software-defined radio. 

In the next chapter we describe the design, fabrication, and evaluation of the second-

generation CING with lower fWG (3kHz), increased τo, and reduced initial mode 

mismatch.  The design and test results of the first-generation CING are summarized in 

Table 5.5.   

Table 5.5.  Design and test summary of first-generation CING 
Geometry and Electrical 
property 

Calculated Physical 
Parameters 

Test Results (gyro with T=30µm) 

Outer radius 
(R) 

2.5mm Wineglass 
freq. (fWG) 

17.3kHz 
(T=30µm) 

fWG (Δf/f) 17.9kHz (0.58%) 

Anchor radius 
(AR) 

1mm Tilting mode 
freq. (ftilting) 

>30kHz Angular gain 
(Ag) 

0.05 (force 
feedback mode) 

Ring thickness 
(T) 

30µm, 
40µm 

Vertical 
mode freq. 
(fvertical) 

>50kHz Q (Δ1/τ) 21,800 (0.0047Hz) 
(under exact 
matching) 

Anchor 
thickness (AT) 

100µm  Effective 
mass 
(M) 

~700µg Angle 
Random 
Walk (ARW) 

7deg/√Hr 
(force feedback 
mode) 

Bottom plate 
thickness (BT) 

30~50 
µm  

Angular gain 
(Ag) 
(ANSYS) 

~0.07 Bias stability  72 deg/hr  
(force feedback 
mode) 

Height (H) 300µm QTED 
(ANSYS) 

~30,000 
(at 22kHz) 

Rate-
integrating 
mode 
operation 

Limited by delay in 
PLL block  

Side electrode 
capacitance 
(gap: 9µm) 

290fF Qanchor 
(Comsol) 

>1million 
(with 
axisymme
try) 

  

Bottom 
electrode 
capacitance 
(gap: 2.5µm) 

3.7pF     
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CHAPTER 6.  
 

LOW-FREQUENCY SINGLE-CRYSTAL-SILICON CYLINDRICAL 
RATE-INTEGRATING GYROSCOPE (CING) 

 
 

The motivation of the development of the low-frequency CING is to increase the 

nominal damping time (τo) and take advantage of better innate mode frequency matching.  

This chapter discusses on the mechanical design, fabrication, and testing of the second-

generation (3kHz) CING in both rate- and rate-integrating modes using digital interface 

circuitry.  

6.1.  Design of Low-Frequency CING 

In the first-generation CING we are able to partially verify the whole-angle-

operation of the CING.  In the second-generation CING, we aim to achieve a larger 

nominal decay time constant (τo), which leads to smaller bias drift from damping 

anisotropy by lowering the wineglass mode frequency (fWG) to be about 3kHz by 

increasing the radius of the device and by increasing the Q.  A drawback of this approach 

is reduction in the angular gain (Ag), because the Ag is related to the aspect ratio (height / 

radius) of a device.  However, a CING with a longer τo can be still useful for the 

development of the necessary whole-angle-mode readout and control system.  Due to the 

increase the effective mass (M) and reduction in the effective stiffness (k), we expect 

smaller nominal frequency gap between the fWG.  
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The second-generation CING has the same basic structure as the first-generation 

CING.  In order to reduce sensitivity to external noise and to have larger shock 

resistance, the stiffness ratio between parasitic modes (fparasitic) and the fWG should be 

maximized.  The two in-phase modes located near fWG are the tilting mode (ftilting) and the 

vertical mode (fvertical).  The four design parameters for frequency engineering are outer 

radius (R), anchor radius (AR), thickness of ring (T), and ring height (H).  Figures 6.1(a)-

(c) show the relation between fWG, ftilting, and fvertical with these parameters, calculated 

using ANSYS.  Both AR and T affect the stiffness of the bottom plate.  As T increases, 

the stiffness of the bottom plate starts to level off, so the resonance frequencies start to 

level off.  The fWG is determined mostly by R with a negligible dependency on AR.  As H 

increases from 100µm to 500µm, the CING changes from a disk-like structure to a 

cylinder-like structure.  When the CING behaves similarly to a disk, its flexibility is 

dominated by the flexibility of the bottom plate.  Thus, as H increases, the stiffness of the 

bottom plate increases.  As H passes a transition point (300µm), the flexibility of the 

rings starts to counteract the bottom plate stiffness. For a device with R of 6mm, AR > 

1.5mm, and T > 20µm, with an operating frequency of 3kHz, fparasitic/fWG of as high as 1.8 

can be achieved.  The geometry of the low-frequency CING is selected to have fWG < 

3kHz and have ftilting and fvertical located above fWG by 1~2kHz.  The dimensions of the 

CING are provided in Table 6.1. 

The QTED of the CING is calculated the same method that is described in Chapter 5.  

The model is approximated to have 50 concentric rings, which is 1/4 of the actual number 

of the multiple rings in the gyro.  Therefore, the accuracy of the simulation is limited by 

the geometrical complexity of the gyro.  From this model, a QTED of 129,000 is calculated 
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at fWG (3kHz), which corresponds to a nominal decay time constant (τo) of ~13.7 seconds. 

At fWG the largest temperature variation is found across the vertical sidewall of the 

gyroscope (Figure 6.2).  The thermal dissipation coefficient (τh) associated with 

conduction in the height direction (b = 320µm) is found using Equation 5.7 as:  

 
(a) Dependency on ring thickness (T)  [radius R: 6mm, anchor radius AR: 1.5mm, 
height H: 300µm, gap between rings G: 2µm, bottom plate thickness BT: 30µm] 

 
(b) Dependency on anchor radius AR [R: 6mm, T: 20µm, H: 300µm, G: 2µm, BT: 
30µm] 

 
(c) Dependency on height H [R: 6mm, AR: 1.5mm, T: 20µm, G: 2µm, BT: 30µm] 

Figure 6.1.  Dependence of the wineglass mode (fWG), tilting mode (ftilting), and vertical 
mode (fvertical) frequencies on the geometry of low-frequency CING. 
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 (Equation 6.1) 

The Q
TED

−1
 reaches to maximum at the frequency ωh that satisfies the condition ωhτh = 1 

[106], which yields fh of 1.5kHz.  Since the second-generation CING is flatter than the 

first-generation CING, the gyro has more vertical motion, and because of this, the stress 

on the sidewall of the gyro becomes more significant.  

τ h =
h2

π 2χ Si
    = 10−4 (sec)

Table 6.1. Geometry, electrical properties, and physical properties of the 2nd generation 
CING 
Geometry and Electrical Property Calculated Physical Property 
Outer radius (R): 6mm Wineglass mode 

frequency (fWG) 
3kHz 

Inner radius (AR) 1.5mm Tilting mode frequency 
(ftilting) 

5kHz 

Anchor width (AT) 100µm Vertical mode 
frequency (fvertical) 

9kHz 

Ring width (T) 20µm QTED (ANSYS) 129,000 
(τo=13.7sec) 

Bottom plate thickness (BT) 20µm Effective mass (M) 
(ANSYS) 

4.6mg 

Side electrode (Gap: 9µm) 2.6pF  Angular gain (Ag) 
(ANSYS) 

0.03 

Bottom electrode (Gap: 5µm) 10pF    
 

  
(a) side view (b) bottom view 

Figure 6.2.  Temperature profile of second-generation CING from TED simulation.  The 
largest temperature gradient is found between the top and bottom edges of vertical 
sidewalls from stress developed during flexing of the sidewalls. 
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6.2.  Si-On-Glass (SOG) Process for Low-Frequency CING 

The low-frequency CING is fabricated using the same Si-on-Glass (SOG) process 

that is developed for the first-generation CING.  The glass recess depth is set to 5µm to 

prevent the pull-down of Si wafer to glass during anodic bonding and to prevent the 

touch-down of the released gyro to the glass substrate due to stress created from 

mismatch in the coefficients of thermal expansion (CTE) between glass and Si.  The 

bottom plate thickness (BT) set to be <20µm to reduce the TED loss.  The fabricated 

device measures 1.3cm × 1.3cm × 0.6cm (Figure 6.3).  The SEM picture the cross-section 

of the manually cracked CING indicates a bottom plate with a thickness of less than 

20µm (Figure 6.4).   

6.2.1.  Development of Higher-Accuracy Device Releasing Processes   

One of the most critical process steps that reduce the yield of the current SOG 

process is the final DRIE releasing step.  Since the low-frequency CING has a large mass 

size, the device has a smaller thermal diffusivity.  During the releasing step using DRIE, 

 
Figure 6.3.  Top side photograph of low-frequency CING [radius (R): 6mm, anchor 
radius (AR): 1.5mm, height (H): ~300µm, operating frequency: 3kHz]. 
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the temperature of the suspended gyro mass becomes high, so the etch rate becomes more 

difficult to control, and gyros are etched more in the lateral directions.  In order to 

address this issue, two different releasing steps are tested.  In the first process, a thick Al 

layer is used to touch a part of the gyro mass in order to diffuse away the heat.  This 

process is similar to the fabrication process for the Balanced Oscillating Gyroscope 

(BOG), except that in this case, the Al layer is placed on the glass recess.  In the second 

process, the wafer is released using lapping and chemical-mechanical polishing (CMP).  

This process is attractive because it is a room-temperature process and that the bottom 

plate of the gyro is polished when the gyro is released.   

Figure 6.5 shows the process steps of the first process.  The first two steps are 

identical to the steps in the original SOG process.  In step (c), 20Å-thick Ti (adhesion 

layer) and >5µm-thick Al is deposited using multiple evaporation runs.  The thermal 

dissipation layers are defined using wet etching, and the height of the layer is adjusted to 

create a step height between the top of the dissipation layer and the glass surface by less 

than 800Å.  The two wafers are anodically bonded at 400°C, using two voltage steps of -

500V and -1300V in a Karl Suss SB6E wafer bonder (step (d)).  After the bonding step, 

 
Figure 6.4.  Cross-sectional SEM of CING after manually cracking the device.  The 
sidewalls of the rings appear slanted, because the device is cracked off the center.  
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the wafer is annealed at the same temperature for 2 hours, and the wafer is cooled down 

slowly (2ºC/min) to room temperature to minimize thermoresidual stress.  Then the Si 

wafer is released using DRIE (step (e)), and the thermal dissipation layer is wet etched 

with Al etchant (Transene Aluminum Etchant Type A) and Piranha (H2SO4:H2O2=1:4) 

solution.  The wafer is rinsed and left in IPA or methanol for >5 days, and the wafer is 

dried on an 115ºC hot plate (step (f)).   

With this modified process, significant improvement in the reduction of lateral 

etching during the DRIE releasing step is achieved.  However, during the bonding step 

(step (d)) the Al-Pt and Al-Si layers reacted and formed intermetallic material.  The part 

of Pt electrode that react with Al is also etched away, and bottom electrodes are 

disconnected.  The Si-Al reaction leaves particles on the surface of the reacted Si, but it 

does not significantly affect the operation of the sensor.  The amount of reaction between 

and Pt and Al is reduced by a lot by increasing the thickness of the Ti layer up to 2000µm 

following the study by [121].  However, the thick Ti layer after the annealing cannot be 

completely etched using conventional Ti etchants such as Piranha, BHF, hydrogen 

peroxide, and sulfuric acid.  The feasibility of this process is thus limited.   

Figure 6.6 shows the process flow of the modified releasing step that uses 

mechanical lapping and CMP process to release the final structure.  The first two steps 

are the same as those in Figure 6.5.  In step (c), PECVD oxide (1kÅ) is deposited as a 

diffusion barrier layer and an Al layer of a thickness of ~5µm is deposited using multiple 

evaporation steps.  Although it has not been tested, it is believed that Ti can replace the 

PECVD oxide layer.  The Al and oxide layers are wet etched, and the top of the Al layer 

is adjusted to ~3000Å lower than the top of the glass surface to account for the thermal 
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expansion during the anodic bonding step.  In this process, the Al layer does not have to 

fully contact Al layer is used to vertically support the Si layer during the lapping step and 

to block the flow of slurries to the recess region, so the Al layer does not have to contact 

the Si layer.  Although it is desirable to have a strong seal between the Al and Si, we 

avoid it to prevent the intermetallic reaction at 400°C.  The two wafers are bonded at 

300°C with a bonding voltage of -500V and -2000V (step (d)).  Then the device is lapped 

and polished using IPEC-472 CMP machine (step (e)).  Then the wafer is cleaned in the 

 
(a)  Pattern DRIE recess on p-type (111) Si wafer 

 
(b)  Pattern 5 µm-deep glass recess and Cr/Pt 100Å/700Å electrodes  

 
(c)  Evaporate Ti/Al dissipation layer with thicknesses of 20Å/>5µm.  Pattern the 
layer using wet etching.  Then adjust the level using maskless wet etching in Al 
etchant.  

 
(d)  Anodic bonding at 400°C -500V/-1300V in vacuum.  Anneal for 2 hours and 
cool down to room temperature with a rate of -2°C/min. 

 
(e)  Release the gyro using DRIE.   

 
(f)  Release the metal layer in Al etchant and piranha solution (H2SO4:H2O2 = 1:4).  
Rinse and dip in IPA or methanol for >5 days.  Dry on an 115°C hot plate 

Figure 6.5.  Modified SOG process flow for including thick Al thermal dissipation 
layer for DRIE process. 
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post-CMP cleaner and cleaned in the piranha solution.  Then the remaining Al layer is 

etched in the Al etchant.  The wafer is cleaned BHF to remove the oxide layer.  The 

wafer is dipped in methanol or IPA for more than 5 days and dried on the 115°C hot plate 

(step (f)).  

Figure 6.7 shows the topside photographs of the process wafer, taken right after the 

 
(a)  Pattern DRIE recess on p-type (111) Si wafer. 

 
(b) Pattern 5 µm-deep glass recess and Cr/Pt 100Å/700Å electrodes. 

 
(c) Deposit PECVD oxide 1kA as a diffusion block layer.  Deposit Al layer with 
thickness of ~5µm using multiple evaporation run.  Pattern the layers using wet 
etching.  Then adjust the level using maskless wet etching in Al etchant to have a 
level of Al slightly lower than the level of glass to account for expansion during the 
anodic bonding step. 

 
(d) Anodic bonding at 300°C -500V/-2000V in vacuum.  Anneal for 2 hours and cool 
down to room temperature with a rate of -2°C/min. 

 
(e) Release the gyro using mehcanial lapping and CMP. 

 
(f) Clean the wafer using post-CMP cleaner and clean using piranha solution 
(H2SO4:H2O2 = 1:4).  Remove remaining Al using Al etchant.  Rinse and dip in IPA 
or methanol for >5 days.  Dry on the top of 115°C hot plate 

Figure 6.6.  Modified SOG process flow releasing the CING using mechanical lapping 
and CMP. 
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mechanical releasing step.  The release quality and the surface quality are found to be 

good.  However, the feasibility of the current process is limited by CMP slurries that 

remain on the sidewall of DRIE trenches.  It is found to be very challenging to clean them 

using post-CMP cleaning or Piranha cleaning methods. 

 
Figure 6.7.  Photograph of CING released using lapping and CMP. 

6.3.  Evaluation of Modal Characteristics of the Low-Frequency CING 

The quality factor (Q) of a large-decay-time (τo) resonator is difficult to measure 

using a conventional gain-phase analyzer, since the ring down of the oscillating 

amplitude from a previous measurement frequency will overlap the response of the 

mechanical system under the oscillation frequency.  Since the decaying time can be 

related to Q, it is more accurate to measure the Q from the decay time.  The τo of the low-

frequency CING is measured with a decay-time measurement program, configured using 

a software-controlled radio.  The program is designed by Jeffrey Gregory.  Figure 6.8 

shows the decay time plots of the CING, recorded using the program.  The oscillation is 

measured using the bottom electrode, with a body bias less than 10V.  The wineglass 

mode frequency of the gyro (fWG) is found at 2995Hz, with a nominal frequency 

mismatch Δf of 7Hz (Δf/f = 0.2%).  The nominal decay time of the gyro at unturned state 

are found as 11.5 seconds (Q = 108,000) and 10 seconds (Q = 94,000).   



 190 

Figure 6.9 shows the resonance peaks of the wineglass modes, measured using two-

channel gain-phase analyzer configured in the software radio.  The resonance frequencies 

of the gyroscope are matched within 20mHz using the bottom electrode.  The mode 

mismatch varies up to 80mHz after a few days of testing.  Figure 6.10 shows the decay 

time plots of the two wineglass modes, measured after tuning both modes.  The τo values 

of the two modes after mode matching are measured to be 8.67 and 7.57 seconds.  It is 

believed that the reduction in τo after tuning occurs due to cross coupling between the two 

modes.  

  
(a) Mode 1 (at 2991.7Hz) (b) Mode 2 (at 2998.8Hz) 

Figure 6.8.  Decay time plots of the two wineglass modes of the CING at untuned state.  
The measured decay time constants (τo) of the two modes are 10 and 11.5 seconds. 

 
Figure 6.9.  FFT plots of the two wineglass mode peaks after tuning them within 20mHz. 
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Figure 6.10.  Decay time constants of the two wineglass modes after mode matching 
(<20mHz).  The τo are 8.67 and 7.57 seconds. 

6.4.  Device Evaluation 

The CING is tested both in the rate and rate-integrating modes using two different 

interface circuits.  The CING is mounted on the PCB board containing the frontend 

circuitry and placed in an Ideal Aerospace Aero900 rotation table.   

6.4.1.  Architecture of Interface Circuitry for Rate- and Rate-Integrating 

Operations  

The interface circuitry for rate-sensing mode control is identical to the circuit in 

Chapter 5.  The interface circuitry for rate-integration mode is implemented using a 

combination of firmware and software in USRP1 system (Figure 6.11) [122].  In the 

FPGA, readout signals are demodulated with reference signals, and the data is sent to the 

computer where in-phase energy (E), quadrature energy (Q), and oscillation position (θ) 

are calculated.  The system can also position the wave pattern at a programmed position.   
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Figure 6.11.  Architecture of digital circuit for rate-integrating-mode operation [122]. 

6.4.2.  Angular Gain (Ag) Measurement 

Tue angular gain (Ag) of the gyro is measured using from the slope of the input 

rotation (Ω) and the ratio of driving and force-feedback amplitudes (θcontrol/Econtrol), which 

is the same method discussed in Chapter 5.  Figure 6.12 shows input rate and (θcontrol 

/Econtrol) of the low-frequency CING with matched τ of 8 seconds.  From the slope of this 

graph and the τ, the Ag is calculated as 0.0065.   

 
Figure 6.12.  Ratio of sense feedback and driving amplitudes (θcontrol/Econtrol) versus in 
rotation rate (Ω). 
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6.4.3.  Rate-Sensing Mode Operation  

The root Allan variance plot of CING is shown in Figure 6.13.  The measured angle 

random walk (ARW) is 0.09°/√Hr, and the bias stability is 129°/Hr.  It is believed that 

there is a low-frequency noise source at 0.1Hz, which limits the stability.  The stability of 

the sensor is also expected to improve with temperature control.  The relationship 

between the ratio of the position-control signal amplitude and amplitude-control signal 

amplitude (θcontrol/Econtrol) under input rotation rate (Ω) of -45 deg/sec to 45 deg/sec is 

shown in Figure 6.14.  This measurement is done using rate-integrating mode control 

circuitry by holding the wave position at an arbitrary position (θ).  The rate-mode scale 

factor of gyro can be found from the slope of this graph [-0.0018(V/V)/(°/sec)].  A stable 

scale factor is calculated by holding the wave pattern at different positions.  However, 

due to the difference in the mechanical anisotropy, bias in the measured signals is found 

to vary with θ.  Figure 6.15 shows the change in the θcontrol/Econtrol measured for rotation 

 
Figure 6.13.  Root Allan variance plot of the low-frequency CING, indicating angle 
random walk (ARW) of 0.09°/√Hr and bias stability of 129°/Hr. 
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rates from -45 deg/sec to 45 deg/sec with a step of 15deg/sec for 40 minutes without 

compensating the device temperature.  The drift rate of the sensor is found as 1°/sec/Hr.  

 
Figure 6.14.  Ratio of position-control signal to amplitude-control signal 
(θcontrol/Econtrol) under rotation rate (Ω) of -45 to 45deg/sec, measured in force feedback 
mode using rate-integrating-mode control circuitry.   

 
Figure 6.15.  Ratio of position-control signal to amplitude-control signal 
(θcontrol/Econtrol) under rotation rate (Ω) of -45°/s to 45°/s with step of 15°/s for 40 
minutes of operation.  

6.4.1.  Rate-Integration Mode (Whole-Angle-Mode) Operation  

The CING is tested under rotation rates of 60º/sec and 30º/sec in rate-integrating 

mode.  Figure 6.16 shows the plots of precessional pattern positions (θ).  The blue curve 

and green curve indicate the change in the θ under rotational rates of 60°/sec and 30°/sec, 

respectively.  The gyroscope coordinate rotates by 180° in 276 seconds at 60°/sec and in 
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535 seconds at 30°/sec.  An ideal gyro will have a linear change in θ with respect to time, 

but due to the mechanical anisotropy, the precessional patterns deviate from linear curve. 

The angular gain (Ag) is defined as the ratio between the precessed angle of the 

vibrational pattern measured in the Cartesian coordinate to an applied rotation angle.   

The Ag is calculated as:  

 Ag =
180(deg)

60(deg/ s)×276sec
= 0.0108  

(Equation 6.2) 

The measured Ag from the precessional pattern is slightly different from the Ag measured 

in the rate-sensing mode (0.006) in Section 6.4.2.  The same Ag is calculated from the 

precessional data under a rotation rate of 30°/sec.  The Ag is found to be stable at 

 
Figure 6.16.  Change in wave orientation following rotation rate of 60°/sec and 30°/sec.  
The wave pattern under 60°/sec reaches to 180° in 276 seconds.  The wave pattern 
under 30°/sec reaches to 180° in 535 seconds.  The data indicates a constant angular 
gain (Ag) of 0.0108 for both cases, proving the concept of the whole-angle mode 
gyroscope.  The Ag is found to be 0.011±0.001 under 20~80mHz mode mismatch. 
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0.011±0.001 over a wide frequency range of 20~80mHz for several days, proving the 

concept of the whole-angle-mode gyroscope.   

Figure 6.17 shows the change in the quadrature control amplitude for a wave 

position (θ) of -90° to 90°.  The value of the quadrature-compensating signal shown in 

this graph is normalized with respect to its mean value.  The quadrature error 

compensation output is proportional to the pattern of mass, stiffness and damping 

anisotropy, and the periodicity in the quadrature compensation signal indicates the 

periodicity in the mechanical anisotropy profile along the perimeter of the gyro.  The 

amplitude of the quadrature control signals under rotation signals of 0 deg/sec, 30 

deg/sec, and 60 deg/sec match, indicating that the physical sources causing the quadrature 

error do not vary with rotation speed.  These anisotropy data can be calibrated and used 

to compensate the inaccuracy of the gyro in the future. 

 
Figure 6.17.  Wave orientation with respect to the principal motion axes of the 
wineglass mode, under 0 deg/sec, 30 deg/sec, and 60 deg/sec rotation rates. 

 



 197 

6.5.  Summary and Discussion 

The second-generation CING is designed to provide a longer nominal damping time 

τo to reduce the angular drift due to damping anisotropy.  The dimension of the CING 

measures outer (R) and anchor radii (AR) of 6mm and 1.5mm, respectively, ring thickness 

(T) of 20µm, height (H) of >300µm, and a bottom plate thickness (BT) of ~20µm.  The 

n=2 wineglass mode is found at 3kHz, and its lowest parasitic mode is found at >5kHz 

from ANSYS simulation.  This modal characteristic is believed to provide superior 

vibration rejection.  A drawback of the second-generation CING geometry is low angular 

gain (Ag) due to low aspect ratio (~0.01).  

The CING is fabricated using the same Si-on-glass (SOG) process that is used to 

fabricate the first-generation CING.  The depth of glass recess is increased to 5µm to 

account bowing due to TCE mismatch between glass and Si.  Due to its large device size, 

the gyro has nearly 10pF capacitance from the bottom electrode and 2.6pF capacitance 

from the side electrode.  The simulated QTED value from ANSYS matches very closely 

with the measured Q value (~100,000).  A nominal frequency mismatch of less than 

10Hz is found, and the frequencies are electronically tuned to 20mHz mismatch.  

The CING is tested with digital interface circuitry.  The sensor measures an angle 

random walk (ARW) of 0.09°/√Hr and a bias stability is 129°/Hr.  The resolution of the 

gyro is limited by the Ag (~0.01) and electrical noise. 

In the whole-angle-mode operation, the second-generation CING measures an Ag of 

0.011±0.001 at a frequency gap of 20~80mHz for several days of operation.  The design 

and test summary of the second-generation CING is provided in Table 6.2. 
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The Ag of the CING is small because of large vertical motion in the wineglass mode, 

which does not contribute to the generation of the Coriolis force.  The Ag can be 

improved by increasing the device height, but due to the limitation in the etch depth in 

the SOG process, it is challenging to increase the device. 

To achieve improved whole-angle-mode performance, it is necessary to find a new 

axisymmetric gyro geometry with low fWG (<5kHz), large separation between fparasitic and 

fWG (>2kHz), large Ag (~0.3), small device size (<1cm).  

Table 6.2.  Design and test summary of second-generation CING 

Design / 
Fabrication Results Value Sensor Parameters Value 

Anchor / outer radii 
(AR/R) 1.5mm / 6mm fWG (Δf (original)) 3kHz (7Hz) 

Height (H) 320µm τo (Δ1/τ) 10~12 sec 
(0.01Hz) 

Anchor width (AT) 
/ ring width (T) 100µm / 20µm Ag 

0.0065 (rate-mode), 
0.011 (whole-angle 
mode) 

Bottom plate 
thickness (BT) ~20µm Bias stability (rate mode) 129°/Hr 

Drive / sense  
capacitance 2.6pF/10pF Angle random walk 

(ARW) (rate mode) 0.09/√Hr 

  Offset drift (rate mode) 1°/s/Hr 
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CHAPTER 7.  
 

VIBRATION SENSITIVITY OF BALANCED-MODE GYROSCOPES 
 

 

In the previous few chapters, we have discussed the design of balanced-mode 

gyroscopes.  The balanced-mode gyroscope has two advantages with respect to vibration 

sensitivity: ideally zero coupling from vibration to the sense mode, and differential 

cancellation of in-phase modes.  However, due to structural imbalance, the design does 

not entirely remove vibration sensitivity.  In this chapter, the effect of acceleration on the 

mechanical system will be explained using lumped-mass models.  The influence of 

acceleration on the Balanced Oscillating Gyroscope (BOG) and the Cylindrical Rate-

Integrating Gyroscope (CING) with mechanical anisotropy will then be analyzed using 

FEM.   

7.1.  Vibration Sensitivity of Single Mass Gyroscope  

The simplest form of gyroscope is the single mass gyroscope (Figure 7.1).  In this 

gyroscope, a mass is surrounded by directional springs along two orthogonal axes.  The 

dynamics of the single mass gyroscope is simple and obvious.  The behavior of this type 

of gyro under environmental acceleration can be also easily explained.  The vibrational 

gyro dynamics of this simple gyroscope, however, share a lot of common physical 

principles with complex multiple-degree-of-order systems.   
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Figure 7.1.  Single mass gyroscope. 

The gyroscope's dynamics along the two axes can be explained using two sets of 

motional equations defined from its potential energy, inertia, and damping energy 

(Equations 7.1-7.2).  The system also includes the Coriolis force, control force, and force 

generated from external vibrations.    

 

 (Equation 7.1) 

 

 (Equation 7.2) 

Ideally, there is no force except the Coriolis force that can excite the sense mode 

motion.  In rate gyroscopes, the magnitude of the Coriolis force along the driving axis is 

usually small, because there is only very small motion in the sense axis and the amplitude 

control loop can easily cancel the small Coriolis force.  In the rate-integrating gyroscope 

(RIG), only the total oscillation energy is controlled and Coriolis force from either axis 

can be large.   

Depending on the nature of vibration, the vibration force can be either a periodic or 

random signal.  When a periodic force is acting along driving direction, the control circuit 

Inertia       Damping      Coriolis force    Stiffness     Control force    Vibraiton
Mq1    +    c1

q1             − 2MAg q2Ωz   +   k1q1       =     f1(t)    +  Ma1  

Inertia       Damping      Coriolis force    Stiffness     Control force    Vibraiton
Mq2    +    c2

q2             − 2MAg q2Ωz   +   k2q2       =     f2 (t)    +  Ma2  
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essentially cancels the effect of both in-phase and quadrature forces.  When the vibration 

force has the same phase as the existing driving force, the two forces will add 

constructively, and the control circuitry will adjust the drive amplitude in order to 

maintain the right oscillation amplitude.  When the vibration force is a quadrature signal 

with respect to the existing oscillation, the addition of the two signals produces a motion 

that has a slight angle mismatch with respect to the driving signal.  Then naturally the 

self-oscillation circuit adjusts the input force phase to maintain 0-degree phase shift over 

the drive loop, which brings the drive oscillation in phase with the noise signal.  

Therefore, regardless of the phase between the existing oscillation and the applied 

vibration, the self-oscillation loop absorbs the noise signal.  Practically, there is very 

small amount of noise energy that can match the driving mode frequency, due to narrow 

bandwidth and high quality factor (Q).  

On the other hand, when the vibration along the sense direction has the same phase 

with the Coriolis force, the signal is indistinguishable from a rate signal. When the 

vibration pattern has a quadrature relationship with the Coriolis force, the motion can be 

canceled by a quadrature control loop or rejected by phase sensitive processing of the rate 

signal.  In the rate-integrating gyroscope (RIG), the quadrature environmental forces 

along both axes can be nulled by a quadrature control loop.  An environmental force that 

is in phase with the Coriolis force can induce drift.    

For these reasons and because a random motional force along the drive axis is 

generally much smaller than the driving force, random vibrational motion along the sense 

axis dominates the vibration-induced rate noise signal. 
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One can define the vibrational sensitivity of a gyroscope (Svibration) as a rotational rate 

that generates same amount of Coriolis force to the force generated by random 

acceleration of amplitude a.  The acceleration force is simply Ma, and the apparent 

Coriolis force is 2kMqdriveωΩ, where k angular gain factor, qdrive is the drive axis 

amplitude, ω is the operating frequency, and Ω is rotation rate.  The k of a tuning fork 

gyro is 1, and the k of an n=2 wineglass mode gyro is 2Ag, where Ag denotes angular gain.   

Assuming matched mode, Svibration(ω) for a single mass gyro can be calculated as:  

Svibration (ω )[Ω / (g / Hz )]= Ma
2kMqdriveω

= a
2kqdriveω

 (Equation 7.3) 

The Svibration is directly proportional to a and inversely proportional to k, qdrive, and ω.  

7.2.  Vibration Sensitivity of Balanced Gyroscope 

In the balanced mode, the net momentum of the motional system is zero because of 

the complementary phase of the masses constituting the resonator.  In a balanced mode 

gyroscope, there are two balanced modes, one for the driving mode and the other for the 

sensing mode.  In the case of the BOG, the driving mode consists of four degrees of 

freedom.  There are four independent but coupled driving masses, making four different 

modes.  In the sense direction, there are two modes, where the two semi-open frames 

oscillate either in-phase or out-of-phase (Figure 7.2).  The characteristic coordinates of 

displacement for each mass in a dynamic system is called the generalized coordinate.  For 

the BOG, the generalized coordinate q1, q2, q3, and q4 are for the driving mode along x-

axis coordinates.  The coordinates q5 and q6 are for the sense mode and represent 

torsional angles along the x-axis.  
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(a) Drive mode: generalized coordinates are 
x-axis coordinates of the individual driving 
masses (q1-q4) 

(b) Sense mode: generalized coordinates are x-
axis torsional angles (q5, q6) 

Figure 7.2.  Driving and sensing mode patterns of the Balanced Oscillating Gyroscope 
(BOG). 

As we discussed in the previous section, for the rate gyroscope (RG), the vibrational 

noise signal is dominated by the motion along the sense axis.  Therefore, vibrational 

sensitivity can be studied by considering the sense mode motion.  In the rate-integrating 

gyroscope (RIG), vibration along both axes contributes equally to the sense mode, but 

one can consider the device behavior along a single axis to predict the vibrational 

sensitivity. 

In this study, we first consider a simple 2-DOF balanced mechanical system (Figure 

7.3).  The two masses are connected in the middle with a coupling spring, and the masses 

are connected to the anchor via two separate springs.  This mechanical system has two 

resonance modes.  In the first mode (the in-phase mode), the two masses oscillate in the 

same direction, with the same amplitude.  The stiffness of the in-phase mode is 

determined by only the springs that connect the mass to the anchor, and so its frequency 

must be lower than the balanced mode.  The second mode is the balanced mode, where 

the two masses oscillate with opposite phase and exactly the same amplitude.  The 
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stiffness of this mode is determined by the coupling spring as well as the anchor springs, 

so the frequency is higher than the in-phase mode.    

The in-phase mode can be excited with environmental acceleration, so in a noisy 

environment, there is a large motion at this frequency due to resonance of the masses.  

However, the effect of this motion on the rate signal is relatively small due to two 

reasons.  First, the in-phase motion is differentially cancelled in the interface circuitry.  

When the amplitude is large, residual noise can remain due to nonlinearity and mismatch 

in the capacitive measurement mechanism.  The second reason is that the in-phase mode 

can be located outside the bandwidth of the sensor by controlling the coupling stiffness. 

In this case, the interface circuit can filter out the in-phase mode frequency component.    

The balanced mode cannot be excited by external vibration.  This is because the 

forces generated in the two identical masses under external vibration always have the 

same phase and the same magnitude and so the direction of these forces does not cause 

out-of-phase motion.  This will be proven in a later section.  The vibration sensitivity of 

the balanced mode is therefore zero.   

The power spectral density of the motional amplitude of a perfectly balanced 

gyroscope under external vibration is described in Figure 7.6.  This model assumes 

perfectly matched modes and a zero rotation rate.  The diagram also includes the sense 

mode gain curve and the filter gain curves.  The largest motional amplitudes are found at 

the driving mode frequency (ωdrive), the parasitic sensing mode frequency (ωparasitic-sensing), 

and additionally the parasitic driving frequency (ωparasitic-driving).  The parasitic driving 

motion is in-phase motion along the driving axis.  Under rotation, it creates Coriolis force 

which excites the in-phase sense axis mode, which can be differentially canceled by the 
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interface circuitry.  When these modes are located outside the sensor bandwidth, the 

perfectly balanced gyroscope effectively has zero vibration sensitivity.  

 
Figure 7.3.  Two degree-of-freedom balanced system.  The mass (M) and stiffness (k) 
are identical.  Generalized coordinates are q1 and q2. 

 
Figure 7.4.   Displacement of masses at the parasitic resonance mode 

 
Figure 7.5.  Displacement of masses at the balanced mode. 

 
Figure 7.6.  Power spectral density of perfectly balanced gyroscope  (matched mode 
case).  The parasitic mode frequency ωparasitic is located outside the bandwidth of the 
sensor, so the effect of the parasitic motion is negligible. 
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7.3.  Vibration Sensitivity of Non-Ideally Balanced Gyroscope 

7.3.1.  Effect of Mass and Stiffness Imbalance on the 2-DOF Spring-Mass System 

In the real case, a coupled mechanical system cannot have perfectly matched 

stiffness and mass.  When there is a difference between the masses or the springs in the 

coupled mechanical system, the eigenvector ratios at both resonance modes deviate from 

the perfect case of q1/q2 = 1 (in-phase frequency) and q1/q2 = -1 (balanced frequency) 

(Figure 7.7).  

Under external acceleration, the imperfectly balanced mode becomes excitable with 

external vibration.  Therefore, the power spectral density of the imperfectly balanced 

system under vibration has motional amplitude at the sense mode frequency (ωsense), even 

when there is no rotation (Figure 7.8).  This sense-mode motion has the same shape as 

any sense-mode motion excited by the Coriolis force, so the vibrational error signal 

cannot be distinguished from a real rotation signal.   

7.3.2.  Derivation of the Out-of-Phase Motion of an Imperfectly Balanced System  

  Stiffness and mass mismatch affect the system independently, and the motional 

equations accounting for each of these effects can be separately derived.  The motion of 

the 2-DOF unbalanced system (Figure 7.7 (a)) under stiffness imbalance can be derived 

with the following procedure.  The displacement ratio of the two masses for a high-Q 

system does not change significantly with damping, so we will neglect the damping effect 

in this calculation.  The kinetic energy (T) and potential energy (V) due to the springs for 

each single mass are described in terms of its generalized coordinate.    For the mass on 

the left, T becomes:  
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(Equation 7.4) 

 
The V associated with this mass is the spring energies for the spring (k+Δk/2) connected 

to the anchor and the coupling spring (kc).  The potential energy accumulated is a 

function of the difference in the displacement between q1 and q2.   

 
(Equation 7.5) 

The kinetic and potential energies (T2, V2) of the mass on the right are calculated in the 

T1 =
1
2
M q1

2

V1 =
1
2
(k +Δk 2)q1

2 +
1
2
kc (q1 − q2 )

2

 
(a) Stiffness anisotropy 

 
(b) Mass anisotropy 

Figure 7.7.  Imperfectly balanced system with stiffness and mass mismatch 

 
Figure 7.8.  Power spectral density of imperfectly balanced gyroscope  (matched mode 
case).  External vibration excites sense mode.  The sense-mode motions excited by 
external vibration and Coriolis force cannot be distinguished.  
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similar way, yielding:  

 
(Equation 7.6) 

 
(Equation 7.7) 

Under external acceleration a, the generated forces are:   

 (Equation 7.8) 

Then the motional equation for this system can be summarized as Equation 7.9.  

 

(Equation 7.9) 

If F1 and F2 are harmonic forces, the displacements of the system q1 and q2 are also 

periodic.  By assuming q1 to be Q1exp(jωt) and q2 to be Q2exp(jωt), the eigenvalue of this 

system is found from equating the left-hand-side matrix to zero. 

 

(Equation 7.10) 

The solutions of this equation are:  

 (in-phase mode) 
(Equation 7.11) 

        (out-of-phase mode) 
(Equation 7.12) 

The eigenvectors for the two modes are found by entering ω1 and ω2 in the motional 

equations.  When the eigenvectors of the masses are normalized in terms of displacement 
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of the left-hand-side mass, the normalized amplitudes for the left and right masses in the 

in-phase and out-of-phase modes φij (i: mass number, j: mode number) become:

  

(In-phase mode) 
(Equation 7.13) 

     (Out-of-phase mode) 
(Equation 7.14) 

At the in-phase mode, the mass connected to the spring with smaller stiffness 

oscillates with larger amplitude than the mass connected to spring with larger stiffness.  

At the out-of-phase mode, the mass connected to a spring with the smaller stiffness 

oscillates with smaller amplitude than the mass connected to the spring with the larger 

stiffness.  The absolute value of the eigenvector ratios ϕ21/ϕ11 and ϕ12/ϕ22 deviate further 

from 1 with increasing |Δk/kc|.  

The original motional equation (Equation 7.9) is derived accounting for the motion 

of each mass.  However, the motion of each mass is a superposition of the two modal 

patterns, and the motional equation can be expressed in terms of each mode.  The method 

to treat the overall displacement as a sum of the displacements of the modes is called the 

modal superposition method [123].  The modal superposition method is very useful in 

understanding how much effective mass, stiffness, and force exists at each of the modes.  

The modal motional equation can be simply derived from the previous motional 

equation by accounting for the modal eigenvector ratio.  The displacements (q1 and q2) 

are a sum of normalized eigenvectors ϕij (i: mass number, j: mode number), multiplied by 

the modal amplitude, named the eigencoordinate (zj).   
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(Equation 7.15) 

 
(Equation 7.16) 

The expressions for q1 and q2 (Equations 7.15 and 7.16) are then inserted in the original 

motional equation (Equation 7.9). 

 
(Equation 7.17) 

 
(Equation 7.18) 

The Equations 7.17 and 7.18 are then scaled by (ϕ11, ϕ21) and (ϕ12, ϕ22), respectively, to 

form two pairs of equations.   

• First pair:   

 
 (Equation 7.19) 

 
 (Equation 7.20) 

• Second pair:   

 
 (Equation 7.21) 

 
 (Equation 7.22) 

The two pairs of equations are now summed.  In the summation, some of the resulting 

eigenvectors can be summed to zero, using principles of modal mass and stiffness 

orthogonality [146].  In the modal equations, the products of the eigenvectors for 

different modes acting on the same discrete mass or spring constants are zero.  The 

equations are expressed using the mass (M), stiffness matrix (K), and the eigenvector as: 

q1 = φ11z1 +φ12z2

q2 = φ21z1 +φ22z2

M (φ11z1 +φ12z2 )+ (k +Δk 2+ kc )(φ11z1 +φ12z2 )− kc (φ21z1 +φ22z2 ) = F1

M (φ21z1 +φ22z2 )+ (k −Δk 2+ kc )(φ21z1 +φ22z2 )− kc (φ11z1 +φ12z2 ) = F2

M (φ11
2 z1 +φ11φ12z2 )+ (k +Δk 2+ kc )(φ11

2 z1 +φ11φ12z2 )− kc (φ11φ21z1 +φ11φ22z2 ) = φ11F1

M (φ21
2 z1 +φ21φ22z2 )+ (k −Δk 2+ kc )(φ21

2 z1 +φ21φ22z2 )− kc (φ21φ11z1 +φ21φ12z2 ) = φ21F2

M (φ11φ12z1 +φ12
2 z2 )+ (k +Δk 2+ kc )(φ11φ12z1 +φ12

2 z2 )− kc (φ12φ21z1 +φ12φ22z2 ) = φ12F1

M (φ21φ22z1 +φ22
2 z2 )+ (k −Δk 2+ kc )(φ21φ22z1 +φ22

2 z2 )− kc (φ11φ22z1 +φ12φ22z2 ) = φ22F2
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(when j ≠ k) (Equation 7.23) 

(when j ≠ k)
 (Equation 7.24)

 

 
(Equation 7.25)

 

 

(Equation 7.26)
 

The scaled sum of two pairs of equations (Equations 7.19-7.20 and 7.21-7.22) then 

become expressions in terms of the eigencoordinates z1 and z2. 

For in-phase mode:   

 
 (Equation 7.27) 

For out-of-phase mode:   

 
 (Equation 7.28) 

The motional equations in terms of the eigencoordinates contain very useful 

information about individual modes.  First, these equations show how the unbalance 

terms are related to the effective mass change and the effective stiffness change.  Due to 

stiffness imbalance, one can see that both of these parameters change.  Second, the 

equations show that the effective forces exciting the in-phase and out-of-phase forces are 

simply the sums of arbitrarily applied forces, multiplied by the normalized eigenvectors. 
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The equations prove that the amount of effective force for a perfectly balanced system 

(ϕ12/ϕ22 = -1) at the balanced mode is indeed zero.   

For an imbalanced gyroscope, vibrational sensitivity at the out-of-phase sense mode 

Svibration (rad/sec/(g/√Hz)) can be defined as the equivalent rotational rate for generating 

the Coriolis force equal to the effective vibrational force.  In Figure 7.7-(a), when we 

assume that an identical amount of out-of-phase Coriolis force (2kMdriveqdriveωo) is acting 

the effective force for the out-of-phase mode becomes, 

 Feffective = (φ12 −φ22 )(2Mdrivekqdriveω oΩ) ( From Coriolis force)  
(Equation 7.29) 

  The effective force for the balanced mode due to in-phase acceleration a becomes: 

     ( From in-phase acceleration a)
  

(Equation 7.30)
 

The equivalent rotation rate at the sense mode can derived by equating Equations 7.29-

7.30. 

Svibration (ω o )[Ω / (g / Hz )]= Ma(φ12 +φ22 )
2Mdrivekqω o(φ12 −φ22 )  

(Equation 7.31)
 

From Equation 7.31 we see there is a term that contains the imbalance of the structure 

which we define as the structural imbalance factor (Z).   

 

(Equation 7.32)
 

Z can be evaluated in two different ways.  First, Z can be calculated by finding φij from 

modal analysis.  For a complex geometry, φij can be calculated using modal analysis 

methods in FEM tools.  The second method is the division of differential amplitudes (|q1-

q2|) found experimentally from the application of the same force either in phase or in 

opposite phase to the two masses.  At the sense mode frequency, the structure only 

Feffective = φ12 +φ22( ) Ma( )

Z ≡
φ12 +φ22( )
φ12 −φ22( )
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responds to the effective force components that excite the sense resonance pattern, and 

the displacement is multiplied by the Q factor.  It can be shown that, the |q1-q2| at ωsense 

due to both the in-phase and opposite-phase forces are Q times the deflection amplitude 

at zero frequency, and the division of the in-phase and opposite-phase excited 

displacements yields the same expression as Equation 7.33.   

 
(under out-of-phase force F)

 
(Equation 7.33) 

 
(under in-phase force F)  

 
(Equation 7.34) 

 (Equation 7.35) 

The Svibration under mass imbalance (Figure 7.7-(b)) can be derived in a similar way.  

In the mass imbalance case, the eigenvector ratio between the two masses increases with 

|ΔM/M|, as it does for |Δk/kc| for stiffness anisotropy.  

The differential displacement |q1-q2| of masses of the 2-DOF coupled system with 

different stiffness imbalance ratios are calculated for the in-phase and opposite-phase 

forcing schemes (Figure 7.9).  The ratio between the |q1-q2| for in-phase (blue) and out-

of-phase (green) actuation schemes becomes the imbalance parameter (Z) of the system.   

The amplitude curves are calculated for Δk/k of 0.1~0.3.  The modeled mechanical 

system has a k/M of 1 and kc/k of 0.1.  A damping coefficient (c) of 0.001M is used in 

parallel with each spring.  Since we are only interested in comparing the ratio between 

the displacements under the two forcing schemes, the nominal value of c does not have a 

q1 − q2( )(ωout−of −phase ) in−phase  force
≈Qout−of −phase

φ12 +φ22( )
kout−of −phase

F (ω = 0)

q1 − q2( )(ωout−of −phase ) out−of −phase  force
≈Qout−of −phase

φ12 −φ22( )
kout−of −phase

F (ω = 0)

q1 − q2( )
in−phase  force

q1 − q2( )
out−of −phase

(ωout−of −phase ) ≈ Z
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significant meaning in this calculation, in the figure, |q1-q2| under in-phase forcing (green) 

has a smaller value than |q1-q2| under opposite-phase force (blue) at the in-phase mode 

and vice versa for the out-of-phase mode.  The gap between the in-phase and out-of-

 
Figure 7.9.  Relationship between absolute value of the difference in the displacement 
of the two masses |q1-q2| under in-phase (blue) and out-of-phase force (green) and ratio 
of stiffness anisotropy (Δk/k).   In the numerical calculation, the physical parameters of 
the mechanical system is set to k/M of 1, kc/k of 0.1, and c/M =0.001. 

 
Figure 7.10.  Relationship between absolute value of the difference in the displacement 
of the two masses |q1-q2| under in-phase (blue) and out-of-phase force (green) and ratio 
between coupling stiffness and nominal stiffness kc/k.  In the numerical calculation, the 
physical parameters of the mechanical system is set to k/M of 1, Δk/k of 0.1, and c/M = 
0.001. 
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phase modes increase with the increasing Δk/k.  The difference between |q1-q2| under in-

phase and opposite-phase decreases with increasing Δk/k, indicating that the vibrational 

sensitivity of the non-perfectly balanced gyroscope increases with the increase in 

stiffness mismatch.  Figure 7.10 shows the relation between |q1-q2| and the harmonic 

forcing frequency ω for kc/k from 0.1~0.4 for constant stiffness imbalance Δk/k of 0.2.  

The difference between |q1-q2| from opposite-phase actuation (green) and in-phase 

actuation (blue) increases with kc/k.   

Under a constant Δk/k ratio, the trend of the differential amplitude ratios can be 

quantitatively understood by considering the limit cases of kc/k approaching infinity and 

zero.  When kc/k is infinite, the two coupled masses act as a merged mass, with a total 

mass of 2M (Figure 7.11).  In the in-phase mode, the effective stiffness is contributed 

solely by the springs connected to the anchor (2k), so the resonance mode is found at 

k /M rad/sec.  In this mode, the merged masses translate along the same direction with 

the same amplitude.  On the other hand, the opposite-phase mode is determined by kc and 

the mode frequency approaches infinity.  Since kc is much larger than k, the effect of 

imbalance in k is negligible and the mechanical system can be considered to be two 

masses connected to only a single spring.  Then the two masses oscillate in the opposite 

phase with the exactly same amplitude, and the system resembles the perfectly balanced 

system.   

On the other hand, when kc/k is zero, the motion of the two masses becomes 

completely uncoupled (Figure 7.12).  Since there is no mechanical coupling, the two 

masses oscillate at their own resonance frequencies ( (k + Δk / 2) /M , (k − Δk / 2) /M

).  In this case, each mode is just the resonance frequency of one mass and in each mode 
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only a single mass oscillates.  The displacement difference |q1-q2| is just |q1| or |q2| under 

the two forcing schemes and the ratio effectively becomes |q1/q2|, which is close to 1.  

The relation between the ΔM/M and |q1-q2| ratios under two edge cases can be 

investigated in a similar way.  Figure 7.13 shows |q1-q2| from both in-phase (blue) and 

out-of-phase actuation (green) for ΔM/M of 0.1~0.3.  In the calculation model, k/M is set 

 
(a) In-phase mode (q1/q2 = 1) 

 
(b) Out-of-phase mode (q1/q2 = -1) 

Figure 7.11.  Conceptual diagram describing in-phase and out-of-phase modes of 2-
DOF coupled spring-mass system with kc/k approaching infinity. 

 
(a) Mode 1 ( ) 

 
(b) Mode 2 ( ) 

Figure 7.12.  Conceptual diagram describing in-phase and out-of-phase modes of 2-
DOF coupled spring-mass system with kc/k approaching zero. 
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to 1 and kc/k is set to be 0.3k.  Figure 7.14 plots |q1-q2| from in-phase and out-of-phase 

actuation schemes for kc/k in (0.1, 0.4), with ΔM/M equal to 0.1.  Similarly to the case 

with stiffness variation, the difference between |q1-q2| from out-of-phase actuation 

increases with kc/k.  

7.4.  FEM Analysis of the Imbalance Factor of the Balanced Oscillating Gyro 

(BOG)  

The principle of the Balanced Oscillating Gyroscope (BOG) was described in 

chapter 3.  In its drive mode, four coupled masses oscillate in-plane with opposite phase.  

In the sense mode, the two semi-open frames oscillate torsionally along the axis of the 

sense torsional beam in opposite phase, whereas in the parasitic sense mode, the two 

frames oscillates with the same phase.  The BOG has the largest vibrational sensitivity to 

acceleration that excites the parasitic sense mode, which is the angular acceleration 

 
Figure 7.13.  Relationship between the absolute value of the difference in the 
displacement of the two masses |q1-q2| under in-phase (blue) and out-of-phase forces 
(green) and ratio of stiffness anisotropy (ΔM/M).   In the numerical calculation, the 
physical parameters of the mechanical system is set to k/M of 1, kc/k of 0.1, and c/M of 
0.001. 
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around the sense torsional beam.   

Imbalance in the BOG is created from variation in the mask dimensions in the DRIE 

process.  The geometrical variation due to the micromachining process is, at most, a few 

microns.  Since this variation is small compared to the proof mass dimensions, mass 

imbalance from geometrical variation is negligible.  The stiffness, however, can change 

significantly due to the geometrical variation.  The stiffness of the sense torsional beam 

(kxθ) is proportional to the polar moment of inertia of the rectangular beam (Jx), and it is a 

function of width (w) and height (h) of a torsional beam [100]. 

 
(Equation 7.36)

 
In the current Si-on-glass (SOG) process, the height of the device is 100µm, and the 

width of the torsional beam is ~20µm.  Therefore, the variation in the polar moment of 

J x =
wh
12
(w2 + h2 )

 
Figure 7.14. Relationship between absolute value of the difference in the displacement 
of the two masses |q1-q2| under in-phase (blue) and out-of-phase forces (green) and 
ratio between coupling stiffness and nominal stiffness kc/k.  In the numerical 
calculation, the physical parameters of the mechanical system is set to k/M of 1, ΔM/M 
of 0.1, and c/M of 0.001. 
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inertia (ΔJx/Jx) is a function of Δw/w and as a result, kxθ is a function of Δw/w. A Δw of 

just 1µm in the torsional beam creates a 5% variation in in the torsional stiffness.  

Due to the complexity in the coupling mechanism, the Z of the sensor is studied 

using ANSYS.  In the software, the eigenvector ratios of the two frames under stiffness 

imbalance are calculated in modal analysis mode.  Eigencoordinates for the in-phase and 

out-of-phase angular accelerations are then calculated using the modal superposition 

method in harmonic analysis mode.     

The relation between fparasitic/fsense and the ratio between the deflection of the semi-

open frames on the left-hand side and right-hand side is simulated, under 10% width 

mismatch between the torsional beams (torsion beam at the left side of the gyro is made 

10% thicker than the torsion beam at the right hand side), with a nominal width of 10µm.  

Note that this simulation model has a smaller beam width than the original BOG, but it is 

expected that Z will change with the same tendency as the change in modal 

characteristics.  The fparasitic/fsense ratio is changed with the width of the lateral torsional 

beam (along x-axis) of the sense coupling spring (Figure 7.15).  The relationship between 

the fparasitic/fsense and the normalized eigenvector ratios ( φθ1 / φθ1
2 +φθ 2

2 , φθ 2 / φθ1
2 +φθ 2

2 ) 

of the torsional motion of the two frames are plotted in Figure 7.16.  When fparasitic/fsense is 

smaller than 1, the absolute value of the eigenvector for the left frame is larger than right 

frame.  At fparasitic/fsense of 1, the imbalance in the eigenvector is maximized.  As 

fparasitic/fsense passes 1, the normalized eigenvector of the right-hand-side frame becomes 

larger than the left-hand side frame.  There is a clear instability point when fparasitic/fsense is 

1.  Due to the instability, the imbalance parameter for fparasitic/fsense of 0.98~1.02 is 

difficult to simulate.  
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Figure 7.15.  Geometry of the BOG with a structure imbalance of 10% in the in torsional 
stiffness of the sense spring. 

 
Figure 7.16.  Relationship between the ratio of the parasitic sense mode and the sense 
mode (fparasitic/fsense) and the absolute value of the normalized eigenvectors of the semi-
open frames of the BOG, under 10% difference between the two sense springs (torsional 
beam).  The normalized eigenvectors of the frames connected to a beam with smaller and 
larger widths are plotted in blue and orange, respectively. 

The same BOG model with stiffness imbalance is subjected to in-phase and out-of-

phase forces which excite both the sensing and parasitic sensing modes.  Angular 

acceleration is approximated with linear (z-axis) forces acting at the ends of both frames 
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with a magnitude Fz of 1N, creating x-axis torque of 1500N⋅µm to a single torsional 

frame (Figure 7.17).  The eigencoordinate ratios of the two modes under these forces are 

plotted in Figure 7.18.  The ratio between eigencoordinates due to the in-phase harmonic 

force and the out-of-phase harmonic force maximizes when fparasitic/fsense approaches 1.  

This is because the eigenvector ratio for the in-phase and out-of-phase modes is largest at 

this frequency region.  

From this analysis, it is partially verified that, like the simple 2-DOF spring-mass 

case, coupling stiffness in the balanced mode motion strongly influences Z and, as a 

result, the vibrational sensitivity at the sense frequency (Svibration(ωsense)).  It is also found 

that the Svibration(ωsense) decreases with the increase in  |fparasitic_sense-fsense|/fsense.  The 

polarity of the frequency difference does not affect the vibration sensitivity.  Therefore, 

by placing fparasitic_sense as far as possible from fsense, a gyro can have a low Svibration(ωsense).  

One disadvantage associated with having fparasitic_sense lower than fsense is that the sensor 

will have worse shock resistance because the sensor will have a larger deflection under 

shock.   

 
Figure 7.17.  Application of z-axis force (1N) at the ends of torsional frames to create 
x-axis harmonic torque (Tx: 1500N⋅µm). 
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7.5.  FEM Analysis of the Imbalance Factor of the Cylindrical Rate-Integrating 

Gyro (CING)  

Flexural mode gyroscopes include shell (hemispherical, half-toroid, cylinder, and 

ring) and disk gyroscopes.  Similar to the tuning fork gyros, flexural mode gyroscopes 

with structural imbalance have the largest vibration sensitivity at the parasitic and 

flexural mode frequencies.  

Compared to tuning-fork gyroscopes, the shell gyroscopes have smaller nominal 

mass.  Therefore, mass anisotropy in the resonator has larger relative influence on the 

vibrational sensitivity of these gyros.  Another key difference of flexural mode 

gyroscopes is that their vibrational sensitivity at flexural frequencies is a function of the 

periodicity of mass and stiffness variation along the perimeter [124].  This is because the 

flexural mode itself has a periodic deformation pattern along the perimeter, and the force 

generated due to stiffness and mass imbalance has to match the flexural mode shape in 

 
Figure 7.18.  Relationship of the ratio between the parasitic sense mode and the sense 
mode frequencies (fparasitic/fsense) and eigencoordinate ratios in the sense mode.  Gyro 
has 10% difference two sense springs (torsional beams).  In-phase and out-of-phase x-
axis harmonic torque of 1500µm⋅N is applied to each of the torsional frames. 
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order to excite the flexural mode.  Flexural mode gyroscopes generally have tilting and 

vertical modes located near the wineglass mode, and under external acceleration these 

parasitic modes have the largest coupling to the wineglass mode (Figure 7.19).   

When a vertical linear force is applied to a gyro with sin(2φ) distribution of mass or 

stiffness anisotropy (Figure 7.20), where φ is the azimuthal angle, the out-of-phase 

vertical force also has the same sin(2φ) distribution (Figure 7.21).  As seen in Figure 

7.19, the wineglass mode has vertical motion as it is flexed, so under sin(2φ) out-of-phase 

vertical force, the flexural mode can be excited.  When the mass has higher even-number 

harmonics (cos(4φ), cos(6φ), etc) the vertical force patterns do not fit the profile of 

vertical motion in the wineglass mode, so the n=2 wineglass mode cannot be excited. 

When the stiffness and mass imbalance has a distribution of sin((2n+1)φ) (Figure 

  
(a) Wineglass Mode (b) Tilting Mode 

 

 

(c) Vertical Mode 
Figure 7.19.  Displacement patterns of wineglass mode, tilting mode, and vertical 
mode of the Cylindrical Rate-Integrating Gyroscope (CING), simulated using 
ANSYS. 
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7.22) the n=2 wineglass mode can be excited by planar angular acceleration (Figure 

7.23).  The planar angular acceleration causes in-plane forces to the resonator.  When the 

gyro has such sin((2n+1)φ) mass or stiffness distribution, the distribution is anti-

symmetric with respect to a cross section through the center of the gyro.  So out-of-phase 

force can be generated from the in-phase force.  The largest out-of-phase force, which 

excites the flexural mode, is generated when the direction of the linear acceleration is 

aligned to the antinode. 

The relation between the ratio of the tilting mode and the wineglass mode frequency 

(ftilting/fWG) to the imbalance parameter of the CING is simulated with FEM.  In this 

simulation, an approximate sin(φ) mass-imbalance pattern is created in the model by 

 
Figure 7.20.  Mass imbalance pattern of ΔM =ΔMocos(2φ), where φ is azimuthal angle 
along the perimeter of the shell 

  
(a) Force difference generated from z-axis 
linear acceleration 

(b) Pattern of induced wineglass mode 

Figure 7.21.  Imbalance in z-axis force generated to resonator having a mass imbalance 
pattern of ΔM =ΔMocos(2φ) (φ: azimuthal angle) and the resultant displacement pattern 
of the n=2 wineglass mode   
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varying the density of the structure from the normal value at the top one fifth of the 

cylinder sidewalls between φ of -6°~6° and 174°~186° by -10% and 10% (Figure 7.24).  

Then the mass function over the perimeter of the gyro has a negative antinode at φ = 180° 

and positive antinode at φ = 0°.  The nominal ratio between the mass variation and the 

nominal mass of the devices (ΔMnominal/Mnominal) is 0.1%.  The simulation is done using a 

high-frequency CING, with an outer radius (R) of 2500µm, bottom plate thickness (BT) 

of 50µm, and ring thickness (T) of 30µm.  Devices with two different heights (H), 300µm 

and 3000µm, are simulated.  The tilting mode frequency (ftilting) is varied by changing the 

anchor radius (AR) of the cylinder.  By changing the AR, a 30~40% change in ftilting is 

achieved while fWG stayed nearly constant, having a variation of less than 2.5%.   

Figure 7.25 shows the relationship between the ftilting/fWG and normalized 

displacements at the top edge of the CING model at φ = 0° and 180°.  The normalized 

displacements increase as ftilting/fWG approaches 1.  Figure 7.26 shows the relationship 

between ftilting/fWG and the structural imbalance factor Z, calculated by applying harmonic 

torques normal to cross-sectional plane that connects φ = 0° to 180°.  The Z value is 

maximized with ftilting/fWG equal to 1, which implies the vibrational sensitivity at the 

  
(a) Mass distribution of ΔM= 
ΔMocos(φ) 

(b) Mass distribution of ΔM= ΔMocos(3φ) 

Figure 7.22.  Top view of mass distribution profile of ΔM = ΔMocos(φ) and ΔM = 
ΔMocos(3φ). 
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flexural frequency is also maximized.  Due to their having the same ΔMnominal/Mnominal 

ratio, the 300µm-thick and 3,000µm-thick CINGs have nearly the same normalized 

eigenvector values and Z.  However, due to the difference in the angular gain Ag, the 

3,000µm device is expected to have ~10 times lower vibration sensitivity than the 300µm 

device. 

 
(a) Force pattern under y-axis angular acceleration 

 
(b) Excited wineglass mode pattern 

Figure 7.23.  Force direction under y-axis angular acceleration and 
displacement pattern of the n=2 wineglass mode. 

 

 
Figure 7.24. Cross-sectional view of CING with modeled mass imbalance.  The density 
of the top 1/5th of the cylinder wall between ϕ = -6~6° and ϕ = 174~186° differs by -
10% and 10% from the normal density.   
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Figure 7.25.  Simulated normalized displacement amplitude ratios of 300µm- and 
3000µm-thick CINGs with sinϕ (ϕ: azimuthal angle) mass distribution.  Nominal mass 
imbalance ratio (ΔMnominal/Mnominal) of 0.1% is modeled by altering the density of top 
1/5th of the cylinder wall for ϕ: 6~6° and 174~186° by -10% and 10% from the normal 
density.   

 
Figure 7.26.  Simulated imbalance factors (Z) of 300µm- and 3000µm-thick CINGs 
with sinϕ (ϕ: azimuthal angle) mass distribution.  Nominal mass imbalance ratio 
(ΔMnominal/Mnominal) of 0.1% is modeled by altering the density of top 1/5th of the 
cylinder wall for ϕ between -6~6° and 174~186° by -10% and 10% from the normal 
density. 
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7.6.  Discussion of Design Methodology for Achieving Lower Vibrational Sensitivity 

7.6.1.  Comparison Between CING and BOG’s Vibration Sensitivity 

Vibration sensitivity reduces as the amount of structural imbalance is reduced, the 

frequency difference between the parasitic and operational modes is increased, and the 

scale factor is increased.  In the current generation of the BOG, the sense and the parasitic 

sense modes exist at 8.7kHz and 9.3kHz, respectively.  In the first-generation (high-

frequency) CING, the wineglass mode exists at 17.3kHz and the closest parasitic mode, 

the tilting mode, exists at over 30kHz.  In the second-generation (low-frequency) CING, 

the wineglass mode is at 3kHz, and the lowest parasitic mode, the tilting mode, exists at 

5kHz.   

The frequency characteristic of the CING is advantageous for achieving smaller 

vibration stability.  However, the fabrication accuracy of the BOG is better than the 

CING, and scale factor of the BOG is larger than the CING.  The BOG is fabricated 

using a planar Si-on-glass (SOG) process, and the stiffness imbalance occurs only from 

the difference in the amount of lateral etching in DRIE process.  In the current SOG 

process, the amount of mismatch in lateral etching is less than ~1µm.  In the CING is 

made using SOG process that creates the bottom plate of the multi-ring cylinder using 

time-based DRIE process.  The nonuniformity in the bottom plate is at least several 

microns within a device.  In addition, the angular gain factor (k) of the BOG (1) is much 

larger than the k of the CING (0.02~0.1).  Therefore, in order to improve the CING’s 

vibration sensitivity, it is necessary to develop microfabrication process with better 

accuracy and to improve the geometry to achieve larger k.   
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7.6.2.   Comparison of Vibration Sensitivity of the BOG and CING to Existing 

MEMS Gyros 

We compare the BOG and the CING with existing gyroscopes with similar 

geometries, the butterfly gyroscope [84] and the ring gyroscope [7], respectively.  The 

butterfly gyroscope, shown in Figure 7.27, consists of four driving springs, two sensing 

springs, a single coupling spring serving along both driving and sensing axes, and two 

anchors.  Figure 7.28 describes the displacement patterns of the three lowest resonance 

modes of the butterfly gyro.  The parasitic sensing mode is found at the lowest frequency 

(6kHz), and in this mode, the coupling spring does not provide any stiffness.  The second 

mode is the driving mode (9kHz).  In this mode, effective stiffness is provided from the 

driving and coupling springs.  The third mode is the sensing mode (9.3kHz).  In this 

mode, torsion occurs in both the sensing and coupling springs.   

In the butterfly gyroscope, the coupling spring provides larger frequency separation 

(3.3kHz) than the CING (600Hz), leading to better vibration insensitivity.  A possible 

drawback of the butterfly gyro, though, may include weakness to large shock, because the 

parasitic sensing mode is always located below the operating modes.  The coupling 

spring of the butterfly gyro is a simple torsional beam, and it cannot make the parasitic 

sensing mode frequency larger than the operating mode frequencies.   

The vibration sensitivity of the CING is compared with the ring gyroscope [7].  

Figure 7.29 shows the displacement patterns of the ring gyro in four lowest resonance 

modes, simulated using ANSYS.  The simulated ring has a radius of 2.5mm, a ring 

thickness of 40µm, an anchor radius of 1mm, and a height of 300µm.   
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Figure 7.27.  SEM picture of butterfly gyro [84]. 

 
 

 
 

(a) Parasitic sense mode (6kHz) (b) Driving mode (9kHz) 

 

 

(c) Sensing mode (9.3kHz)  

Figure 7.28.  Parasitic sensing mode, driving mode, and sensing mode of 
the butterfly gyro [84]. 

The translational mode (ftranslation), rotational mode (frotation), wineglass mode (fWG), 

and tilting modes (ftilting) are found at 8.1kHz, 8.2kHz, 10.5kHz, and 16.3kHz, 

respectively.  The ftranslation, frotation, and fWG are determined by radius, ring thickness, and 

support beam thickness.  In this architecture, the support springs, connecting the anchor 

to the ring, have to have minimal stiffness in order to keep the two wineglass mode 

frequencies as close as possible.  Due to the small stiffness of the support spring, the 

ftranslation and frotation are always lower than the fWG.  The ftilting and the vertical mode 

frequency (fvertical) (not shown in Figure 7.29) reduce as the device height.  Comparing the 

CING’s modal characteristics with the ring gyro’s modal characteristic, we find that 
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CING offers a larger fparasitic/fWG ratio than the ring gyro; however, the advantage of the 

ring gyro over the CING for the given device height (300µm) is 5~40 times higher 

angular gain (Ag).  The fabrication process for the ring gyro is planar so it can be more 

accurate than the fabrication process of the CING.  In order to improve the vibration 

sensitivity of the CING, it is necessary to develop more accurate fabrication process and 

need to improve the Ag. 

  
(a) Translational mode (8.1kHz) (b) Rotational mode (8.2kHz) 

  
(c) Wineglass mode (10.5kHz) (d) Tilting mode (16.3kHz) 

Figure 7.29.  Displacement pattern of four lowest mode shapes (translational mode, 
rotational mode, wineglass mode, and tilting mode) of the ring gyroscope.  The outer 
radius is 2.5mm, ring thickness is 40µm, anchor radius is 1mm, and height is 300µm. 

7.7.  Summary  

We analyzed the relationship between the ratio of the frequency of a parasitic mode 

and a sense mode and the sensitivity to the vibrational pattern that excites the specific 
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parasitic resonance mode.  It is found that the structural imbalance factor Z reaches a 

maximum value for a rate gyroscope as fparasitic/fsense reaches 1. 

To reduce the vibrational sensitivity at fsense, it is necessary to separate fparasitic as far 

as possible from fsense.  The disadvantage in of lowering the fparasitic is reduced shock 

resistance, since the amount of generated stress increases under larger displacement 

[154].  The frequency separation is limited by the mode frequencies which depend on the 

topology of the geometry.   

When we compare the Balanced Oscillating Gyroscope (BOG) with the Cylindrical 

Rate-Integrating Gyro (CING), the CING offers larger separation between the parasitic 

modes the operational modes.  However, the vibration sensitivity of the CING is affected 

by structural imbalance from the current Si-on-glass (SOG) process and a small angular 

gain Ag.  In order to achieve better vibration insensitivity, the CING need to be made with 

a microfabrication process with better accuracy and larger aspect ratio.  A better 

coupling-beam design for the BOG needs to be researched to achieve larger separation 

between the operational modes from the parasitic modes.  
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CHAPTER 8.  
 

CONCLUSIONS AND FUTURE DIRECTIONS 
 
 

8.1.  Summary 

This work investigated the gyroscope design methodologies for reduced vibrational 

sensitivity.  In order to achieve improved vibrational sensitivity, a gyro needs to have 

balanced modes in its driving and sensing modes.  In the balanced mode, the sum of the 

linear and angular momentum are zero.  The balanced mode cannot be excited from in-

phase force generated from environmental acceleration.  However, a gyro always has 

imbalance in stiffness and mass, so imperfectly balanced modes (i.e. out-of-phase mode) 

become excitable under in-phase acceleration.  From analytical and numerical studies, the 

vibrational sensitivity at the out-of-phase mode reaches to its maximum value when 

fparasitic and fsense are matched. 

In order to reduce the vibrational sensitivity, the sensor needs to have a large 

frequency separation between fparasitic and fsense.  Since shock resistance of a gyro is 

roughly inversely proportional to the fparasitic, it is desirable to place fparasitic higher than 

fsense. 

This design principle is applied to develop two new MEMS gyroscopes, the 

Balanced Oscillating Gyroscope (BOG) and the Cylindrical Rate-Integrating Gyroscope 

(CING).  In the BOG, the structure of the sense-coupling beam is studied extensively to 

have larger fparasitic/fsense ratio.  The CING geometry is developed from the cylinder 
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geometry to increase vertical stiffness of the bottom plate to have larger ftilting/fWG and 

fvertical/fWG ratios.  The two devices are fabricated using two different silicon-on-glass 

(SOG) processes.   

The functionality of the BOG is proved by interfacing the sensor with the first-

generation off-chip interface circuitry.  Without having the bottom electrode for cross-

stiffness balancing and quadrature cancellation loop, the minimum separation between 

the fdrive and fsense is found to be 5Hz, and the sensor resolution is limited by quadrature 

error and noise in the driving loop to 0.56deg/sec/√Hz.   

Two versions of Cylindrical Rate-Integrating Gyroscope (CING) are developed to 

operate at 18kHz and 3kHz, respectively.  The CING geometry offers complete 

axisymmetry and the gyro mass can be self-aligned with all the side electrodes.  The 

CING geometry offers good frequency separation (ftilting/fWG ~ 1.5), but due to large 

motional energy along the vertical direction, the angular gain (Ag) is smaller than 0.03.  

The small Ag limits the accuracy of the sensor in both rate and rate-integrating mode.  

The 3kHz-CING has a matched τo of 8 seconds (Q~72,000) at frequency mismatch of 

<20mHz.  The Q is limited by thermoelastic damping (TED).  Using digital rate and rate-

integrating mode circuitry, the second-generation CING performes with an angle random 

walk (ARW) of 0.09deg/√hr and bias drift of 129°/hr in the rate-sensing mode, and the 

sensor demonstrates precession with an angular gain (Ag) of 0.011±0.001 in the rate-

integration mode for several hours with frequency mismatch of 20mHz to 80mHz.  
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8.2.  Thesis Contribution  

The presented work is believed to form a foundation for future development of low-

vibrational sensitivity and high-resolution micro rate-integrating gyroscopes.  The 

specific contributions of the presented research include:   

1) Detailed comparison between the principle, control, device design, and discussion 

of practical limitations in MEMS rate and rate-integrating gyroscopes. 

2) Analytical derivation and numerical simulation of the relationship between the 

modal characteristics (fparasitic/fsense) and vibrational sensitivity at the sense mode 

(fsense) of both balanced tuning-fork gyro and wineglass-mode gyroscopes with 

structural anisotropy.  

3) Detailed comparison of mechanical characteristics (modal characteristics, 

effective mass, angular gain (Ag), and centrifugal mass) and microfabricational 

simplicity of various 3D axisymmetric resonator shapes.    

4) Design, fabrication, and demonstration of the self-aligned, fully axisymmetric, 

3D, single-crystal-Si Cylindrical Rate-Integrating Gyroscope (CING).  Analysis 

of relationship between modal characteristics with geometrical parameter of the 

gyro.  Demonstration of both the rate-mode and rate-integrating mode operation 

using 3kHz-CING with τo of ~8 seconds under <20mHz mode matching.  

Demonstration of scale factor accuracy (Ag) in rate-integrating mode operation.  

Demonstration of mode matching within <80mHz for several days of use at 

uncontrolled temperature.  Rate mode operation with angle random walk (ARW) 

of 0.09deg/√Hr and bias drift of 129°/Hr at ~40°C in vacuum (<5mTorr) (device 

performance is limited by Ag). 
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5) Design, fabrication, and demonstration of operation of the Balanced Oscillating 

Gyroscope (BOG).  Detailed analysis of mechanism of sense coupling stiffness 

for increasing fparasitic/fsense ratio to reduce vibration sensitivity at fsense.  

Development of a new SOG process with thick Al layer with enhanced thermal 

conduction and charge dissipation during DRIE step.  Demonstration of sensor 

measurement using first-generation interface circuit (without quadrature 

compensation) at noise level of 0.44°/sec/√Hz (device performance is limited by 

quadrature error and circuit noise).   

8.3.  Future Work  

The performance of the CING is limited by its low angular gain (Ag).  Since the Ag is 

related to the aspect ratio of the device, it is practically difficult to improve the Ag of the 

CING above the current level.  In order to have a good rate-integration performance, it 

will be necessary to develop a new geometry with less vertical motion during the flexural 

mode.     

More CING devices should be tested to better understand the physical source of the 

mechanical coupling that shifted the resonance frequency and quality factor of the gyro, 

following the polarity of the input rotation rate.  

The 1st generation BOG that is presented in this thesis has a limitation in cross-axis 

stiffness balancing.  With addition of balancing electrodes, the modes will become 

matchable.  The performance of the new generation gyroscope should be tested 

extensively under various vibrational inputs.     

Lastly, the SOG gyros should be wafer-level packaged using anodic bonding 

methods, and it will be tested on a mechanical isolation package.   
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APPENDIX A 
 

DERIVATION OF STIFFNESS AND DAMPING MATRICES 
IN SENSOR COORDINATE 

 
 

The stiffness matrix of a sensor coordinate that is separated from the principal 

stiffness axis by θω is found by 1) expressing a potential energy Estiffness in terms of 

principal stiffness, 2) transforming coordinates from the principal stiffness axes to the 

sensor axes, and 3) calculating the stiffness with respect to the sensor axis by double-

differentiating the Estiffness in terms of displacement.   

A.1.  Stiffness Matrix  

  Assume a mass is moved from the origin to a coordinate (x, y) with respect to the 

principal stiffness axes (Figure A.1).  The coordinate of the mass with respect to the 

sensor axis is called (q1, q2) (Figure A.2).  The Estiffness is expressed in terms of k1 and k2 

as:  

 
(Equation A.1) 

  The relationship between the (x, y) and (q1, q2) is: 

 
(Equation A.2) 

  The stiffness terms with respect to the sensor coordinate is: 
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  In Equation A.3, the stiffness k11, k12, k21, and k22 are: 

 
(Equation A.4) 

 

(Equation A.5) 

 

(Equation A.6) 

 

  
Figure A.1.  Displacement in stiffness 
coordinate with respect to the principal 
stiffness axis. 

Figure A.2.  Displacement in stiffness 
coordinate with respect to sensor axis.  
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(Equation A.7) 

 

(Equation A.8) 

 

(Equation A.9) 

C.2.  Damping Matrix  

Assume a mass is moving at a velocity vector ( , ) with respect to the principal 

damping axes.  The velocity vector corresponds ( , ) with respect to the sensor 

coordinate.  
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Figure A.3.  Velocity of a mass with respect 
to principal damping axes. 

Figure A.4.  Velocity of a mass with 
respect to sensor axes. 

The change in the damping energy (dEdamping) is expressed in terms of the forces and 

displacements with respect to the stiffness axes as: 

 
(Equation A.10) 

  The damping coefficient matrice along the sensor axes is: 

 
(Equation A.11) 

  In Equation A.11, the coefficients c11, c22, c12, and c21 are calculated as: 
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(Equation A.15) 

The damping coefficients are calculated as: 

 

(Equation A.16) 

 

(Equation A.17) 
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APPENDIX B 
 

ANSYS CODE FOR PHYSICAL PARAMETER OF THE 3D 
WINEGLASS MODE GYROSCOPE 

 
 
The following code lines are used to simulate the resonance frequency, angular gain, and 

effective mass of a fused-silica hemispherical resonator.  

finish 
/CLEAR,START 
/PREP7   
 
!2-1.  The multiconcentric ring. Material: fused silica, element:  shell93, fused silica's 
mechanical data found from (http://www.accuratus.com/fused.html) 
Mat,1 
et, 1, shell93   
MPTEMP,,0  ! temperature    
mp, ex, 1, 73e9   
MP,NUXY,1,0.17  
MPDATA,DENS,1,,2200 
thickness = 100e-6           ! thickness of the shell   
R,1,thickness                    ! setting the thickness of the shell   
 
*SET,tol,1e-7    
btol, tol    
radius1 = 1900e-6 
radius2 = 500e-6 
height  = 1000e-6 
k,1,radius1,0,0 
k,2,radius2,0,-height 
k,3,radius2+0.5*(radius1-radius2),0,-0.8*height 
LARC,2,1,3,  
k,10000,0,0,0    
k,10001,0,0,100e-6 
ldiv = 36 
adiv = 120 
ldiv,1,,,ldiv 
* do,i,1,ldiv,1,  
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AROTAT,i,,,,,,10000,10001,360,adiv 
*enddo 
ESIZE,,1          ! esize number and arotat division number needs to be same  
AMESH,all 
/eshape, 1         ! show element with the real thicknesses 
nsel,all 
nummerg, all, tol    
csys,1     
NSEL,s,LOC,x,radius2 
D,ALL,ux,0   
d,all,uy,0   
d,all,uz,0   
nsel,all 
FINISH   
 
/SOLU    
ANTYPE,2                                ! analysis type = 2 (modal analysis) 
MODOPT,LANB,20                 ! Calculating 10 modes using Lanzos method 
EQSLV,SPAR                           ! Using sparse equation solver  
MXPAND,20, , ,1                      ! Calculating element solutions for 10 modes 
LUMPM,0                                  ! Do not use lumped modeling 
PSTRES,0                                  ! no pre stress 
 
MODOPT,LANB,20,0,0, ,OFF                ! Calculating 10 modes using Lanzos method 
/STATUS,SOLU 
SOLVE    
FINISH  
 
!7. Calculating effective mass along xyz 
!7-1.  Going to postpressing mode and read the first set of solutions, which is the wine 
glass mode 
/post1 
SET,,, ,,, ,3                         !read the solution at first set (lowest frequency)  
rsys,0                                  !List or plot the solution along the coordinate 0 (global 
Cartesisn) 
 
!7-2.  Reading volume, displacements along x and y axes (UX, UY) 
 AVPRIN,0,0.17 ,              ! calculates the element data by averaging the nodal data 
ETABLE, ,VOLU,             ! calculates the element volume 
 
!*   
AVPRIN,0,0.17 ,  
ETABLE,,U,X                   !calculates the x direction displacement 
!*   
AVPRIN,0,0.17 ,                ! calculates the element data by averaging the nodal data 
ETABLE,,U,Y                    !calculates the y direction displacement 
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!* 
AVPRIN,0,0.17 ,  
ETABLE,,U,z                     !calculates the z direction displacement 
 
!7-3.  Calculating UX^2, UY^2, and sum of square of displacements 
SMULT,UX1^2,UX,UX,1,1,  ! Multiply UX by UX and store as the name of UX^2 
SMULT,UY1^2,UY,UY,1,1,  ! Multiply UY by UY and store as the name of UY^2 
SMULT,UZ1^2,UZ,UZ,1,1    
SADD,UXUYSUM1,UX1^2,UY1^2,1,1,  
SADD,UXUYUZSUM1,UXUYSum1,UZ1^2,1,1 
PRETAB,volu,ux,uy,uz,UXUYUZsum1    
 
!=============================================================== 
  !7-4.  max(UXUYUZSum1)= 0.20867E+07    sqrt( max(UXUYUZSum1)) 
=1444.54145 
!=============================================================== 
 
 !7-5.  Normalize UX and UY using the Sqrt(MAX(USSUM1)) 
! Multiply UX by 1/max(ux), and store as the name of NORx 
SMULT,norx1,Ux, ,1/1444.54141    ,1,    
! Multiply UX by 1/max(uy), and store as the name of NORy 
SMULT,nory1,Uy, ,1/1444.54145    ,1,       
! Multiply UX by 1/max(uz), and store as the name of NORZ 
SMULT,norz1,Uz, ,1/1444.54145    ,1,         
! Multiply NORX by NORX and store as the name of NORX^2 
SMULT,norx1^2,NORx1,NORx1,1,1,             
! Multiply NORX by NORX and store as the name of NORy^2 
SMULT,nory1^2,NORy1,NORy1,1,1,             
! Multiply NORX by NORX and store as the name of NORz^2 
SMULT,norz1^2,NORz1,NORz1,1,1,             
! Sum NORX^2 and NORY^2 and store as a name of NORSxy 
SADD,norsxy1,NORX1^2,NORY1^2,1,1,0,        
! Sum NORsumXY and NORZ^2 and store as a name of NORSxyz   
SADD,norsxyz1,Norsxy1,norz1^2,1,1,0  
! Multiply NORSUM, Volume, and Density of fused silica (2220kg/m^3) and store as 
EFFMASS 
SMULT,effmass1,NORsxyz1,VOLU,2200,1,        
! Print element solution in table and display the calculated values 
PRETAB,volu,norx1,nory1,norz1,norsxyz1,EFFMASS1      
 !11-6. Add each column on the displayed element solution table 
ssum  
!=============================================================== 
! 
!11-7. From SSUM table, the sum of the effective mass elements is  
!     0.478259E-06 
!=============================================================== 
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!7. Calculating effective mass along z 
!7-1.  Going to postpressing mode and read the first set of solutions, which is the wine 
glass mode 
/post1 
SET,,, ,,, ,4                          !read the solution at first set (lowest frequency)  
rsys,0                                  !List or plot the solution along the coordinate 0 (global 
Cartesisn) 
 
!7-2.  Reading volume, displacements along x and y axes (UX, UY) 
AVPRIN,0,0.17 ,               ! calculates the element data by averaging the nodal data 
ETABLE, ,VOLU,             ! calculates the element volume 
AVPRIN,0,0.17 ,  
ETABLE,,U,X                   !calculates the x direction displacement 
AVPRIN,0,0.17 ,               ! calculates the element data by averaging the nodal data 
ETABLE,,U,Y                   !calculates the y direction displacement 
AVPRIN,0,0.17 ,  
ETABLE,,U,z                    !calculates the z direction displacement 
    
!7-3.  Calculating UX^2, UY^2, and sum of square of displacements 
! Multiply UX by UX and store as the name of UX^2 
SMULT,UX2^2,UX,UX,1,1,                   
! Multiply UY by UY and store as the name of UY^2 
SMULT,UY2^2,UY,UY,1,1,                   
SMULT,UZ2^2,UZ,UZ,1,1    
! Add UX^2 and UY^2 and store as USSUM (=u square sum) 
SADD,UXUYSUM2,UX2^2,UY2^2,1,1,             
SADD,UXUYUZSUM2,UXUYSum2,UZ2^2,1,1 
! Print element solution in table and display volume, UX, UY, and USSUM 
PRETAB,volu,ux,uy,uz,UXUYUZsum2                 
!=============================================================== 
!7-4.  max(UXUYUZSum2)=   0.20867E+07  sqrt( max(UXUYUZSum2)) = 1444.54141 
!=============================================================== 
 
!7-5.  Normalize UX and UY using the Sqrt(MAX(USSUM1)) 
! Multiply UX by 1/max(ux), and store as the name of NORx 
SMULT,norx2,Ux, ,1/1444.54141    ,1,         
! Multiply UX by 1/max(uy), and store as the name of NORy 
SMULT,nory2,Uy, ,1/1444.54141    ,1,         
! Multiply UX by 1/max(uz), and store as the name of NORZ 
SMULT,norz2,Uz, ,1/1444.54141   ,1,         
! Multiply NORX by NORX and store as the name of NORX^2 
SMULT,norx2^2,NORx2,NORx2,1,1,             
! Multiply NORX by NORX and store as the name of NORy^2 
SMULT,nory2^2,NORy2,NORy2,1,1,             
! Multiply NORX by NORX and store as the name of NORz^2 
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SMULT,norz2^2,NORz2,NORz2,1,1,             
! Sum NORX^2 and NORY^2 and store as a name of NORSxy 
SADD,norsxy2,NORX2^2,NORY2^2,1,1,0,        
! Sum NORsumXY and NORZ^2 and store as a name of NORSxyz   
SADD,norsxyz2,Norsxy2,norz2^2,1,1,0  
! Multiply NORSUM, Volume, and Density of fused silica (2220kg/m^3) and store as 
EFFMASS 
SMULT,effmass2,NORsxyz2,VOLU,2200,1,        
! Print element solution in table and display the calculated values 
PRETAB,volu,norx2,nory2,norz2,norsxyz2,EFFMASS2      
 
 !11-6. Add each column on the displayed element solution table 
ssum  
!=============================================================== 
!11-7. From SSUM table, the sum of the effective mass elements is  
  !  0.478259E-06 
!=============================================================== 
 
!!**********Save the tables for the calculation of the angular gain ************** 
!12-8. Calculate NORX1*NORY2 - NORX2*NORY1 
! Multiply NORX1 by NORY2 and store as the name of NORX1Y2 
SMULT,NORX1Y2,NORX1,NORY2,1,1,              
! Multiply NORX2 by NORY1 and store as the name of NORX2Y1 
SMULT,NORX2Y1,NORX2,NORY1,1,1,              
! Subtract NORX2Y1 from NORX1Y2 and store as the name of NORSUB 
SADD, NORSUB,NORX1Y2,NORX2Y1,1,-1,0,        
! Multiply NORSUB, Volume, and Density of Si (2330kg/m^3) and store as NORSUB 
SMULT,Gamma,NORSUB,VOLU,2200,1            
! Print element solution in table and display the calculated values 
PRETAB,volu,NORX1Y2, NORX2Y1, NORSUB,Gamma                 
 
!12-9. Add each column on the displayed element solution table 
ssum  
!=============================================================== 
!12-10. From SSUM table, the sum of the gamma is 
  !   0.150500E-06 , therefore, the angular gain is 150.5/2/478 (average of effective 
mass)=0.23 
!=============================================================== 
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APPENDIX C 
 

DESIGN OF VERTICAL COMB DRIVE (VC) ELECTRODES 
FOR SILICON-ON-GLASS (SOG) PROCESS 

 
 

The vertical comb-drive (VC) electrode is used to measure vertical deflection and to 

actuate masses along the out-of-plane direction.  The electrodes are fabricated using the 

Si-on-glass (SOG) process with thermal dissipation bumps [125] (Figure 4.27).  The 

electrodes have larger out-of-plane actuation range than the parallel plate by not suffering 

from pull-in phenomenon.   

The electrodes are formed by localized anodic bonding, induced by electrostatic pull-

in, at step (e) of Figure 4.27.  The rest of the device is prevented from bonding by the 

glass bumps.  While the VC electrodes here were designed to be compatible with the 

SOG process, a similar technique is believed to be useful for sensors made from a SOI 

substrate.   

The VC electrodes consist of comb drive electrodes, bonding plate, torsion spring, 

torsion bar, and anchor.  The bonding plate defines where the anodic bonding takes place.  

The plate is connected to torsion springs and torsion bars that provide flexibility in the 

vertical direction.  We can configure the structure of the VC electrode to be placed both 

at a lower level and a higher level than the normal level of the sensor mass.  These comb 

drive electrodes are named the pull-down vertical comb drive electrode (PDVC) and the 

pop-up vertical comb drive electrode (PUVC), respectively (Figure C.1)  
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Cross-section of the VC electrode along AA’  

(a) Lower-level vertical comb drive  
(PDVC) 

(b)Higher-level vertical comb drive  
(PUVC) 

Figure C.1.  Structures and dimensions of the of the lower-level pull-down vertical comb 
drive (PDVC) and higher-level pull-up vertical comb drive (PUVC). 

  The PDVC has anchors and torsion beams at both sides.  The bonding plate is located at 

the center of the device, and the bonding plate as well as the comb drive electrodes are 

made to be pulled down on the glass recess.  In the PUVC, levers are made from the 

bonding plate to the electrodes.  When the bonding plate is pulled down, the electrodes 

are pushed up with a vertical amplification factor determined by the ratio of the lever.  To 

prevent the electrodes from being pulled down together with the bonding plate, it is 

necessary to provide a sheet of conducting material with the same potential as the vertical 

electrodes underneath the electrodes.    

  The vertical stiffness of the VC electrode is determined by the width (w) and length (l) 

of the narrow beams as well as the length of the lever (L).  The thin beams bend laterally 

along the x-axis as well as tilt along the y-axis when the bonding plate is subjected to a 

vertical force.  Due to the complex nature of the deformation of these narrow beams, the 

dimensions of the VC electrode are designed with the FEM method.   

  The design criteria of the VC electrodes are 1) reasonable pull-in voltage (<1000V), 2) 

von-Mises stress under the fracture stress of Si, and 3) for the PUVC, vibration stability, 

based on having the lowest resonance frequency be over 100kHz.  An expression for the 
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dimensions required to meet the first criterion can be derived from the expression for 

pull-in voltage.  The pull-in voltage (Vpull-in) is related to the area of the bonding plate (A), 

recess gap (d), vertical stiffness (kz) by:  

 
(Equation C.1)

 
  With a nominal gap of 5µm, and the maximum pull-in voltage of <1000V, the relation 

between A and kz are then expressed as:  

 

(Equation C.2)
 

  According to this relation, the maximum stiffness for a bonding plate with an area A of 

2500µm2 (= 50x50µm2) is about 600N/m.  As will be shown later, such vertical stiffness 

is readily achieved with VC electrodes consisting of bending/torsional beams with a 

width (w) of about 5µm, length (l) of 100µm, and a height (h) of 100µm.   

  The dimensions for meeting the second and third criteria are selected with the FEM 

method.  Table C.1 shows the typical dimension of the electrode meeting our design 

goals.  Figures C.2 (a) and (b) show the FEM model of the PDVC and PUVC, 

respectively.  Figure C.3 shows the modeling results for a PDVC drive modeled using 

ANSYS.  Figure C.4 shows modeling results for a PUVC drive modeled using ANSYS.  

Figure C.5 shows a SEM photograph of both types of the VC electrodes.  Both simulation 

results indicate that the electrodes developed here are robust enough for inertial sensing 

applications with a resonance frequency under 50kHz.  Further development may 

improve robustness if an application requires it.  Figure C.6 shows a SEM photograph of 
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a torsion actuator created using the developed SOG process where the VC electrodes are 

used to provide force in the vertical direction.  

Table C.1 Typical dimension of the designed pull-down (PDVC) and pop-up 
vertical electrodes (PUVC) (can be further optimized) 
VC Type Pull-Down Vertical 

Comb Drive (PDVC) 
Pop-Up Vertical Comb 
Drive (PUVC) 

A (bonding area)  (µm2) 5 ×104 5 ×104 
w (width of the narrow beam) (µm) 4 4 
l (length of narrow beam) (µm) 110 110 
L (length of lever) (µm) 110 110 
Max von-Mises stress (GPa) 
(with vertical deflection: 10µm) 

0.65 0.65 

Resonance frequency  
(with vertcial deflection: 10µm) 

NA  90kHz (lateral mode) 

kz (vertical stiffness) (N/m) 233 275 
 

  
(a) Pull-down vertical comb drive (PDVC) (b) Pop-up vertical comb crive (PUVC) 

Figure C.2.  Vertical comb drive electrodes compatible with the Si-on-Glass (SOG) 
process. 

 

  
(a) Maximum von-Mises stress of 
0.65GPa under vertical deflection of 
10µm 

(b) Vertical stiffness: 233N/m 

Figure C.3.  Calculation of mechanical properties of the PDVC architecture using FEM 
(width: 488µm, length: 300µm, minimum beam width (w): 4µm). 
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(a) Vertical deflection of 10µm when 
the bonding plate is pushed down by 
10µm 

(b) Maximum von-Mises stress of 0.65GPa 
under vertical deflection of 10µm 

  
(c) Vertical stiffness of 275N/m (d) Lowest-order resonance mode (lateral 

translation) at 90kHz 
Figure C.4. Calculation of mechanical properties of the PUVC architecture with FEM 
(width: 496µm, length: 335µm, minimum beam width (w): 4µm). 

 

 
Figure C.5.  SEM photograph of both pop-up (PUVC) and pull-down 
(PDVC) vertical comb electrodes.  
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Figure C.6.  SEM photograph of a torsion actuator where the vertical 
comb drive electrodes are used. 
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