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CHAPTER I

Introduction

Detection and identification of nuclear materials at ports of entry and in densely

populated areas is a challenging but vitally important problem. In fiscal year 2009,

the United States Customs and Border Protection agency processed a daily average

of 989,689 passengers and pedestrians, 57,761 cargo containers, and 271,278 privately

owned vehicles [13]. A system used to detect dangerous nuclear material at inter-

national borders must have a high detection probability to reliably detect actual

threats, while having a small probability of false alarm to minimize delays for be-

nign traffic. Some radiation detectors used at ports of entry use photon counting

statistics alone to detect sources [66], while other, more sophisticated systems use

both counting statistics and spectroscopy [67]. These detectors do not allow one to

localize a radioactive source within a stationary object, and do not account for the

spatial distribution of radioactive material when deciding whether or not a source is

present.

The radiation measurement group at the University of Michigan is developing a

position-sensitive Compton imaging system [81] that one can use to measure the

spatial distribution and energy spectrum of gamma–ray emissions. We define a

position–sensitive detector to be a detector that can infer information about the
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direction of an incoming photon. Position–sensitive detectors have the potential to

improve detection accuracy in settings such as border crossings by helping localize

sources. Many ordinary materials, such as concrete, contain radioactive isotopes that

contribute to the background radiation recorded by the detector. These materials,

as well as cosmic radiation, are usually more broadly distributed in space than ma-

licious radioactive objects. Position–sensitive detectors have the ability to use the a

priori knowledge that malicious sources are spatially localized to increase detection

performance [66].

A position–sensitive gamma–ray imaging system should provide information about

radioactive sources in a given field of view. We consider two methods of accomplish-

ing this: image reconstruction and source detection. The goal of image reconstruction

is to render an image of the spatial gamma–ray emission density around the detec-

tor. The maximum likelihood (ML) method of image reconstruction [4] has been

previously applied to gamma–ray imaging with 3D position–sensitive detectors [80],

but the ML solution may not be representative of the true emission density with few

recorded measurements. The ML estimate can exhibit poor behavior because it is

the solution to an inverse problem that is typically ill–posed when the number of

measurements is small.

Regularization is a method of incorporating a priori information into an ill–posed

inverse problem to improve the condition of the system and generate a solution that

is a compromise between fitting the recorded data and the being consistent with

the a priori information [21]. Penalized likelihood problems are a type of regularized

inverse problem where the cost function is based on a statistical likelihood. Penalized

likelihood has been previously applied in medical emission tomography to enforce the

a priori expectation that the images are smooth [16, 25]. In this work, we use the
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method of penalized likelihood to generate images that fit gamma–ray measurements

and the a priori knowledge that images should be sparse in space.

We found that reconstructed images, especially those reconstructed with a sparsity–

promoting penalty function, are not necessarily the most useful for the task of de-

tecting a radioactive source. Incorporating the expectation of sparsity into the recon-

struction method can cause measurements of diffuse background emissions to appear

as a point–source in the image, especially with few measurements. This shortcom-

ing motivates our study of source detection performance with gamma–ray imaging

systems.

Predicting the performance of methods for detecting a source in background with

a position–sensitive gamma–ray measurement system is often difficult because the

measurements are random variables with distributions that depend on nonlinear func-

tions of the source intensity and position. Detection performance results reported in

the literature are commonly generated by empirically performing the test for mul-

tiple trials with and without a source present, e.g., [66, 76]. Empirical methods for

computing detection performance require a large amount of data and computation,

and separate computations must be performed for each scan time to be consid-

ered. Furthermore, empirical computations do not give an intuitive formula to aid

in understanding how the system design impacts the ability to detect a source in

background.

We use the asymptotic distribution of maximum likelihood estimates to provide

an efficient means of computing detection performance in terms of the receiver op-

erating characteristic (ROC), which is the probability of detection as a function of

the probability of false alarm. In the absence of model mismatch, the asymptotic

distribution of the maximum likelihood estimates of source intensity is useful for
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proving results about the utility of position and spectral information. We use the

asymptotic distribution of maximum likelihood estimates to prove that imaging in-

formation can not decrease detection performance in the absence of model mismatch

and provide a formula to quantify the performance increase in terms of the system

response function.

Exact system models for some position–sensitive gamma–ray detectors, such as the

pixelated CdZnTe used in this work, are often too computationally intensive to com-

pute in practice, which motivates the use of approximate models. An approximate

model for a 3D position–sensitive CdZnTe detector is given in [80]. Estimators de-

rived from approximate models may not enjoy many of the desirable properties of the

ML estimator, such as asymptotic unbiasedness, asymptotic efficiency, and asymp-

totic normality. Predicting asymptotic detection performance under the incorrect

assumption that these properties are satisfied can lead to inaccurate, and sometimes

overly optimistic results. We extend previous results on the asymptotic normality

of maximum likelihood estimators under model mismatch, or quasi–maximum likeli-

hood estimators (QMLE) [78], to the gamma–ray imaging case where the number of

recorded measurements is Poisson. We apply the theoretical results to a simulated

detector and a real CdZnTe system to show that the asymptotic normality of the

QMLE is a useful tool for predicting detection performance with gamma–ray imaging

systems.

1.1 Contributions

This work focuses on the problem of extracting useful information from the data

recorded by position–sensitive gamma–ray detectors. Our contributions are primarily

results about the performance of established algorithms applied to the gamma–ray
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imaging and source detection problems.

We propose a penalized–likelihood algorithm using a penalty function based on

the sum of logarithms of pixel values for reconstructing gamma–ray images when the

images are known a priori to be sparse in the spatial domain. The proposed penalty

function is discussed as a measure of sparsity in [10]. We compare the proposed

algorithm to the more traditional `1 and `0 regularizers. Our results show that the

`1 penalized algorithm reconstructs scaled versions of the maximum-likelihood (ML)

solution, which does not improve the sparsity over the traditional ML estimate. We

show that the `0 penalized solution is equivalent to the ML solution due to the

singularity of the Poisson log-likelihood at zero. We demonstrate that the penalty

based on the sum of logarithms produces sparser images than the ML solution.

We evaluated these algorithms using experimental data from a position-sensitive

Compton-imaging detector [30], where the spatial distribution of photon-emitters is

known to be sparse.

For the problem of source detection, we prove Theorem IV.3, which states that

in a known background, a uniform–sensitivity position–sensitive detector always has

equal or better detection performance asymptotically, in terms of AUC, than a count-

ing detector of equal sensitivity. Our analysis also provides an expression that quan-

tifies how much position–sensitive capability increases the AUC. We give numerical

examples to illustrate Theorem IV.3.

We also provide numerical examples demonstrating the utility of position–sensitive

detectors of non–uniform sensitivity over counting detectors. Non–uniform detectors

violate the assumptions of Theorem IV.3, but we numerically evaluate detection

performance using the asymptotic method to compare the performance of various

non–uniform detectors to the performance.
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There are many choices for tests to detect the presence of a source. We give

a numerical comparison of the performance of three different tests in known and

unknown background.

Since exact system models are often difficult to compute for systems such as 3D

Compton detectors, we propose a methodology for predicting detection performance

of gamma–ray imaging systems when the system model is incorrect. This method-

ology is based on an extension of the asymptotic normality of the quasi maximum

likelihood estimator (QMLE), which means a maximum likelihood estimator when

the modeled likelihood is not correct. The asymptotic normality of QMLEs is proven

in [2,78], but only in the case of a nonrandom number of measurements. We extend

the asymptotic normality of the QMLE for a nonrandom number of measurements

in [78] to the gamma–ray source detection case where the number of measurements

is Poisson.

Since source and background intensities are naturally nonnegative, we extend the

results of [78] and [69] to prove Theorems V.5 and V.7, which show convergence in

probability and distribution of the constrained QMLE under somewhat restrictive

regularity conditions when the number of measurements is random and model mis-

match is present. Since the regularity conditions for Theorem V.7 are often violated

in practice, we propose an approximation for the distribution of the QMLE for finite

scan times. Numerical results with a simulated detector show that the proposed

approximation is reasonable for modest scan times.

We provide simulated numerical examples to illustrate the effects of model mis-

match on gamma–ray imaging systems. We first evaluate the asymptotic perfor-

mance of a simple detector that records a Poisson number of events, where each

event has one Gaussian–distributed attribute. This example illustrates that model
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mismatch can affect performance predictions significantly.

We evaluate the asymptotic performance of tests for detecting a point–source in

a distributed background using an idealized position–sensitive Compton detector in

a background of unknown intensity with constrained and unconstrained source in-

tensity estimates. The joint probability distribution of photon interaction positions

and deposited energies in position–sensitive Compton detectors is computationally

expensive, motivating the use of approximate models. We use Monte Carlo simula-

tion to evaluate the asymptotic detection performance of a parallel–plate detector

employing the approximate model in [80].

To supplement the simulation results, we computed empirical and asymptotic

performance predictions with real data from an 18 detector CdZnTe array for var-

ious source–to–background ratios with a Cs-137 source. Our results show that the

asymptotic performance prediction method that accounts for model mismatch ap-

proximates the empirical performance well on a real system.

1.2 Outline

This thesis is organized as follows: Chapter II provides background informa-

tion about gamma–ray imaging systems, detection theory, and estimation theory,

Chapter III discusses image reconstruction algorithms and applications to position–

sensitive CdZnTe detectors, Chapter IV covers asymptotic performance of tests for

detecting a gamma–ray source in background and performance comparisons between

detectors with and without position sensitivity, Chapter V develops theory for the

asymptotic performance of tests for detecting a source in background in the presence

of model mismatch and gives results for an application of the theory to position–

sensitive gamma–ray detectors, and Chapter VII outlines proposed future work.



CHAPTER II

Background

We begin with an overview of gamma–ray measurement and Compton imag-

ing. We then explain the classical maximum likelihood expectation maximization

(MLEM) approach to image reconstruction and give an overview of its application to

Compton imaging systems. We conclude the section with an overview of penalized–

likelihood image reconstruction algorithms and statistical approaches to detection.

2.1 Gamma–ray measurement

Three prominent devices for gamma–ray measurement are gas detectors, scintil-

lation detectors, and semiconductors [38]. Scintillation detectors work by converting

incoming gamma–ray photons to visible light photons that are collected by some

recording mechanism. Scintillation detectors typically have lower energy resolution

than other types of detectors [38]. Scintillators have been use in medical imaging

technologies such as positron emission tomography (PET) [61].

Gaseous detectors detect gamma–rays by measuring the charge in the atoms that

are ionized by interacting gamma–rays. Gaseous detectors typically have lower sen-

sitivity per unit volume than scintillators or semiconductors because gases are less

dense than solids [38]. An example of a gaseous detector can be found in [37].

Semiconductor detectors sense the moving charge due to electrons freed from their

8
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orbits by interacting high–energy photons. Semiconductors offer higher sensitivity

than gaseous detectors due to their larger density, and can offer better energy res-

olution. For example, Germanium detectors can exhibit less than 0.5% full–width

half maximum (FWHM) energy resolution at 662 keV [32]. Germanium detectors,

however, must be cooled to achieve such fine energy resolution. At room tempera-

ture, semiconductor detectors made of CdZnTe have been demonstrated with energy

resolution of 0.77% FWHM [83]. Position–sensitive CdZnTe detectors were first

demonstrated in 1999 [30]. These detectors are made from a rectangular block of

semiconducting CdZnTe. An array of pixellated anodes are fabricated on one surface

of a CdZnTe crystal. Signals induced on pixel anodes are read out by a multichannel

application specific integrated circuit, which provides information about position and

energy deposition of each gamma–ray interaction. Room–temperature semiconductor

detectors have also been made from Silicon with lower gamma–ray sensitivity. [63].

2.2 Imaging Methods

An imaging detector provides information about the direction of origin of an in-

teracting photon. This directional information is useful because it allows one to gain

information about the spatial distribution of radiation–emitting materials around

the detector. Photon emission rates of gamma rays are typically small compared to

the rest of the electromagnetic spectrum. A traditional technology for radioactive

source detection is the Geiger counter, which detects an increase in the detected pho-

ton rate, disregarding the directions of origin. Imaging information could be helpful

in the detection of radioactive sources because, intuitively, a small increase in the

number of photons in a narrow direction would be more noticeable than a small

increase in the count rate disregarding directional information.
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2.2.1 Compton Imaging Fundamentals

When a high-energy particle interacts with matter, two of the possible outcomes

are photoelectric absorption and Compton scattering [79]. In photoelectric absorp-

tion, all of the incoming particle’s energy is transferred to an atomic electron. In

Compton scattering, the incoming particle imparts some of its energy onto an elec-

tron, ejecting it from the atom and scattering the incoming photon by a certain

angle.

One can use the locations of a pair of photon interactions in a body of matter,

where the first interaction is a Compton–scatter event, to find a cone of possible

directions of origin. If a particle with energy E0 deposits energy E1 at the first

interaction, and undergoes photoelectric absorption at a second location depositing

energy E2, then the angle θ between the incident direction and the line connecting

the two interaction locations must satisfy

(2.1) cos(θ) = 1− mec
2E1

E0E2

,

where me is the mass of an electron and c is the speed of light [79]. Using (2.1),

one one can use the interaction locations and energy deposited to determine a cone

of possible source locations where the axis is the line connecting the two events

and the angle is determined by the calculated scatter angle. Figure 2.1, shows a

two-interaction event and the associated cone.

2.2.2 Parallel-Plate Compton Imaging

A classical detector technology that exploits the physics of Compton scatter is

a parallel-plate detector, which is described in [42] and [54]. Figure 2.2 shows a

two-dimensional illustration of such a system.
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Figure 2.1: Cone of possible photon origin directions for a two-interaction event.

Figure 2.2: Parallel-plate Compton imaging system, interacting photon, and Compton cone

If an incoming photon scatters in the first plate and undergoes photoelectric ab-

sorption in the second, the Compton scatter formula yields a cone of possible direc-

tions of origin. To implement such a system, one does not need to determine the

depth of interaction in the plate. However, if the plates are thin enough to ignore

interaction depth, the escape probability is usually high, which leads to a low system

sensitivity. There is a sensitivity-resolution tradeoff in the plate thickness because

a thicker plate gives less precise interaction location information, but captures more

photons. One means of increasing the detector sensitivity is to use one large block of
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detector material instead of two plates. However, Compton imaging is only possible

if the detector is depth–sensitive.

2.2.3 Position-Sensitive Compton Imaging

Position-sensitive Compton detectors made of the semiconductor CdZnTe, pro-

posed in [30], are comprised of a bulk of CdZnTe and a biased capacitor whose

plates lie on two of the opposite detector faces. The anode plate is pixelated and

the cathode is not. When a photon interaction occurs, the voltage at the cathode

changes almost immediately [79], and the voltage at the anode depends on the inter-

action depth and electron drift time. The time between a rise in the cathode signal

and a rise in the anode signal allows one to determine the interaction depth. Also,

the amplitude of the voltage signal at the anode allows one to determine the energy

of the interacting photon because the amount of charge produced is proportional to

the deposited energy. The signal induction in a biased semiconductor detector is

described by the Shockley-Ramo Theorem, and are covered in detail in [29].

In reality, measurement uncertainty does not allow one to deterministically specify

the cone of possible origin directions. The finite size of anode pixels leads to uncer-

tainty in lateral interaction position, and electronic noise leads to uncertainty in

interaction depth and deposited energy due to noise on the anode and cathode chan-

nels. The uncertainty in interaction position yields uncertainty in the cone axis and

the uncertainty in the deposited energy yields uncertainty in the cone angle. Some

image reconstruction and detection methods model this uncertainty to compute an

estimate that is optimal in some sense.

When a photon scatters one or more times in the detector, the timing resolution of

the system is insufficient to determine the order in which the interactions occurred.

Sometimes one or more possible interaction sequences can be ruled out by using the
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conservation of energy and (2.1). Choosing the best interaction sequence from the set

of possible sequences is an active area of research and a comparison of two methods

is given in [44].

2.2.4 Far–Field Approximation

In this work, we assume that the vertex of the cone of possible photon origin

directions lies at the center of the detector. In reality, the vertex lies at the point

of the first interaction, but for sources far from the detector, the error is negligible

and the approximation greatly simplifies the geometric calculations. The far–field

approximation applied to a source one meter from the detector will have an error in

the cone axis of 0.6o [44]. In detection problems, the far–field approximation allows

one to treat the incoming photon directions as equal across the exposed detector

surface. Most importantly, the far–field approximation allows us to geometrically

determine the direction of origin without knowing the distance between the source

and the detector, so we can pose imaging and detection problems in terms of direction

of origin, disregarding the depth parameter.

2.2.5 Compton Imaging versus Collimation

An alternative approach to Compton imaging is to use a collimated detector.

A collimated detector has thin strips of high-attenuating material that only allow

photons from a particular direction to enter. Figure 2.3 illustrates a two-dimensional

position-sensitive Compton detector and a collimated detector.

The “bin” in which a photon interacts in the collimated detector gives information

about the direction of photon origin. The gray cone in Figure 2.3 illustrates the

possible directions of origin for a measured photon. Note that this cone is solid

and its half–angle is determined by the height of the collimator. Longer collimator
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Figure 2.3: A position-sensitive Compton detector (left) and a collimated detector (right)

holes result in a narrower cone and the better the position resolution, but a longer

collimator also blocks more photons, leading to lower sensitivity. This is another

sensitivity-resolution tradeoff. In contrast, the position-sensitive Compton detector

does not need a collimator to provide information about the photon direction of

origin. Inference about the direction of photon origin from the recorded interaction

positions is sometimes referred to as “electronic collimation.” The cone of possible

directions of origin is hollow for a position-sensitive Compton detector, whereas the

cone for a collimated detector is solid.

Compton detectors that are not depth–sensitive typically consist of two parallel

plates of scintillating material. Increasing the thickness of the scintillating plates

increases the sensitivity, but degrades the interaction position resolution. However,

increasing the thickness of the scintillating material in a collimated detector will not

significantly degrade interaction position resolution because the depth of interaction

is irrelevant. Inexpensive parallel–plate Compton detectors constructed from scin-

tillating materials typically have a lower sensitivity than collimated scintillators for

this reason.
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2.3 Statistics of list–mode gamma–ray data

3D position–sensitive Compton detectors record the position and deposited ener-

gies of all photon interactions. The number of possible interaction coordinates and

energies for an interacting photon is very large, so it is not practical to count the

number of photons matching each possible interaction sequence [79]. Some imaging

systems have a small set of possible attributes of interacting photons, and these sys-

tems typically operate in binned–mode [4], where the measurements are the numbers

of photons matching each possible attribute. In this work we operate 3D position–

sensitive detectors in list–mode [4], which means that the measurements are the

recorded attributes (interaction positions and energies) of all interacting photons.

2.3.1 Recorded measurements

The measurements obtained from a gamma–ray detector consist a list of a random

number of attribute vectors. Following the notation of [4], let r̃ = (r1, r2, . . . , rJ) be

a list of J recorded attribute vectors from photon interaction events. Each element ri

of r̃ is itself a vector of attributes describing the ith event. An example of a detector

that one can describe with this model is a position–sensitive Compton detector. A

Compton detector records a Poisson–distributed number J of gamma–ray photons.

Each detected photon interacts one or more times inside the detector and the detector

records these interaction locations and possibly other attributes such as deposited

energy. The ith attribute vector ri is comprised of these interaction positions and

deposited energies.

In imaging problems where the number of observations has a Poisson distribution,

the varying length of the list of recorded attributes for the observed events makes it

more challenging to formulate a sample space. This complicates even conceptually
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simple operations, such as expectation. In this section, we give an interpretation of

the lists of recorded event attributes in which the sample space is clear and expec-

tations are straightforward to compute. To rigorously define the sample space, it is

helpful to view r̃ as an infinitely long list of attributes rather than a list of finite,

but random, length. The list of J recorded attributes is a finite–length collection of

elements from r̃.

We can view the randomness in the observations as a separate process whose

outcome determines the number of observed events for a given scan time. We first

define the random process governing the recorded attributes, and then define the pro-

cess that determines the number of observed events and finally bring both processes

together to derive the familiar density function for list–mode maximum–likelihood.

2.3.2 Process of recorded attributes

First, we define the random process governing the recorded attributes. Let (Ω,F , P )

be a probability space. Consider the sequence of random independent and identi-

cally distributed (IID) event attributes r1, r2, . . . , where rk ∈ Ω for all k ∈ N, with

finite–dimensional distributions described by the probability measure

vn1,...,nk(H1 ×H2 × · · · ×Hk) = Pr (rn1 ∈ H1, rn2 ∈ H2, . . . , rnk ∈ Hk) ,

on the measure space (Ωk,Fk), where Hk ⊆ Ω. To continue, we assume independence

of the recorded attributes.

Assumption II.1. The attributes of distinct photon interaction events are IID.

If Assumption II.1 is satisfied, we can write v as a product measure:

vn1,...,nk(H1 ×H2 × · · · ×Hk) = Pr (rn1 ∈ H1)Pr (rn2 ∈ H2) . . .Pr (rnk ∈ Hk)

= v(H1)v(H2) . . . v(Hk),(2.2)
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where the probability measure v describes the attribute distribution of a single pho-

ton interaction event,

(2.3) v(H) = Pr (rk ∈ H) .

The probability measure v does not depend on the sample index k by the assumption

that the rk are identically distributed. By the Radon–Nikodym theorem, there exists

a function p such that

v(H) =

∫
H

p(x)dµ(x),

for a measure µ such that v is absolutely continuous1 with respect to µ. For example,

if the rk are discrete random variables, the counting measure would be an appropriate

choice for µ. If the rk are continuous random variables, then the Lebesgue measure

would be an appropriate choice for µ.

One can show that vn1,...,nk satisfies the hypothesis of the Kolmogorov extension

theorem [8, p. 510], which states that there exists a probability measure P on the

measure space (R∞,F∞) such that the process{rk : k ∈ N} has vn1,...,nk as its finite–

dimensional distributions. The significance of this fact is that any finite collection of

attributes has a well–defined distribution.

2.3.3 Event observation process

Assume that the process {rn} is observed over a scan time τ . Let the random

variable Jτ be the number of recorded events revealed after scan time τ , where

Jτ ∼ Poisson(λsτ),

and λs is a rate parameter in events per unit time. After scan time τ , the attributes

r1, r2, . . . , rJτ are revealed. Further assume that Jτ is independent of the process

1A σ-finite measure v is absolutely continuous with respect to the σ-finite measure µ on the measure space (Ω,F)
if for each A ∈ F , v(A) = 0 if µ(A) = 0 [8, p. 442].



18

{rn}. Now, define the process of observed attributes yn, n = 1, 2, . . . by

yn
4
= (rn, dn) ,

where dn ∈ {0, 1} is equal to 1 if the event is observed and 0 otherwise.

Assume that the yn are conditionally independent given Jτ for any integer n ∈ N

with probability measure

Pr (yn1 ∈ H1 ×D1,yn2 ∈ H2 ×D2, . . . ,ynk ∈ Hk ×Dk, Jτ = J)

=
k∏
j=1

Pr
(
ynj ∈ Hj ×Dj|Jτ = J

)
Pr (Jτ = J) ,

where

Pr
(
ynj ∈ Hj ×Dj|Jτ = J

)
=


v(Hj)I{1}(Dj) nj ≤ J

I{0}(Dj) else,

and for sets A and B, the indicator function IA(B) is defined by

IA(B)
4
=


1 A ⊆ B

0 else.

Let c(x) be the counting measure. By the Radon–Nikodym theorem,

Pr
(
ynj ∈ Hj ×Dj|Jτ = J

)
=

∫
Hj

∫
Dj

q(x, d|J ;nj)dµ(x)dc(d),

where q is (except on a set of measure zero)

q(x, d|Jτ ;nj) =



1 d = 0, Jτ > nj

p(x) d = 1, Jτ ≤ nj

0 else.

Since Jτ is discrete,

Pr (Jτ ∈ J ) =

∫
J
pJ(j)dc(j),
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where

pJ(j) = e−λsτ (λsτ)j/j!

is the probability mass function of a Poisson random variable with mean λsτ .

2.3.4 Joint density of attributes and number of events

Let n1, . . . , nk be integers such that n1, n2, . . . , nl ≤ Jτ < nl+1, . . . , nk. By Fubini’s

theorem [8, pp. 237-238], we can write the joint probability measure for a finite

collection of attributes and Jτ by

Pr (yn1 ∈ H1 ×D1,yn2 ∈ H2 ×D2, . . . ,ynk ∈ Hk ×Dk, Jτ ∈ J )

=
k∏
j=1

Pr
(
ynj ∈ Hj ×Dk|Jτ

)
Pr (Jτ ∈ J )

=

∫
H1×H2×···×Hk×J

q(y1|j;n1) . . . q(yk|j;nk)pJ(j)dµ(y1)dµ(y2) . . . dµ(yk)dc(j).

(2.4)

By definition, the integrand is the Radon-Nikodym density of the joint distribution

of a finite collection of attributes and the number revealed Jτ with respect to the

base measure µk × c.

By (2.4), we have that the joint Radon-Nikodym density p(y1,y2, . . . ,yJ , Jτ ) of

the attributes 1, 2, . . . , Jτ and Jτ is, for some integer N ∈ N,

p(y1,y2, . . . ,yN , Jτ ) =
N∏
j=1

q(yj|Jτ ; j)e−λsτ (λsτ)Jτ/Jτ !

=
N∏
j=1

p (rj) e
−λsτ (λsτ)Jτ/Jτ ! for N ≤ Jτ .(2.5)

This joint Radon-Nikodym density is useful because one can replace the true attribute

distribution p with a parameterized model distribution, in which case (2.5) is the

likelihood.
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2.4 System Model for 3D position–sensitive gamma–ray detector

The model for the probability distribution of recorded attributes in a position–

sensitive gamma–ray detector is typically difficult to compute. In this section, we

give a general model of p(r|D; e0,φ) for two–interaction, full energy deposition events

in a 3D detector, where D is the event that the gamma–ray interacts in the detector,

φ is the gamma-ray source position (assuming that the source is in the far–field),

and e0 is the source energy. This model is useful for likelihood-based image recon-

struction and detection algorithms. This section gives an exact expression that one

can approximate for implementation purposes.

2.4.1 The event D that a photon is detected

The letter D represents the event that a photon interacts with the detector. An

event observed in a gamma–ray detector must have interacted if it was observed.

Therefore, an accurate model for the a gamma–ray detector must condition the

distribution of the observations on the event that the photon was recorded.

Consider the following one–dimensional illustrative example. Let a source of pho-

tons with unknown energy ε be located in the far–field so that its beam is parallel to

a collimator on the face of a detector as shown in Figure 2.4. The detector has length

d and linear attenuation coefficient µ(ε), which is a function of energy. Assume that

the detector only records the distance x from the collimated face of the detector

when a photoelectric absorption event occurs. By the Beer-Lambert law [38], the

probability density of an observation is

p (x,D; ε) = µ(ε)e−µ(ε)x 0 ≤ x ≤ d,

where the event D appears on the left–hand side of the semicolon because the event

with a recorded interaction depth x between 0 and d implies that the photon was
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Figure 2.4: Illustration of a simple detector that records the depth of interaction from a collimated
beam.

recorded. The probability that a photon is recorded is

p (D; ε) =

∫ d

0

µ(ε)e−µ(ε)xdx

= 1− e−µ(ε)d.

The conditional density of the observation x given that the photon was recorded is

p (x|D; ε) = p (x,D; ε) /p (D; ε)

=
µ(ε)e−µ(ε)x

1− e−µ(ε)d
.

Figure 2.5 shows an example of the source energy likelihood p (x,D; ε) that is

not conditioned on D and the likelihood p (x|D; ε) that is conditioned on D for the

detector described in Figure 2.4. The detector material is CdZnTe, the length d = 2

cm, and the interaction depth x = 0.1 cm. For this example, assume that the detector

only records photoelectric absorption events. The likelihoods agree at low energies,

where the probability that the photon is recorded is near one. At high energies, the

linear mass attenuation coefficient µ(ε) is much smaller, and the detector length is

small compared to the mean–free–path 1/µ(ε). Figure 2.6 shows the attenuation

coefficient µ(ε) as a function of energy using the data in [5].
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Figure 2.5: Likelihood of source energy with models conditioned on and not conditioned on D, the
event that a photon was detected, for interaction depth x = 0.1 cm and detector length d = 2 cm.
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Figure 2.6: Linear attenuation coefficient for photoelectric absorption in CdZnTe.

Figure 2.7 shows the likelihoods as a function of energy for an observed interaction

depth of 1.5 cm in a 2 cm detector. Intuitively, this interaction is likely to have a

high energy because it traveled a large distance into the detector and the attenuation

coefficient µ(ε) is small for high energies. However, when the photon energy is large,

there is a high probability that the photon will pass through the detector without

interacting. Essentially, the likelihood that is not conditioned on D ignores the fact

that the photon can pass though and not interact, so the likelihood is small at high

energies. The likelihood conditioned on D is largest for high energies, consistent with

intuition. This is because the likelihood conditioned on D uses the knowledge that
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Figure 2.7: Likelihood of source energy with models conditioned on and not conditioned on D, the
event that a photon was detected, for interaction depth x = 1.5 cm and detector length d = 2 cm.

the event was recorded.

This example shows that conditioning on the event that a photon was recorded

is necessary to accurately model a gamma–ray measurement system.

2.4.2 General Model

We consider the case of a two–interaction full energy deposition event, where

the first interaction is a Compton scatter event, and we denote its true position as

x1 ∈ X where X is the set of all coordinates inside the detector. Let the true energy

deposited in the first interaction be et1 ∈ E . Since we are considering events with

full energy deposition, the second interaction is a photoelectric absorption event.

Let the true distance between the first and second interactions be ρ ∈ P and the

scatter direction ψ ∈ Ψ. The scatter direction ψ is not the Compton scatter angle,

but rather it enumerates the possible scatter directions that are consistent with the

Compton scatter angle. Figure 2.8 shows an example of a two–interaction event and

the scatter angle ψ.

In 3D position–sensitive Compton detectors with pixelated anodes, the system

records an anode pixel and depth for each interaction. Let b1 be the anode pixel
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Figure 2.8: Illustration of the scatter direction angle ψ for a two–interaction Compton scatter event.
The z-axis coincides with the incoming photon direction and the first interaction is at the origin.

number in which the first interaction is measured b2 be the anode pixel in which the

second interaction is measured. Let z1 and z2 denote the interaction depth of the

first and second interaction, respectively.

We separate the density function of the recorded attribute vector

r = [b1, b2, z1, z2, e1] into a component that depends on measurement uncertainty

and another component that depends on physics. By total probability,

p(r|D; e0,φ) =

∫
X

∫
Ψ

∫
P

∫
E
p(r|x1, ψ, ρ, e

t
1, D; e0,φ)

p(x1, ψ, ρ, e
t
1|D; e0,φ)det1dρdψdx1.

2.4.3 Physics Modeling

In this section, we derive an expression for the portion of the model that corre-

sponds to physics, namely p(x1, ψ, ρ, e
t
1|D; e0,φ). Let D = D1 ∩ D2, where D1 is

the event that the first interaction is a recorded Compton scatter, and D2 is the
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event that the second interaction is a recorded photoelectric absorption. Using the

definition of conditional probability and the chain rule,

p(x1, ψ, ρ, e
t
1|D1, D2; e0,φ) = p(x1, ψ, ρ, e

t
1, D2|D1; e0,φ)/p(D2|D1; e0,φ)

= p(ρ|ψ,x1, e
t
1, D1, D2; e0,φ)p(D2|ψ,x1, e

t
1, D1; e0,φ)

p(ψ|x1, e
t
1, D1; e0,φ)p(et1|x1, D1; e0,φ)p(x1|D1; e0,φ)/p(D2|D1; e0,φ).(2.6)

The quantity p(D2|D1; e0,φ) is given by

p(D2|D1; e0,φ) =

∫
X
p(D2|x1, D1; e0,φ)p(x1, |D1; e0,φ)dx1,(2.7)

where

p(D2|x1, D1; e0,φ)

=

∫
E

∫
Ψ

p(D2|et1, ψ,x1, D1; e0,φ)p(ψ|et1,x1, D1; e0,φ)p(et1|x1, D1; e0,φ)dψ, det1.

(2.8)

Since p(D2|D1; e0,φ) requires heavy computation, it may be beneficial to precompute

the values and store them in a look-up-table to achieve shorter reconstruction times.

Figure 2.9 shows an example of p(D2|D1; e0,φ) for a 2×2×1.5 cm CdZnTe detector

as a function of polar and azimuth angles for a source energy of 662 keV. This figure

was generated by evaluating (2.7) and (2.8) numerically.

One can further simplify (2.6) as follows:

p(x1, ψ, ρ, e
t
1|D1, D2; e0,φ) = p(ρ,D2|ψ,x1, e

t
1, D1; e0,φ)p(ψ|x1, e

t
1, D1; e0,φ)

p(et1|x1, D1; e0,φ)
p(x1, D1; e0,φ)

p(D1; e0,φ)

(
p(D1, D2; e0,φ)

p(D1; e0,φ)

)−1

= p(ρ,D2|ψ,x1, e
t
1, D1; e0,φ)p(ψ|x1, e

t
1, D1; e0,φ)

p(et1|x1, D1; e0,φ)p(x1, D1; e0,φ)/p(D1, D2; e0,φ),(2.9)

where p(D1, D2; e0,φ) is the system sensitivity to two–interaction events where the

second interaction is a photoelectric absorption.
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Figure 2.9: p(D2|D1; e0,φ) for a 2×2×1.5 cm CdZnTe detector as a function of polar and azimuth
angles for a source energy of 662 keV

Physical Assumptions

The expression in (2.6) does not show the independence and conditional indepen-

dence that exist physically. Below are the simplifications that we can make because

of independence:

• p(ψ|x1, e
t
1, D1; e0,φ) = p (ψ|D1),

• p(et1|x1, D1; e0,φ) = p(et1|D1; e0).

Physical Quantities

Because we assume that the source is in the far field, we model the distribution

of the first interaction location as

p(x1, |D1; e0,φ) =
µc(e0)e−µc(e0)d(x1;φ)

Ω(φ)p(D1; e0,φ)
,

where d(x1;φ) is the distance from x1 to the edge of the detector along a line

with direction φ toward the source, Ω(φ) is the surface area of the detector that is

exposed to direct source photons, and µc(e0) is the linear attenuation coefficient due

to Compton scattering.
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We use the Klein-Nishina formula to derive [38] p(et1|D1; e0). The Klein-Nishina

formula is given by

(2.10)
dσ

dΩ
= P (e0, θ)

2
(
P (e0, θ) + P (e0, θ)

−1 − 1 + cos2(θ)
)

0 < et1 <
2e2

0

mc2 + 2e0

,

where me is the mass of an electron, c is the speed of light,

P (e0, θ) =
1

1 + e0
mc2

(1− cos(θ))
,

θ = θ(et1; e0) is the Compton scatter angle given by

(2.11) θ(et1; e0) = cos−1

(
1− et1mec

2

e0(e0 − et1)

)
,

and dσ
dΩ

is the differential cross section per unit volume, which is proportional to

the expected number of scatters per solid angle around the atom. To compute

p(et1|D1; e0) , we must first compute

(2.12)
dσ

det1
=
dσ

dΩ

dΩ

det1
.

Spherical geometry gives

(2.13) dΩ = sin(θ)dθdφ.

Let e2 = e0 − et1 and use (2.11) to compute
det1
dθ

:

det1
dθ

=
d

dθ
(e0 − e2)

=
d

dθ

e0

1 + e0
mec2

(1− cos(θ))

=

e20
mec2

sin(θ)(
1 + e0

mec2
(1− cos(θ))

)2

=
e2

2

mec2
sin(θ).(2.14)
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Substituting (2.13) and (2.14) into (2.12), we obtain:

(2.15) p(et1|D1; e0) ∝ dσ

dΩ

dΩ

dθ

dθ

det1
=

2πmec
2

(e0 − et1)2

dσ

dΩ
,

where dσ
dΩ

is given by (2.10).

We model the scatter direction ψ as uniform on [0, 2π]:

(2.16) p (ψ|D1) =
1

2π
0 ≤ ψ ≤ 2π.

The density of the distance between interactions is given by

(2.17) p(ρ|ψ,x1, e
t
1, D1, D2; e0,φ) =

µp(e0 − et1)e−µp(e0−et1)ρ

1− e−µp(e0−et1)l(x1,φ,ψ,θ)
0 ≤ ρ ≤ l(x1,φ, ψ, θ),

where l(x,φ, ψ, θ) is the Euclidean distance from the vector x to the edge of the

detector along the path of the scattered photon with direction φ before the first

interaction and a Compton scatter characterized by θ and ψ, and µp(e) is the linear

attenuation coefficient for photoelectric absorption at energy e.

The term p(D2|ψ,x1, e
t
1, D1; e0,φ) is given by the Beer-Lambert law using the

distance from x1 to the edge of the detector in the direction of the scattered photon:

(2.18) p(D2|ψ,x1, e
t
1, D1; e0,φ) = 1− e−µp(e0−et1)l(x1,φ,ψ,θ).

In this case,

p(ρ|ψ,x1, e
t
1, D1, D2; e0,φ)p(D2|ψ,x1, e

t
1, D1; e0,φ) = p(ρ,D2|ψ,x1, e

t
1, D1; e0,φ)

= µp(e0 − et1)e−µp(e0−et1)ρ.

2.4.4 Measurement Uncertainty

Assuming that the uncertainties due to position and energy are conditionally

independent given the unobserved exact positions and energy,

p(b1, b2, e1|x1, ψ, ρ, e
t
1, D; e0,φ) = p (b1, b2|ψ, ρ,x1, D) p(e1|et1, D; e0,φ)

= p (b2|ψ, ρ,x1, D) p (b1|x1, D) p(e1|et1, D; e0,φ).
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Compton detectors are typically pixelated, so the available measurements are

the waveforms at the individual pixels. For simplicity, assume that the measured

quantity is the pixel location where the interaction occurred. Let K denote the

number of pixels and let Blk = {xl : xl lies in pixel k} for l = 1, 2, and k = 1, . . . , K.

For example, in a Compton detector with 11 × 11 pixels, k = 1, 2, . . . , 121, where

the k enumerate the pixels. For the first interaction, let the random variable b1 be

defined such that

b1 =


k x1 ∈ B1

k

0 else.

Similarly, define the random variable b2 describing the pixel containing the second

interaction as

b2 =


k x2 ∈ B2

k

0 else.

Define the sets R1 and R2 as

R1 = {b1 : p (b1) > 0}

R2 = {b2 : p (b2) > 0} .

In the case where the exact interaction location is quantized,

(2.19) p (b1 = k|x1, D) =


1 x1 ∈ B1

k

0 else,

and

(2.20) p (b2|ψ, ρ,x1, D) =


1 x2(x1,φ, θ, ψ) ∈ B2

k

0 else.
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A common model for the energy uncertainty p(e1|et1, D; e0,φ) = p (e1|et1) is the nor-

mal pdf with mean et1 and variance σ2
e . Also, one could account for Doppler broad-

ening in p (e1|et1).

2.4.5 Entire Model

Assuming that the only position uncertainty is due to quantization, the distribu-

tion of recorded attributes r = (b1, b2, e1) is given by

p(b1, b2, e1|D; e0,φ) =

∫
X

∫
Ψ

∫
P

∫
E
p (b2|ψ, ρ,x1, D) p (b1|x1, D) p

(
e1|et1

)
p(ρ|ψ,x1, e

t
1, D1, D2; e0,φ)p(D2|ψ,x1, e

t
1, D1; e0,φ)

p (ψ|D1) p(et1|D1; e0)p(x1|D1; e0,φ)

/p(D2|D1; e0,φ)det1dρdψdx1.

Changing the order of integration and substituting (2.16) and (2.19),

p(b1, b2, e1|D; e0,φ) =
1

2πp(D2|D1; e0,φ)

∫
E
p
(
e1|et1

)
p(et1|D1; e0)∫

B1
k

p(x1|D1; e0,φ)

∫
Ψ

p(D2|ψ,x1, e
t
1, D1; e0,φ)∫

P

p (b2|ψ, ρ,x1, D) p(ρ|ψ,x1, e
t
1, D1, D2; e0,φ)dρdψdx1de

t
1.(2.21)

It is not practical to evaluate (2.21) directly, and future work could explore approx-

imations such as the saddle point approximation.

An alternative to (2.21) based on (2.9) is

p(b1, b2, e1|D; e0,φ) =
1

2πp(D; e0,φ)

∫
E
p
(
e1|et1

)
p(et1|D1; e0)∫

B1
k

p(x1, D1; e0,φ)

∫
Ψ∫

P

p (b2|ψ, ρ,x1, D) p(ρ,D2|ψ,x1, e
t
1, D1; e0,φ)dρdψdx1de

t
1.(2.22)
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2.4.6 Doppler Broadening

One source of energy uncertainty is due to the random momentum of the recoil

electron before a photon strikes it. This phenomenon is known as Doppler broadening

and can lead to significant uncertainty in the Compton scatter angle. An approximate

model for the differential Compton cross section accounting for Doppler broadening

is given in [56]

d2σ

dΩde1

=
1

2π
p (D, e1; e0)

=
mr2

0

2e0

(
e1

e0

+
e0

e1

− sin2(θ(et1; e0))

)
e0 − e1√

e2
0 + (e0 − e1)2 − 2e0(e0 − e1) cos(θ(et1; e0))

J(pz),(2.23)

where e2 = e0 − e1, Ω is the solid angle, r0 is the radius of an electron, e1 + e2 = e0,

θ(et1; e0) is the Compton scatter angle given by (2.11), and J is the momentum dis-

tribution for electrons in the material, tabulated in [7], and the electron momentum

pz is given by

(2.24) pz = −mce1 − e0(e0 − e1)(1− cos(θ(et1; e0)))/mc2√
e2

0 + (e0 − e1)2 − 2e0e2 cos(θ(et1; e0))
.

Since J(·) depends on the particular element and CZT is made up of three elements,

the J(·) used in our calculations is the average of the distributions for Cd, Zn, and

Te.

Figure 2.10 shows the system model with and without Doppler broadening for

e0 = 662 keV for an detector of infinitely small depth. The infinitely small depth

assumption simplifies computation of (2.21) by only considering events that scatter

parallel to the anode and cathode of the detector. The model with Doppler broad-

ening is nonzero over a larger support than the model without Doppler broadening.

Figure 2.11 shows the system model for for another event where the interactions are



32

Figure 2.10: Likelihood using 2D model for a 20mm×20mm×15mm CdZnTe detector with 11×11
penalization for event with first interaction pixel (11,5), second interaction pixel (5,1), and deposited
energy of 294.2 keV in the first interaction. The Gaussian approximation was calculated using [80].

much closer together. Here, the system model with and without Doppler broadening

are nearly identical to the eye. The short distance between interactions leads to

more uncertainty due to position quantization, and this uncertainty dominates for

this event.

2.5 Estimation Methods

This section gives background on the theory of estimation, which is the process of

inferring information about a true parameter through the realizations of a random

variable whose distribution is governed by the parameter. We also outline iterative

algorithms that are used when there is no closed form for an estimator.

2.5.1 Maximum Likelihood Estimation

In many statistical problems, a series of observations are known to come from a

certain distribution, but this distribution may be governed by unknown, but nonran-

dom parameters. A common approach to this problem, called Maximum Likelihood

(ML) estimation [34], is to find the parameter θ that maximizes the likelihood of the
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Figure 2.11: Likelihood using 2D model for a 20mm×20mm×15mm CdZnTe detector with 11×11
penalization for event with first interaction pixel (10,10), second interaction pixel (8,8), and de-
posited energy of 260.7 keV in the first interaction. The Gaussian approximation was calculated
using [80].

observations x, where the likelihood function is defined to be f(x; θ). Formally, the

ML estimate is the solution to the optimization problem

(2.25) θ̂ = arg max
θ
f(x; θ).

Since it is often easier to work with the natural logarithm of the likelihood, and the

logarithm is a monotone transformation, the ML estimate is commonly expressed as

(2.26) θ̂ = arg max
θ

log f(x; θ).

In the literature, it is also common to pose (2.26) as the minimization problem

(2.27) θ̂ = arg min
θ
−L (θ) ,

where L (θ)
4
= log f(x; θ). The ML estimator has many desirable properties includ-

ing asymptotic normality, asymptotic efficiency, and asymptotic unbiasedness [34].

These desirable properties, however, only hold asymptotically, so the ML estimate

may not be the most useful estimate in every application. This shortcoming is par-

tially addressed by penalized–likelihood algorithms.
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In the image reconstruction problem, the parameters to be estimated are the pixels

in the image. In this case, finding the solution to (2.25) usually involves minimizing

a coupled set of equations that can only be solved using iterative methods.

2.5.2 Penalized Likelihood Estimation

If one has a priori knowledge about a parameter to be estimated, one can penalize

deviations in the estimate from the a priori expectations. These algorithms find the

solution to the following penalized likelihood problem:

(2.28) x̂ = arg min
x
−L (x) + βR(x),

where R(x) is a function known as a penalty or regularizer, and β is a parameter

that determines how strictly the penalty is enforced. One can view the penalty R(x)

as the logarithm of a Bayesian prior distribution on the parameter. However, unlike

in the Bayesian setting, e−βR(x) does not have to be a probability distribution.

Penalized likelihood estimation is common in image reconstruction because, a

priori, medical and natural images have sparse gradients or are sparse in some basis

or frame [12]. In these settings, one can formulate a penalty function that increases

as the estimate deviates from this expectation. Penalized likelihood algorithms are

especially appealing for Compton imaging because the images are known a priori to

be sparse in the space domain.

2.5.3 Iterative Minimization of Cost Functions

In most image reconstruction problems, there is no analytical solution to (2.27)

or (2.28), so one must resort to iterative methods to find a solution. Optimization

transfer [40] is a general framework in which one can view all image reconstruction

algorithms in this work. Suppose we have a cost function Ψ(x) where x ∈ Rn. An

optimization transfer method is one that minimizes Ψ(x) by minimizing a series
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of surrogate functions Q(n)
(
x;x(n)

)
that are easier to minimize. An optimization

transfer algorithm iterates between minimizing the current surrogate function and

finding a new surrogate function that allows the minimizer in the next iteration to

be closer to the minimizer of Ψ(x). All optimization transfer derivations in this work

use surrogate functions that satisfy

Q(n)
(
x;x(n)

)
≥ Ψ(x)

Q(n)
(
x;x(n)

)
= Ψ(x(n)).(2.29)

These conditions ensure that the sequence of estimates {x(n)} is monotonically de-

creasing. Formally, if we denote the estimate at iteration n as x(n), an optimization

transfer algorithm follows the following procedure [24]:

S Step: choose a surrogate Q(n)
(
x;x(n)

)
M Step: x(n+1) = arg min

x
Q(n)

(
x;x(n)

)
.(2.30)

There are a number of tools commonly used to derive surrogate functions. One

can derive the algorithms in this work using the optimization transfer framework by

exploiting the convexity inequality, following the methodology of [15].

2.5.4 The EM Algorithm

Expectation Maximization (EM) algorithms, which were first proposed in [17],

are a common approach for iteratively finding the ML estimate when no analytical

solution is available. The EM algorithm has been previously applied to the image

reconstruction problem for Compton Imaging [81]. EM algorithms are optimization

transfer algorithms with a specific surrogate function. Before we give an expression

for the surrogate, we must define the concept of “complete data.” If the observed

data is a random vector Y , with realizations y, from a random process governed by
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parameter vector θ, then one chooses a complete data vector Z, with realizations z,

such that

(2.31) p(y, z;θ) = p(y|z)p(z;θ),

and the likelihood based on the complete data p(z;θ) is easier to maximize than

the likelihood based on the measured data p(y;θ). Using these definitions, the EM

algorithm is an optimization transfer algorithm with surrogate function

(2.32) Q(n)
(
x;x(n)

)
= E

[
log p(z;θ)|Y = y;θ(n)

]
.

2.5.5 Cramer-Rao Lower Bound

Let x1,x2, . . . ,xn be IID random vectors with probability density or mass function

p (x;θ) for some value of θ. The Cramer–Rao lower bound states that, under certain

regularity conditions [34], any unbiased estimator θ̂ of a parameter vector θ satisfies

Cov
(
θ̂
)
− F−1 (θ) is positive definite,

where

F (θ)
4
= E

[
∇θ log p (x;θ)∇T

θ log p (x;θ)
]

(2.33)

= −E
[
∇2
θ log p (x;θ)

]
,(2.34)

is the Fisher information matrix.

2.6 Detection Theory

Detection is another approach to extracting useful information from a Compton

imaging detector. In this section, we give an overview of detection methods and

analysis. Suppose that a random vector of observations x has the density2 f(x;θ),

2Throughout, the word density precisely refers to the Radon-Nikodym density with respect to the appropriate
base measure [8], which is general enough to include continuous, discrete, and mixed random variables.
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and we want to decide which of two possible parameter values θ governs the distri-

bution that produced the observed random vector. The question is posed as a test

between two “hypotheses” H1 and H0, where we define

H1 : θ = θ1

H0 : θ = θ0.

The probability of false alarm, or “level,” is denoted α0 and is the probability that

a test decides that H1 is true when H0 is actually true. The probability of detection

is the probability that the test decides that H1 is true when H1 is actually true.

The Neyman-Pearson Lemma [35] states that the test with highest probability of

detection for a constrained probability of false alarm has the form

(2.35) Λ(x) =
f(x;θ1)

f(x;θ0)

H1

≷
H0

η,

where η is chosen such that Pr (Λ(x) > η|H0) ≤ α0. A graph of the probability

of detection versus the probability of false alarm is called the receiver operating

characteristic (ROC) curve [74]. The area under this curve is called the AUC, which

quantifies the ambiguity between H1 and H0. For a more thorough treatment of

ROC curves and the AUC, see [28].

2.6.1 Test statistics for source detection

In the gamma–ray source detection problem, we would like to discern between

two hypotheses:

(2.36)
H0 : α = 0

H1 : α > 0,

where α is a gamma–ray source intensity. There are several reasonable tests for this

problem.
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Generalized Likelihood Ratio Test (GLRT)

The GLRT is a common method of choosing between two hypotheses when one

or more of the hypotheses depends on unknown parameters [35]. We can write the

GLRT as

(2.37) 2 log ΛGLRT

H1

≷

H0

γ,

where the GLRT test statistic is

(2.38) ΛGLRT
4
=

maxθ p(r̃;θ, H1)

maxθ p(r̃;θ, H0)
.

To calibrate the test threshold γ and analyze the performance of the detector,

one must determine the distribution of ΛGLRT. If one uses a restricted ML estimator

(MLE) motivated by the one–sided hypothesis in (2.36), the distribution of ΛGLRT

is complicated because under H0, the parameter α lies on the boundary of the pa-

rameter space when the source intensity is constrained to be nonnegative [62]. To

simplify the analysis of the GLRT and give intuition, instead of (2.36), we consider

the two–sided test

(2.39)
H0 : α = 0

H1 : α 6= 0,

which is also the basis of the analysis in [52]. When the test is treated with the two–

sided formulation in (2.39) and the source intensity is small, it is shown in [35, pp.

239-240] that the asymptotic distribution of the test statistic is given by

(2.40) 2 log (ΛGLRT) ∼


χ2

1 (η) , H1

χ2
1 (0) , H0,
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where χ2
1(η) denotes the non–central chi-square distribution with one degree of free-

dom and noncentrality parameter η. Assuming F(θ) is invertible, for the model (4.4),

the noncentrality parameter is

(2.41) η = α2
(
F−1 (θ)[1,1]

)−1

.

This asymptotic framework is also used to analyze a test of whether one or two

sources are present in [52].

Wald Test

The Wald test is a classical test for the composite hypothesis problem and is

known to be approximately asymptotically equivalent to the GLRT for small source

intensities [35, p. 188]. The Wald test for the source detection problem is given by

(2.42) ΛW = α̂2
ML

(
F−1

(
θ̂
)

[1,1]

)−1

,

where θ̂ is the ML estimate of θ. The Wald test is a non–monotonic function of α̂ML

when α̂ML is the unrestricted MLE of α. Although the source intensity cannot be

physically less than zero, one can find α̂ML by maximizing the likelihood over the real

line. Intuitively, a negative estimate of the source intensity is strong evidence for the

null hypothesis. Either squaring or thresholding negative source intensity estimates

at zero can reduce detection performance by reducing the separability of the test

statistic distributions under the two hypotheses, especially for weak sources. Our

numerical results do not include the Wald test since it is asymptotically equivalent

to the GLRT.
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Source Intensity Test (SIT)

Because the squaring operation in the Wald test statistic can degrade detection

performance, we consider the following source intensity test statistic

ΛSIT
4
= α̂ML.

This test was also considered in the context of array processing [6]. By the asymptotic

normality of the MLE [35, p. 240], we have that asymptotically,

(2.43) α̂ML ∼


N
(

0,F−1 (θ0)[1,1]

)
, H0

N
(
α, F−1 (θ)[1,1]

)
, H1,

where θ0 is the parameter vector under the null hypothesis with α = 0. The next

section uses the asymptotic distributions in (2.40) and (2.43) to show that position–

sensitive capability improves detection performance.

Mean Difference Test (MDT)

The mean difference test statistic is proposed in [51] and is equivalent to

(2.44) ΛMDT
4
= Jsrc − Jback,

where Jsrc is the number of photons recorded on all source–exposed surfaces of the

detector and Jback is the number of photons recorded on all surfaces not exposed to

the source. When the source position is unknown, one must estimate which surfaces

are exposed to the source. The asymptotics of the MDT are given in [51].



CHAPTER III

Image Reconstruction for Position–Sensitive Gamma–Ray
Detectors 1

Image reconstruction is one means of extracting meaningful information from

gamma–ray measurements. The goal of image reconstruction is to estimate the

gamma–ray emission rate as a function of space. The estimated emission density

functions could be given to a detection algorithm or a human to detect or locate a

radioactive source. In this chapter, we do not consider the detection or localization

problem, but instead focus on image quality in terms of sparsity in the pixel basis.

Maximum likelihood (ML) estimation has been previously applied to the gamma–

ray image reconstruction problem [80]. The ML problem is typically ill–conditioned

when the number of recorded measurements is small, resulting in a nonunique solu-

tion. In this chapter, we propose a penalized likelihood algorithm that uses regu-

larization to enforce the expectation that the image should be sparse in the spatial

domain. For an example of penalized likelihood applied to the emission tomography

problem with different prior knowledge, see [25]. We also examine other methods

of regularization that work well with Gaussian data [11], but, as we will show, do

not work well in the gamma–ray imaging case due to the Poisson nature of the

measurements.
1The work in this chapter was previously published in [46]. We also investigated the use of an augmented

Lagrangian method for emission tomography with a strict `1 finite–differencing prior [45].

41
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We propose a regularization function based on the sums of the logarithms of the

pixel values. This function was previously discussed in [10] as a measure of spar-

sity. To our knowledge, this function was not previously used as a regularizer for

gamma–ray image reconstruction. We find that this regularizer results in threshold-

ing behavior similar to the `1–regularized Gaussian penalized likelihood problem [18].

This thresholding behavior leads to sparse reconstructed images.

In this chapter, we develop a model for the likelihood in the image reconstruction

problem and derive optimization transfer algorithms [40] for solving the unregularized

and regularized problems. We also examine the behavior of the regularized and

unregularized algorithms in the one–dimensional case to provide intuition about their

behavior in the high dimensional coupled image reconstruction problem. We then

demonstrate the maximum likelihood and proposed penalized likelihood algorithm

on real data recorded with a 3D position–sensitive CdZnTe gamma–ray detector.

3.1 Statistical Model

We consider gamma–ray detectors operating in list–mode as discussed in §2.3. In

this section, we will show that the list–mode model is equivalent to the more intuitive

but memory–intensive binned–mode model. Let x = [x1, x2, . . . , xnp ]
T be the image

of radiation emitters around the sphere discretized with np pixels. For generality,

we assume that x is the emission density of interest and model the background

with r̄ = [r̄1, r̄2, . . . , r̄nd ]
T , where r̄i is the mean number of background photons

matching the the ith possible measurement and nd is the number of possible recorded

measurements, or detector bins. In 4π Compton imaging, we model r̄i as zero for all

possible recorded events. We make this modeling choice because we wish to observe

all radiation emitters, even those that may be considered background.
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Let S be the event that a photon originated from the source x, let B be the

event that a photon originated from the background r̄, let Ej be the event that a

photon originated from the jth image pixel, and let D be the event that a photon is

recorded. Let A be a system matrix, where

(3.1) aij
4
= A[i,j] = p (ri, D|Ej, S) .

Let sj be the sensitivity of the detector to position bin j, which is the probability

that a photon emitted from position bin j is recorded. This quantity is commonly

found by simulation in the list-mode case [64] because it can be impractical to com-

pute all rows in A.

Let r̃ the the list of recorded attributes for the interacting photons. The charac-

teristics of r̃ are described in detail in §2.3.1. The list–mode likelihood of the list of

event attributes r̃ is given by [4]

(3.2) p (r̃;x) = eJ̄(x)J̄(x)J/J !
J∏
i=1

p (ri|D;x) ,

where J̄(x) is the mean number of recorded photons per scan, and

(3.3) J̄(x) =

np∑
j=1

sjxj +

nd∑
i=1

r̄i.

We show in Appendix A that the model in (3.2) is equivalent to the more intuitive

binned–mode model:

(3.4) yi ∼ Poisson([Ax]i + r̄i), i = 1 . . . nd,

where yi is the number of recorded photons in the ith discretized detector bin. The

equivalence holds when yi = 1 for i = 1, 2, . . . , J and zero otherwise. The log–

likelihood, derived in Appendix A, is given by

(3.5) L (x) ≡
nd∑
i=1

[
−

np∑
j=1

aijxj − r̄i + yi log

(
np∑
j=1

aijxj + r̄i

)]
,

where ≡ denotes equivalence because terms constant with respect to x are omitted.
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3.2 Sparsity and Regularization Design

There are numerous choices of penalty functions for spatially–sparse reconstruc-

tion. We choose the `1 and `0 norms because of their popularity in Gaussian sparse

reconstruction. Disappointed by their ineffectiveness with Poisson data, we investi-

gated a third penalty function Rl(x) =
∑np

j=1 log
(xj
δ

+ 1
)
. We found this penalty

to be more effective at reconstructing sparse, meaningful images of true radiation

source distributions. In summary, the three penalty functions that we consider in

the following sections are:

R1(x) = ||x||1,

R0(x) = ||x||0,

Rl(x) =

np∑
j=1

log
(xj
δ

+ 1
)
.

3.3 Unregularized MLEM Algorithm

The well-known maximum likelihood expectation maximization (MLEM) algo-

rithm iteratively finds the maximum-likelihood image based on the observed mea-

surements [81], or equivalently, finds the solution to the optimization problem in

(2.27), where the log-likelihood is given by (3.5). We follow [15] to show that the

EM algorithm for Poisson data described in [26] is equivalent to an optimization

transfer approach with the following surrogate function:

(3.6) Q(n)
(
x;x(n)

)
=

np∑
j=1

Qn
j

(
xj;x

(n)
)
,

where

(3.7)

Qn
j

(
xj;x

(n)
) 4

=

nd∑
i=1

aij
(
x

(n)
j + γj

)
ȳ

(n)
i

[ xj + γj

x
(n)
j + γj

ȳ
(n)
i − yi log

(
xj + γj

x
(n)
j + γj

ȳ
(n)
i

)]
,
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and γj, for j = 1 . . . np, are nonnegative constants satisfying

(3.8)

np∑
j=1

aijγj ≤ r̄i i = 1, . . . , nd.

Typically, γj = 0, but using γj > 0 can accelerate convergence [26]. This MLEM

algorithm has the following “expectation step” or E-step

(3.9) ej (x) =

nd∑
i=1

aij
yi

ȳi (x)
,

and a “maximization” step or M-step

(3.10) x
(n+1)
j =

[
x

(n)
j + γj

aj
ej
(
x(n)

)
− γj

]
+

.

The operator [·]+, used in (3.10) is defined by

(3.11) [u]+ = max(u, 0).

In the case where A = diag {ai}, the cost function is separable and the problem

becomes one of denoising rather than reconstruction. In this case, the ML estimate

for the source intensity xi from the measurement yi is

(3.12) x̂i =
1

ai
[yi − r̄i]+ .

This ML estimator will be the basis of comparison with the regularized methods that

follow.

3.3.1 Convergence

Reference [33] provides a set of sufficient conditions for convergence of an op-

timization transfer algorithm to a stationary point of the cost function. One can

verify that the algorithm described by (3.9) and (3.10) satisfies conditions of feasibil-

ity of the algorithm (R1), agreement and continuity of first derivatives (R2), proper

domain of surrogates (R3), connected surrogates (C2), and continuity of surrogate
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generators in both arguments (C3) in [33], so by Theorem 4.1 of [33], a subsequence

of the sequence of iterates {x(n)} given by (3.9) and (3.10) converges to a stationary

point of −L (x). For the case where γj = 0 for all j = 1, 2, . . . , np, global convergence

is shown in [33].

3.4 Penalized-Likelihood Algorithm for R(x) = ||x||1

The `1 norm has been used previously as a measure of sparsity [10]. It is a con-

venient penalty function because it is convex and differentiable almost everywhere.

This section shows that the influence of || · ||1 for Poisson noise is quite different from

the Gaussian case. The `1 regularized estimator solves the following optimization

problem:

(3.13) x̂ = arg min
x

Ψ1(x), Ψ1(x) = −L (x) + β ||x||1 .

We approach this problem using the optimization transfer approach [40], where one

finds a separable surrogate function that satisfies (2.29). Extending (3.7), a valid

surrogate for the cost function (3.13) is

(3.14) Qn
j

(
xj;x

(n)
)

= (xj + γj) aj − ej
(
x

(n)
j

)(
x

(n)
j + γj

)
log (xj + γj) + βxj,

which, minding the nonnegativity constraint on xj, has the minimizer

(3.15) x
(n+1)
j =

[
x

(n)
j + γj

aj + β
ej
(
x(n)

)
− γj

]
+

,

where ej (x) was defined by the E-step in (3.9). Note that (3.15) and (3.9) represent

the M-step and E-step, respectively, of this penalized-likelihood algorithm. Also,

(3.15) is identical to (3.10) except for a scaling by aj + β instead of aj. This causes

scaling of the iterates, but not thresholding behavior that is desirable in sparse

reconstruction. We can gain insight by examining the behavior of `1 regularization
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when A = diag {ai}, where the estimate reduces to

(3.16) x̂i =
[yi − r̄i(1 + β/ai)]+

ai + β
.

When r̄i = 0, the estimate is just a scaled version of the observation, which is just

shrinkage compared to the unregularized estimator in (3.12). Also, when r̄i > 0, the

estimator introduces thresholding where the threshold becomes larger as β increases.

However, this thresholding does not occur when one does not have knowledge of the

background and r̄i = 0. This behavior differs from the case of Gaussian statistics

where

(3.17) y ∼ N (Ax+ r̃, I).

The solution to the denoising problem in this case is

(3.18) x̂i =



1
ai

(
yi − r̄i − β

ai

)
yi > r̄i + β

ai

0 r̄i − β
ai
≤ yi ≤ r̄i + β

ai

1
ai

(
yi − r̄i + β

ai

)
yi < r̄i − β

ai
,

which is a soft thresholding estimator. Figure 3.1 shows the estimators for the Poisson

and Gaussian data models with various values of β and r̄i. Notice that when r̄i = 0,

the estimator using the Poisson model does not perform thresholding. Also notice

that when r̄i 6= 0, the estimator using the Poisson model scales the estimate by a

factor less than one.

3.4.1 Non-Uniqueness

The following counterexample shows that the `1 regularized solution is not always

unique for Poisson data. Let

A =

[
1 1

]
, x =

 x1

x2

 , r̄1 = 0.
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(d) β = 2 and ri = 2

Figure 3.1: Estimates x̂ vs measurements y for denoising case with Poisson and Gaussian data
models.

In this case, y1 ∼ Poisson(x1 +x2). One can show that any pair of nonnegative values

x̂1, x̂2 that satisfy

x̂1 + x̂2 =
y1

1 + β

is a minimizer of the penalized-likelihood cost function Ψ1 in (3.13). This non-

uniqueness of the `1-regularized estimate is consistent with the Gaussian case.

3.4.2 Convergence

One can verify that the algorithm described by (3.9) and (3.15) satisfies conditions

of feasibility of the algorithm (R1), agreement and continuity of first derivatives

(R2), proper domain of surrogates (R3), connected surrogates (C2), and continuity
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of surrogate generators in both arguments (C3) in [33], so by Theorem 4.1 of [33], a

subsequence of the sequence of iterates {x(n)} given by (3.9) and (3.10) converges to

a stationary point of Ψ1(x).

3.5 `0 regularization for Poisson Data

The `0 “norm” measures sparsity in its purest sense by counting the number of

nonzero elements. Unlike the `1 norm, it is nonconvex, not continuous, and uniform

almost everywhere except zero. This section shows that `0 regularization can behave

quite differently for Poisson data compared to the Gaussian case. The `0 regularized

estimate is the solution to the following optimization problem:

(3.19) x̂ = arg min
x

Ψ0(x), Ψ0(x) = −L (x) + β ||x||0 ,

where the log-likelihood term L (x) is defined in (3.5). The solution to this problem

is obtained by minimizing the non–convex cost function Ψ(x) = −L (x) + β ||x||0.

Extending (3.7), we obtain the surrogate

(3.20) Qn
j

(
xj;x

(n)
) 4

= (xj + γj) aj−ej
(
x

(n)
j

)(
x

(n)
j + γj

)
log (xj + γj)+βI(0,∞)(xj),

where I(0,∞)(xj) is the indicator function on the interval (0,∞). The M-step is given

by

(3.21) x
(n+1)
j = arg min

xj≥0
Qn
j

(
xj;x

(n)
)
.

If the minimizer x̃
(n+1)
j is positive, it is found by setting the derivative equal to zero:

∂

∂xj
Qn
j

(
xj;x

(n)
)

= ej
(
x(n)

) x(n)
j + γj

xj + γj
− aj = 0.

Solving and minding the non–negativity constraint, we obtain a candidate solution:

(3.22) x̃
(n+1)
j =

[
x

(n)
j + γj

aj
ej
(
x(n)

)
− γj

]
+

.
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However, if γj > 0, the minimizer could either be at the location x̃
(n+1)
j found on

the interval (0,∞), or it could be at xj = 0 because of the non–convexity of the

surrogate. If x̃
(n+1)
j > 0, one should choose the minimizer x̂

(n+1)
j = 0 if

Q
(n)
j

(
0;x(n)

)
< Q

(n)
j

(
x̃

(n+1)
j ;x(n)

)

(3.23) ej
(
x(n)

) (
x

(n)
j + γj

)
log

(
x̃

(n+1)
j + γj

γj

)
− ajx̃(n+1)

j < β,

otherwise if x̃
(n+1)
j = 0, x̂

(n+1)
j = 0. Combining (3.22) and (3.23), we obtain an EM

algorithm with E-step given by (3.9) and M-step:

(3.24) x
(n+1)
j =


x̃

(n+1)
j

x̃
(n+1)
j > 0 AND

ej
(
x(n)

) (
x

(n)
j + γj

)
log

(
x̃

(n+1)
j +γj

γj

)
− ajx̃(n+1)

j > β

0 else.

The behavior of the algorithm is different depending on the values chosen for r̄i and

γj. We treat the cases separately.

3.5.1 Convergence when r̄i = 0 for i = 1, . . . , nd

By (3.8), if r̄i = 0 for i = 1, . . . , nd, γj must be zero for all j = 1 . . . np. When

this is true, the algorithm reduces to the MLEM algorithm. The behavior of the

algorithm depends on these tuning parameters because they shift the cost function

so that the discontinuity in the `0 “norm” and the singularities of the log-likelihood

function no longer overlap at xj = 0 for j = 1, . . . , np. The fact that the estimate

is influenced by algorithm tuning parameters is troublesome, but the nonconvexity

of the cost function allows the tuning parameters to influence the local minimum to

which the algorithm converges. Since the algorithm is equivalent to MLEM in this

case, the convergence result of §3.3.1 applies.
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3.5.2 Convergence when r̄i > 0 for some i and γj = 0 for j = 1, . . . , np

In this case, the nonzero r̄i affects the ej
(
x(n)

)
term, but we always have x

(n)
j =

x̃
(n+1)
j because γj = 0. Thus the algorithm is equivalent to MLEM in this case as

well.

3.5.3 Convergence r̄i > 0 for some i and γj > 0 for some j

In this case, the surrogates are not continuous at xj = 0, so the regularity condi-

tion (R3) in [33] fails to hold, thus the algorithm is not guaranteed to converge to a

stationary point of Ψ0(x).

3.5.4 `0 Regularization when A is diagonal

If A = diag {ai}, the `0 regularized estimate is

(3.25) x̂j =


1
ai

[yi − r̄i]+ κ (yi, r̄i) > β

0 else,

where κ (u, v) denotes the Kullback-Leibler divergence [9] given by

κ (u, v) =



v u = 0, v ≥ 0

u log
(
u
v

)
− u+ v u > 0, v > 0

∞ u > 0, v = 0.

When r̄i = 0, (3.25) simplifies to (3.12) because κ (yi, 0) = ∞ for all yi. Again, in

the case of `0 regularization, when r̄i = 0, there is no thresholding behavior. The

ineffectiveness of `0 regularization for Poisson noise is different from that for Gaussian

noise modeled by (3.17), where the denoising estimator is

(3.26) x̂i =


yi−r̄i
ai

|yi − r̄i| >
√

2β

0 else,
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which is hard thresholding. The ineffectiveness of Poisson regularization in the `0

case is due to the singularity in the Poisson log-likelihood −L(x) at x = 0. Figure

3.2 shows the Gaussian and Poisson likelihoods for a denoising problem where the

single observation y = 3. Note that the Gaussian likelihood is well-behaved near

x = 0, but the Poisson likelihood approaches infinity. This singularity causes the

cost function to be arbitrarily large near x = 0, regardless of the regularizer chosen.
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Figure 3.2: Gaussian and Poisson log-likelihoods vs. x for denoising case with measurement y = 3

3.6 log Regularization

We propose the use of the penalty function R(x) =
∑np

j=1 log
(xj
δ

+ 1
)

as an al-

ternative to the `1 and `0 norms [10]. It is nonconvex and thus the minimizer is not

guaranteed to be unique. However, it is a continuous function that is differentiable

almost everywhere. It is also a better measure of sparsity than the `1 norm in the

sense that it better approximates the true measure of sparsity, the `0 “norm.” The

minimization problem is:

(3.27) x̂ = arg min
x

Ψl(x),Ψl(x) = −L (x) + β

np∑
j=1

log
(xj
δ

+ 1
)
.

We first examine the case where A is diagonal, i.e., A = diag(a), for which the cost

function is separable. This denoising case provides insight into the behavior of the
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regularizer for a coupled cost function. The minimizer of the separable cost function

is given by

(3.28)

x̂i = arg min
xi≥0

Ψi (xi) , Ψi (xi) =
n∑
i=1

aixi + r̄i − yi log (aixi + r̄i) + β log
(xi
δ

+ 1
)
,

which has nonnegative minimizer

x̂i(yi) =
1

2

(
− δ − 1

ai
(r̄i + β − yi)

+
1

ai

√
δ2a2

i + 2δai(r̄i + β − yi) + (r̄i + β − yi)2 + 4aiδ(yi − r̄i)− 4βr̄i

)
.(3.29)

Since it is difficult to visualize the behavior of the estimate with respect to δ and

β, Figure 3.3 illustrates the estimator for various values of β and δ with r̄i = 0 and

ai = 1 for all i.
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Figure 3.3: 1D penalized likelihood estimates using log regularization versus observations
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3.6.1 Choosing δ

As δ → 0, the estimator x̂i(yi) in (3.6) converges pointwise to the following func-

tion (minding the non-negativity constraint):

x̂i(yi)
ideal = lim

δ→0
x̂i(yi)

=


0 (r̄i + β − yi)2 − 4βr̄i < 0

1
2ai

(
yi − β − r̄i +

√
(r̄i − yi + β)2 − 4βr̄i

)
(r̄i + β − yi)2 − 4βr̄i ≥ 0,

(3.30)

which is an approximation to hard thresholding. Figure 3.4 shows a graph of this

function for a set of particular parameters. When r̄i = 0, which is of interest in 4π

imaging, (3.30) simplifies to:

(3.31) x̂i(yi)
ideal =

1

2ai
(yi − β + |yi − β|) =

1

ai
[yi − β]+ .

Thus, when r̄i = 0, smaller δ results in better approximation of soft thresholding.

However, the sharp curvature of x̂i(yi) when δ is small can slow convergence of the

EM algorithm in the case where A is not diagonal. In our experiments, we found

that 10 ≤ δ ≤ 100 worked well for the Compton imaging problem.
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Figure 3.4: x̂i(yi)
ideal vs yi for β = 1, ai = 1, r̄i = 1
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3.6.2 Choosing β

If r̄i = 0, the estimator approximates soft thresholding as shown in (3.31) and

when r̄i > 0, the estimator approximates hard thresholding as shown in Figure 3.4,

where the threshold is a function of β. In both cases, increasing β increases the

threshold. The choice of β involves a trade-off between sensitivity to noise and

failure to image low-intensity point sources.

3.6.3 EM Algorithm for log Regularization

To develop an EM algorithm for the cost function (3.27), we use the following

separable surrogate functions to iteratively find the minimizer:

(3.32)

Qn
j

(
xj;x

(n)
)

= (xj + γj) aj − ej
(
x

(n)
j

)(
x

(n)
j + γj

)
log (xj + γj) + β log

(xj
δ

+ 1
)
.

The E-step is given by ej (x) in (3.9) and the M-step has the same form as (3.21).

Differentiating (3.32) and zeroing yields the following quadratic equation that one

can solve to compute x
(n+1)
j :

0 =
aj
δ
x2
j +

(
aj + δ−1

(
γjaj − ej

(
x(n)

)
(x

(n)
j + γj) + β

))
xj

+ ajγj − ej
(
x(n)

)
(x

(n)
j + γj) +

β

δ
γj.(3.33)

The behavior of this algorithm is difficult to visualize in the reconstruction problem

when A is not diagonal, but the separable analysis of the denoising problem gives

some intuition. The algorithm will perform an approximation of soft thresholding

when r̄i = 0 for i = 1, . . . , nd, which will lead to sparser reconstructed images than

the ML estimate.
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3.6.4 Convergence of EM Algorithm for log Regularization

One can verify that the algorithm described by (3.9) and the surrogate defined by

(3.33) satisfy conditions of feasibility of the algorithm (R1), agreement and continuity

of first derivatives (R2), proper domain of surrogates (R3), connected surrogates

(C2), and continuity of surrogate generators in both arguments (C3) in [33], so by

Theorem 4.1 of [33], a subsequence of the sequence of iterates {x(n)} given by (3.9)

and (3.10) converges to a stationary point of Ψl(x). There may be multiple stationary

points of Ψl(x), so the value to which the estimates converge may not the the global

minimizer.

3.7 Image Reconstruction Results

This section gives experimental results of the algorithms presented in this chapter

for a list-mode position–sensitive imaging system. The scenes monitored by this

system do not have a known background emission distribution, so we set the expected

background contribution to each measurement, r̄i, to be zero. These images were

produced from real laboratory measurements of a Cesium-137 source and natural

background with a position-sensitive CdZnTe detector. The system model assumes

that each photon deposits all of its energy in the detector. We used only 1000

recorded photons with two or more interactions to show how regularization can

improve the clarity of the image when there are few recorded counts.

3.7.1 `0 Regularization

As mentioned in Sec. 3.5, if r̄i = 0 for all i, then γj = 0 for all j. We can see

from (3.24) that the algorithm in this case simplifies to unregularized MLEM. The

unregularized ML estimates are shown in the upper left of Figures 3.5 and 3.6.
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3.7.2 `1 Regularization

Figure 3.5 shows reconstructed images using the `1–regularized algorithm. Note

that the image corresponding to β = 0 is the ML estimate. Also note that the images

appear identical to the eye except the pixel values are scaled by a constant. This

is apparent from the color scales located to the right of each image. We investi-

gated numerous other values of β and observed only pixel scaling. This behavior is

consistent with the analysis for the separable system in (3.16).
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Figure 3.5: Reconstructed images using `1 regularization with various values of β. These images
were reconstructed from 1000 recorded photons in a real CdZnTe detector with a Cs-137 source
located at azimuth angle φ = 90o and polar angle θ = 90o. The algorithm was run for 200 iterations.

3.7.3 log Regularization

Figure 3.6 shows four reconstructed images using the log regularization estimate

for different values of β, where there is a Cs-137 source located at azimuth angle φ =

90o and polar angle θ = 90o. We use a simplified system model where each recorded
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event deposits all of its energy in the detector. This results in model mismatch

because some interacting photons escape the detector after their final scattering

interaction, but it significantly reduces the computational burden. Following the

reasoning of Sec. 3.6.1, these images were reconstructed with the parameter δ = 10.

However, the choice of δ could impact the number of iterations needed to achieve

convergence. The images with β = 50 in Figure 3.6b and β = 100 in Figure 3.6c
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Figure 3.6: Reconstructed images using log regularization with various values of β. These images
were reconstructed from 1000 recorded photons in a real CdZnTe detector with a Cs-137 source
located at azimuth angle φ = 90o and polar angle θ = 90o. The algorithm was run for 200 iterations
and the parameter δ = 10.

are noticeably more sparse than the ML solution in Figure 3.6a. However, the image

with β = 1000 has only small intensity values because the parameter β is too large.

This shows that the log regularizer can result in images that are sparser than the

ML solution with the correct parameter choice.

Figure 3.7 shows four reconstructed images for various values of the parameter β
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where there is no source present and all measurements are due to natural background.

The ML solution in Figure 3.7a has an intense region near the pole at the top of the
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(a) β = 0 (ML solution)
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(d) β = 1000

Figure 3.7: Reconstructed images using log regularization with various values of β. These images
were reconstructed from 1000 recorded photons in a real CdZnTe detector in a room with concrete
walls and no source present. The algorithm was run for 200 iterations and the parameter δ = 10.

image. This is likely due to the inability of the detector to record photon interactions

near the anode and model mismatch in the system sensitivity, which was calculated

by Monte Carlo simulation. The log regularization method reconstructs few nonzero

pixels when β > 0, even though the background is spatially diffuse. Although regu-

larized image reconstruction is useful for locating sources, this example shows that

the images may lead to erroneous conclusions when detecting a the presence of a

source. This motivates our study of source detection in the next chapter.
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3.8 Image Reconstruction Conclusion

The images shown in the previous section appear adequate to allow a human ob-

server to locate a point–source of gamma–rays. However, all of the images contain

artifacts that could possibly be misleading. In addition, experiments with real de-

tectors have shown that measurements taken in the absence of a source can produce

images that look like an image of a point–source. This phenomenon is due to the

underdetermined nature of the problem, enforcing sparsity can force reconstruction

of a sparse solution when the true spatial emission distribution is diffuse, and pos-

sibly model mismatch. In light of these observations, we will consider the problem

of using a position–sensitive detector to detect the presence of a source and esti-

mate its position and intensity. This formulation of the problem has the advantage

of having fewer parameters, namely source intensity and position, assuming that

the background is known. We investigate the source detection problem in the next

chapter.



CHAPTER IV

Benefits of Position–Sensitive Detectors for Radioactive
Source Detection1

This chapter addresses the question of whether or not position–sensitive detectors

can perform better in terms of AUC than detectors without position–sensitive capa-

bility. We derive formulas for the asymptotic distributions of commonly used test

statistics, and use these asymptotic distributions to determine the detection perfor-

mance. We prove that the performance of a position–sensitive detector is asymptot-

ically higher than that of a detector that merely counts photons when the detector

sensitivity is uniform and the source position, source energy, and background inten-

sity are known. We also use asymptotic performance approximations to explore the

performance of simple detectors when the system response is known exactly.

Some detection algorithms are specific to certain gamma–ray imaging modalities,

such as using a coded aperture system to detect a point–source [68]. A mean differ-

ence test (MDT) statistic was applied to scintillating arrays in [51]. In this work, we

analyze the detection performance of two tests that are based on the likelihood: one

is the generalized likelihood ratio test (GLRT), and the other is the ML estimate of

the source intensity. We refer to the latter as the source intensity test (SIT) [48] .

When performing detection using the GLRT with a position–sensitive Compton

1The work in this chapter was previously published in [48] and [47].
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imaging detector in a known background, a particular experiment found that position

information did not significantly improve detection performance over merely counting

received photons [75]. In light of the numerous modalities that provide information

beyond the number of received counts, we seek to show theoretically how position–

sensitive capability affects detection performance. The goals of this work are to

explain previous empirical results, such as those contained in [75], and to help guide

the design of future detectors.

The question of whether or not imaging capability improves detection performance

was addressed in [84] in the context of coded–aperture imaging systems. Reference

[84] shows that if the background intensity is unknown, imaging may improve SNR

[84] and thus detection performance by providing a means to separate the otherwise

indistinguishable source and background photons. The analysis in this work differs

from that of [84] because we treat the problem from a detection task–based point of

view [4]. We analyze the task of source detection using the asymptotic performance

of various test statistics applied to detectors with and without position–sensitive

capability. Our treatment of detection differs from that in [84] because SNR does

not capture the additional information received on a per–photon basis by a position–

sensitive detector.

To quantify detection performance, we calculate the receiver operating character-

istic curve (ROC), which is the probability of detection as a function of the proba-

bility of false alarm. A desirable detector will have a high probability of detection

for a low false alarm rate. We also quantify detection performance using the area

under the receiver operating characteristic curve (AUC). This metric is independent

of any particular threshold value and is a measure of the overall detectability [28].

Computation of the ROC requires expressions for the probability distribution of the
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ML estimate of source intensity, which are often intractable for the complex sys-

tem models used in gamma–ray imaging. Instead of attempting to compute the

distribution of the ML estimates directly, we approximate them by their first and

second moments. This is known as asymptotic approximation. Since ML estimates

are asymptotically normal, the true distribution of the estimates will approach the

asymptotic approximation as the number of received photons tends to infinity. The

accuracy of the asymptotic approximation for finite sample sizes is related to how

well the distribution of the ML estimates can be approximated by its first and sec-

ond moments. We compare the asymptotic performance of the GLRT, SIT, and the

MDT presented in [51] for detecting a gamma–ray point source in background with

hypothetical gamma–ray imaging systems with no model mismatch.

We compare the AUCs of position–sensitive and counting detectors when the as-

sumptions of Theorem IV.3 do not hold but the system model is exactly known. For

the case of known background and nonuniform sensitivity, we numerically evaluate

the asymptotic AUC of the GLRT and SIT for a simple position–sensitive detector

of nonuniform sensitivity. Our results show that, unlike the uniform sensitivity case,

a position–sensitive detector with nonuniform sensitivity can have a smaller AUC

than a uniform–sensitivity counting detector of equal area for some source positions,

particularly for a position–sensitive detector with poor sensitivity and poor position

resolution. However, as sensitivity and resolution improve, the position–sensitive

detector can have better detection performance. We use examples of various detec-

tors to show how nonuniformity and other detector properties relate to detection

performance, which could help in practical design problems.
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4.1 Mathematical Background

4.1.1 Measurement Model

The model described in this section is general enough to describe any system that

records a Poisson–distributed number of measurements or events, where the events

are independent and each event is described by a vector of recorded attributes. This

model accurately describes position–sensitive Compton detectors, coded aperture

detectors, and scintillator arrays. The model is based on [4] and [57]. It assumes a

fixed scan time, thus the number of recorded events is random.

Consistent with the notation in §2.3 , let the list of J recorded photon interaction

event attributes be r̃ = (r1, r2, . . . , rJ). Each element ri of r̃ is itself a vector of at-

tributes describing the ith event. An example of a detector that one can describe with

this model is a position–sensitive Compton detector. A Compton detector records a

Poisson–distributed number J of gamma–ray photons. Each detected photon inter-

acts one or more times inside the detector and the detector records these interaction

locations and possibly other attributes such as deposited energy. We assume that

distinct attribute vectors are statistically independent, which is reasonable provided

the count rates are low enough to avoid dead time effects [4].

In the detection problem considered here, the goal is to decide whether or not

a point–source is present in an environment with some background. Denote the

source intensity by α ∈ [0,∞) with units of counts emitted per unit time. The

probability distribution of recorded attribute vectors r for events that originate at

the source may depend on parameters other than the source intensity, and we denote

the vector of additional parameters by φ ∈ Φ. In the 3D far–field when the source

and background are of the same energy, an example for the set Φ is [0, 2π] × [0, π],

which represents all possible source positions in terms of azimuthal and polar angle
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in space. If a detector is energy–sensitive and the source and background energy

spectra differ, the source energy could also be an element of φ.

We model the background as a linear combination of a finite number of fixed,

known distributions. We parameterize the background by the rate λb in counts

recorded per unit time and a vector of mixture coefficients β, such that the proba-

bility distribution of recorded events given that they originated from background is

a mixture of the distributions of recorded attributes given that they came from each

object [57]. For this linear model, the background count rate, λb, is not a function

of β.

We define the vector θ to be the vector of all unknown parameters. When the

source and background intensities and position parameters are all unknown,

(4.1) θ = (α,φ, λb,β).

A similar parameterization of a far–field point source is given in [51].

Let D be the event that a photon is recorded and G be the event that a photon

passes through the detector. We define the sensitivity, which is the probability of

recording a photon given that it came from direction φ, to be

(4.2) s(φ)
4
= p (D;φ) = p(D|G;φ)p(G;φ),

where p (D|G;φ) is the intrinsic sensitivity, which depends on the detector shape and

attenuation, and p(G;φ) is the geometric sensitivity, which depends on the fraction

of emitted photons that pass through the detector [73, p. 65]. In 3D, the geometric

sensitivity is the solid angle subtended by the detector in a spherical coordinate

system centered at the source.

Let p(r|D;θ) denote the distribution of recorded attributes r ∈ R, where R is

the set of all possible event attributes. Let pS(r|D;φ) and pB(r|D;β) denote the
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distributions of recorded event attributes r given that they are detected and come

from the source and background, respectively. The overall distribution of recorded

attributes (given that an event is detected) is a mixture of pS(r|D;φ) and pB(r|D;β)

given by [57]

(4.3) p(r|D;θ) =
λbpB(r|D;β) + αs(φ)pS(r|D;φ)

λb + αs(φ)
.

As shown in [4], the likelihood of θ is

(4.4) p(r̃;θ) =
J∏
i=1

p(ri|D;θ)e−J̃(θ)J̃(θ)J/J !,

and the number of recorded photons obeys the Poisson distribution

(4.5) J ∼ Poisson
(
J̃(θ)

)
,

with mean given by

(4.6) J̃(θ)
4
= E [J ] = τ (λb + αs(φ)) ,

where τ denotes the known measurement recording time.

4.1.2 Fisher Information Matrix

The Fisher information matrix, defined in (2.34), also appears in the asymptotic

distributions of maximum–likelihood estimates. To facilitate the analysis of F (θ)

and asymptotic detection performance, we define its block components as follows:

(4.7) F (θ) =



F[1,1] FT[2,1] FT[3,1] FT[4,1]

F[2,1] F[2,2] FT[3,2] FT[4,2]

F[3,1] F[3,2] F[3,3] FT[4,3]

F[4,1] F[4,2] F[4,3] F[4,4]


,

where F[1,1] is 1× 1, F[2,1] is dim(φ)× 1, F[2,2] is dim(φ)× dim(φ), F[3,1] is 1× 1, F[3,2]

is 1 × dim(φ), F[3,3] is 1 × 1, F[4,1] is dim(β) × 1, F[4,2] is dim(β) × dim(φ), F[4,3] is
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dim(β)× 1, and F[4,4] is dim(β)× dim(β). In source detection problems, the source

position φ, the background intensity λb, and the background shape parameters β

are nuisance parameters.

We can make the concept of a counting detector more concrete by the following

definition:

Definition IV.1. A detector is a counting detector if and only if pS(r|D;φ) =

pB(r|D;β) almost everywhere2 for all φ ∈ Φ and mixture coefficients β.

Definition IV.1 says that in a counting detector, the distribution of event at-

tributes is independent of whether or not the event originated from the source. Oth-

erwise we call it a position–sensitive detector. By this definition, a detector that

is energy–sensitive but not does not record interaction locations is not a counting

detector. In such a detector, the recorded energies can produce some position infor-

mation, so we treat spectrometers that do not record interaction locations similarly

to spectrometers that do. The asymptotic expressions in this paper allow one to

compare the asymptotic detection performance of particular spectrometers that do

and do not record interaction locations. We refer to detectors that are not counting

detectors as position–sensitive detectors, although a position–sensitive detector does

not necessarily record interaction locations.

A counting detector is neither capable of estimating φ nor distinguishing source

and background events of the same energy because pS(r|D;φ) does not depend

on φ by Definition IV.1. Because of this, for the purposes of defining the Fisher

information, we assume that λb, β, and the value of s(φ) are known to a counting

detector, so the Fisher information is a scalar in this case. Using the model in (4.4)

and (4.5), the likelihood for the counting case is p (J ;θ) = J̃(θ)Je−J̃(θ)/J !, for which

2Throughout, “almost everywhere” means with respect to the distribution of r in (6.4)
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the Fisher information is given by the scalar

(4.8) Fc(θ)
4
=

τs2(φ)

λb + αs(φ)
.

To help express the Fisher information matrix (4.7) for a position–sensitive de-

tector, we first define the following functions of r:

g1(r) = pS(r|D;φ)

g2(r) = ∇φ(s(φ)pS(r|D;φ))

g3(r) = pB(r|D;β)

g4(r) = ∇βpB(r|D;β),

where ∇β is the column gradient with respect to β. Note that g1, g3 : R → R,

g2 : R → Rdim(φ), and g4 : R → Rdim(β). Using (6.4), (4.4), and (4.5), one can show

that the Fisher Information for a position–sensitive detector is given by

(4.9) F (θ) = Fc(θ)



K[1,1]

αKT
[2,1]

s(φ)

K[3,1]

s(φ)

λbK
T
[4,1]

s(φ)

αK[2,1]

s(φ)

α2K[2,2]

s2(φ)

αKT
[3,2]

s(φ)

αλbK
T
[4,2]

s2(φ)

K[3,1]

s(φ)

αK[3,2]

s(φ)

K[3,3]

s2(φ)

λbK
T
[4,3]

s2(φ)

λbK[4,1]

s(φ)

αλbK[4,2]

s2(φ)

λbK[4,3]

s2(φ)

λ2
bK[4,4]

s2(φ)


,

where

(4.10) K[i,j]
4
= E

[
gi(r)gTj (r)

p2(r|D;θ)

]
,

provided that the expectation and the gradient with respect to the parameters are

interchangeable. Appendix B.2 gives sample derivations of the block Fisher informa-

tion elements.

In the case where the background intensities are known, we remove the entries

corresponding to the unknown background and the Fisher information for a position–
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sensitive detector simplifies to:

(4.11) F (θ) = Fc(θ)

 K[1,1]
α

s(φ)
KT

[2,1]

α
s(φ)

K[2,1]
α2

s2(φ)
K[2,2]

 .
The elements of the Fisher information appear prominently in the detection analyses

that follow.

4.2 Effect of Position–Sensitive Capability on Detection Performance

As illustrated in Figure 4.1, the AUC of the GLRT for (2.39) is a monotone func-

tion of the noncentrality parameter η in (2.41), so to show that position–sensitive

capability improves AUC, it suffices to show that position–sensitive capability in-

creases η. Furthermore, if position–sensitive capability increases η for all values of

α ≥ 0, then position–sensitive capability will improve the performance of the SIT by

reducing the variance of the test statistic under each hypothesis in (2.43).
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Figure 4.1: AUC of GLRT (2.38) versus noncentraltity parameter η of the asymptotic distribution
of the GLRT.

4.2.1 Effect of Position–Sensitive Capability for a Uniform Sensitivity Detector with
Known Background

We first define the concept of a uniform–sensitivity detector:

Definition IV.2. A detector has uniform–sensitivity if s(φ) = s0 for all φ ∈ Φ,

where s0 is a constant.
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The main result of this section, given by Theorem IV.3, is that the detection

performance of a uniform–sensitivity position–sensitive detector is greater than or

equal to that of a uniform sensitivity counting detector. The AUC of the GLRT

applied to a position–sensitive detector is greater than the AUC of the GLRT applied

to a counting detector if the noncentrality parameter of the asymptotic distribution

under H1 in (2.41) is larger for a position–sensitive detector. As shown in [35, p. 232],

the asymptotic distribution of the GLRT is most accurate for small source intensities

because the derivation of the asymptotic distribution assumes that the log–likelihood

evaluated at α = 0 is approximately equal to the second order approximation of the

log–likelihood about the value of the source intensity estimate α̂ML. For the SIT, a

detector with position–sensitive capability performs better if the variances in (2.43)

are smaller for the position–sensitive detector. The asymptotics of the SIT do not

assume a small source intensity. The above discussion leads to the sufficient condition

that position–sensitive capability improves the AUC of the GLRT and SIT for any

θ ∈ Θ:

(4.12) (F(θ)−1
[1,1])

−1 > Fc(θ).

Theorem IV.3. For a uniform-sensitivity detector in a known background,

(F−1(θ)[1,1])
−1 ≥ Fc(θ), i.e the reciprocal of the [1,1] component of the inverse Fisher

Information Matrix (4.11) for a position–sensitive detector is greater than or equal

to that of a counting detector (4.8). Therefore, the asymptotic AUC for a position–

sensitive detector is greater than or equal to the asymptotic AUC of a counting de-

tector in a known background when the GLRT with a small source intensity or the

SIT is used.

The proof, which is given in Appendix B.1, shows that the noncentrality parame-
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ters of the GLRT for position–sensitive and counting detectors, ηi and ηc, respectively,

obey

(4.13)
ηi

ηc

=
(F−1(θ)[1,1])

−1

Fc(θ)
≥ 1.

Furthermore, if F−1(θ) is diagonal,

(4.14)
ηi

ηc

= K[1,1],

so position–sensitive capability increases the noncentrality parameter η in (2.41) by

the factor K[1,1] in (4.9). In this case, the inequality in Theorem IV.3 becomes strict.

4.3 Setup for Numerical Calculations

In §4.4, we numerically evaluate the Fisher information (4.9) for 2D circular detec-

tors of radius r and 2D square detectors with side length 2l to illustrate Theorem IV.3

and to explore the cases where Theorem IV.3 does not apply. The detectors in this

section do not necessarily represent any particular detector technology and are used

for illustrative purposes only. The simplified detectors have tractable models for the

recorded attributes, facilitating accurate calculation of the Fisher information.

For simplicity, we assume that these detectors record only single photon interac-

tion events and that the source and background energy spectra are identical. For

each recorded event, the detector records the position of the interaction (x, y). The

attribute vector ri is the interaction position of the ith event. Each attribute vector

ri has length 2, so we compute the components of the Fisher information (5.40) nu-

merically using Riemann approximation. This hypothetical system allows us to gain

intuition on how detector nonuniformity and unknown background affect detection

performance. This intuition will be useful when thinking about more realistic 3D

detectors.
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For this analysis, we assume that the point–source is in the far–field, so φ ∈ [0, 2π)

denotes the source position in the 2D plane. The density of recorded attributes,

p(x, y|D;θ) depends on the source position φ, so the parameter vector φ in (6.1) is

equal to φ.

4.3.1 Single–Interaction Probabilities for Two-Dimensional Detectors

To analyze detection performance in a nonuniform sensitivity detector, we derive

the interaction probabilities for single–interaction events in square and elliptical two–

dimensional detectors. We present the formulas for interaction probabilities in this

section on an abstract and general level so that they apply to all convex detectors.

Beer–Lambert law

Single–interaction events follow the Beer-Lambert law [3], which says that a beam

of electromagnetic radiation with intensity I0, after passing through a depth d of

material with attenuation coefficient µ, is given by

I = I0e
−µd.

When the number of photons is large, I
I0

will be approximately equal to 1−Pr (D; d),

where Pr (D; d) is the probability that a photon interacts somewhere in the material

prior to reaching the depth d. One can think of Pr (D; d) as a cumulative distribution

function F (d) of interaction depths in the material. Then, for a detector of thickness

T , the probability density function for interaction depths for 0 ≤ d ≤ T is equal to

p (d) =
∂

∂d
F (d) = µe−µd 0 ≤ d ≤ T.

This probabilistic interpretation of the Beer–Lambert law is the foundation of the

analysis of single–interaction events.
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Coordinate System

Instead of characterizing the interaction location by its (x, y) coordinates, we can

define the 2×2 rotation matrix Qφ that rotates a vector counterclockwise by φ. Then

we can define a new basis for characterizing interaction locations

u = Qφe1

v = Qφe2.

We also define the interaction depth di(u; v, φ) to be the distance from the point

(u, v) = uu + vv to the edge of the detector along a ray with slope φ, and dt(v;φ)

to be the length of the line segment that lies inside the detector with slope φ, where

each point on the line segment has v-coordinate v. If we define l(φ) to be the length

of the longest line segment that intersects the detector and is perpendicular to any

line with slope φ, the far field approximation allows us to say that p (v), which is the

probability that a photon interacts with v-coordinate v is uniform across all possible

v-coordinates inside the detector.

Interaction Probabilities

By the Beer–Lambert law,

(4.15) p(u|v,D) =
µe−µdi(u;v,φ)

1− e−µdt(v;φ)
.

Also by the Beer–Lambert law,

p(v|D) =
p(D|v)p (v)

Pr (D)
(4.16)

=
(1− e−µdt(v;φ)) 1

l(φ)

1
l(φ)

∫ l(φ)/2

l(φ)/2
(1− e−µdt(v;φ))dv

(4.17)

=
(1− e−µdt(v;φ))∫ l(φ)/2

l(φ)/2
(1− e−µdt(v;φ))dv

|v| ≤ l(φ)/2.(4.18)
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Figure 4.2: Diagram two-dimensional detector and basis change for interaction probability calcula-
tion

Figure 4.2 illustrates these quantities.

Now, by the definition of conditional probability,

(4.19) p(u, v|D) = p(v|D)p(u|v,D).

Substituting (4.15) into (4.19) and (4.18), we obtain

(4.20) p(u, v|D;θ) =
µe−µdi(u;v,φ)∫ l(φ)/2

l(φ)/2
(1− e−µdt(v;φ))dv

(u, v) ∈ R.

Noticing that

(4.21)

∫ l(φ)/2

l(φ)/2

(1− e−µdt(v;φ))dv = l(φ)Pr (D) ,

we write (4.20) as

(4.22) p(u, v|D;θ) =
1

l(φ)Pr (D)
µe−µdi(u;v,φ) (u, v) ∈ R.

The quantities di(u; v, φ) and dt(v;φ) can be computed geometrically for many differ-

ent detector shapes. In the following sections, we visualize the detection performance

of square and elliptical detectors.
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It is difficult to define the intrinsic position resolution of these systems, so we

report the angular uncertainty measured by the square root of the Cramer–Rao

lower bound on the position estimate
√

(F(θ)−1)[2,2], where F(θ) is defined in (4.9).

4.4 Numerical Results

We first consider uniform–sensitivity position–sensitive and counting detectors in

a known background to illustrate the results of Theorem IV.3 and to explore under

what conditions position information is most beneficial. Next, we consider square

and elliptical position–sensitive detectors, which have nonuniform sensitivity, and

compare their performance to uniform counting detectors of equal area. We then

examine the performance of uniform–sensitivity detectors in unknown background.

We exclude the case of a nonuniform sensitivity detector in an unknown background

because its analysis requires many assumptions.

4.4.1 Uniform Sensitivity Detector with Known Background

A circular detector with radius r has inherent uniform sensitivity due to its circular

symmetry. Figure 4.3a shows the AUC, the position–sensitive gain factor K[1,1] from

(4.9), and the angular uncertainty as a function of attenuation–radius product µr

for a circular detector. The quantity ατ represents the expected number of photons

emitted from the source during the scan and λbτ represents the expected number of

background photons recorded. The expected number of source photons recorded is

given by ατs0, where s0 = s(φ) as defined in (4.2). We denote the sensitivity by s0

to emphasize that the sensitivity of a circular detector is not a function of source

position in the far field. In this section, we consider only source photons that pass

through the detector, i.e., p(G;φ) = 1 in (4.2). As guaranteed by Theorem IV.3,

the AUC of the position–sensitive detector always exceeds that of the the counting
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detector for each test.

The AUC of the SIT exceeds that of the GLRT for this experiment. This per-

formance difference comes from the fact that the GLRT is asymptotically equivalent

to the Wald test, which involves a square of the source activity estimate. When one

uses an unrestricted MLE of the source intensity, this squaring operation reduces the

separation between test statistic values under the two hypotheses.

Figure 4.3d shows s0 as a function of µr to aid interpreting Figure 4.3a. For this

experiment, the Fisher information matrix is diagonal, so K[1,1] is the multiplica-

tive improvement in the noncentrality parameter of the asymptotic distribution of

the GLRT under H1, as expressed in (4.14). As µr increases, the angular uncer-

tainty decreases and the difference in AUC between the detectors with and without

position–sensitive information increases. Figures 4.3a and 4.3b illustrate that as the

detector provides more precise position–sensitive information, the improvement in

detection performance due to position–sensitive information increases even when the

background is known.

Figure 4.4 shows the AUC for a circular uniform–sensitivity detector as a func-

tion of source intensity for a fixed background intensity. The AUC values for the

position–sensitive and counting detectors differ the most for source intensities near

the background intensity. For low source–to–background ratios, the source is diffi-

cult to detect with either detector, and when the source–to–background ratio is large,

the source is so easily detected that position–sensitive capability provides little ad-

ditional benefit. Again, the position–sensitive detector always has higher AUC than

the counting detector as expressed in Theorem IV.3, and the SIT performs better

than the GLRT.

The next section considers the detection performance of nonuniform–sensitivity
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detectors, to which Theorem IV.3 does not apply, but which can be more practical

to build than uniform sensitivity detectors.

4.4.2 Nonuniform Sensitivity Square Detector with Known Background

For implementation and manufacturing reasons, current position–sensitive Comp-

ton imaging detectors are often box–shaped [30]. We examined the performance of

the GLRT and SIT applied to the 2D square detector in Figure 4.5 to gain insight

into the performance of nonuniform sensitivity detectors.

In the case of a position–sensitive detector, the maximum–likelihood estimate of

the source intensity depends on s(φ), but a counting detector, by definition, gives

no information about φ. To compute the ML estimate of the source intensity with a

counting detector, one would need to assume a particular value of s(φ) because s(φ)

appears in the likelihood and is a function of the unobservable position φ. Substi-

tuting a fixed value for s(φ) will result in a likelihood model that does not match

the true distribution, so the estimator based on that model can be biased. Since

the asymptotic analysis considered in this work does not apply when the param-

eter estimators are biased, we compare the square position–sensitive detector to a

circular uniform–sensitivity counting detector of equal area with radius r = 2l/
√
π.

This comparison constrains the amount of detector material and explores whether

the position–sensitive square or the counting circle has better detection performance

using the SIT and GLRT.

Figure 4.6a shows the AUC of the square position–sensitive and the circular count-

ing detectors as a function of source position for both the GLRT and SIT. For

µl = 0.5, the square position–sensitive detector performs worse than the circular

counting detector. However, the detector with µl = 5 outperforms the counting

detector for all source positions. As in the uniform–sensitivity case, the SIT outper-
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forms the GLRT.

To aid in visualization, we present the sensitivity of the square relative to that of

a circular detector of equal area. To compute the relative sensitivity in Figure 4.6b,

we normalized the geometric sensitivity of the square detector in (4.2) by that of a

circular detector of the same area, so in this case,

p(G|φ) =
2l (| cosφ|+ | sinφ|)

4l√
π

.

By using the relative sensitivity instead of the absolute sensitivity, the source in-

tensity α has units of counts impinging on the detector per unit time. This figure,

along with Figure 4.6a, shows that the detection performance of the square is better

when the sensitivity is larger, and that detection performance is better for source

positions where the slope of the sensitivity curve is small. In practice, one could

generate similar plots with the appropriate sensitivity for a particular application.

Figure 4.6c shows the angular uncertainty as a function of source position. The

AUC in Figure 4.6a is largest when the angular uncertainty is largest near φ =

45◦, but this is not contradictory because the sensitivity, shown in Figure 4.6b, is

approximately uniform near φ = 45◦. Because of this, the Fisher information matrix

is approximately diagonal for source positions near φ = 45◦, which means that the

position nuisance parameter has little effect on the [1, 1] component of F (θ).

Whether a nonuniform sensitivity position–sensitive detector is better than a

counting detector depends on the characteristics of the counting detector used for

comparison. A position–sensitive detector provides information about the source

position, whereas a counting detector does not. For some applications, the position

information could outweigh a smaller AUC for some source positions.
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4.4.3 Nonuniform Sensitivity Elliptical Detector with Known Background

We analyze the performance of an elliptical detector because we can see how

detection performance varies as we vary its eccentricity, defined as the ratio of its

major and minor axes. The eccentricity can be viewed as a measure of detector

nonuniformity. These analyses were performed by evaluating the single–interaction

probabilities on a grid of coordinates inside the detector, and using numerical in-

tegration to approximate the Fisher information as defined in (4.9). The ellipse is

positioned so that its two axes are parallel to the x and y axes. Let a be half of the

axis length in the x-direction, and let b be half of the axis length in the y direction.

Figure 4.7 illustrates this setup.

Figure 4.8 shows the AUC vs. source angle φ for various elliptical eccentricities.

As the eccentricity of the ellipse increases, the detection performance at its point of

highest sensitivity (φ = 90o) increases, but at the expense of performance for other

source positions. When µ = 2, we see that the gain in performance at φ = 90o and

the degradation for other angles are less extreme. This is because as µ increases, the

sensitivity becomes more uniform because the high material attenuation dominates

the difference in cross–section length at different source positions.

4.4.4 Uniform Sensitivity Detector with Spatially–Uniform Unknown Background

We analyze the detection performance of a 2D uniform–sensitivity circular position–

sensitive detector with attenuation µ and radius r with a point source in a spatially

uniform background of unknown intensity λb, with the goal of examining how not

knowing the background affects detection performance. We use the [1, 1] element of

the inverse of the 3 × 3 block Fisher information matrix in (4.9). We remove the

4th row and column of F (θ) because there is no β to parameterize the background
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mixture in this model. We then use (2.40) and (2.43) to quantify the AUC.

Figure 4.9 shows the AUC for a position–sensitive detector in a uniform back-

ground of known and unknown intensity as a function of the true background inten-

sity. As the true background intensity increases, the difference between the AUCs

of known and unknown background increases for each particular test statistic. As

in the known background case, the SIT outperforms the GLRT. In Figure 4.9, we

also show the performance of the MDT [51]. The MDT, as presented in [51] assumes

a spherical array of detectors, and the detectors considered in this work record in-

teractions in the interior of the detector. As the attenuation coefficient µ of these

detectors increases, they behave more like a circular array of scintillators. To evalu-

ate the performance of the MDT for finite–attenuation detectors, we computed the

asymptotic mean number of counts recorded in the semicircles facing and opposite

the source. The MDT performs better than the GLRT and worse than the SIT for

low source–to–background ratios in this experiment. We assumed that the MDT

knows the source position, so that the boundary between the two semicircles is not

estimated. Although this is not a fair comparison, it gives the MDT the advantage.

Figure 4.10 shows the AUC for a position–sensitive detector in a spatially uniform

background of known and unknown intensity as a function of the attenuation–radius

product. As the µr product increases, the difference in AUC between the known and

unknown background case decreases for the SIT and GLRT. Also, as µr increases,

the SIT performs better than the MDT. A possible explanation for this is that the

SIT considers the interaction location of each photon and the MDT considers only

the semicircle in which the interaction occurred.

Notice that the difference in AUC between the known and unknown background

cases for each test statistic decreases as µr increases. Recall from Figure 4.3c that the
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angular uncertainty decreases as µr increases. As the angular uncertainty decreases,

the variance of the background intensity estimate decreases because the detector can

more reliably distinguish source and background photons. One could recover the

AUC “lost” by not knowing the background by increasing the scan time somewhat.

4.4.5 Position–Sensitive versus Counting Detectors with Unknown Background

In practice, one can sometimes measure the background prior to screening for

sources of interest. Also, an experienced operator of a counting detector could plau-

sibly guess the background with some degree of uncertainty. The detection perfor-

mance of such an operator depends on the accuracy or distribution of such guesses.

As a hypothetical example, suppose that the operator of a counting detector applies

the GLRT for a “known background” hypothesis test using a background rate λ̌b

distributed according to the following gamma distribution [22, p. 291]:

(4.23) p
(
λ̌b;λb, ξ

)
= λ̌

λb
ξ
−1

b

e−λ̌b/ξ

Γ
(
λb
ξ

)
ξ
λb
ξ

,

where ξ is a scale parameter that could represent the operator’s accuracy and λb

is the true background rate. Note that E
[
λ̌b
]

= λb and Var
(
λ̌b
)

= λbξ. If ξ is

small, then the operator’s guesses are narrowly distributed about the true background

rate, and as ξ increases, the guesses are farther from the mean, on average. The

gamma distribution is a reasonable model for operator uncertainty because of its

nonnegativity, and there may be other models that are more accurate in practice.

Figure 4.11 shows the AUC of the GLRT using an operator’s guess, for various scale

parameters ξ. Even when ξ is small, the position–sensitive detector with large µr

still performs better. This is because as ξ → 0 and µr → ∞, the AUCs of both

detectors approach the known background case, where Theorem IV.3 applies.
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Figure 4.3: Various quantities for a circular uniform–sensitivity detector with ατ = 10, λbτ = 100,
and geometric sensitivity p(G|φ) = 1.
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Figure 4.4: AUC versus expected source counts for a circular uniform–sensitivity detector with
λbτ = 100 and µr = 5.

Figure 4.5: Diagram of 2D square detector
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Figure 4.6: AUC, relative sensitivity, and angular uncertainty for square position–sensitive and
circular counting detectors of equal area (r = 2l/

√
π) vs. φ with µl = 0.5 (left) and µl = 5 (right),

and ατ = λbτ = 10.

Figure 4.7: Diagram of elliptical detector
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Figure 4.10: AUC for spatially uniform background of known and unknown intensity versus
attenuation–radius product for ατ = 10, λbτ = 100.
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CHAPTER V

Asymptotic Source Detection Performance Under Model
Mismatch1

In Chapter IV, we used asymptotic approximations to prove that position–sensitive

detectors perform better in terms of AUC for the task of detecting a source in back-

ground than photon–counting detectors. We also used the asymptotic approxima-

tions to study the detection performance of simple non–uniform detectors in various

environments. These detectors were easy to model because we assumed that the

detectors are two–dimensional and that photons interact only once. More practical

gamma–ray imaging systems, such as pixelated CdZnTe [30], are difficult to model

exactly [80] due to the nonlinear physics of Compton scattering and the non–Gaussian

uncertainties introduced by position quantization and Doppler broadening.

In this chapter, we extend the theory of Chapter IV to account for model mismatch

introduced by approximations to the system response. We first study the asymptotic

normality of estimates obtained by maximizing a possibly incorrect, or misspecified,

likelihood. Our theory is general enough to accommodate regularized likelihoods as

well. We then employ the asymptotic results to approximate the distribution of the

source intensity test (SIT). We provide numerical results showing that the proposed

approximation method reasonably predicts the empirical performance.

1This work was partially published in [49] with results from a more practical and complex simulated system.
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Asymptotics of estimators and likelihood ratios have been studied previously. Es-

timators derived from misspecified models are known as quasi–maximum–likelihood

estimators (QMLE) [78]. For a nonrandom number of independent and identi-

cally distributed (IID) measurements, a QMLE derived from a misspecified model is

asymptotically normal provided that certain regularity conditions are satisfied [78].

A QMLE can also be viewed as an M-estimate. The asymptotic normality and con-

vergence of M-estimates is discussed in [70] and [31]. In section 5.2, we extend [78]

to cases where the number of recorded measurements is a Poisson random variable.

This extension is needed for gamma–ray imaging systems.

Theorems 2.2 and 3.2 of [78] show convergence and asymptotic normality, respec-

tively, of the QMLE for a nonrandom number of measurements. In section 5.2, we

extend [78] to cases where the number of recorded measurements is a Poisson random

variable. This extension is needed for gamma–ray imaging systems. We also provide

expressions for the asymptotic distribution of the source intensity test (SIT) [48] and

generalized likelihood ratio test (GLRT) [35] that one can evaluate in practice using

Monte Carlo methods. One can use these asymptotic distributions to compute the

receiver operating characteristic curves (ROC) for these tests more efficiently than

using empirical methods.

Radiation sources have nonnegative intensities, and we examine how enforcing

the nonnegativity constraint on the source intensity estimate affects detection per-

formance. One can choose not to enforce the nonnegativity constraint because the

sum of the source and background intensities could be nonnegative if one of the in-

dividual estimates is negative. For example, if the background rate is misspecified

to be higher than the true background rate, a negative source intensity estimate

may have a higher likelihood. We prove Theorem V.7 which gives the asymptotic
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distribution of the constrained QMLE for the gamma–ray imaging problem.

We show that the asymptotic distribution of the source intensity estimates are

useful for detection performance prediction with a series of experiments with a sim-

ulated parallel–plate Compton detector. We consider cases where the background

and source intensities are unknown, and the parameter estimates are constrained

and unconstrained. Our results show that the proposed method of performance pre-

diction based on asymptotics is reasonably accurate in most cases. We also provide

examples where the model mismatch is severe and the proposed method gives poor

performance predictions.

5.1 Background

To characterize asymptotic detection performance, we must first define the true

distribution of recorded events and reasonable models for it. The true distribution is

governed by physics but its exact form is typically unknown or difficult to compute

in practice. We also describe a model distribution for a list of recorded events,

which is often an approximation of the true distribution. We describe the model

in general terms to allow adaptation to different types of gamma–ray detectors and

perhaps other applications such as list–mode positron emission tomography (PET)

scans [60].

5.1.1 True Distribution of Recorded Events

We assume that the true distribution of recorded events follows the list–mode

model of [4] for Poisson measurements. During a fixed–duration scan, a gamma–

ray imaging system records attribute vectors, such as interaction locations within

the detector and deposited energy, for each photon interaction event. Let the list of

attribute vectors recorded by the system be r̃ = (r1, r2, . . . , rJ). The random number
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of measurements is J ∼ Poisson(J̄), where J̄ = λsτ , λs is the rate of recorded events

in counts per unit time, and τ is the deterministic scan time chosen by the user.

Each rj ∈ R where R is the set of all possible event attribute vectors. For example,

in an energy and position–sensitive detector, rj is a vector of the coordinates and

energies of all interactions of the jth photon.

Let p (r) denote the true density2 of the recorded attributes for a single inter-

acting photon. In general, we do not parameterize this true distribution because it

represents the true physical process. Provided that the count rate is low enough to

avoid dead–time effects [4], the true probability density of the list of event attributes

r̃ is given by

(5.1) p (r̃) = e−J̄ J̄J/J !
J∏
j=1

p (rj) .

5.1.2 Measurement Model

The true distribution of the observations in (5.1) is not always known exactly, so

we now give an observation model. Since the mean number of emissions J̄ is unknown,

we model it by J̃(θ), where J̃(θ) = λ̃(θ)τ , λ̃(θ) is the modeled photon emission rate

in counts per unit time, and θ is a parameter vector that lies in the set Θ ⊂ Rd

for some integer d. Examples of parameters of interest in gamma–ray imaging are

source intensity, source position, and source energy. Let p̃(r;θ) denote the modeled

attribute density, which should approximate the true density p (r). Under the above

assumptions, we model the likelihood of the observations as follows [4, 48]:

(5.2) p̃ (r̃;θ)
4
= e−τλ̃(θ)[τ λ̃(θ)]J/J !

J∏
j=1

p̃(rj;θ).

2Throughout, density refers to the probability density function if the attributes are continuous random variables, or
the probability mass function if the attributes are discrete random variables. For more general or mixed distributions,
density refers to the Radon-Nikodym density [8] with respect to an appropriate base measure.
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Throughout, we use superscript ”∼” to denote functions or distributions that are part

of the model and might differ from the true underlying functions or distributions that

they represent.

We define model mismatch in Definition V.1 [78].

Definition V.1. Model mismatch exists if for all θ ∈ Θ such that λ̃(θ) = λs, there

exists an r ∈ R such that p̃(r;θ) 6= p (r).

This definition means that there is no parameter in the parameter space such

that the modeled and true distributions and count rates are identical. The modeled

likelihood may have model mismatch as a result of regularization, and one can apply

this theory to modeled likelihoods that include a regularization term.

5.1.3 Estimator definition

The quasi maximum likelihood (QML) estimate of the parameter vector θ is given

by

θ̃τ
4
= arg max

θ∈Θ
log p̃(r̃;θ),(5.3)

assuming a solution exists and is unique. The subscript τ is included to emphasize

that the estimate is a function of a list of event attributes acquired during a scan

of duration τ . In the next section, we examine the asymptotic properties of θ̃τ as

τ → ∞, i.e., as one records more events by increasing the scan time. Section 5.4

shows that the asymptotic approximation can accurately characterize the distribution

of θ̃τ , even for a finite scan time.

5.2 Properties of the QMLE

We now describe the asymptotic behavior of the QMLE in (6.6). The results,

stated in Theorems V.2 and V.4, are extensions of the results of [78] to the case
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where the number of measurements is Poisson. The results in [78] apply only to the

case where the number of measurements is not random, and therefore are not directly

applicable to gamma–ray detection systems. The regularity conditions required for

Theorems V.2 and V.4 are similar to those required for the results of [78], except we

add conditions on the modeled count rate λ̃(θ) to ensure that the modeled likelihood

in (6.3) is well–defined.

Let ∇θ denote the d × 1 column gradient with respect to θ, and let ∇2
θ denote

the d × d Hessian with respect to θ. By the definition in (6.6), assuming that the

log–likelihood is differentiable and the maximizer is in the interior of the parameter

space, the QMLE θ̃τ satisfies

(5.4) ∇θ log p̃ (r̃;θ)|θ=θ̃τ
= 0.

We also define

f̃ (θ)
4
=

1

τ
E [log p̃ (r̃;θ)]

=
1

τ

∫
R

log p̃ (r̃;θ) p (r̃) dr̃,(5.5)

and

(5.6) g̃ (θ) = E [∇θ log p (r̃;θ)] ,

where the expectation is with respect to the true distribution p (r̃). Even though the

true distribution is unknown, we assume one can compute expectations by Monte

Carlo integration with samples obtained from it.

5.2.1 Convergence

Let the asymptotic limit µ̃ ∈ Θ be defined by

(5.7) µ̃
4
= arg max

θ∈Θ
f̃ (θ) ,
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assuming that such a solution exists and is unique. Under suitable conditions, µ̃

is the limit of the sequence of estimates θ̃τ as τ → ∞. Appendix C.1 describes

one sufficient set of regularity conditions that guarantees existence, uniqueness, and

convergence. These conditions are similar to those in [78], with extensions to the

case of a random number of measurements. The regularity conditions apply only

to the model, with the exception of the assumption that the attributes of different

photon interactions are IID. The regularity conditions ensure that the log–likelihood

function exists and that the QMLE exists and is unique. We discuss verification

of these conditions in Appendix C.7. The convergence of the QMLE is stated in

Theorem V.2, which extends Theorem 2.2 of [78] to the case of a Poisson number of

measurements.

Theorem V.2. Under suitable regularity conditions, θ̃τ
a.s.→ µ̃ as τ →∞.

A useful result for interpretation of µ̃ is given in Corollary V.3. The additional

regularity conditions required for Corollary V.3 place restrictions on the true distri-

bution. The proof and sufficient regularity conditions are given in Appendix C.1.

Corollary V.3. Under suitable regularity conditions, µ̃ minimizes the Kullback-

Leibler divergence [39] of the true distribution with respect to the modeled distribution.

This Theorem and Corollary are shown in [78] for the case of J nonrandom. In

the absence of model mismatch, the true distribution (5.1) and modeled distributions

(6.3) are equal for some θ ∈ Θ such that λs = λ̃(θtrue). Let θtrue be the parameter

value, assuming a unique solution, under which this equality is achieved. Then,

in the absence of model mismatch, µ̃ = θtrue by Corollary V.3, and Theorem V.2

reduces to the usual asymptotic consistency of ML estimates [34] in the absence of

model mismatch.
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5.2.2 Asymptotic normality

A QMLE may also be asymptotically normal if certain conditions on the model

and true distributions are met. Theorem V.4 is an extension of Theorem 3.2 of

[78] to the case of a Poisson number of measurements. The regularity conditions

ensure that the expectations in Theorem V.4 are well–defined. The proof is given in

Appendix C.2.

Theorem V.4. Under suitable regularity conditions, asymptotically as τ →∞,

(5.8)
√
τ
(
θ̃τ − µ̃

)
d→ N (0,Σ(µ̃)),

where

Σ(θ) = H̃−1 (θ) G̃ (θ) H̃−1 (θ) ,(5.9)

G̃ (θ)
4
= λsE

[(
∇θ log p̃ (r;θ) +∇θ log λ̃ (θ)

)
(
∇θ log p̃ (r;θ) +∇θ log λ̃ (θ)

)T ]
,(5.10)

(5.11) H̃ (θ)
4
= −λs∇2

θ log λ̃(θ) +∇2
θλ̃(θ)− λsE

[
∇2
θ log p̃ (r;θ)

]
,

and expectations are with respect to the true distribution.

This theorem differs from Theorem 3.2 of [78] because convergence is shown as

the scan time τ , rather than the number of measurements, goes to infinity. Our

proof in Appendix C.2 avoids dividing the scan into intervals and naturally shows

convergence as scan time goes to infinity.

In the absence of model mismatch, G̃ (θ) and H̃ (θ) are equal to the time-normalized

Fisher information matrix F (θ) [78], where

F (θ)
4
= −1

τ
E
[
∇2
θ log p̃ (r̃;θ)

]
.
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In this special case, the covariance in (6.11) simplifies to Σ(θ) = F−1 (θ). Thus,

Theorem V.4 reduces to the classic asymptotic normality and asymptotic efficiency

of ML estimation [34] in the absence of model mismatch.

5.2.3 Asymptotics for Constrained Estimators

Theorems V.2 and V.4 give results for unconstrained estimates, but it is often de-

sirable to enforce constraints on the estimates in practice. In the case of gamma–ray

imaging, the source intensity parameter is physically nonnegative, and it may be de-

sirable to enforce this constraint by computing a constrained QMLE. In this section,

we extend Theorems V.2 and V.4 to the case where one or more of the parameters

in the parameter vector θ are constrained and the unconstrained asymptotic limit µ̃

lies in or on the boundary of the constraint set. When the unconstrained asymptotic

limit µ̃ lies outside the closure of the constraint set, the sequence of constrained pa-

rameter estimates converges in distribution to a degenerate random variable, and we

use a quadratic approximation of the log–likelihood to approximate the distribution

of parameter estimates for finite scan times.

Let Ω ⊂ Θ be the constrained parameter set, which is the set in which the

constrained QMLE must lie. The constrained QMLE is defined by

(5.12) θ̃+
τ

4
= arg max

θ∈Ω
log p̃ (r̃;θ) .

Also let the constrained asymptotic limit µ̃+ be

(5.13) µ̃+ 4
= arg max

θ∈Ω
f̃ (θ) .

Theorem V.5 shows that the constrained QMLE θ̃+
τ converges to the asymptotic

limit µ̃+. The proof is given in Appendix C.3.

Theorem V.5. Under suitable regularity conditions, θ̃+
τ

p→ µ̃+ as τ →∞.
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The constrained asymptotic limit µ̃+ can lie in the interior or on the bound-

ary of the constrained parameter set. The unconstrained asymptotic mean µ̃ can

either lie in the interior of the constrained parameter set Ω, on the boundary, or out-

side the constrained parameter set. The asymptotic distribution of the constrained

parameter estimates θ̃+
τ depends on which of these three cases applies to the un-

constrained asymptotic limit µ̃. When the asymptotic limit µ̃+ is in the interior of

the constrained parameter set Ω, the unconstrained asymptotic limit µ̃ is equal to

the constrained asymptotic limit µ̃+, and asymptotic distribution of the parameter

estimates is the same as in the unconstrained case.

Figure 5.1 shows an example of an expected log–likelihood f̃ (θ), defined in (6.7),

for a scalar parameter. In this example the parameter θ is constrained to be non-

negative. The unconstrained asymptotic limit µ̃ is defined as the global maximizer

of f̃ (θ) in (6.8) and is positive in this case. The constrained asymptotic limit µ̃+,

defined in (5.13), is the maximizer over the nonnegative real line, which is equal to

the global maximizer. The asymptotic distribution depends on the behavior of the

log–likelihood near the constrained asymptotic limit µ̃+, which is not affected by

imposing the nonnegativity constraint.

Figure 5.2 shows an example where the constrained and unconstrained maximizers

of the expected log–likelihood are equal and on the boundary of the constrained

parameter set at zero. The nonnegativity constraint affects the log–likelihood in any

neighborhood around the maximizer, and this changes the asymptotic distribution.

We consider this case in the next section.

The third case occurs when the global maximizer of the expected log–likelihood

is outside the constrained parameter set. Figure 5.3 shows an example scalar ex-

pected log–likelihood where the global maximizer is negative and the maximizer on
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Figure 5.1: An example expected log–likelihood where the global maximizer is equal to the maxi-
mizer on the nonnegative real line.

0
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 f
(θ

)
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+

Figure 5.2: An example expected log–likelihood where the asymptotic limit is on the boundary of
the constrained parameter set, which is the nonnegative real line.

the nonnegative real line is zero. In the unconstrained case, we used an asymptotic

convergence in distribution result to approximate the distribution of estimates for

finite scan times. The gradient of the expected log–likelihood is nonzero at the con-

strained asymptotic limit µ̃+, which causes the estimates to converge in distribution

to a degenerate random variable. Because this asymptotic distribution is not useful,

we propose a finite–sample approximation based on a quadratic approximation of

the log–likelihood.
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Figure 5.3: An example expected log–likelihood where the unconstrained maximizer is outside the
constrained parameter set and the maximizer on the nonnegative real line is zero

Unconstrained asymptotic limit on boundary of constrained parameter set

We first consider the case where the unconstrained asymptotic limit µ̃ lies on the

boundary of the constrained parameter set Ω, which implies that g̃ (µ̃+) = 0. In

the presence of model mismatch, it may be rare that the unconstrained asymptotic

limit will fall exactly on the boundary of the constrained parameter set. An example

demonstrating why this is rare is included in Appendix C.5. We include the asymp-

totic distribution in this case although it may not be a common one. The sequence

of parameter estimates θ̃+
τ converges in distribution by an application of the results

of [2] to the case of a Poisson number of measurements.

To prove asymptotic normality, we follow [2,69] and approximate the feasible set

Ω with a cone. Let CΩ be the cone approximation of Ω, defined by

Definition V.6. The cone CΩ with vertex µ̃+ is a cone approximation for set Ω at

µ̃+ if

1. infx∈CΩ
||x− yn|| = o (||yn − µ̃+||) for all sequences {yn} ⊂ Ω such that limn→∞ yn =

µ̃+.
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2. infy∈Ω ||xn − y|| = o (||xn − µ̃+||) for all sequences {xn} ⊂ CΩ such that

limn→∞ xn = µ̃+.

Figure 5.4 illustrates a 2D example of a nonnegatively constrained parameter

set and its cone approximation. Figure 5.5 shows two sequences: one that satisfies

µ

Ω

CΩ
+

Figure 5.4: An example illustration of a constrained parameter set Ω and its cone approximation
CΩ.

condition 1 of Definition V.6 and one that does not. Condition 2 is satisfied if Ω ⊂ Θ.

µ

Ω

x1z1

Sequence z
Sequence x +

Figure 5.5: An example illustration of sequences that do and do not satisfy condition 1 of Defini-
tion V.6.
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Theorem V.7 shows that the QMLE converges in distribution to a truncated

Gaussian distribution. The proof is based on [2] and [69], which give similar results for

a nonrandom number of measurements, and is included in Appendix C.4. Our proof

essentially shows convergence in distribution of the normalized gradient of the log–

likelihood, convergence in probability of the normalized Hessian of the log–likelihood,

and that these convergence results imply that the result follows by Theorem 3 of [2].

Theorem V.7. Let the random vector ζ ∼ N (0,Σ(µ̃+)), where Σ(θ) is defined in

(6.11).

Let F denote the distribution of w̃, where

w̃
4
= arg min

w∈CΩ−µ̃+
||ζ − w||H̃(µ̃+) .

If g̃ (µ̃+) = 0 and suitable regularity conditions are satisfied, then

√
τ
(
θ̃+
τ − µ̃+

)
d→ F as τ →∞.

The result of Theorem V.7 is different from the results of [2] and [69] because

Theorem V.7 allows for a random number of measurements.

Figure 5.6 shows an example of a nonnegativity constraint set Ω in one dimension,

and Figure 5.7 shows the set Ω− µ, for some real number µ.

0 µ

Ω

Figure 5.6: An illustration of the set Ω, which is the nonnegative real line.

0 µ

Ω-µ

Figure 5.7: An illustration of the nonnegative real line shifted by the real number µ.

Theorem V.7 shows that the distribution of the constrained QMLE is a projec-

tion of the asymptotic normal distribution of the unconstrained QMLE onto the
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constrained parameter set Ω. In the case of a single constrained parameter, the dis-

tribution of the constrained QMLE θ̃+
τ is a simple truncation of the unconstrained

asymptotic distribution given by Theorem V.4. However, when multiple parameters

are constrained, the distribution is more difficult to compute.

Asymptotic limit outside constrained parameter set

In gamma–ray imaging, the unconstrained asymptotic limit µ̃may have a negative

element and be outside the nonnegative orthant. In this case, g̃ (µ̃+) may be nonzero

and the conditions for Theorem V.7 are not satisfied. However, we follow [2,69] and

propose the following local quadratic approximation of the log–likelihood at the

constrained asymptotic limit µ̃+:

2

τ
log p̃

(
r̃; θ̃+

τ

)
≈ LQ

(
θ̃+
τ

)
4
=

2

τ
log p̃

(
r̃; µ̃+

)
+

2

τ
∇T
θ log p̃

(
r̃; µ̃+

) (
θ̃+
τ − µ̃+

)
+

1

τ

(
θ̃+
τ − µ̃+

)T
∇2
θ log p̃

(
r̃; µ̃+

) (
θ̃+
τ − µ̃+

)
.(5.14)

Let z (r̃; µ̃+) be the normalized score function given by

(5.15) z
(
r̃; µ̃+

) 4
=

1

τ
H̃−1

(
µ̃+
)
∇θ log p̃ (r̃;θ)|µ̃+ ,

where the translated parameter estimate is given by

(5.16) w(θ̃τ , µ̃
+)
4
=
(
θ̃+
τ − µ̃+

)
.

The maximizer of the likelihood in (5.14) is equivalent to the minimizer of

LQ
(
θ̃+
τ

)
≡ −zT

(
r̃; µ̃+

)
H̃
(
µ̃+
)
z
(
r̃; µ̃+

)
+ 2zT

(
r̃; µ̃+

)
H̃
(
µ̃+
) (
θ̃+
τ − µ̃+

)
+
(
θ̃+
τ − µ̃+

)T 1

τ
∇2
θ log p̃

(
r̃; µ̃+

) (
θ̃+
τ − µ̃+

)
,

p→ −
(
z
(
r̃; µ̃+

)
−
(
θ̃+
τ − µ̃+

))T
H̃
(
µ̃+
) (
z
(
r̃; µ̃+

)
−
(
θ̃+
τ − µ̃+

))
≡ −

(
z
(
r̃; µ̃+

)
− w(θ̃τ , µ̃

+)
)T

H̃
(
µ̃+
) (
z
(
r̃; µ̃+

)
− w(θ̃τ , µ̃

+)
)
.(5.17)
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By Lemma C.27, we can approximate the distribution of z (r̃; µ̃+) by

(5.18) z
(
r̃; µ̃+

)
is approximately distributed as N

(
H̃−1

(
µ̃+
)
g̃
(
µ̃+
)
,

1

τ
Σ(µ̃+)

)
.

By (5.17), w is equal to a QMLE for the mean of z (r̃; µ̃+) with a possibly incorrect

covariance matrix. The formula for the QMLE w̃ for w(θ̃τ , µ̃
+) is given by

(5.19) w̃ = arg min
w∈CΩ−µ̃+

(
z
(
r̃; µ̃+

)
− w

)T
H̃
(
µ̃+
) (
z
(
r̃; µ̃+

)
− w

)
.

Note that the fact that CΩ is a cone and the constraint w ∈ CΩ − µ̃+ implies that

θ̃+
τ ∈ CΩ.

The distribution of w̃ = θ̃+
τ − µ̃+ in (5.19) is equal to the distribution of z (r̃; µ̃+)

in (5.18) projected onto CΩ, so it is reasonable to approximate the distribution of

θ̃+
τ − µ̃+ with the distribution of w̃.

5.2.4 Using Asymptotic Distributions for Approximation

It may be challenging to verify the regularity conditions for Theorems 1 and 2

listed in the Appendix. Our numerical results show that Theorems V.2 and V.4 are

useful as practical approximations for gamma–ray detection problems. The condi-

tions listed in the Appendix are sufficient, but not necessary. A discussion of how

one could verify the regularity conditions is given in Appendix C.7.

The asymptotic mean µ̃ in (6.8) and covariance Σ(µ̃) in (5.8) both depend on the

true attribute distribution p (r). We now present a simple example of an estimation

problem with model mismatch.

Example: Simple Poisson Intensity Estimation

Assume that a system records a random number of interacting photons J , where

we model the number of recorded photons as a Poisson random variable whose mean
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J̃(θ) = τ(α + λb) is the sum of source and background photons:

p̃ (J ;α) = e−τ(α+λb) (τ(α + λb))
J /J !,

where α ∈ Ω
4
= [0,∞) is the source intensity and λb is the background intensity,

which is assumed known. The model is equivalent to the list–mode model in (6.3)

with the parameter vector θ = α, count rate

(5.20) λ̃(θ) = α + λb,

and empty recorded attributes r. The recorded attributes are empty because this

system records no information beyond the number of interacting photons. Let ε

represent the empty attribute. Then for this photon–counting system,

p̃ (r;α) =


1 r = ε

0 else

for all α ∈ [0,∞),

which is constant with respect to the source intensity parameter α. We also assume

that the true distribution is also poisson with mean τλs:

p (J) = e−τλs (τλs)
J /J !.

The true density of J is equivalent to the list–mode density in (5.1) with attribute

vectors that are almost surely empty.

The log–likelihood, neglecting terms constant with respect to α is

(5.21) L (α) = −τ(α + λb) + J log(α + λb),

with first derivative

(5.22)
d

dα
L (α) =

J

α + λb
− τ.
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Solving (5.22) with respect to the source intensity parameter α gives the constrained

QMLE for source intensity α̃+
τ :

(5.23) α̃+
τ =

[
J

τ
− λb

]
+

,

where [x]+ is the larger of x and 0 for a real number x. The expected value of the

gradient of the log–likelihood with respect to the true distribution is

g̃ (α) = E

[
d

dα
L (α)

]
=

τλs
α + λb

− τ,

which has a unique zero at the unconstrained asymptotic limit µ̃, where

µ̃ = λs − λb.

The constrained asymptotic limit is the maximizer over the constrained parameter

set [0,∞) is

(5.24) µ̃+ = [λs − λb]+ .

By (6.12) and (5.20), the first derivative matrix for this problem is

G̃ (α) =
λs

(α + λb)2
.

Similarly, by (6.13) and (5.20),

H̃ (α) = G̃ (α) =
λs

(α + λb)2
.

By (6.11), the asymptotic covariance is

(5.25) Σ(α) = H̃−1 (α) G̃ (α) H̃−1 (α) =
(α + λb)

2

λs
.

Let the true recorded count rate λs = 0.9 and let the modeled background count

rate λb = 1. In this case, the unconstrained asymptotic mean µ̃ = −0.1 which is



105

−5 0 5 10 15 20
−800

−600

−400

−200

0

200

400

Source intensity α

Li
ke

lih
oo

d 
L(

α)
 

 
True Likelihood
Quadratic Approximation

Figure 5.8: Poisson log–likelihood and second–order Taylor series expansion about µ̃+ = 0 for scan
time τ = 20, true source intensity λs = 0.9, and modeled background intensity λb = 1

outside the constrained parameter set [0,∞). To approximate the distribution of

α̃+
τ , we use (5.18) and (5.19) to obtain the approximation

(5.26) α̃+
τ is approximately distributed as [z]+,

where the random variable z is has the law

z ∼ N
(
H̃−1

(
µ̃+
)
g̃
(
µ̃+
)
,

1

τ
Σ(µ̃+)

)
,

and µ̃+ = 0 by (5.24).

The derivation of (5.19) is based on a quadratic approximation that follows the

derivation in [2]. Figure 5.8 shows the true log–likelihood in (5.21) and its second–

order Taylor series expansion about the constrained asymptotic limit µ̃+ = 0 for scan

time τ = 20, true source intensity λs = 0.9, and modeled background intensity λb = 1.

Asymptotics are based on quadratic approximations of the log–likelihood, and their

accuracy depends on how well the true likelihood is approximated by a quadratic

function in the neighborhood of the constrained asymptotic limit µ̃+. The Poisson

log–likelihood in Figure 5.21 has extremely high curvature near α = −λb = −1.

This large curvature makes quadratic approximations to the likelihood inaccurate
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Figure 5.9: Histogram of 10000 empirical estimates and the distribution predicted by asymptotics
for scan time τ = 20, true source intensity λs = 0.9, and modeled background intensity λb = 1

when the modeled count rate λ̃(θ) is small. Increasing the scan time will improve

the asymptotic approximation because as the scan time increases, the estimates are

more likely to be close to µ̃+ where the quadratic approximation is more accurate.

Figure 5.9 shows a histogram of 10000 empirical estimates of the source intensity

α̃+
τ and the distribution predicted by asymptotics in (5.26) for scan time τ = 20, true

source intensity λs = 0.9, and modeled background intensity λb = 1. Although the

quadratic approximation to the likelihood is poor in Figure 5.8, the scan time τ = 20

is large enough to obtain an accurate approximation. The empirical and predicted

distributions agree reasonably well.

We now consider the case where the modeled background intensity λb = 1 and

the true count rate λs = 11. In this case,

(5.27) µ̃+ = µ̃ = 10,

which is inside the constrained parameter set [0,∞). Since the constrained aysmp-

totic limit µ̃+ is in the interior of the parameter space, we use Theorem V.4 to obtain

the approximation

α̃+
τ ∼ N

(
µ̃+,

1

τ
Σ(µ̃+)

)
.
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Figure 5.10: Poisson log–likelihood and second–order Taylor series expansion about µ̃+ = 10 for
scan time τ = 20, true source intensity λs = 11, and modeled background intensity λb = 1

Figure 5.10 shows the Poisson log–likelihood and the second order Taylor series

expansion at µ̃+ = 10. The curvature of the log–likelihood is much lower than in

the case where λ̃(θ) = 0.9, so the quadratic approximation is more accurate for a

larger range of source intensity parameter values. The low curvature and good ap-

proximation will make the asymptotic approximation more accurate for smaller scan

times than in the casw where λ̃(θ) = 0.9. The lower curvature of the log–likelihood

for higher values of the source intensity estimate means that the asymptotic ap-

proximations should be more accurate if the background intensity is assumed known

and underestimated. However, this will cause model mismatch that could degrade

detection performance.

Figure 5.11 shows a histogram of empirical source intensity estimates and the

distribution predicted by asymptotics. The distribution predicted by asymptotics

matches the empirical distribution very well.

We assumed in this example that the true distribution was known. In some

gamma–ray imaging problems, the exact form of p (r) is computationally intractable,

but it is relatively easy to compute expectations (6.12) and (6.13) with respect to

p (r) by Monte Carlo methods [53]. The next section uses Theorems V.2 and V.4



108

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Source Intensity Estimate

R
el

at
iv

e 
F

re
qu

en
cy

 

 
Empirical
Predicted accounting for mismatch

Figure 5.11: Histogram of 10000 empirical estimates and the distribution predicted by asymptotics
for scan time τ = 20, true source intensity λs = 11, and modeled background intensity λb = 1

to develop specialized expressions for the asymptotic distribution of test statistics

applied to gamma–ray source detection problems.

5.3 Asymptotics for Gamma–Ray Source Detection

The true and modeled distributions in Section 5.1 are more general than required

for gamma–ray source detection problems. This section develops a model and a true

distribution for the specific task of source detection, and uses the model to develop

asymptotic distributions of useful test statistics for detecting a source in background.

5.3.1 True Distribution

In §5.1, we made no assumption about the form of the true distribution of recorded

attributes p (r). In gamma–ray source detection problems, the measurements are

often generated by a mixture of source and background emission processes. We

assume that the true distribution follows the mixture

(5.28) p (r) =
αtstpS(r) + λtbpB(r)

αtst + λtb
,

where pS(r) is the density of recorded attributes given that they originated from the

source, pB(r) is the density of recorded attributes given that they originated from
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the background, αt is the nonnegative true mean number of emitted source counts

per unit time, λtb is the nonnegative true mean number of background counts recorded

per unit time, and st is the true sensitivity, or probability that a photon emitted from

the source is recorded. We adopt a mixture model because the recorded attributes of

events that originate from the source have a different distribution than the attributes

of recorded events that originate from the background. One can derive (5.28) using

the law of total probability. The nonnegative sensitivity st is a function of the

spatial relationship between the source and detector. The quantities αt and λtb are

usually not known in practice, but are needed for simulation. One can estimate st by

simulation for a particular detector geometry, source position, and energy spectrum.

The total mean number of received counts obeys the relation λs = αtst + λtb. The

density p (x) is a probability density function by the nonnegativity of αt, st, and λtb.

We formulate source detection as the hypothesis testing problem:

H1 : αt > 0

H0 : αt = 0.

5.3.2 Model Distribution

We consider a modeled attribute distribution similar to that of [48] for detecting

a source in background. The parameters characterizing the source are the intensity

α with units of counts emitted per unit time and source position3 φ ∈ Φ. In the 3D

far–field with a known source energy, the set Φ could be [0, 2π]× [0, π], representing

all possible azimuth and polar angles on a sphere. We parameterize the background

intensity by the background count rate λb with units of gamma–ray counts recorded

per unit time. Let θ be the vector of all parameters, where θ lies in the d-dimensional

3φ could also denote a vector containing both spatial position and energy



110

parameter space Θ. In what follows, we assume that θ takes the form:

(5.29) θ = (α,φ).

Let the modeled sensitivity s̃(φ) approximate the probability that a photon emitted

from a source positioned at φ is recorded. We model the rate of recorded photons

by

(5.30) λ̃(θ)
4
= λb + αs̃(φ).

We adopt the model in (6.2) because the total rate of recorded photons is the sum

of the recorded count rate due to background λb and the recorded count rate due to

the source αs̃(φ).

Let p̃S(r;φ) denote the modeled distribution of a recorded attribute vector x given

it originated from a source at positon φ and let p̃B(r) denote the modeled distribution

of a recorded attribute vector x given that it originated from the background. Note

that p̃S(r;φ) depends only on the source position, and p̃B(r) does not depend on

any of the parameters in (6.1).

We model the overall distribution of recorded attributes as a mixture of p̃S(r;φ)

and p̃B(r) given by

(5.31) p̃ (r;θ) =
αs̃(φ)p̃S(r;φ) + λbp̃B(r)

αs̃(φ) + λb
.

As in (5.28), p̃ (r;θ) in (6.4) is a valid probability density function when α, s̃(φ),

and λb are nonnegative.

5.3.3 Asymptotic Performance of Source Intensity Test Under Model Mismatch

The source intensity test (SIT) [48] for detecting the presence of a radiation source

of unknown intensity α is given by

(5.32) α̃τ
H1

≷
H0

γ,
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where α̃τ is the QMLE for α. By Theorem V.4, assuming that the regularity condi-

tions are satisfied,

(5.33)
√
τ
(
α̃τ − µ̃[1]

) d→ N
(
0,Σ(µ̃)[1,1]

)
,

as τ →∞, where Σ(θ) is defined in (6.11), [1, 1] denotes the [1, 1] component of the

matrix, and µ̃[1] is the asymptotic mean of α̃τ defined by the first element of µ̃ in

(6.8). Define µ̃(1) to be the solution to (6.8) under H1 and µ̃(0) to be the solution to

(6.8) under H0. Thus, α̃τ is a consistent estimator of µ̃[1] under H1 and a consistent

estimator of µ̃
(0)
[1] under H0. Because of model mismatch, µ̃[1] may not be equal to

the true intensity and µ̃
(0)
[1] may not be zero.

We calculate µ̃
(1)
[1] and µ̃

(0)
[1] by simulating or recording a large number of observa-

tions from the true distribution under H1 and H0 and solving for the QMLE using

(5.4) under both hypotheses. Although obtaining accurate estimates of µ̃
(1)
[1] and µ̃

(0)
[1]

requires many observations, we found that more are required to generate an ROC

empirically with high accuracy. We calculate Σ(µ̃(1)), and Σ(µ̃(0)) using (6.11) and

evaluate the expectations in (6.12) and (6.13) by Monte Carlo integration with data

sampled from the true distribution. One can use these values with (5.33) to predict

the corresponding asymptotic ROC curve.

5.3.4 Asymptotic Distribution of GLRT Under Model Mismatch

The generalized likelihood ratio test (GLRT) is another common detection method

given by [35]

(5.34) ΛGLRT
4
=

p̃(r̃; θ̃τ )

arg maxθ,α=0 p̃(r̃;θ)

H1

≷
H0

γ.
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By a similar argument to that in [78] for a nonrandom number of measurements,

asymptotically as τ →∞,

(5.35) 2 log ΛGLRT ≈ α̃2
τ

(
H̃−1

(
θ̃τ

)
[1,1]

)−1

.

The expression in (5.35) resembles the Wald test [35], which is a variance–normalized

statistic of the ML estimates.

Combining Theorem V.4 with (5.35) and performing algebraic manipulations, we

have that under model mismatch for the GLRT with a scalar parameter and τ large,

(5.36) 2 log ΛGLRT ∼


a(µ̃(1))χ2

1

(
η(µ̃(1)

)
), under H1

a(µ̃(0))χ2
1

(
η(µ̃(0)

)
), under H0,

where χ2
k (η) denotes a noncentral chi–square random variable with noncentrality

parameter η and k degrees of freedom [35], and

(5.37) η(θ)
4
= τα2Σ−1(θ)[1,1],

(5.38) a(θ)
4
=
(

Σ−1(θ)[1,1]H̃
−1 (θ)[1,1]

)−1

.

The result in (5.36) generalizes the result from [35] that the GLRT is asymp-

totically noncentral chi–square under H1 and central chi–square under H0. The

multiplicative factors a(µ̃(1)) and a(µ̃(0)) equal unity in the absence of model mis-

match.

One can use (5.36) to compute the asymptotic area under the ROC curve (AUC) of

the GLRT using Monte Carlo simulation to estimate µ̃(1), µ̃(0), Σ(µ̃(1)), and Σ(µ̃(0)).

Note that a(θ) in (5.38) and η(θ) in (5.37) are functions of a generic parameter

vector θ. When α appears on the right–hand side of (5.37), it represents the first

element of θ, which corresponds to the source intensity parameter α. One can use

the distributions in (5.36) to compute the ROC and AUC.
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5.3.5 Asymptotic Distributions for Gamma–Ray Imaging

The covariance matrix in (5.8) has a specific form when the recorded attributes

are distributed according to the mixture model in (6.4) and the parameter vector has

the form (6.1). In this section, we derive expressions for G̃ (θ) and H̃ (θ) in (6.11).

Let

F̃ (θ) = F̃c(θ)

 K(θ)[1,1]

αK(θ)T
[2,1]

s̃(φ)

αK(θ)[2,1]

s̃(φ)

α2K(θ)[2,2]

s̃2(φ)

 ,(5.39)

where

(5.40) K(θ)[i,j]
4
= E

[
q̃i(r;θ)q̃Tj (r;θ)

p̃2(r;θ)

]
,

q̃1(x;θ)
4
= p̃S(r;φ),

q̃2(x;θ)
4
= ∇φ(s̃(φ)p̃S(r;φ)),

(5.41)

and

F̃c(θ)
4
=

λss
2(φ)

(αs̃(φ) + λb)2
(5.42)

is the scalar Fisher information for a counting detector. In the absence of model

mismatch, F̃ (θ) would simplify to the time–normalized Fisher information matrix

F (θ) for the model (6.3). Let

(5.43) B(θ)
4
=

 0 0

0 αw(θ)

 ,
where

w(θ)
4
= ∇2

φs̃(φ)

(
λs

λ̃(θ)
− 1

)
.
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The matrix B(θ) depends on the degree of model mismatch and is zero when λ̃(θ) =

λs. By algebra, one can show that for gamma–ray imaging detectors,

(5.44) G̃ (θ) = F̃ (θ) ,

and

(5.45) H̃ (θ) = F̃ (θ)− B(θ).

The expression in (5.45) shows that model mismatch can decrease the Fisher in-

formation. This decrease results in increased variance of the parameter estimates

θ̃τ .

In the next section, we evaluate these expressions at θ = µ̃ to explore the detection

performance of various detectors.

5.4 Numerical Results

We applied the asymptotic distributions of test statistics derived in the previous

section to detection performance prediction for gamma–ray measurement systems.

We considered a hypothetical one–dimensional detector and a 3D position–sensitive

Compton detector as example applications of the theory and to show that the theory

accurately predicts empirical performance. Throughout, we refer to the performance

predicted using the asymptotic theory as “predicted performance.” We used the SIT

(6.9) in our experiments because of its simplicity and superior performance in the

absence of model mismatch compared to the GLRT as shown experimentally in [48].

We used the asymptotic distributions to create receiver operating characteristic

(ROC) curves that one can use to set the test threshold and to estimate the prob-

ability of detection for a given false alarm rate. The ROC curve is a plot of the

probability of detection as a function of the probability of false alarm. Each point
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on the ROC is a pair of probability of false alarm and probability of detection values

resulting from a particular choice of the threshold γ in (6.9) for the SIT or (5.34) for

the GLRT. The ROC curve allows one to choose a threshold value γ that results in

the desired false alarm rate.

We also state our results in terms of area under the ROC curve (AUC) [28], which

is a measure of detector performance. The AUC ranges from 0.5 to 1, where 0.5 is

the poorest performance and 1 is the best performance. The AUC is a measure of

overall detectability that does not depend on the threshold γ in (6.9) or (5.34).

Throughout this section, we compare predicted performance accounting for and

ignoring model mismatch. The purpose of this comparison is to illustrate the pitfalls

of applying the asymptotic formulas that do not account for model mismatch in [48]

to problems where model mismatch exists.

In the absence of model mismatch, there exists a parameter vector θtrue such that

λs = λ̃(θtrue) and p̃(r;θtrue) = p (r) for all r ∈ R. In this case, the theory from [48]

states that the maximum likelihood estimator is a consistent estimator of θtrue. When

applying the theory in [48] in this section, we used the incorrect assumption that the

estimates are normally distributed with mean θtrue rather than µ̃. This assumption

is incorrect in the presence of model mismatch, and is one factor that contributes to

the failure of the theory from [48] in the results that follow. In the absence of model

mismatch, Σ(θ) = G̃−1 (θ) = H̃−1 (θ), so we make the substitution Σ(θ) = G̃−1 (θ)

to capture the näıve use of the methods in [48].

To compute the predicted performance, we sampled event attributes from the

true distribution. We generated one list of events with a source present and another

without a source present. We used these lists to compute the asymptotic limits

µ̃(1) and µ̃(0) by numerically solving (6.6). This is justified by the convergence
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result of Theorem V.2, provided that the number of events in the list is sufficiently

large. Although the list must be large enough to obtain an accurate estimate of

the asymptotic limit, the asymptotic method often requires fewer simulated events

to compute the ROC than empirical methods. We also used the lists of recorded

events to evaluate (6.12) and (6.13) by Monte Carlo integration to obtain Σ(µ̃(1))

and Σ(µ̃(0)). In the experiments that follow, we used an equal number of background

events in the two lists. Let Nback be the number of sampled background events in each

scan. The list of recorded events without a source present consists of Nback events

and the list of recorded events with a source present consists of Nback background

events and Nbackα
tst/λtb source events. We use Npred to report the total number

of recorded events used to predict the detection performance using approximations

based on asymptotics, where

(5.46) Npred = Nback(2 + αtst/λtb),

and the αtst/λtb term is due to the source events in the list that contains both source

and background events. We use the relation in (5.46) because Npred is the expected

number of total measurements used to compute the ROC using the proposed method.

We compared the performance predicted by asymptotics to the empirical perfor-

mance to show the accuracy of the proposed method. To calculate the empirical

performance, we simulated a large number of scans with and without the source

present. To simulate a scan, we first drew the number of emitted source counts Jsrc

from a Poisson distribution with mean ταt. We then simulated Jsrc emitted source

photons, recording the attributes of each photon that interacts with the detector.

To simulate the background events for the scan, we drew the number of background

counts Jback from a Poisson distribution with mean τλtb and simulated background

photons until we record the attributes for Jback interactions. For each scan, we com-
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puted the QMLE α̃ by solving (6.6).

We computed the empirical ROC and AUC using the source intensity estimates

for all simulated scans with and without a source. For each value of the threshold in

(6.9), the fraction of source intensity estimates above that threshold when a source is

present is the probability of detection and the fraction of source intensity estimates

above that threshold when a source is absent is the probability of false alarm. We

computed the empirical AUC using the Wilcoxon-Mann-Whitney statistic [82]. Let

Nscans be the number of scans used to compute the ROC. We simulated Nscans scans

with a source present and Nscans scans without a source present. Let Nemp be the

mean number of recorded sample events needed to complete all 2Nscans scans. We

report the mean number of events used to compute an empirical ROC or AUC as

Nemp, where

(5.47) Nemp = Nscansτ(2λtb + αtst).

5.4.1 Source Intensity Test for Simple Gaussian Detector

Setup

We first examine the effects of model mismatch using a hypothetical detector

where the event attributes r obey the mixture model (5.28), where pS(r) = N (ms, σ
2
s ),

and pB(r) = N (mb, σ
2
b). Although the detector response in this example may not

represent a physical system, the tractability of the true attribute distribution allows

one to compare tests using misspecified models with tests using the correct model.

Throughout this experiment, τ = 20, αt = 1, λtb = 5, and st = 1.

The modeled distributions of the source and background attributes are p̃S(r;φ) =

N (m̃s, σ̃
2
s ) and p̃B(r) = N (m̃b, σ̃

2
b). In this simple example, we define the source

position to be φ = ms, which is assumed to be known. Model mismatch occurs when

the modeled and true distributions have different means or standard deviations. We
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used Nemp = Nasym = 2.2×105 events to compute both the asymptotic and empirical

performance.

Results

We first consider the effect of mismatch in the modeled variance. Figure 5.12

shows the AUC of the SIT as a function of the modeled attribute standard deviation

σ̃2 = σ̃2
s = σ̃2

b, where the true standard deviations and means are σ2
s = σ2

b = 1,

mb = m̃b = 0, and ms = m̃s = 1. The AUC accounting for mismatch is highest

when the modeled attribute standard deviation equals the true standard deviation

of one. This represents a correctly specified model for this problem. For small values

of σ̃, the asymptotic AUC is overly optimistic when model mismatch is ignored. As

σ̃ becomes large, the AUC approaches that of a counting detector. The agreement

between the asymptotic AUC accounting for model mismatch and the empirical AUC

demonstrates the accuracy of the proposed method in this scenario.
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Figure 5.12: AUC versus modeled standard deviation σ̃ for true detector response σ2
s = σ2

b = 1,
mb = m̃b = 0, and ms = m̃s = 1, τ = 20, αt = 1, st = 1, and λtb = 5. Error bars denote standard
error.

Next, we considered mismatch in the source mean. Figure 5.13 shows the asymp-

totic AUC of the SIT using the Gaussian detector response defined above as a func-

tion of the modeled attribute mean m̃s. The maximum predicted AUC accounting

for model mismatch in Figure 5.13 is achieved when the modeled and true means are

equal at m̃s = 1. As in the case of standard deviation mismatch in Figure 5.12, the
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asymptotic AUC accounting for mismatch closely agrees with the empirical AUC.
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Figure 5.13: AUC versus modeled source mean m̃s for the true detector response σ2
s = σ2

b = σ̃2
s =

σ̃2
b = 1, mb = 0, and ms = 1, τ = 20, αt = 1, st = 1, and λtb = 5. Error bars denote standard error.

This example shows that mismatch between the attribute variances σ2
s and σ2

b

or the attribute means ms and mb can lead to highly inaccurate detection perfor-

mance predictions when the mismatch is ignored. For large model mismatch, the

actual detection performance can even be worse in terms of AUC than than the

performance of a test that uses only counting statistics, in contrast to the optimistic

predictions that ignore mismatch. The agreement between AUC computed using

the proposed asymptotic method and the empirical AUC shows that the proposed

method accurately predicts true detection performance for this system.

5.4.2 Source Intensity Test for Compton Detector - Monoenergetic Source and Back-
ground

Setup

We used the expressions derived in §5.3.5 to evaluate the AUC for a Compton

imaging detector when the source position φ and background spatial distribution

are assumed known, but the background intensity λb is unknown. The detector

is an idealized parallel–plate Compton camera [55] illustrated in Figure 5.14. We

assumed that the position uncertainty and attenuation due to the finite thickness

of the detector plates are negligible. The detector records positions and energies of

interacting photons that undergo Compton scatter in the first, or scattering detector,
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and either Compton scatter or photoelectric absorption in the second, or absorption

detector. The photoelectric and Compton cross sections for this simulation are equal

to that of CdZnTe. The absorption detector is infinitely large, the scatter detector is

1cm by 1cm, and the plates are separated by a distance d = 0.1 cm. The interaction

positions in both detectors are quantized into 0.1 cm × 0.1 cm pixels. We also added

Gaussian noise with zero mean and standard deviation of 1 keV to the recorded

energies to simulate the effect of electronic noise on the recorded energy.

Figure 5.14: Illustration of parallel–plate Compton detector used for simulation.

The source is a 662 keV point–source located at an azimuth angle of 180 degrees

and an elevation angle of 45 degrees in the far–field. For this experiment, let φ be the

azimuth and elevation angles of the source. We estimated the true sensitivity st for

the chosen source position by simulating 104 emitted source photons and divided the

number of recorded photons by the number of simulated photons. This is justified

because one can show that in the absence of background, J̄/τ converges in probability

to λs = αtst as τ →∞. In this experiment, we assumed that every photon strikes the

scatter detector, but only some interacting photons result in two–interaction events.

We found the true sensitivity under this assumption to be st = 0.44. We model the

sensitivity by its true value.

The true background is monoenergetic with the same energy as the source. Al-

though a monoenergetic background is not realistic, it is useful to study this case
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where energy alone does not differentiate between source and background photons.

Let φ = (θ, φ) be the angular position about the detector in spherical coordinates

with inclination angle θ and azimuth angle φ. When the background is spatially uni-

form in the hemisphere above the detector, the origin direction of a photon emitted

from the background obeys the density

f(θ, φ) =
1

2π
sin θ θ ∈ [0, π/2] φ ∈ [0, 2π].

We model the background as spatially uniform, but simulate uniform and nonuni-

form background emission densities. The difference between the modeled and true

background is a source of model mismatch.

In this example, the attribute vector r for an interacting photon is a 6× 1 vector

containing the x-coordinate, y-coordinate, and recorded energy. When the source

is in the far–field, the x and y-coordinates of the interaction in the scatter (top)

detector are uniformly distributed, and the measured values are quantized to 0.1cm

because the detector is pixelated. The energy deposited in each detector follows the

Klein-Nishina formula [38]. The coordinates of the interaction in the second detector

are a function of the interaction location in the first detector and the Compton

scattering angle of the first interaction. The second interaction is also quantized

to 0.1cm. This true distribution [80] is computationally difficult to compute, so we

use the model proposed in [80], which provides a Gaussian approximation to the

uncertainties induced by detector pixelization.

The goal of this section is to show that the proposed performance prediction

method accounting for model mismatch agrees with the empirical performance. A

predicted ROC that is lies above the the empirical ROC is not desirable because such

a predicted performance is an overly optimistic assessment of the system’s capability.

Reducing model mismatch and improving the statistics of the data will improve the
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empirical ROC. The most desirable scenario is one where the empirical ROC is high

and the predicted ROC agrees with it.

Results for Source Located in Intense Background Region

We first simulate a nonuniform background to demonstrate the accuracy of the

asymptotic predictions in the presence of model mismatch. We draw the origin

direction of each background photon from the density

f(θ, φ) =
sin(2φ+ π/2) + 1.5

3π
sin θ,

θ ∈ [0, π/2], φ ∈ [0, 2π].(5.48)

Figure 5.15 shows the probability density function for the azimuth angle of an incom-

ing background photon. The probability density is uniform in the polar direction.
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Figure 5.15: Probability density of azimuth angle of incoming background photon corresponding to
(5.48).

Figure 5.16 shows the ROC for the true mean number of emitted source counts

αtτ = 60 and known true mean number of recorded background counts λtbτ = 300

with unconstrained source intensity estimates. Source intensity is naturally non-

negative, and one can choose whether or not to enforce that natural constraint on
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the intensity estimates. Intuitively, a negative source intensity is strong evidence

against the presence of a source, but we also found that asymptotic approximations

are less accurate when the source intensity estimate is negative with high probabil-

ity. Although nonphysical, there is no mathematical contradiction when the source

intensity estimate is negative because the modeled likelihood in (6.3) is well-defined

if α and λb are chosen such that p̃ (r;θ) is nonnegative for any observed event r,

even it α is negative.

We used Npred = 208, 782 events to compute the predicted ROC and Nemp =

313, 174 events to compute the empirical ROC. The predicted ROC accounting for

model mismatch is much closer to the empirical ROC than the predicted ROC ig-

noring model mismatch. Even with this small number of source counts per scan,

the asymptotic approximation appears to be reasonable. This result shows that the

proposed asymptotic analysis gives a reasonable approximation of the true ROC in

this case.
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Figure 5.16: Empirical and predicted ROC curves of the SIT with αtτ = 60 counts, λtbτ = 300
counts, unconstrained source intensity estimates, and the source positioned in the most intense
background region. Error bars denote standard error.

Figure 5.17 shows the ROC for the same detection problem as Figure 5.16, except

the source and background intensity estimates are constrained to be nonnegative.

In this scenario, the ROC curves for the SIT with constrained and unconstrained
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estimates are nearly identical.
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Figure 5.17: Empirical and predicted ROC curves of the SIT with αtτ = 60 counts, λtbτ = 300
counts, constrained source intensity estimates, and the source placed in the most intense background
region. Error bars denote standard error.

The asymptotic distributions of the source intensity estimates used to calculate

the ROC in Figure 5.16 are also reasonably accurate approximations of the empirical

distributions. Figure 5.18 shows histograms of the empirical source intensity esti-

mates and the asymptotic probability density functions (we applied scaling to the

density functions to make the units consistent with the histogram). The asymptotic

distributions that account for mismatch fit the empirical distributions reasonably

well.

Figure 5.19 shows histograms of the source intensity estimates used to compute

the constrained ROC curve in Figure 5.17. The histogram with a source present in

Figure 5.19 shows that there are few estimates that are equal to zero, thus the non-

negativity constraint does not affect the distribution of the intensity estimates under

H1. Thus, for any threshold value greater than zero, the probability of false alarm

and probability of detection is not affected much by the nonnegativity constraint.

We also examined the agreement between the predicted AUC and the empirical

AUC as a function of scan time. We expect the agreement between the empirical

and predicted AUC to improve as scan time increases because Theorems V.2 and V.4
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(a) Source Absent (H0)
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(b) Source Present (H1)

Figure 5.18: Histograms and scaled asymptotic probability density functions of source intensity es-
timates where αtτ = 60 counts, λtbτ = 300 counts, and the source is in the most intense background
region.
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(b) Source Present (H1)

Figure 5.19: Histograms and scaled asymptotic probability density functions of source intensity
estimates where αtτ = 60 counts, λtbτ = 300 counts, constrained source intensity estimates, and
the source in the most intense background region
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give convergence results as scan time goes to infinity. Figure 5.20 shows the empirical

and asymptotic AUC versus scan time for source intensity αt = 2 counts/sec and

background intensity λtb = 10 counts/sec. The numbers of events used to compute

the asymptotic and empirical AUC are given by (5.46) and (5.47), respectively, where

Nback = 10, 000 counts and Nscans = 500 counts. In this example, the predicted AUC

approximates the empirical AUC well even for small scan times. In both Figures 5.16

and 5.20, the predicted performance using the proposed expressions that account for

model mismatch are much closer to the empirical performance than the predictions

that ignore model mismatch.
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Figure 5.20: Empirical and asymptotic AUC of SIT vs. scan time τ for αt = 2 count/sec, λtb = 10
counts/sec, and unconstrained source intensity estimates with the source located in the most intense
background region. Error bars denote standard error.

Figure 5.21 shows the AUC as a function of scan time when the source and

background intensities are constrained. The AUC values are similar to the values

computed using unconstrained estimates in Figure 5.20 because the source intensity

estimates are nonnegative with high probability under H1 for the scan times in the

figure.

Results for Source Located in Weak Background Region

We now examine the detection performance when the source is located in a weak

region of a nonuniform background and the background is assumed to be spatially
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Figure 5.21: Empirical and asymptotic AUC of SIT vs. scan time τ for αt = 2 count/sec, λtb = 10
counts/sec, and constrained source intensity estimates with the source located in the most intense
background region. Error bars denote standard error.

uniform. We draw the origin direction of each background photon from the density

f(θ, φ) =
sin(2φ− π/2)− 1.5

3π
sin θ,

θ ∈ [0, π/2], φ ∈ [0, 2π].(5.49)

Figure 5.22 shows the probability density function for the azimuth angle of an in-

coming background photon.
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Figure 5.22: Probability density of the azimuth direction of an emitted background photon where
the source is located at the weakest point.

Figure 5.23 shows the ROC resulting from the SIT with unconstrained source

intensity estimates with a modeled spatially uniform background and a true back-

ground obeying the azimuthal density in (5.49). The asymptotic prediction in this



128

case is very poor because the unconstrained asymptotic limit µ̃ is much less than

zero, and the log–likelihood has a high curvature in this regime. The agreement

between the empirical performance and the performance predicted ignoring model

mismatch is likely a coincidence because the ROC agrees, but the distributions of

source intensity estimates do not.
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Figure 5.23: Empirical and predicted ROC curves of the SIT with αtτ = 60 counts, λtbτ = 300
counts, unconstrained source intensity estimates, and the source positioned in the least intense
background region. Error bars denote standard error.

Figure 5.24 shows the threshold γ for the SIT in (6.9) as a function of the prob-

ability of false alarm. The disagreement between the thresholds in this figure shows

that although the ROCs agree in Figure 5.23, the predicted thresholds do not. In

this case, application of the predictions that ignore model mismatch will result in an

improper threshold choice for the desired false alarm rate.
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Figure 5.24: Threshold γ as a function of the probability of false alarm with the source positioned
in the least background region.
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Figure 5.25 shows the threshold γ for the SIT in (6.9) as a function of the probabil-

ity of detection. As in Figure 5.24, the agreement is poor between the thresholds from

the predictions that ignore mismatch and the empirical predictions. The thresholds

from the predictions that account for mismatch are closer to the empirical thresholds

because the asymptotic approximation to the SIT is better with a source present in

this case.
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Figure 5.25: Threshold γ as a function of the probability of detection with the source positioned in
the least background region.

Figure 5.26 shows the ROC resulting from the SIT with constrained source inten-

sity estimates. As in the unconstrained case in Figure 5.23, the agreement between

the predicted and empirical ROC is poor.
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Figure 5.26: Empirical and predicted ROC curves of the SIT with αtτ = 60 counts, λtbτ = 300
counts, constrained source intensity estimates, and the source positioned in the least intense back-
ground region. Error bars denote standard error.

Figure 5.27 shows the histograms of the unconstrained source intensity estimates
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(a) Source Absent (H0)
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(b) Source Present (H1)

Figure 5.27: Histograms and scaled asymptotic probability density functions of source intensity
estimates where αtτ = 60 counts, λtbτ = 300 counts, unconstrained source intensity estimates, and
the source in the least intense background region.

used to produce the ROC in Figure 5.23. The histogram under H1 in Figure 5.27a

shows that large negative source intensity estimates occur frequently, contrary to the

asymptotic prediction. Note that the predicted distribution ignoring model mismatch

does not appear to fit the empirical distribution better than the predicted distribution

accounting for model mismatch.

Figure 5.28 shows the histogram of the constrained source intensity estimates used

to compute the ROC in Figure 5.26. As in the unconstrained case in Figure 5.27,

the predicted distributions poorly approximate the empirical distribution.

Figure 5.29 shows the AUC as a function of scan time when the source is located

in the weak background region and the source intensity estimates are unconstrained.

The predicted AUC is more accurate than the predicted ROC in Figure 5.23 for large

scan times.
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(a) Source Absent (H0)
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(b) Source Present (H1)

Figure 5.28: Histograms and scaled asymptotic probability density functions of source intensity
estimates where αtτ = 60 counts, λtbτ = 300 counts, constrained source intensity estimates, and
the source in the least intense background region.

Figure 5.30 shows the AUC as a function of scan time when the source is located

in the weak background region and source intensity estimates are constrained. The

predicted performance consistently overestimates the empirical performance, and the

approximation is especially poor for small scan times. The predicted performance

with constrained source intensity estimates approximates the empirical performance

more poorly than when the source intensity estimates are unconstrained in Fig-

ure 5.29.

Results for Source Located in Moderate Background Region

Thus far, we examined detection performance when the source is located at the

most intense and least intense point of a sinusoidal background and the background

is modeled as uniform. In this section, we study the detection performance when the

source is located between the least and most intense points of the background. The
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Figure 5.29: Empirical and asymptotic AUC of SIT vs. scan time τ for αt = 2 count/sec, λtb = 10
counts/sec, and unconstrained source intensity estimates with the source located in the least intense
background region. Error bars denote standard error.
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Figure 5.30: Empirical and asymptotic AUC of SIT vs. scan time τ for αt = 2 count/sec, λtb = 10
counts/sec, and constrained source intensity estimates with the source located in the least intense
background region. Error bars denote standard error.

true distribution of the angle of incoming recorded background photons is

f(θ, φ) =
sin(2φ)− 1.5

3π
sin θ,

θ ∈ [0, π/2], φ ∈ [0, 2π].(5.50)

Figure 5.31 shows the probability density function for the azimuth angle of a recorded

background photon with the source location represented by the dashed vertical line.

We model the spatial background density as uniform, which introduces model mis-

match.

Figure 5.32 shows the ROC when the true background distribution obeys (5.50).

The empirical and predicted ROC accounting for mismatch agree well, and the ROC

predicted ignoring model mismatch overstates the true ROC. The agreement between
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Figure 5.31: Probability density of the azimuth direction of an emitted background photon where
the source is located between the most and least intense points.

the predicted and empirical ROC is much better than when the source is located in

the least intense background region in Figure 5.23
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Figure 5.32: Empirical and predicted ROC curves of the SIT with αtτ = 60 counts, λtbτ = 300
counts, unconstrained source intensity estimates, and the source positioned between the least and
most intense background regions. Error bars denote standard error.

Figure 5.33 shows the ROC under the same conditions, except the source intensity

estimates are constrained. The predicted ROC accounting for mismatch more accu-

rately represents the empirical performance than the predicted ROC ignoring model

mismatch. The agreement between the predicted ROC and the empirical ROC is

not as good as in the unconstrained case in Figure 5.32.

Figure 5.34 shows histograms of the unconstrained source intensity estimates used

to produce the ROC in Figure 5.32. The unconstrained asymptotic limit µ̃, which

appears as the mean of the distribution of the source intensity estimates, is positive
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Figure 5.33: Empirical and predicted ROC curves of the SIT with αtτ = 60 counts, λtbτ = 300
counts, unconstrained source intensity estimates, and the source positioned between the least and
most intense background regions. Error bars denote standard error.

under H1 and H0. The estimates fit the Gaussian approximation much better than

those in Figure 5.27, where the unconstrained asymptotic limit is negative under H0.

The predicted histogram that accounts for mismatch fits the empirical distribution

much better than the predicted histogram that ignores model mismatch.

Figure 5.35 shows histograms of the source intensity estimates with the nonnega-

tivity constraint enforced. As in the unconstrained case in Figure 5.34, the predicted

distribution accounting for model mismatch fits the empirical distribution better

than the predicted distribution that ignores model mismatch.

Figure 5.36 shows the AUC versus scan time when the source is located between

the least and most intense background regions. The predicted AUC accounting for

mismatch approximates the empirical AUC well, and the predicted AUC ignoring

model mismatch overstates the empirical AUC.

Figure 5.37 shows the AUC under the same conditions as Figure 5.36, except the

source intensity estimates are constrained. The agreement between the empirical

and predicted AUC is not as good for small scan times as in the unconstrained case

in Figure 5.36.
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(a) Source Absent (H0)
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(b) Source Present (H1)

Figure 5.34: Histograms and scaled asymptotic probability density functions of source intensity
estimates where αtτ = 60 counts, λtbτ = 300 counts, unconstrained source intensity estimates, and
the source is between the least and most intense background regions.
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(a) Source Absent (H0)
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(b) Source Present (H1)

Figure 5.35: Histograms and scaled asymptotic probability density functions of source intensity
estimates where αtτ = 60 counts, λtbτ = 300 counts, constrained source intensity estimates, and
the source is between the least and most intense background regions.



136

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

Scan time (seconds)

A
U

C

 

 

Predicted ignoring mismatch
Predicted accounting for mismatch
Empirical

Figure 5.36: Empirical and asymptotic AUC of SIT vs. scan time τ for αt = 2 count/sec, λtb = 10
counts/sec, and unconstrained source intensity estimates with the source located between the least
and most intense background regions. Error bars denote standard error.
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Figure 5.37: Empirical and asymptotic AUC of SIT vs. scan time τ for αt = 2 count/sec, λtb = 10
counts/sec, and constrained source intensity estimates with the source located between the least
and most intense background regions. Error bars denote standard error.

Results for Source in Uniform Background

In the previous sections, we examined detection performance when the background

is modeled incorrectly, inducing model mismatch. In this section, both the true and

modeled background spatial distributions are uniform. The probability density for

the azimuth angle of a recorded background photon is given by

f(θ, φ) =
1

2π
sin θ,

θ ∈ [0, π/2], φ ∈ [0, 2π].(5.51)

Figure 5.38 illustrates the density of the azimuth angle of recorded background pho-

tons.

Figure 5.39 shows the predicted and empirical ROC when the background is truly
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Figure 5.38: Probability density of the azimuth direction of an emitted background photon where
the true background is spatially uniform.

spatially uniform and the background model is correct. The predicted ROC accu-

rately approximates the empirical ROC. The predicted ROC accounting for model

mismatch is very close to the predicted ROC ignoring model mismatch. This is

because when the background is modeled correctly, there is little model mismatch.

This shows that the approximations to the system response used in this work and

first stated in [80] have little effect on detection performance.
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Figure 5.39: Empirical and predicted ROC curves of the SIT with αtτ = 60 counts, λtbτ = 300
counts, unconstrained source intensity estimates, and modeled and true backgrounds are spatially
uniform. Error bars denote standard error.

Figure 5.40 shows the ROC under the same conditions, except the source intensity

estimates are constrained. The agreement between the predicted and empirical ROC

is similar to the agreement in the unconstrained case in Figure 5.39.

Figure 5.41 shows histograms of the unconstrained source intensity estimates used
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Figure 5.40: Empirical and predicted ROC curves of the SIT with αtτ = 60 counts, λtbτ = 300
counts, unconstrained source intensity estimates, and modeled and true backgrounds are spatially
uniform. Error bars denote standard error.

to compute the ROC in Figure 5.39. The empirical estimates under H0 in Fig-

ure 5.41a shows that there are more estimates less than −2 than predicted. This

is likely because the asymptotic limit µ̃, which appears as the mean of the pre-

dicted distribution, is near zero, and the log–likelihood has a large curvature for

negative source intensity values. The large curvature of the log–likelihood causes the

asymptotic approximations, which rely on a local quadratic approximation to the

log–likelihood, to be less accurate.

Figure 5.42 shows histograms of the source intensity estimates under the nonneg-

ativity constraint. Enforcing the nonnegativity constraint causes the disagreement

in the left tail of the distributions to be less important because all negative intensity

estimates are truncated to zero.

Figure 5.43 shows the AUC as a function of scan time when the true background

is spatially uniform and the background model is correct. The predicted AUC agrees

well with the empirical AUC, and the agreement improves as scan time increases.

Figure 5.44 shows the AUC under the same conditions as in Figure 5.43, except

the source intensity estimates are constrained. The agreement between the predicted

and empirical AUC is slightly worse than it is in the unconstrained case for small
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(a) Source Absent (H0)
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(b) Source Present (H1)

Figure 5.41: Histograms and scaled asymptotic probability density functions of source intensity
estimates where αtτ = 60 counts, λtbτ = 300 counts, unconstrained source intensity estimates, and
the true and modeled backgrounds are spatially uniform.
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(a) Source Absent (H0)
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(b) Source Present (H1)

Figure 5.42: Histograms and scaled asymptotic probability density functions of source intensity
estimates where αtτ = 60 counts, λtbτ = 300 counts, constrained source intensity estimates, and
the true and modeled backgrounds are spatially uniform.
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Figure 5.43: Empirical and asymptotic AUC of SIT vs. scan time τ for αt = 2 count/sec, λtb = 10
counts/sec, and unconstrained source intensity estimates when the true background is spatially
uniform and the background model is correct. Error bars denote standard error.

scan times, but the difference in agreement is small.
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Figure 5.44: Empirical and asymptotic AUC of SIT vs. scan time τ for αt = 2 count/sec, λtb =
10 counts/sec, and constrained source intensity estimates when the true background is spatially
uniform and the background model is correct. Error bars denote standard error.

Accuracy of Asymptotic Predictions

To support the claim that the proposed asymptotic method for predicting the

ROC and AUC requires less data than empirical methods, we computed various

measures of error and uncertainty of the predicted and empirical AUC with various

numbers of events sampled from the true distribution. We modeled the background as

uniform, but unless stated otherwise, the true background was spatially distributed

according to (5.48), where the background is a sinusoid with two periods in the

azimuth direction and the source is located at a peak of the sinusoid. Recall that the

number of events used to compute the ROC asymptotically Npred, given by (5.46),
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is the number of events used to simulate a list of events from the background and

another list of events containing source and background events. The number of

events Nemp used to compute the ROC empirically is given by (5.47).

We computed all measures of error and uncertainty in this section using the jack-

knife method [20] with 1000 trials. We drew Npred sampled events without replace-

ment from a pool of 10Npred for each trial. We computed the true AUC empirically

using 1,021,956 sampled events.

We examined the root mean square error (RMSE) [59, p. 261] of the AUC pre-

dictions as a measure of average deviation from the true AUC. Figure 5.45 shows the

RMSE of the empirical and predicted AUC as a function of the number of photon

interaction events Npred = Nemp sampled from the true distribution. Figure 5.45

shows that the predicted AUC using the proposed asymptotic method is more reli-

able in terms of RMSE than the empirical AUC, especially for a modest number of

samples. The RMSE of the predicted AUC not accounting for mismatch is higher

than the RMSE of the predicted AUC accounting for mismatch for large numbers of

events because of the bias in the predictions that ignore model mismatch. This bias

is caused by the false assumption that the model is correctly specified.
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Figure 5.45: RMSE of the empirical and predicted AUC vs. the number of samples from the true
distribution where ατ = 20 counts and λtbτ = 200 counts. The true AUC was computed empirically
using 1,021,956 sampled events and the background shape is misspecified.

Figure 5.46 shows the RMSE versus the number of sampled events when the
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background is correctly specified. In this case, the RMSE of the predictions ignoring

mismatch is lower because the method that ignores mismatch does not estimate the

asymptotic mean µ̃. This example shows that if the user knows that the model is

correctly specified, the predictions ignoring model mismatch will be more accurate

on average than predictions that account for model mismatch.
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Figure 5.46: RMSE of the empirical and predicted AUC vs. the number of samples from the true
distribution where ατ = 20 counts and λtbτ = 200 counts. The true AUC was computed empirically
using 1,021,956 sampled events and the background shape is correctly specified.

RMSE is the second moment of the error, and is most meaningful when the higher

moments are small, or the error is approximately Gaussian. We found that the error

was not approximately Gaussian for small numbers of sampled events. Figure 5.47

shows histograms of the predicted and empirical AUC for 1049 sampled events. The

distribution is asymmetrical about the true AUC of 0.81 for both prediction meth-

ods. A distribution that is asymmetrical about its mean has a non–negligible third

moment, and RMSE only measures the second moment of the error. The empirical

histogram in Figure 5.47c appears to be multimodal because of the small number of

events used in the computation.

Figure 5.48 shows histograms of the empirical and predicted AUC for 3881 events.

The distributions in Figure 5.48 appear more Gaussian than the distributions cor-

responding to predictions with 1262 events in Figure 5.47. The predicted AUC in
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Figure 5.47: Histograms of the predicted and empirical AUC using 1049 recorded events. The AUC
values were generated with 1000 jackknife trials, where the AUC was computed with 1049 events
drawn without replacement from a pool of 10490 events for each trial.

Figure 5.48b appears to be more tightly distributed about the true AUC of 0.81 than

the empirical AUC in Figure 5.48c, which is consistent with the observation of lower

RMSE of the predicted AUC in Figure 5.45.

Figure 5.49 shows histograms of the empirical and predicted AUC for 53129 events.

The distributions appear to fit a Gaussian distribution and have lower variance than

the distributions with fewer events in Figures 5.48 and 5.47. The predicted AUC

in Figure 5.49b is slightly more concentrated about the true AUC of 0.81 than the

empirical AUC in Figure 5.49c.

Since the error of the AUC prediction is not well–approximated by its first and

second moments with a small number of sampled events, we chose to examine the

probability that the error exceeds 5% of the true value. For each number of sampled
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Figure 5.48: Histograms of the predicted and empirical AUC using 3881 recorded events. The AUC
values were generated with 1000 jackknife trials, where the AUC was computed with 3881 events
drawn without replacement from a pool of 38810 events for each trial.

events, we estimate the probability of error

pe
4
= Pr

(
|AUCmeasured − AUCtrue|

AUCtrue

)
< 0.05,

where AUCmeasured is the empirical or predicted AUC and AUCtrue is the true AUC.

Figure 5.50 shows estimated value of the probability of error pe as a function of the

number of sampled events when the background shape is misspecified. Figure 5.50

shows that the predicted method results in a lower probability of error than the

empirical method, but the difference is not as dramatic as the difference in the

RMSE in Figure 5.45.

Figure 5.51 shows the probability of error when the background is correctly speci-

fied. As in the RMSE case, the predicted AUC ignoring model mismatch has a lower

probability of error for a fixed number of events.
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Figure 5.49: Histograms of the predicted and empirical AUC using 53129 recorded events. The
AUC values were generated with 1000 jackknife trials, where the AUC was computed with 53129
events drawn without replacement from a pool of 531290 events for each trial.

The RMSE and probability of error characterize the distribution of the error of the

AUC predictions, which depends on an estimate of the true AUC. We now consider

measures of uncertainty in the AUC predictions that depend on the uncertainty in

the predictions themselves rather than the deviation from the truth. We assume that

the true background is spatially uniform and the model is nonuniform and given by

(5.48). Figure 5.52 shows the standard deviation of the predicted and empirical AUC

as a function of the number of sampled events Npred = Nemp. The predicted AUC has

a lower standard deviation than the empirical AUC, especially for a small number

of sampled events.

We also considered the interquartile spread of the predicted and empirical AUC in

Figure 5.53 since standard deviation only depends on the first and second moments of
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Figure 5.50: Estimated value of pe, the probability that the error between the predicted and true
AUC exceeds 5 vs. the number of samples from the true distribution where ατ = 20 counts and
λtbτ = 200 counts. The true AUC was computed empirically using 1,021,956 sampled events and
the background is misspecified.
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Figure 5.51: Estimated value of pe, the probability that the error between the predicted and true
AUC exceeds 5 vs. the number of samples from the true distribution where ατ = 20 counts and
λtbτ = 200 counts. The true AUC was computed empirically using 1,021,956 sampled events and
the background shape is correctly specified

the distribution. The interquartile spread of the predicted AUC is consistently lower

than the interquartile spread of the empirical AUC, and the benefit of the proposed

prediction method is more pronounced for smaller numbers of sampled events.

The experiments in this section show the utility of asymptotic approximations

for AUC prediction with gamma–ray detectors. We considered measures of error

and uncertainty in the predictions themselves. The proposed prediction method

outperformed empirical AUC computation with every measure of error or uncertainty

that we considered.

The benefits of asymptotic approximations for AUC prediction are not limited to
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Figure 5.52: Standard deviation of predicted and empirical AUC vs. the number of samples from
the true distribution where ατ = 20 counts and λtbτ = 200 counts.

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

Number of sampled events

A
U

C
 IQ

 S
pr

ea
d

 

 
Empirical
Predicted accounting for mismatch
Predicted ignoring mismatch

Figure 5.53: Interquartile spread of predicted and empirical AUC vs. the number of samples from
the true distribution where ατ = 20 counts and λtbτ = 200 counts.

lower error and uncertainty. We also observed in our experiments that the asymptotic

predictions required less computation time than the empirical methods. Also, the

values of the asymptotic limit in (6.8) and variance in (6.12) and (6.13) are useful for

determining the degree of model mismatch. For instance, if the asymptotic covariance

matrices G̃ (θ) and H̃ (θ) in Theorem V.4 are identical and the asymptotic limit µ̃

is close to the value one would expect from one’s knowledge of the detector and

environment, one can conclude that there is little model mismatch. Furthermore,

one can use (5.39) to verify that the asymptotic covariance matrices scale linearly

with the scan time τ , so one only needs to compute the computationally costly Monte

Carlo integrations in (5.40) once to obtain performance predictions for multiple scan

times. The empirical AUC computation method does not scale conveniently with
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the scan time τ , so one would need to perform a complete computation for each scan

time considered.



CHAPTER VI

Application of Asymptotic Detection Performance
Prediction to Real Systems

In Chapters IV and V, we developed asymptotic approximations for the distri-

butions of likelihood–based estimators and used those approximations to predict

detection performance. We showed that these approximations are reasonable with

simulated and idealistic detectors. The simulation results do not demonstrate that

the proposed method can accurately predict the performance of real detectors. In

this chapter, we show that the performance prediction method that accounts for

model mismatch developed in Chapter V can accurately predict source detection

performance with a real Compton imaging system.

In addition to demonstrating the practical utility of the asymptotic performance

predictions of Chapter V, this work serves as an example application of the asymp-

totic performance prediction method to practical problems. We use the asymptotic

method to predict the probability of detection as a function of scan time with a fixed

false–alarm rate for various source–to–background ratios. These examples demon-

strate how the asymptotic performance prediction method can be applied to evaluate

the performance of real detectors in the field.

Previous work has focused on computing the detection performance in terms of

the ROC empirically, e.g., [66, 76]. We showed in Chapter V that the asymptotic

149
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performance prediction method yields more accurate AUC predictions in terms of

mean–square error than empirical methods, especially when few measurements are

available. To our knowledge, this work is the first to apply the asymptotic perfor-

mance prediction method to characterize the performance of the source detection

task with a real gamma–ray imaging system.

Demonstrating the accuracy of the asymptotic performance prediction method

with real data is significant because there is more model mismatch than in the sim-

ulated case. For example, Doppler broadening [38] is not simulated in Chapter V.

Room–temperature pixellated semiconductor detectors, including the detectors used

in this work [30], have an area near the anode where interacting photons are not

detected. To simplify computation, the model used in this work, based on [80], does

not account for this non–ideal detector behavior. Furthermore, crystal defects can

cause errors in the measured interaction positions that are not accounted for by the

model. Our results show that the asymptotic prediction method is reasonably ac-

curate in the scenarios considered despite the system response approximation and

failure to account for all non–ideal detector behavior.

The contributions of this work are: (i) to show that the asymptotic performance

prediction method developed in Chapter V gives reasonable predictions with a real

system, (ii) to illustrate practical uses of this method, and (iii) to provide represen-

tative detection performance figures for a real CdZnTe gamma–ray imaging system.

This chapter is organized as follows: §6.1 describes the experimental setup, §6.2

shows predicted and empirical performance of the detector for various tasks, and

§6.3 gives our conclusions.



151

6.1 Methods

We recorded gamma–ray interaction data with a Compton imaging system con-

sisting of an 18 detector CdZnTe array similar to the system described in [83]. We

obtained list–mode measurements of the natural background in a room with con-

crete walls, and measurements in the same position with a Cs-137 source located

1.83 meters from the front of the detector. We use the events obtained from these

measurements to evaluate the source detection performance of the system.

6.1.1 Measurement Model

There are many aspects of the gamma–ray source detection problem that one

can model. The system model and sensitivity are necessary for the likelihood–based

detection methods used in this work. We also model the background spatial and

energy distributions because this improves detection performance when the modeling

is reasonably accurate. Background modeling is beneficial in applications where the

detector and environment are stationary.

Model Parameters

There are several parameters that characterize the gamma–ray source detection

problem. We characterize the source by its intensity α with units of counts emitted

per unit time and position1 φ ∈ Φ. In the 3D far–field with a known source energy,

the set Φ could be [0, 2π]× [0, π], representing all possible azimuth and polar angles

on a sphere. We parameterize the background intensity by the background count

rate λb with units of gamma–ray counts recorded per unit time. We assume that the

background spectrum is known. Let θ be the vector of all parameters, where θ lies

in the d-dimensional parameter space Θ. In what follows, we assume that θ takes

1φ could also denote a vector containing both spatial position and energy
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the form:

(6.1) θ = (α,φ, λb),

for which d = 3. Throughout this work, we assume that the source position in space

and energy φ is known, and λb can be either known or unknown. Let the modeled

sensitivity s̃(φ) approximate the probability that a photon emitted from a source

positioned at φ is recorded. We model the total rate of recorded photons by the sum

of the rates of recorded source and background photons

(6.2) λ̃(θ)
4
= λb + αs̃(φ).

System Model

We use the model given in in [50] to describe the system used in this work. Let r

be a vector of recorded attributes associated with a single photon interaction. In a

position–sensitive Compton detector, the attribute vector r contains the interaction

positions and deposited energies for a single interacting photon. In fixed–time mode,

the number of recorded photons J is reasonably modeled as a random variable, where

J ∼ Poisson(J̃(θ)). The mean number of recorded photons J̃(θ) is given by

J̃(θ)
4
= λ̃(θ)τ,

where τ is the scan time. Let r̃ = [r1, r2, . . . , rJ ] be a list of the recorded attributes

for all interacting photons during a fixed–time scan. By the statistics of list–mode

data [4], a reasonable model for the list of recorded attributes r̃ is

(6.3) p̃ (r̃;θ)
4
= e−τλ̃(θ)[τ λ̃(θ)]J/J !

J∏
j=1

p̃(rj;θ).

We model the probability density of the individual recorded attributes p̃ (r;θ)

using the approximate model in [80], which makes approximations to achieve com-
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putational efficiency. We use this approximate model because it results in reasonable

detection performance and is much faster than computing the true density exactly.

Let p̃S(r;φ) denote the modeled density of a recorded attribute vector r given it

originated from a source at position φ and let p̃B(r) denote the modeled density of a

recorded attribute vector r given that it originated from the background. Note that

p̃S(r;φ) depends only on the source position, and p̃B(r) does not depend on any of

the parameters in (6.1).

We model the overall distribution of recorded attributes as a mixture of p̃S(r;φ)

and p̃B(r) given by

(6.4) p̃ (r;θ) =
αs̃(φ)p̃S(r;φ) + λbp̃B(r)

αs̃(φ) + λb
.

Sensitivity Model

We computed the sensitivity model s̃(φ) by simulating the detector system in

a uniform background using GEANT4 [1]. We used simple back projection [79] to

reconstruct the sensitivity as a function of position and energy. We normalized the

sensitivity so the sensitivity to the source at its true position and energy is one. This

method of computing the sensitivity is approximate and it too may be a source of

model mismatch.

Background distribution

The simulated results in [50] assumed a monoenergetic source and background.

The natural radiation background is polyenergetic, so we discretize the energy spec-

trum into 80 uniformly–spaced bins from 0keV to 2000 keV. We assume that the

source is monoenergetic and that its energy is known. We assume that the shape of

the background spectrum is known, and perform detection with and without the as-

sumption that its intensity is known. We examine the performance difference between
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a uniform spectral model and a spectral model based an independent measurement

of the same environment.

We measured the natural background using 10,000 recorded background photons

with two or more interactions. We used an expectation maximization (EM) algorithm

[17] to reconstruct the emission density as a function of energy. Figure 6.1 shows the

reconstructed background spectrum.
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Figure 6.1: Intensity versus energy reconstructed from 10,000 recorded events from the natural
background.

Let p̃ (φ|B) be the probability of the incoming position and energy φ of a back-

ground photon. The source detection model assumes that the background emission

density is uniform in space, but varying in energy. Let f(φ) be the measured intensity

of the background. We have that [4]

(6.5) p̃ (φ|B) =
f(φ)s̃(φ)∫

Φ
f(φ)s̃(φ)dφ

.

We evaluate (6.5) numerically to compute p̃ (φ|B). Figure 6.2 shows the modeled

probability density of recorded energy given that the photon originated from back-

ground p̃ (φ|B) computed using the measured background intensity from Figure 6.1

and (6.5).

Figure 6.3 shows the modeled probability of the recorded energy given that it

originated from the background under the assumption that the recorded energies are

uniform. Use of this model will introduce model mismatch.
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Figure 6.2: Estimated probability density function for the incident energy of recorded background
photons. This density was estimated using 10,000 recorded events from the natural background.
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Figure 6.3: Uniform incident background energy model.

6.1.2 Detection Methods

We analyze the performance of the source intensity test (SIT) [48] applied to the

gamma–ray source detection problem. The SIT is based on the quasi maximum–

likelihood (QML) estimate for the source intensity. A QML estimator is equivalent

to the ML estimator if the modeled distribution of the observations is equal to the

true distribution. The QML estimate for the parameter vector θ is defined as [78]

θ̃τ
4
= arg max

θ∈Θ
log p̃(r̃;θ).(6.6)

We use the SIT because experiments showed that its performance was superior to

the generalized likelihood ratio test (GLRT) when applied to simple systems [48].

In the absence of model mismatch, the parameter estimate vector θ̃τ converges in

probability to the true parameter values as the scan time goes to infinity. However,
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when model mismatch is present, the estimates may converge to some value that is

not the true parameter. For example, when there is no source present, the true source

intensity is zero, but model mismatch may cause the source intensity estimate to

converge to some nonzero value. To precisely define the value to which the parameter

estimates converge, we first define the expected log–likelihood by

f̃ (θ)
4
= E [log p̃ (r̃;θ)] =

∫
R

log p̃ (r̃;θ) p (r̃) dr̃,(6.7)

where the expectation is with respect to the true distribution and R is the set of

all lists of recorded attributes. The parameter estimates converge to the asymptotic

mean, which is given by

(6.8) µ̃
4
= arg max

θ∈Θ
f̃ (θ) .

The asymptotic mean is an important component of the performance prediction

method.

Let αt be the true source intensity which is unknown in practice. The objective of

the SIT is to determine whether a source is present (H1) or a source is absent (H0),

i.e.,

H1 : αt > 0

H0 : αt = 0.

The source intensity test (SIT) [48] for detecting the presence of a radiation source

of unknown intensity α is given by

(6.9) α̃τ
H1

≷
H0

γ,

where α̃τ is the QMLE for α, which is the first element of θ̃τ , and γ is a threshold

chosen by the user to obtain the desired false alarm rate. The user postulates that



157

a source is present, or H1 is true, when the source intensity estimate α̃τ is greater

than the threshold γ. The distribution of α̃τ determines the threshold value that

satisfies the desired false alarm rate, but the distribution of α̃τ is intractable in the

gamma–ray imaging problem.

6.1.3 Performance Measure

We state our results in terms of the probability of detection as a function of scan

time in contrast to previous works that state performance prediction [48, 50, 76] in

terms of ROC and the area under the ROC curve (AUC). We choose to fix a false

alarm probability and examine how the probability of detection varies as a function

of scan time because the probability of detection is arguably more important to the

practitioner than the AUC.

6.1.4 Performance Prediction

We predict the ROC by approximating the distribution of α̃τ , justified by Theo-

rems 1 and 2 of [50], by

(6.10) α̃τ
approx∼ N

(
µ̃[1],

1

τ
Σ(µ̃)[1,1]

)
,

where µ̃[1] is the first element of µ̃, which corresponds to the asymptotic mean of the

source intensity. The covariance is

Σ(θ)
4
= H̃−1 (θ) G̃ (θ) H̃−1 (θ) ,(6.11)

where [50]

G̃ (θ)
4
= λsE

[(
∇θ log p̃ (r;θ) +∇θ log λ̃ (θ)

)
(
∇θ log p̃ (r;θ) +∇θ log λ̃ (θ)

)T ]
,(6.12)
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and

(6.13) H̃ (θ)
4
= −λs∇2

θ log λ̃(θ) +∇2
θλ̃(θ)− λsE

[
∇2
θ log p̃ (r;θ)

]
,

∇θ is the column gradient with respect to θ, ∇2
θ is the Hessian with respect to θ,

λs is the true recorded count rate, and expectations are with respect to the true

distribution. If the source position φ and background intensity λb are known, then

Σ(θ), G̃ (θ), and H̃ (θ) are scalar, otherwise they are matrices.

6.1.5 Procedure for computing predicted performance

We used the following procedure to apply the asymptotic approximation in (6.10)

for detection performance prediction.

1. Obtain N recorded events with a source placed d meters from the detector at

an azimuth angle φs and polar angle θs in a coordinate system centered at the

detector, and (φs = 0o, θs = 90o) is the vector pointing from the front of the

detector.

2. Evaluate the asymptotic mean µ̃[1] by solving (6.6) using the recorded events.

3. Evaluate the asymptotic covariance Σ(µ̃) using (6.11), (6.12), and (6.13). Use

Monte Carlo integration with the recorded data to evaluate the expectations,

e.g., for i.i.d. random variables Xi, i = 1, 2, . . . , N with density functions p(x)

and a function f(x),

E [f(x)] ≈ 1

N

N∑
i=1

f(Xi).

4. Compute the true count rate λs by averaging the count rate over two hours.

5. Obtain N recorded events with the detector in the same position as step 1 but

without a source present.
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6. Repeat steps 2-4 in the absence of a source.

7. Use the computed asymptotic means and covariances to compute the approxi-

mate distribution of α̃τ with and without a source present.

8. Use the approximate distributions to compute the probabilities of false alarm

and detection.

In this work, we use N = 10, 000, d = 1.83m, φs = 0o, and θs = 90o.

6.1.6 Source Intensity Variation

We recorded data with and without a source present to predict detection perfor-

mance. We achieved the desired source–to–background ratio by combining events

from the measurements with and without a source. For example, the measurements

of a Cs-137 source placed 1.83 meters from the detector contain approximately 48%

source events and 52% background events. We observed the recorded background

count rate λb to be approximately 9114 counts per minute using a measurement of

90.7 hours. The observed count rate of the measurement containing both source and

background events is 18984 counts per minute, which we obtained from a measure-

ment of 121 minutes. We combined events from the lists obtained with and without

a source explore a range of source–to–background ratios.

6.1.7 Conventional Method for Empirical Calculations

We compared the predicted performance to the empirical performance in terms of

probability of detection, or equivalently, ROC. This method is similar to the method

used in [76], [50], and [48]. We used the following procedure compute the empirical

performance:

1. Repeat Ne times with a source present and Ne times without a source present:
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(a) Draw the number of recorded source counts from a Poisson distribution with

mean ταtst, where αt is the true source intensity, st is the true sensitivity,

and ταtst is the mean number of received counts from the source.

(b) Draw the number of recorded background counts from a Poisson distribution

with mean equal to the mean number of recorded background counts τλb.

(c) Generate a list of events that contains ταtst source counts and τλb back-

ground counts using the recorded events in the presence and absence of a

source. Combine the events from the measurements with and without a

source to achieve the proper mean number of source counts.

(d) Solve (6.6) using the list generated in the previous step.

2. Use the empirical source intensity estimates obtained in step 4 to compute the

empirical probabilities of detection and false alarm.

We computed the empirical performance by emulating Ne = 100 scans with a source

present and Ne = 100 scans without a source present.

This empirical calculation method requires the emulation of 200 scans for each

point on the graph of probability of detection versus scan time. In contrast, the

asymptotic prediction method based on (6.10) requires one computation with ap-

proximately 20,000 recorded events for all scan times because the asymptotic mean

is invariant to scan time and the asymptotic covariance in (6.11) scales as the in-

verse of the scan time. Thus, computing detection performance as a function of scan

time with the asymptotic prediction method requires much less computation than

computing the performance empirically.
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6.2 Results

We computed the probability of detection as a function of scan time when the

source position, source energy, and background spectrum are assumed known. We

examined the case of a known and unknown background intensity and investigated

how inaccuracies in the background spectral model affect detection performance.

We found that the performance predicted using (6.10) agreed well with the empirical

performance in the known background case. In the unknown background case, the

agreement between the theoretical and empirical predictions is not as good as in the

known background case.

6.2.1 Cs-137 with measured background spectrum and known background intensity

We first examined the problem of detecting a Cs-137 source when the background

spectrum is modeled by the measured background spectrum in Figure 6.2, and the

background intensity is assumed known. Figure 6.4 shows the probability of detection

as a function of scan time for probability of false alarms of 5% and 10% with source

intensities of 7.6 counts per second and 15.2 counts per second. We use large false

alarm rates so the system can achieve a probability of detection near one in less than

ten seconds. One could apply this theory to obtain predicted performance for lower

false alarm rates. The background intensity is 152 counts per second. The agreement

between the empirical and predicted probability of detection is better with the higher

source intensity for both false alarm rates. This is likely due to the fact that the

Gaussian approximation for the distribution of the source intensity estimate (6.10)

improves as the number of recorded counts increases [50].

Figure 6.5 shows the probability of detection versus scan time for source inten-

sities of 7.6 and 15.2 counts per second with a false alarm rate of 10%. The three
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(a) Probability of false alarm: 5%
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(b) Probability of false alarm: 10%

Figure 6.4: Probability of detection versus scan time for detecting a Cs-137 source in a natural
background with intensity 152 counts per second using an 18 detector CdZnTe array with various
false alarm rates and source intensities. The background shape and intensity are assumed known
and the background shape is modeled using a prior spectral measurement.
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curves in each graph correspond to the performance achieved when using all imag-

ing and spectral information, spectral information only, and the number of recorded

counts only. The detector used in this experiment records positions and energies of

all interacting photons, and the performance using all imaging information takes all

of this information into account. We obtained the performance using spectral infor-

mation by only parameterizing the source energy and not its position. We eliminated

the parameterization with respect to position by numerically integrating the likeli-

hood with respect to position over the sphere surrounding the detector. The spectral

information case essentially disregards the information from the recorded positions

in the detector. We computed the performance using counting only by considering

the Gaussian approximation to the distributions of the source intensity estimates

obtained using only the number of recorded counts. The counting case essentially

disregards all information except the number of recorded counts.

Figure 6.5 shows that using imaging information results in the best detection per-

formance with both source intensities. The increase in probability of detection over

the spectral and counting cases is more when the source intensity is lower. For both

source intensities, the performance difference between the case of spectral informa-

tion and imaging information is small. The estimation problem is much simpler when

only spectral information is used. In this experiment, there are 324 position bins and

80 energy bins, so the imaging case requires 324 times more computation. There may

be practical applications where the slight decrease in performance is justified by the

reduced computation when the source position and energy are known.

As in Figure 6.4, the agreement between the predicted and empirical performance

is better for the higher source intensity for small scan times. As scan time increases,

the empirical and predicted performance agree well.
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(a) Source intensity: 7.6 counts/sec
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(b) Source intensity: 15.2 counts/sec

Figure 6.5: Probability of detection versus scan time for detecting a Cs-137 source in a natural
background with intensity 152 counts per second at a false alarm rate of 10% using an 18 detector
CdZnTe array with imaging and spectral information, spectral information only, and counting
information only. The background shape and intensity are assumed known and the background
shape is modeled using a prior spectral measurement.
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(a) Probability of false alarm: 5%
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(b) Probability of false alarm: 10%

Figure 6.6: Probability of detection versus scan time for detecting a Cs-137 source in a natural
background with intensity 152 counts per second using an 18 detector CdZnTe array with various
false alarm rates and source intensities. The background shape is assumed known and is spectral
measurement, but the background intensity is assumed unknown.

6.2.2 Cs-137 with measured background spectrum and unknown background inten-
sity

We also examined the problem of detecting a Cs-137 source in background when

the background spectrum is modeled by the measured background spectrum in Fig-

ure 6.2, but the background intensity is unknown and estimated. Figure 6.6 shows

the probability of detection as a function of scan time with a background inten-

sity of 152 counts per second. The predicted and empirical performance values are

lower than in the known background case of Figure 6.4, which is expected since we

introduced a nuisance parameter.

The agreement between the predicted and empirical probability of detection is

poorer in the unknown background case than in the known background case. Fig-

ure 6.7 shows histograms of the empirical source intensity estimates with and without
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(b) Source Present (H1)

Figure 6.7: Histograms of source intensity estimates and predicted distributions for scan time τ = 2
and source intensity αt = 15.2

a source present when the scan time τ = 2 and the source intensity is 15.2 counts

per second. The empirical performance is based on the empirical histogram and

the predicted performance is based on the predicted distribution. The histograms

in Figure 6.7 do not agree well with the predicted distributions because the scan

time is too small for the predicted distribution, to be accurate. The accuracy of

the predicted distribution increases as scan time increases because it is based on an

asymptotic approximation [50].

Figure 6.8 shows empirical histograms and predicted distributions when the scan

time τ = 10. The distribution agrees better under H1 than it did with scan time

τ = 2, but the histogram under H1 shows that the empirical distribution has a lower

variance than predicted, causing the empirical performance to be better than the

predicted performance. The poor agreement between the empirical and predicted

distributions is likely because the predicted distribution is less accurate for small

scan times when the background intensity is unknown. Our results only use 100

scans with and without a source, and one may obtain better agreement by using a
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(a) Source Absent (H0)
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(b) Source Present (H1)

Figure 6.8: Histograms of source intensity estimates and predicted distributions for scan time τ = 10
and source intensity αt = 15.2

larger number of trial scans.

Figure 6.9 shows the probability of detection as a function of scan time for a prob-

ability of false alarm of 10% with position, spectral, and counting information. In the

unknown background case, the predicted performance using counting statistics as-

sumes a known background intensity because the source and background intensities

cannot be estimated otherwise. The performance using imaging and spectral infor-

mation in an unknown background is better than the performance of the counting

method, even though the counting method assumes a known background.

The difference in performance between the imaging, spectroscopy, and count-

ing cases is more pronounced with the weaker source in Figure 6.9a. Even when

the source intensity is 15.2 counts per second in Figure 6.9b, the performance with

imaging information in an unknown background is still better than the performance

using counting statistics only in a known background. However, the performance

using spectroscopy only is worse than the performance using counting statistics only

when the source–to–background ratio is high.
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(a) Source intensity: 7.6 counts/sec
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(b) Source intensity: 15.2 counts/sec

Figure 6.9: Probability of detection versus scan time for detecting a Cs-137 source in a natural
background with intensity 152 counts per second at a false alarm rate of 10% using an 18 detector
CdZnTe array with imaging and spectral information, spectral information only, and counting
information only. The background shape is assumed known and is modeled using a prior spectral
measurement, but the background intensity is assumed unknown.
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Figure 6.10: Probability of detection vs. scan time with an estimated background spectral model
and a uniform background spectral model. The background intensity is known, the source intensity
is 7.6 counts per second, the background intensity is 152 counts per second, and the probability of
false alarm is 10%

6.2.3 Effect of incorrect modeled background spectrum

We also explored the robustness of the SIT to changes in the modeled background

spectrum. The background spectrum may change over time or if the detector is

moved to a new location, making it difficult to acquire a background spectrum esti-

mate that will be accurate at all times. Figure 6.11 shows the probability of detection

as a function of scan time when the background spectrum is modeled using the es-

timated spectrum in Figure 6.2 and the uniform spectrum in Figure 6.3 when the

background intensity is known.

Figure 6.11 shows that the predicted performance does not change significantly

when the background spectral model is changed. This is likely because the source

energy is known to be 662 keV.

Figure 6.11 shows the probability of detection as a function of scan time for the

estimated and uniform background models with an unknown background intensity.

The difference between the predicted performance curves is also negligible in this

case. However, the empirical predictions are better when the estimated spectral

model is used and the scan time is small, causing the predicted performance to be a

poor approximation.
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Figure 6.11: Probability of detection vs. scan time with an estimated background spectral model
and a uniform background spectral model. The background intensity is unknown, the source inten-
sity is 7.6 counts per second, the background intensity is 152 counts per second, and the probability
of false alarm is 10%

The comparison between the estimated and uniform spectral models shows that

the SIT is robust to the background spectral model when the source position and

isotope are known.

6.3 Conclusions for Real Data Analysis

In this chapter, we applied the asymptotic detection performance prediction method

developed in Chapter V to performance prediction of a real system with real recorded

data. Our results showed that the asymptotic prediction method accurately predicts

detection performance for modest scan times. The prediction accuracy was higher

when the background intensity is known, which is in contrast to the simulation results

in Chapter V, where the prediction method worked nearly well when the background

intensity was unknown.

We also found that the array of 18 CdZnTe detectors outperformed a counting de-

tector of equal sensitivity even when the background intensity is unknown. We showed

that the imaging information, or parameterization of the source direction relative to

the detector, improved detection performance more when the source intensity is low.

This chapter serves as an example application of the theory of Chapter V to
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performance characterization of real systems. Our results show that the asymptotic

performance prediction method gives reasonably accurate performance predictions

that one can use to determine sensor placement, configuration, or viability.



CHAPTER VII

Summary Future Work

7.1 Summary

This work summarizes our research on image reconstruction and source detec-

tion with position–sensitive gamma–ray detectors. We investigated and proposed

new methods for image reconstruction and source detection performance prediction.

These contributions address the need for algorithms for detecting and locating radi-

ation sources with position–sensitive gamma–ray detectors.

We first examined a penalized–likelihood approach to image reconstruction with

position–sensitive detectors. We investigated penalty functions that encourage spar-

sity in the pixel basis because radiation sources are typically small in space. We

found that the standard penalty functions used with Gaussian data do not yield

useful solutions with well–modeled list–mode data from gamma–ray detectors. We

proposed a penalty function based on the sum of the logarithms of the pixel values

that proved to yield images that are sparse in the pixel basis. We also found that

these images are difficult to use for detecting a source, which motivated our study of

detection performance.

We used asymptotic analysis, which employs statistical approximations when the

scan time is large, to quantify the benefit of position–sensitive capability and approx-
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imate detection performance. To compare position–sensitive detectors to their less–

costly photon–counting competitors, we used asymptotics to prove that position–

sensitive capability always improves detection performance when the scan time is

large and the detector sensitivity is uniform. When sensitivity is nonuniform, we

provided expressions that allow the practitioner to compare the performance of two

detectors.

We also used asymptotic analysis to provide a method for detection performance

prediction that is more computationally efficient than empirical performance predic-

tion. Our method accounts for model mismatch because position–sensitive detectors

are typically difficult to model accurately and in a computationally efficient man-

ner. The method is based on an extension [78] to the case of a Poisson number of

measurements. We showed that the asymptotic prediction method reasonably agrees

with empirical calculations with simulated data. We also showed that the asymptotic

prediction method gives reasonable performance predictions for a real system using

real recorded data.

7.2 Future Work

This section outlines some ideas that we did not have time to explore and may

prove fruitful in future work.

7.2.1 Unknown source position

The experiments in this work assume that the source position is known. The

theory developed in Chapters IV and V is general enough to accommodate the un-

known position case when the parameter space is continuous. The parameter space is

naturally continuous in the gamma–ray imaging problem, but it is typically coarsely

discrete in practice due to computational limitations. Future work would investigate
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the accuracy of performance prediction when derivatives are taken numerically in the

discrete case and when the derivatives of the system response function with respect

to position are calculated analytically.

7.2.2 Unknown isotope

The experiments in this work assume that the source isotope is known. The

theory developed in this work is not general enough to account for a discrete param-

eter space. The unknown isotope case is different from the unknown position case

because the set of possible isotopes is not a set of samples from a corresponding con-

tinuous space. The asymptotic distribution of the isotope intensity is uninteresting

because the isotope estimate converges in distribution to a degenerate random vari-

able. Future work would investigate another method of approximating the discrete

distribution of the isotope estimates for finite sample sizes.

7.2.3 Sensor networks

The experiments in this work focused on systems where the sensors are con-

centrated in one location, but the theory is general enough to analyze distributed

networks of sensors. In this case the recorded attributes could include a sensor’s

identifier and geographic coordinates in addition to any photon interaction attributes

recorded by the sensor. Future work would use the asymptotic performance predic-

tion method to show how detection performance scales as the number of sensors

increases and how performance varies as a function of sensor position.

7.2.4 Moving source or detector

The experiments in this work assume that the detector is stationary, but the

theory is general enough to analyze scenarios where the source or detector is moving.

In this case, the recorded attributes would include the detector and source position,
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assuming the source position is estimated by a separate system, such as an optical

camera. Future work would examine how detection performance varies as a function

of the relative speed between the source and the detector.

7.2.5 Additional sources of model mismatch

We used an incorrect background shape model as a source of model mismatch in

our simulated results. Model mismatch is present in the real data results because of

the simple background model and approximation of the detector response. Future

work will explore other sources of model mismatch, such as mismatch in the source

shape, or a source position that is assumed known but is incorrect.

7.2.6 Improvements to system model

Computational constraints prevent use of the exact system model for two–interaction

events in 3D position–sensitive semiconductor detectors in (2.21). The model pro-

posed in [80] has been shown to be useful for image reconstruction and source detec-

tion [75].

In §2.4.3, the exact model is derived by conditioning on the event the photon in-

teracts twice in the detector. The model in [80] does not condition upon this event,

making it an incomplete model. Future work will extend the model in [80] to con-

dition on the event that the photon interacts twice in the detector by calculating

p(D2|D1; e0,φ) in (2.7) numerically or by simulation. This calculation could be per-

formed on a grid of source positions and source energies. The values of p(D2|D1; e0,φ)

do not depend on the attributes of a single event, so one can compute it once for a

particular detector. The goal of this investigation would be to show that conditioning

on the event that a two–interaction event is detected when computing the attribute

density for two–interaction events increases detection performance by reducing model
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mismatch.

7.2.7 Machine Learning Methods for Source Detection

Likelihood–based methods for source detection with 3D position–sensitive semi-

conductor gamma–ray detectors do not perform optimally due to model mismatch.

An alternative approach to source detection is to employ classification methods from

machine learning to decide whether or not a source is present. Machine learning

methods use training data to formulate an optimal decision boundary between data

with and without a source, whereas the model determines the decision boundary

in likelihood–based methods. Machine learning classification algorithms can also be

faster than likelihood–based algorithms because machine learning algorithms do not

compute the often nonlinear and computationally intensive likelihood function.

There are several challenges to applying machine learning classification algorithms

to the gamma–ray imaging problem. The background energy spectrum is often un-

known in practice, leading to considerable variability in data recorded in the absence

of a source. The background spectrum can vary with both location and time. The

sources of interest are also highly variable. There are many types of material that

one may wish to detect, each with different energy spectra, size, position relative to

the detector, and intensity.

Extracting useful features from the recorded data that are invariant to nuisance

parameters such as source position is a challenging open problem. Transforming

the list of recorded interaction positions and energies into a reconstructed image in-

volves highly nonlinear operations that are based on physics. Attempting to classify

data based solely on the list of recorded positions and energies would be challenging.

Future work would investigate feature extraction from images reconstructed using

backprojection. Reconstructing simple images from the data greatly reduces the
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dimensionality of the data for modest amounts of recorded events, which is advan-

tageous for feature extraction and classification.

A preliminary study on application of the support vector machine (SVM) to back-

projected images recorded with a 3D position–sensitive CdZnTe detector led us to

consider the angular power spectral coefficients as features because they are invariant

to the source position. The angular power spectrum is given by

(7.1) g(l) =
l∑

m=l

|f(l,m)|2 l = 0, 1, . . . , L,

where f(l,m) is the spherical harmonic basis function of degree l and order m [19].

We chose the angular power spectrum as a feature vector because it is invariant to

rotation [36], and thus invariant to source position.

To show that angular power coefficients are useful features, we created histograms

of the angular power coefficients with and without a source present using 2000 test

images with a source present and 2000 images with background only. We generated

data with random source intensities from 10 to 100 counts per scan, uniformly ran-

dom source positions, and random background intensities of 10 to 100 counts per

scan. The detector was a simulated single 2cm × 2cm × 1.5cm 3D position–sensitive

CdZnTe detector with 11 × 11 pixels on the anode. The simulation was performed

using GEANT4 [1]. The source energy was 662 keV and the background had the

measured soil spectrum given in [65]. The images were sampled uniformly in azimuth

and polar angles to produce images of 36× 36 pixels. We used the model in [80] to

compute the backprojection operator.

Perhaps the simplest feature of each image is the total number of photons recorded

during the scan that produced the image. Figure 7.1 shows a histogram of the total

number of counts in images with and without a source present.

Figure 7.2 shows histograms of angular power coefficients g(l) for l = 0, 1, 2, 3.
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Figure 7.1: Histogram of total counts received using 2000 realizations with and without a source
present. The source and background intensities are randomly chosen from a uniform distribution
on [10,100], and the source positions are uniformly distributed on the sphere.

The data is still not separable with these features, but there is less overlap between

the histograms with and without a source for l = 2 and 3. However, there is no

guarantee that these features are optimal. Future work would apply the method

of [43] to determine features in backprojected images that give better classification

performance. The first step would be to learn features from backprojected images

because their reconstruction involves fewer nonlinear operations than likelihood–

based methods.

7.2.8 Confidence measures for reconstructed images

We found in Chapter III that reconstructed images of radiation emission density

do not give clear information about the presence or absence of a source, especiallly

with regularization. Perhaps the images would be more useful from a source detection

standpoint if one could compute a confidence in the accuracy of the reconstructed

image.

Bootstrap resampling methods for estimating the mean and standard deviation

of maximum–likelihood PET images are propsed in [14] and [27]. These methods

are based on resampling the list–mode data and reconstructing and image from each

resampled list. A similar approach may be useful for variance prediction of maximum

likelihood and penalized likelihood Compton images.
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Figure 7.2: Histograms of angular power coefficients using 2000 realizations with and without
a source present. The source and background intensities are randomly chosen from a uniform
distribution on [10,100], and the source positions are uniformly distributed on the sphere.
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A review of several resampling methods for variance PET imaging is given in [41].

The study considers resampling of list mode data similar to [14] and [27], but it

also considers resampling of the sinogram. In Compton imaging, the number of

possible recorded measurements is extremely large, so a sinogram would be difficult

to compute and store.

7.2.9 Use of reconstructed images for source detection

We found in Chapter III that the images reconstructed using log regularization

with and without a source were indistinguishable. However, if one increases the

regularization parameter β enough, the entire reconstructed image will be near zero.

Future work would investigate the use of cross-validation to select a regularization

parameter β that would give the optimal images for source detection. A possible test

statistic would be the maximum intensity in the image.



APPENDICES

181



182

APPENDIX A

Equivalence of Imaging Likelihoods

To show the equivalence between the list–mode and binned–mode likelihood for im-

age reconstruction, we first compute the probability mass function of the attribute

vector for a single recorded photon. In this Appendix, we assume that the detector

measurements are discrete, which is a valid assumption in practice due to machine

quantization.

We assume a list–mode detector that records a random number of photons J ∼

Poisson(J̄(x)) and that there are nd elements in the discrete measurement space.

When viewed in binned mode, the detector has nd measurement bins.

By the law of total probability,

p (ri|D;x) = p (ri|S,D;x)Pr (S|D) + p (ri|B, S;x)Pr (B|D)

=

np∑
j=1

p (ri|Ej, S,D) p (Ej|S,D;x)Pr (S|D) + p (ri|B,D;x)Pr (B|D)

=

np∑
j=1

p (ri, D|Ej, S)

p (D|Ej, S)
p (Ej|S,D;x)Pr (S|D) + p (ri|B,D;x)Pr (B|D) .(1.1)

By a counting argument and (3.3), we have

(1.2) Pr (S|D) =

∑np
j=1 sjxj

J̄(x)
,

and

(1.3) Pr (B|D) =

∑nd
i=1 r̄i
J̄(x)

.
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Note that the sum in (1.3) is over all possible detector measurement bins. Also by

counting,

(1.4) p (Ej|S,D;x) =
sjxj∑np
j=1 sjxj

,

and

(1.5) p (ri|B,D;x) =
r̄i∑nd
i=1 r̄i

.

By the definition of the sensitivity sj,

(1.6) p (D|Ej, S) = sj.

Substituting (3.1) and (1.2)–(1.5) into (1.1),

(1.7) p (ri|D;x) =

(
np∑
j=1

aijxj + r̄i

)
/J̄(x).

The index i enumerates all possible recorded attributes in the attribute space. In

list–mode, let i(k) be the index i corresponding to the kth observed event, where k =

1, 2, . . . , J . Substituting the density of a single attribute in (1.7) into the likelihood

(3.2)and taking the natural logarithm,

L (x) = log p (r̃;x) = J log J̄(x)− J̄(x)− log J !

+
J∑
k=1

log

((
np∑
j=1

ai(k)jxj + r̄i(k)

)
/J̄(x)

)

= −J̄(x)− log J ! +
J∑
k=1

log

(
np∑
j=1

ai(k)jxj + r̄i(k)

)

≡ −
np∑
j=1

sjxj −
nd∑
i=1

r̄i +
J∑
k=1

log

(
np∑
j=1

ai(k)jxj + r̄i(k)

)

=

nd∑
i=1

[
−

np∑
j=1

aijxj − r̄i + yi log

(
np∑
j=1

aijxj + r̄i

)]
,(1.8)
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where yi is the number of photons having attributes corresponding to the ith detector

measurement bin if the detector were operated in binned–mode, and

nd∑
i=1

aij =

nd∑
i=1

p (ri, D|Ej, S) = p (D|Ej, s) = sj.

In a typical list–mode case, the number of detector bins nd is very large, so yi is either

0 or 1 with high probability. The equivalence still holds if yi > 1. By inspection, the

likelihood in (1.8) is the log–likelihood corresponding to the model

yi ∼ Poisson ([Ax]i + r̄i) .
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APPENDIX B

Asymptotics not Accounting for Model Mismatch

B.1 Proof of Theorem IV.3

Proof. We first show the inequality (4.12). By the block matrix inversion formula

applied to the the Fisher information matrix (4.9),

(2.1) (F−1(θ)[1,1])
−1 = Fc(θ)

(
K[1,1] −KT

[2,1]K
−1
[2,2]K[2,1]

)
,

thus, to show (4.12), it suffices to show that

(2.2)
(

(K[1,1] − 1)−KT
[2,1]K

−1
[2,2]K[2,1]

)
> 0.

To simplify notation, we introduce the following shorthand: p = p(r|D;θ) and

pS = pS(r|D;φ). Since the sensitivity is uniform, let s(φ) = s0 for all φ ∈ Φ. Now,

K[1,1] − 1−KT
[2,1]K

−1
[2,2]K[2,1] = K[1,1] − 1− 2KT

[2,1]K
−1
[2,2]K[2,1] +KT

[2,1]K
−1
[2,2]K[2,1]

= (K[1,1] − 1)− E

[
pS∇T

φ (s0pS)

p2

]
K−1

[2,2]K[2,1]

−KT
[2,1]K

−1
[2,2]E

[
pS∇φ (s0pS)

p2

]
(2.3)

+KT
[2,1]K

−1
[2,2]E

[
∇φ (s0pS)∇T

φ (s0pS)

p2

]
K−1

[2,2]K[2,1].
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Using the fact that

K[1,1] − 1 = E

[
p2

S

p2

]
− 2E

[
pS

p

]
+ E

[
p2

p2

]
= E

[
(pS − p)2

p2

]
,

we can rewrite (2.3) as

K[1,1] − 1−KT
[2,1]K

−1
[2,2]K[2,1] = E

[
(pS − p)2

p2

]
−E

[
(pS − p)∇T

φ (s0pS)

p2
K−1

[2,2]K[2,1]

]

−E

(∇T
φ (s0pS)

p
K−1

[2,2]K[2,1]

)T
pS − p

p


+E

[(
∇T
φ (s0pS)

p
K−1

[2,2]K[2,1]

)T

(
∇T
φ (s0pS)

p
K−1

[2,2]K[2,1]

)]
(2.4)

= E

[(
pS − p

p
−
∇T
φ (s0pS)

p
K−1

[2,2]K[2,1]

)2]
(2.5)

≥ 0.(2.6)

Equality holds when pS(r|D;φ) = p(r|D;θ) because in this case,

(2.7) E

[(
pS − p

p

)2
]

= E

[(
pS − pS

pS

)2
]

= 0,

and

(2.8) K[2,1] = E

[
∇φ (s0pS)

pS

]
= s0

∫
R
∇pS(r|D;φ)dr = 0,

where 0 is the zero vector, so equality is attained in (2.2). Note that (2.4) follows

from (2.3) by the fact that when sensitivity is uniform,

(2.9) E

[
pS∇φ (s0pS)

p2

]
= E

[
(pS − p)∇φ (s0pS)

p2

]
,
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because

(2.10) E

[
p∇T

φ (s0pS)

p2

]
= s0

∫
R
∇T
φpS(r|D;φ)dr = 0T .

B.2 Sample Derivations of Fisher Information

B.2.1 Derivation of K[1,1]

The [1, 1] component of the Fisher information is given by

F(θ)[1,1] = −E
[
∂2

∂α2
L (θ)

]
,

where L (θ) is the log–likelihood, which is the logarithm of the likelihood in (4.4).

Substituting

∂2

∂α2
L (θ) = −

J∑
i=1

(s(φ)pS(ri|D;φ))2

(λbpB(ri|D;β) + αs(φ)pS(ri|D;φ))2 ,

and using (6.4) with iterated expectation yields

F(θ)[1,1] = − s2(φ)

(λb + αs(φ))2
E

[
J∑
j=1

p2
S(ri|D;φ)

p2 (ri|D;θ)

]

=
s2(φ)

(λb + αs(φ))2
E [J ]E

[
p2

S(r|D;φ)

p2(r|D;θ)

]
=

τs2(φ)

λb + αs(φ)
E

[
p2

S(r|D;φ)

p2(r|D;θ)

]
=

τs2(φ)

λb + αs(φ)
K[1,1] = Fc(θ)K[1,1].

B.2.2 Derivation of K[2,1]

The [2, 1] component of the Fisher information is given by

F(θ)[2,1] = −E
[
∇φ

∂

∂α
L (θ)

]
.
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Using the model in (4.4),

F(θ)[2,1] = τ∇φs(φ)− E [J ]

λb + αs(φ)
E

[
∇φ(s(φ)pS(r|D;φ))

p(r|D;θ)

]
+

E [J ]αs(φ)

(λb + αs(φ))2
E

[
pS(r|D;φ)∇φ(s(φ)pS(r|D;φ))

p2(r|D;θ)

]
= τ∇φs(φ)− τE

[
∇φ(s(φ)pS(r|D;φ))

p(r|D;θ)

]
+

ταs(φ)

λb + αs(φ)
E

[
pS(r|D;φ)∇φ(s(φ)pS(r|D;φ))

p2(r|D;θ)

]
=

ταs(φ)

λb + αs(φ)
E

[
pS(r|D;φ)∇φ(s(φ)pS(r|D;φ))

p2(r|D;θ)

]
=

αFc(θ)

s(φ)
K[2,1],

where the third step follows because

E

[
∇φ(s(φ)pS(r|D;φ))

p(r|D;θ)

]
=

∫
R
∇φs(φ)pS(r|D;φ)dr

= ∇φs(φ)

∫
R
pS(r|D;φ)dr = ∇φs(φ),

by the assumption that integration and differentiation are interchangeable.

The other terms in (4.9) have similar derivations.
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APPENDIX C

Asymptotics Accounting for Model Mismatch

C.1 Proof of Theorem V.2 - Consistency of the QMLE

C.1.1 Existence of the QMLE

Let the probability measure v(H)
4
= Pr (r ∈ H) be the true distribution of a single

recorded attribute. Since v is typically unknown, we model it with the probability

measure ṽθ. We follow [78] and make the following assumptions:

Assumption C.1. The attributes of distinct photon interaction events are IID.

Assumption C.2. Assume that ṽθ has a Radon-Nikodym density with respect to the

measure µ.

By Assumption C.2, there exists a function p̃(r;θ) such that

ṽθ(H) =

∫
H

p̃(r;θ)dµ(r).

The true mean number of recorded photons is typically unknown, so we model it as

Jτ ∼ Poisson(λ̃(θ)τ).

One can show that Assumptions C.1 and C.2 imply that the Radon-Nikodym density

of the modeled distribution of Jτ observed attributes and Jτ is given by (6.3). The
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Radon-Nikodym density in (6.3) is the likelihood of θ given the number of recorded

attributes and their values. The same formula is given in [4].

We have now shown that the modeled likelihood function exists, but we have yet

to show the existence of a maximizer over the parameter space θ. To show existence,

we introduce three more assumptions:

Assumption C.3. p̃(r;θ) is continuous in θ

Assumption C.4. λ̃(θ) is continuous in θ

Assumption C.5. Θ is a compact subset of Rd

Assumptions C.3, C.4, and C.5, along with the fact that the Radon-Nikodym

density of the modeled distribution exists implies that

θ̃τ
4
= arg max

θ∈Θ
p̃(r1, r2, . . . , rJ , J ;θ)

exists.

C.1.2 Strong Consistency of QMLE

A set of suitable regularity conditions for Theorem V.2 are:

Assumption C.6. |p̃(r;θ)| < m(r) for all θ ∈ Θ for some m(r) that is integrable

with respect to the true attribute distribution, i.e.,
∫
Rm(r)p (r) dr is finite

Assumption C.7. The solution to (6.6) is unique.

In this proof, the QMLE is assumed to exist and Assumptions C.6-C.7 are assumed

satisfied.

Proof. We use the result for strong consistency under model mismatch with a nonran-

dom number of measurements in [78] to prove strong consistency when the number

of measurements in Poisson.
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We divide the scan of length τ into n intervals of unit duration. We can assume

without loss of generality that τ is an integer because our choice of scan interval

duration is arbitrary. Treating the scan of duration n = τ as n independent scans of

unit duration leads to the following restatement of the log–likelihood:

log p̃(r̃;θ) =
n∑
k=1

(
Jk log(λ̃(θ))− λ̃(θ)− log(Jk!) +

Jk∑
j=1

log p̃(rkj;θ)

)
,(3.1)

where Jk ∼ Poisson(λs), Jτ =
∑n

k=1 Jk by the summation property of independent

Poisson random variables [59, p. 196], rkj is the attribute vector of the jth event to

occur during the kth scan. Since the modeled mean number of total received counts

is J̃(θ), the modeled mean number of counts per scan interval is J̃(θ)/τ = λ̃(θ) by

the summation property of independent Poisson random variables.

Assumption C.6 implies that

log p̃(r̃;θ) = Jτ log(λ̃(θ))− τ λ̃(θ)

− log(Jτ !) +
Jτ∑
j=1

log p̃ (rj;θ)

≤ Jτ log(λ̃(θ))− τ λ̃(θ)

− log(Jτ !) +

Jk∑
j=1

m(rj)

4
= f(r̃),

so log p̃(r̃;θ) < f(r̃) for all θ ∈ Θ and f(r̃) is integrable with respect to the true

distribution because it is the sum of integrable functions. The above argument and

the uniqueness of the minimizer of (6.6) provided by Assumption C.7 imply that

Assumption A3 of [78] is satisfied.

Strong convergence of θ̃τ to µ̃ follows by Theorem 2.1 of [77].
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To show that µ̃ is the member of the parameter space that minimizes the Kullback-

Leibler divergence between the model and the true distributions, we make the fol-

lowing additional assumptions:

Assumption C.8. The probability measure v characterizing the true distribution

is absolutely continuous with respect to the base measure µ, with Radon-Nikodym

density p (r) for r ∈ R.

Assumption C.9. E [log p (r)], the logarithm of the true density of a single attribute,

exists and is finite.

Assumption C.8 guarantees that the true distribution of the list of recorded at-

tributes a Radon-Nikodym density. Assumption C.9 implies that E [log p (r̃)], the

logarithm the density of a list of attributes, exists by the linearity of expectation.

Thus, the Kullback-Leibler divergence E [log (p (r̃) /p̃(r̃;θ))] exists.

The existence of the QMLE and Assumptions C.6-C.9 satisfy the conditions of

Theorem 2.2 of [78], which gives strong convergence of the estimates to the element

µ̃ ∈ Θ that minimizes E [log (p (r̃) /p̃(r̃;θ))].

C.2 Proof of Theorem V.4 - Asymptotic Normality of QMLE

We make the following assumptions to guarantee the asymptotic normality of the

QMLE:

Assumption C.10. log p̃ (r;θ) is continuously differentiable in θ for each r ∈ R

Assumption C.11. log λ̃(θ) and λ̃(θ) are continuously differentiable in θ

Assumption C.12. ∇θ log p̃ (r;θ) and ∇2
θ log p̃ (r;θ) are measurable in r for each

θ ∈ Θ.
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Assumption C.13. The elements of(
∇θ log p̃ (r;θ) +∇θ log λ̃(θ)

)(
∇θ log p̃ (r;θ) +∇θ log λ̃(θ)

)T
are dominated by functions integrable with respect to the true distribution.

Assumption C.14. The elements of ∇2
θ log p̃ (r;θ) are dominated by functions in-

tegrable with respect to the true distribution.

Assumption C.15. µ̃ is an interior point of Θ

Assumption C.16. G̃ (µ̃) is nonsingular

Assumption C.17. H̃ (θ) is invertible in an open neighborhood around µ̃

Assumption C.18. θ̃τ
p→ µ̃

Proof. Let the gradient of the log–likelihood be

g̃τ (θ)
4
= ∇θ log p̃ (r̃;θ) = Jτ∇θ log

(
λ̃(θ)

)
−∇θ

(
λ̃(θ)

)
+

Jτ∑
j=1

∇θ log p̃ (rj;θ)

= Jτ∇θ log
(
λ̃ (θ)

)
− τ∇θλ̃ (θ) +

Jτ∑
j=1

∇θ log p̃ (rj;θ) ,

and let the Hessian of the log–likelihood be

H̃τ (θ)
4
= ∇2

θ log p̃ (r̃;θ) = Jτ∇2
θ log(λ̃(θ))−∇2

θ(λ̃(θ)) +
Jτ∑
j=1

∇2
θ log p̃ (rj;θ)

= Jτ∇2
θ log λ̃ (θ)− τ∇2

θλ̃ (θ) +
Jτ∑
j=1

∇2
θ log p̃ (rj;θ) ,

which both exist by Assumptions C.10, C.11, and C.12. By the mean value theorem,

g̃τ

(
θ̃n

)
− g̃τ (µ̃) = H̃τ

(
θ̌τ
)

(θ̃τ − µ̃),

for some θ̌τ such that θ̌τ lies on the line segment between µ̃ and θ̃τ . Since g̃τ

(
θ̃n

)
= 0

by the definition of the QMLE,

(3.2)
√
τ(θ̃n − µ̃) =

(
−1

τ
H̃τ
(
θ̌τ
))−1(

1√
τ
g̃τ (µ̃)

)
.
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From (6.8), we have

E

[
Jτ∇θ log

(
λ̃ (θ)

)
− τ∇θλ̃ (θ) +

Jτ∑
j=1

∇θ log p̃ (rj;θ)

]
= 0

E

[
Jτ∑
j=1

(
∇θ log p̃ (rj;θ) +∇θ log

(
λ̃ (θ)

))]
= τ∇θλ̃ (θ)

E [∇θ log p̃ (rj;θ)] +∇θ log
(
λ̃ (θ)

)
= ∇θλ̃ (θ) /λs.(3.3)

By (3.3) and Theorem C.31,

1√
τ
g̃τ (µ̃)

d→ N (0,G(µ̃)) as τ →∞,

where

(3.4)

G(θ)
4
= λsE

[(
∇θ log p̃ (r;θ) +∇θ log λ̃ (θ)

)(
∇θ log p̃ (r;θ) +∇θ log λ̃ (θ)

)T]
,

which exists by Assumption C.13. By an extension of the weak law of large numbers

to Poisson random sums and by Assumptions C.15 and C.18, we have that

1

τ
H̃τ
(
θ̌τ
) p→ −H (µ̃) as τ →∞,

where

(3.5) H(θ)
4
= −λs∇2

θ log λ̃ (θ) +∇2
θλ̃ (θ)− λsE

[
∇2
θ log p̃ (r;θ)

]
,

which exists by Assumption C.14. Combining (3.2), (3.5), and (3.4), and using

Slutsky’s theorem [23, p. 39],

√
n(θ̃n − µ̃)

d→ N (0,Σ(θ)) ,

where

Σ(θ) = H−1 (µ̃)G (µ̃)H−1 (µ̃) ,

which exists and is nonsingular by Assumptions C.16 and C.17.
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C.3 Proof of Theorem V.5 - Convergence of the constrained QMLE

We state the regularity conditions that are required for Theorem V.5 to hold we

provide a proof.

Assumption C.19. Ω is compact.

Assumption C.20. The solution to (5.13) is unique.

Theorem V.5 requires that Assumptions C.1–C.6, Assumption C.19, and Assump-

tion C.20 hold. We now provide the proof of Theorem V.5.

Proof. We can separate the list of recorded measurements r̃ into n independent

random vectors as shown in the proof of Theorem V.2 in Appendix C.1.2. The result

follows from the Theorem 1 of [69], with µ̃+ substituted for the “true” parameter θ0

defined in [69]. This result is also given without proof in [2].

C.4 Proof of Theorem V.7 - Asymptotic distribution of the constrained
QMLE

We first state the additional assumptions necessary for the theorem to hold.

Assumption C.21. G̃ (µ̃+) is nonsingular

Assumption C.22. g̃ (µ̃+) = 0

Assumption C.23. H̃ (θ) is invertible in an open neighborhood of µ̃+ that is a

subset of θ

Assumption C.24. CΩ is a cone approximation for the set Ω at µ̃+

Assumption C.25. Ω is convex

Assumption C.26. θ̃+
τ

p→ µ̃+
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The theorem holds if Assumptions C.10-C.14 and C.21-C.26 hold.

Proof. The proof follows from Theorem 3 of [2]. Assumptions C.10, C.11, and C.12

imply Assumption 2* of [2], Assymption C.26 implies Assumption 4 of [2], Assymp-

tion C.24 implies Assumption 5 of [2], and Assymption C.25 implies Assumption 6

of [2].

Assumptions C.13 and C.21 imply that G̃ (µ̃+) exists. By Lemma C.27 and As-

symption C.22, we have that

(3.6)
1√
τ
∇θ log p̃ (r̃;θ)|µ̃+ = g̃τ

(
µ̃+
) d→ N

(
0, G̃

(
µ̃+
))
.

Note that if Assymption C.22 is not satisfied, the random variable g̃τ (µ̃+) does not

converge in distribution to anything by Lemma C.27.

By an extension of the weak law of large numbers to Poisson random sums and

by Assumptions C.15 and C.18, we have that

(3.7)
1

τ
H̃τ
(
θ̃τ

)
p→ −H

(
µ̃+
)

as τ →∞.

The results in (3.6) and (3.7) imply that Assumption 3 of [2] is satisfied

Assumptions C.14 and C.23 imply that H̃−1 (µ̃+) exists. By, the properties of

normal random variables, and Slutsky’s Theorem,

ζ
4
= H̃−1

(
µ̃+
)
g̃τ
(
µ̃+
) d→ N

(
0,Σ(µ̃+)

)
.

The result follows by Theorem 3 of [2].

Lemma C.27. Let p̃ (r̃;θ) be the model for a list of recorded attributes defined in

(6.3) and let µ̃ ∈ Ω ⊂ Θ. Then,

√
τ

(
1

τ
∇θ log p̃ (r̃;θ)

∣∣∣∣
µ̃

− g̃ (µ̃)

)
d→ N

(
0, G̃ (µ̃)

)
as τ →∞,
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where g̃ (θ) is defined in (6.7) and G̃ (θ) is defined in (6.12).

Proof. To simplify notation, let

∇θ log p̃ (r̃;θ)
4
= ∇θ′ log p̃

(
r̃;θ

′
)∣∣∣
θ′=θ

.

By algebra and (6.3),

√
τ

(
1

τ
∇θ log p̃ (r̃;θ)− g̃ (θ)

)
=
√
τ

(
−∇θλ̃(θ)− g̃ (θ)

+
1

τ

J∑
j=1

(
∇θ log λ̃(θ) +∇θ log p̃ (rj;θ)

))
=

1√
τ

(
− τ

(
g̃ (θ) +∇θλ̃(θ)

)
+

J∑
j=1

(
∇θ log λ̃(θ) +∇θ log p̃ (r̃j;θ)

))
.(3.8)

We first compute the expected value of the term inside the sum over j in (3.8).

By the definition of g̃ (θ) in (5.6),

g̃ (θ) = −∇θλ̃(θ) + λs

(
∇θλ̃(θ) + E [∇θ log p̃ (r;θ)]

)
.

By algebra and the linearity of expectation,

(3.9) E
[
∇θλ̃(θ) +∇θ log p̃ (r;θ)

]
=
g̃ (θ) +∇θλ̃(θ)

λs
.

We must also compute the covariance of the term inside the sum over j in (3.8)

before applying the asymptotic normality result. Let Covθ {·} denote the covariance
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where θ is a nonrandom parameter.

Σ
′
(θ)

4
= Covθ

{
∇θλ̃(θ) +∇θ log p̃ (r;θ)

}
= E

[(
∇θλ̃(θ) +∇θ log p̃ (r;θ)− g̃ (θ) +∇θλ̃(θ)

λs

)
(
∇θλ̃(θ) +∇θ log p̃ (r;θ)− g̃ (θ) +∇θλ̃(θ)

λs

)T]

=
1

λs
G̃ (θ)− E

(∇θλ̃(θ) +∇θ log p̃ (r;θ)
)( g̃ (θ) +∇θλ̃(θ)

λs

)T


−E

[(
g̃ (θ) +∇θλ̃(θ)

λs

)(
∇θλ̃(θ) +∇θ log p̃ (r;θ)

)T]

+E

( g̃ (θ) +∇θλ̃(θ)

λs

)(
g̃ (θ) +∇θλ̃(θ)

λs

)T
 .(3.10)

Substituting (3.9) into (3.10),

(3.11) Σ
′
(θ) =

1

λs
G̃ (θ)−

(
g̃ (θ) +∇θλ̃(θ)

λs

)(
g̃ (θ) +∇θλ̃(θ)

λs

)T

.

By (3.8), (3.9), (3.11), and Theorem C.31,

√
τ

(
1

τ
∇θ log p̃ (r̃;θ)− g̃ (θ)

)
d→ N

(
0, G̃ (θ)

)
.

The result follows by evaluating the distribution at θ = µ̃.

C.5 Example of asymptotic mean on parameter space boundary

Let A be an m × n matrix such that ATA is invertible. Let ỹ be a list of obser-

vations where

ỹ
4
= [y1,y2, . . . ,yN ] ,

N is the nonrandom number of measurements, and yi is an nd × 1 vector of ob-

servations for i = 1, 2, . . . , N . We assume the following parametric model for the

measurements:

(3.12) yi
model∼ N

(
Aθ, σ2I

)
i = 1, 2, . . . , N,



199

where θ = [θ1, θ2, . . . , θnp ] is an np×1 vector of unknown parameters to be estimated,

I is the identity matrix, and σ2 > 0 is the variance of the measurements. We will

enforce the constraint that each element of θ is nonnegative, i.e.,

θj ≥ 0 j = 1, 2, . . . , n.

Assume that the true distribution of the measurements is also Gaussian with mean

m:

yi
true∼ N

(
m, σ2I

)
.

An imaging system that captures a transform A of a natural image is an example

of a system where the model (3.12) is plausible. The transform must be either

invertible or overcomplete to satisfy the assumption that ATA is invertible. Fourier

and orthonormal or overcomplete wavelet transforms are example transforms that

satisfy the requirements for A. A natural image is inherently nonnegative because

light intensities cannot be negative. In this example, the parameter vector θ would

be a discretized version of the image, and ỹ would be a series of recorded transform

coefficients recorded at times t(i), i = 1, 2, . . . , N .

The log–likelihood, ignoring terms constant with respect to θ, is

L (θ) = − 1

2σ2

N∑
i=1

||yi − Aθ||22 ,

with expected value

E [L (θ)] = f̃ (θ) = − N

2σ2
E
[
(yi − Aθ)T (yi − Aθ)

]
(3.13)

= − N

2σ2

(
ndσ

2 +mTm− θTATm−mTAθ + θTATAθ
)

(3.14)

≡ − N

2σ2
||m− Aθ||22 .(3.15)

By the definition of µ̃+ in (5.13) and the expected value of the log–likelihood in

(3.15), the constrained asymptotic limit µ̃+ is given by the constrained least squares
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problem:

(3.16) µ̃+ = arg min
θi≥0 i=1,...,np

||m− Aθ||2 .

The expected value of the gradient of the log–likelihood, ignoring constant terms, is

(3.17) E [∇θL (θ)] = g̃ (θ) =
N

σ2
AT (m− Aθ) ,

which is only equal to 0 when the asymptotic mean µ̃ satisfies the normal equations

ATm− ATAµ̃+ = 0,

or, equivalently, µ̃+ is equal to the global minimizer of the unconstrained least–

squares problem

µ̃+ = µ̃
4
= arg min

θ∈Rm
||m− Aθ||2 .

The condition µ̃+ = µ̃ only holds if the unconstrained asymptotic limit µ̃+ on the

boundary or in the interior of the nonnegative orthant. When model mismatch is

present, small perturbations in the model can change the value of µ̃, so if µ̃ lies ex-

actly on the boundary of the nonnegative orthant, a small perturbation in the model,

which in this example is the matrix A, will cause the asymptotic mean to be either

in the interior or outside the nonnegative orthant. When µ̃ is outside the nonneg-

ative orthant, Assumption C.22 of Theorem V.7 does not hold, so the convergence

in distribution result does not hold. When µ̃+ is in the interior of the nonnegative

orthant, the unconstrained asymptotic normality theorem (Theorem V.4) applies.

C.6 Additional Convergence Results for Poisson Sums

This section gives basic convergence results for Poisson sums that are useful in

proving Theorem V.4. Lemma C.28 and its proof appear in [8].
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Lemma C.28. Let z1, . . . , zm and w1, . . . , wm be complex numbers of modulus at

most 1. Then, ∣∣∣∣∣
m∏
i=1

zi −
m∏
i=1

wi

∣∣∣∣∣ ≤
m∑
i=1

|zi − wi| .

Theorem C.29. Let x1, x2, . . . be an IID sequence of random variables with E [xk] =

m and Var (xk) = σ2 for k = 1, 2, . . . , and let Jτ ∼ Poisson(λτ). Then

Sτ
4
=

1

σ
√
τ

Jτ∑
i=1

(xi −m)
d→ N(0, λ) as τ →∞,

where
d→ denotes convergence in distribution.

Proof. By the continuity theorem [8, p. 359], it suffices to show that ψτ (t)
4
= E

[
eitSτ

]
converges pointwise to ψ(t)

4
= e−t

2λ, the characteristic function of a Gaussian random

vector with mean zero and variance λ.

Let yi
4
= xi −m and ψy(t) be the characteristic function of yi.

Simplifying the characteristic function of Sτ ,

ψτ (t) = E
[
e

it
σ
√
τ

∑Jτ
i=1 yi

]
= E

[
Jτ∏
i=1

e
it
σ
√
τ
yi

]

= E

[
E

[
Jτ∏
i=1

e
it
σ
√
τ
yi

∣∣∣∣∣ Jτ
]]

= E

[
ψJτy

(
t

σ
√
τ

)]
by independence.

Since the yi are zero mean, the Taylor series expansion of the characteristic func-



202

tion yi gives

ψy

(
t

σ
√
τ

)
= E

[
e
i t
σ
√
τ
yi
]

= 1 + i
t

σ
√
τ
E [yi] +

i2t2

2σ2τ
E
[
y2
i

]
+

1

τ 3/2
R(t)

= 1 + 0− σ2t

2σ2τ
+

1

τ 3/2
R(t)

= 1− t2

2τ
+

1

τ 3/2
R(t),(3.18)

where

R(t)
4
=

∫ t

0

i3s3E [y3
i ]

σ33!
(t− s)2 ds.

Now we will show that ψτ (t) = E
[
ψJτy

(
t

σ
√
τ

)]
converges pointwise to E

[(
1− t2

2τ

)Jτ]
as τ →∞. For τ > t2/4,∣∣∣∣∣E

[
ψJτy (t)

(
t

σ
√
τ

)]
− E

[(
1− t2

2τ

)Jτ]∣∣∣∣∣
≤ E

[∣∣∣∣∣ψJτy (t)

(
t

σ
√
τ

)
−
(

1− t2

2τ

)Jτ ∣∣∣∣∣
]

≤ E

[
Jτ

∣∣∣∣ψy(t)( t

σ
√
τ

)
−
(

1− t2

2τ

)∣∣∣∣] lemma C.28

= τλ

∣∣∣∣ψy(t)( t

σ
√
τ

)
−
(

1− t2

2τ

)∣∣∣∣
= τ−1/2λR(t) by (3.18)

→ 0 as τ →∞.

This shows that E
[
ψJττ

(
t

σ
√
τ

)]
converges pointwise to E

[(
1− t2

2τ

)Jτ]
for each t as



203

τ →∞. Evaluating the expected value of the binomial term, we have

E

[(
1− t2

2τ

)Jτ]
=
∞∑
k=1

(
1− t2

2τ

)k
e−λτ (λτ)k/k!

= e−λτ
∞∑
k=1

(
λτ − λt2

2

)k
/k!

= e−λτeλτ−
λt2

2

= e−
λt2

2 ,

which is the characteristic function of a Gaussian random variable with mean 0 and

variance λ.

We now generalize Theorem C.29 to the case of IID random vectors. The proof

is similar to the case of a nonrandom number of measurements considered in [8].

Theorem C.30. Let x1,x2, · · · ∈ Rd be an IID sequence of random vectors with

E [xk] = m and E
[
(xk −m)(xk −m)T

]
= Σ for k = 1, 2, . . . , and let Jτ ∼

Poisson(λτ). Then

Sτ
4
=

1√
τ

Jτ∑
i=1

(xi −m)
d→ N(0, λΣ) as τ →∞

Proof. Let yi
4
= xi −m and let Sτ

4
= 1√

τ

∑Jτ
i=1 yi. Let t ∈ Rd be arbitrary. The

characteristic function of t′Sτ is

ψt′Sτ (u) = E
[
e
iu 1√

τ

∑Jτ
i=1 t

′yi
]

Because t′Sτ is a scalar random variable, we have by Theorem C.29 that

ψt′Sτ (u)→ eu
2t′λΣt/2 pointwise as τ →∞ for each u ∈ R.

Putting u = 1, we have

E
[
e

i√
τ

∑Jτ
i=1 t

′yi
]
→ e−t

′λΣt/2,
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which, by the multivariate Levy continuity theorem [72, p. 56], gives the desired

result.

We extend the result of Theorem C.30 to the case where the mean is outside the

sum.

Theorem C.31. Let x1,x2, · · · ∈ Rd be an IID sequence of random vectors with

E [xk] = m and E
[
(xk −m)(xk −m)T

]
= Σ for k = 1, 2, . . . , and let Jτ ∼

Poisson(λτ). Then

Sτ
4
=

1√
τ

(
Jτ∑
i=1

xi − λτm

)
d→ N(0, λ(Σ +mmT )) as τ →∞

Proof.

1√
τ

(
Jτ∑
i=1

xi − λτm

)
=

1√
τ

(
Jτ∑
i=1

xi −m

)
+

1√
τ

(Jτm− λτm)

=
1√
τ

(
Jτ∑
i=1

xi −m

)
+
m√
τ

(Jτ − λτ)

d→ N (0, λ(Σ +mmT )),

by Theorem C.30, Theorem C.32, and the properties of normal random variables.

Theorem C.32. Let Jτ ∼ Poisson(λτ). Then,

1√
τ

(Jτ − λτ)
d→ N (0, λ) as τ →∞.

Proof. Let Sτ
4
= 1

τ
(Jτ − λτ). By the Levy continuity theorem [8, p. 359], it suffices

to show that

ψτ (t)
4
= E

[
eitSτ

]
→ e−λt

2/2 pointwise as τ →∞.

Evaluating ψτ (t),

ψτ (t) = E

[
exp

(
it√
τ

(Jτ − λτ)

)]
= E

[
exp

(
it√
τ
Jτ

)]
e−itλ

√
τ .
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The left–hand expectation is the characteristic function of a Poisson random variable1

with mean λτ [58, p. 118] evaluated at t/
√
τ . Thus,

ψτ (t) = exp
(
λτ
(
e
it√
τ − 1

)
− itλ

√
τ
)
.

Expanding the Taylor series of the nested exponential,

ψτ (t) = exp

(
λτ

(
1 +

it√
τ
− t2

2τ
+
∞∑
k=3

(itτ−1/2)k

k!
− 1

)
− itλ

√
τ

)

= exp

(
−λt

2

2
+ λ

∞∑
k=3

(it)kτ 1−k/2

k!

)

→ e−λt
2/2 pointwise as τ →∞.

Theorem C.33. Let Jτ ∼ Poisson(λτ), and let xj ∈ Rd, j = 1, 2, . . . be IID random

vectors with mean µ and finite covariance. Then,

1

τ

Jτ∑
j=1

xj
p→ λµ.

Proof. Let xj = [xj1, xj2, . . . , xjd]. By Theorem 11.9 of [71, p.345], it suffices to show

that

1

τ

Jτ∑
j=1

xji
p→ λµi,

for i = 1, 2, . . . , d. Let ε > 0 be arbitrary. Then,

Pr

(∣∣∣∣∣1τ
Jτ∑
j=1

xji − µi

∣∣∣∣∣ < ε

)
≤

Var
(

1
τ

∑Jτ
j=1 xji

)
ε2

Chebyschev inequality

=

1
τ2Var

(∑Jτ
j=1 xji

)
ε2

=
τλVar (xji)

τ 2ε2
by iterated expectation(3.19)

=
λVar (xji)

τε2
→ 0 as τ →∞.(3.20)

1If y ∼ Poisson(λ), then E
[
eity

]
= exp

(
λ
(
eit − 1

))
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Lemma C.34. If Jτ ∼ Poisson(τλ), then Jτ
τ

p→ λ as τ →∞.

Proof. By the Chebyschev inequality, for any ε > 0,

Pr

(∣∣∣∣Jττ − λ
∣∣∣∣ ≤ ε

)
≤ Var (Jτ/τ)

ε2

=
λτ

τ 2ε2

=
λ

τε2

→ 0 as τ →∞.

Lemma C.35. Let f(x; θ̌) be continuous at θ̌ = µ̃ and uniformly continuous in

x, and let Jτ ∼ Poisson(λτ). If 1
τ

∑Jτ
i=1 f(xi; µ̃)

p→ λE [f(x; µ̃)] and θ̃τ
p→ µ̃ then

1
τ

∑Jτ
i=1 f(xi; θ̃τ )

p→ λE [f(x; µ̃)]

Proof.

1

τ

Jτ∑
i=1

f(xi; θ̃τ )− λE [f(x; µ̃)] =
1

τ

Jτ∑
i=1

f(xi; θ̃τ )−
1

τ

Jτ∑
i=1

f(xi; µ̃)

+
1

τ

Jτ∑
i=1

f(xi; µ̃)− λE [f(x; µ̃)]

=
1

τ

Jτ∑
i=1

(
f(xi; θ̃τ )− f(xi; µ̃)

)
+

1

τ

Jτ∑
i=1

f(xi; µ̃)− λE [f(x; µ̃)] .

By the continuous mapping theorem, θ̃τ
p→ µ̃ implies that f(xi; θ̃τ )− f(xi; µ̃)

p→ 0.

Since the individual terms converge in probability to 0 and f is continuous, by the

continuous mapping theorem,

(3.21)
1

τ

Jτ∑
i=1

(
f(xi; θ̃τ )− f(xi; µ̃)

)
p→ 0 as n→∞.
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By the hypothesis of the theorem,

(3.22)
1

τ

Jτ∑
i=1

f(xi; µ̃)− λE [f(x; µ̃)]
p→ 0.

By (3.21) and (3.22), we have that

1

τ

Jτ∑
i=1

f(xi; θ̃τ )− λE [f(x; µ̃)]
p→ 0,

which gives the desired result.

C.7 Verification of Regularity Conditions

This appendix describes the methods by which one could verify Assumptions 1-7

needed for Theorem V.2 and Assumptions 10-18 required for Theorem V.4 using the

example system in §5.4.

The recorded attributes are IID because of the chosen system setup, and one can

verify that Assumptions 2-4, 6, and 10-12 are satisfied. Assumption 5 is satisfied

if one places an upper bound on the set of possible source and background inten-

sity estimates. Assumption 7 is satisfied in all but degenerate cases where there are

multiple sources of exactly the same intensity, which are of little practical interest.

Assumptions 13 and 14 are difficult to verify directly without an expression for the

true distribution of recorded attributes. However, we expect that the true distribu-

tion is well–behaved so that the continuous gradient and Hessian of the log–likelihood

are integrable with respect to the true distribution. One can verify Assumptions 15-

17 for a particular case after computing µ̃, G̃ (θ), and H̃ (θ). Assumption 18 follows

from Theorem V.2.

C.8 Implementation of Algorithms

The algorithms proposed in this thesis were implemented in a software package

called UMImaging, which is maintained by Professor Zhong He’s group. The software
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includes maximum likelihood image reconstruction and multiple source detection

methods. I added the log–regularization image reconstruction method in Chapter III

and the detection performance prediction method in Chapter V.

The software can compute detection performance predictions with known or un-

known background intensity and known or unknown source position, but the back-

ground spectrum and source isotope must be known. The calculations are performed

assuming that the background is spatially uniform for each energy. I created a user

manual for the performance prediction software and it is located in the UMImaging

repository.

C.9 Sample Calculations of G̃ (µ̃) and H̃ (µ̃)

We provide calculations for the [1, 1] elements of G̃ (µ̃) and H̃ (µ̃) in (5.44) and

(5.45). Calculations of the other elements of these matrices follows from similar

calculation.

C.9.1 Calculation of G̃ (θ)[1,1]

From the definition of λ̃(θ) in (6.2),

(3.23)
∂

∂α
λ̃(θ) =

s̃(φ)

αs̃(φ) + λb
.

From the mixture–model definition of p̃ (r;θ) in (6.4),

(3.24)
∂

∂α
p̃ (r;θ) =

s̃(φ)p̃S(r;φ)

αs̃(φ)p̃S(r;φ) + λbp̃B(r)
− s̃(φ)

αs̃(φ) + λb
.

Substituting (3.23) and (3.24) into the definition of G̃ (µ̃) in (6.12),

G̃ (θ) = λsE

[
s̃2(φ)p̃2

S(r;φ)

(αs̃(φ)p̃S(r;φ) + λbp̃B(r))2

]
=
λss̃

2(φ)

λ̃2(θ)
E

[
p̃2

S(r;φ)

p̃2(r;θ)

]
.(3.25)



209

C.9.2 Calculation of H̃ (θ)[1,1]

Taking derivatives with respect to α:

(3.26)
∂2

∂α2
log λ̃(θ) = − s̃2(φ)

(αs̃2(φ) + λb)
,

(3.27)
∂2

∂α2
λ̃(θ) = 0,

and

(3.28)
∂2

∂α2
log p̃ (r;θ) =

−s̃2(φ)p̃2
S(r;φ)

(αs̃(φ)p̃S(r;φ) + λbp̃B(r))2
+

s̃2(φ)

(αs̃2(φ) + λb)2
.

Substituting (3.26), (3.27), and (3.28) into (6.13), we obtain

H̃ (θ) = λsE

[
s̃2(φ)p̃2

S(r;φ)

(αs̃(φ)p̃S(r;φ) + λbp̃B(r))2

]
=
λss̃

2(φ)

λ̃2(θ)
E

[
p̃2

S(r;φ)

p̃2(r;θ)

]
.
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