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ABSTRACT

This research extends topology optimization techniques to consider multibody

dynamics systems with a much more open design space, which can include passive,

active, and reactive components, with a special application focus on a gunner re-

straint system (GRS) design problem. General representative models for the multi-

functional components are established in a multibody dynamics system. The topology

optimization process has been advanced for the optimization of geometrically nonlin-

ear, time-dependent, and timing-dependent multibody dynamics systems undergoing

large nonlinear displacements with nonlinear dynamics responses as design objectives.

Three efficient sensitivity analysis methods have been proposed, which include the

constant dynamic loading method, the time integration incorporated method based

on the Generalized-α algorithm and the iterative method. These new methods have

made it possible to calculate the sensitivities in complicated multibody dynamic sys-

tems and provide users with choices to significantly reduce the computational costs,

especially, in the topology optimization process, and to obtain desired accuracy in the

sensitivity analysis. In addition to the sensitivity analysis methods, an efficient and

reliable Kriging variable screening method based on the REML criterion has been

developed to identify significant variables in the systems to determine the worst cases

for various system uncertainty studies.

A specific application of the multi-functional components system optimization

technology is the GRS design problem, in which both the vehicle and the gunner

can undergo large relative and absolute motions under various driving or threat

conditions. In meanwhile, the restraint components may need to allow amplitude-

xx



dependent, time-dependent, timing-dependent nonlinear response behaviors, such as

those seeing in restraint belts, airbags, and retractors. The restraint system layout

design needs to keep a wide open design space, thus to find the truly optimal design.

The developed methodologies have been employed in the GRS design problems to

demonstrate usage of the new methodologies.
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CHAPTER I

Introduction

1.1 Background and Motivation

A structure with multi-functional components can be used in a wide range of ap-

plications. In this study, the word “multi-functional” will refer to a device with a

combination of passive, active, and reactive components. For the purposes herein, a

“passive” device is defined as a structure or device that responds to excitation pas-

sively without an active action. An “active” device is defined as a structure or device

that can actively respond to the excitation, and which has an energy supply for the

operation. A “reactive” structure is defined as a class of smart structures that can

react to external excitations in a specifically designed way using energy that is either

pre-stored in the system, or that comes from the external excitation, to counteract an

undesirable situation or perform other desired tasks (Chiyo et al., 2010; Dong et al.,

2009; Ma, 2006, 2007; Ma et al., 2008, 2010). A system that has multi-functional

components may be made up of many multidisciplinary elements, including tradi-

tional mechanism components, hydraulic components, electromagnetic components,

and so on. The designer needs to find an optimal layout based on these components

in order to maximize/minimize single or multiple design objectives, in order to design

the system to satisfy specific requirements. This challenge of optimally designing the

system layout may be effectively solved by using topology optimization. Topology
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optimization is accepted as an efficient and successful layout optimization tool, and

it will be employed in this study. A more detailed introduction to the topology opti-

mization method can be found in section 1.4. Therefore, there exists a need to employ

robust and efficient optimal design methods to the topology optimization method ap-

proach, methods that can be applied to a multi-functional components system. In

this study, topology optimization for the multi-functional components system layout

design is extended to multibody dynamics systems. In these systems, the compo-

nents that are to be designed represent connections between large displacement, large

rotation motions of the subsystems’ bodies, and the connections can be achieved by

using multi-functional components. Additionally, sensitivity analysis for topology op-

timization in a multibody dynamics system is more challenging than for a static or

structural dynamic system.

This multi-functional components system layout optimization technology can be

applied to various applications including vehicle transportation systems, ground and

sea vehicle mooring systems, as well as space vehicle landing systems. For a trans-

portation system (Figure 1.1), the design objective can be the relative movement

of the vehicle with respect to the carrier vehicle (ground, sea, or air) for the trans-

portation operation in a dynamic environment in order to restrain the vehicle. The

design space could include connecting chains, networked belts, or other constraint

mechanisms.

For an optimal mooring system (Figure 1.2), the design objective could be the

vessel’s lateral and longitudinal accelerations, and its yawing movements in order

to restrain the vessel. The design space can be seen as all the possible interactions

between the vessel and the dock with the objective of finding the optimal mooring

system.

For the space vehicle landing system (Figure 1.3), the design objective could be

the vehicle’s impact acceleration with the ground in order to protect the vehicle from
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Figure 1.1: Vehicle transportation system example

Figure 1.2: Mooring system example
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(a) Propulsion subsystem (b) Airbag subsystem (c) Parachute subsystem

Figure 1.3: Space vehicle landing system example

impact loading. The design space can be considered as all the possible combinations

among the propulsion subsystem, the airbag subsystem and the parachute subsystem.

High Mobility Multipurpose Wheeled Vehicle (HMMWV), better known as the

Humvee, is one of the best known military vehicles in the United States Army. There

are about 14 variants of this vehicle, including ambulances and trucks (Figure 1.4).

In 1983, the company called AM General was awarded the initial production contract

for the HMMWV. In 1989, AM General released the first HMMWV. The HMMWV

is a relative light-weight, highly mobile, four-wheel drive, diesel-powered tactical ve-

hicle, that was designed to be maintainable, reliable, and durable in many military

applications (Udas , 2011). The vehicle can be constructed in multiple configurations

on a common chassis to perform various missions. Over 250,000 of these vehicles have

been produced for the United States and 50 other nations (AM General).

The M1025, M1025A1, M1026, and M1026A1 HMMWV are armament carrier

configurations of the HMMWV family (Figure 1.5). The vehicles are equipped with

basic armor; the weapon mount, which is located on the roof of the vehicle, is adapt-

able to mount a machine gun of choice. The weapons platform can be rotated 360

degrees (Military Analysis Network website). The HMMWV model M1025A2 em-

ploys the most recent modifications that have applied to the model M1025A1, which

has new bumpers, making the vehicles slightly longer than before. The specifications
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Figure 1.4: HMMWV family (Military Analysis Network website)
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for the M1025A2 are listed in Table 1.1 (AM General website).

Figure 1.5: HMMWV M1025A2 model (AM General website)

Term Value
Curb Weight 3075 Kg

Payload 1597 Kg
Gross Vehicle Weight 4672 Kg

Gross Vehicle Weight (Front) 2041 Kg
Gross Vehicle Weight (rear) 2948 Kg

Length 4.84 m
Height 1.93 m

Acceleration (0-30 mph) 9.4 sec
Acceleration (0-60 mph) 26 sec

CGX (+: rearward from the front axial) 1.67 m
CGY (+: rightward from midplane) 0.03 m
CGZ (+: upward from the ground) 0.81 m

Spring rate (front) 167 N/mm

Table 1.1: Specifications of HMMWV 1025A2 (AM General website)

An important application of the multi-functional components system layout opti-

mization methodology is to develop a proper GRS for the HMMWV. Based on the

U.S. Army’s March 2007 newsletter, in Fiscal Year (FY) 2005 and FY 2006, there

were 65 and 42 HMMWV rollovers respectively; 56% of the fatalities suffered as a

result of these incidents were gunners (Army Newsletter). The GRS is therefore es-

sential for improving the soldier’s safety in military vehicles. Generally, gunners sit
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Figure 1.6: HMMWV and the gunner

or stand in the military vehicle with their upper torsos, arms, and heads exposed

outside the top of the vehicle (Figure 1.6).

The military vehicles may rollover under various battlefield conditions, with rea-

sons including:

1. Excessive speed

2. Overly aggressive driving

3. Inadequate training for the driver and crew

4. High center of gravity

5. Unfamiliar terrain

6. Poor road conditions

7. Interference from local resident

8. Operating near bodies of water

9. Detonation of explosives
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An ideal design of GRS would prevent the gunner from being ejected from of

the gunner’s hatch, and would actually facilitate the gunner’s rapid descent into the

vehicle crew compartment during a rollover accident. On the other hand, a poor

design could hold the gunner to the top of the vehicle where, in a rollover, the gunner

would be crushed between the ground and the top of the vehicle.

For specific applications of occupant restraint system designs, such as the GRS,

both the vehicle and the gunner can be subjected to significant relative and abso-

lute motions under extreme driving or threatening external conditions. In addition,

the restraint or connection components could employ amplitude-dependent, time-

dependent, and timing-dependent behaviors, such as active belt retractors. Current

optimization methodologies are ill-suited for this problem, suffering from infeasibility,

lack of a general method, or very high computational expense.

It is necessary to develop a methodology to obtain an optimally combined struc-

tural and material system, a system that makes the best use of passive, active, and

reactive multi-functional members; and that optimizes the multiple design objectives

in multibody dynamics system. This methodology can be employed to address the

GRS design problem in order to improve the gunner’s safety in dangerous scenarios

including rollover accidents.

This research highlights the following:

1. Dealing with design objectives that take into consideration the time-dependent,

timing-dependent, large displacement dynamic nonlinear responses;

2. Establishing general representative models for the multi-functional (passive,

active, and reactive) components in a multibody dynamics simulation system;

3. Designing a system that can optimally satisfy multiple requirements under

widely varying operating conditions;

4. Developing efficient sensitivity analysis methods for the topology optimization
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of multibody dynamics systems;

5. Addressing the design problems with various system uncertainties.

1.2 Restraint and Protection Devices for Occupant Safety

In order to protect the occupants in vehicles under all kinds of dangerous con-

ditions including collisions, and rollover accidents, conventional safety elements such

as seat belts, airbags, and pretensioners have been investigated by the automotive

industry for many years.

The restraint belt is one of the devices most commonly used by the automotive

to protect vehicle occupants. The seatbelt, invented by George Cayley in the 1800s,

is a safety harness designed to secure the occupant of a vehicle during the harmful

movement that results from a collision. The use of the standard three-point automo-

bile restraint offers substantial protection for an occupant in a rollover, primarily by

preventing the ejections of the occupants, and by minimizing the impacts of occu-

pants with the vehicle’s interiors. This benefit is clearly demonstrated by statistical

analysis of accident data. James et al. estimated that unbelted rollover occupants are

nearly five times more likely to be fatally injured than belted occupants (James et al.,

1997). Similarly, Digges et al. found that the rate of serious and fatal injuries for un-

restrained occupants is approximately 4.2 times larger than for restrained occupants,

and determined that unrestrained occupants sustain 84% of the “total harm” associ-

ated with rollovers. On the other hand, their restrained counterparts sustained just

16% of the total harm (Digges and Malliaris , 1998). Huston has presented a review,

analysis, and discussion of the effectiveness and limitations of seat belt systems, and

discussed expected findings in post-accident inspections of seat belt systems (Huston,

2001).

The airbag is another one of the devices most commonly used to protect occupants
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(a) (b)

Figure 1.7: (a) Driver side airbag module (b) Deployed curtain airbag (Delphi web-
site)

in automotive collisions. the airbag was invented by Patrick Hetrick and has saved

many lives through the years. In recent decades, there has been a rapid increase in the

use of airbags to protect the occupants of vehicles. Airbags are effective for preventing

direct contact between the occupants and the vehicle’s interior during certain crashes

(Figure 1.7 (a)). All vehicles, equipped with airbags must pass the Federal Motor

Vehicle Safety Standard (FMVSS)208 safety standard in which 30 mph rigid barrier

tests are conducted for both belted and unbelted occupants. In recent years, airbag

technology has seen wider use for various purposes in all kinds of accidents; examples

include side-curtain airbags for side impacts and rollover accidents (Figure 1.7 (b)),

torso airbags for side impacts (Figure 1.8 (a)), and knee airbags for knee protection

in frontal crashes (Figure 1.8 (b)) (Delphi website). Shaout and Mallon (Shaout

and Mallon, 2000) have studied airbag technology from the past, and have made

projections about the airbag’s future.

Along with the conventional frontal airbag, the curtain airbag is increasingly be-

ing used as a measure in order to help protect occupants during rollover accidents.

Unlike the case of frontal impact, where the distance between the occupant and the

deforming structure is relatively large, the space between the occupant and the de-
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(a) (b)

Figure 1.8: (a) Deployed torso airbag (b) Deployed knee airbag (Delphi website)

forming structure in side impacts is much less. The curtain airbag must be deployed

quickly and must be in position within a very short time, typically 20ms to 30ms

(Zhang , 2004; Narayanasamy , 2005). It is desirable for the curtain airbag to be in-

flated for a longer duration (longer than a frontal airbag) so that adequate protection

can be provided in a rollover scenario. All these requirements demand that curtain

airbag fabric materials have negligible leakage. For the GRS design, since the gunner

is positioned in a turret, it is very difficult to mount conventional airbags. In a car,

there are multiple flat supporting planes to facilitate airbag deployment; in a turret,

however, there is not enough space to deploy conventional frontal airbags. Therefore,

a small airbag device is more reasonable to consider in the GRS design.

Restrained occupants may still suffer severe or even fatal injuries. One poten-

tial mechanism to further improve the occupant safety involves the use of seatbelt

pretensioners. A pretensioneris a device that is connected to the safety belt buckle,

safety belt retractor, or outboard lower safety belt anchor assembly; it tightens the

belt during certain crashes. Pretensioners may deploy with or without airbag de-

ployment. Depending upon the vehicle, pretensioners may activate in certain frontal,
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side, rear or rollover crashes. It is well accepted that seatbelt pretensioners improve

frontal impact safety by enhancing the coupling between the occupant and the vehicle

in the early stages of a collision. Maximizing the over-ground distance and duration

of occupant deceleration in this manner adheres to basic principles in restraint de-

sign (Eppinger , 2002), and has been shown to reduce maximum loads, accelerations,

and injury parameters experienced by vehicle occupants in frontal collisions (Miller ,

1996). Although there are many techniques used in pretensioner designs, most em-

ploy pyrotechnic energy that is released when a crash is detected, with the intent

of reducing the effective length of the restraint system. In the automotive industry,

pretensioners have been developed for both the retractor and for the buckle. When a

crash is sensed by the sensor units installed on the vehicle, the pyrotechnic material is

ignited and the expanding gas pushes a rack gear or piston, thus taking up the slack in

the seatbelt webbing. Typically, there are three kinds of pretensioners currently used

in automobiles. The retractor could be equipped combination with buckle, anchor,

or retractor, as shown in Figure 1.9. A buckle pretensioner (Figure 1.9 (a)) uses a

pyrotechnic gas generator to propel a piston that is attached to the safety belt buckle

by a cable. The cable pulls the buckle down toward the seat when the pretensioner is

activated. An anchor pretensioner (Figure 1.9 (b)) uses a pyrotechnic gas generator

to propel a piston that is attached to the outboard lower safety belt anchor assembly

by a cable. The cable then pulls the anchor assembly down toward the floor when the

pretensioner is activated. A retractor pretensioner (Figure 1.9 (c)) uses a pyrotech-

nic device that can backwind the retractor spool when the pretensioner is activated

(General Motors website).

Pretensioners help hold the belted passengers in their seats, while the activated

airbags cushion the impact of the occupant’s head with interior parts and external

environmental objects. Additionally, the pretensioned belts help prevent partial or

complete occupant ejection. For the integration of passive safety devices in occupant

12



(a) Buckle pretensioner (b) Anchor pretensioner (c) Retractor pretensioner

Figure 1.9: Pretensioners in automotive (General Motors website)

protection, determining how best to combine the benefits of these safety devices to

protect the occupants becomes the key challenge.

These safety devices in commercial vehicles’ restraint systems can also be consid-

ered to be available and feasible for implementation in designing the optimal GRS,

because they have been extensively researched and tested, and they are also easy to

manufacture.

1.3 Gunner Restraint System State-of-the-Art

A company called Schroth has developed a product called the single anchor GRS

for the M1114 (Figure 1.10), which can effectively prevent a gunner from being ejected

from a vehicle during a rollover accident. This restraint system, however, is designed,

only to prevent the gunner from being ejected from the vehicle; it will not pull the

gunner back into the vehicle (Schroth website).

Subsequently, Schroth also developed an Improved Gunner’s Restraint System

(Figure 1.11 and Figure 1.12). The Improved Gunner’s Restraint is distinguished by

a push-button quick release, swivel, and adjustable tail strap. The quick release on the

tail strap allows gunner to quickly exit the vehicle without having to drop his harness.

The swivel prevents the “tail” strap from twisting or binding. The adjustable “tail”
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Figure 1.10: Single anchor GRS developed by Schroth (Carr , 2006)

strap allows taller gunners to lengthen the straps for easier access, while still allowing

shorter gunners to keep the strap tight enough to provide effective protection (Carr ,

2006).

A company called BMI Defense Systems has developed a kind of turret gunner

seat, TS 1190 (Figure 1.13), which can fit most vehicle classes and provides comfort

while reducing circulatory stress and nerve stress. Rapid and unimpeded ingress and

egress is vital to the gunner, and the TS 1190, with its one-motion quick release,

allows the gunner, or another passenger, to quickly drop the gunner out of harm’s

way.

The BMI Defense Systems company has developed Gunner Protection System

(GPS) GPS 1150 (Figure 1.14), which includes a GRS. GPS 1150 Series Gunner Pro-

tection Systems would eliminate the conditions in which turret gunners are distracted

from mission performance. The integrated retractor GRS helps safeguard the gunner

during combat actions or vehicle accidents and contains a one-motion quick release

for instant and unimpeded ingress and egress (BMI website).

At the beginning of this study, a questionnaire of 12 questions (Appendix D),
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Figure 1.11: The improved GRS (Carr , 2006)

Figure 1.12: Components of the improved GRS (Olive Drab website)
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Figure 1.13: Turret gunner seat TS 1190 (BMI website)

Figure 1.14: Gunner protection system GPS 1150 (BMI website)
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Figure 1.15: Question of “Is your current restraint system comfortable to wear?”

was developed and distributed to a number of gunners in the battle field (Opera-

tion Iraqi Freedom) through the United States Army Operations/Intelligence Non-

Commissioned Officers (NCO). Responses were obtained from 27 gunners, in which

eleven of them stated that they had experienced dangerous vehicle situations, includ-

ing six explosions (improvised explosive devices and explosively formed penetrators)

and five dangerous situations caused by bumps, sudden braking, and sharp turns. No

gunner interviewed had experienced a vehicle rollover. It is suspected that gunners

who experienced rollovers may have been killed or seriously injured, and were not in-

cluded on the survey’s distribution list. Also, there was only one gunner interviewed

who had been hurt in an explosion. As before, gunners who have been seriously

injured or killed would not be on the distribution list.

We now highlight three of the most important questions presented in the question-

naire. The first question presented was, “Is your current restraint system comfortable

to wear?” The answers are shown in Figure 1.15, we can see that 90% of the gunners

complained that the current GRS is uncomfortable.

The second question asked “Does your current restraint system help steady your
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Figure 1.16: Question of “Does your current restraint system help steady your posi-
tion for operating the gun?”

position for operating the gun?”. The answers are shown in Figure 1.16, and we can

see that 74% of the gunners said that the GRS affects gunner’s fire operation in a

negative way.

The third question posted was, “Is your current restraint system user-friendly?”.

The answers are shown in Figure 1.17, and we can see that 58% of the gunners

complained that the GRS is too complicated.

From the results, we can also see that the gunners ranked the problem of discom-

fort and the decreased ability to perform tasks as two major challenges presented the

current vehicle system. Safety was less of a concern among the gunners interviewed.

One explanation could be that most gunners are afraid to be more restrained, a con-

cern that may worsen the problem of discomfort. Most HMMWV (67-78%) have

been equipped with a gunner restrain system. But, still 22-33% of the HMMWV

don’t have the GRS.
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Figure 1.17: Question of “Is your current restraint system user-friendly?”

1.4 Topology Optimization

The goal of topology optimization is to determine the optimal distribution or

layout of materials for maximizing or minimizing the design objectives in a given

design domain. The distribution of the materials can be realized by varying den-

sity design variables associated with a micro structure of the material in the design

domain. By optimizing the material distribution, the topology of a structure (i.e.,

the structural connectivity) is obtained. From the time that research into topology

optimization was initiated by Bendsøe and Kikuchi (Bendsøe and Kikuchi , 1988), it

has been widely used for the structural optimization of solid mechanics problems,

including minimum compliance design, compliant mechanism design, and the design

of material microstructures (Bendsøe and Sigmund , 2003). An alternative approach

to the original topology optimization approach is the “power-law approach” or Solid

Isotropic Material with Penalisation (SIMP) approach (Bendsøe, 1989; Zhou and

Rozvany , 1991; Mlejnek , 1992). In this method, the material properties are modeled

by a power of density variable multiplied by the material properties of solid material.

Even without an actual physical explanation, Bendsøe and Sigmund (Bendsøe and
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Sigmund , 1999) proved that the power-law approach is acceptable as long as simple

conditions on the power are satisfied (e.g. p ≥ 3 for Poisson’s ratio equal to 1/3). The

power-law approach has been applied to problems with multiple constraints, multiple

disciplines, and multiple materials.

Another approach in topology optimization is called the “ground structure ap-

proach”, which was developed by (Zhou and Rozvany , 1991). In this approach, a

structural optimization problem is transformed into a problem of seeking the opti-

mal layout in a design space, and that considers all the possible connection members

between the predefined nodal points, and the optimization is accomplished by remov-

ing unnecessary connection members and reinforcing necessary connection members

in the design space, in order to improve the design objective. Ben-Tal and Bendsøe

(Ben-Tal and Bendsøe, 1993) addressed a problem that consisted of finding the stiffest

truss structure to carry a given static load considering perfect, slender bars of a given

total volume. From a prescribed number of nodes and an associated ground structure,

the topology of the truss structure is generated by varying the cross-sectional areas

of the bars, a process that allows for zero cross-sectional areas.

The standard topology optimization method has been extended to a Multi-domain

Topology Optimization (MTO) method (Ma et al., 2006), in which a topology op-

timization problem with multiple domains is considered, by allowing assignment of

various amounts of the materials, as well as of different materials, to the different

sub-domains of a structure. This technique can be used to deal with a number

of important applications, including structure-fixture simultaneous design problems,

functionally gradient material design problems, and crush energy management design

problems, and the technique can be extended for many other applications.

Various optimization algorithms have been developed for use in the topology op-

timization process; some of the algorithms include the Optimality Criteria (OC)

method of Berke and Khot (Berke and Khot , 1987), Sequential Linear Programming
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(SLP), the Convex Linearization (CONLIN) method of Fleury and Brainbant (Fleury

and Braibant , 1987), the Method of Moving Asymptotes (MMA) of Svanberg (Svan-

berg , 1986), Diagonal Sequential Quadratic Programming (DSQP) of Fleury (Fleury ,

1987), the Modified Optimality Criteria (MOC) method by Ma et al. (Ma et al.,

1992), as well as GSAO of Ma and Kikuchi(Ma and Kikuchi , 1995). The GSAO

algorithm extends the compatibility of previous optimization algorithms by allowing

more advanced rules for updating, and by offering more flexible applications to a wide

range of optimization problems. The enhancements of the GSAO method result in

improved convergence, higher computational efficiency and a more stabilized iterative

process for large-scale optimization problems, including those dealing with dynamic

responses. It is noteworthy that GSAO is also applicable to multi-constraint opti-

mization problems. This method is ideal for multi-domain or multi-group topology

optimization problems and was utilized in this study.

Topology optimization as a function-oriented optimal layout design method has re-

ceived extensive attention for more than twenty years, ever since Bendsøe and Kikuchi

proposed the homogenization method (Bendsøe and Kikuchi , 1988). The material is

distributed by considering specific micro-structures in the design domain, and the

structure is consequently optimized by changing the design variables associated with

these microstructures. This method has been widely used for various problems involv-

ing structural optimization of solid mechanics, under static loading and eigenvalue

optimization for vibrating structures (Bendsøe, 1995; Bendsøe and Sigmund , 2003;

Ma et al., 1995b,a; Bendsøe, 1989). An alternative approach of topology optimiza-

tion is the SIMP approach, which was introduced by Bendsøe and Sigmund (Bendsøe,

1989; Sigmund , 2001). In the SIMP method, material properties are assumed to be

constant within each element, and are used to discretize the design domain with the

consequent design variables as the element relative densities. The relative density

vector is optimized by employing specific rules for updating the design variables in
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topology optimization.

The discrete function-oriented design problem, particularly when applied to truss

layout optimization, was studied by Zhou and Rozvany (Zhou and Rozvany , 1991).

They created a complex truss structural universe by connecting a given number of

nodes to all other nodes (a so-called “fully grounded structure”). They obtained an

optimal structural layout by removing unnecessary members and reinforcing necessary

connecting members via a topology optimization algorithm.

1.5 Research Objective and Major Challenges

The objective of this research is to extend topology optimization technique to

consider multibody dynamics systems and to address a much more open design space,

which can include multi-functional components with nonlinear geometric effects, time-

dependent and timing-dependent nonlinear structural response. This new function-

oriented design methodology will be developed for systems that have multi-functional

components, and will be able to address broad applications to military and commercial

vehicles. The special emphasis will focus on addressing the critical need to improve

GRS designs in military vehicles. A major task of this research is to identify an

innovative and optimally combined structural and material system as GRS between

the vehicle and the gunner system from a wide open design space. This system will

include passive, active, and reactive devices for a restraint system in military vehicles,

with the intent of optimizing the multiple design objectives as the dynamic responses

of the vehicle and the gunner under various conditions.

Major challenges in this research include the following:

1. How to apply the topology optimization technology to a design space including

passive, active, and reactive multi-functional components;

2. How to effectively calculate the sensitivities for multibody dynamics systems in
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the topology optimization;

3. How to deal with the objective functions with respect to a system’s nonlinear

dynamic responses rather than static responses;

4. How to develop a general representation for the multi-functional (passive, active

or reactive) components in the multibody dynamics system design problem;

5. How to deal with the uncertainties in human model and operation conditions.

6. How to integrate the solutions to these challenges in one optimization process.

1.6 Approach

The research approach in this study is listed as follows:

1. Understanding the design problems, building the computational simulation mod-

els, conducting preliminary studies, and identifying major challenges. Accom-

plishing these will lead to fundamental technology developments. In the GRS

design, gunner interviews will be conducted, a multibody dynamics model of

HMMWV-GRS-gunner system will be established, and the governing equations

for the interaction system will be derived.

2. Exploring the uncertainties of human factors and parameters in the human

model, which are the major sources of system’s total uncertainty, and examin-

ing loading condition uncertainty in the design process. In GRS design, vari-

able factors such as the bio-mechanical properties of the gunner’s crucial joints,

namely stiffness of joints, need to be considered.

3. Investigating the efficient and reliable sensitivity analysis methods for the topol-

ogy optimization in multibody dynamics systems; this is critical for the opti-

mization problem that involves a large number of design variables, and the
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multibody dynamics system in which the sensitivities vary with time. The

proposed sensitivity analysis method will be employed in the function-oriented

design process for GRS.

4. Developing general force elements and representative models of the multi-functional

components, including passive, active and reactive devices; and implementing

them in the computational simulations for optimal layout design. In GRS de-

sign, the multi-functional components could include: restraint belts, air bags,

retractors, and other new reactive structures that might be developed.

5. Developing a design process that is based on topology optimization for multi-

functional components in multibody dynamics systems. The design space, in-

cluding various multi-functional components will be set up. Optimal multi-

functional components system will be described for specific tasks and functions.

The proposed design process will be used to lay out the innovative and optimal

GRS based on available state-of-the-art technologies, such as restraint belts,

airbags, and retractors.

1.7 Contributions

Major contributions of this research include the following:

1. A fundamental structure layout optimization technology is developed for the

multibody dynamics systems with multi-functional components, including pas-

sive, active, and reactive devices.

2. Three efficient sensitivity analysis methods are developed for topology optimiza-

tion of multibody dynamics systems: a) the constant dynamic loading sensitiv-

ity analysis method; b) the time integration incorporated sensitivity analysis

method based on the Generalized-α algorithm; and c) the iterative sensitivity
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analysis method. These methods improve the computational efficiency com-

pared with traditional methods, including the Direct Differentiation Method

and the Adjoint Variable Method, and they can solve the sensitivities accu-

rately. Comparisons among these sensitivity analysis methods are made, and

the differences are investigated. The user will then be able to choose the most

suitable sensitivity analysis method for topology optimization in multibody dy-

namics systems based on this study.

3. A variable screening method for system design uncertainty based on the Kriging

method with the Restricted Maximum Likelihood (REML) criterion is devel-

oped for dealing with design uncertainties in dynamics systems. The REML

results in unbiased estimates of variance and covariance parameters in contrast

to traditional Maximum Likelihood Estimation (MLE). This method is more

applicable for complicated models in which there is difficulty obtaining the MLE

estimators.

4. The developed technologies have been applied to a practical gunner restraint

system design problem within a wide open design space to allow all possible

multi-functional components. Therefore, the optimal layout from the design

spaces including belts, airbags and retractor devices can be achieved. The opti-

mal GRS layout design will improve the gunner safety performances in extreme

conditions.

1.8 Dissertation Outline

This dissertation discusses multi-functional components layout design using topol-

ogy optimization in multibody dynamics systems. The dissertation is organized as

follows.

In Chapter II, the focus is on the definition of the multi-functional components
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layout optimization problem in multibody dynamics systems under dynamic loading.

A general two multibody dynamics systems with a multi-functional interaction system

is described in this chapter, and the governing equations for this optimization prob-

lem are derived. Then the multi-functional components system layout optimization

problem is extended to the GRS design.

In Chapter III, a new variable screening method based on the Kriging method

with the REML criterion for computationally intensive engineering applications is

proposed. The proposed method adopts the Gaussian exponential correlation model

and the REML method to reduce complexity. Then the developed variable screening

method is tested using a benchmark numerical example and is validated for three

different sampling methods, including Latin Hypercube Sampling (LHS), Improved

Distributed Hypercube Sampling (IHS), and D-optimality selected LHS methods.

The variable screening method is then applied to the GRS design to determine the

most important joint properties for the gunner’s specific dynamic responses in a step

steer driving case.

In Chapter IV, the constant dynamic loading sensitivity analysis method is pro-

posed. Under the assumption of constant loading at certain timing, the dynamic

sensitivity calculation is simplified to a static sensitivity calculation. The proposed

method improves the computational efficiency greatly, and can lead to a converged

optimization process. More accurate sensitivity analysis methods will be discussed in

Chapter V and VI.

In Chapter V, the time integration incorporated sensitivity analysis method based

on the Generalized-α method is proposed. With the use of the Generalized-α integra-

tion algorithm, the multibody dynamics equations of motion can be linearized with

respect to the generalized coordinates in every time step, allowing the sensitivity

analysis to be easily incorporated in the integration algorithm. The proposed time

integration incorporated sensitivity analysis method can solve the sensitivity informa-
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tion in the same inner loop of solving the multibody dynamics governing equations,

thereby reducing the computational time and eliminating the need to construct and

solve any backward adjoint differential equations in the Adjoint Variable Method.

In Chapter VI, a more general iterative sensitivity analysis method for topology

optimization in multibody dynamics systems is proposed. The general iterative sen-

sitivity analysis method can be significantly simplified under special conditions, thus

leading to different algorithms. The comparisons for each of the proposed sensitivity

analysis methods, including the constant dynamic loading assumption method, the

time integration incorporated method and the iterative sensitivity analysis method

are given, and the user can choose the most suitable sensitivity analysis method

according to the user’s specific design problems.

In Chapter VII, the topology optimization problem is defined for the multi-

functional components design problem in multibody dynamics systems. The design

objectives based on the system dynamics responses, the design variables associated

with each multi-functional component and the optimization algorithm employed in

this study are discussed.

In Chapter VIII, the variable screening method using the Kriging method based on

the REML criterion and the efficient iterative sensitivity analysis method developed

in previous chapters are employed into the GRS design problem. The GRS design

problem is decomposed in three different ways: decomposition by active status, de-

composition by functionality, and decomposition by time, and then solved separately.

This general methodology can be also employed when solving other interaction system

design problems in multibody dynamics systems.

In Chapter IX, the conclusions of this study are summarized and several future

works are discussed.
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CHAPTER II

System Layout Optimization with

Multi-Functional Components in Multibody

Dynamics Systems

2.1 Introduction

The motivation of this research is the need to solve the multi-functional com-

ponents layout optimization problem for multibody dynamics systems. There is a

great need for robust and efficient optimization design methods that can be applied

to multibody dynamics systems, in which the components to be designed represent

connections between large displacement, large rotating motions of the bodies of the

subsystems. The term “multi-functional” refers to the combination of passive, active,

and reactive components; these components could have widely differing mechanical

properties with respect to displacement, velocity, time, or critical timing. The def-

inition of passive, active, and reactive devices have been given in Chapter I. These

three kinds of components include a broad range of available engineering mechanisms

in the real world, and would be utilized according to various energy resources. The

multi-functional components system in this study is implemented as an interactive

system among multiple given multibody dynamics systems. The design problem of in-

terest involves multiple multibody dynamics systems and their interconnections, each
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of which need to be designed to constrain the relative motions and positions of the

multibody dynamics systems for the given design objectives, such as those related to

the safety issues. While the multibody dynamics systems can include flexible bodies,

in this study, we limit developments to rigid multibody dynamics systems.

Practical solutions to these multi-functional components system design challenges

require a robust and efficient optimal design method that can quickly layout an op-

timal interactive system between the given multiple multibody dynamics systems.

The multi-functional components are designed to represent connections between the

subsystems’ rigid bodies in the system, each of which undergoes motion that includes

large displacement and large rotation. In addition, the multi-functional connecting

components can have amplitude-dependent, time-dependent, and timing-dependent

behaviors, such as that with an retractor. A fundamental structure layout design

methodology for a system with multi-functional components in multibody dynamics

systems is proposed to solve the problem described above. The proposed methodology

must be able to identify optimally combined multi-functional structural components

with specific geometric and connectivity configurations, as well as mechanical proper-

ties for the given multiple design objectives. One challenge in developing such a design

methodology comes from the complexity of general multibody dynamics systems and

the wide open design space that includes passive, active, and reactive devices that

have nonlinear, time-dependent, and timing-dependent design variables.

This chapter presents an extension of the layout optimization problem for ge-

ometrically nonlinear, time-dependent, and timing-dependent multibody dynamics

systems that include the consideration of nonlinear responses, and that include a

general interactive system design problem with multi-functional components, such as

the various options that arise from using passive, active, and reactive devices.
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2.2 General Multibody Dynamics Systems Connected by the

Interactive System with Multi-Functional Components

As shown in Figure 2.1, it is assumed that two general Multibody Dynamics

Systems (MDS), MDS-1 and MDS-2, are interconnected by a set of N connecting

members; this setup comprises the interactive system between these two given MDS.

Each system has a number of rigid bodies linked by joints, bushings, and other inter-

nal constraints. It is assumed that there are n1 rigid bodies in MDS-1, and n2 rigid

bodies in MDS-2. This set of connecting members represents a possible interactive

system that restrains the relative motion between the two given MDS. Each member

in the interactive system can be described as supplying a general interactive force

between the interactive points, with one point on each of the two multibody dynam-

ics systems. The interactive force may have non-linear dependency in relation to the

relative kinematics (displacement, velocity, and acceleration) of the points, and it can

be time-dependent or timing-dependent, or both. The components can be passive,

active, or reactive, depending on the application. The layout of these connecting

members will affect the system’s dynamic responses, and the layout needs to be opti-

mally designed for the specific objective function. This multibody dynamics systems

are general enough for developing our methodology, and the number of multibody

dynamics systems can be easily extended to more than two systems.

In general, the ith general interactive force fi, which acts on mth body in MDS-1,

and on the nth body in MDS-2, can be described using

fi = fi(∆i, ∆̇i, t, t
0
i , δ

0
i ,κi) (2.1)

where the subscript i denotes the ith interactive member; ∆i denotes the relative

distance change (deformation) between the two interacting points as shown in Fig-

ure 2.1, in which P
(m)
i is the connecting point of the ith interactive member of the mth
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Figure 2.1: General multibody dynamic systems with interactive forces

body in the MDS-1; and Q
(n)
i is the connecting point of the ith interactive member of

the nth body in the MDS-2. ∆̇i denotes the speed (time directive of ∆i); t
0
i denotes

the critical timing for activating the ith interactive member; δ0
i denotes an initial

distance gap for the ith interactive member to become active; and κi is a vector of

other design parameters for the ith interactive member. For example, a simple form

of fi, which is a function only of deformation and velocity of deformation, is given

by:

fi = ki∆i + ci∆̇i (2.2)

where ki and ci are stiffness and damping coefficient for the ith interactive member.

A one-way contact with an initial gap function δ0
i can be described using:

fi =

 0 (∆i < δ0
i )

ki(∆i − δ0
i ) + ci∆̇i (∆i ≥ δ0

i )
(2.3)

An example of time dependent and timing dependent impulse interactive force
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function fi is

fi = f0iexp(−σ0i(t− t0i)2) (2.4)

where f0i, σ0i, and t0i are design parameters for the ith interactive member.

Since the ith interactive member connects the mth body in MDS-1 to the nth

body in MDS-2, fi can also be denoted as f
(mn)
i ; and ∆i can also be denoted as

∆
(mn)
i . The direction of the interactive force f

(mn)
i of the ith member is defined by

e
(mn)
i =

r
Q

(n)
i P

(m)
i∥∥∥∥rQ(n)

i P
(m)
i

∥∥∥∥ (2.5)

where r
Q

(n)
i P

(m)
i

denotes the vector of P
(m)
i Q

(n)
i . Therefore, the ith force vector acting

on the MDS-1 is f1
i = fiei, and the force vector of the same interactive member acting

on the MDS-2 is f2
i = −fiei. Then we have f1

i + f2
i = 0. The system’s global force

vector Fg and global deformation vector ∆ be given as:

Fg = [f1, f2, . . . , fN ]T (2.6)

∆ = [∆1, ∆2, . . . , ∆N ]T (2.7)

which represents the force and deformation vectors of the interactive system, with a

total of N interactive members.

Assume a global coordinate system R : O −XY Z, and local coordinate systems

L
(m)
1 : o

(m)
1 − x(m)

1 y
(m)
1 z

(m)
1 with origin o

(m)
1 attached to the mass center of mth body

in MDS-1, L
(n)
2 : o

(n)
2 − x

(n)
2 y

(n)
2 z

(n)
2 with origin o

(n)
2 attached to the mass center of

nth body in MDS-2. Assuming q1 =

[(
q

(1)
1

)T
,
(
q

(2)
1

)T
, . . . ,

(
q

(n1)
1

)T]T
is the

generalized coordinates vector of MDS-1, q2 =

[(
q

(1)
2

)T
,
(
q

(2)
2

)T
, . . . ,

(
q

(n2)
2

)T]T
is the generalized coordinates vector of MDS-2, the governing equations for MDS-1
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can be written as:  M1(q1)q̈1 −Qv1 + (Φ1)Tq1
λ1 = FExt

1 + Fq
1

Φ1(q1, t) = 0
(2.8)

where the first equation in (2.8) is the dynamic equilibrium equation, and the second

equation is the constraint equation for MDS-1. M1 denotes the generalized mass

matrix, (Φ1)q1 denotes the Jacobian matrix of Φ1, λ1 denotes vector of Lagrangian

multipliers. Qv1 is the quadratic velocity term. FExt
1 denotes the external force

applied on MDS-1, Fq
1 is the generalized force vector of MDS-1 due to the interactive

system to be designed.

Similarly, the governing equations for MDS-2 can be written as:

 M2(q2)q̈2 −Qv2 + (Φ2)Tq2
λ2 = FExt

2 + Fq
2

Φ2(q2, t) = 0
(2.9)

where M2 denotes the generalized mass matrix; (Φ2)q2 denotes the Jacobian matrix

of Φ2; λ2 denotes the vector of Lagrangian multipliers. Qv2 is the quadratic velocity

term. FExt
2 denotes the external force applied on MDS-2, and Fq

2 is the generalized

force vector of MDS-2 that results from the designed interactive system.

Fq
1 and Fq

2 are the generalized force vectors defined in the generalized coordinate

systems for MDS-1 and MDS-2. In general, Fq
1 and Fq

2 can be written as

 Fq
1 = BT

1 Fg

Fq
2 = BT

2 Fg

(2.10)

or equivalently, Fq
1

Fq
2

 = BTFg (2.11)
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where B = [B1 B2] is called Compatibility Matrix, which is a function of the

generalized coordinates q1 and q2. B1 is the compatibility matrix for MDS-1, and

B2 is the compatibility matrix for MDS-2. Due to the effects of nonlinear geometry,

the compatibility matrix B can be highly nonlinear with respect to q1 and q2.

Consider, for example, a planar multibody dynamics system, for the mth body

with generalized coordinates q
(m)
1 =

[
x
o
(m)
1
, y

o
(m)
1
, ψ

(m)
1

]T
in MDS-1, and the nth

body with generalized coordinates q
(n)
2 =

[
x
o
(n)
2
, y

o
(n)
2
, ψ

(n)
2

]T
in MDS-2. Then the

first equation of Equations (2.8) and (2.9) for the mth body in MDS-1 and the nth

body in MDS-2 can be written in the following Newton-Euler form (Hahn, 2002):


M

(m)
1 0 0

0 M
(m)
1 0

0 0 J
(m)
1



ẍ
o
(m)
1

ÿ
o
(m)
1

ψ̈
(m)
1

 =



∑
im∈I(m)

1

(
F q1
im

)
x∑

im∈I(m)
1

(
F q1
im

)
y∑

im∈I(m)
1

[−yL
(m)
1

P
(m)
im

o
(m)
1

x
L

(m)
1

P
(m)
im

o
(m)
1

]AL
(m)
1 R[(F q1

im
)x (F q1

im
)y]

T


+


(
F

(m)
Ext

)
x(

F
(m)
Ext

)
y

Mnt
(m)
Ext



(2.12)
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
M

(n)
2 0 0

0 M
(n)
2 0

0 0 J
(n)
2



ẍ
o
(n)
2

ÿ
o
(n)
2

ψ̈
(n)
2

 =



∑
in∈I(n)

2

(
F q2
in

)
x∑

in∈I(n)
2

(
F q2
in

)
y∑

in∈I(n)
2

[−yL
(n)
2

Q
(n)
in
o
(n)
2

x
L

(n)
2

Q
(n)
in
o
(n)
2

]AL
(n)
2 R[(F q2

in
)x (F q2

in
)y]

T


+


(
F

(n)
Ext

)
x(

F
(n)
Ext

)
y

Mnt
(n)
Ext



(2.13)

where M
(m)
1 , M

(n)
2 are the mass of the mth body in MDS-1 and the nth body in

MDS-2. J
(m)
1 and J

(n)
2 are the moment of inertia with respect to mass center of

the mth body and the nth body respectively. Assuming there are Nm interactive

forces applied on the mth body in MDS-1, the indexes of these forces elements are

denoted as I
(m)
1 =

{
i
(m)
1 , i

(m)
2 , . . . , i

(m)
Nm

}
, similarly, for the nth body in MDS-2 we

can define I
(n)
2 =

{
i
(n)
1 , i

(n)
2 , . . . , i

(n)
Nn

}
. Assuming that the interactive forces apply

between the mth body in MDS-1 and the n1th body, n2th body, . . . , nNmth body in

MDS-2, then the global force vector for the mth body in MDS-1 can be written as

F
(m)
g1 =

[
f

(mn1)

i
(m)
1

, f
(mn2)

i
(m)
2

, . . . , f
(mnNm )

i
(m)
Nm

]T
in which Fq1

im
and Fq2

in
are generalized forces

of the imth interactive member for the mth body in MDS-1 and the inth interactive

member for the nth body in MDS-2, expressed in the global coordinate system. Note

that

[
−yL

(m)
1

P
(m)
im

o
(m)
1

x
L

(m)
1

P
(m)
im

o
(m)
1

]
and

[
−yL

(n)
2

Q
(n)
in
o
(n)
2

x
L

(n)
2

Q
(n)
in
o
(n)
2

]
are the local position of the

imth attached point P
(m)
im

on the mth body in MDS-1 and the local position of the

inth attached point Q
(n)
in

on the nth body in MDS-2.

[(
F

(m)
Ext

)
x
,
(
F

(m)
Ext

)
y
, Mnt

(m)
Ext

]T
and

[(
F

(n)
Ext

)
x
,
(
F

(n)
Ext

)
y
, Mnt

(n)
Ext

]T
are the external force vectors applied on the

respective mth body in MDS-1 and nth body in MDS-2. AL
(m)
1 R and AL

(n)
2 R are
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the transformation matrix between local coordinate system L
(m)
1 , L

(n)
2 and global

coordinates system R. More details about the transformation matrix A can be found

in Appendix A. For the planar multibody dynamics systems, we have

AL
(m)
1 R =

 cosψ
(m)
1 sinψ

(m)
1

−sinψ(m)
1 cosψ

(m)
1

 (2.14)

AL
(n)
2 R =

 cosψ
(n)
2 sinψ

(n)
2

−sinψ(n)
2 cosψ

(n)
2

 (2.15)

The ith interactive force, which connects the mth body in MDS-1 and the nth

body in MDS-2, can be expressed in the global system R as follows,

(FR
i )

(mn)
x

(FR
i )

(mn)
y

 =


(
rR

Q
(n)
i

P
(m)
i

)
x∥∥∥∥∥rQ(n)

i P
(m)
i

∥∥∥∥∥

(
rR

Q
(n)
i

P
(m)
i

)
y∥∥∥∥∥rQ(n)

i P
(m)
i

∥∥∥∥∥


T

f
(mn)
i (2.16)

Therefore, the global force vector applied to the mth body in MDS-1 can be

denoted as F
(m)
g1 =

[
f

(mn1)

i
(m)
1

, f
(mn2)

i
(m)
2

, . . . , f
(mnNm )

i
(m)
Nm

]T
and calculated as:



∑
in∈I(n)

2

(F q2
in

)x

∑
in∈I(n)

2

(F q2
in

)y

∑
in∈I(n)

2

[−yL
(n)
2

Q
(n)
in
o
(n)
2

x
L

(n)
2

Q
(n)
in
o
(n)
2

]AL
(n)
2 R[(F q2

in
)x (F q2

in
)y]

T


=
(
B

(m)
1

)T


f
(mn1)

i
(m)
1

f
(mn2)

i
(m)
2

...

f
(mnNm )

i
(m)
Nm


=
(
B

(m)
1

)T
F

(m)
g1

(2.17)
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where the compatibility matrix

B
(m)
1 =



rR

Q
(n1)

i
(m)
1

P
(m)

i
(m)
1


x∥∥∥∥∥rQ(n1)

i1
P

(m)
i1

∥∥∥∥∥

rR

Q
(n1)

i
(m)
1

P
(m)

i
(m)
1


y∥∥∥∥∥rQ(n1)

i1
P
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(2.18)

The relationship between the mth compatibility matrix B
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1 in MDS-1, and the

generalized coordinates q
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1 and q
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2 are, in general, highly nonlinear.
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where c2 =cosψ
(n)
2 ; s2 =sinψ

(n)
2 ; c1 =cosψ

(m)
1 ; and s1 =sinψ

(m)
1 .

Substituting Equation (2.19) into (2.18), we obtain the nonlinear dependence of

the compatibility matrix on the generalized coordinates.

Due to the large translation, large rotation, and nonlinear geometric properties

of dynamics systems, the relationship between the deformation of the ith connecting

member ∆
(mn)
i and the generalized coordinates q

(m)
1 =

[
x
o
(m)
1
, y

o
(m)
1
, ψ

(m)
1

]T
for the
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mth body and the q
(n)
2 =
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x
o
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2
, y
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2
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]T
for the nth body can be highly non-

linear. The deformation of the ith interactive member attached to the mth body in

MDS-1 and the nth body in MDS-2 is:

∆
(mn)
i =

∥∥∥∥rQ(n)
i P

(m)
i

∥∥∥∥− ∥∥∥∥rQ(n)
i P

(m)
i

∥∥∥∥
t=t0

=

∥∥∥∥ARL
(m)
1 r

L
(m)
1

P
(m)
i o

(m)
1

+ rR
o
(m)
1

−ARL
(n)
2 r

L
(n)
2

Q
(n)
i o

(n)
2

− rR
o
(n)
2

∥∥∥∥− l0i (2.20)

Then, the deformation vector ∆(m) for the mth body is denoted as

∆(m) =

[
∆

(mn1)

i
(m)
1

,∆
(mn2)

i
(m)
2

, · · · ,∆(mnNm )

i
(m)
Nm

]T
(2.21)

The following relationship between the mth deformation vector ∆(m) and the mth

compatibility matrix B
(m)
1 is obtained by differentiating Equation (2.21) with respect

to the generalized coordinates qm1 for the mth body:
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2.3 Reverse Method for Compatibility Matrix Calculation

In complicated multibody dynamics systems, the compatibility matrix B may be

difficult to obtain, particularly if the internal information of a multibody dynamics

code is not accessible. There is therefore a need to develop a more effective calculation

method to obtain the compatibility matrix B using only the information that is

available during a normal solution process, without requiring internal information
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and without modifying the multibody dynamics code. In general, the compatibility

matrix B is the assembly of the sub-matrices B(i) where B(i) = −∂∆(i)

∂q(i) and q(i) is the

generalized coordinate vector of the ith body in the multibody system and ∆(i) is the

displacement vector associated with the ith body. Let B
(i)
n denote the compatibility

matrix B(i) at the nth time step, and let ∆
(i)
n be the corresponding displacement at

the nth time step. Then, using a first order Taylor expansion of ∆
(i)
n at a point q

(i)
0

near to q
(i)
n :

∆(i)
n = ∆

(i)
0 +

∂∆
(i)
n

∂q(i)

(
q(i)
n − q
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)
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(2.23)

or

B(i)
n

(
q(i)
n − q

(i)
0

)
= ∆

(i)
0 −∆(i)

n (2.24)

Using the same process, for the time steps n+ j (j = 1, 2, . . . , jn) , we obtain

B
(i)
n+j

(
q

(i)
n+j − q

(i)
0

)
= ∆

(i)
0 −∆

(i)
n+j (2.25)

where, for the two-dimensional system jn = 3, and for the three-dimensional system

jn = 6.

Since ∆
(i)
n and q

(i)
n are calculated at each time step, by assuming the compatibility

matrix to be constant within the small time interval, we obtain

B(i)
n

[
q

(i)
n+1 − q

(i)
0 , . . . ,q

(i)
n+jn
− q

(i)
0

]
=
[
∆
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0

]
(2.26)

The compatibility matrix for the nth time step B
(i)
n can be solved in Equation

(2.26), and the global compatibility matrix B matrix is constructed by assembling all

B
(i)
n .
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2.4 Generalized-α Method for Multibody Dynamics Systems

The Generalized-α method is widely used to solve the multibody dynamics system

step by step. The Generalized-α method, which results from the successive contri-

butions of Newmark (Newmark , 1959), Hilbert et al. (Hilbert et al., 1977), as well

as Chung and Hulbert (Chung and Hulbert , 1993) is well known to be a well-suited

algorithm to use in dynamics systems (Brüls and Golinval , 2006).

The state equations of a multibody dynamics system can be written in a general

form (Shabana, 1998):

 r = M(q)q̈ + Ftot(q, q̇,α) + ΦT
qλ = 0

Φ(q) = 0
(2.27)

where r is the residuals vector of the dynamics equilibrium equation; M is the gen-

eralized mass matrix; qa×1 is generalized coordinates vector of multibody system;

Φm×1 is the vector of linearly independent constraint equations; Φq is the constraint

Jacobian matrix; λ is the vector of Lagrange multipliers; and Ftot includes all the

external forces Qe as well as the quadratic velocity term Qv. In geometrically non-

linear dynamics systems, Ftot could be highly nonlinear with respect to generalized

coordinates q.

Equation (2.27) is a set of nonlinear Differential Algebraic Equations (DAE),

which can be solved using the Generalized-α method. At the (n+ 1)th time step, the

respective generalized displacement, velocity, and acceleration vectors, qn+1, q̇n+1,

q̈n+1 respectively, and the vector of Lagrangian multipliers λn+1 all have to satisfy

Equation (2.28):

 rn+1 = M(qn+1)q̈n+1 + Ftot(qn+1, q̇n+1,α) + ΦT
qn+1

λn+1 = 0

Φ(qn+1) = 0
(2.28)
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According to the Generalized-α method, an acceleration-like vector an+1 is in-

troduced by the following iterative relation with respect to generalized acceleration

vector in the nth and (n+ 1)th time step:

(1− αm)an+1 + αman = (1− αf )q̈n+1 + αf q̈n (2.29)

where αm and αf are algorithmic parameters and with the initial condition that

a0 = q̈0.

The integration scheme is obtained by the Newmark integration formula in Equa-

tion (2.30):  qn+1 = qn + hq̇n + h2(1
2
− β)an + h2βan+1

q̇n+1 = q̇n + h(1− γ)an + hγan+1

(2.30)

where h is the step size; β and γ are the Newmark integration parameters.

The Generalized-α method has second-order accuracy and unconditional stability

for linear problems if these parameters are selected properly according to Hulbert and

Chung (Hulbert and Chung , 1996). In this study, the following recommended values

for integration parameters are adopted from the study undertaken by Hulbert and

Chung. 

αm = 2ρ∞−1
ρ∞+1

αf = ρ∞
ρ∞+1

γ = 1
2
− αm − αf

β = 1
4
(1

2
+ γ)2

(2.31)

where ρ∞ is the desired high-frequency dissipation.

The initial state vector prediction
[
(q0

n+1)T , (q̇0
n+1)T , (q̈0

n+1)T , (λ0
n+1)T , (a0

n+1)T
]T
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is defined as follows in the Generalized-α method.



q̈0
n+1 = 0

a0
n+1 =

αf q̈n−αman

1−αm

λ0
n+1 = 0

q0
n+1 = qn + hq̇n + h2(1

2
− β)an + h2βa0

n+1

q̇0
n+1 = q̇n + h(1− γ)an + hγa0

n+1

(2.32)

The state vector at the (n+ 1)th time step
[
qTn+1, q̇

T
n+1, q̈

T
n+1,λ

T
n+1, a

T
n+1

]T
can be

solved using the Newton-Raphson iteration method to reduce the residuals of state

equation r = Mq̈− Ftot + ΦT
qλ to a prescribed tolerance based on a linearized form

of Equation (2.27).

 M∆q̈ + C∆q̇ + K∆q + ΦT
q∆λ = ∆r

Φq∆q = ∆Φ
(2.33)

where M = ∂r
∂q̈

,C = ∂r
∂q̇

, and K = ∂r
∂q

denote the respective linearized mass, damping

and stiffness matrices. Then the iteration matrix S is defined as:

S =

β ′M + γ
′
C + K ΦT

q

Φq 0

 (2.34)

where β
′
= 1−αm

h2β(1−αf )
and γ

′
= γ

hβ

The Generalized-α method integration algorithm can be described as follows in

Figure 2.2. (Brüls et al., 2009; Geradin and Cardona, 2001; Arnold and Brüls , 2007)
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Figure 2.2: Generalized-α integration algorithm scheme
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2.5 DDM and AVM Sensitivity Analysis Method

For traditional dynamics systems sensitivity analysis, there are two widely used

methods, the DDM method and the AVM method (Arora and Haug , 1979; Hsieh and

Arora, 1984). The DDM is a straight forward approach for a structural dynamics

system. If the governing equations for a dynamics system has the following form in

Equation (2.35), then

Mq̈ + Cq̇ + Kq− f = 0 (2.35)

where M is the system mass matrix; C is the system damping matrix; K is the

system stiffness matrix; f is the external force vector; and q is the system generalized

coordinates.

Direct differentiation of Equations (2.35) with respect to the design variable vector

α results in the Equation (2.36).

M
d2

dt2

(
dq

dα

)
+ C

d

dt

(
dq

dα

)
+ K

dq

dα
=

∂f

∂α
− ∂M

∂α
q̈− ∂C

∂α
q̇− ∂K

∂α
q (2.36)

The design objective function has a general form G(y,α), where y is the state

variable vector and y =
[
qT , q̇T

]T
. The objective sensitivities dG

dα
can be calculated

by

dG

dα
=
∂G

∂y

dy

dα
+
∂G

∂α

=
∂G

∂q

dq

dα
+
∂G

∂q̇

d

dt

(
dq

dα

)
+
∂G

∂α

(2.37)

To carry out the sensitivity analysis using the DDM method, we need to solve the

same number of second order differential equations as there are design variables shown

in Equation (2.36). After solving the forward sensitivity dq
dα

, they are substituted into

the Equation (2.37) to calculate the objective sensitivity dG
dα

. Therefore, this method

is not efficient when there is a large number of design variables, such as in the case
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of the topology optimization problem (Kang et al., 2006).

The AVM method is another widely used sensitivity analysis method for the dy-

namics system, it can reduce the number of differential equations need to be solved

for the sensitivities. If the objective function G(α) is in an integral form shown in

Equation (2.38).

G(α) =

t1∫
t0

g(t,y(t,α),α)dt (2.38)

The system governing equations in (2.35) can be rewritten as follows:

 I 0

0 M

 d

dt


q

q̇


 =

0

f

+

 0 I

−K −C


q

q̇

 (2.39)

then Equation (2.39) can be rewritten as follows

ẏ = F(y(t,α),α)

t0 ≤ t ≤ t1, y(t0) = y0(α)
(2.40)

where α is the design variable vector; y =
[
qT q̇T

]T
; t0 is the initial time; and t1 is

the final time.

Then the Lagrange multipliers vector λ ∈ Rn is introduced, the extended objective

function Ĝ(α) is defined in Equation (2.41).

Ĝ(α) = G(α)−
t1∫
t0

λT (ẏ − F(y(t,α),α)) dt (2.41)

Since Ĝ = G(α) because ẏ − F (y(t,α),α) = 0, it follows that the sensitivity
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analysis of Ĝ(α) with respect to the design variables vector α is:

(
∂Ĝ

∂α

)T

=

(
∂G

∂α

)T

=

t1∫
t0

((
∂g

∂y

)T
dy

dα
+

(
∂g

∂α

)T)
dt−

t1∫
t0

λT
(
−∂F

∂α
− ∂F

∂y

dy

dα
+

dẏ

dα

)
dt

(2.42)

Integration by parts for Equation (2.42) leads to:

(
∂G

∂α

)T
=

t1∫
t0

((
∂g

∂α

)T
+ λT

∂F

∂α

)
dt

−
t1∫
t0

(
−
(
∂g

∂y

)T
− λT ∂F

∂y
− λ̇T

)
dy

dα
dt−

(
λT

dy

dα

)∣∣∣∣t1
t0

(2.43)

To avoid computing the forward sensitivity dy
dα

, the first order adjoint variable

λ ∈ Rn is defined as the solution of the first order adjoint model, described by the

following final value problem as the adjoint equations:

λ̇ = −
(
∂F(y,α)
∂y

)T
λ− ∂g

∂y

t0 ≤ t ≤ t1, λ(t1) = 0
(2.44)

After solving the backward adjoint differential equations and obtaining λ(t), the

sensitivities can be given by

(
∂G

∂α

)T
=

t1∫
t0

((
∂g

∂α

)T
+ λT

∂F

∂α

)
dt+

(
λT

dy

dα

)∣∣∣∣
t0

(2.45)

In the AVM method, a set of adjoint equations in (2.44) are introduced to replace

the direct sensitivities calculations. The advantage of the AVM method is that the

direct calculation of the sensitivities, which requires solving the same number of state
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equations as there are design variables, is avoided. It is assumed that there is a dy-

namics system having n generalized coordinates, m algebraic constraints, and g design

variables, and that a total of 2(n + m) + g differential equations must be integrated

(Bestle and Eberhard , 1992) in the AVM method. At first, the system state variables

are calculated for the time interval of interest by the forward integration of the n+m

equations of motion. Using this state variables information, the sensitivities are then

calculated by the set of n+m+ g adjoint equations, which are integrated backward

in time over the same time interval. There are n + m equations in Equation (2.44)

and g equations in Equation (2.45). On the other hand, (n + m)(g + 1) differential

equations must be integrated in order to calculate the sensitivities using the DDM

method. Therefore, the use of AVM method is much more preferred than the DDM

method when the number of design variables g is large as compared to the objective

functions, such as the topology optimization problem, particularly when the forward

dynamics analysis is being performed in a more traditional manner (Mukherjee et al.,

2008).

There are, however, two major limits for applying the AVM method to the sensi-

tivity analysis in multibody dynamics system. First, not all the dynamics governing

equations in the multibody dynamics system can written in the form of Equation

(2.40), especially when DAE are involved in calculation because of the constraint

functions in multibody dynamics system (Etman, 1997; Ding et al., 2008). Then, it

is difficult to obtain and solve the adjoint equations, which is an additional set of the

equations, for the multibody dynamics system in the DAE form. Second, it requires

the objective function is an integral from in Equation (2.38).

The DDM and AVM method are either not suitable for the topology optimization

or not suitable for the multibody dynamics systems. Therefore, more efficient and re-

liable sensitivity analysis methods need to be developed for the topology optimization

in the multibody dynamics system.
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2.6 Conclusions

The multi-functional components layout design problem, which may have various

options associated with it, including passive, active, and reactive components in given

multibody dynamics systems, is defined in this chapter. The defined layout design

problem is able to address the objective functions that are related to the dynamic

responses of multibody dynamics systems, rather than static responses. The target of

the multi-functional components layout design problem in given multibody dynam-

ics systems is to seek the optimal interactive system layout between given multiple

multibody dynamics system in order to maximize or minimize the dynamic objective

function. The governing equations for the interactive system and the given multibody

dynamics systems are derived first. Then the Generalized-α integration algorithm is

covered; this can be employed to solve the governing equations of the dynamics prob-

lem. A reverse method is also proposed for the compatibility matrix calculation in the

dynamics system, to handle the difficulty of obtaining the compatibility matrix ex-

plicitly. Two traditional sensitivity analysis methods DDM and AVM are introduced,

and their limits for the multibody dynamics system are discussed.
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CHAPTER III

Variable Screening Using Kriging Method for

System Uncertainties

3.1 Introduction

Computational simulation and analysis are widely used in a great number of differ-

ent engineering applications. Although computational power and speed grow continu-

ously, complicated high-fidelity engineering models still have relatively high computa-

tional cost, especially when modeling parameters having uncertainties; thus design op-

timization for such computational intensive engineering system is limited. Therefore,

numerous statistical approximation methods and approximation-based optimization

are becoming widely used to minimize the computational expense (Simpson et al.,

2001). A simple analytical model, which is used to approximate the computation-

intensive engineering model, is denoted as a metamodel, and the process of generating

a metamodel is called metamodelling (Wang and Shan, 2007). It is important to note

that deterministic computer experiments differ from physical experiments, which have

random error. Three fundamental principles need to be considered for physical exper-

iments: replication, randomization and blocking. These are generally not applicable

to the computer experiments because the same input in a computer experiment gives

rise to the same output (Wu and Hamada, 2009).
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In the engineering design problem with a lot of design uncertainties, it is important

to consider the uncertainties in the design process to ensure the system having better

performance under all cases. When designing the system under uncertainty, it is

desirable to evaluate the system in view of the worst-case uncertain effect (Rustem

and Howe, 2002). Therefore, large number of design variables result the difficulty

of identifying worst-case condition in the system uncertainty study. In many cases,

the complex engineering system includes a large number of design variables in the

optimization process, and it is reasonable to expect some of these variables to be

insignificant, or much less important than others. Thus, it is desirable to conduct a

variable screening to identify the important variables so that a simpler metamodel

and better interpretation can be achieved, such that further investigations can be

conducted to determine the worst-case or critical loading condition for the system for

eliminating the design uncertainty.

Variable screening methods based on linear regression take the form,

Y = βTx + ε (3.1)

where Y is the response vector, x is the predictor matrix, β is the regression co-

efficient vector, and ε represents approximation error and is i.i.d. N(0, σ2) . For

example, the goal of variable screening is to choose an ’optimal’ subset from all pos-

sible variable combinations for a given criterion, such as forward, backward and step-

wise selections, adjusted R-square, Mallow’s Cp , or Cross-Validation (CV) methods

(Wang and Yin, 2008). Some well-known information based criteria Akaike Informa-

tion Criterion (AIC) (Akaike, 1995), Bayesian Information Criterion (BIC) (Schwarz ,

1978) and Risk Inflation Criterion (RIC) (Shi and Tsai , 2002) have been used to

select the informative predictors under pre-specified models through penalization.

Miller (Miller , 2002) gave a comprehensive summary on regression variable subset
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selection. However, one drawback of these traditional variable screening methods is

that they may suffer from instability with respect to small changes in the data set

due to their inherent discreteness (Breiman, 1996). To deal with the instability issue,

new approaches such as Least Absolute Shrinkage and Selection Operator (LASSO)

(Tibshiran, 1996), Least Angle Segression Selection (LARS) (Efron et al., 2004) have

been proposed. These methods are based on linear models to reach the model shrink-

age by variable screening. If the model is highly nonlinear, such variable screening

methods may not guarantee correct results. Response Surface (RS) methodology was

first developed by Box and Wilson (Box and Wilson, 1951), and the general form of

a RS model is a polynomial of degree m as follows.

f̂(x,β) = β0 +
∑
i

βixi +
∑
i

∑
j>i

βijxixj +
∑
i

βiix
2
i

+
∑
i

∑
j>i

∑
k>j

βijkxixjxk + · · ·+
∑
i

βi,...,ix
m
i

(3.2)

Linear least squares estimation may be applied to this model to find the best

coefficients; as a result, the RS models are widely used in applications (Box and

Draper , 1987; Myers and Montgomery , 1995). One drawback of the RS method

is the rigid structure of a pre-selected polynomial model, which may not be flexible

enough to represent the true response surface, especially for highly nonlinear response

surfaces. The RS methodology was introduced into variable screening by Craig and

Stander (Craig et al., 2005). They proposed a variable screening method based on a

successive RS method in which only a linear RS is used to create approximations of

the design response. The local sub-domain which is used to create the RS is reduced in

iterations and the size of each successive sub-domain is changed based on contraction

and panning parameters to avoid oscillation and improve the convergence. In every

sub-domain, the linear RS is used to estimate the sensitivities of the responses with
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respect to the design variables (Stander and Craig , 2003). The adopted sampling

method is based on the D-optimality criterion (Myers and Montgomery , 1995) with

over-sampling to find the best estimate of the regression coefficients.

For deterministic computer experiments, the space filling sampling method or

experimental design is often claimed to be better than traditional sampling method,

such as full factorial, fractional factorial designs, central composite and Box-Behnken

method (Simpson et al., 2001). The space filling method treats the whole design

space equally and distributes the sample points evenly. However, the classic methods

spread the data points around the boundaries of the design space resulting in fewer

sampling points in the interior of the design space.

There are three popular space filling sampling methods used in various engineering

applications: the LHS method, IHS method and the D-optimality method. In the

LHS method, each variable or constraint is divided equally over the range. If n runs

are planned and if the range of a parameter is R then the whole parameter space

is divided into R/n equal parts. It is constrained to a single sample point per part.

Once the part has been determined, an uniform distribution selects the final sample

point location. once this is completed for every variable, pairing these variables is

random and there is no correlation between any two variables (McKay et al., 1979).

LHS is a stratified sampling technique where the random variable distributions are

divided into equal probability intervals, and it is a frequently used sampling technique

for Kriging metamodeling (Stein, 1987).

The IHS method was developed by Beachkofski (Beachkofski , 2002), based on

the Distributed Hypercube Sampling (DHS) method (Manteufel , 2001), which adds

another constraint by distributing sample points evenly as projected on to a two-

dimensional face of the hypercube. Since LHS makes the set evenly distributed on

the edge and DHS makes the set evenly distributed on the surface of the hypercube.

IHS makes the set evenly distributed on the volume of the hypercube.(source code of
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J. Burkardt http://people.sc.fsu.edu/ jburkardt/)

The D-optimality method select calibration samples from a list of I candidates.

All the sets of N ≤ I samples can constitute a different matrix X. The location

of N sample points are determined by maximizing det(XTX) , which is known as

the D-optimality Criterion, to avoid the need to search for all possible N sample

combinations. The selected samples minimize the volume of the confidence region

of regression coefficients, thus producing reliable estimators. The selection is made

without considering the response, which is only measured for the selected samples

(Mitchell , 1974; Ferre and Rius , 1997).

Welch (Welch et al., 1992) proposed a variable screening method which combines

the screening process with the selection of better model parameter sets. Welch per-

formed the screening by building a Kriging metamodel based on a LHS set, and

identified the important variables using the criterion of MLE. They proposed an

algorithm that maximizes the MLE by considering the contribution of individual

variables sequentially. In each loop of the algorithm, the most significant variable is

selected from the initial set until only unimportant variables remain. A metamodel

that only contains significant variables is constructed based on the results. Chang

(Chang et al., 2001) applied the variable screening procedure introduced by Welch to

determine significant variables in the design optimization process of the midstem of

a flexible hip implant.

This chapter proposes a variable screening method for complex and computational

intensive engineering systems based on Kriging meta-models using the REML crite-

rion based on Welch’s method. This approach is able to select important variables in

a system without any linearity or additivity assumption. The nonparametric Kriging

metamodel treats the deterministic computer experiments results as the realization

of a stochastic process, and this model can automatically adapt to nonlinear and

interaction effects in the data. In this chapter, the proposed method adopts Gauss
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exponential correlation model and REML method to reduce the complexity and im-

prove Welch’s variable screening process. The good performance of the proposed

method for two different sampling methods is demonstrated using a 20-dimensional

benchmark numerical example (Welch et al., 1992).

3.2 Restricted Maximum Likelihood Kriging Method for Vari-

able Screening

3.2.1 Kriging Method

Kriging is a spatial correlation modeling method evolved in the field of geostatis-

tics (Matheron, 1963). The first application of Kriging to computer experiments was

introduced by Sacks, Welch, Mitchell, and Wynn (Sacks et al., 1989). Although the

RS methodology works well for small scale problems with simple curvature, Krig-

ing provides flexibility to approximate many complex response functions (Jin et al.,

2000). Kriging assumes some form of spatial correlation between points in the multi-

dimensional input space, and uses this correlation to predict response values between

the observed points. The resulting estimated surface can interpolate the observed

responses (Chen et al., 2010), consequently, it is good for metamodeling. It is impor-

tant to note that the estimated Kriging model correlation parameters are critical for

the performance of the model.

In this chapter, the following notations are employed: D is the experimental design

space; d is the number of input variables, which corresponds to the dimension of D;

X is the set of design points chosen in D ; n is the number of design points in X,

which corresponds to the number of observations of the response variable; xi denotes

the ith design point and X = [x1, x2, . . . , xn] with xi ∈ Rd, i = 1, 2, . . . , n . y(xi)

denotes the ith observation of the response variable and Y is the vector of response

observations Y = [y(x1), y(x2), . . . , y(xn)]T the response variable y(xi) could also
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be a q dimensional vector. Kriging model Y(x) ∈ Rq is the deterministic response

for a d dimensional input x ∈ D ⊆ Rd as a realization of a regression model F and a

random function. The general Kriging approximation has the form:

Yl(x) = F (β:,l,x) + Zl(x) l = 1, 2, . . . , q (3.3)

The regression model F is assumed as a linear combination of p chosen functions

of fj(x) : Rd → R

F (β,x) = β1,lf1(x) + β2,lf2(x) + · · ·+ βp,lfp(x) (3.4)

where β = [β1,l, β2,l, . . . , βp,l]
T . The random process Zl(x) is assumed to have mean

zero and covariance

Cov[Zl(w)Zl(x)] = σ2
lRl(w,x, θ:,l, η:,l) (3.5)

between Zl(w) and Zl(x) at two input vectors w and x , where σ2
l is the process

variance and Rl(w,x, θ:,l, η:,l) is the correlation model with parameters θ:,l and η:,l ,

which depends on the relative location of two design points, w and x.

A commonly used correlation model has the form,

Rl(w,x, θ:,l, η:,l) = Πd
i=1exp(−θi,l | wi − xi |ηi,l) (3.6)

where θ:,l ≥ 0 and 1 ≤ η:,l ≤ 2 . The parameter η:,l can be interpreted as an

indicator of increasing the smoothness of the response surface; thus larger η:,l indicates

greater nonlinearity. In this study the parameter η:,l was fixed at a value of 2, as

Martin and Simpson (Martin and Simpson, 2004) pointed out that η:,l = 2 is the

best suited to smooth functions and is the most commonly used value in engineering
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applications. Therefore, a Gauss exponential correlation model is employed to reduce

the complexity in this paper’s variable screening algorithm.

Rl(w,x, θ:,l, η:,l) = Πd
i=1exp(−θi,l | wi − xi |2) (3.7)

Welch (Welch et al., 1992) also pointed out that θ:,l seems to be the more important

than η:,l. Several simplifications are adopted to simplify the algorithm: There is only

one component for the response vector, i.e. q = 1. Welch pointed out that the

regression model F (β,x) could be replaced by an unknown constant β , which is

much more practical and widely used.

3.2.2 Maximum Likelihood Estimation for Parameters

Using the Best Linear Unbiased Predictor (BLUP) approach, for given correlation

parameters θi and ηi of the Kriging metamodel, the predictor of y at an arbitrary

point x can be shown to be (Welch et al., 1992)

ŷ(x) = F (β̂,x) + rT (x)R−1(y − Fβ̂) (3.8)

where F =



f1(x1) f2(x1) · · · fp(x1)

f1(x2) f2(x2) · · · fp(x2)

...
...

. . .
...

f1(xn) f2(xn) · · · fp(xn)


n×p

; r(x) is n × 1 vector of correlations

R(x,xi) for i = 1, 2, . . . , n between covariance at arbitrary design point X and at

each sampled points; and β̂ is the maximum likelihood estimator of β , given by,

β̂ = (FTR−1F)−1FTR−1y (3.9)
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The maximum likelihood estimator of σ2 is given by

σ̂2 =
1

n
(y − Fβ)TR−1(y − Fβ) (3.10)

The correlation parameters θi and ηi , which determine the characteristics of the

approximation between sample points, can be computed using the MLE approach

(Harville, 1977). Martin and Simpson (Martin and Simpson, 2004) concluded that the

MLE approach is better than the CV method for selecting Kriging model parameters.

The MLE approach is an unconstrained nonlinear optimization process in the space

of parameters (θi, ηi) which tries to maximize the log-likelihood in Equation (3.11).

Log{L(θ,η, β, σ2)} = −1

2
[nLogσ2 +Log(det(R))+

(y − Fβ)TR−1(y − Fβ)

σ2
] (3.11)

In order to solve the maximum likelihood optimization problem efficiently, only

Gaussian correlation is adopted and this assumption results in a reduced optimization

problem 1/2 the size of the original problem.

3.2.3 Restricted Maximum Likelihood Estimation for Parameters

The REML method is not based on a maximum likelihood fit of all the information,

but instead employs a likelihood function calculated from transformed data, and it

can produce unbiased estimates of variance and covariance parameters in contrast

to the MLE (Kenward and Roger , 1997). In addition, the MLE estimator of β̂ and

σ̂2 are not involved in the optimization problem for the correlation parameter in the

Kriging model, so it is not necessary to calculate the maximum likelihood estimator

of β̂ and σ̂2, which, in some cases, can be difficult to obtain.

If we have n observations Y following a multivariate Gaussian distribution,

Y ∼ N(Fβ; Z) (3.12)
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then the restricted likelihood can be expressed in term of Y , F and Z only as

2Log{L(θ,η, β, σ2)} = cons.− Log{| Z |} − Log{| FTZ−1F |}

−YT{Z−1 − Z−1F(FTZ−1F)−1FTZ−1}Y
(3.13)

The variance-covariance matrix for Kriging method is Z = σ2R, which is a func-

tion of θ and η. If the regression model F (β,x) can be replaced by an unknown

constant β , then F = 1 and Fβ = 1β , where 1 is a column vector of 1’s. For this

case, the REML is an unconstrained nonlinear optimization problem in the space of

parameters (θi, ηi, σ) which tries to maximize the log-likelihood in Equation (3.13).

Cholesky factorization for the covariance matrix R can handle the singularity issue in

Equation (3.13). Since we assume Gaussian correlation, the design space is reduced

to the n+ 1 dimensional space (θi, σ) from the 2n dimensional space (θi, ηi) without

requiring the MLE estimator of β̂ and σ̂2.

3.3 Proposed Variable Screening Algorithm

The basic idea of the algorithm is similar to Welch’s method (Welch et al., 1992),

but simpler. At first, we set the correlation parameters in the Kriging model θ1 =

θ2 = · · · = θd = θ for the correlation function in Equation (3.7), then the numerical

maximization of restricted likelihood only over two variables θ and σ . At each stage,

let S denote the set of indexes of variables under the constraint of sharing common

values of correlation parameter θi, while the remaining variables are free to have their

own θi. Starting with S = {θ1, θ2, . . . , θd} , the algorithm iterates as follows. For

each i in S , we relax the constraint θi = θ and maximize the restricted likelihood in

Equation (3.13) subject to θj = θ for all j in S − {i} . The variable xi which results

in the largest restricted likelihood is removed from S. The iterations terminate when

none on the variables in S makes a large increment in the restricted likelihood relative
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Figure 3.1: Flowchart of Kriging variable screening method

to previous iteration. The variable screening algorithm using Kriging method based

on the criterion of REML can be encapsulted in the flowchart in Figure 3.1.

Therefore, the spirit of this algorithm is similar to the forward selection method

of regression variables. The few most important variables can be screened out at first

due to demanding their own θi and can produce larger values of θi in maximization

of the restricted likelihood. The value of common θi for the variables remaining in S

decreases and the restricted likelihood increases when more important variables are

screened out and removed from the set S . If all the variables are either exceptionally

active or exceptionally inactive, the value of common θi for set S would be zero after

few iterations. However, if the variables in set S still have minor effects, the value of
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common θi may not trend to zero eventually, or may start to oscillate after all the

important variables are screened out. In this case, we force the algorithm to stop

if there is no substantial increment in the restricted likelihood relative to previous

stage.

3.4 Numerical Example

The test function proposed by Welch (Welch et al., 1992) with the range of x ∈

[−0.5, 0.5]20 as

f(x) =
5x12

1 + x1

+ 5(x4 − x20)2 + x5 + 40x3
19 − 5x19 + 0.05x2

+ 0.08x3 − 0.03x6 + 0.03x7 − 0.09x9 − 0.01x10 − 0.07x11

+ 0.25x2
13 − 0.04x14 + 0.06x15 − 0.01x17 − 0.03x18

(3.14)

This function is strongly nonlinear and contains two interactions term, which is very

challenging for variable screening. We cannot find the correct six significant vari-

ables using the LHS method likely a consequent of the restricted maximum likelihood

method with Gaussian correlation assumption reducing the optimization problem’s

design space by half, therefore, having much less degree of freedoms than before.

There are two possible ways to improve the Kriging models in experimental designs

proposed by Hawe and Sykulski (Hawe and Sykulski , 2007). The first way is try to

include 2n extreme boundary points of the design variable space of n dimensional

space, which is 2n corners of the hypercube that bounds the feasible region in design

space. The second way is trying to include n additional experiments a small distance

away from the particular experiment x∗ in each of the n orthogonal direction around

x∗ in n dimensional design space. These two ways will introduce more sample points,

which is infeasible for computationally intensive experiments. We investigated other

sampling methods, namely the IHS method and the D-Optimality criterion selected
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Latin Hypercube method. The variable screening results using IHS, D-optimality

sampling methods are shown in Table 3.1 and 3.2.

Selected variables θj for factors in S and (σ̂2)∗ Restricted Log-likelihood
12 (0.3883,2.2305) -50.1679

12,19 (0.1211,2.5108) -44.1308
12,19,4 (0.0720,2.8226) -41.7540

12,19,4,20 (0.0079,5.0277) -31.1412
12,19,4,20,1 (0.0001,18.8503) -20.0518

12,19,4,20,1,5 (0.0000, 33.9204) -15.8843
12,19,4,20,1,5,16 (0.0000, 26.0662) -14.3740

Table 3.1: Variable screening results for IHS method

Selected variables θj for factors in S and (σ̂2)∗ Restricted Log-likelihood
12 (0.1359,2.6261) -54.5434

12,20 (0.0756,3.1203) -50.4131
12,20,4 (0.0299,3.4329) -43.1951

12,20,4,1 (0.0096,4.3195) -38.6453
12,20,4,1,19 (0.0053,4.1591) -35.4034

12,20,4,1,19,5 (0.0000,4.0843) -31.8900
12,20,4,1,19,5,10 (0.0000,4.2429) -31.5531

Table 3.2: Variable screening results for D-optimality method

Based on this benchmark numerical example, proposed REML criterion Kriging

variable screening method is able to find the significant six variables, x1, x4, x5, x12,

x19, x20 for both IHS and D-optimality sampling methods.

3.5 Discussions

There are still some open questions in the design of experiments using this variable

screening method. The traditional LHS method fails in the first benchmark numeri-

cal example, and we surmise that this failure is due to proposed REML method with

Gaussian correlation assumption lacking enough degrees of freedom in the optimiza-

tion process for correlation parameters in the Kriging model, however further research
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is needed to fully understand this issue. While we demonstrated that the proposed

method works well for IHS, D-optimality sampling methods, we have not concluded

which method is better, or if the effect of sampling methods is data-dependent. These

topics should be investigate further in future works.

3.6 Conclusions

A new variable screening method based on Kriging with REML criterion for com-

putationally intensive engineering applications was proposed. The proposed method

adopts Gaussian exponential correlation model and REML method to reduce com-

plexity and improve the variable screening method of Welch, which also was based on

Kriging metamodel. The developed variable screening method was tested using a 20

dimensional benchmark numerical example and validated for three different sampling

methods, including Latin Hypercube, IHS, D-optimality selected Latin Hypercube

sampling methods. Therefore, this variable screening method can be employed to

identify significant variables in the system, and then to establish an effective and

simplified metamodel for the worst-case design and uncertainty study.
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CHAPTER IV

Constant Dynamic Loading Sensitivity Analysis

Method for Topology Optimization of Multibody

Dynamics Systems

4.1 Introduction

In this study, the topology optimization is extended to address the optimization

of geometrically nonlinear, time-dependent multibody dynamics systems undergoing

nonlinear responses. For practical topology optimization, an efficient sensitivity anal-

ysis method is critical because of the large number of design variables. Sensitivity

analysis for topology optimization of multibody dynamics systems is quite different

from topology optimization of a quasi-static system, since the governing equations of

motion, and consequently the sensitivity analysis, are second-order differential equa-

tions. For topology optimization of multibody dynamics systems, it is difficult to

efficiently calculate a large number of sensitivities for every iteration, based on the

second order differential governing equations with design variables. Zhou and Roz-

vany (Zhou and Rozvany , 1991), calculated sensitivities based on the static response

of a linear structural system rather than on the dynamic response. For traditional

dynamics system sensitivity analysis, there are two widely used methods: the DDM

method and the AVM method (Arora and Haug , 1979; Hsieh and Arora, 1984). To
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carry out sensitivity analysis using the DDM method, the number of second order

differential equations that need to be solved is equal to the number of design variables

(Kang et al., 2006). Therefore, this method can be inefficient when the number of

design variables is large, a situation that regularly occurs in topology optimization.

Cao, Li, and Petzold (Cao et al., 2003) proposed forward and backward adjoint sensi-

tivity analysis of DAE with an index up to two. Both a forward differential equation

with an initial value for the governing equations, as well as a backward differential

equation of adjoint variables with a final value need to be solved for adjoint sensitiv-

ity equations (Alexe and Sandu, 2009). For some dynamics models, the difficulty of

solving such a backward differential equation is significant. More details about DDM

and AVM can be found in Chapter II. Brüls and Lemaire et al. (Brüls et al., 2009)

proposed a sensitivity analysis method based on the Generalized-α method (Chung

and Hulbert , 1993) for flexible multibody dynamics system topology optimization.

This method considers the dynamics of the multibody dynamic system, but requires

solving second order differential dynamic equations as well as second order differential

adjoint equations separately using the Generalized-α method. In their method, the

second order differential adjoint equations are obtained by using the DDM method,

and the sensitivity equations are solved for each design variable using semi-analytical

direct differentiation.

Min and Kikuchi (Min et al., 1999) proposed a topology optimization method for

structures under dynamic loads to minimize the mean dynamic compliance using the

finite difference method. Kang proposed that simplified quasi-static load cases be

equivalent to the complicated loading for multibody dynamics systems (Kang et al.,

2001; Choi and Park , 2002; Park and Kang , 2003; Park et al., 2005; Shin et al., 2007;

Hong et al., 2010). It is difficult, however, to find equivalent static loading, and the

optimization results based on equivalent static loading might not be able to converge

to same optimization results under actual loading conditions (Brüls et al., 2009).
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This chapter proposes a constant dynamic loading sensitivity analysis method for

the topology optimization of multi-functional components in multi-body dynamics

systems under dynamic loading conditions with a large displacement. This sensitivity

analysis method is straight forward and easy to implement with good efficiency in

computational codes. This approach significantly reduces the computational costs

associated with sensitivity analysis when compared to the traditional DDM and AVM

sensitivity analysis methods. To show the effectiveness of the procedures that are

developed here, an example of an interactive system in a planar two bodies multibody

dynamics system under dynamic loading is presented in this chapter.

4.2 Constant Dynamic Loading Sensitivity Analysis Method

For the sensitivity analysis in dynamics systems, the sensitivities vary with respect

to time duration. We have the following equations for the two multibody dynamics

systems based on Equation (2.8) and (2.9):

 M(q)q̈−Qv + ΦT
qλ = FExt + BTFg

Φ(q, t) = 0
(4.1)

where,

q =

q1

q2

 , M =

M1 0

0 M2

 , Qv =

Qv1

Qv2

 , Φq =

(Φ1)q1 0

0 (Φ2)q2



λ =

λ1

λ2

 , FExt =

FExt
1

FExt
2

 , Φ =

Φ1

Φ2


M denotes the system generalized mass matrix; Φq denotes the Jacobian matrix of

constraints Φ; and λ denotes the vector of Lagrangian multipliers. Qv is the system
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quadratic velocity term. FExt denotes the system external force vector; B is the

compatibility matrix derived in Chapter II; and Fg is the global force vector induced

by the interactive system’s interactive members.

To simplify the discussion of the sensitivity analysis in this section, it is assumed

that the global force vector Fg in Equation (4.1) is a function of the deformation

vector ∆ and the design variables α, namely

Fg = Fg (∆,α) (4.2)

While a more accurate sensitivity analysis method can be obtained, we propose

a simplified but efficient sensitivity analysis method in this chapter, one that can be

easily implemented into commercial multibody dynamics codes.

The first equation in Equation (4.1) can be rewritten as follows:

Fq = M(q)q̈−Qv + ΦT
qλ− FExt = BTFg (4.3)

Here Fq is the generalized action-reaction force between given multibody dynamics

systems and the interactive system. Since the objective is to obtain an optimal

layout of the interactive system, the parameters in the two given multibody dynamics

systems are held constant. To apply the constant dynamic loading sensitivity analysis

method, it is assumed that Fq = Fq(t) in Equation (4.3) is the force obtained at the

same timing in the previous design stage by solving Equation (4.1); and it is assumed

to be a constant given force when evaluating the design variable changes at the current

stage for the same timing. The design variables can be changed only in a small

range in the topology optimization. Therefore, it is assumed that the small changes

in the design variables will not affect the Fq at the same timing in two successive

iterations. This assumption greatly simplifies the sensitivity analysis equations under

the assumption that Fq(t) is constant between two successive iterations.
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Taking the derivative of Equation (4.3) with respect to the design variables α is

given by:

0 =

(
dB

dα

)T
Fg + BT

(
dFg

dα

)
(4.4)

Substituting

dFg

dα
= −KB

dq

dα
+
∂Fg

∂α
(4.5)

where

K = ∂Fg

∂∆

B = −∂∆
∂q

dB
dα

= ∂B
∂q

dq
dα

into Equation (4.4), we can obtain:

(
BTKB− FT

g

∂B

∂q

)
dq

dα
= BT ∂Fg

∂α
(4.6)

Assuming that the objective function G = G(q,α) is a function of the generalized

coordinates q and design variable vector α, we then have

dG

dα
=
∂G

∂q

dq

dα
+
∂G

∂α

=
∂G

∂q

(
BTKB− FT

g

∂B

∂q

)−1

BT ∂Fg

∂α
+
∂G

∂α

(4.7)

Adopting an adjoint vector v, satisfies the following adjoint equation:

(
BTKB− FT

g

∂B

∂q

)
v =

(
∂G

∂q

)T
(4.8)

Then, the sensitivities can be calculated easily as follows:

dG

dα
= vTBT ∂Fg

∂α
+
∂G

∂α
(4.9)

The constant dynamic loading method is thus able to simplify the sensitivity
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analysis in a dynamic problem to a static problem with constant force at specific

timing. It is easy to solve the sensitivities and provide great computational efficiency.

The accuracy, however, cannot be guaranteed because of the simple assumption at

specific timing for the sensitivity analysis. The advantages and disadvantages of

this sensitivity analysis method can be proven by a numerical example as shown in

section 4.3.

4.3 Numerical Examples

4.3.1 Two Multibody Dynamics Systems with Two Rigid Bodies

Figure 4.1: Two rigid bodies planar multibody dynamics model

A planar two multibody dynamics systems model is depicted, in which the two

systems are connected by interactive members in Figure 4.1. The number of rigid

bodies in each MDS is reduced to one. The Body 1 is in MDS-1, and the Body 2 is

in MDS-2. The mass of Body 1 is m1 = 60 Kg with the moment of inertia given as

J1 = 10 Kg ·m2. The mass of Body 2 is m2 = 2000 Kg with the moment of inertia

given as J2 = 6000 Kg · m2. There are 1020 interactive members between Body 1

and Body 2, with an initial linear stiffness of 22.5 N/m. A rotational acceleration
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of magnitude 20 rad/s2 is applied to Body 2, with the rotation center of O2; a

translational acceleration of magnitude 9.8 m/s2 is applied to Body 2 along the global

x axis; and the system gravity acceleration is 9.8 m/s2 with the negative global y

axis.

The design objective function is the maximum deviation energy stored in the whole

interactive system during time duration [t0, t1], G = max
[t0,t1]

{
g = 1

2
∆TK∆

}
= g(t) |tn ,

which g(t) is the sum of potential energy stored in all the interactive members of

the interactive system with t0 = 0 s and t1 = 0.2 s in Figure 4.2, tn is the global

maximum point of the function g(t). The design variables α are normalized stiffness

coefficient.

Figure 4.2: Sum of potential energy stored in the interactive system

The sensitivity analysis results dG
dα

of the AVM method and the constant dynamic

loading method for the initial design space (αi = 0.1) of first 51 interactive mem-

bers are shown in Figure 4.3, because the sensitivity pattern repeats for the rest

of interactive members. Therefore, there are 51 points in the curves of sensitivities

in Figure 4.3,
[

dG
dα1

/max
{

dG
dα

}
, dG

dα2
/max

{
dG
dα

}
, . . . , dG

dα51
/max

{
dG
dα

}]
|t=tn . It is con-

cluded that the results from the constant dynamic loading method is close to the
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AVM sensitivity analysis method with same trend.

Figure 4.3: Sensitivity analysis results for constant dynamic loading method

The computational time for the constant dynamic loading method is 30.3 seconds

for each iteration, and the computational time for the AVM method is 102.1 sec-

onds for each iteration. Therefore, the proposed constant dynamic loading sensitivity

analysis method is able to solve the sensitivities using much less computational time.

Figure 4.4 shows the time history of sensitivities of first eight interactive members

from 0 s to 0.2 s. It can be seen than the sensitivities calculated by the constant

dynamic loading method are close to the AVM method only around certain areas,

such as the peak timing tn.

The computer specification is in the Table 4.1.

Processor Intel Xeon 3.20 GHz
Memory 8.00 GB

Operating System Windows 7 Enterprise version

Table 4.1: Computer resource specification
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Interactive member 1 Interactive member 2

Interactive member 3 Interactive member 4

Interactive member 5 Interactive member 6

Interactive member 7 Interactive member 8

Figure 4.4: Sensitivity time history of first 8 members
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4.4 Discussions

Solving both the forward differential equations for the state variables and the back-

ward differential equations for the adjoint variables in the AVM method could require

significant computational time. For some complicated dynamics system models, the

difficulty of finding and solving the backward differential adjoint equations is signif-

icant. For the multibody dynamics systems, the adjoint equations for the algebraic

constraints are especially difficult to solve. The proposed constant dynamic loading

sensitivity analysis method requires much less computational time compared to the

AVM method, because the dynamic problem is transformed to a quasi-static problem

under the assumption of constant dynamic loading at a specific timing. There still is,

however, a need to improve the accuracy of sensitivities. More discussion about the

sensitivity analysis method will be covered in Chapter V and VI.

4.5 Conclusions

The proposed constant dynamic loading sensitivity analysis method can solve the

sensitivities with remarkably high computational efficiency. This is much more effi-

cient than the traditional AVM method because the sensitivity analysis of a dynamic

problem is transformed to a quasi-static problem under assumption of the constant

dynamic loading at a specific timing. The sensitivities are obtained without solving

the adjoint differential equations in the AVM method. The accuracy of the sensitivi-

ties, however, still needs to be improved.
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CHAPTER V

Time Integration Incorporated Sensitivity

Analysis Method for Topology Optimization of

Multibody Dynamics Systems

5.1 Introduction

In this chapter, a time integration incorporated sensitivity analysis method based

on the Generalized-α integration algorithm is proposed. The Generalized-α method

is employed to solve the multibody dynamics system equations of motion, and the

developed time integration incorporated sensitivity analysis method is based on a

linear approximation of predict values and final values in every integration time step,

such that the Generalized-α method is only applied once in the time integration of

the equations of motion. This approach significantly reduces the computational costs

associated with sensitivity analysis comparing to the traditional DDM and AVM

method, and improve the accuracy of constant dynamic loading method in Chap-

ter IV. To show the effectiveness of the developed sensitivity analysis method, an

example of interactive system embedded in a planar multibody dynamics system un-

der dynamic loading is presented in this chapter.
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5.2 Time Integration Incorporated Sensitivity Analysis

The state equations of a multibody dynamics system can be written in a general

form in Equation (5.1):

 r = M(q)q̈ + Ftot(q, q̇,α) + ΦT
qλ = 0

Φ(q) = 0
(5.1)

where r is the residuals vector of dynamic equilibrium equation; M is the generalized

mass matrix; qa×1 is generalized coordinates vector of multibody system; Φm×1 is

the vector of linearly independent constraint equations; Φq is the constraint Jacobian

matrix; λ is the vector of Lagrange multipliers; and Ftot includes all the external

forces term Qe and quadratic velocity term Qv. In geometrically nonlinear dynamics

system, Ftot could be highly nonlinear with respect to generalized coordinates q.

Equation (5.1) is a set of nonlinear DAEs, which can be solved based on the

Generalized-α method. At (n + 1)th time step, the respective generalized displace-

ment, velocity and acceleration vectors, qn+1, q̇n+1, q̈n+1, and the vector of La-

grangian multipliers λn+1 have to satisfy Equation (5.2):

 rn+1 = M(qn+1)q̈n+1 + Ftot(qn+1, q̇n+1,α) + ΦT
qn+1

λn+1 = 0

Φ(qn+1) = 0
(5.2)

Based on the Generalized-α integration algorithm scheme in Chapter II, it is

known that the prediction state vector
[
(q0

n+1)T , (q̇0
n+1)T , (q̈0

n+1)T , (λ0
n+1)T , (a0

n+1)T
]T

for the (n+ 1)th time step solution is obtained by the iterative relations of solutions

for the nth time step in Equation (2.32). Then, the initial prediction state vector is

corrected by Newton-Raphson iterations to get the desired final value for the (n+1)th

time step.

The residuals r0
n+1 and Φ0

n+1 at the (n + 1)th time step for the initial prediction

74



state vector
[
(q0

n+1)T , (q̇0
n+1)T , (q̈0

n+1)T , (λ0
n+1)T , (a0

n+1)T
]T

can be written as:

 r0
n+1

Φ0
n+1

 =

M(q0
n+1)q̈0

n+1 + Ftot(q
0
n+1, q̇

0
n+1,α) + ΦT

q0
n+1
λ0
n+1

Φ(q0
n+1)

 (5.3)

Since the initial predictions for the generalized acceleration vector and the La-

grange multiplier vector are q̈0
n+1 = 0 and λ0

n+1 = 0, Equation (5.3) can be rewritten

as  r0
n+1

Φ0
n+1

 =

Ftot(q
0
n+1, q̇

0
n+1,α)

Φ(q0
n+1)

 (5.4)

Differentiating Equation (5.4) with respect to the design variable vector α, yields,

 ∂r0
n+1

∂α

∂Φ0
n+1

∂α

 =

∂Ftot(q0
n+1,q̇

0
n+1,α)

∂q0
n+1

∂q0
n+1

∂α
− ∂Ftot(q0

n+1,q̇
0
n+1,α)

∂q̇0
n+1

∂q̇0
n+1

∂α
− ∂Ftot(q0

n+1,q̇
0
n+1,α)

∂α

∂Φ0
n+1

∂q0
n+1

∂q0
n+1

∂α


(5.5)

Other differentiation terms of the prediction vector can be written as

∂q̈0
n+1

∂α
:= 0 (5.6)

∂λ0
n+1

∂α
:= 0 (5.7)

∂a0
n+1

∂α
:=

αf
∂q̈n

∂α
− αm∂an

∂α

1− αm
(5.8)

∂q0
n+1

∂α
:=

∂qn
∂α

+ h
∂q̇n
∂α

+ h2(
1

2
− β)

∂an
∂α

+ h2β
∂a0

n+1

∂α
(5.9)

∂q̇0
n+1

∂α
:=

∂q̇n
∂α

+ h(1− γ)
∂an
∂α

+ hγ
∂a0

n+1

∂α
(5.10)
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Therefore, the gradient information of the prediction state vector for (n+1)th step[
(
∂q0

n+1

∂α
)T , (

∂q̇0
n+1

∂α
)T , (

∂q̈0
n+1

∂α
)T , (

∂λ0
n+1

∂α
)T , (

∂a0
n+1

∂α
)T
]T

can be obtained based on the gra-

dient information of nth step state vector
[
(∂qn

∂α
)T , (∂q̇n

∂α
)T , (∂q̈n

∂α
)T , (∂λn

∂α
)T , (∂an

∂α
)T
]T

.

If we employ a linear approximation relation between residual r and generalized co-

ordinates q in the local area of initial prediction value q0
n+1 and final exact solution

qn+1.  rn+1

Φn+1

 = 0 =

 r0
n+1

Φ0
n+1

+ S0
n+1

qn+1 − q0
n+1

λn+1 − λ0
n+1

 (5.11)

Differentiating Equation (5.11) yields:

0 =

 ∂r0
n+1

∂α

∂Φ0
n+1

∂α

+
∂S0

n+1

∂α

qn+1 − q0
n+1

λn+1 − λ0
n+1

+ S0
n+1

 ∂qn+1

∂α
− ∂q0

n+1

∂α

∂λn+1

∂α
− ∂λ0

n+1

∂α

 (5.12)

The sensitivity of generalized coordinates can be obtained using the following

explicit equation.

 ∂qn+1

∂α

∂λn+1

∂α

 =

 ∂q0
n+1

∂α

∂λ0
n+1

∂α

+ (S0
n+1)−1(−

 ∂r0
n+1

∂α

∂Φ0
n+1

∂α

− ∂S0
n+1

∂α

qn+1 − q0
n+1

λn+1 − λ0
n+1

) (5.13)

The term ∂S
∂α

need to be calculated for the predict value of n + 1th time step.

This additional term is introduced in the linear approximation in Equation (5.13).

However, this term is not solved in the AVM method. Denoting ∂∆q
∂α

= ∂qn+1

∂α
− ∂q0

n+1

∂α

for solving the sensitivities of generalized coordinates, sensitivities of the generalized

velocity and acceleration vectors are given by

∂q̇n+1

∂α
:=

∂q̇0
n+1

∂α
+ γ

′ ∂∆q

∂α
(5.14)

∂q̈n+1

∂α
:=

∂q̈0
n+1

∂α
+ β

′ ∂∆q

∂α
(5.15)
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∂an+1

∂α
:=

∂a0
n+1

∂α
+

1− αf
1− αm

∂q̈n+1

∂α
(5.16)

Therefore, the sensitivities information of (n + 1)th step state vector with re-

spect to design variables
[
(∂qn+1

∂α
)T , (∂q̇n+1

∂α
)T , (∂q̈n+1

∂α
)T , (∂λn+1

∂α
)T , (∂an+1

∂α
)T
]T

can be ob-

tained based on the gradient information of prediction state vector for (n+ 1)th step[
(
∂q0

n+1

∂α
)T , (

∂q̇0
n+1

∂α
)T , (

∂q̈0
n+1

∂α
)T , (

∂λ0
n+1

∂α
)T , (

∂a0
n+1

∂α
)T
]T

. Then, the iteration relationship of

the sensitivities of state vectors for (n + 1)th step and nth step could be obtained

based on Equation (5.6)-(5.10).

5.3 Algorithm Scheme

Figure 5.1: Flowchart of time integration incorporated sensitivity analysis method
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It shows the flowchart of the time integration incorporated sensitivity analysis

method in Figure 5.1. It can be seen clearly that the sensitivity calculation part is

incorporated in to the Generalized-α time integration inner loop in every integra-

tion time step, which can efficiently solve the sensitivities with the state variables

simultaneously in every time step.

If the design objective is in the general form of G = G(q, q̇, q̈,α), since all the

information of ∂q
∂α

, ∂q̇
∂α

, ∂q̈
∂α

are obtained in each iterations, the sensitivity can be easily

calculated as follows.

dG

dα
=
∂G

∂q

∂q

∂α
+
∂G

∂q̇

∂q̇

∂α
+
∂G

∂q̈

∂q̈

∂α
+
∂G

∂α
(5.17)

5.4 Numerical Examples

5.4.1 One Dimensional Mass Oscillator

Figure 5.2: One dimensional mass oscillator

A horizontal one dimensional mass oscillator with mass m and linear spring stiff-

ness k , which can only slide on the horizontal ground, is shown in Figure 5.2. The

position of the mass can be described by x(t). The closed form solution for both state

variable x(t) and its gradient can be easily derived (Eberhard and Bischof , 1999), and

thus this example serves to validate the proposed iterative sensitivity analysis method.
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The dynamic equation for this system is

mẍ+ kx = 0 (5.18)

Assume the initial condition for the second order ODE in Equation (5.18) is

x(t = 0) = 0; ẋ(t = 0) = v0 (5.19)

The we can obtain the solution for Equation (5.18) as follows

x(t) = v0

√
m

k
sin

√
k

m
t (5.20)

If we consider the objective function as G = x(t1) , where t1 is any given timing

in the duration, and then the sensitivity can be calculated as follows

dG

dk

∣∣∣∣
t=t1

=
dx(t)

dk

∣∣∣∣
t=t1

=
v0

2k

(
t1cos(

√
kt1)− 1√

k
sin(
√
kt1)

)
(5.21)

Set m = 1 kg, v0 = 0.5 m/s, k = 10 N/m, the state variable x(t) and sensitivity

results is shown as follows in Figure 5.3.

By comparing the sensitivity solved using analytical method and proposed time

integration incorporated method, we conclude that the time integration incorporated

sensitivity analysis method based on the Generalized-α can solve the sensitivities

accurately at any time step in duration.

5.4.2 Two Multibody Dynamics Systems with Two Rigid Bodies

Reconsider the two multibody dynamics systems model, in which the systems are

connected by interactive members in Figure 5.4. The number of rigid bodies in each

MDS is reduced to one. The Body 1 is in MDS-1, and the Body 2 is in MDS-2. All

the system parameters are same as the example in Chapter IV. The design objective
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Figure 5.3: Sensitivity analysis for one dimensional mass oscillator

Figure 5.4: Two rigid bodies planar multibody dynamics model
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function is still the maximum deviation energy stored in the interactive system in time

duration of [t0, t1], G = max
[t0,t1]

{
g = 1

2
∆TK∆

}
. The design variables α are normalized

stiffness coefficient.

The sensitivity analysis results of the AVM method, the constant dynamic load-

ing method and the time integration incorporated method for initial design space are

shown in Figures 5.5. It is concluded that proposed time integration incorporated

sensitivity analysis method obtains the same sensitivity results as the AVM sensi-

tivity analysis method for multibody dynamics systems. However, the results from

simplified analysis method based on constant dynamic loading is only close to the

AVM sensitivity analysis method with same trend.

Figure 5.5: Sensitivity analysis results for time integration incorporated method

The computational time for the time integration incorporated method is 54.8 sec-

onds for one iteration, computational time for the constant dynamic loading method

is 30.3 seconds, and the computational time for the AVM method is 102.1 seconds

for one iteration. The proposed time integration incorporated sensitivity analysis

method still cost much less computational time compared to the AVM method.

Figure 5.6 shows the time history of sensitivities of first eight interactive members.
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It can be seen than the sensitivities calculated by the time integration incorporated

method is same as the AVM method in all the time duration.

5.5 Discussions

Comparing the results from the three different sensitivity analysis methods: the

AVM method, the constant dynamic loading method and the time integration incor-

porated sensitivity analysis method based on the Generalized-α method, it can be

concluded the AVM method has the lowest computational efficiency, because it is re-

quired to solve backward final value differential equations, the adjoint equations, for

the Lagrangian multipliers in the AVM method. Constant dynamic loading sensitivity

analysis method costs the least computational time because it only solve the sensi-

tivities at only one step which is the peak timing for the design objective, then the

dynamic problem is converted to a quasi-static problem. Comparing the accuracy, the

time integration incorporated sensitivity analysis method based on the Generalized-α

method can achieve same accuracy as the AVM method, but the constant dynamic

loading method cannot. We can concluded that the time integration incorporated

sensitivity analysis method based on the Generalized-α method can achieve good ac-

curacy and reduce the computational time. High computational efficiency from the

time integration incorporated method is because the sensitivities are solve in the in-

ner loop of time integration under the linear approximation, and it is not necessary

to solve the sensitivities after all the time integration part is done.

5.6 Conclusions

This chapter propose a time integration incorporated sensitivity analysis method

based on the Generalized-α method. With the use of the Generalized-α method in-

tegration algorithm, the multibody dynamics equations of motion can be linearized
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Interactive member 1 Interactive member 2

Interactive member 3 Interactive member 4

Interactive member 5 Interactive member 6

Interactive member 7 Interactive member 8

Figure 5.6: Sensitivity time history of first 8 members
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with respect to the generalized coordinates in every time step, and then the sensi-

tivity analysis could be easily incorporated in this integration algorithm. In order

to calculate the large number of sensitivities efficiently for every iteration based on

the second-order differential governing equations, the Generalized-α method is only

used once in the time integration of the state equations and the sensitivity analysis is

incorporated in this integration process based on a linear approximation between the

predicted and final values of residuals and generalized coordinates. This approach

makes the sensitivity analysis efficient for topology optimization of multibody dy-

namics systems. In contrast, the AVM sensitivity analysis for multibody dynamics

systems topology optimization is very time-consuming for calculating the gradient in-

formation for both forward and backward differential equations. The proposed time

integration incorporated sensitivity analysis method is able to solve the sensitivity

information in the same iteration step as solving the multibody dynamics governing

equations, which reduces the computational time without constructing and solving

any backward adjoint differential equations in the AVM method.
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CHAPTER VI

Iterative Sensitivity Analysis Method for Topology

Optimization of Multibody Dynamics Systems

6.1 Introduction

The efficient and reliable sensitivity analysis methods are critical for the topology

optimization of multibody dynamics systems, because of the large number of design

variables and the complexities and expense in solving the state equations. It is desir-

able to calculate a large number of sensitivities efficiently for every iteration based on

the second-order differential-algebraic dynamics governing equations. Since previous

the constant dynamic loading sensitivity analysis method and the time integration

incorporated sensitivity analysis method based on the Generalized-α algorithm are

limited by the accuracy or the time integration algorithm requirement. This chapter

addresses another general and efficient sensitivity analysis method for topology opti-

mization with design objectives associated with time dependent dynamics responses

of multibody dynamics systems that include nonlinear geometric effects associated

with large translational and rotational motions. An iterative sensitivity analysis re-

lation is derived in this method, based on typical finite difference method for the

DAE. These iterative equations can be simplified for specific cases to obtain more

efficient sensitivity analysis methods. Using the proposed iterative relations to solve
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the sensitivities can avoid the backward adjoint differential equations, so the sensi-

tivities can be obtained by series algebraic iterative equations. Since the iterative

sensitivity analysis method only needs the state variable information step by step,

there is no requirement for the time integration algorithm. Therefore, the proposed

iterative sensitivity analysis is also applicable to various time integration schemes.

The proposed iterative sensitivity analysis method is demonstrated using a one

dimensional mass oscillator example and two truss structure topology optimization

examples with consideration of the dynamic response including large translational

and rotational motions, and joint constraints. It is shown that the proposed iterative

steps sensitivity analysis method is both reliable and efficient from the numerical

examples in chapter.

6.2 Iterative Sensitivity Analysis for Topology Optimization

of Multibody Dynamics Systems

6.2.1 General Forms

The state equations of a multibody dynamics system can be written in a general

form:  r = M(q)q̈ + Ftot(q, q̇, t) + ΦT
qλ = 0

Φ(q) = 0
(6.1)

where r is the residuals vector of dynamic equilibrium equation; M is the generalized

mass matrix; qa×1 is generalized coordinates vector of multibody system; Φm×1 is

the vector of linearly independent constraint equations; Φq is the constraint Jacobian

matrix; λ is the vector of Lagrange multipliers; and Ftot includes all the external

forces term Qe and quadratic velocity term Qv. In geometrically nonlinear dynamics

system, Ftot could be highly nonlinear with respect to generalized coordinates q.

Assuming a general form of the objective function G for the optimization problem,
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then we have

G = G(q̈, q̇,q,λ,α) = G(p,α) (6.2)

where,

p =
[
q̈T , q̇T ,qT ,λT

]T
(6.3)

Differentiating the objective function in Equation (6.2) with respect to the design

variable vector α obtains

dG

dα
=

[
∂G

∂p

]T
∂p

∂α
+
∂f

∂α
(6.4)

Differentiating the multibody system equations in Equation (6.1) with respect to

the design variables α obtains


[
∂r
∂p

]T
∂p
∂α

+ ∂r
∂α

= 0[
∂Φ
∂q

]T
∂q
∂α

+ ∂Φ
∂α

= 0
(6.5)

which leads to the following equations

 M ∂q̈
∂α

+ C ∂q̇
∂α

+ K ∂q
∂α

+ ΦT
q
∂λ
∂α

= D ∂p
∂α

= − ∂r
∂α

Φq
∂q
∂α

= −∂Φ
∂α

(6.6)

where

M = M(q); C = ∂r
∂q̇

= ∂g
∂q̇

;

K = ∂r
∂q

= ∂g
∂q

+
[
∂M
∂q

]
q̈ +

[
∂ΦT

q

∂q

]
λ

Φq = ∂Φ
∂q

; D = [ ∂r
∂p

]T = [M, C, K, ΦT
q ]

Note that if the first equation in Equation (6.1) can be written in following form

in a geometrically linear dynamics system:

r = D(α)p = 0 (6.7)
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then we have

∂r

∂α
=
∂D

∂α
p (6.8)

When a nth order multi-step Backward Differentiation Formula (BDF) is used

to solve Equation (6.1), in general case, we can assume that for the generalized

velocity and acceleration vector at nth and (n − i)th time steps, i = 1, 2, ..., Nc or

i = 1, 2, ..., Nb, we have the following relations:


q̈n = c0qn +

Nc∑
i=1

ciqn−i

q̇n = b0qn +
∑Nb

i=1 biqn−i

(6.9)

For instance, for the second order backward difference formula, we have:

 Nc = 2 : c0 = c2 = 1
h2 , c1 = − 2

h2

Nb = 1 : b0 = 1
h
, b1 = − 1

h

(6.10)

Differentiating Equation (6.9) produces


∂q̈n

∂α
= c0

∂qn

∂α
+

Nc∑
i=1

ci
∂qn−i
∂α

∂q̇n

∂α
= b0

∂qn

∂α
+

Nb∑
i=1

bi
∂qn−i
∂α

(6.11)

Substituting Equation (6.11) into Equation (6.6) results in

Sn


∂qn

∂α

∂λn

α

 = −


 ∂rn

∂α

∂Φn

∂α

+

 Fn

0




= −


∂rn

∂α

∂Φn

∂α

−


Mn

Nc∑
i=1

ci
∂qn−i
∂α

+ Cn

Nb∑
i=1

bi
∂qn−i
∂α

0


(6.12)

88



where

Sn =

c0Mn + b0Cn + Kn ΦT
qn

Φqn 0


Fn = Mn

Nc∑
i=1

ci
∂qn−i
∂α

+ Cn

Nb∑
i=1

bi
∂qn−i
∂α

Solving Equation (6.12):


∂qn

∂α

∂λn

∂α

 = −S−1
n


 ∂rn

∂α

∂Φn

∂α

+

Fn

0


 (6.13)

∂qn
∂α

= −S̃−1
n


 ∂rn

∂α

∂Φn

∂α

+

Fn

0


 (6.14)

where S−1
n =


s1,1 · · · s1,(a+m)

...
. . .

...

s(a+m),1 · · · s(a+m),(a+m)

 and S̃−1
n =


s1,1 · · · s1,(a+m)

...
. . .

...

sa,1 · · · sa,(a+m)


Using Equation (6.3), and (6.11), we have

∂pn
∂α

= B


∂qn

∂α

∂λn

∂α

+ d∗n (6.15)

where

[B] =



c0I 0

b0I 0

I 0

0 I


, d∗n =



Nc∑
i=1

ci
∂qn−i
∂α

Nb∑
i=1

bi
∂qn−i
∂α

0

0


Substituting Equation (6.13) into Equation (6.15) and then Equation (6.4), one
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obtains

dGn

dα
= −

[
∂G

∂p

]T
n

BS−1
n


 ∂rn

∂α

∂Φn

∂α

+

 Fn

0


− d∗n

+
∂Gn

∂α
(6.16)

By applying the adjoint method, an adjoint vector vn at nth time step can be

then defined as

vTn = −
[
∂G

∂p

]T
n

BS−1
n (6.17)

and the adjoint equation becomes:

Snvn = −BT

[
∂G

∂p

]
n

(6.18)

Finally the sensitivities can be calculated as

dGn

dα
= vTn


 ∂rn

∂α

∂Φn

∂α

+

Fn

0


+

[
∂G

∂p

]T
n

d∗n +
∂Gn

∂α
(6.19)

It is obtained from Equation (6.14) for (n− i)th time step

∂qn−i
∂α

= −S̃−1
n−i


 ∂rn−i

∂α

∂Φn−i

∂α

+

Fn−i

0


 (6.20)

Equation (6.19) can be rewritten as

dGn

dα
= vTn


 ∂rn

∂α

∂Φn

∂α

+

Fn

0


+

[
∂G

∂p

]T
n



Nc∑
i=1

ci
∂qn−i
∂α

Nb∑
i=1

bi
∂qn−i
∂α

0

0


+
∂Gn

∂α
(6.21)
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Substituting Equation (6.20) into Equation (6.21), we can get the objective sen-

sitivity, namely

dGn

dα
= vTn


 ∂rn

∂α

∂Φn

∂α

+

Fn

0


+

[
∂G

∂p

]T
n



−
Nc∑
i=1

ciS̃
−1
n−i


 ∂rn−i

∂α

∂Φn−i

∂α

+

Fn−i

0




−
Nb∑
i=1

biS̃
−1
n−i


 ∂rn−i

∂α

∂Φn−i

∂α

+

Fn−i

0




0

0



+
∂Gn

∂α

(6.22)

Introducing the auxiliary adjoint equation v
′
n−i and u

′
n−i for (n− i)th time step


(
v
′
n−i
)T

+
[
∂G
∂q̈

]T
n

S̃−1
n−i = 0

(
u
′
n−i
)T

+
[
∂G
∂q̇

]T
n

S̃−1
n−i = 0

(6.23)

The objective sensitivity in Equation (6.22) becomes

dGn

dα
= vTn


 ∂rn

∂α

∂Φn

∂α

+

Fn

0


+



Nc∑
i=1

ci

(
v
′

n−i

)T 
 ∂rn−i

∂α

∂Φn−i

∂α

+

Fn−i

0




Nb∑
i=1

bi

(
u
′

n−i

)T 
 ∂rn−i

∂α

∂Φn−i

∂α

+

Fn−i

0




0

0



+
∂Gn

∂α

(6.24)
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After we obtain Fn, ...,Fn−Nb
, ...,Fn−Nc , and adjoint vectors, the objective sensi-

tivity can be easily solved based on the iterative equation Equation (6.24).

Substituting Equation (6.20) into Equation (6.12) of the expressions Fn, it can be

written as:

Fn = −Mn

Nc∑
i=1

ciS̃
−1
n−i


 ∂rn−i

∂α

∂Φn−i

∂α

+

Fn−i

0




−Cn

Nb∑
i=1

biS̃
−1
n−i


 ∂rn−i

∂α

∂Φn−i

∂α

+

Fn−i

0




(6.25)

6.2.2 Special Forms

If the objective function has the form of G = G(q,λ,α), such that the objective

doesn’t include explicitly the generalized acceleration term q̈ and the generalized

velocity term q̇. Equation (6.24) simplifies to

dGn

dα
= vTn


 ∂rn

∂α

∂Φn

∂α

+

Fn

0


+

∂Gn

∂α
(6.26)

where the adjoint function vTn = −
[(

∂G
∂qn

)T
,
(
∂G
∂λn

)T]T
S−1
n .

Generally, since the constraint function Φ(q) and constraint Jacobian matrix Φq

are independent of design variable α , the following equations can be obtained.

∂Φ

∂α
= 0;

∂Φq

∂α
= 0 (6.27)

∂qn
∂α

= −Ŝ−1
n

(
∂rn
∂α

+ Fn

)
(6.28)

92



where S−1
n =


s1,1 · · · s1,(a+m)

...
. . .

...

s(a+m),1 · · · s(a+m),(a+m)

 and S̃−1
n =


s1,1 · · · s1,(a+m)

...
. . .

...

sa,1 · · · sa,(a+m)

;

Ŝ−1
n =


s1,1 · · · s1,a

...
. . .

...

sa,1 · · · sa,a

.

Equation (6.26) simplifies to

dGn

dα
= vTn

(
∂rn
∂α

+ Fn

)
+
∂Gn

∂α
(6.29)

where Fn = −Mn

Nc∑
i=1

ciŜ
−1
n−i

(
∂rn−1

∂α
+ Fn−i

)
− Cn

Nb∑
i=1

biŜ
−1
n−i

(
∂rn−1

∂α
+ Fn−i

)
and

the adjoint vector vTn = −
[(

∂G
∂qn

)T
,
(
∂G
∂λn

)T]T
(S̃−1

n )T .

If the objective function has the form of G(q,α), which is independent from the

Lagrangian multiplier vector λ, vTn can be further simplified as vTn = −
(
∂G
∂qn

)T
Ŝ−1
n .

Then for the linear dynamics system in Equation (6.7), we have:

∂Dn

∂α
=

[
∂Mn

∂α

∂Cn

∂α

∂Kn

∂α

∂ΦT
qn

∂α

]
=

[
∂Mn

∂α

∂Cn

∂α

∂Kn

∂α
0

]
(6.30)

then we can obtain

∂rn
∂α

=
∂Dn

∂α
pn + Fn

=
∂Mn

∂α
q̈n +

∂Cn

∂α
q̇n +

∂Kn

∂α
qn + Mn

Nc∑
i=1

ci
∂qn−i
∂α

+ Cn

Nb∑
i=1

bi
∂qn−i
∂α

(6.31)

∂qn−i
∂α

= −Ŝ−1
n−i

(
∂Mn−i

∂α
q̈n−i +

∂Cn−i

∂α
q̇n−i +

∂Kn−i

∂α
qn−i + Fn−i

)
(6.32)

If it is assumed that the generalized mass matrix Mn, generalized damping matrix
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Cn are independent of design variable α, then the following equation can be obtained.

∂Dn

∂α
=

[
0 0

∂Kn

∂α
0

]
(6.33)

where we have

∂Dn

∂α
pn + Fn =

∂Kn

∂α
qn + Mn

Nc∑
i=1

ci
∂qn−i
∂α

+ Cn

Nb∑
i=1

bi
∂qn−i
∂α

(6.34)

∂qn−i
∂α

= −Ŝ−1
n−i

(
∂Kn−i

∂α
qn−i + Fn−i

)
(6.35)

Furthermore, if the system damping is neglected, Cn = Cn−i = 0

Sn =

c0Mn + Kn ΦT
qn

Φqn 0

 (6.36)

Fn = Mn

Nc∑
i=1

ci
∂qn−i
∂α

(6.37)

If the second order backward difference method is applied, namely Nc = 2, then

we have: 
∂qn−1

∂α
= −Ŝ−1

n−1

(
∂Kn−1

∂α
qn−1 + Fn−1

)
∂qn−2

∂α
= −Ŝ−1

n−2

(
∂Kn−2

∂α
qn + Fn−2

) (6.38)

The iterative equation for the vector Fn in Equation (6.25) will become

Fn =
2

h2
MnŜ

−1
n−1

[
∂Kn−1

∂α
qn−1 + Fn−1

]
− 1

h2
MnŜ

−1
n−2

[
∂Kn−2

∂α
qn−2 + Fn−2

]
(6.39)

Since Sn =

c0Mn + Kn ΦT
qn

Φqn 0

, we can obtain Ŝ−1
n based on matrix blockwise
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inversion,

Ŝ−1
n = (c0Mn + Kn)−1

− (c0Mn + Kn)−1 ΦT
qn

[
Φqn (c0Mn + Kn)−1 ΦT

qn

]−1
Φqn (c0Mn + Kn)−1

(6.40)

For the term of (c0Mn + Kn)−1 in Equation (6.40), c0Mn is usually dominant,

then,

(c0Mn + Kn)−1 ≈ (c0Mn)−1 − (c0Mn)−1 Kn (c0Mn)−1 (6.41)

Furthermore, for an unconstrained dynamics system, or for a differential algebraic

system which can be converted to ordinary differential equations, we have

∂Gn

∂α
= vTn

{
∂Kn

∂α
qn + Fn

}
(6.42)

Sn =
1

h2
Mn + Kn (6.43)

The adjoint vector vn satisfies

Snvn = −
[
∂G

∂q

]
n

(6.44)

The inverse of Sn can be significantly simplified further since Sn is dominated by

the term of 1
h2 Mn generally.

S−1
n =

(
1

h2
Mn + Kn

)−1

≈
(

1

h2
Mn

)−1

−
(

1

h2
Mn

)−1

Kn

(
1

h2
Mn

)−1

(6.45)

If we assume the generalized mass matrix is constant or small variant between
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three consecutive steps, Mn ≈Mn−1 ≈Mn−2, then we have Fn as follows:

Fn = 2

[
I−Kn−1

(
1

h2
Mn−1

)−1
](

∂Kn−1

∂α
qn−1 + Fn−1

)

−

[
I−Kn−2

(
1

h2
Mn−2

)−1
](

∂Kn−2

∂α
qn−2 + Fn−2

) (6.46)

Then, substituting solved Fn using iterative relation in Equation (6.46) into the

sensitivity Equation (6.42) the sensitivity could be solved more efficiently without

solving the larger number of DAEs introduced by direct differentiation method or the

backward adjoint differential equations introduced by adjoint variable method.

6.2.3 Sensitivity Analysis for Max-Form Objective Function

If the optimization objective G(p,α) is in the form of a maximum function

G = max
t
g(p(t,α),α) (6.47)

The objective function is replaced by g(p(t,α),α)|t=tn , where tn is the global

maximum point of the function g(t) = g(p(t,α),α). It is obvious that the maximum

point tn depend on the design variables, which means it will change when the design

variables are updated in optimization iterations. Hsieh and Arora replace the contin-

uum constraints with max-form constraints, and they claim that the max-points of

these constraints will change with the design variables in the optimization process, but

such changes have no effect on the first derivative of the constraint functions at the

max-points with respect to design variables (Hsieh and Arora, 1984). Consequently,

same approach is employed here for optimizing the max-form objective function.

The objective function g(p(t,α),α)|t=tn can be rewritten as

g(p(t,α),α)|t=tn = g(p(tn,α),α) (6.48)
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The total derivative of g(p(t,α),α) with respect to the design variable α is

dg

dα
=

dg

dα
+

dg

dp

∣∣∣∣
t=tn

(
dp

dα

∣∣∣∣
t=tn

+ ṗ|t=tn
dtn
dα

)
(6.49)

It can be rewritten as

dg

dα
=

dg

dα
+

(
dg

dp

dp

dα

)∣∣∣∣
t=tn

+

(
dg

dp
ṗ

)∣∣∣∣
t=tn

dtn
dα

(6.50)

If tn is a local maximum point for g(p(t,α),α), the total derivative of objective

with respect to time at t = tn should satisfy dg
dt

∣∣
t=tn

= 0, namely

dg

dt

∣∣∣∣
t=tn

=

(
∂F

∂p
ṗ

)∣∣∣∣
t=tn

= 0 (6.51)

Therefore, the last term of Equation (6.50) will be zero and dtn
dα

will not affect the

design objective sensitivity at time tn.

If tn is a global optimization maximum point, but not a local maximum, which

means tn is at the boundary of time interval, initial time t0 or final time t1. If tn = t0

,in the neighborhood of tn, [tn, tn + ε) , ε > 0 the total derivative of objective with

respect to time dg
dt
< 0. tn will stay at the boundary in optimization process as long

as the slope dg
dt
< 0 at the boundary.

If tn = t1, in the neighborhood of tn , (tn − ε, tn] , ε > 0 , the total derivative of

objective with respect to time dg
dt
> 0 . tn will stay at the boundary in optimization

process as long as the slope dg
dt
> 0 at the boundary.

Therefore, as long as dg
dt
6= 0 , tn will stay at the boundary, and the last term of

Equation (6.50) will still be zero since dtn
dα

= 0 .
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6.3 Numerical Examples

6.3.1 One Dimensional Mass Oscillator

Figure 6.1: One dimensional mass oscillator

Reconsider the horizontal one dimensional mass oscillator with mass m and linear

spring stiffness k, shown in Figure 6.1. All the system parameters are same as the

example in Chapter IV, the state variable x(t) and sensitivity results as follows in

Figure 6.2.

Figure 6.2: Sensitivity analysis for one dimensional mass oscillator

By comparing the sensitivity solved using analytical method and proposed iter-

ative method, we conclude that the iterative sensitivity analysis method can solve
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sensitivities accurately at any time step in duration.

6.3.2 Two Multibody Dynamics Systems with Two Rigid Bodies

Figure 6.3: Two rigid bodies planar multibody dynamics model

Reconsider the two multibody dynamics systems model in Chapter IV (Figure 6.3).

The number of rigid bodies in each MDS is reduced to one. The Body 1 is in MDS-1,

and the Body 2 is in MDS-2. All the system parameters are same as the example in

Chapter IV. The design objective is the maximum deviation energy in the interactive

system over the time duration [t0, t1], which is G = max
[t0,t1]

{
g = 1

2
∆TK∆

}
. The design

variables α are normalized stiffness coefficient.

The sensitivity analysis results of the AVM method, the constant dynamic loading

method, the time integration incorporated method and the iterative method for the

initial design space is shown in Figure 6.4. It is concluded that the iterative sensi-

tivity analysis method gives the sensitivity same as the AVM method and the time

integration incorporated method based on the Generalized-α algorithm.

For each iteration using the iterative sensitivity analysis method, it uses 49.7

seconds, which is less than the AVM method 102.1 seconds, and the time integration

incorporated method 54.8 seconds.
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Figure 6.4: Sensitivity analysis results for the iterative method

Figure 6.5 shows the time history of sensitivities of first eight interactive members.

It can be seen than the sensitivities calculated by the iterative method is same as the

time integration incorporated method and the AVM method in all the time duration.

6.3.3 Two Multibody Dynamics Systems with Three Rigid Bodies

Consider another two multibody dynamics systems model with a revolution joint

in MDS-1, in which the two systems are connected by interactive members shown

in Figure 6.6. The number of rigid bodies in MDS-1 is reduced to two, and the

number of rigid bodies in MDS-2 is reduced to one. The Body 1 and Body 3 are in

MDS-1, and the Body 2 is in MDS-2. The mass of Body 1 is m1 = 60 Kg, the mass

of Body 2 is m2 = 2000 Kg, and the mass of Body 3 is m3 = 60 Kg. There are

612 interactive members between Body 1 and Body 2 with initial linear stiffness of

k = 8.33 N/m, and there are 432 interactive members between Body 2 and Body 3

with same initial linear stiffness of k = 8.33 N/m. The rotation acceleration of Body

2 is 9.42 rad/s2 with the rotation center of O2, the system gravity acceleration is 9.8
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Interactive member 1 Interactive member 2

Interactive member 3 Interactive member 4

Interactive member 5 Interactive member 6

Interactive member 7 Interactive member 8

Figure 6.5: Sensitivity time history of first 8 members

101



Figure 6.6: Three rigid bodies planar multibody dynamics model

m/s2 with global y axis. There is a revolution joint connected Body 1 and Body 3

(Dong et al., 2011a). For this problem, the rotations of both bodies and the relative

motions of their center of mass are not considered to be infinitesimal. Consequently,

the forces induced in the interactive members become nonlinear function of the rigid

body generalized coordinates. The objective function is the maximum deviation of

resultant relative displacement of the transient mass center of Body 1 and Body 3 O13

with respect to Body 2 O2 over the given time duration [t0, t1] from the initial posi-

tion, max
[t0,t1]

{
g =

[
AL2R(q13 − q2)− rL2

O13O2
|t=t0

]T
W
[
AL2R(q13 − q2)− rL2

O13O2
|t=t0

]}
,

where q13 and q2 are the respective generalized coordinates for the Body 1 and Body

3’s mass center and Body 2’s mass center, and W =

I3×3 0

0 0

, q13 = m1q1+m3q3

m1+m3
.

The sensitivity analysis results of the time integration incorporated method and

the iterative method for the initial design space for the first 88 interactive members

are shown in Figure 6.7. We can conclude that the iterative sensitivity analysis

method gives the sensitivity same as the time integration incorporated method based
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on the Generalized-α algorithm. For the multibody dynamics system, the existence of

algebraic constraint equations is difficult to construct the backward adjoint differential

equations in the AVM method, so the results from AVM method is not available.

Figure 6.7: Sensitivity analysis results for time integration incorporated method and
iterative method

The sensitivity analysis using the iterative method costs 75.2 seconds for each iter-

ation, which is close to the sensitivity analysis using the time integration incorporated

method 78.7 seconds.

6.4 Discussions

Based on above numerical examples, it can be seen that the AVM method, time

integration incorporated method and iterative method can calculate the same sensi-

tivities. The AVM method is inefficient because solving the backward adjoint differ-

ential equation is more time-consuming than solving an iterative algebraic equation

in the proposed iterative method. In the numerical examples, the iterative sensitiv-

ity analysis method cost the least computational time. The recursive formulations

in the iterative method are based on direct differentiation of governing equations,
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but it solves the simplified iterative algebraic equations rather than the DAE in the

time integration incorporated method and the adjoint equations in the AVM method.

Furthermore, the recursive formulations can be significantly simplified due to spe-

cial conditions in many cases, such cases include, for example an objective function

without the terms of general accelerations or general velocities; an objective function

is independent with the Lagrangian multiplier vector; the constraint functions and

constraint Jacobian matrix are independent with design variables; the mass matrix

and the damping matrix are independent with design variables; or the system is a

linear dynamics system.

The comparison of the sensitivity analysis methods in this study as follows:

1. Direct Differentiation Method

(a) This method is a straight forward approach.

(b) However, getting sensitivities using DDM is highly inefficient, because it

needs to solve the same number of second order differential equation sets

with the design variables, which is not desirable for the problem having a

large number of design variables, such as the topology optimization prob-

lem.

2. Adjoint Variable Method

(a) The advantage of the AVM method is that it reduce the number of differ-

ential equations need to be solved for the sensitivities.

(b) For the multibody dynamics system especially, it is difficult to obtain and

solve the adjoint equations, which is an additional set of the equations, for

the multibody dynamics system in the DAE form.

(c) The AVM sensitivity analysis method requires the objective function in an

integral form, which is not applicable for all the cases.
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(d) The AVM method needs to solve backward differential adjoint equations

of final value problem to get the sensitivities in addition to solve forward

differential state equations.

3. Constant Dynamic Loading Sensitivity Analysis Method

(a) This method is the most time efficient because the dynamic problem is

transformed to a quasi-static problem under the assumption of constant

dynamic loading.

(b) This method is easy to implement in the commercial codes.

(c) However, the accuracy is compromised because of the constant dynamic

loading assumption. The method can only give the approximate sensitiv-

ities and may result in the optimization process converge to a different

point.

4. Time Integration Incorporated Sensitivity Analysis Method

(a) This method can solve the sensitivities efficiently and accurately (with a

small additional computational time than the iterative method). It solves

the sensitivities in the integration inner loop based on a linearized approx-

imation between predict value and final value. The sensitivities are solved

simultaneously with the forward differential equations.

(b) This method needs to calculate the term of ∂S
∂α

.

(c) This method is based on the Generalized-α integration algorithm, so it re-

quires the Generalized-α method integration algorithm to solve the forward

differential equations.

5. Iterative Sensitivity Analysis Method
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(a) This method can solve the sensitivities efficiently and accurately using

recursive formulations. The sensitivities are obtained by solving the sim-

plified iterative algebraic equations rather than the DAE or the adjoint

equations.

(b) This method is applicable to any integration schemes that can solve the

state variables in each time step.

(c) The recursive formulations can be significantly simplified in special cases.

6.5 Conclusions

This chapter proposed an efficient and reliable iterative sensitivity analysis method

for the topology optimization of multi-functional components system in multibody

dynamics systems. The iterative sensitivity analysis method transforms the sensitivity

analysis in differential equations to a series algebraic iterations, which are much easier

and quicker to calculate. Furthermore, the iterative relation can be significantly

simplified due to special conditions, in many cases. In the iterative steps sensitivity

analysis method, if reasonable assumptions are made, the sensitivity analysis will

be much more simplified. After comparing the AVM method, the constant dynamic

loading sensitivity analysis method, time integration incorporated sensitivity analysis

method and iterative sensitivity analysis method, user can choose suitable sensitivity

analysis method according to different design problems.

106



CHAPTER VII

Topology Optimization for Multi-Functional

Components in Multibody Dynamics Systems

7.1 Introduction

Since the foundational work of Bendsøe and Kikuchi (Bendsøe and Kikuchi , 1988),

the topology optimization method for optimal structural layout design has received

extensive attention, as seen by its wide application to many structural optimization

problems (Bendsøe, 1989, 1995; Bendsøe and Sigmund , 2003; Ma et al., 1995a; Ma

and Kikuchi , 1995; Sigmund , 2001). In the ground structure approach developed

by (Zhou and Rozvany , 1991), a topology optimization problem is transformed to a

problem of seeking the optimal layout in a design space that takes into consideration

all the possible interactive members between the predefined nodal points and the

optimization proceeds; this is done by removing unnecessary interactive members and

reinforcing necessary interactive members in the design space in order to improve the

design objective.

A similar optimization concept is employed in the multi-functional components

system layout design. We initially assume that all the possible connections between

the given multibody dynamics systems comprise the interactive system, and that

it includes the open design space of passive, active, and reactive components. We
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then achieve the optimal layout by removing unnecessary multi-functional interactive

members and reinforcing necessary multi-functional interactive members between the

given multibody dynamics systems. Finally, the optimal multi-functional components

system layout can be achieved as the interactive system between the given multibody

dynamics systems.

In this study, the topology optimization method is extended to problems com-

prising geometrically nonlinear, time-dependent, and timing-dependent multibody

dynamics systems with particular consideration given to nonlinear response as an

objective function. A multibody dynamics system has a general mathematical form

as follows (Shabana, 1998):

 M(q)q̈ + ΦT
qλ+ Ftot(q, q̇,α) = 0

Φ(q) = 0
(7.1)

where M is the generalized mass matrix; qa×1 is the generalized coordinates vector;

Φm×1 is the vector ofm linearly independent constraint equations; Φq is the constraint

Jacobian matrix; λ is the vector of Lagrange multipliers; and vector Ftot(q, q̇,α)

includes all the external forces term Qe and quadratic velocity term Qv. α is the

design variables vector.

For the problems of interest in this work, the ith multi-functional interactive

member in the interaction system has an associated design variable αi. For topologies

employing many such elements, it is quite challenging to find an optimal layout that

maximizes or minimizes single or multiple design objectives. In order to demonstrate

the efficient topology optimization in multibody dynamics systems, linear stiffness

structural components are first embedded in a multibody dynamics system; these

are represented by separated structural universe of beams with a design variable

associated with each interactive member.

A fundamental layout design methodology based on topology optimization for
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the system with multi-functional components in multibody dynamics systems is pre-

sented in this study. This design methodology can identify optimally combined multi-

functional structural components with specific geometric and connectivity configura-

tions, as well as mechanical properties for the given multiple design objectives. It

presents an extension of the topology optimization method for geometrically non-

linear, time-dependent, and timing-dependent multibody dynamics systems. Con-

sideration is given to nonlinear response and a general multi-function system design

problem with the various options from using passive, active, and reactive devices or

components. The topology optimization examples for the multi-functional compo-

nents interactive system in this chapter are formulated using the SIMP assumption

for the design variables associated with each interactive member.

7.2 Two General Multibody Dynamics Systems Connected

by Multi-Functional Components

As shown in Figure 7.1, reconsider the two general MDS, MDS-1 and MDS-2,

which are interconnected by a set of N multi-functional interactive members; these

interactive members consist of the interactive system between the two given multibody

dynamics systems. The ith interactive member in the interactive system can be

described as the general interactive force fi between the interactive points, with one

point on each of the two multibody dynamics systems. The interaction force fi

may have non-linear dependency on the relative kinematics (displacement, velocity,

acceleration) of the points, and it can be time-dependent or timing-dependent, or

both. Detailed system governing equations are given in Chapter II from Equation

(2.8) to (2.22).
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Figure 7.1: General multibody dynamic systems with interaction forces

7.3 Topology Optimization for Multi-functional Components

Design

7.3.1 Design variables

The GFE fi applied by the ith interactive member must be investigated before

introducing it to the system governing equations. A set of representative critical

parameters for the multi-functional components is included in the design problem.

An optimally combined structural or material system from a widely open design

space that includes passive, active, and reactive components, will be found with re-

spect to the design objectives based on the system’s dynamic response G (q, q̇, q̈,α);

this is done by solving a topology optimization problem efficiently. The optimiza-

tion problem is defined based on state equations, general force elements, and critical

boundary conditions. The design variables in this work are, α = [α1, α2, . . . , αN ]T ,

0 ≤ αi ≤ 1 (i = 1, 2, . . . , N), which are similar to the relative density design vari-

ables in the power-law approach or SIMP method; these are associated with each

original global force element fi. The design variables vector α also could be defined
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as cost functions or material coefficients. The modified global force element in the

optimization problem f ∗i is written as:

f ∗i = αµi fi (0 ≤ αi ≤ 1, i = 1, 2, . . . , N) (7.2)

where µ is the power parameter in topology optimization.

The global force vector Fg including the design variables α for the interaction

system can be rewritten in Equation (7.3).

Fg =

[
αµ1f1, α

µ
2f2, · · · , αµNfN

]T
(7.3)

7.3.2 Optimization problem definition

In general, an objective function for multibody dynamics systems can be written as

a function of generalized coordinates, generalized velocities, generalized accelerations,

and design variables, namely, G = G (q, q̇, q̈,α). Topology optimization for the

multibody dynamics systems with multi-function structural components with respect

to dynamic response has the general form:

min
α

G(q, q̇, q̈,α)

s.t. : state equations
N∑
i=1

γjiαiVi ≤ h0j (j = 1, 2, ...,m)

0 ≤ αi ≤ αi ≤ ᾱi ≤ 1 (i = 1, 2, ..., N)

γji : grouping index
(
γji = 0 or 1

)
(7.4)

where m is the total number of constraint functions; N is the total number of design

variables; Vi is the volume or cost function for the ith design variable; and h0j is the

jth constraint value. α is the design variable vector, which is the material coefficient

associated with each interactive member, similar to element relative densities in the
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SIMP method. The multi-functional components in the interaction system can be

divided into different groups, each of which may belong to different disciplines, and

each group can have its own constraint, resulting in a multi-domain design problem.

7.3.3 Optimization algorithm

The GSAO optimization algorithm developed by (Ma and Kikuchi , 1995) is adopted

to solve the topology optimization problem in Equation (7.4). This algorithm, based

on convex approximation, extends the compatibility of previous optimization algo-

rithms significantly by using advanced updating rules, and by offering more appro-

priate parameters for the optimization process algorithm. In specific cases, this algo-

rithm reduces to other very popular topology algorithms. The GSAO enhancements

result in improved convergence, higher computational efficiency, and a more stable

iterative process for large-scale optimization problems. The GSAO algorithm has an

advantage in that it is well suited for multi-domain problems. The flow chart of the

GSAO optimization algorithm is shown in Figure 7.2.

Using the GSAO algorithm, a sequence of optimization problems are obtained to

approximate the objective function and all constraint functions:

min
α

Gk
0 +

n∑
i=1

aki | αi − ci |ξi

s.t. : hk0j +
N∑
i=1

bkji | αi − eji |ζji≤ 0 (j = 1, 2, . . . ,m)

0 ≤ αi ≤ αi ≤ ᾱi ≤ 1 (i = 1, 2, ..., N)

(7.5)

where Gk
0 and hk0j are the approximate function for objective function and jth con-

straint function at the given point αk =
[
αk1, α

k
2, . . . , α

k
N

]T
. They can be obtained
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Figure 7.2: Flowchart of GSAO optimization algorithm (Ma and Kikuchi , 1995)
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by

Gk
0 = G(αk)−

n∑
i=1

aki | αi − ci |ξi

hk0j = hj(α
k)−

N∑
i=1

bkji | αi − eji |ζji

(7.6)

aki and bkji are calculated by

aki = 1
ξi

sign (αi − ci) | αi − ci |1−ξi Gk
,αi

bkji = 1
ζi

sign (αi − eji) | αi − eji |1−ζji hkj,αi

(7.7)

and

Gk
,αi

= ∂G
∂αi
|α=αk

hkj,αi
=

∂hj

∂αi
|α=αk

(7.8)

where ci and ξi are optimization parameters for the objective function; eji and ζji

are optimization parameters for the jth constraint function; these need to be given

or determined in the optimization process and must satisfy the necessary conditions

for the convex approximation. Superscript k stands for the value that is calculated

in the kth iteration step with respect to given point αk.

By properly choosing the optimization parameters, the approximate optimization

problem can always be made convex. It is then solved by using the dual method,

where the dual problem is given by

max Lk
m (λ)

s.t. : λj > 0 (j = 1, 2, . . . ,m)
(7.9)

where,

Lk
m(λ) = min

α≤α≤ᾱ
Lk(α,λ) (7.10)

where λ = [λ1, λ2, . . . , λm]T represents the vector of Lagrange multipliers. There-
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fore, a typical updating rule for the GSAO method is:

α∗i = ci +

(
−

gk,αi∑m
j=1 λjh

k
j,αi

)ηi (
αki − ci

)
(7.11)

where,

ηi =
1

ζi − ξi

7.4 Numerical Examples

7.4.1 Two Multibody Dynamics Systems with Two Rigid Bodies

Consider again the two multibody dynamics systems model with one rigid body

in each system, in which the systems are linked by interactive members like the

interactive system described in Chapter IV. All of the system parameters are given

in Chapter IV. The design variables α are normalized stiffness coefficients. The

design objective function is to minimize the maximum deviation energy stored in the

whole system in time duration of [t0, t1]; thus the topology optimization problem for

this multibody dynamics system is formulated as follows in Equation (7.12):

min
αi (i=1,2,...,N)

{
max
[t0,t1]

g = 1
2
∆TK∆

}
s.t. : state equations

N∑
i=1

αiVi ≤ h0

0 ≤ αi ≤ αi ≤ ᾱi ≤ 1 (i = 1, 2, ..., N)

(7.12)

The maximum iteration number is set at 50, and the optimization iteration results

for the constant dynamic loading method, the AVM method, the time integration

incorporated method and the iterative method are shown in Figure 7.3:

From Figure 7.3, the proposed time integration incorporated sensitivity analysis

method that uses the Generalized-α integration algorithm and the iterative sensitiv-
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Figure 7.3: Optimization results for two bodies multibody dynamics model

ity analysis method can, after 50 iterations, converge to the same optimization result

as the AVM method. Nonetheless, the proposed constant dynamic loading sensitivity

analysis can converge only to a result close to the AVM method with about 10% dif-

ference after 50 iterations. These optimization results can also verify the conclusion in

terms of accuracy of the proposed sensitivity analysis methods. The time integration

incorporated and iterative sensitivity analysis methods are thus seen to be able to

obtain the same sensitivities as the AVM method and converge to the same result.

The final optimized design variables after 50 iterations are shown in Figure 7.4.

If αi=0.1 is set as the criterion to plot the interactive members with the design

variable larger than 0.1 in the final optimization results, the final optimized interactive

members layout after 50 iterations are shown in Figure 7.5.

7.4.2 Two Multibody Dynamics Systems with Three Rigid Bodies

Consider again another two multibody dynamic systems model with two rigid

bodies with a revolution joint in MDS-1 and one rigid body in MDS-2, as described in

Chapter VI. The design variables α are normalized stiffness coefficients. The design
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Figure 7.4: Optimized design variables for two bodies multibody dynamics model

Figure 7.5: Optimized interactive members layout for two bodies multibody dynamics
model
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objective is to minimize the maximum deviation of resultant relative displacement

of the mass center of Body 1 and Body 3 O13 with respect to Body 2 O2 over the

given time duration [t0, t1] from the initial position. The optimization problem is

formulated as follows:

min
αi(i=1,2,...,N)

{
max
[t0,t1]

g

}
s.t. : state equations

N∑
i=1

αiVi ≤ h0

0 ≤ αi ≤ αi ≤ ᾱi ≤ 1 (i = 1, 2, . . . , N)

(7.13)

where g =
[
AL2R(q13 − q2)− rL2

O13O2
|t=t0

]T
W
[
AL2R(q13 − q2)− rL2

O13O2
|t=t0

]
, q13 and

q2 are the respective generalized coordinates for the Body 1 and Body 3’s mass center

and Body 2’s mass center, and W =

I3×3 0

0 0

, q13 = m1q1+m3q3

m1+m3
.

The maximum iteration number is set at 50 and optimization iteration results

for the time integration incorporated method and the iterative method are shown in

Figure 7.6.

Figure 7.6: Optimization results for three bodies multibody dynamics model
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From Figure 7.6, the proposed time integration incorporated sensitivity analysis

method using the Generalized-α integration algorithm and the iterative sensitivity

analysis method can converge to the same optimization result. Based on our previous

topology optimization examples, we can conclude that the topology optimization

for the multi-functional components in multibody dynamics systems with joints can

be solved successfully by the proposed Generalized-α integration algorithm and the

iterative sensitivity analysis method.

The final optimized design variables after 50 iterations are shown in Figure 7.7.

Figure 7.7: Optimized design variables for three bodies multibody dynamics model

If αi=0.1 is set as the criterion to plot the interactive members with the design

variable larger than 0.1 in the final optimization results, the final optimized interactive

members layout after 50 iterations are shown in Figure 7.8.
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Figure 7.8: Optimized interactive members layout for three bodies multibody dynam-
ics model

7.4.3 Two Multibody Dynamics Systems Multi-Objective Optimization

The Multi-Objective Optimization (MOO) problem can be defined as follows in

general:

min
αi (i=1,2,...,N)

G = [G1(α), G2(α), . . . , Gk(α)]T

s.t. : hj(α) ≤ 0 (j = 1, 2, . . . ,m)

(7.14)

where N is the number of design variables; k is the number of objective functions;

and m is the number of constraint functions. Since the vector of design variables

α ∈ RN , the vector of objective functions G ∈ Rk, and the single objective function

Gi(α): RN → R1. The feasible design space Γ, which is also called the feasible

decision space or constraint set, is defined as Γ = {α | hj(α) ≤ 0 j = 1, 2, . . . ,m}.

The feasible criterion space Ξ, which is also called the feasible cost space or the

attainable set, is defined as Ξ = {G(α) | α ∈ Γ} (Marler and Arora, 2004).

Compared to the single-objective optimization, there is typically no single global

solution for a multi-objective problem typically. It is often necessary to determine a

set of points that all fit a predetermined definition for an optimum. The predominant
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concept in defining an optimal point is that of Pareto optimality (Pareto, 1906).

The Pareto Optimal point is defined as follows: A point α∗ ∈ Γ, is Pareto optimal

if and only if there does not exist another point, α ∈ Γ, such that G(α) ≤ G(α∗)

and Gi(α) < Gi(α
∗) for at least one function (Marler and Arora, 2004).

The Utopia Point is defined as follows: A point, G◦ ∈ Ξk, is a utopia point if and

only if for each i = 1, 2, . . . , k, G◦i = min
α
{Gi(α) | α ∈ Γ}

The decision-maker’s opinions concerning points in the criterion space are called

preference. With methods that involve a posteriori articulation of preferences, the

decision-maker imposes preferences directly on a set of potential solution points.

Then, theoretically the final solution reflects the decision-maker’s preferences accu-

rately. With a priori articulation of preferences, one must quantify opinions before

actually viewing points in the criterion space. In this sense, the term “preference”

often is used in relation to the relative importance of different objective functions

(Marler , 2005). There are many sophisticated developed methods that employ a pri-

ori articulation of preferences, including the weighted global criterion method, the

weighted sum method, the weighted min-max method, and the weighted product

method, that also employ a posteriori articulation of preference, such as Normal

Boundary Intersection (NBI) method (Dasa, 1999), Normal Constraint (NC) method

(Messac et al., 2003) and Genetic Algorithm (GA) method (Holland , 1975).

One of the most common general methods for MOO is the global criterion method

in which all objective functions are combined to form a single function; all the opti-

mization techniques for the usual single-objective function can then be applied. One

of the most general utility functions using the global criterion method is expressed

in its simplest form as the following weighted exponential summation (Marler and

Arora, 2004):

U =
k∑
i=1

wi [Gi(α)]p , Gi(α) > 0 ∀i (7.15)

where w = [w1, . . . , wi, . . . , wk] is the weights vector usually selected by the decision-
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makers such that
k∑
i=1

wi = 1 and w > 0. Generally, the relative value of the weights

reflects the relative importance of the design objectives.

The transformations of the original objective functions Gi(α) are widely used in

the Equation (7.15) because of the many advantages offered thereby (Proos et al.,

2001). This is especially true with scalarization methods that involve a prior articu-

lation of preferences (Marler and Arora, 2004). Moreover, the most robust approach

to transforming objective functions, regardless of their original range, is given in

Equation (7.16) (Koski and Silvennoinen, 2001; Rao and Freiheit , 1991):

Gtrans
i =

Gi(α)−G◦i
Gmax
i −G◦i

(7.16)

where Gmax
i is the maximum of the design objective Gi in the feasible design space Γ,

and G◦i is the utopia point of the design objective Gi. This approach is consistently

referred to as normalization. In this case, Gtrans
i generally has values between zero and

one, depending on the accuracy and method with which Gmax
i and G◦i are determined.

Consider again the two multibody dynamics systems model with one rigid body

in each system, in which the systems are connected by interactive members, as in the

interactive system in Chapter IV. All the system parameters were given in Chap-

ter IV. There are 1020 interactive members between Body 1 and Body 2, with an

initial linear stiffness of 22.5 N/m. The design objective function is the maximum

deviation energy stored in the whole system in time duration of [t0, t1]. Two different

loading conditions, however, are applied to the model; the first loading condition is

a rotational acceleration that is applied to Body 2 with a magnitude of 20 rad/s2,

with the rotation center of O2 without translation acceleration; the system gravity

acceleration is 9.8 m/s2 along negative global y axis. The second loading condition

is a translational acceleration that is applied to Body 2 with a magnitude of 20 m/s2

along global x axis without rotational acceleration. Because the objective function
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needs to be minimized under two different loading conditions, this problem can be

treated as a MOO problem and formulated as follows in Equation (7.17):

min
αi (i=1,2,...,N)

{G1, G2}

s.t. : state equations
N∑
i=1

αiVi ≤ h0

0 ≤ αi ≤ αi ≤ ᾱi ≤ 1 (i = 1, 2, . . . , N)

(7.17)

where G1 = max
[t0,t1]

{
g = 1

2
∆TK∆

}
under the first loading condition of pure rotation;

and G2 = max
[t0,t1]

{
g = 1

2
∆TK∆

}
under the second loading condition of pure transla-

tion.

The maximum iteration number is set at 100. The optimization iteration results in

the criterion space for the time integration incorporated sensitivity analysis method

and the iterative sensitivity analysis method are shown in Figure 7.9.

Figure 7.9: Optimization results for two bodies multibody dynamics model with two
objectives

The final optimized design variables after 100 iterations for the Pareto point in

the black circle in Figure 7.9 are shown in Figure 7.10.
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Figure 7.10: Optimized design variables for two bodies multibody dynamics model
with two objectives

If αi=0.1 is set as the criterion to plot the interactive members with the design

variable larger than 0.1 in the final optimization results, the final optimized interac-

tive members layout after 100 iterations for the Pareto point in the black circle in

Figure 7.9 are shown in Figure 7.11.

7.4.4 Two Multibody Dynamics Systems Multi-Domain Optimization

The GSAO algorithm employed in this study is able to solve multi-domain prob-

lems. For example, the two multibody dynamics systems model with two rigid bodies

in MDS-1 and one rigid body in MDS-2 can be redefined as the following multi-domain

problem:

min
αi(i=1,2,...,N)

{
max
[t0,t1]

g

}
s.t. : state equations

N1∑
i=1

αiVi ≤ h1

N∑
i=N1+1

αiVi ≤ h2

0 ≤ αi ≤ αi ≤ ᾱi ≤ 1 (i = 1, 2, ..., N)

(7.18)
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Figure 7.11: Optimized interactive members layout for two bodies multibody dynam-
ics model with two objectives

where g =
[
AL2R(q13 − q2)− rL2

O13O2
|t=t0

]T
W
[
AL2R(q13 − q2)− rL2

O13O2
|t=t0

]
; q13 and

q2 are the respective generalized coordinates for the Body1 and Body 3’s mass center

and Body 2’s mass center, and W =

I3×3 0

0 0

, q13 = m1q1+m3q3

m1+m3
.

α1, α2, . . . , αN1 are associated with the interactive members between Body 1 and

Body 2. αN1+1, αN1+2, . . . , αN are associated with the interactive members between

Body 3 and Body 2. Therefore, there are two design domains for the interactive

members between Body 1 and Body 2 and the interactive members between Body

3 and Body 2 respectively. The optimization results of this multi-domain problem

for the time integration incorporated method and the iterative method are shown in

Figure 7.12.

Based on Figure 7.12, we can conclude that the iterative sensitivity analysis

method and the time integration incorporated method using the Generalized-α al-

gorithm converge to the same optimization results. Each of these two sensitivity

analysis are reliable so as to ensure that the optimal solution is achieved.

The final optimized design variables after 50 iterations are shown in Figure 7.13.
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Figure 7.12: Optimization results for three bodies multibody dynamics model with
multi-domain

Figure 7.13: Optimized design variables for three bodies multibody dynamics model
with multi-domain
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If αi=0.1 is set as the criterion to plot the interactive members with the design

variable larger than 0.1 in the final optimization results, the final optimized interactive

members layout after 50 iterations are shown in Figure 7.14.

Figure 7.14: Optimized interactive members layout for three bodies multibody dy-
namics model with multi-domain

From the optimization results we can conclude that the multi-domain optimization

problem can be solved successfully by using the proposed sensitivity analysis methods

and the GSAO updating algorithm. The multi-domain design problem can be critical

in the multi-functional components layout design. If the multi-functional components

need to be grouped and optimized group by group, such an optimization problem

needs to be considered as a multi-domain problem.

7.5 Conclusions

A fundamental multi-functional components layout design technology based on

topology optimization is proposed for a multibody dynamics systems design problem.

It may have various options associated with using passive, active, and reactive devices

or components. The proposed topology optimization design method can address the
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objective functions that are related to dynamic responses of multibody dynamics

systems rather than static responses, and that satisfy multiple requirements; the

requirements may include designing a vehicle occupant restraint system that must

perform under various operating conditions, and must meet stringent performance

requirements. The proposed advanced topology optimization technique can be solved

using the efficient sensitivity analysis techniques developed previously for the multi-

objective and multi-domain problems of multi-functional components system.
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CHAPTER VIII

Application to the Gunner Restraint System

Design Problem

8.1 Introduction

The methodology of topology optimization for multi-functional components in

multibody dynamics systems can be applied to the real-life restraint system design

problems related to military and commercial vehicles, including the GRS, blast-

protective seating systems and other crew restraint systems for military vehicles,

and the passenger protection systems against crashes or rollover accidents for com-

mercial vehicles. Designing the occupant restraint systems for improving occupants’

safety under various operating conditions and often in hazardous environments can be

considered a multi-functional components system layout optimization problem. The

restraint systems may involve a wide range of possible usage of multi-functional com-

ponents, including passive, active, and reactive devices, which could be mounted at

many possible physical locations (connecting points) between the vehicles and the oc-

cupants. The definition of passive, active, and reactive devices are given in Chapter I.

These multi-functional components may be realized by current widely used restraint

techniques, such as belts, airbags, and retractors; and may have to be activated in a

specific sequence or timing to protect the occupants in accidents.
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There are many studies about occupant restraint systems in the commercial vehi-

cles, however, the GRS in military vehicles could be quite different. The gunners sit

or stand in the vehicles with their upper torsos, arms, and heads exposed outside the

top of the vehicles. The restraint systems connecting the gunners and the vehicles

should not only be able to prevent the gunners from being ejected from the vehicles

but also be able to assist rapid entry into the passenger compartments during rollover

accidents or other extreme events to avoid injuries or fatalities.

It is necessary to develop the corresponding GFE to represent the passive, active,

and reactive components, which are applied to the layout optimization design pro-

cess as the interactive members between multiple given multibody dynamics systems,

and then the optimal layout is obtained using the proposed topology optimization

methodology for multi-functional components system. Belts, airbags, and retractors

are employed as three typical restraint mechanisms for passive, active, and reactive

devices in this study. The nonlinear representative GFE have to be developed prior

to the optimization process implementation, and then they can be added into the

multibody dynamics model as interactive force elements.

The proposed Kriging variable screening method based on the REML criterion

is employed in the system uncertainty study of the GRS design problem. For ex-

ample, it is desirable to select the significant variables of gunners’ joint stiffness for

specific gunner-vehicle dynamic responses under critical maneuver conditions in order

to determine the worst case design for uncertainty study.

The layout design of GRS, which is considered as an interactive system between

the gunner and the vehicle multibody dynamics systems, can be achieved by the topol-

ogy optimization method. Therefore, it needs to solve a huge number of sensitivities

efficiently in the dynamics duration. The proposed sensitivity analysis methods for

the topology optimization in multibody dynamics systems in Chapter, IV, V and VI

are able to efficiently address the nonlinear geometric effects and large motion for the
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GRS design, whose design objectives are related to the gunners’ dynamic responses.

This chapter will focus on the application of topology optimization of multi-

functional components in multibody dynamics systems to the real-life GRS design

problem. The proposed optimization methodology for multi-functional components

system can enlarge the design space and obtain the optimal layout design for the

best performance/weight and performance/cost ratios. However, traditional design

solutions based on engineers’ intuition may not provide an optimal design.

8.2 The GRS Computational Simulation

8.2.1 Gunner and Vehicle Multibody Dynamics Models

The reality of full vehicle dynamics simulation plays a critical role in the design

process. To simulate vehicle movements under various terrain and driving conditions

and to capture the full coupling between the vehicle and gunner in the restraint sys-

tem design process, a multibody dynamics code, MSC/ADAMS, is used to simulate

the integrated vehicle-gunner dynamics system. MSC/ADAMS also allows developing

user-defined force elements, which are readily used for simulating the multi-functional

(passive, active, and reactive) components in the restrain system (MSC/ADAMS ,

2011). As noted in the previous section, the optimization procedure depends on the

time dependent, large deformation response of both multibody systems. As such,

replacing one system with an equivalent inertial loading does not fit within the pro-

posed framework. Virtual prototyping multibody dynamics models of the vehicle and

gunner are both developed and implemented in MSC/ADAMS. Other commercial

software, such as MADYMO, which is well known for occupant simulations, can also

be used for the design process (MADYMO , 2010). An ideal approach would be to

couple a vehicle dynamics code, such as MSC/ADAMS and an occupant simulation

code, such as MADYMO, with the optimization methodology presented here. How-
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ever, the complexity of this coupling is considered outside of the scope of the first

development of the proposed optimization methodology. MSC/ADAMS captures full

coupling of the vehicle and the other subsystems in the design process and it is more

convenient for the multi-objective design problem in which various terrain and driving

conditions need to be considered.

A reliable gunner multibody dynamics model is crucial to predict the gunner’s dy-

namic response and the GRS performance. There is a sophisticated human multibody

dynamic model in the commercial code LifeMOD, it is developed by the Biomechanics

Research Group, which is a world-class provider of software solutions for predictive

human motion (LifeMOD , 2011). All the masses, geometry, and joint information of

the gunner model in the LifeMOD are extracted for the gunner model in this study.

The detailed specifications of a virtual 24-year old male gunner multibody dynamics

model (Figure 8.1) are listed in Table 8.1. The joint stiffness properties of the Anthro-

pomorphic Test Dummy (ATD) model are based on the data measured from a Hybrid

III dummy finite element model in a software library as well as related biomechanical

publications.

Term Value
Weight 77 Kg
Height 1.778 m

CGX (+: rearward from the front axial) 1.848 m
CGY (+: rightward from midplane) 0.041 m
CGZ (+: upward from the ground) 1.758 m

Part Number 58

Table 8.1: Specifications of the gunner model

The vehicle multibody dynamics model (Figure 8.2 and Figure 8.3) was developed

by the Automotive Research Center at University of Michigan - Ann Arbor based

on the model of HMMWV M1025A2 (Hahn et al., 2007) in the commercial code

MSC/ADAMS. The vehicle geometric parameters, i.e., the hard points that connect

the suspension components and chassis parameters were taken from the U.S. Army
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Figure 8.1: The gunner multibody dynamics model
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Tank-Automotive Command report (Aardema, 1988). The detailed specifications of

the integrated HMMWV-gunner model are given in Table 8.2 (Ma et al., 2007).

Figure 8.2: HMMWV M1025A2 vehicle MSC/ADAMS model

Figure 8.3: HMMWV M1025A2 vehicle MSC/ADAMS model components

There are three connecting bushings added for integrating the gunner and vehicle

model (Figure 8.4). Two bushings connect the gunners’ hands with the vehicle, and

one bushing connects the gunners’ lower torsos with a seat on the vehicle to simulate

the gunners’ sitting posture. The property of hands bushings can be changed to
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Term Value
Weight 2821 Kg
Height 1.85 m

CGX (+: rearward from the front axial) 1.69 m
CGY (+: rightward from midplane) 0.0005 m
CGZ (+: upward from the ground) 0.77 m

Part Number 70

Table 8.2: Specifications of integrated model

simulate gunners’ different gripping strength, and can also be deleted to simulate the

gunners’ free hand grasping case. The detailed specifications of the integrated gunner

and vehicle model are listed in Table 8.3.

Figure 8.4: Integrated gunner and vehicle model

Term Value
Weight 2898 Kg

CGX (+: rearward from the front axial) 1.70 m
CGY (+: rightward from midplane) 0.0006 m
CGZ (+: upward from the ground) 0.80 m

Part Number 128

Table 8.3: Specifications of integrated gunner and vehicle model
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8.2.2 Virtual Proving Grounds

Three virtual proving grounds were developed for this study: severe braking,

rollover, and rough terrain (Dong et al., 2008). The gunner sits on a simple hanging

seat in the vehicle passenger compartment, which represents the current GRS design,

and grasps the handles with gripping strength of 350 N for the numerical examples

in this section.

8.2.2.1 Severe Braking

For the severe braking case, the vehicle initial longitudinal velocity is 17 m/s, and

the vehicle constant longitudinal deceleration is 7 m/s2. The vehicle velocity profile

for the severe braking case is shown in Figure 8.5.

Figure 8.5: Velocity profile in braking

The motion of the gunner’s response in the severe braking case is shown in Fig-

ure 8.6. It can be seen that the gunner will move forward and upward first in the

braking, and then fall into the passenger compartment due to the detachment of the

gunner’s hip and the hanging seat.
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0 s 0.5 s
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2 s

Figure 8.6: Gunner response in severe braking
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8.2.2.2 Rollover

For the rollover case, the vehicle initial longitudinal velocity is 17 m/s, and the

steering wheel rotates 720◦ in 0.5 second for the vehicle model. The steer profile for

the rollover case is shown in Figure 8.7.

Figure 8.7: Steer profile

The motion of gunner’s response in the rollover case is shown in Figure 8.8. It

can be seen that the gunner will move rightward and rotate at first, and then will be

ejected from the passenger compartment in the rollover case.

8.2.2.3 Rough Terrain

For the rough terrain case, the vehicle initial longitudinal velocity is 17 m/s, and

the road profile is a sinusoid function with the magnitude of 0.05 m and the wave

length of 8 m. The road profile for the rough terrain case is shown in Figure 8.9.

The rough terrain case study is related to gunners’ fire operation performance in

the battlefield. Basically, there is no safety issue related the rough terrain directly.

Nonetheless, the rough terrain affects the gunners’ fire operation ability significantly.

A proper designed GRS should also be able to improve the gunners’ fire operation per-
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1 s 1.5 s

2 s

Figure 8.8: Gunner response in rollover

Figure 8.9: Road profile in rough terrain
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formance and help stabilize the gunners to lock the targets in rough terrain. Therefore,

it is necessary to determine a valid objective function for the gunners’ fire operation

performance study. The relative velocity between gunners’ heads and the gunpoints

is selected as a measurement for the gunner fire operation performance (Figure 8.10).

Figure 8.10: Relative velocity between gunners head and the gunpoint

Greater relative velocity of gunners’ heads with respect to the gunpoints means

larger relative movement between gunners’ eyes and the gunpoints, making it more

difficult for gunners to lock on the target in battle fields. There are three different

road profile amplitudes, 0.03 m, 0.04 m and 0.05 m in the preliminary study. The

results are shown in Figure 8.11, and it is concluded that increasing the terrain

roughness with bump magnitude, the gunners will have more difficulties performing

fire operations. Therefore, the relative velocity of gunners’ heads with respect to the

gunpoints can be considered as a valid objective function for gunners’ fire operation

performance study.

Critical simulation parameters for the commercial code MSC/ADAMS are listed

in Table 8.4.

8.3 GRS Design Uncertainty Study

The real-life GRS design problem involves lots of system uncertainties as other

complicated engineering design problems. The worst case design or critical condition
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Figure 8.11: Gunner head velocity response relative to the gunpoint

Parameters Value
Step size 0.01 s
Integrator GSTIFF

Formulation SI2
Corrector option Modified

Error 0.01

Table 8.4: Simulation parameters for MSC/ADAMS
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design is an efficient way to eliminate system uncertainties. For the binary variables,

such as the gunners’ awareness in terms of hand grasping: i) gunner intentionally

grasps the handle in a maneuver; ii) and gunner does not grip handle in a maneuver,

the worst case is easy to be identified by enumeration method. For the continuous

variables, such as gunner joint stiffness, the Kriging variable screening method based

on the REML criterion developed in Chapter III is applied to identify the most

important or significant gunners’ joint stiffness variables, and then the worst cases

or critical conditions are determined using the metamodel based on the important

variables screened out.

In the GRS design problem, the design uncertainties were eliminated by identifying

the worst cases or critical conditions, including the effect of the gunners grasping

situations; the effect of hand gripping strength with stronger gunners and weaker

gunners; the effect of joint stiffness where the gunners intentionally hold the position

or the gunners are in the relaxed condition; the effect of terrain roughness with

rough terrain and flatter terrain; the effect of gunners postures considering seated and

standing postures with different orientations. More results details can be found in

previous studies (Dong et al., 2008, 2009, 2011b; Ma et al., 2010). The system virtual

prototyping multibody dynamics models were developed using the commercial code

MSC/ADAMS, and detailed specifications of the gunners and integrated HMMWV-

gunner multibody dynamics models can be found in section 8.2.

8.3.1 Hand Grasping Uncertainty

In order to identify the critical condition in severe braking case considering the

uncertainty of gunner’s awareness in terms of hand grasping, time histories of the

gunners’ Center of Gravity (CG) relative height with respect to the vehicle’s roof in

severe braking condition, are shown in Figure 8.12 and Figure 8.13. The gunners

will be ejected during severe braking case if the gunners’ hands are not grasping
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the handles on the vehicles, but the gunners remain in the crew compartment if

their hands are grasping the handles. It is concluded that the condition of hands

free grasping is more critical in the restraint system design for severe braking case.

Therefore, in the GRS design problem, the initial hands grasping loading condition is

set as gunners’ hands free of grasping in severe braking case as the worst case, which

means the gunners are unprepared for the braking without holding the handles.

Figure 8.12: Gunner CG relative height response with different grasping condition in
severe brake

(a) Hand free (b) Hand grasping

Figure 8.13: Gunner response in severe brake at 3s
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8.3.2 Hand Grip Strength Uncertainty

In the GRS design problem, there is uncertainty of gunners’ hand grip strength, in

which different hand grip strength can be related to gunners’ different physical con-

dition and consciousness situations, such as the gunner is prepared or is unconscious.

The gunners hands grip strength data can be found in Günther’s study (Günther et al.,

2008) in Table 8.5. Since the gunner hand grip strength is a continuous variable, it

is impossible to identify the worst cases by enumeration as the discrete variables.

Based on a grid sampling space of 7 N in the range from 350 N to 700 N , the Kriging

metamodeling technique using Gaussian correlation model and the second order poly-

nomial regression model (Lophaven et al., 2002) is employed to find the worse cases

for gunners hand grip strength uncertainty considering the gunners’ CG maximum

relative vertical displacement with respect to vehicle’s CG as a response. The gunners

hand grip strength is set as 371 N as the worst case in the rollover condition.

Age (y) Mean[R/L] (Kg) SD[R/L] (Kg) Min[R/L] (Kg) Max[R/L] (Kg)
20-29 53/51 8/8 36/29 70/65
30-39 54/52 10/9 36/33 83/77
40-49 54/52 7/8 34/28 70/70
50-59 51/49 9/8 29/27 79/73
60-69 45/43 7/7 32/29 63/65
70-79 38/35 9/8 17/16 51/47
80-95 31/28 8/7 16/18 44/42

Table 8.5: Male grip strength data (Günther et al., 2008)

8.3.3 Gunners Joint Stiffness Uncertainty

In the GRS design problem, there is uncertainty of gunners joint stiffness in which

different joints’ stiffness can be related to gunners different physical condition and

consciousness situations, such as the gunners are prepared or are unconscious. Since

joint stiffness are continuous variables, it is impossible to identify the worst case

by enumeration as the discrete variables. The Kriging variable screening method
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based the REML criterion is used to determine the most important joints properties

for gunner’s CG relative vertical displacement with respect to vehicle’s CG under

specific maneuver conditions, such as the step steer case. Then the worst case design

can be obtained by a metamodel based on the significant joints stiffness variables

screened out previously.

The gunners’ joint stiffness uncertainty study starts with a set of eight of the

most important gunners’ joint variables in Table 8.6. The joint stiffness properties

of the gunner are based on the data from a Hybrid III dummy and biomechanical

publications (Dinant and Kistemaker , 2007; Xu, 1999; Jaap and Peter , 2003; Günther

and Blickhan, 2002; Granata et al., 2004; Magnusson, 1988; Dhaher et al., 2005; Leger

and Milner , 2000). The baseline stiffness of the gunner’s joints are listed in Table 8.6.

Note that damping coefficient of the gunner’s joints is assumed 651.92 N ·mm/(rad/s)

corresponding to the commercial software of LS-DYNA manual (LSTC , 2007).

Joint variable Value (N ·m/rad) Stop angle[-] (rad) Stop angle[+] (rad)
x1: Shoulder TX 12738.9 0.785 1.083
x2: Shoulder TZ 6999.9 0 1.745

x3: Elbow 30000 1.657 0.523
x4: Wrist TX 20000 1.378 0.523
x5: Hip TX 60000 0.488 0.872
x6: Hip TZ 21231.4 0 0.471
x7: Knee 400000 0.872 1.483
x8: Ankle 300000 0.349 0.872

Table 8.6: Gunner joint stiffness baseline

The design space for this variable screening problem is defined as

xi = κix
baseline
i and κi ∈ [0.5, 2] (8.1)

where i = 1, 2, . . . , 8 and κi is the coefficient for the gunner joint stiffness. Based

on the biomechanical publications (Günther et al., 2008), we assume that the range

of stiffness is one-half of the baseline value as the lower limit and twice the baseline
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value as the upper limit. The IHS space filling sampling technique is used to generate

the 64 joint stiffness samples in the design space in Equation (8.1).

The virtual proving grounds were developed with vehicle initial forward velocity of

17 m/s for the step steer case and a flat road profile. The steering wheel rotates 360◦

in 0.5 s and the simulation duration is 1 s. The response value is the gunner’s CG

relative vertical displacement with respect to the vehicle’s CG because the vertical

displacement of the gunner’s CG with respect to the vehicle’s CG deserves more

attention due to its direct relationship to gunners’ ejection or remaining the passenger

compartment. The variable screening results using the proposed Kriging variable

screening method based on the REML criterion are shown in Table 8.7.

Selected variables θj for factors in S and (σ̂2)∗ Restricted Log-likelihood
3 (0.0336, 1.7545) 33.7843

3,5 (0.0163, 1.8954) 24.5622
3,5,4 (0.0002, 1.2178) 13.7887

3,5,4,1 (0.0003, 1.6881) -11.9122
3,5,4,1,7 (0.0000, 1.8369) -14.0906

Table 8.7: Results for gunner joints stiffness variable screening

The variables screening results show that there are four significant variables,

x1,x3,x4,x5, corresponding to the gunner’s shoulder, elbow, wrist and hip joints. This

result makes sense physically because the gunner’s upper extremities have important

support functions for the step steer case. It is reasonable to reduce the metamodel

space to these significant variables. In the subsequent GRS design process, the design

uncertainty of these selected joints variables deserve more attention. In the worst

case design, a metamodel is established using the Kriging method based on these

screened out variables. Note that co-Kriging is not feasible for the computer-intense

simulations since the gradient information at the sample point is difficult to obtain

(Laurenceau and Sagaut , 2008; Chung and Alonoso, 2004).

From the Table 8.7, it is concluded that in the step steer condition, the gunners’

shoulders, elbows, wrists, and hip joints stiffness are more significant than other
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joint stiffness variables. For the worst case design of GRS design in rollover case

considering the gunner joint stiffness uncertainty, the same Kriging metamodeling

technique using the Gaussian correlation model and the second order polynomial

regression model (Lophaven et al., 2002) is employed to find the worse case with the

gunners’ CG maximum relative vertical displacement as a response. The shoulder

joint stiffness is increased 2 times to the upper limit and the wrist joint stiffness is

reduced to half to the lower limit. Modified joint stiffness for the gunner multibody

dynamics model employed in this design problem is listed in Table 8.8.

Joints variables Value (N ·m/rad)
x1: Shoulder TX 25477.8
x2: Shoulder TZ 6999.9

x3: Elbow 30000
x4: Wrist TX 10000
x5: Hip TX 60000
x6: Hip TZ 21231.4
x7: Knee 400000
x8: Ankle 300000

Table 8.8: Modified gunner joint stiffness

8.4 Multi-Functional General Force Elements for GRS De-

sign

Belts, airbags, and retractors, are three typical restraint mechanisms employed as

passive, active, and reactive devices in the GRS design problem. The correspond-

ing GFE will be investigated in this section and added into the HMMWV-Gunner

multibody dynamics models as force elements in the optimization process.

8.4.1 Belt

Belt is a sophisticated and easily-implementated safety harness designed to secure

the occupants in the vehicle against harmful movements that may result from colli-
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sions. The use of the standard three-point automobile restraint belt offers substantial

protection for occupants in rollover accidents, primarily by preventing occupants ejec-

tions and impacts with the vehicle interior. Many researchers started to study the

property of seat belts in the early 1990s. Song (Song et al., 1993) set up several

experiments to investigate the belt mechanical properties by using a cylindrical mass

impact upon a belt strap which was fixed at its two extremities to a rigid support

shown in Figure 8.14. The mass of impactor is 8.25 Kg; two impact velocities used

were 2.5 m/s and 3.7 m/s. The displacement and acceleration of impactor were mea-

sured, and from this the belt tension is deduced. The final stress-strain test curve

result is shown in Figure 8.15. Song assumed an elasto-plastic law to characterize the

Figure 8.14: Seatbelt test set up (Song et al., 1993)

relationship between the belt strain and stress in Equation (8.2), where E is Young’s

modulus; A is the elastic limit; B is the hardening coefficient; and εp is the plastic

deformation.

σ =

 Eε (ε < ε0)

A+Bεnp (ε ≥ ε0)
(8.2)

Based on Song’s data, a piece-wise linear GFE for the belt components in the
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Figure 8.15: Seatbelt force displacement curve (Song et al., 1993)

GRS design is defined in Equation (8.3).

f(∆) =


0 ∆ ≤ 0

k1∆ 0 ≤ ∆ ≤ ∆0

k1∆0 + k2(∆−∆0) ∆ ≥ ∆0

(8.3)

where ∆ is the deformation; k1 is the first phase stiffness; k2 is the second phase

stiffness; and ∆0 is the critical deformation value for switch from the first linear

phase to the second linear phase. This piece-wise linear GFE for belt components

will be applied into the GRS optimization design in section 8.5.

8.4.2 Deployable Airbag System

Airbag technology has been applied as a universal protection mechanism in the

automotive industry and space research. An inflated airbag would attenuate the im-

pact between two stiffer objects and reduce the impact force to realize the protection.

In the last decades, there has been a rapid increase of airbag usage for occupants

protection in the automotive industry. Airbags are effective for avoiding occupants’
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direct contact with the vehicles’ interior during crashes. In recent years, airbag tech-

nology has been more widely used for different purposes in all kinds of accidents,

including curtain airbags for side impacts and rollover accidents, torso airbags for

side impacts, knee airbags for knee protection in frontal crashes.

Another application for the airbag technology is the landing system for the space

shuttle. In 2006, the Boeing company responded to the National Aeronautic and

Space Administration (NASA) request for proposals for the next generation space

shuttle replacement, now known as the Orion spacecraft. The design proposed by

Boeing included an airbag landing system (Figure 8.16) that can attenuate the ve-

hicle’s impact with the ground following a controlled parachute descent after atmo-

spheric reentry (Lee et al., 2008b).

Figure 8.16: Airbag landing system (Lee et al., 2008b)

For the GRS design problem, the airbag technology will be employed for gunners’

protection because there will be impacts between the gunners and the interior of the

crew compartment of HMMWV in accidents. The airbags can also provide gunners

supporting force during dangerous maneuver conditions. The deployable airbag sys-

tem can be modeled as a gas spring in many studies (Lee et al., 2008a; Kornhauser ,

1994).
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The airbag component can be modeled as a conventional gas spring with approx-

imately constant effective contact area Ae, the volume of the airbag without leakage

V can be written in Equation (8.4).

V = Ae · (L− x) (8.4)

where L is the initial length of gas spring; Ae is the effective contact area; and x is

the compression distance of the gas spring.

According to the Gamma Law equation of state for the gas spring, we obtain

P = (k − 1)ρe = (k − 1)
m

V
e (8.5)

where P is the gas pressure; ρ is the gas density; e is the specific internal energy of

the gas; and parameter k is defined in Equation (8.6).

k =
cp
cv

(8.6)

where cp is the specific heat capacity at constant pressure; and cv is the specific heat

capacity at constant volume. For the air under typical room conditions, we have

cp = 29.19 J/(mol ·K) and cv = 20.85 J/(mol ·K).

The definition for specific internal energy e is in Equation (8.7).

e = V 1−k (8.7)

Based on Equation (8.5) and (8.7), we have

P = (k − 1)
m

V
V 1−k =

(k − 1)m

V k
(8.8)
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Substitute Equation (8.4) into (8.8),

P =
(k − 1)m

Ake · (L− x)k
(8.9)

The force applied on the surface of the gas spring F can be written as

F =

(
(k − 1)m

Ake · (L− x)k
− Pa

)
· Ae =

(k − 1)m

Ak−1
e · (L− x)k

− Pa · Ae (8.10)

If we denote C1 = (k−1)m

Ak−1
e

and C2 = Pa ·Ae, then Equation (8.10) can be rewritten

as:

F =
C1

(L− x)k
− C2 (8.11)

This nonlinear GFE will be employed for the airbag components in the GRS

optimization design in section 8.5.

8.4.3 Retractor

The seatbelt pretensioner or retractor has been well accepted to improve occupants

safety by enhancing the coupling between the occupants and the vehicles in the early

stages of collisions. Although there are many approaches for the pretensioner design,

most designs employ pyrotechnic energy that is released to reduce the effective length

of the restraint systems when crashes are sensed. The pyrotechnic material is ignited

and the expanding gas pushes a rack gear or piston thus taking up the slack in the

seatbelt webbing. In the GRS design problem, because the gunners sit or stand

in the vehicles with their upper torsos, arms, and heads exposed outside the top

of the vehicles, the gunners could be crushed between the ground and the vehicles’

roof or seriously injured in rollover accidents. In order to protect the gunners, the

pretensioner or retractor can be used to provide a quick pull force acting on the

gunners to help gunners’ rapid entry into the passenger compartments in rollover

152



accidents. This action can keep the gunners within the passenger compartments

during rollover accidents which is critical for the gunners’ protection. In the GRS

design problem, the retractor could be realized as reactive mechanisms to pull the

gunners into passenger compartments at the critical time.

A series of five bench-top tests were conducted by Newberry (Newberry et al., 2006)

on a typical pyrotechnic retractor-based pretensioner (Table 8.9). Each pretensioner

was deployed with approximately 25% of the webbing on the spool. The total web

length is 136”, and the web length on spool is from 32” to 33”. The webbing was

routed from the retractor up to the D-ring and down to a weight that was initially

supported or hanged (Figure 8.17). The results of webbing forces measured between

the D-Ring and the load are shown in the Figure 8.18.

Test No. Weight (lb) Comment
1 51 Load initially supported with webbing slack
2 90 Load initially supported with webbing slack
3 186 Load initially supported with webbing slack
4 0 N/A
5 186 Load hanging without slack

Table 8.9: Pretensioner tests set up (Newberry et al., 2006)

Critical design parameters for the properties of retractor components need to be

identified for the retractor components GFE. The critical design parameters for the

retractor include peak timing t0, pulse width σ0 and peak value F0. As the first

comparison, 2000 N is chosen as the base line of retractor peak force value. 3.0 s/3.1

s/3.2 s are selected as different peak timings to study the peak timing effect. The

maneuver condition for the vehicle is the rollover case. As shown in Figure 8.19, it

can be seen that later peak timing causes a higher possibility of occupants’ ejection.

Therefore, peak timing of the retractor is critical for the design because earlier peak

timing can be difficult to determine by sensors assessing whether or not rollover may

happen, and later peak timing may not pull the occupants into the crew compartment.
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Figure 8.17: Pretensioner test set up (Newberry et al., 2006)

Figure 8.18: Pretensioner force time curve (Newberry et al., 2006)

154



Figure 8.19: Comparison for different timing retractors

Figure 8.20: Comparison for different peak force retractors
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In the second case study, 3.0 s is chosen as the base line of retractor peak timing,

and 1000 N/1500 N/2000 N are selected as different peak force values to study the

peak force effect. From the results in Figure 8.20, it can be seen that smaller peak

force value causes a higher possibility of occupants’ ejection. Therefore, the peak

force of the retractor is critical for the design because smaller peak force values could

not pull the occupant into the crew compartment, however, a larger peak force value

has more possibility to cause injuries to the occupants.

It is concluded that parameters of peak timing and the peak force value of the

retractor property are critical for the components design. A representative GFE for

the retractor components should include these two parameters as design variables.

Based on the experimental data from Newberry’s study and preliminary HMMWV-

Gunner multibody dynamics simulation results, GFE for the retractor components

can be written as

f(t) = f0e
−σ0(t−t0)2 (8.12)

This nonlinear time-dependent and timing-dependent GFE will be used for re-

tractor components in the GRS optimization design in section 8.5.

8.5 Topology Optimization for the GRS Design Problem

8.5.1 Design Variables

The initial design space for the GRS was set with evenly distributed multi-

functional interactive members, which have options of passive, active, and reactive

devices, in all possible connections between the gunner and the vehicle. In order to

discretize the design space, as shown in Figure 8.21, 5 vertical layers of 40 connecting

points were placed on the vehicle, and 22 predetermined connecting points were placed

on the gunner, resulting in 580 interactive members between the gunner and the ve-

hicle. Detailed connecting points coordinates information are listed in Appendix C.
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All the interactive members represent the multi-functional components, and can be

realized by the GFE developed previously for the belt, airbag, and retractor compo-

nents. The developed topology optimization techniques were employed to optimize

the geometrically nonlinear, time-dependent, and timing-dependent multibody dy-

namics system based on the connectivity of connecting points on the gunner and the

vehicle, optimal type of the multi-functional interactive members, and optimal phys-

ical properties of the multi-functional interactive members between the gunner and

the vehicle. The optimal GRS layout was obtained by removing unnecessary multi-

functional interactive members and reinforcing necessary multi-functional interactive

members via the topology optimization algorithm.

(a) Vehicle (b) Gunner

Figure 8.21: Initial structural universe with connecting points

Similar to the relative densities variables in the SIMP topology optimization ap-

proach, every multi-functional interactive member was associated with a material

coefficient, 0 ≤ αi ≤ 1 for the ith interactive member, and it was assumed that the

stiffness is proportional to the material coefficient, so the stiffness assigned for the ith

interactive member can be written as αik
0
i , where k0

i is the nominal stiffness property

for the ith interactive member. Consequently, αi = 0 or αi ≈ 0 means the ith inter-
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active member should be removed from the final layout, and αi = 1 means the ith

interactive member should remain in the final layout. After obtaining optimal value

of the design variable vector α with respect to specific design objectives, the optimal

layout of the multi-functional interactive members is achieved.

8.5.2 Design Objectives

In the GRS design problem, the first objective function g1, which is employed to

describe the deviation of the gunner’s CG relative displacement with respect to the

vehicle’s CG from the initial position(t = 0). It can be defined as follows:

g1 =
[
ALV R(qO − qV )− rLV

OOOV
|t=0

]T
W
[
ALV R(qO − qV )− rLV

OOOV
|t=0

]
(8.13)

where qO is the generalized coordinates vector for the gunner’s CG OO, which is

expressed in the global coordinate system R; qV is the generalized coordinates vec-

tor for the vehicle body’s CG OV , which is expressed in global coordinate system

R; ALV R is the transformation matrix from the global coordinate system R to the

local coordinate system LV at the vehicle body’s CG; rLV
OOOV

|t=0 is the initial vector

connecting the gunner’s CG OO and the vehicle body’s CG OV , which is expressed

in the local coordinate system LV ; and W =

I3×3 0

0 0

.

The objective function g1 will be employed for the optimization of GRS’s restraint

effect.

The second objective function g2, which is developed to describe the gunner’s CG

relative vertical displacement with respect to the vehicle’s CG. It can be defined as

follows:

g2 = w
[
ALV R(qO − qV )

]
(8.14)

where qO is the generalized coordinates vector for the gunner’s CG OO, which is
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expressed in global coordinate system R; qV is the generalized coordinates vector

for the vehicle body’s CG OV , which is expressed in global coordinate system R;

ALV R is the transformation matrix from the global coordinate system R to the local

coordinate system LV at the vehicle body’s CG; and w = [0 0 1].

The objective function g2 will be employed for the optimization of GRS’s retract

effect.

8.5.3 Interactive System Between Given Multibody Dynamics Systems

in Space

Figure 8.22: General multibody dynamics system

Consider two rigid bodies from MDS-1 and MDS-2 respectively in Figure 8.22,

the mth body and the nth body, connected by the ith GFE. The attachment points

of the GFE on the mth body and the nth body are, respectively P
(m)
i and Q

(n)
i . We

can assume the ith GFE is comprised by a spring-damper-actuator element, with the

spring stiffness ki, the damping coefficient ci and the actuator force acting along a

line connecting point P
(m)
i and Q

(n)
i is fai. The undeformed length of the ith spring is

denoted as l0i. The force component of the GFE along a line connecting points P
(m)
i
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and Q
(n)
i can be written as:

f
(mn)
i = ki (li − l0i) + cil̇i + fai (8.15)

where li is the distance between P
(m)
i and Q

(n)
i , and l̇ is the time derivative of li. The

first term in Equation (8.15) is the spring force, the second term is the damping force

and the third term is the actuator force. We know that the virtual work of a force

is defined to be the dot product of the virtual change in the vector of displacement

of the point of force application with the force. Realizing that the spring force acts

in the opposite direction of the increase in length, we can write the virtual work of

force f
(mn)
i as follows,

δWi = −f (mn)
i δli (8.16)

where δli is the virtual change in the ith spring length. Denoting the vector P
(m)
i Q

(n)
i

as Ii whose components are Ii = [l1 l2 l3]T .

The distance between P
(m)
i and Q

(n)
i , li can be evaluated from the relation

li =
(
ITi Ii

)1/2
=
[
(l1)2 + (l2)2 + (l3)2

]1/2
(8.17)

in which

Ii = rmP − rnQ = Rm + AmūmP −Rn −AnūnQ (8.18)

where ūmP and ūnQ are the local positions of P
(m)
i and Q

(n)
i , Rm and Rn are the global

postions of the origins of the body axes of body m and body n, respectively, and

Am and An are the transformation matrices from the local to the global coordinate

systems.
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The virtual change in the length δli can be written as

δli =
∂l

∂l1
δl1 +

∂l

∂l2
δl2 +

∂l

∂l3
δl3

=
1

l
[l1δl1 + l2δl2 + l3δl3]

(8.19)

Equation (8.19) can be rewritten in vector notation as

δl =
1

l
ITi δIi = ÎTi δIi (8.20)

where ÎTi is a unit vector along Ii, and δIi is given by

δIi = δRm + Bmδθm − δRn −Bnδθn (8.21)

where qmr =
[
RmT θmT

]T
and qnr =

[
RnT θnT

]T
are the generalized coordinate of

bodies m and n, respectively, and Bk is the partial derivative of AkûkP with respect to

the rotational generalized coordinates θk of body k (k = m,n). In matrix notation,

δIi can be written as

δIi = [I3 Bm]

δRm

δθm

− [I3 Bn]

δRn

δθn

 (8.22)

It follows that the virtual work δW can be written in Equation (8.23).

δW = −f (mn)
i δl = −f (mn)

i ÎTi δIs

= −f (mn)
i ÎTi [I3 Bm]

δRm

δθm

+ f
(mn)
i ÎTi [I3 Bn]

δRn

δθn


=
[
QiT
R QmT

θ

] δRm

δθm

+
[
QnT
R QnT

θ

] δRn

δθn


(8.23)
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where I3 is a 3 × 3 identity matrix and QmT
R , QmT

θ , QnT
R , QnT

θ are the vector of

generalized forces associated with the generalized coordinates Rm, θm, Rn and θn,

and given by:

QmT
R = −f (mn)

i ÎTi QmT
θ = −f (mn)

i ÎTi Bm (8.24)

QnT
R = f

(mn)
i ÎTi QnT

θ = f
(mn)
i ÎTi Bn (8.25)

Based on the generalized forces vectors QmT
R , QmT

θ , QnT
R , QnT

θ , the Newton-Euler

equations of the HMMWV-Gunner multibody dynamics system can be derived. More

details can be found in Appendix B.

8.5.4 GFE for Belt, Airbag, and Retractor Components in GRS Design

Based on the GFE described in section 8.4, the proposed GFE for the belt, airbag,

and retractor components are assigned parameters and employed in the GRS design

problem.

For the belt components, the piece-wise linear force-displacement curve in Fig-

ure 8.23 is employed in the HMMWV-Gunner multibody dynamics systems, and the

equation can be written in Equation (8.26).

F (∆) =


0 ∆ ≤ 0 m

4000∆ 0 m ≤ ∆ ≤ 0.015 m

60 + 1000(∆− 0.015) ∆ ≥ 0.015 m

(8.26)

For the airbag components, the nonlinear force-displacement curve in Figure 8.24

is employed in the HMMWV-Gunner multibody dynamics systems, and the equation
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Figure 8.23: Belt GFE curve in MATLAB

can be written in Equation (8.27).

F (∆) =

 −
1.818

(0.14−∆)1.4 + 30 ∆ ≤ −0.005 m

0 −0.005 m ≤ ∆
(8.27)

Figure 8.24: Airbag GFE curve in MATLAB

For the retractor components, the nonlinear force-time curve in Figure 8.25 is
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employed in the HMMWV-Gunner multibody dynamics systems, and the equation

can be written in Equation (8.28).

F (t) = 500e−300(t−1.5)2 (8.28)

Figure 8.25: Retractor GFE curve in MATLAB

The GFE employed for the multi-functional components in the GRS design are

distance dependent, time-dependent, or timing-dependent respectively, which can

represent most widely used restraint techniques. All these GFE are added into

the HMMWV-Gunner multibody dynamics model described in section 8.2 as the

SFORCE elements connecting the gunners’ upper torsos, central torsos, and lower

torsos bodies with the vehicles’ bodies in the commercial codes MSC/ADAMS.

8.5.5 The GRS Design Process

The target of the GRS design is to identify an innovative and optimally combined

multi-functional interactive system from a widely open design space including passive,

active, and reactive devices, and which can satisfy various operating conditions and
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various battlefield scenarios to address the critical need to improve the GRS design

in military vehicles.

The design objective is to improve gunners’ safety performance under various

extreme maneuver events, and so the proposed layout design method for multi-

functional components based on topology optimization is applied to this problem.

The design space includes passive, active, and reactive components which are real-

ized by belts, airbags, and retractors. Representative GFE are developed from a wide

range of typical passive, active, and reactive mechanisms in multibody dynamics mod-

els for the optimal design problem. The optimal layout of the GFE can be achieved by

removing the unnecessary GFE and reinforcing the necessary GFE in the interactive

system, which is the basic idea of the SIMP method for topology optimization.

Because the GRS design problem is a complicated engineering system design prob-

lem under various loading conditions, the decomposition techniques are necessary to

solve the design problem. The Magic Cube (MQ) as a systematic design approach for

general applications was developed by Qi, Ma, et al. (Qi et al., 2006, 2008), which

breaks the crashworthiness and blast protection design problems into sub-problems

through three decompositions in terms of space, time, and scale, using corresponding

targets. This design methodology also considers failure modes management, optimiza-

tion techniques, multidisciplinary objectives, and uncertainties. The highlight of this

approach is that it takes into account the need to balance computational resources,

product-development time, and that utilize available simulation and optimization

techniques when working to achieve robust designs. The decompositions techniques

in the MQ method will be employed in the GRS layout topology optimization.

The flow chart in Figure 8.26 shows the optimization process applied to the oc-

cupant restraint system optimization design and was implemented by coupling the

commercial codes MATLAB and MSC/ADAMS. A pre-processor is coded in MAT-

LAB, and it can generate the input file (*.adm) for ADAMS with the design variables.
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Next, MATLAB calls MSC/ADAMS solver as a function to solve the multibody dy-

namics equations of the integrated gunner-vehicle system. The output results file

(*.req) from ADAMS is exported to a post-processor in the MATLAB environment.

The system state variables information for each time step is extracted from the result

file. The compatibility matrix and sensitivities are calculated based on the state vari-

able information. The design variables are updated using the GSAO algorithm based

on the sensitivities. Then it is determined that if the loop termination condition

is satisfied, either the maximum loop number is reached or the difference of design

objectives between two successive steps is smaller than the critical value. After the

loops are finished, the optimum layout solution can be obtained.

Figure 8.26: Optimization flowchart in MATLAB and MSC/ADAMS environment

8.6 Results

The multi-functional interactive system between the gunner and the vehicle, which

is the design space for the GRS, is comprised of 180 interactive members between 8

predefined connecting points on the gunner’s upper torso, central torso, lower torso

and the vehicle body’s 5 layers of 40 predefined connecting points in order to reduce
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the GRS complexity. Every interactive member is open to the options of the belt com-

ponents, the airbag components, and the retractor components. These 180 connecting

members are called “multi-functional” interactive members because of possible usage

of passive, active, and reactive components. In topology optimization, each interac-

tive member is represented by the combination of 3 design variables of the material

coefficients for the belt, airbag, and retractor component respectively. Namely, the

ith interactive member is represented by αi, the design variable for the belt compo-

nent; βi, the design variable for the airbag component; and γi, the design variable

for the retractor component in the design space. The combination of {αi, βi, γi} can

determine the type and property of the ith “multi-functional” interactive member.

In this study, however, there are only 36 interactive members connecting the gun-

ner’s upper torso, central torso, and lower torso with the vehicle floor’s 8 connecting

points also open to the options of the retractor components which means they can

have non-zero associated retractor design variable, γi. Because the retractor compo-

nents are designed to assist the gunners’ rapid entry into the passenger compartment

under dangerous conditions, all the connecting points of the retractor components

on the vehicle are fixed on the floor. Moreover, placing the retractors on the vehicle

floor is easy to install and avoid interference with other equipment in the passenger

compartment. All the connecting points and the design variables assumptions could

be changed easily in the multibody dynamics models for other applications.

The 180 multi-functional interactive members can be shown in Figure 8.27. De-

tailed initial design space for the interactive members and coordinates for the con-

necting points can be found in Appendix C.

The circles in Figure 8.27 show the 36 interactive members connecting the gunner’s

upper torso, central torso, and lower torso with the vehicle floor’s 8 connecting points,

which are open to the option of the retractor components. These 36 interactive

members are reshaped in Figure 8.28 to make the retractor components layout output
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Figure 8.27: Multi-functional interactive members matrix

easy to read.

Figure 8.28: Multi-functional interactive members open to retractor components

The GRS design problem can be solved by three different decomposition methods:

decomposition by active status, decomposition by functionalities, and decomposition

by time.

8.6.1 Decomposition by Active Status (Single-Functional Components)

The GRS can be decomposed to the supporting system and the restraint system

according to different active status. The supporting system is active all the time to

provide supporting forces on the gunners in a sitting posture. On the other hand,

the restraint system is active only under extreme maneuver conditions to protect the

gunners. Because lots of gunners complain the GRS is uncomfortable to wear, has

negative effects on fire-operation performance, and is complicated to put on, there
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is also good reason to keep the GRS simple in the normal conditions which means

only the supporting system is active. The belts components belong to the supporting

system, because they can provide forces all the time, and they are simple and reli-

able. The airbag components and the retractor components belong to the restraint

system because they can only be active for a short time employing pyrotechnic energy

which is desirable for providing protection reaction quickly under various dangerous

conditions.

The supporting system is designed in a straight driving case which is a typical

normal driving condition. The airbag components and the retractor components are

inactive under normal situations. Straight driving with constant velocity on a flat

road profile is set as the virtual proving ground to achieve the optimal belt com-

ponents layout as the supporting system under normal driving conditions. The 180

interactive members are only open to the options of the belt components in support-

ing system design in which the design variables’ combination {α,β,γ} are reduced

to {α,β = 0,γ = 0}, where α is the design variable vector associated with the belt

components; β is the design variable vector associated with the airbag components;

γ is the design variable vector associated with the retractor components.

After the supporting system layout is optimized, the optimal layout obtained

will be fixed for the restraint system design, including the airbag components and

the retractor components because the supporting system is active all the time. The

restraint system is designed to activate under dangerous maneuver situations. Con-

sidering all the extreme conditions, the rollover case is given the first priority since it

is the most dangerous type of accident to the gunners based on the statistical data

in Chapter I. In the preliminary study, unrealistic results were obtained when the

airbag components and retractor components were designed together. When the re-

tractor components start to activate, the pulling forces applied on the gunner result

a significant downward movement in a very short time duration. This significant
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movement results a big displacement input for the airbag components. Based on the

nonlinear displacement-force property of the airbag components, the reaction forces

applied on the gunner will be very large. Since the retractor components are only

active for a short time period, which can be seen from the nonlinear time-force prop-

erty curve, the gunners will bounce significantly due to the reaction forces from the

airbag components after the pulling force disappears. Therefore, the airbag compo-

nents and retractor components, are optimized separately for the restraint system.

For the optimization of airbag components in the restraint system, the 180 interac-

tive members are only open to the options of airbag components, in which the design

variables combination {α,β,γ} are reduced to {α = 0,β,γ = 0}. For the optimiza-

tion of retractor components in the restraint system, the 180 interactive members

are only open to the options of retractor components, in which the design variables

combination {α,β,γ} are reduced to {α = 0,β = 0,γ}.

8.6.1.1 Belt Components Layout Design

The loading condition for the supporting system design is set as the vehicle with

17 m/s initial velocity driving straight on a flat road. The design objective is selected

as the maximum deviation of the gunner’s CG relative displacement with respect to

the vehicle’s CG from the initial position in the duration of 1 s, which is g1 defined

in section 8.5.2. The optimization problem, then, can be formulated as follows:

min
α,β,γ

{
max
[0,1]

g1

}
s.t. : state equations

N∑
i=1

αiVi ≤ h0

0 ≤ αi ≤ αi ≤ ᾱi ≤ 1 (i = 1, 2, ..., N)

β = 0, γ = 0

(8.29)
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where Vi is the cost function associated with the ith belt component design variable

αi, and αi and ᾱi are the lower limit and upper limit for the ith belt component

design variable αi.

The optimization iteration results is shown in Figure 8.29 and the belt components

final layout is shown in Figure 8.30.

Figure 8.29: Belt components optimization results

Figure 8.30: Belt components optimization final layout

The final layout of the belt components in Figure 8.30 as the supporting system
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Figure 8.31: Belt components optimization final layout on the gunner

can be analyzed as follows: First, looking at the layout by columns, all the remaining

members’ connecting points on the vehicle are in the highest layer of 5 layers, and

all the left members’ connecting points on the gunner are on the left, right, and

back sides. Therefore, it is concluded that the belt components in the GRS should

connect the gunner’s torso with the vehicle as high as possible from the side and rear

in order to support the gunner effectively. Second, looking at the layout by rows,

all the remaining members’ connecting points on the gunner are at central torso and

lower torso. The belt components optimization final layout on the gunner is shown

in Figure 8.31.

The comparison of the gunner’s motion after the optimization of the belt compo-

nents’ layout is shown in Figure 8.32, and it can be seen that the gunner is restrained

more effectively using the optimized interactive members of the belt components.
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0 s 0 s

0.25 s 0.25 s

0.5 s 0.5 s

0.75 s 0.75 s

1 s 1 s

Figure 8.32: Optimized supporting system comparison
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8.6.1.2 Airbag Components Layout Design

For the airbag components system design, the loading condition for the restraint

system design is set as the vehicle with 17 m/s initial velocity and 0.5 s duration for

720◦ steering wheel rotation starting from 1 s on a flat road in Figure 8.7. The design

objective is the maximum gunner’s CG relative vertical displacement with respect to

the vehicle’s CG in the duration of 3 s, which is g2 defined in section 8.5.2, based on

the optimized supporting system. The optimization problem can be formulated as

follows:

min
α,β,γ

{
max
[0,3]

g2

}
s.t. : state equations

N∑
i=1

βiUi ≤ h0

0 ≤ β
i
≤ βi ≤ β̄i ≤ 1 (i = 1, 2, ..., N)

α = 0, γ = 0

(8.30)

where Ui is the cost function associated with the ith airbag component design variable

βi, and β
i

and β̄i are the lower limit and upper limit for the ith airbag component

design variable βi.

The optimization iteration results are shown in Figure 8.33 and the airbag com-

ponents final layout is shown in Figure 8.34.

The final layout of the airbag components in Figure 8.34 as the restraint system

can be analyzed as follows: First, looking at the layout by columns, all the remaining

members’s connecting points on the vehicle are in the highest layer of 5 layers, and

all the remaining members’s connecting points on the gunner are in the front, back,

and right side, and the right side support is the most important. This result makes

sense physically because the most significant movement in rollover is the gunner will

move rightward with an upward motion (in a left turn rollover), the supporting force

from the right side could directly resist the rightward movement and also reduce the
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Figure 8.33: Airbag components optimization results

Figure 8.34: Airbag components optimization final layout

175



Figure 8.35: Airbag components optimization final layout on the gunner

gunner’s upward movement. The supporting force from the top layer may provide the

largest resistance moment to the gunner’s movement in rollover accidents. Therefore,

it is concluded that the airbag components in the GRS should connect the gunner’s

torso with the vehicle as high as possible from side direction in order to reduce

the gunner’s ejection movement. Second, looking at the layout by rows, all the

remaining members’ connecting points on the gunner are at the central torso and

lower torso. The airbag components optimization final layout on the gunner is shown

in Figure 8.35.

Figure 8.36 shows the comparison of the gunner’s motion after the optimization of

airbag components layout. Since the objective function is only changed from 1.0531
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m to 0.9922 m after optimization, there is no big difference from the gunner motion

comparison.

8.6.1.3 Retractor Components Layout Design

For the retractor components layout design, the loading condition for the restraint

system design is set as the vehicle with 17 m/s initial velocity and 0.5 s for 720◦

steering wheel rotation starting from 1 s on a flat road profile in Figure 8.7.

The design objective is the minimum gunner’s CG relative vertical displacement

with respect to the vehicle’s CG in the duration of 2 s, which is g2 defined in sec-

tion 8.5.2, based the optimized supporting system, so the optimization problem can

be formulated as follows:

min
α,β,γ

{
min
[0,2]

g2

}
s.t. : state equations

N∑
i=1

γiWi ≤ h0

0 ≤ γ
i
≤ γi ≤ γ̄i ≤ 1 (i = 1, 2, ..., N)

α = 0, β = 0

(8.31)

where Wi is the cost function associated with the ith retractor component design

variable γi, and γ
i

and γ̄i are the lower limit and upper limit for the ith retractor

component design variable γi.

The optimization iteration results are shown in Figure 8.37 and the final layout

is shown in Figure 8.38.

The final layout of the retractor components in Figure 8.38 as the restraint system

can be analyzed as follows: First, looking at the layout by columns, all the remaining

members’ connecting points on the gunner are on the left side (in a left turn rollover).

This result makes sense physically because the most significant movement in a rollover

177



1 s 1 s

1.5 s 1.5 s

2.0 s 2.0 s

2.5 s 2.5 s

3.0 s 3.0 s

Figure 8.36: Optimized airbag components system comparison
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Figure 8.37: Retractor components optimization results

Figure 8.38: Retractor components optimization final layout
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Figure 8.39: Retractor components optimization final layout on the gunner

is that the gunner will move rightward and upward in a left turn rollover. The

retracting force from the left side may directly resist the rightward movement and

pull the gunner into the passenger compartment. Therefore, it is concluded that the

retractor components in the GRS should connect the gunner’s torso with the vehicle

from the side in order to pull the gunner into the passenger compartment effectively.

Second, looking at the layout by rows, all the remaining members’ connecting points

on the gunner are at the upper torso. Therefore, it is concluded that the retractor

should be distributed at the side and connect with the upper torso and the floor. The

retractor components optimization final layout on the gunner is shown in Figure 8.39.

The comparison of the gunner’s motion after the optimization of the retractor

components’ layout is shown in Figure 8.40. It can be seen that the optimized retrac-
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tor components can pull the gunner lower in to the passenger compartment in the

same time duration which is more effective.

8.6.2 Decomposition by Functionality (Multi-Functional Components)

The multi-functional components in the GRS can also be decomposed by two

different functionalities: one is restraining gunners in their initial position, and the

other one is moving gunners away from their initial position. The belt components

and airbag components belong to the first category with the functionality of restrain-

ing gunners in their initial position and the retractor components belong the second

category with the functionality of moving gunners away from their initial position.

Therefore, we can design the GRS using the above decomposition method. The belt

components and airbag components can be designed simultaneously, however, the

retractor components, are designed separately. Basically, the retractor components

layout cannot be optimized with the belt components and airbag components simul-

taneously because of the conflict of their functionalities. In preliminary studies, we

obtained a great bounce of the gunners inside the passenger compartment when the

retractor components apply pulling forces on the gunners while the belt components

and the airbag components are still active, which is undesirable.

For the first functionality of restraining gunners at the initial position, the 180

interactive members are open to the options of the belt components and the airbag

components to restrain the gunners. The design variables combination {α,β,γ} for

the interactive members are reduced to {α,β,γ = 0}. For the second functionality

of moving gunners away from their initial position, the 180 interactive members are

open to options of the retractor components to initiate the gunners movements. The

design variables combination {α,β,γ} for the interactive members are reduced to

{α = 0,β = 0,γ}.
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1 s 1 s

1.25 s 1.25 s

1.5 s 1.5 s

1.75 s 1.75 s

2.0 s 2.0 s

Figure 8.40: Optimized retractor components system comparison
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8.6.2.1 Belt and Airbag Components Layout Design

The loading condition for the belt and airbag components layout design is set as

the severe brake case in which the vehicle drives straight with 17 m/s initial velocity

and 7 m/s2 deceleration on a flat road (Figure 8.5). Both the belt components and

the airbag components have the functionality of restraining the gunner in the initial

position. The design objective is selected as the maximum deviation of the gunner’s

CG relative displacement with respect to the vehicle’s CG from the initial position in

the duration of 1 s, which is g1 defined in section 8.5.2. Therefore, the optimization

problem can be formulated as follows:

min
α,β,γ

{
max
[0,1]

g1

}
s.t. : state equations
N∑
i=1

αiVi +
N∑
i=1

βiUi ≤ h0

0 ≤ αi ≤ αi ≤ ᾱi ≤ 1 (i = 1, 2, ..., N)

0 ≤ β
i
≤ βi ≤ β̄i ≤ 1 (i = 1, 2, ..., N)

γ = 0

(8.32)

The optimization iteration results are shown in Figure 8.41 and the belt com-

ponents and airbag components final layout is shown in Figure 8.42. The upper 9

rows in Figure 8.42 are the layout of the belt components and the lower 9 rows in

Figure 8.42 are the layout of the airbag components.

From the final belt components and airbag components optimal layout, it can be

seen that only the belt components are left in the interactive system after optimiza-

tion. The final layout in Figure 8.42 can be analyzed as follows: First, looking at

the layout by columns, all the left belt members’ connecting points on the vehicle are

in the highest layer of 5 layers and all the left belt members’ connecting points on

the gunner are in the front, back, and side. The back restraining forces are the most
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Figure 8.41: Belt and airbag components optimization results

Figure 8.42: Belt and airbag components optimization final layout
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important. This result makes sense physically because the most significant movement

in severe braking is the the gunner’s forward movement. The restraining forces from

the back could directly resist the forward movement. From section 8.2.2.1 it can be

seen that there is also a significant upward movement in the severe brake case. The

retraining force from top layer may provide the most direct force from the back in the

gunner’s upward movement. Therefore, it is concluded that the belt components in

the GRS should connect the gunner’s torso with the vehicle as high as possible from

the back in order to reduce the gunner’s forward movement. Second, looking at the

layout by rows, all the left belt members’ connecting points on the gunner’s back are

at all the upper torso, central torso and lower torso.

The above design problem can also be treated as a multi-domain problem in

which the design domains of the belt components and the airbag components will be

optimized separately, and there are different constraints for each design domain. The

above problem can be rewritten as the following multi-domain optimization problem:

min
α,β,γ

{
max
[0,1]

g1

}
s.t. : state equations

N∑
i=1

αiVi ≤ h0

N∑
i=1

βiUi ≤ h1

0 ≤ αi ≤ αi ≤ ᾱi ≤ 1 (i = 1, 2, ..., N)

0 ≤ β
i
≤ βi ≤ β̄i ≤ 1 (i = 1, 2, ..., N)

γ = 0

(8.33)

The optimization iteration results are shown in Figure 8.43 and the belt compo-

nents and airbag components final layout is shown in Figure 8.44.

From the final belt components and airbag components optimal layout, it can be

seen that both the belt components and the airbag components remain in the interac-
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Figure 8.43: Belt and airbag components optimization results

Figure 8.44: Belt and airbag components optimization final layout
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tive system after optimization since the problem is rewritten as a multi-domain form.

The final layout in Figure 8.44 can be analyzed as follows: First, looking at the layout

by columns, all the remaining belt members’ connecting points on the vehicle are in

the highest layer of 5 layers, and all the remaining belt members’ connecting points

on the gunner are at the front, back, and side, and the back restraining forces are the

most important. The belt components layout result is similar to the final layout ob-

tained from previous problem. All the remaining airbag members’ connecting points

on the vehicle are in the lower layer of 5 layers, and all the remaining airbag members’

connecting points on the gunner are at the back and side, and the front restraining

forces are the most important. This result makes sense physically because the most

significant movement in severe braking is the the gunner’s forward movement. The

supporting forces from front provided by the airbag components could directly resist

the forward movement. Therefore, it is concluded that the belt components in the

GRS should connect the gunner’s torso with the vehicle as high as possible from the

back in order to reduce the gunner’s forward movement, and the airbag components

in the GRS should connect the gunner’s torso with the vehicle from the front in order

to reduce the gunner’s forward movement. Second, looking at the layout by rows, all

the remaining belt members’ connecting points on the gunner’s back are at the upper

torso, central torso and lower torso, and all the remaining airbag members’ connecting

points on the gunner’s front are at the upper torso and central torso. The belt and

airbag components optimization final layout on the gunner is shown in Figure 8.45,

in which the red interactive members are belt components and the blue interactive

members are airbag components.

8.6.2.2 Retractor Components Layout Design

The loading condition for the retractor components layout design is set as the

vehicle with 17 m/s initial velocity and 0.5 s duration for 720◦ steering wheel rotation
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Figure 8.45: Belt and airbag components optimization final layout on the gunner
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from 1 s on a flat road in Figure 8.7. In the retractor components system design,

the 180 interactive members are only open to the option of the retractor components,

which have time-dependent and timing-dependent properties. In section 8.6.1.3, an

example for the retractor components layout design is given in the rollover case.

In this section, the retractor components design space is expanded to the retractor

components with different peak timings, 1.5 s/ 1.6 s/ 1.7 s. The design variables

vector γ = [γ1, . . . , γN1 , γN1+1, . . . , γN2 , γN2+1, . . . , γN3 , γN3+1 = 0, . . . , γN = 0]; N1 is

the number of design variables for retractor components with peak timing 1.5 s; N2

is the number of design variables for retractor components with peak timing 1.6 s;

N3 is the number of design variables for retractor components with peak timing 1.7

s; N is the number of all the interactive members, which is 180 in this study.

The design objective is selected as the minimum gunner’s CG relative vertical

displacement with respect to the vehicle’s CG in the duration of 2 s, which is g2

defined in section 8.5.2, the optimization problem can be formulated as follows:

min
α,β,γ

{
min
[0,2]

g2

}
s.t. : state equations

N∑
i=1

γiWi ≤ h0

0 ≤ γ
i
≤ γi ≤ γ̄i ≤ 1 (i = 1, 2, ..., N)

α = 0, β = 0

(8.34)

The optimization iteration results are shown in Figure 8.46 and the retractor

components final layout is shown in Figure 8.47. The upper 3 rows in Figure 8.47 are

the layout of the retractor components with peak timing 1.5 s; the central 3 rows in

Figure 8.47 are the layout of the retractor components with peak timing 1.6 s; and

the lower 3 rows in Figure 8.47 are the layout of the retractor components with peak

timing 1.7 s.
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Figure 8.46: Retractor components optimization results

Figure 8.47: Retractor components optimization final layout
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Figure 8.48: Retractor components optimization final layout on the gunner

From the final retractor components optimal layout in Figure 8.47, it can be seen

that all the remaining retractors have the peak timing of 1.5 s, which is the earliest

peak timing of the three options. This result makes sense physically because it is

better if the gunner can be pulled into the passenger compartment earlier in rollover

accidents. However, the trade off is the rollover sensors have to determine the rollover

accidents in an early stage which is much more challenging for the rollover sensors.

The remaining retractor components layout is similar as the results in section 8.6.1.3.

Therefore, it is concluded that the retractor components in the GRS should connect

the gunner’s upper torso from the left side in a left turn rollover accident. The

retractor components optimization final layout on the gunner is shown in Figure 8.48.
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8.6.3 Decomposition by Time (Single-Functional Components)

The GRS can also be decomposed by time to design the multi-functional com-

ponents layout in a continuous event. The loading condition is set as a 2.5 seconds

rollover event. From 0 s - 1 s, the gunner drives the vehicle straight with the velocity

of 17 m/s on a flat road. From 1 s - 1.5 s, the gunner rotates the steering wheel

720◦ with constant rotation velocity. From 1.5 s - 2.5 s, the gunner holds the steering

wheel still. In the rollover situation, the gunners cannot simply be restrained in the

initial position as its desired position in the supporting system design. If the gunners

are restrained in the initial position, they will be crushed between the vehicle roof and

the ground. In contrast, the gunners are desired to be kept in the passenger compart-

ment during rollover accidents to avoid serious injuries. The retractor components are

intended to assist the gunners’ rapid entry into the passenger compartments quickly

by applying pull forces on the gunners. However, the gunners may impact the vehicle

interior because of the quick retraction into the vehicle.

The design process is that the interactive members are only open to belt compo-

nents design from 0 s to 1 s, the optimal belt components layout is able to restraint

the gunner at the initial position under the normal driving condition. The design

variables combination {α,β,γ} from 0 s to 1 s are reduced to {α,β = 0,γ = 0}.

Next, the interactive members are only open to retractor components design from 1

s to 2 s, the optimal retractor components layout is able to pull the gunner into the

passenger compartment effectively to avoid getting crushed between the roof and the

ground in rollover. The design variables combination {α,β,γ} from 1 s to 2 s are re-

duced to {α = 0,β = 0,γ}. Finally, the interactive members are only open to airbag

components design from 2 s to 2.5 s. The optimal airbag components layout is able to

reduce the severe impacts between the gunner and the vehicle interior after the gunner

was pulled into the compartment by the retractor components quickly. The design

variables combination {α,β,γ} from 2 s to 2.5 s are reduced to {α = 0,β,γ = 0}.
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8.6.3.1 Time Duration 0 s - 1 s

The optimization problem in this time duration is the same as the design problem

in the supporting system design under normal driving conditions. The design objec-

tive is selected as the maximum deviation of the gunner’s CG relative displacement

with respect to the vehicle’s CG from the initial position, g1, because the optimal

restraint effect is desirable. The optimization problem can be formulated as follows:

min
α,β,γ

{
min
[0,1]

g1

}
s.t. : state equations

N∑
i=1

αiVi ≤ h0

0 ≤ αi ≤ αi ≤ ᾱi ≤ 1 (i = 1, 2, ..., N)

β = 0, γ = 0

(8.35)

The detailed optimization results and explanation can be found in section 8.6.1.1.

8.6.3.2 Time Duration 1 s - 2 s

In this duration, the retractor components’ peak timing is selected as 1.7 s based

on the results from section 8.6.2.2, because this situation is more critical. The de-

sign objective is selected as the minimum gunner’s CG relative vertical displacement

with respect to the vehicle’s CG in the time duration, g2, because the most effective

retraction movement is desirable. The optimization problem can be formulated as

193



follows:

min
α,β,γ

{
min
[1,2]

g2

}
s.t. : state equations

N∑
i=1

γiWi ≤ h0

0 ≤ γ
i
≤ γi ≤ γ̄i ≤ 1 (i = 1, 2, ..., N)

α = 0, β = 0

(8.36)

In time duration from 1 s to 2 s, the optimization iteration results are shown in

Figure 8.49 and the retractor components final layout is shown in Figure 8.50

Figure 8.49: Retractor components optimization results

The optimization results for the retractor components in the duration from 1 s to

2 s is similar as the results in section 8.6.1.3. More explanation for the results can be

found in section 8.6.1.3.

8.6.3.3 Time Duration 2 s - 2.5 s

In this duration, the airbag components start to be active from 2 s in order

to protect the gunners after they are pulled into the passenger compartment. The

design objective is selected as the maximum deviation of the gunner’s CG relative
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Figure 8.50: Retractor components optimization final layout

displacement with respect to the vehicle’s CG from the initial position in the duration

of 2 s to 2.5 s. The optimization problem can be formulated as follows:

min
α,β,γ

{
min
[2,2.5]

g1

}
s.t. : state equations

N∑
i=1

βiUi ≤ h0

0 ≤ β
i
≤ βi ≤ β̄i ≤ 1 (i = 1, 2, ..., N)

α = 0, γ = 0

(8.37)

In time duration from 2 s to 2.5 s, the optimization iteration results are shown in

Figure 8.51 and the airbag components final layout is shown in Figure 8.52

This final airbag components layout needs further investigation because we cannot

get a clear airbag components layout after the optimization. The design objective is

the deviation of the gunner’s CG relative displacement with respect to the vehicle’s

CG from the initial position at the timing 2 s, this objective function may not be

good enough for describing the airbag’s protection after the gunners are pulled into
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Figure 8.51: Airbag components optimization results

Figure 8.52: Airbag components optimization final layout
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the passenger compartment.

8.7 Discussions

From the optimization iteration results of belt components, airbag components,

and retractor components, the specific design objectives are minimized or maximized

after iterations using the proposed multi-functional components layout optimization

technique in multibody dynamics systems. By optimizing the defined design objec-

tives, the GRS is optimized to having the best supporting function and restraint func-

tion. This methodology also supports multi-domain because the GSAO optimization

algorithm employed in the topology optimization can solve the multi-domain problem

successfully.

8.8 Conclusions

The multi-functional components layout optimization technique in multibody dy-

namics systems developed in this study is applied to solve the GRS design problem.

The Kriging variable screening method based on REML criterion is employed to the

system uncertainty study in the GRS design problem. The efficient iterative sensitiv-

ity analysis method developed in Chapters VI is employed to solve the sensitivities of

the topology optimization in the GRS design problem. The decomposition techniques

are critical for the complicated system design problem. The GRS design problem can

be solved by decomposing by active status, by functionalities, or by time successfully.

This general methodology can also be employed widely to other interactive system

designs in multibody dynamics systems.
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CHAPTER IX

Conclusions and Future Works

9.1 Conclusions

1. The multi-functional components layout design problem in a multibody dynam-

ics system has been successfully solved by the topology optimization method

developed in this research.

2. The new sensitivity analysis methods can calculate the sensitivities in multibody

dynamics system efficiently and accurately compared to the traditional DDM

and AVM sensitivity analysis methods.

3. The Kriging variable screening method based on the REML criterion is an

efficient and reliable tool to select the significant variables for system uncertainty

study.

4. The GRS design problem can be solved using the proposed topology optimiza-

tion method for multi-functional components in multibody dynamics systems.
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9.2 Future Works

9.2.1 Topology Optimization for Multi-functional Components in Multi-

body Dynamics Systems

There are still some open questions in the design of experiments using the Kriging

variable screening method based on the REML criterion for system uncertainty study.

The traditional LHS method fails in the benchmark numerical example in Chapter III,

and we surmise that this failure is due to proposed REML criterion with Gaussian

correlation assumption lacking enough degrees of freedom in the optimization process

for correlation parameters in the Kriging model, however further research is needed to

fully understand this issue. While we demonstrated that the proposed method works

well for IHS, D-optimality sampling methods, we have not concluded which method

is better, or if the effect of sampling methods is data-dependent. This topic can be

further investigated in future works.

Sensitivity analysis methods can be further investigated for more general design

problems in the multibody dynamics systems.

The GSAO method is chosen to update the design variables in the topology op-

timization process, and it can be further investigated to improve the convergence of

the optimization process.

9.2.2 Gunner Restraint System Design Validation

This study focuses on how to find the preliminary optimal layout of the GRS for

any user-defined specific dynamic response related to the gunner safety performance.

In addition to safety, ability-to-operate and ability-to-be-comfortable of the soldier

are other two important measures of the GRS design because these are directly related

to sustainability and fighting-ability of the soldier. The restraint system should also

help stabilize the gunners to complete their functional tasks over rough terrain and
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in high speed maneuver conditions, and should be user friendly, such as easy to put

on and take off.

A wider range of vehicle operation conditions need to be considered in addition

to the severe braking, rollover, and running on a rough terrain, which include vehicle

crash, and under ballistic or blast attacks. The design of the GRS should also consider

minimizing the system weight, complexity, and cost, while maximizing reliability,

durability, and gunner friendly-ability.

The cases of gunner in standing posture (Figure 9.1) and different orientations

(Figure 9.2) are also need to be considered in future.

Figure 9.1: Gunner in stand posture
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Figure 9.2: Gunner in side orientation
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APPENDIX A

Finite Rotation and Euler Angle

A.1 Finite Rotation and Transformation Matrix

In multibody dynamics systems, the rigid bodies may undergo large relative trans-

lational and rotational displacements in space. To describe the configuration of a rigid

body in the multibody system space, it is necessary to determine the location of every

point on the rigid body with respect to a selected inertial frame of reference. A body

reference in which the position vectors of the material points can be described in the

local body coordinate system. The same position vectors of these points can then be

described in other coordinate systems by defining the relative position and orienta-

tion of the local body coordinate system with respect to other coordinate systems.

As shown in Figure A.1-(a), three variables are able to describe the relative trans-

lational motion between two coordinate systems by the vector of OO′. This relative

translational motion can be measured by the position vector of the origin O′ of the

coordinate system {e′1, e′2, e′3} with respect to the coordinate system {e1, e2, e3}.

It is assumed that the origins of these two coordinate systems coincide as shown in

Figure A.1-(b) in order to develop the transformation matrix that defines the relative
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Figure A.1: Coordinate system

orientation between two coordinate systems of {e′1, e′2, e′3} and {e1, e2, e3}. It is

also assumed that the axes of these two coordinates systems initially parallel with

each other. Let the vector r̄ be the position vector of point Q̄, whose coordinates are

assumed to be fixed in the {e′1, e′2, e′3} coordinate system. Then, we assume that the

reference {e′1, e′2, e′3} rotate an angle θ about the axis OC in space as shown in the

Figure A.2-(a).

As the result of this rotation motion, point Q̄ is translated to point Q. The

position vector of point Q in the {e1, e2, e3} coordinate system is denoted by a

vector r. The change of point Q̄ due to the rotation θ can be described by the vector

∆r as shown in the Figure A.2-(b). The new vector r can be written as:

r = r̄ + ∆r (A.1)

The vector ∆r in Equation (A.1) can be expressed as the sum of the two vectors

as follows

∆r = b1 + b2 (A.2)
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Figure A.2: Finite rotations

where the vector b1 is drown perpendicular to the plane of OCQ̄ and thus has a

direction (v × r̄), where v is a unit vector along the axis of OC. Therefore, the

magnitude of vector b1 can be written as

| b1 |= a sin θ (A.3)

From Figure A.2, we can obtain that

a =| r̄ | sinα =| v × r̄ | (A.4)

Therefore, Equation (A.5) and (A.6) for the vectors of b1 and b2 can be obtained

by following two equations:

b1 = a sin θ
v × r̄

| v × r̄ |
= (v × r̄) sin θ (A.5)

b2 = 2a sin2 θ

2
· v × (v × r̄)

a
= 2 [v × (v × r̄)] sin2 θ

2
(A.6)
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Substituting Equation (A.2), (A.5) and (A.6) to Eqaution (A.1), we can have

r = r̄ + (v × r̄) sin θ + 2 [v × (v × r̄)] sin2 θ

2
(A.7)

Since the skew symmetric matrix of vector v can be defined as

ṽ =


0 −v3 v2

v3 0 −v1

−v2 v1 0

 (A.8)

Equation (A.7) can be rewritten as:

r = r̄ + ṽr̄ sin θ + 2(ṽ)2r̄ sin2 θ

2

=

[
I + ṽ sin θ + 2(ṽ)2 sin2 θ

2

]
r̄

(A.9)

where I is a 3× 3 identity matrix. Then the Equation (A.9) can be written as

r = Ar̄ (A.10)

where A = A(θ) is the 3× 3 transformation matrix defined by

A =

[
I + ṽ sin θ + 2(ṽ)2 sin2 θ

2

]
(A.11)

This transformation matrix A, which is also called the rotation matrix, is ex-

pressed in terms of the angle of rotation θ and a unit vector along the axis of rotation,

v. Equation (A.11) is also kown as the Rodriquez formula.
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A.2 Euler Parameters

The transformation matrix A in Equation (A.11) can be also expressed in terms

of the Euler parameters. Using the trigonometric identity as follows

sin θ = 2 sin
θ

2
cos

θ

2
(A.12)

The transformation matrix of Equation (A.11) can be rewritten as

A = I + 2ṽ sin
θ

2

(
I cos

θ

2
+ ṽ sin

θ

2

)
(A.13)

The transformation matrix in Equation (A.13) can be expressed in terms of the

following four Euler parameters, θ0, θ1, θ2, θ3:

 θ0 = cos θ
2

θ1 = v1 sin θ
2

θ2 = v2 sin θ
2

θ3 = v3 sin θ
2

(A.14)

where v1, v2 and v3 are the components of the unit vectors v defined in previous

section. If the Euler parameters are defined as θ̄ = [θ1 θ2 θ3]T , the transformation

matrix A in Equation (A.13) can be rewritten as

A = I + 2˜̄θ
(
Iθ0 + ˜̄θ

)
(A.15)

where the four Euler parameters defined in Equation (A.14) satisfy the following

relation
3∑

k=0

θk
2 = θTθ = 1 (A.16)

where θ is the vector as follows

θ = [θ0 θ1 θ2 θ3]T (A.17)

207



The transformation matrix A can be rewritten explicitly in terms of the four Euler

parameters in Equation (A.14) as

A =


1− 2(θ2)2 − 2(θ3)2 2(θ1θ2 − θ0θ3) 2(θ1θ3 + θ0θ2)

2(θ1θ2 + θ0θ3) 1− 2(θ1)2 − 2(θ3)2 2(θ2θ3 − θ0θ1)

2(θ1θ3 − θ0θ2) 2(θ2θ3 + θ0θ1) 1− 2(θ1)2 − 2(θ2)2

 (A.18)

Note that Euler parameters does not depend on the components of the vector r̄.

It depend on only on the components of the unit vector v along the axis of rotation

as well as the angle of rotation θ.

A.3 Rodriguez Parameters

The transformation matrix (A.11) developed in the previous section is expressed

in terms of four Euler parameters, that is, one more than the number of degrees of

freedom. In this section, an alternative representation is developed, which uses three

parameters called Rodriguez parameters.

For convenience, we reproduced the transformation matrix A in Equation (A.11),

and now denfine the vector γ of Rodriguez parameters in terms of the angle of rotation

θ and a unit vector along the axis of rotation, v.

γ = v tan
θ

2
(A.19)

namely,

γ1 = v1 tan
θ

2
, γ2 = v2 tan

θ

2
, γ3 = v3 tan

θ

2
(A.20)

Note that the Rodriguez parameters representation has the disadvantage of be-

coming infinite when the angle of rotation θ is equal to π. Using the trigonometric
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identity

sin θ = 2 sin
θ

2
cos

θ

2

sin
θ

2
= tan

θ

2
cos

θ

2

sec2 θ

2
= 1 + tan2 θ

2

(A.21)

The term sin θ can be rewritten as

sin θ = 2 sin
θ

2
cos

θ

2
= 2 tan

θ

2
cos2 θ

2
=

2 tan(θ/2)

1 + tan2(θ/2)
(A.22)

Since v is the unit vector long the axis of rotation, we can obtain that

γTγ = tan2 θ

2
(A.23)

Therefore, Equation (A.23) can be rewritten as

sin θ =
2 tan(θ/2)

1 + γTγ
(A.24)

Similarly,

sin2 θ

2
=

tan2(θ/2)

1 + γTγ
(A.25)

Substituting Eqaution (A.24) and (A.25) into Equation (A.11) gives

A = I +
2

1 + γTγ

(
ṽ tan

θ

2
+ ṽ2 tan2 θ

2

)
(A.26)

which, by substituting Equation (A.19), gives

A = I +
2

1 + γTγ

(
γ̃ + γ̃2

)
(A.27)

In a more explicit form, the transformation matrix A can be written in terms of
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the three Rodriguez parameters as

A =
1

1 + (γ)2
1 + (γ1)2 − (γ2)2 − (γ3)2 2(γ1γ2 − γ3) 2(γ1γ3 + γ2)

2(γ1γ2 + γ3) 1− (γ1)2 + (γ2)2 − (γ3)2 2(γ2γ3 − γ1)

2(γ1γ3 − γ2) 2(γ2γ3 + γ1) 1− (γ1)2 − (γ2)2 + (γ3)2


(A.28)

It can be shown that Rodriguez parameters can be written in terms of Euler

parameters using the definition of Euler parameters as follows


γ1 = v1

sin θ/2
cos(θ/2)

= θ1
θ0

γ2 = θ2
θ0

γ3 = θ3
θ0

and θ0 =
1√

1 + γTγ
(A.29)

A.4 Euler Angles

The three independent Euler angles is one of the most common and widely used

parameters in describing reference orientations. Euler angles involve three successive

rations about three axes that are not orthogonal in general, Euler angles, however,

are not unique. To this end we carry out the transformation between two coordinate

systems by means of three successive rotations, called Euler Angles, performed in a

given sequence. For instance, the coordinates system {e1, e2, e3} and {ξ1, ξ2, ξ3}

initially are coincide. The sequence starts by rotating the system {ξ1, ξ2, ξ3} with

angle φ about e3 axis. The result of this rotation motion is shown in the Figure A.3-

(a). Since φ is the angle of rotation in the plane e1, e2, we have the following relation

between ξ and e.
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Figure A.3: Euler Angle
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ξ = D1e =


cosφ sinφ 0

−sinφ cosφ 0

0 0 1

 e (A.30)

where D1 is the transformation matrix.

Next, we consider coordinate system {η1, η2, η3}, which coincides with the coor-

dinate system {ξ1, ξ2, ξ3} and rotate this system an angle θ abou the axis ξ1. The

results of this rotation motion is shown in Figure A.3-(b). Since the rotation angle θ

is in the plane η2,η3, we have the following relation between η and ξ.

η = D2ξ =


1 0 0

0 cosθ sinθ

0 −sinθ cosθ

 ξ (A.31)

where D2 is the transformation matrix.

Finally, we can consider the coordinate system {ζ1, ζ2, ζ3}, which coincides with

the coordinate system {η1, η2, η3} and rotate this system with an angle ψ about η3

as shown in the Figure A.3-(c). Since the rotation angle ψ is in the plane η1,η2, we

have the following relation between ζ and ψ.

ζ = D3η =


cosψ sinψ 0

−sinψ cosψ 0

0 0 1

η (A.32)

where D3 is the transformation matrix.

Combining the Equation (A.30), (A.31) and (A.32), the transformation relation

between the initial coordinate system {e1, e2, e3} and the final coordinate system

{ζ1, ζ2, ζ3} as follows:

ζ = D3D2D1e = ATe (A.33)
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Equation (A.33) can be rewritten as follows

e = Aζ (A.34)

where A is the transformation matrix in terms of the Euler angles:

A =


cosψcosφ− cosθsinφsinψ −sinψcosφ− cosθsinφcosψ sinθsinφ

cosψsinφ+ cosθcosφsinψ −sinψsinφ+ cosθcosφcosψ −sinθcosφ

sinθsinψ sinθcosψ cosθ


(A.35)

The three angles φ,θ,ψ are called the Euler angles.
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APPENDIX B

Newton Euler Equations in Three Dimensional

Space

The Newton-Euler equations are fundamental governing equations for multibody

dynamics systems in space and widely used in lots of studies and commercial codes.

This appendix contains some basic derivations of Newton-Euler equations. The gen-

eralized orientational coordinates in this appendix can be expressed in either Euler

parameters, Rodriguez parameters, or Euler angles without any loss of generality.

B.1 Summary of the Dynamic Equations

In a multibody dynamics system, the kinetic energy of the ith rigid body T i can

be written in Equation (B.1) with respect to the generalized coordinates qir.

T i =
1

2
q̇iTr Miq̇ir (B.1)

where qir =
[
RiT θiT

]T
is the vector of generalized coordinates of the ith rigid body

in system and the corresponding mass matrix Mi for the ith rigid body is given in
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Equation (B.2).

Mi =

 mi
RR mi

Rθ

symmetric mi
θθ

 (B.2)

where

mi
RR =

∫
V i

ρiIdV i =


mi 0 0

0 mi 0

0 0 mi

 (B.3)

mi
Rθ = −

∫
V i

ρiAi ˜̄uiḠidV i (B.4)

mi
θθ =

∫
V i

ρiḠiT ˜̄uiT ˜̄uiḠidV i = ḠiTĪiθθḠ
i (B.5)

where mi is the mass of the ith rigid body, the matrix mi
RR is a constant diagonal

matrix, which is associated with the translation motion of the body local coordinate

system. Īiθθ is defined as the inertia tensor of the ith rigid body. Ḡi is a matrix

depending on the selected rotational coordinates of ith rigid body (Shabana, 1998).

The dimension of the matrix Ḡi depends on the selected rotational coordinates in the

spatial multibody analysis. In the planar analysis, the Ḡi matrix shrinks to a unit

vector [0 0 0]T . If the Euler parameters are employed to describe the orientation

of the ith rigid body in the spatial analysis, the Ḡi matrix is defined in Equation

(B.6).

Ḡi = 2


−θi1 θi0 θi3 −θi2

−θi2 −θi3 θi0 θi1

−θi3 θi2 −θi1 θi0

 (B.6)

where θi0, θi1, θi2, θi3 are the Euler parameters for the ith rigid body.

If the Rodriguez parameters are employed to describe the orientation of the ith
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rigid body in the spatial analysis, the Ḡi matrix is given by

Ḡi =
1

1 + γ2


1 γi3 −γi2

−γi3 1 γi1

γi2 −γi1 1

 (B.7)

where γi1,γi2,γi3 are the Rodriguez parameters for the ith rigid body.

If the Euler angles are employed to describe the orientation of the ith body in the

spatial analysis, the Ḡi matrix is given by

Ḡi =


sinθisinψi cosψi 0

sinθicosψi −sinψi 0

cosθi 0 1

 (B.8)

where φi, θi, ψi are the Euler angles for the ith rigid body.

It’s known that in the special cases in which the origin of the coordinate system

of the ith rigid body is rigidly attached to its center of mass, the submatrix mi
Rθ

vanishes and the mass matrix for the ith body can be rewritten as

Mi =

 mi
RR 0

0 mi
θθ

 (B.9)

The kinetic energy T i for the ith rigid body can be rewritten as follows by sub-

stituting Equation (B.9):

T i =
1

2
q̇iTr Miq̇ir =

1

2
ṘiTmi

RRṘi +
1

2
θ̇iTmi

θθθ̇
i (B.10)

If the joint reaction forces are treated as externally applied forces in the multibody

dynamics system, Lagrange’s equation of motion for the ith rigid body can be written
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as Equation (B.11).

d

dt

(
∂T i

∂q̇ir

)
− ∂T i

∂qir
= Q̄iT (B.11)

where the force vector Q̄i is defined as

Q̄i = Qi
e + Fi

c (B.12)

in which Qi
e is called the generalized external force vector and Fi

c is called the vector

of generalized joint reaction forces for the ith body.

B.2 Quadratic Velocity Vector

Differentiating the Equation (B.10), we obtain

∂T i

∂q̇i
r

=
[
ṘiTmi

RR θ̇iTmi
θθ

]
d
dt

(
∂T i

∂q̇i
r

)
=
[
R̈iTmi

RR

(
θ̈iTmi

θθ + θ̇iTṁi
θθ

)] (B.13)

where

θ̇iTṁi
θθ = θ̇iT ˙̄GiTĪiθθḠ

i + θ̇iTḠiTĪiθθ
˙̄Gi (B.14)

In the case of using Euler Angles to describe the orientation of local body coordi-

nate system, we have Equation (B.15)

˙̄Giθ̇i = 0 and ω̄i = Ḡiθ̇i (B.15)

where ω̄i is the angular velocity vector in the ith local body coordinate system and

Ḡi is the matrix that associated with the angular velocity to the time derivatives

of the orientation coordinates. Substituting Equation (B.15) to Equation (B.14), we

obtain

θ̇iTṁi
θθ = ω̄iTĪiθθ

˙̄Gi (B.16)
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Substituting Equation (B.16) to Equation (B.13), we have

d

dt

(
∂T i

∂q̇ir

)
=
[
R̈iTmi

RR

(
θ̈iTmi

θθ + ω̄iTĪiθθ
˙̄Gi
)]

(B.17)

Then, the derivative of the kinetic energy T i with respect to the generalized co-

ordinates qir, namely ∂T i

∂qi
r
, can be derived as follows,

∂T i

∂qir
=

1

2

∂

∂qir

[
θ̇iTmi

θθθ̇
i
]

=

[
0T

3

1

2

∂

∂θi

(
θ̇iTmi

θθθ̇
i
)]

=

[
0T

3

1

2

∂

∂θi

(
θ̇iTḠiTĪiθθḠ

iθ̇i
)]

=

[
0T

3

1

2

∂

∂θi

(
θiT ˙̄GiTĪiθθ

˙̄Giθi
)]

=
[
0T

3 θiT ˙̄GiTĪiθθ
˙̄Gi
]

=
[
0T

3 − ω̄iTĪiθθ
˙̄Gi
]

(B.18)

Substituting Equation (B.17) and (B.18) in to Lagrange’s equation in Equation

(B.11), it can be obtained as follows

[
R̈iTmi

RR

(
θ̈iTmi

θθ + 2ω̄iTĪiθθ
˙̄Gi
)]

=
[
Q̄iT
R Q̄iT

θ

]
(B.19)

where subscripts R and θ are associated with the body translation and rotation

respectively, the general force vector Q̄i can be defined as

Q̄i =
[
Q̄iT
R Q̄iT

θ

]T
(B.20)

Equation (B.19) can be written in two uncoupled matrix equations. The first

matrix equation refers to the translation of the center of mass of the ith rigid body,

and the second equation refers to the rotation of the body. Therefore, they can be

218



written as:

mi
RRR̈i = Q̄i

R (B.21)

mi
θθθ̈

i = Q̄i
θ − 2 ˙̄GiTĪiθθω̄

i (B.22)

B.3 Generalized Force and Actual Force

Based on Equation (B.5) and Equation (B.22), we have:

ḠiTĪiθθḠ
iθ̈i = Q̄i

θ − 2 ˙̄GiTĪiθθω̄
i (B.23)

Multiplying both sides of the Equation (B.23) by the term of Ḡi and using the

relation that Ḡi = 2Ēi, we have

4ĪiθθḠ
iθ̈i = ḠiQ̄i

θ − 2Ḡi ˙̄GiTĪiθθω̄
i (B.24)

It can be shown that the angular acceleration vector ᾱi can be expressed in the

ith rigid body’s coordinate system as follows:

ᾱi = Ḡiθ̈i (B.25)

Then, the last term of Equation (B.24) can be rewritten as

2Ḡi ˙̄GiTĪiθθω̄
i = 4 ˜̄ωiĪiθθω̄

i = 4ω̄i ×
(
Īiθθω̄

i
)

(B.26)

Substituting Equation (B.25) and (B.26) to Equation (B.24), we obtain

Īiθθᾱ
i = F̄i

θ − ω̄i ×
(
Īiθθω̄

i
)

(B.27)
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The vector F̄i
θ is the sum of the moments that apply on the ith rigid body. The

vector F̄i
θ defined in the ith rigid body coordinate system can be given by

F̄i
θ =

1

4
ḠiQ̄i

θ (B.28)

Equation (B.28) is the relationship between the moments vector defined in the ith

rigid body coordinate system and the generalized force vector Q̄i
θ associated with the

ith rigid body’s generalized orientational coordinates.

B.4 Newton-Euler Equations

The motion of the ith rigid body in the multibody dynamics system is governed

by the Newton-Euler equations as follows

mi
RRR̈i = Q̄i

R (B.29)

Īiθθᾱ
i = F̄i

θ − ω̄i ×
(
Īiθθω̄

i
)

(B.30)

where ᾱi is the ith rigid body’s angular acceleration vector defined in Equation (B.25).

Equation (B.29) is a matrix equation consisting of three scalar equations that

associated with the forces and the accelerations of the center of mass of the ith rigid

body. Equation (B.29) is called Newton’s equation. Equation (B.30) describes the

body orientation for a given set of moments F̄i
θ. This matrix equation also includes

three scalar equations, and it is called Euler’s equation. Equation (B.29) and Equation

(B.30) together are called Newton-Euler equations and can be combined to one matix

equation as follows:

mi
RR 0

0 Īiθθ


R̈i

ᾱi

 =

 Q̄i
R

F̄i
θ − ω̄ ×

(
Īiθθω̄

i
)
 (B.31)
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APPENDIX C

HMMWV Gunner Interactive Members Definition

C.1 Predefined Connecting Points on the HMMWV

As mentioned in Chapter VIII, in order to discretize the design space for the GRS

design, 5 vertical layers of 40 connecting points were placed on the vehicle, and 12

predetermined connecting points on the gunner’s torso, resulting in 180 interactive

members between the gunner and the vehicle. The predefined connecting points on

the vehicle are listed in Table C.1, which are expressed in the vehicle body local

coordinate system.

C.2 Predefined Connecting Points on the Gunner

The predefined connecting points on the gunner’s torso are listed in Table C.2,

which are expressed in the gunner’s torso local coordinate system.

C.3 Interactive Members between HMMWV and Gunner

The connectivity relations between the connecting points on the vehicle and on

the gunner’s torso are listed in Table C.3 and Figure C.1.
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Point No. Coordinates Point No. Coordinates
1 (-231,41,1189) 21 (569,41,1189)
2 (-231,41,889) 22 (569,41,889)
3 (-231,41,589) 23 (569,41,589)
4 (-231,41,289) 24 (569,41,289)
5 (-231,-242,-11) 25 (569,41,-11)
6 (-114,-242,1189) 26 (452,324,1189)
7 (-114,-242,889) 27 (452,324,889)
8 (-114,-242,589) 28 (452,324,589)
9 (-114,-242,289) 29 (452,324,289)
10 (-114,-242,-11) 30 (452,324,-11)
11 (169,-359,1189) 31 (169,441,1189)
12 (169,-359,889) 32 (169,441,889)
13 (169,-359,589) 33 (169,441,589)
14 (169,-359,289) 34 (169,441,289)
15 (169,-359,-11) 35 (169,441,-11)
16 (452,-242,1189) 36 (-114,324,1189)
17 (452,-242,889) 37 (-114,324,889)
18 (452,-242,589) 38 (-114,324,589)
19 (452,-242,289) 39 (-114,324,289)
20 (452,-242,-11) 40 (-114,324,-11)

Table C.1: Predefined connecting points on the HMMWV

Point No. Coordinates Point No. Coordinates
1 (137,114,-197) 7 (137,-122,0)
2 (-65,114,-197) 8 (-65,-122,0)
3 (-188,114,-197) 9 (-188, -122,0)
4 (137,-2.4,160) 10 (137,-2.4,-160)
5 (-65,-2.4,160) 11 (-65,-2.4,-160)
6 (-188,-2.4,160) 12 (-188,-2.4,-160)

Table C.2: Predefined connecting points on the gunner
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Gunner Points No. Connected HMMWV Points No.
1 1,2,3,4,5,6,7,8,9,10,36,37,38,39,40
2 1,2,3,4,5,6,7,8,9,10,36,37,38,39,40
3 1,2,3,4,5,6,7,8,9,10,36,37,38,39,40
4 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
5 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
6 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
7 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30
8 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30
9 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30
10 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40
11 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40
12 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40

Table C.3: Interactive members between HMMWV and gunner

Figure C.1: GRS interactive member numbering
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APPENDIX D

The Gunner Questionnaire

We are conducting a research program to develop a new structural and material

system, which may combine emerging passive, active, and reactive structural tech-

nologies, for improving your safety and performance in your military vehicle. The

following questionnaire will help us to fully understand your needs, which may lead

to more effective, life-saving systems for you. We highly appreciate your help!

1. As a gunner, what are the major challenges with your current vehicle system

relative to

(a) your ability to perform your tasks;

(b) your safety;

(c) your comfort;

2. Have you have been in a dangerous vehicle situation, for example, rapid braking,

sharp turn, unexpected bump or obstacle runover, vehicle rollover, landmine or

IED explosion? If yes, please describe it briefly. How did you respond to the

situation? Were you injured during the event? Did you require help from

another soldier? What kind of assistance would have been helpful to you in

that situation?
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3. Are there adequate devices on the vehicle for your safety, for example, to keep

you from ejecting from the vehicle, or to help you retract into the vehicle during

an emergency?

4. How difficult is it to grab the gun when the vehicle is moving over rough terrain

and/or at high-speed? Do you or are you able to hold the gun at all times? Do

you believe a device (or a reactive system) would be helpful to help you release

your hands from the gun during an emergency event, for example, a rollover?

Do you believe a mechanical stabilizer would assist with your firing tasks?

5. Do you have a restraint system in your vehicle? If the answer is NO, please skip

questions 6-11 and continue with question 12.

6. Does your current restraint system help steady your position for operating the

gun? Does your current restraint system negatively affect your firing perfor-

mance?

7. Is it possible for you to quickly reenter the vehicle when you are in your firing

position? Do you think an assist device (mechanical system) could help you to

reenter the vehicle safely during an emergency event?

8. Is the height of your current restraint system adjustable? What is the (positive

or negative) height of your waist position measuring from the entrance when

you operate the gun?

9. It your current restraint system comfortable to wear? If not, please describe

any major discomforts.

10. Is your current restraint system user friendly? Are you able to easily ingress

and egress with the restraint system? If not, what are the major problems that

make ingress/egress difficult?
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11. What kind of new device (equipment or structure) might help to improve your

safety, performance and comfort?

12. Any other comments and suggestions you would like to provide?
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