The Valley of the Kings? Social Complexity of Inland Thrace
during the First Millennium BC

by

Adela Sobotkova

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Classical Art and Archaeology)
in The University of Michigan
2012

Doctoral Committee:
Associate Professor Christopher John Ratté, Co-Chair
Adjunct Associate Professor Lauren E. Talalay, Co-Chair
Professor Margaret Cool Root
Professor Henry T.Wright
ACKNOWLEDGEMENTS

This dissertation is a combined result of my doctoral studies at the University of Michigan and three-year fieldwork in Bulgaria. The research was supported through a number of Australian, US and Bulgarian funding sources, such as the Australian Research Council’s Discovery Projects Funding Scheme LP0989901, INSTAP, America for Bulgaria Foundation, Rackham International Research Award, GeoEye Foundation, American Research Center in Sofia fellowship, John Griffiths Pedley Travel and Research Endowment Award, and the Australian Institute for Nuclear Science and Engineering.

I owe my thanks to a large group of colleagues and friends, who made the completion of this work possible. First of all, my advisors at the University of Michigan, Chris Ratté, Laurie Talalay, Margaret Cool-Root, and Henry T. Wright provided me with intellectual guidance, unwaveringly supported me in times of need (intellectual, logistical, emotional), and provided worthwhile comments on the first drafts of this dissertation.

The second group most instrumental to the successful execution of this dissertation consists of my research partners, colleagues and friends in Kazanluk and Yambol regions in Bulgaria. My partners in the Kazanluk region, Georgi Nehrizov and Julia Tzvetkova made possible the launching of the field survey. They listened to and engaged with the ideas of a foreign graduate student, stuttered in beginner-Bulgarian, and were willing to take the risk of backing up the realization of some of these ideas. They absorbed the bulk of institutional responsibility for the project, repeatedly procuring permits, and defending project’s objectives and viability among the broader archaeological community in Bulgaria. Their full engagement extended to the fieldwork, providing the much needed experience with the material culture as well as critical feedback on the project’s methods and results.

In the Yambol region, the history museum director Ilija Krastev Iliev was the project’s most avid supporter. Genuinely inquisitive, deeply professional and open-minded, Ilija Iliev and his museum team of Stefan Bakardzhiev, Yavor Rusev and Georgi Iliev stood behind the success of TRAP in the Yambol region. Ilija Iliev’s experience with the Bulgarian-German project at Drama was a tremendous asset, but it was his dedication to archaeology, and his benevolent and facilitating kindness that pushed the project ahead. For weeks on my team he matched me step by step no matter the vagaries of weather and terrain, and
despite his chain-smoking or the many more scores of years. No matter how hard a day we had, Ilija Iliev always smiled when he stepped out of the car and headed to his office for a second shift. He has my deepest respect and admiration.

Many other scholars offered me guidance and support during my work in Bulgaria. Among them are Nikola Theodossiev, Kevin Clinton from the ARCS, Kostio Zarev and Meglena Parvin of the Kazanluk ‘Iskra’ Museum, Alexei Gotsev of the Archaeological Institute, Bogdan Athanassov of the New Bulgarian University, Mark Stefanovich of the American University in Bulgaria, Aneliya Dimitrova, my ARCS colleague. Matt Thompson from the University of Washington, fellow at the ARCS, gave me the best lesson about survival in Bulgaria. He taught me persistence and enthusiasm in face of all odds.

I would like to thank all the TRAP volunteers who participated in the project between 2009 and 2011 and made this dissertation possible. Graduate students Petra Janouchová and Barbora Weissová from Charles University in Prague have been indispensable assistants during day to day project management.

I cherish the time I spent in Ann Arbor. The conversations and companionship of my colleagues and friends at the University of Michigan created an environment of constant inspiration. This group comprises students from IPCAA and anthropology programs, among them: Seth Button, James Cook, Alex Nagel, Leah Long, Karen Laurence, Dan Diffendale, Jana Mokrisova, Paul Duffy, and Eric Rupley as well as graduates of other departments: Corine Tachtiris, Andrea Clyne, Soňa Mikulová, and Dáša Francíková. Many of them proofread this dissertation and improved it with their feedback. My heartfelt thanks to all of them.

Finally, nothing would be possible without my family and friends in the Czech Republic and elsewhere. They provided me with a warm loving home during my brief stays with little to no advance notice. They encouraged my ideas and always found ways to be part of my life no matter where I went, be it through homemade cooking, high resolution map print-outs, or discussions of geology and management know-how. The person who supported me most is Shawn Ross, my boyfriend. Shawn convinced me to apply for graduate school and proofread many of my papers, including this dissertation. He was my guide to the life in the US and a partner during rough beginnings in Bulgaria. He has my love and gratitude for his patience, support and assistance during my pursuit of Thracian archaeology.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii
LIST OF FIGURES .. vii
LIST OF TABLES ... ix
LIST OF APPENDICES ... x
ABSTRACT ... xii

Chapter I. Inland Thrace during the Iron Age - Land of Princes and Beggars 1
 I.1. The Topics Discussed in this Dissertation ... 1
 I.2. Thrace and the Thracians ... 5
 I.3. Chiefdoms or States? Defining Thracian Complexity ... 6
 I.4. Settlements and Settlement Studies ... 8

Chapter II. Intellectual History of Thracian Social and Political Structure 12
 II.1. The Early Twentieth Century – The “Great-Man” History 13
 II.2. The New Bulgarian Archaeology - Marxist Revision .. 20
 II.3. Alexander Fol and the Birth of Thracology .. 22
 II.4. Data Banking and the first Standardization ... 26
 II.5. Post 1990 – Back to Roots ... 27
 II.6. The Last Decade ... 32

Chapter III. Thracian Society in the Written Sources ... 35
 III.1. Conceptualizing the Thracians ... 39
 III.2. The Thracians as Powerful, Warlike, and Rich? ... 40
 III.3. Thracian Social Structure ... 45
Appendices.. 257
Bibliography ... 384
LIST OF FIGURES

Figure V-1: Yambol region study areas (in red) ...91
Figure V-2: Site numbers per period based on legacy and survey data103
Figure V-3: Number of sites registered during the survey per period104
Figure V-4: Aggregate area covered by both legacy and survey sites per period..............104
Figure V-5: Diachronic trends in site size in the survey dataset105
Figure V-6: Neolithic (left) and Chalcolithic (right) period legacy data histograms105
Figure V-7: Bronze Age Legacy data histograms (from left to right, Early through Late Bronze Age)105
Figure V-8: Neolithic (left) and Chalcolithic (right) survey data histograms; each of the counts includes the sites labeled as “prehistoric” ..108
Figure V-9: Bronze Age Survey site histogram ...109
Figure V-10: Early (left) and Late (right) Iron Age Legacy data histograms111
Figure V-11: Early (left) and Late (right) Iron Age Survey data histogram113
Figure V-12: Early Iron Age histograms compared with Legacy (left) and Survey (right) data114
Figure V-13: Late Iron Age histograms compared with Legacy (left) and Survey (right) data115
Figure V-14: Roman Legacy data histograms ...119
Figure V-15: Roman Survey data histogram ...121
Figure VI-1: Kazanluk Valley, research area is in white ...128
Figure VI-2: Histograms of Survey Site nucleus (left) and margin (right) data for prehistory in Kazanluk ...144
Figure VI-3: Site numbers per period based on legacy and survey data147
Figure VI-4: Survey site numbers per period ...148
Figure VI-5: Aggregate area of legacy and survey sites per period (site nucleus data)148
Figure VI-6: Average survey site area (based on site nucleus) per period149
Figure VI-7: Neolithic (left) and Chalcolithic (right) period legacy data histograms149
Figure VI-8: Early Bronze Age Legacy data histogram (only a single site is dated to the Middle and Late Bronze Age) ...150
Figure VI-9: Prehistoric (left) and Chalcolithic (right) survey data histograms151
Figure VI-10: Early and Late Bronze Age survey site histograms153
Figure VI-11: Early (left) and Late (right) Iron Age Legacy data histograms155
Figure VI-12: Early Iron Age and Late Iron Age settlement hierarchies as apparent in the legacy data at the same scale for comparison ...156
Figure VI-13: Early (left) and Late (right) Iron Age Survey site histogram ... 157
Figure VI-14: Early Iron Age histogram of Survey nucleus (left) and Legacy data (right) ... 158
Figure VI-15: Early Iron Age histogram of Survey margin (left) and Legacy data (right) ... 158
Figure VI-16: Late Iron Age histogram of Survey nucleus (left) and Legacy data (right) ... 159
Figure VI-17: Late Iron Age histogram of Survey margin (left) and Legacy data (right) ... 160
Figure VI-18: Roman Legacy site histogram (left) and settlement hierarchy (right) .. 162
Figure VI-19: Roman Survey site histograms .. 163
Figure VI-20: From top down: Roman survey nucleus, margin and legacy site histograms 164
LIST OF TABLES

Table III-1: Ancient sources by category, the lost primary sources are in italics, the available ones are in bold.

table after table v...35

Table VII-1: Early and Late Iron Age scatters in the Yambol study area...203
LIST OF APPENDICES

Appendix A - Regional Topography and Legacy Maps ... 258

A. 1 Study Area Overview .. 258
A. 2 Kazanluk ... 261
A. 3 Yambol ... 269

Appendix B - Survey Areas .. 274

B. 1 Kazanluk... 274
B. 2 Elhovo ... 278

Appendix C - Individual Site Maps .. 280

C.1 Kazanluk ... 281
C.2 Elhovo ... 302

Appendix D - Survey Results .. 309

D. 1 Efficiency Tables, Kazanluk ... 309
D. 2 Efficiency Tables, Yambol ... 310
D. 3 Site Table ... 310

Appendix E - Ranks per Period .. 314

E. 1 Kazanluk ... 314
E. 2 Yambol ... 315

Appendix F - Total Pick-Ups Finds Processing ... 318

Appendix G - Pottery Drawings and Descriptions ... 326

G. 1 Prehistoric pottery .. 326
G. 2 Neolithic and Chalcolithic Pottery ... 328
G. 3 Bronze Age Pottery .. 330
G. 4 Early Iron Age Pottery ... 332
G. 5 Classical Period Pottery ... 334
G. 6 Grey Ware from site 3126 .. 336
G. 7 Late Iron Age pottery ... 338
G. 8 Roman Pottery ... 340
G. 9 Late Antique Pottery .. 344
G. 10 Medieval Pottery..346
G. 11 Ottoman pottery ..348
Appendix H - Keys and Forms..350
H. 1 Intensive record sheet ..350
H. 2 Detail record sheet ..351
H. 3 Extensive record sheet ..352
H. 4 ATS record sheet ...352
H. 5 Sherd group record sheet ...353
H. 6 Sherd inventory record sheet ..353
H. 7 Object record sheet ..355
H. 8 Total pick-up record sheet key ..356
Appendix I - Site Catalogues..358
I. 1 Chronological abbreviations used in text ...358
I. 2 Site Catalogue Legend ...358

Kazanluk Site Catalogue ...359
Yambol Site Catalogue ..375
ABSTRACT

The Valley of the Kings? Social Complexity of Inland Thrace during the First Millennium BC

by

Adela Sobotkova

Co-Chairs: Christopher John Ratté and Lauren E. Talalay

The Odrysian kingdom of Thrace is claimed to be a well-defined state, a solid and bounded geographic and political unit that exercised a strong influence on political events in the Aegean world during 5th and 4th centuries BC (Archibald 1998). Greek historical sources are used to support this claim, yet their interpretation is problematic. Ancient authors describe the socio-political forms of neighboring peoples indirectly at best. Their statements remain highly ambiguous, infusing personal agendas and Graeco-centric perceptions into their observations, thus making the task of translating those observations into modern archaeological parameters and anthropological concepts difficult. Archaeological evidence seems to offer much more robust support for the claim of a powerful Thracian state with its overwhelming number of sumptuous burial assemblages that attest to intense social stratification and wealth inequality among the Thracian population during the Classical and post-Classical periods (Kitov 2008, Fol and Marazov 1977). The interpretations, based principally on the mortuary data, have indeed been compelling and intuitively satisfying, yet they have failed to incorporate other classes of evidence that are inconsistent with the “state” model, such as divergent historical accounts,
absence of urban centers, and lack of administrative and ideological manifestations of the alleged state. My study aims to correct this mortuary based bias in the study of the Odrysian kingdom by introducing settlement pattern data based on original research in the Thracian interior, specifically the Tundzha River watershed, an alleged homeland of the Odrysians. The existing regional legacy data will be contextualized and contrasted with the surface survey evidence, and explanation will be sought for divergence among them. My dissertation produces a definition of Thracian socio-political form(s) during the Classical period, drawing on the results of surface survey, its integration with several different classes of the archaeological record and complemented by critical use of anthropological neo-evolutionary theory.

On the basis of the data acquired by the Tundzha Regional Archaeological Project, I argue that the Thracian polity does not approach the state-level of organization until the 4th century BC, when a major stimulus is delivered to the indigenous communities by the Macedonian conquest. The state institutions take root and only become manifest in the regional archaeological record after further delay - during the Roman period.
Chapter I. Inland Thrace during the Iron Age - Land of Princes and Beggars

I.1. The Topics Discussed in this Dissertation

This dissertation explores the development of Thracian social complexity during the mid-first millennium BC using the new settlement pattern data acquired during systematic survey in the Tundzha River watershed in Bulgaria. Two sections of the Tundzha river valley were surveyed by the Tundzha Regional Archaeological Project (TRAP) in four campaigns during 2009-2010, covering a total of 100 sq km (see Appendix, Figs. A.1-1, 2, A.2-1, and A.3-1). I use these regional studies primarily as control samples for existing archaeological landscapes known from various sources of archival and legacy data (primarily excavation reports and regional site gazetteers). One of these study areas centers on Seuthopolis, the Thracian Hellenistic capital in the Kazanluk valley in central Bulgaria, founded by Seuthes III after the Macedonian conquest of south and central Thrace. The other study area is located in the alleged Early Iron Age powerbase of the Odrysian tribes in southeast Bulgaria. Historical sources and excavation data indicate that each of the study areas was a center of major socio-political transformations during successive periods of the first millennium BC. Interpretations of Thracian socio-political complexity derived from the written sources and excavation data are compared and integrated with evidence derived from surface survey. In each region, a set of legacy data (which offers a set of large and conspicuous sites) and full-coverage survey results (which provide a more detailed and consistent record of a contiguous slice of the ancient landscape) is combined to evaluate the complexity of Thracian settlement patterns.

I chose to pursue surface survey for several reasons. First, surface survey data have not been used to address the topic of Thracian complexity. In this regard, the survey approach contributes a complementary line of evidence to the existing studies based on mortuary, numismatic and other excavation data. Second, the survey approach allows me to re-examine the alignment of different classes of archaeological and historical sources and invites a discussion on their fruitful combination. Third, surface survey generates a long durée and large
scale perspective of the evolving settlement patterns, site hierarchies, and subsistence strategies, as opposed to the short-term events of burial mound construction or treasure hoarding. A long-term method operates with its own definition of social emergence as a long-lasting phenomenon. Survey results, therefore, allow me to test the utility of this methodology for finding complexity in Thrace, while at the same time invite a debate on the underpinnings of Thracian complexity and their archaeological manifestations.

The intellectual traditions of Bulgarian scholarship had, until recently, only limited tools available for the treatment of complex social phenomena like state emergence. The so-called “naïve empiricism” of the German historical school dominated scholarship at the turn of the 20th century, uncritically inheriting the Greek view of Thracian society and its evolution. In the first half of 20th century, culture historical approaches focused on archaeological typologies and the identification of ethnic groups in assemblages of pots and other artifacts. While this approach did little to address processes of social change, it was, nevertheless, a crucial step toward developing the proper tools and methods necessary for verification of the historical sources. The arrival of Marxist theory set the stage for the study of social evolution, albeit initially in a somewhat rigid manner. An evolutionary theory of stages of development emphasizing economic relations between social groups provided the intellectual framework, while the stress was on the collation of archaeological and historical data to fit this model. The approach did little to accommodate regional and temporal variations among the polities of inland Thrace, or to problematize its own underpinnings. It did, however, offer room for the practice of reconstructing the socio-political phenomena in Thrace, a challenge that has been followed with much enthusiasm and scholarship since. Chapter Two offers a discussion of the past trends and the current state of Bulgarian scholarship on Thracian political organization.

The Thracians are a people on the border of the literate world. Only a handful of ancient written sources exist from the pen of the Greek neighbors of Thrace. Some of these sources are based on first-person observations and date to the Classical period, which makes them contemporary with the alleged heyday of the Thracian polity. These sources provide a picture of the lives of the elite, their dynastic genealogies, political interactions, and diplomatic relations with neighbors. However, they do not specifically discuss the nature of Thracian socio-political complexity or the life of non-elites. The themes that dominate the historical sources such as the power of the elites and their fractious tendencies are presented in Chapter Three.
Chapter Four outlines the intellectual and methodological framework for the research conducted by the TRAP project in Bulgaria in the 2009-2010 seasons. Landscape archaeology and surface survey, its principal approaches, have been a part of the archaeological toolkit for several decades now and hardly need to be defended as well-established approaches. Chapter Four outlines my rationale for undertaking this research program in Bulgaria. Subsequently, the methodology employed during fieldwork is described, including field strategies, paper and digital recording practices, methods of pottery processing, and site identification and evaluation. The last section of Chapter Four explains how the archival “legacy” data were incorporated with the survey results. Few projects combine the legacy with survey data in final analysis because of a high level of inconsistency in the grouped data. The acquisition, filtering and “rehabilitation” of the legacy data for the purpose of settlement pattern analysis in the TRAP regions was a prolonged, challenging, and frequently frustrating process. While the procedures did not always yield the most satisfying results, their further development is seen as critical for archaeological research and cultural heritage management today. Standardization of data archiving and the development of proper tools for legacy data analysis are urgently needed. The last part of Chapter Four draws attention to the major issues encountered when dealing with existing data from the survey areas.

According to the now classic paper by L. Binford (1964, 426-8) and any research design textbook, the choice of survey area is critical in project design. Delineating a bounded area that could have supported a cultural group and sampling it adequately is an imperative advocated by every guide to archaeological research. Outside the classroom, however, the archaeologist usually needs to accommodate the realities of national and local politics and economy besides the research design. Chapters Five and Six outline the process by which I arrived to my regions of study, Kazanluk and Yambol, and present the results of the surface survey and legacy data analysis by region (see Appendices A and B). In the Kazanluk region, the project investigated some 60 sq km of urban hinterland of the five hectare Hellenistic Thracian capital and aristocratic residence of Seuthopolis, now submerged under the Koprinka reservoir (see Appendix, Fig. A.2-4). Protected by the ridges of the Stara Planina Mountains deep in the Thracian hinterland, the upper Tundzha River valley is famous not only for housing the city of the Thracian rulers, but also for the mortuary landscape of hundreds of mounds, containing both aristocratic and non-elite burials. In the second study area, the Yambol region, the project investigated a contiguous stretch of a rural area, located some 40 km far from the regional
center of Kabyle. Kabyle was a Macedonian-founded town at the site of an earlier Thracian settlement in the bend of the Tundzha River, which thrived until Late Roman period (see Appendix, Fig. A.3-1). Located at the very margin of the chora of Kabyle, the remote rural nature of the Yambol study area provided a contrast to the more urban character of the Hellenistic Kazanluk valley. Yambol also offered a comparison in terms of different development of settlement patterns across time, as its settlement peaked during the Early Iron Age period as opposed to the Late Iron Age in Kazanluk. Having ended up in different areas than I had anticipated, I had to adjust my research goals to fit each of the new regions. Fortune smiled at me as my goals and chosen methodology fitted reasonably well with the exigencies of the archaeological record and environmental and topographic nature of the regions. To be frank, serendipity provided me with better study areas than I could have achieved by design.

Socio-political complexity, its definitions and taxonomies have been the subject of incessant debate for over a century. More recently, the issue of defining the “state” and differentiating it from other forms of social and political organizations such as “chiefdoms”, has occupied historians, archaeologists, and anthropologists alike. Anthropologists have developed definitions and theoretical models of social forms based on ethnographic and ethno-historical evidence. Having organized them on an ascending ladder of increasingly complex traits, they have used this model as a framework for the analysis of past societies. Theoreticians have questioned the validity and intellectual underpinnings of this approach and have suggested alternatives. Archaeologists, in the meantime, have focused on capturing data in new ways that would allow them to test existing models and alternative approaches, and assess the validity of respective categories. While little is settled at the moment, the continued discussion of proper approaches and the wealth of available models have set the stage for a more evidence-based, and hence a more vivid reimagining, of Thracian society. An attempt to provide a concise summary of the theoretical debates and an application of two of these approaches to the study of Thrace is presented in Chapter Eight.

Upon review, different classes of archaeological evidence point to different levels of complexity among Thracian communities. While the mortuary variability is high, urbanization is not. With the absence of Thracian writing and programmatic art, there is no clear evidence for self-conscious state authority. The best way to reconcile these divergences and to place Thracian society on the evolutionary continuum is to compare it to similar polities. The Scythian and Celtic polities existed within the same period and came into physical contact with Thrace
occasionally. Both of these cultural groups exhibit some cultural similarities to the Thracians (mobility, warrior class, mound burials), but also significant differences (large cities with specialized function, oppida, more social stratification). Yet perhaps the best analogue for both the Thracian economy and political organization is revealed in the example of the Macedonians. The participatory political system of the Macedonians combined corporate as well as elite networking strategies (Blanton et al. 1994). This combination resulted in dynastic succession by acclamation, as well as constant power struggles among various aristocratic factions (Borza 1990, 236-248). A comparison of individual features of the Celtic, Scythian, Macedonian and Thracian polities presents itself as the best approach to critically position Thracian society among different forms of socio-political development. This comparison is outlined in the latter part of Chapter Eight. Chapter Nine provides a summary and conclusion to all of the above themes.

I.2. **Thrace and the Thracians**

Having defined the subject of the dissertation, I need to touch on the identity and location of the ancient Thracians. I will do so very briefly as there is a substantial amount of literature in which Thracian identity, origin, and living space is discussed (Fol and Spiridonov 1983; Fol 2000; Papoulia 1994; Archibald 1998). Nikola Theodossiev (2011, 4) recently summarized the fluidity of both the physical boundaries of Thrace and the identity of its inhabitants:

“The frontiers of ancient Thrace were relative, variable and quite dynamic, and during the first millennium BC certain Thracian areas belonged to the Greek colonies, the Achaemenid Empire, Macedonia and the Roman Republic. Moreover, ancient Thrace was not a homogeneous region inhabited by homogeneous ethnic groups, and the ancient Thracians never formed a unified nation or entirely centralized kingdom controlling their whole territory. In fact, ‘Thracians’ is a cumulative and relative ethnonym that included a great number of various tribes, often sharing a common culture, religion and language, but sometimes being quite different, while mixed groups consisting of local people who lived besides the Greeks, Persians, Paeonians, Illyrians, Macedonians, Scythians, Celts and Romans inhabited particular areas of Thrace, which were turned into zones of interaction”.

As Theodossiev goes on to mention, the name “Thracian” originates from the ancient Greek. We do not know whether the people occupying Thrace in Antiquity had any unifying label for themselves, but the label “Thracian” is not meant to indicate a politically or ethnically unified nation. A simple TLG search reveals that “Thrace” (Θράκη or Θρηκη) is used by nearly three
hundred ancient writers as a geographic term, while the name for the most powerful Thracian tribe of the Odrysai (Ωδρύσαι) is used in only some twenty sources. The use of “the Thracians” (Θράκοι, Θρηκτον) as an ethnonym is scarce in the sources, but, nevertheless, extant. Aside from the relative frequencies of the different names, V. Papoulia argues that the label “Thracian” denotes the geographic origin of a person or his/her language rather than his affiliation to a unified community of people (Papoulia 1994, 16). She lists a number of examples of names such as “Dionysios the Thracian” that illustrate her point. Her view is consistent with Herodotus’ depiction of Thrace as the homeland of over twenty tribes, with an emphasis on their disunity (V.3.1). Fol and Spiridonov trace the ethnic fluctuation of Thracian tribes through time and place according to the written sources (Fol 1976, 12). In the last three decades, foreign residents in Thrace have attracted the interest of scholars. The motivations fuelling migration are explored ranging from economic opportunities of trading, raiding and resource exploitation, social networking, or passive migration due to conflict or marriage (Domaradski 1984; Megaw 2004; Taneva 2005; Bouzek et al. 2006; Domaradzka, Taneva, and Gotsev 2009).

The boundaries of “Thrace” as described in the historical sources varied over time, and cannot be taken to have coincided with a single unified political entity.¹ The history of Thrace is as much a history of the tribes and groups of tribes which led to the founding of the Odrysian kingdom and other, smaller entities or independent tribes (Papoulia 1994, 22). It is dangerous to equate the historical evolution of any single tribe with that of the Thracians of Thrace proper.

The geographic focus of this dissertation is on the inland Thracian communities, which form a small part of the Thracian universe as described in historical sources. Only selected inland communities are discussed here. Namely, the alleged homelands of the 8-4th BC Odrysians, whose territories have, according to written sources, overlapped with the areas of archaeological fieldwork presented here.

1.3. **Chiefdoms or States? Defining Thracian Complexity**

The most prominent political entity of Iron Age Thrace according to the Greek sources as well as modern scholars is the “Odrysian kingdom” (Archibald 1998). Despite a considerable amount of

¹ Ancient authors reiterate how fractious and disunited the Thracian tribes were. This is interesting, given the apparent stylistic uniformity in the archaeological record, especially as far as local pottery wares and their decoration is concerned (Nehrizov 1995; Nehrizov 2005b; Leshtakov 2009a). Few studies have tested whether this homogeneity is due to ethnic/cultural uniformity or is merely a reflection of technological constraints or observational bias. This discrepancy between written and archaeological sources underscores the limitations of archaeological data for identifying political entities.
literature on the Odrysian kingdom, its nature remains obscure. What exactly was the Odrysian kingdom in political-evolutionary terms, how did it come about and what form of government did the Thracian communities enjoy prior to its formation? Arguments for both chiefdom and states have been raised in the Bulgarian literature, yet none of them has firm theoretical underpinnings. Anthropological models have been applied to other Early Iron Age polities in France, Spain, Britain, and Greece with variable success (Crumley 1974; Renfrew and Cherry 1986; Chapman 1990; Arnold and Gibson 1995).

The topic of social complexity has been a subject of anthropological and archaeological inquiry for almost a half a century. Complexity was traditionally connected with a hierarchical model of high-density population centers supported by rural hinterlands with robust and multi-level information-processing institutions (Adams 1965; Wright 1978; Flannery 1998). Since its creation, this model has withstood thirty years of challenges, refinements, and alterations.

Most evidence for social complexity in Thrace – the formation of the Thracian state - derives from mortuary archaeology (primarily the ubiquitous tumuli burials) (Kitov 1997; Marazov and Fol 1998b; Venedikov 1998), supplemented by epigraphic and numismatic evidence. Studies of spatial centralization and urbanization are scarce and deal mainly with the Hellenistic and later periods.² Many studies base their claim of social complexity on a specific class of evidence without integrating it with other classes of evidence, or integrating it within a model of social complexity or evolution.³ Few explain why a particular category of evidence alone is sufficient proof of their claim. Models are rarely articulated, and artifact groups are discussed with reference to cultural practices but not evaluated as indices of complexity or tied together in an organic whole.

Depending on the richness and clarity of evidence, categorizing political entities can be fuzzy. Complexity operates on a continuum and separating out transitions in this continuum can be a challenging and ambiguous task. Different aspects of the material record develop independently and may indicate contradictory levels of complexity. An example of this dilemma

is presented in the volume *Celtic Chiefdom and State*, which raised the issue of distinguishing the archaeological markers of chiefdom from the state (Arnold and Gibson 1995). Robert Carneiro’s advice to “draw lines at different points through this continuum to set off significantly different parts of it”, and to look for “the most salient features between contrasting forms” (1981, 67) can be quite ambiguous when faced with a real-world archaeological record. In Bulgaria, the burial record, monumental architecture, and stylistic representations of the ideology and political power have enjoyed considerable treatment. Settlement pattern analysis and the study of economic specialization still need fundamental research. One of the goals of this work is to begin remedying this shortcoming.

I.4. Settlements and Settlement Studies

The concept of “settlement studies” has very different meanings in the context of Bulgarian vs. Anglo-American archaeology. In Bulgaria, “settlement studies” often refer to single site reports focusing on topography, infrastructure and typological analysis of structures and artifacts. Years ago, in his *Settlement Archaeology* (1968) K.C.Chang distinguished such within-site studies as the study of “community pattern” as opposed to the “settlement pattern”. In Anglo-American archaeology, the term “settlement studies” is more frequently understood as the attempt to study the full range of human activity within an extensive archaeological region.

Two phenomena are particular to Bulgaria. Firstly, it is the low (1:9) ratio of survey to excavation in publication (Cholakov and Chukalev 2008). Granted, this statistic may not completely reflect the differential volumes of data produced by excavation vs. survey (the excavation of a necropolis may produce 100 reports on individual mounds, while a survey of the same necropolis would likely produce only a single report). Second, Bulgarian survey publications rarely utilize the full potential of their data, hindering its use as a secondary source by other researchers. Full-fledged survey publications with methodological discussion are rare, the exception being the campaigns of M. Domaradzki and his team in southwest Bulgaria (1982b; 1999). Detailed site gazetteers that collect sites regionally appear more frequently (Fol and Venedikov 1976; Dimitrova and Popov 1978; Dimitrova 1985), but the most common publication of survey data comes in the form of so-called “Contributions to the Archaeological Map of XY region” (Vulcheva 1992; Ivanov 2008) and summaries in the Annual Reports (Arkheologicheski Otkritia i Razkopki, abbreviated as the AOR). These usually offer a list of sites and their dates, rarely providing more detailed data about the sites themselves, or information
about the context surrounding them (e.g., total area surveyed, environmental conditions, site areas, artifact densities, etc.). Maps, if they appear, feature only black dots with no indication of land cover or areas walked. It is not surprising that such publications of survey data have not sparked settlement system analysis. This skeletal record is mostly used as a guide for rescue work during a construction project.

Within Bulgaria, the tendency towards emphasizing site over region directly affects archaeological methods, leading to surveys that emphasize the search for, and location of, sites. The sole purpose of this is the monitoring of cultural heritage management or preparation for later excavation. Thus, new studies that focus on the spatial aspects of human behavior, or distributed socio-political complexity are rare.

I.5. **The Study of Thracian Complexity – Where Does It Stand Today?**

The socio-political complexity of the indigenous peoples on the northern fringes of the Classical World during the first millennium BC has been the subject of multiple studies. The social and political organization of Celts, Scythians, Illyrians, and Macedonians has been addressed from anthropological, historical, and sociological perspectives, and interpreted independently as well as in comparison to their Greek neighbors (Crumley 1974; Dietler 1994; Babic 2001; Megaw 2005). Celtic and Scythian political complexity is controversial. These polities have been compared to both chiefdoms and states (Khazanov 1978; Arnold and Gibson 1995; Grinin et al. 2004). The difficulty of identifying forms of socio-political organization was exacerbated partially by the divergence between historical sources and archaeological data, and partly by the rigidity of the anthropological or sociological categories available. These debates have flourished as new concepts have been introduced to address the nuances of the historical record and the idiosyncratic features of the “barbaric peoples” on the Greek periphery.

In the meantime, Greek social complexity has been subjected to thorough investigation, built predominantly on literary analysis of the historical records of the Archaic and Classical periods, and with the use of ethnographic parallels. Despite their proximity to Greece, the Thracians have, for the most part, remained outside the purview of western scholars. Only a few English articles and treatises discuss the political development of Thrace, and many of these are rather dated (Hoddinott 1981; Best and Vries 1989; Bouzek 1990; Selimis 1994). The majority of recent studies originate with Bulgarian researchers, whose contributions are discussed in Chapter Two (Zlatkovskaya 1961; Fol 1972; Fol and Marazov 1977; Marazov and Fol 1998a;
Jordanov 2000; Porozhanov 2000; Echt 2004). Zosia Archibald’s monograph (1998) and other prolific work provides the most comprehensive synthesis and a reassessment of archaeological data in Thrace. Archibald, however, touches on Thracian social complexity only briefly through an analysis of Iron Age mortuary remains. Despite a century of research, the emergence of Thracian social complexity is still an unsettled topic.

The Thrace’s relations with the evolving empires, which survived it, are also understudied. Thrace was loosely bounded by the Danube to the north, the Struma/Vardar rivers to the West, and the Black and Aegean seas to the east and south (Fol and Spiridonov 1983; Archibald 1998). Ancient writers described turbulent historical events happening in Thrace, such as the campaigns of the Persian kings Darius and Xerxes or the repetitive Greek attempts to control important coastal settlements (Hdt. bk. 4; 7.44-100). After the campaign of Darius, Persian sources include the Thracians among the subjects of the Achaemenid Empire (under the name of Skudra). Although there was no direct military control, strong social and cultural ties developed between the Thracian elites and the Achaemenid Empire. The fact that Thrace and its peoples appeared in the artistic program and rhetoric of the Achaemenids (e.g. on the Bisitun monument) demonstrates that the contemporary Persian administration saw this region as one of considerable significance and within the Persian sphere of influence (Briant 2002, 905) (see Appendix, Fig. A.1-1). Despite the Persian rhetoric, the scholarly consensus is that while coastal areas were impacted directly and more heavily by the Achaemenids, it is less likely that these incursions left lasting marks on the Thracian interior (Isaac 1986; Delev 2003). Government of the interior remained in the purview of the Thracian inhabitants. Indeed, inland Thrace remained independent despite the expanding Athenian Empire to the south and a robust imperial administration of the Persian Empire to the East. This autonomy suggests that Thracian elites successfully exploited their relationship with Greek and Persian neighbors and skillfully negotiated their own status.

Archibald claims that “fundamental changes were introduced into Thracian society” in the 5th century, which ensured its survival through conflicts with imperial powers like Persia, Athens and Macedon (Archibald 1998, 3-4). In her book she focuses on the archaeological

4 Considerable amount of Bulgarian scholarship is dedicated to the issue of Thracian complexity, and, specifically, the Odrysian kingdom; brief historiography of the Odrysian kingdom is presented in Archibald 1998, 24.
5 Archibald (1998, 82-83) and Briant (2002,157, 905) provide a discussion of the different opinions on the referent of the word Skudra and the issue of Thrace as a Persian dependency.
evidence for Thracian elites that illustrates their ascent to power and interaction with their neighbors. The consensus of a majority of Bulgarian scholars is that the roots of the Thracian state go back to the 6th century, while its florescence dates to the 5th century BC (Fol 2000; Jordanov 1998; Archibald 1998; Димитров 2011). A minority position indicated by Domaradzki is that the Thracians were not united in a state until the Macedonian conquest (1998, 36-37).

For the most part, my research supports the minority view for the late emergence of the Thracian state (post Macedonian, Hellenistic or Roman). At the same time, my intention is to expand critical inquiry beyond a search for the state as a narrow and distinct threshold that Thracian speaking peoples one day woke up to. Instead, I consider trends in complexity and general socio-economic change in Thrace throughout the 1st millennium BC until the Roman conquest.

Data on the non-elite demographic base of inland Thracian society permits us the study of these trends. How far down the social ladder can we trace the effects of the cultural interactions and political upheavals that, according to classical writers, swept through Thrace? What can the landscape tell us about the lives of non-elites? What is their role, if any, in the political makeup of Thracian lands and the preservation of Thracian independence at a time when other polities were being incorporated into empires? This dissertation will attempt to show how the social structure of the Thracians kept them from being fully integrated into any of the empires prior to the Roman conquest and rendered them more resilient to the centralizing tendencies. In addition to these many questions, perhaps the most important of all is: are answers to the above questions archaeologically detectable from data collected within the Tundzha River valley? One of the methodological concerns of this dissertation is to test to what extent archaeological survey can reveal Thracian socio-political complexity and elucidate the life of commoners.
Chapter II. Intellectual History of Thracian Social and Political Structure

This chapter reviews the scholarship on Thracian complexity as defined by Bulgarian and western historians. Most of the scholarship originates from Classical historians because Thracian political consolidation is best recorded in the ancient Greek and Roman sources and temporally coincided with the Classical and Hellenistic periods in Greece. Another reason for the predominantly historical framework of the discussion of social complexity in Thrace is the position of archaeology in Bulgaria, where it has long been perceived as a tool of history (Bailey 1998; Stanilov 2002).

In Bulgaria, scholarship focusing on ancient Thrace falls within the sphere of Thracology, a discipline that focuses on the ancient inhabitants of Bulgarian territory during the 1st millennium BC. The department of Thracology has existed at the Academy of Sciences since the 1970s, having been established by Alexander Fol with the help of Lyudmila Zhivkova, the Bulgarian minister of culture. The study of Thracian socio-political complexity has been one of the target issues investigated by scholars at this institute. Although the establishment of the institute has given scholars studying Thrace more prominence and authority, the roots of Thracology can be traced to the late 19th century.

Bulgarian Thracology was born out of the German historical school, which was deferential to Classical sources. Most topics, concepts, and theories were dominated by the terms, concepts and attitudes adopted from the Greek sources. Greek sources focused on military campaigns, dynastic genealogies and individual accomplishment. German and most other contemporary historians followed suit, emphasizing political history and narratives of the “great men”. The Classicism espoused by the 19th and 20th century practitioners of Thracology did not demand the rigorous scrutiny of source biases. This engendered insufficient critical analysis and reinforced the predilection of the German school.

The culture-history archaeological approach was devised in the early 20th century to mirror the German historical approach and provide a history of cultures to match the Rankian
history of the “great-men”. The introduction of a Marxist conceptual framework into the study of the Thracian past represented a short and fruitful interlude, but was not adopted by the empirical historians. Today, archaeology in Bulgaria, as it relates to the study of complexity in ancient Thrace, remains rooted in the 19th century Rankian and culture-history. This is not very different from the Classical studies across Europe, US or Australia, which tend to lag behind prehistory or Medieval archaeology in theoretical development. Bulgaria is merely another case of this phenomenon. The Marxist experiment did not take firm root in Bulgarian Thracology. Recent theoretical approaches are slow to penetrate into Bulgaria’s classical discipline. This may be due to a variety of reasons: from the country’s political isolation, conservative training and the lack of exposure to these theories on one hand (Stanilov 2006, 16), to the exotization of the archaeological practice (Bailey 1998) and the weight of established authority on another (Anghelinu 2007; Stanilov 2006, 16).

II.1. The Early Twentieth Century – The “Great-Man” History

The earliest notes commenting on the structure of Thracian society and political organization come from the pen of Western Classical historians in the 19th century. These comments were initially limited to precise sorting of historical events and dynastic genealogies, rather than providing an in-depth study of Thrace itself. Thracian history was seen as merely providing a background for the history of the Greek poleis. Thracian scholarship in the 19th/20th century was heavily informed by the intellectual framework of the German School, the vanguard of historical thought in Europe at the turn of the 20th century. The work of Leopold von Ranke embodies the German School approach. He established history as a separate discipline, independent from philosophy or literature, and stressed the reliance on primary sources (Evans 1999, 15-7). In Ranke’s famous words the role of history was to “only show what actually happened” (Ranke 1973, 57). History written during this period is empirical, occasionally naïve, and its main goal was to produce a series of events. Individual histories at this time featured heroes, battles and political encounters, centering upon ancient Greek and Latin sources, in an idealizing and uncritical way. The contribution of 19th and early 20th century historians mostly amounted to collecting, editing, critiquing, and systematizing the ancient sources dealing with Thrace; the emendations of textual references, mapping of the genealogical relations among the Thracian dynasts and dating major historical events relevant to Thrace were the main occupation of the

6 The German turn of his phrase “wie es eigentlich gewesen” (with the verb ‘ist’ intentionally left out creating an ungrammatical structure) is translated also as “how it essentially was” (Evans 1999, 15).
early historians. Although source criticism was limited at this time, the source collection stage was the necessary first step in establishing the basic structure of Thracian history.7

While the primary sources were checked for coherence and consistency, and ranked according to their reliability, their authority over illiterate neighbors was rarely questioned. The first commentaries on the primary sources uncritically accepted the views and opinions of the ancient writers, such as the secondary position of Thrace in the events of the Aegean. Arnold Schaefer’s dissertation on Thracian society and political affairs during the time of Demosthenes – the first modern discussion of Thracian history - is one such case (Schaefer 1885). Thracians are seen in the role of passive onlookers in the Athenian-Macedonian-Thracian conflict of interests on the Aegean and Marmara Sea coast, while the Greeks and Macedonians are the main protagonists of this political struggle. Any actions on the part of the Thracians are perceived merely as reactions to the incentives and provocations of their culturally superior and socially advanced neighbors. Schaefer’s philhellenism that leads to the direct reading and reception of the primary sources is clearly a product of the German school. Second class Thracians receive little consideration, even though they withstood the onslaught of their more cultured neighbors. His dismissal of Thracians to the backwater of civilization is characteristic and repeated by Bulgarians scholars in the beginning of the 20th century.

The next to explore Graeco-Macedonian-Thracian political relations in slightly more depth is Schaefer’s German colleague Adalbert Höck, who researched Athenian foreign affairs. His doctoral thesis on the topic offers a study of Athenian-Thracian relations during 5th-4th century BC (Höck 1876). His next work – a study on the Odrysian kingdom - is a synthesis focused solely on Thracian history, summarizing all sources available at his time (Höck 1891a). Höck follows the narration of Thucydides and adopts this author’s awe of Thracian power. In this account, the Thracians emerge as powerful and dangerous rivals to both Athens and Macedon, yet the rule of the Odrysians is portrayed as inconstant and fickle.8 Höck cross-references other authors with Thucydides to obtain a fuller picture of Thracian history. Again, we receive an Athenian view of Thracian history, and one which fundamentally lacks critical

7 This approach was challenged by Ferdinand Braudel as being no more than a string of “brief and dramatic acts...[...] a gleam but no illumination” (Braudel 1980, 10-1).

8 Höck is particularly intrigued by the unusual succession of Seuthes I, the late king’s nephew, in place of more qualified candidates in 5th century BC, but concludes, in the absence of other data, that it may be a one-off occurrence (1891, 63). The problem of succession is further discussed in section III.3.5.
assessment of the primary sources. Höck is, however, the first to single out Thracian history and politics as worthy of study.

When literary evidence became supplemented by documentary evidence from new epigraphic and numismatic discoveries, scholars dedicated more attention to Thracian dynastic succession, especially detailing the lives and affairs of individual Odrysian rulers, for example, Hebryzelmis, Kotys I and Kersebleptes (Höck 1891b; Perdrizet 1896; Strazzulla 1901; Höck 1904; Perdrizet 1911). The initial literary focus of Thracian studies was extended by the Czech scholar V. Tomaschek, who in his book Die Alten Thraker summarized the available numismatic, ethnographic and linguistic evidence (Tomaschek 1893). Rooted firmly in the Classics, he agrees with most of Höck’s conclusions, agreeing rather uncritically with the interpretation presented by Thucydides. Tomaschek dates the foundation of the Odrysian kingdom to the aftermath of the Persian wars. According to Tomaschek, the Thracians develop a self-awareness comparable to that of the Greeks. He explains that their kingdom emerges as a reaction to external factors: the imminent Persian threat, and increasing power of the Greek league and Macedonian kings (1893, 76-85). Catalyzed by growing pressures on all sides, the rise of the Thracian state was the only possible response to stave off annihilation. The emergence of complexity was an adaptation similar to the concept of “secondary state”, and Tomaschek’s analysis of the political circumscription of Thrace is likely strongly influenced by the Czech and Bulgarian nationalism burgeoning during his time. Nevertheless, his work is perspicacious and still needs to be taken seriously. Among other claims, Tomaschek also pointed out that the Odrysian kingdom was one of many polities in Thrace, along with the Getae, or Astei (1893, 80-83). Later research, especially on epigraphic, and numismatic material, has confirmed this view (Fol and Spiridonov 1983; Jordanov 2004; Delev 2007b; Delev 2007a). Archaeological work in Thrace, too, has yielded evidence of dispersed regional centers consistent with Tomaschek’s picture smaller regional polities within Thrace (Bozhkova and Delev 2002; Gotsev 2008; Bonías and Perreault 2009).

Tomaschek’s work set the themes for the study of Thracian complexity in its search for the prime movers of the Thracian state. While the motives he had identified were anchored in the present events of national revival, his vision of Thrace as a mosaicked world of fragmented competing polities and communities existing parallel to the Odrysians is a valid and vivid one.

Eventually, the textual historians reached the limits of their current paradigm when dealing with the available sources. Vincenzo Strazzulla focuses his study on the late Hellenistic
Odrysian dynasts, but finally admits that genealogical problems cannot be resolved on the basis of written sources alone, nor can the relations between the Odrysian Kingdom and other Thracian and Graeco-Macedonian polities (Strazzulla 1901, 368-72). The deficiencies of written records, particularly their incompleteness and ambiguity (including variously spelled and misspelled names of rulers), have been an overriding challenge for the field of Thracology.

Once the broad historical sketch was complete, specific topics gained more attention. Treatises on Thracian linguistics, religion and political geography emerged from Bulgarian scholars such as Gavril Katsarow and Dimitur Dechev (Kazarow 1916; Кацаров 1933; Dechev 1952).9

The politics of succession were revisited by Arturo Solari in his study of the Odrysian dynasts (Solari 1912). Solari argues that succession among the Odrysians is not based on primogeniture, but is instead determined by the strength and ability of the members of the royal clan. Being a “powerful relative” within the dynasty provides sufficient grounds for becoming a prince (51-52).10 Historical sources show that Seuthes I, Seuthes II, Berisades and Amadokos II succeeded in place of more “legitimate” heirs. The latter two carved pieces out of the paternal domain of Kersebleptes, son of Kotys I, after his father’s death. Seuthes II is reported to have rebelled against his overlord, king Amadokos. According to Solari, the constant fissioning and fusing processes in the Thracian realm are driven by various competing aristocrats, whose success points to the pragmatic elasticity of Thracian succession rules. Historical examples indicate that Thracian society was not fully centralized, and that power tended to fission, whenever the opportunity presented itself.

Solari’s argument is not entirely new. Höck had wondered about the reason for lax enforcement of succession rules. His explanation for irregular succession was that it maximized the survival of society: “the power or decline of any archaic state depended essentially on the qualities of its ruler” (Höck 1891, 42). Building on Höck, Solari’s hypothesis was vehemently opposed by Fol, who, politically motivated, dismissed Solari’s argument as judgmental and Graeco-centric (1971, 20).

9 These authors rely heavily on material evidence, especially coins and standing remains of ancient cities. In particular, they seek to match the extant ruins with ancient place names and descriptions from the literary sources.
10 After Kotys’s Athenian-inspired murder his underage son’s rule seems contested and the kingdom is divided into trierarchy with Berisades and Amadokos. The strife is welcomed by both Athenians (Dem. 23.8-11) and exploited by Philip of Macedon (Jordanov 1998, 271-3)
Despite the criticism Solari earned from his contemporaries and later historians, his slight volume provides a valuable review of the state of knowledge on Thracian dynastic history and underscores some of the striking features of Odrysian succession and royal genealogy.

Thracian genealogy receives further coverage by Karel Beloch (Beloch 1912). Beloch published his second edition of *Greek History* with a genealogy of the Thracian dynasts that seems reasonably complete. He refutes Tomaschek’s hypothesis that Thracian state formation followed the development of national self-awareness and credits the Persian threat as the triggering force (Katsarow 1933; Fol 1972, 21). Rejecting the presence of nationalism in 5th century Thrace was surely a step in the right direction, deviating from Tomaschek’s modernist view anchored in the revival movement of the 19th century. The hypothesis that Thraco-Persian conflict led to Thracian state emergence is a rereading of the process of “secondary state formation” (Price 1978) suggested by Tomaschek.

Genealogies and royal biographies were further refined during the First World War and its aftermath. U. Kahrstedt (1922) first raised the issue of urbanization in the Odrysian kingdom and underscored the absence of a capital. He proposed that even after their unification, the Thracians continued to live dispersed across the landscape. Rulers moved among larger settlements, but did not have a central, permanent headquarters. Kahrstedt envisioned a retinue of kings, comprised of a warrior class that supplied mobile cavalry units, living and moving like Persian satraps or Carolingian rulers (Kahrstedt 1922, 1552). While sharply critiqued at its time, Kahrstedt’s observation was an acute one; it fitted the archaeological evidence from inland Thrace, and even at the time, stimulated the search for a capital.

Attempts to define the social organization of the Thracians by comparison with other, better understood societies, continued. The loose organization of the Thracians was likened to a Medieval social order by Joseph Wiesner (1963). His book on the Thracians paraphrases much consensual information, but categorizes the Thracian social order as one based on a feudal-retinue system. Gavril Katsarow accepted the opinion of the German scholars and of M. I. Rostovzeff, who described the social organization of Thrace as a “feudal” state (1916, 22). As for the prime mover of the Thracian unification, Katsarow contested the hypothesis of Persian intrusion. In his article he argued that the Persian presence in Thrace was far too short-term and transient to have seriously impacted the state formation processes (Кацаров 1933, 739). Katsarow’s objection suffers from a lack of differentiation between the conditions and triggering mechanisms of state emergence. Triggering mechanisms only work in favorable conditions.
Besides Persian intrusion, one needs to consider the continued pressure the Persian court exercised on the Thracian elites. It is possible that this mutual pressure and emulation among the Thracian and Anatolian elites set the Odrysians on the path towards growing complexity. The Persian intrusion and the political vacuum in its aftermath could have provided the stimulus for the Odrysian expansion. Katsarow, nevertheless, has rejected the Persian force as the main trigger and accepted Rostovzef’s idea of trade between Thracians and Greek colonies as the prime mover of Thracian state formation (Rostovzef 1926, 325). Despite its obvious culture-historical diffusionist bent, this interpretation is not without merit. Rostovzef’s idea of the significance of trade and contact in introducing change in a society has left a mark on Thracian history and archaeology. The mechanisms of trade have been expounded and promoted by Colin Renfrew in his work on prehistoric Greece (Renfrew 1969b).

The impact of trade and exchange was apparent to Bulgarian historians and archaeologists as early as the 1920s. Ivan Velkov and Bogdan Filow, having excavated the mounds in Duvanli and Mezek, demonstrated that a large portion of the assemblages arrived to Thrace through gift exchange among Thracian, Greek, Lycian, Phrygian and Achaemenid elites (Filov, Velkov, and Miko 1934; Велков 1937; Филя 1937). The rising number of imports in mortuary assemblages is one of the clearest markers of the growth of social inequality in Thrace. Growing wealth and the international style of the burial goods points to the cosmopolitan tendencies among Thracian elites as opposed to the more parochial style of the goods associated with the commoners. Culture-history approach was increasingly applied to the growing amount of new archaeological discoveries. Like elsewhere in Europe, the archaeologists identified similar styles and forms of archaeological artifacts, seeing them as manifestations of shared cultural traits, and the historians explained their similarity and variability in terms of migration and diffusion. Strong emphasis on the construction of typologies and erudition in material evidence remained a hallmark of Bulgarian/Thracian archaeology for most of the 20th century.

11 Rozovzef’s emphasis on the trade as a stimulant of political complexity suffered from excessive emphasis on the Greeks as the major vehicle of this change. Rozovzef’s conception of exchange stresses the Greek agency, describing trade as a unidirectional transaction. In his opinion, trade relations stimulated state formation by creating an environment of contact between non-equals, where the “primitive” Thracians could learn from the “civilized” Greeks. State formation among the inferior trade party (the Thracians) is subsequently encouraged by the superior party (the Greeks).
During the Second World War, treatises on Thracian complexity became scarce, given the lack of new evidence and new approaches. After the war, however, Bulgarian archaeology underwent a fundamental change of paradigm.

In retrospect, the research on Thracian socio-political evolution in the first half of the 20th century can be summarized as an empirical reading of the Greek sources with interpretations defined as Graeco-centric diffusionism. Cultural-historical approach is evident in the attention paid to the Persian impact and trade with the Greeks. The proponents of each of these approaches attribute the Thracian development to the “advanced” civilizations in the neighborhood. This academic perspective can be attributed to three factors: 1) a lack of suitable theoretical approaches; 2) the prevalent intellectual traditions of the time, and 3) insufficient data. The theoretical basis for the analysis of socio-political structures was constrained by uncritical reading of the literary sources and bounded by the paradigm of universal linear evolution, itself driven by diffusion and invasion or migration (Trigger 2006). The Greek polity was accepted as a model, with less accomplished systems seen as pale counterparts, striving to reach the Greek level of advancement. The theory of stages, with its progression from savagery through barbarism to civilization, added an ideological slant to the monolithic framework. Higher stages of the progression were “better”, lower were judged “worse”, and progressive development was the norm – ideas that introduced what now appear as arbitrary judgments into considerations of socio-political evolution. The exclusive reliance on written sources also limited study of the Thracians more directly, since the texts mention relatively little about Thracian polity and society. The occasional disdain for the Thracian barbarian in Demosthenes could have perhaps been balanced with the impressive accounts of Thracian power in Herodotus, Thucydides or Diodorus. The biases of the sources, however, had been exacerbated by their 19th and 20th century Classical readers. It was mainly the scholars’ Philhellenism that marked the Thracians as socially and culturally inferior and placed them into the barbarian periphery of the Classical world. It was not only the scarcity and bias of ancient accounts but mainly limited methods of historical research that had constrained understanding of Thracian society in the late 19th and early 20th centuries.
II.2. **The New Bulgarian Archaeology - Marxist Revision**

An abrupt political change in Bulgaria disturbed the normal rhythm of the development of Bulgarian archaeology. With the advent of communist rule in 1945, direct state interference guided archaeological fieldwork and set the topics that were fit for investigation (Dimitrov 1950). The National Archaeological Museum and the Archaeological Institute were merged into the Bulgarian Academy of Science. A wider gap opened between the archaeological community and the public (Bailey 1998). On the other hand, generous state funding flowed into archaeology, allowing for unprecedented large-scale excavations from the 1950s to the 1980s. The goals of archaeological work were staked out at annual national archaeological conferences, and their results presented at archaeological meetings internationally. All archaeological students had the opportunity and obligation to work on archaeological excavations at home. Archaeology was poised at the beginning of several decades of generous state support, yet it also had to conform to state-set agenda (Velkov 1993).

Archaeological practice flourished under the state patronage. Excavation and the recovery of material evidence were paramount during this era (Fol 1972, Angelov 1982, 2). Total excavations at the impressive flagship sites of Seuthopolis (Hellenistic Thracian capital) and Karanovo (Prehistoric tell) during the early 1950s exemplify the new “big project archaeology” approach (Dimitrov 1958b). This large-scale research, however, remained site based and agenda driven (Dimitrov 1950, 1970; Ovcharov 1995). The main agenda behind these often megalomaniac projects\(^{12}\) was to highlight the antiquity of Bulgarian civilization, emphasize the Slavic connections of the Medieval Bulgarian kingdom and, through both of these, claim modern Bulgaria’s place on the European scene and its affiliation to the USSR (Angelov 1982, 2). Bulgarians needed a sense of identity and pride, and archaeology was seen as a tool to provide it. State support for archaeology was generous and the scale of field projects has only a few parallels in Western Europe. Advances in the fields of periodization, chronology, and formal

\(^{12}\)The initial emphasis of the reformed archaeological discipline in Bulgaria was on the promotion of Medieval Slavic histories, as it was the main focus of Soviet archaeology (Angelov 1984, 1). It included the study of major ethnic groups that were associated with constituent states of the USSR, such as the Khazars and proto-Bulgars. The Bulgarian state invested massive amounts into the excavation and investigation of Pliska, Preslav and Tsarevets, the capitals of highly evolved Middle Ages Bulgaria (Angelov 1984, 2). An excellent example of a government-sponsored project to boost national identity is the Medieval capital at Veliko Turnovo. The fortified part of the city was rebuilt in a Medieval guise to commemorate the anniversary of 1300 years of Bulgarian statehood celebrated in 1981. The reconstruction followed suit after a multi-year excavation campaign between 1950-1981, funded entirely by the government.
analysis of pottery were at the contemporary standard; Bulgarian prehistory was at the cutting edge (Georgiev 1969, 1972, 1979). Textual studies were not forgotten; discoveries of new inscriptions led to the new burst of publications on Odrysian-Greek relations and sparked a surge in publications synthesizing epigraphic data from all over Bulgaria (Mikhailov 1970; Danov 1976).

As field methods became more systematized, archaeology was set on a new theoretical course. With Bulgaria joining the Eastern Bloc, the focus in historical studies shifts sharply from the empiricist historical / culture-history approach to a Marxist agenda. In a quest to change the face of historical science, archaeologists and historians mobilized to produce interpretations that would better fit the imperatives of the new order (Dimitrov 1949, 1950).

These positive developments in Bulgarian archaeology under the control of the state were counterbalanced by several downsides. The subject of study was decided centrally, and archaeology thus became an extended arm of the government. Controlled by a small group of well-established personalities, advancement – both personal and intellectual - was stifled within the discipline. The state-driven agenda provided additional negative incentives by stressing the sensational, exotic, and intrinsically valuable discoveries at the expense of scientific and problem-oriented research (Neústupný 1991, describes the challenges of reversing the state agenda; Bailey 1998).

During the 1960s, Bulgaria experienced another shift in political and cultural atmosphere: a detachment from the aggressive dictates of pro-Russian ideologues and a slight relaxation of imposed norms. Domestic affairs, especially issues of national heritage and identity, percolated to the top, replacing the search for Slavic roots. Thracian studies that had suffered somewhat, due to their “classical” status and association with the bourgeois western investigators, now began to flourish (Crampton 2000; Zlatkovskaya 1971; Fol 1972, 1973). Textual studies of things Thracian were rehabilitated, and work on the reconstruction of Thracian history and tribal territories continued, this time based on the study of ancient placenames (Beshevlev 1970a, 1970b).

13 Mircea Anghelinu in an excellent essay *Failed Revolution: Marxism and the Romanian Prehistoric Archaeology between 1949 and 1989* (2007) provides a revealing exposé of the convoluted patriarchal-system that archaeological studies developed into during the communist period in south east Europe. The cult of personality, obedience to one’s professor were the touchstones for any aspiring academic, and formed the vehicle of state control by which conformity and knowledge control was maintained.
Conceptually, Thracian studies shifted from political histories to economic life, demography, and the dynamics of social relations and evolution. K. P. Dimitrov had led the way in the 1950s, categorizing the Odrysian kingdom as a society of the "barbarian type" on the basis of evidence from burial mounds and the city of Seuthopolis (Dimitrov 1958b). This type of society functions on the basis of the "slave mode of production". It evolved thanks to the antagonistic relations between the exploiting elites and subjected exploited slaves. While the barbarian society remains a fundamental evolutionary category embraced by Marxist archaeology (going back to Morgan's primitive society), this label remains a static and arbitrary denominator, explaining little about the actual social order in Thrace, besides suggesting that slavery was extant. With time, the analysis of socio-political evolution becomes more dynamic and complex (transcending mere political history). New attention is paid to material as opposed to literary evidence.

In 1966, Balkan congress on Thracian state emergence was organized in Sofia. Valeria Zlatkovskaya, a Russian ethnographer, presented her theory about the origins of the Thracian state, which she based on internal conflict. On the basis of numismatic evidence from the Pangaion region in southwest Thrace, Zlatkovskaya argued that tribal alliances preceded the unified Thracian state (Zlatkovskaya 1969). Most of the allied Thracian communities used slave labor. It was the internal conflict between the exploiters and the exploited that drove the increasing social complexity. Despite these antagonisms, the social strife in Thrace was less intense than in the Near Eastern archaic states. Zlatkovskaya, therefore, assigned Thrace to the category of early class society. Zlatkovskaya’s explanation presents an application of Marxist theory, where economic relations are seen as driving the social evolution. While there is little evidence for class struggle in 6th-5th c BC, her thesis brings a valuable concept of Thracian tribal confederacy into the debate of Thracian emergence.

II.3. **Alexander Fol and the Birth of Thracology**

The ferment in Thracian studies culminated in the 1970s through the institutionalization of the field as a standalone archaeological discipline. This feat was accomplished by Alexander Fol, a prestigious archaeologist and thinker. His dissertation on Thracian society and demography (1970), followed by a sequel about political organization in Thrace (1972), initiated an academic as well as a political career. Positioned at the crossroads between politics and scholarship, Fol
advocated and won a separate department of Thracology at the Bulgarian Academy of Sciences. With a thorough grasp of the field's history and armed with new methodological and theoretical approaches, Fol set out to transform Thracian studies. He dismissed most of the scholarship on Thrace to date, considering it irrelevant, biased, and stemming from inappropriate intellectual perspectives. His theoretical introduction in the sequel sparks with erudition, but also bias and rage when commenting on the: “prejudice and disregard with which the bourgeois historians have treated the Thracians, demoting them to the backwater and periphery of history” (1972, 27). In Fol’s opinion western historians have handled the subject of Thrace with "inertia and thoroughly in the tow of Helleno- and Romano-centric literary tradition” (1972, 26). After demolishing the working theories of his predecessors, Fol presents his new paradigm. His *Social Demography of Thrace* is an entirely new retelling of the epigraphic sources, filtered through the lens of Marxist historiography, where the categorical imperative rang: “the mode of production in material life determines the general character of the social, political and intellectual processes of life. It is not the consciousness of humans that determines their existence; on the contrary, their social existence determines their consciousness” (Trigger 2004, 216). Fol builds his interpretation of Thracian society on socio-economic relations, taking the “mode of production” as the main marker of the evolutionary advancement of different ancient societies. With the “slave mode of production” used as the main criterion, the differences between Thracian, Greek and Roman society immediately contracted, since all these societies used slave labor (1970, 279). This approach was an auspicious start for a comparative economic treatise, yet to use the mode of production as the only indicator for social evolution is as reductive as the earlier emphasis on political history. Fol continues by arguing that comparisons between slave-owning societies can be undertaken not only synchronously across different cultures but also diachronically within a single culture (1970, 281). He presents this approach through his investigation of the Thracian social order in the Classical period. In the absence of other direct evidence on the Thracians, he bases his study on the analysis of epigraphic monuments commissioned by Thracian soldiers and veterans in Roman provinces in Western Europe (dating to first - 3rd centuries AD). Evidence on slaves and freedmen is drawn from the Roman provinces of Thrace and Moesia. Adhering to the Marxist dictate of “change in social structure will follow the change in economic relations” (1970, 41), Fol asserts that Roman-era evidence from western Europe can inform the social structures in first millennium BC Thrace because the mode of production remained largely unchanged. This reasoning today
appears suspect, yet in Fol’s time it represented the best of Marxist scholarship, asserting “systemic interdependence of all aspects of social life” (Trigger 1970, 220). Fol’s book provides an exemplary example of Marxist historical science, in which he was a fervent believer. It helped him recast Thracian society from a string of rulers to a group of social actors. Fol counteracted the previous emphasis on political history and external factors such as conquest or international trade. He brings inner social factors into focus, staging them as determining agents of socio-political development. Earlier Graeco-centric criteria of socio-political development such as the presence of cities and capitals, architectural monuments and written sources were rendered irrelevant by his approach.

In his *Political History of Thrace* (1972) Fol’s theoretical outline is just as powerful. His portrayal of Thracian political organization is based on comparison and contrast with Greece. Having previously critiqued the naïve reception of Greek concepts and judgments by Classical scholars, Fol now adopted Greek terminology and uses it for Thracian society. He coined the term “Mycenaean Thrace” to describe the period reflected in the Homeric epics. In later periods he describes Thracians with terms such as *ethne* and *demos*. Greek vocabulary sits side-by-side with Marxist labels such as “patriarchal society” and “class society”, which Fol uses to describe the social reality of Thrace.

Fol described the clans of the 6th century BC as consolidated into territorial units, capable of integrating newcomers and accommodating new craftsmen and specialists, especially those related to procuring and manufacturing iron. Leadership remained in the hands of the priest-king and primitive administration in the form of a mounted aristocracy. Social stratification is manifest in rich princely burials like those at Duvanli in the last quarter of 6th century BC. Fol sees different triggers to the growing complexity in Thrace. Southwest and southeast regions of Thrace experience a burgeoning political life stimulated by the contact with Greek colonies. Numismatic evidence from the southwest regions points to the emergence of local dynastic lines (Satrae, Bisaltae, Deroni, and Edoni). In the 5th century BC, this formative turmoil wanes in the southwest, and the center of power shifts southeast to the hands of the Odrysians. Incited by the Scythian expedition of Darius the Great, the Odrysians move into the area left vacant after the Persian invasion. They gradually expand, using the profit from conquered lands. By the end of the 5th century BC, the Odrysian kings Sitalces and Seuthes had marched as far as Thessaly and expanded Thracian territory to its maximum historical area (1972, 214).
Although Fol keeps to the themes articulated by his culture-history predecessors (such as Greek colonization and Persian invasion), his explanations shift dramatically from migrations to internal social dynamics. Fol advocates the trajectory of political integration and disintegration, with centralization and de-centralization ebbing and flowing across two centuries, under the external stimulus from the Persian and Greek neighbors. He sees the rise of the Thracian state as multi-causal. He acknowledges that Thracian society is heterogeneous and fragmented and argues for the existence of contradictory tendencies, economic and social, that both promote and oppose change within the Thracian society. Each of the tribes responds to external and internal pressures in a distinctive fashion. Fol’s approach to the Thracian emergence is different from his predecessors, because he sees it internally driven through Thracian agency, evident in the Thracian reaction to political or social events. While migrations and external pressures of Greeks and Persians may influence and direct the Thracian evolution, its basis rests with Thracian internal decision-making.

Fol’s reinterpretation of the extensive material evidence in light of Thracian agency represents one of the first and only truly Marxist approaches in Bulgarian archaeology. While some of the assumptions sound strange to modern ears, and his use of archaeological evidence seems problematic today, it did open a new avenue of enquiry for his peers, stripping off their Classical blinders and shifting the emphasis from political history to socio-economic phenomena. Unfortunately, very few scholars followed his theoretical footsteps. The reason was not always ideological dissent, but rather disinterest in theory and the preference for familiar work in the culture-historical tradition (Anghelinu 2007).

Fol is a product of his era. His narrative weaves together the gradually expanding body of archaeological data – epigraphy, coins, and burial monuments - through time. His work exemplifies the growing concern for material evidence, which is reflected in the large scale projects organized by the new Thracology institute (Panaitov 1974; Georgieva 1976). While he was perspicacious when it comes to critical assessment of the gaps and weakness of the intellectual framework of his colleagues, Fol was surprisingly blind to the deficiencies of his own framework.

Alexander Fol was an amazing phenomenon produced by a particular historiographic and political context. His attempt to provide an exemplary Marxist narrative of Thracian history

Fol’s interpretation of the Thracian political emergence suffers from evident linearity: the integration of the Odrysian kingdom comes across as a biologically determined necessity, while alternative developments among other Thracians tribes are not pursued or even theorized.
and society was genuine and sincere. His analyses may have failed the test of time, having been superseded by newer paradigms or abandoned for more comfortable culture-history, yet Fol’s name ranks high among Bulgarian archaeologists and his conclusions regarding the rise of the Thracian complexity are still cited and accepted (Porozhanov 1998, Yordanov 1998, Marazov 2001).

II.4. **Data Banking and the first Standardization**

Fol’s volumes provided the basis for discussion of Thracian polity for a decade following their publication. The next topics he explored were individual tribal histories and geographies (Fol and Spiridonov 1983). Most new efforts were invested into expanding the available pool of archaeological evidence through regional archaeological projects. Rigorous work on old collections ensued as chronology and typology remain the center of archaeological concerns (Kaiser 1995, 108). Fibulae, coin and pottery studies predominate among artifact typologies (Fol, Nikolov, and Hoddinott 1986; Gergova 1987). Findings from Southopolis, now long buried, were still processed for publication (Dimitrov et al. 1984; Dimitrov and Penchev 1984). The newly discovered site of Kabyle received much attention and functioned as a touchstone for theories of Thracian city-building as well as a training ground for students of archaeology (Velkov 1982). Massive reports emerged from comprehensive large scale archaeological projects in the Rhodopes (Fol and Venedikov 1976; Venedikov 1982). Archaeology has gone heavily regional after the success of the Thracological expedition in the Rhodopes. The Struma River valley in southwest Bulgaria was the next site of a rigorous large scale survey project organized by Miecsyslaw Domaradzki, a rising star of Bulgarian archaeology (Domaradski 1982a, 1982b; Domaradzki 1983). Interest in rigorous and systematic methodology characterizes Domaradzki’s survey work in the Strumeshnitsa valley, which is one of the first extensive surveys of western format published in Bulgaria. Having promoted the practice of surface survey, Domaradzki later advocated the standardization of documentation of cultural heritage in Bulgaria (Domaradski 1980). The culmination of his initiative was the foundation of the Archaeological Map of Bulgaria, which became the national database of cultural monuments (Domaradski et al. 1988).

All in all, the 1980s were filled with much fieldwork aimed at the aggregation of empirical data relevant to the study of the Thracians. The refinement of the archaeological method and institutionalization of national cultural heritage was another major step towards professionalism in Bulgarian archaeology. The conceptual framework of Thracian archaeology
shifted from the Thracian society per se to the material remains and histories of other peoples living in the Balkans. Domaradzki’s work on *Celts in the Balkan Peninsula* explored the interaction and cultural exchange of Thracians and Celts in the Balkan realm from the culture-historical perspective (Domaradski 1984).

II.5. **Post 1990 – Back to Roots**

The 1990s have been described by most Bulgarian historiographers as apocalyptic for Bulgarian archaeology. With the removal of state control, the state funding has plummeted, leaving the archaeologists without any material support (Stoyanov and Lozanov 2008, 3). At the same time the opened borders allowed for an exchange of ideas that had not been possible before. In Bulgaria, western educational models were introduced; interdisciplinary approaches including archaeometry became available at the universities. After these structural changes in funding and education, institutional changes in the organization of Bulgarian archaeology were slow to follow.\(^{15}\)

Most of the synthetic publications at this time were written by foreign scholars (Archibald 1998; Oppermann 1998; Archibald 1999; Oppermann 2004). International connections were rekindled and new investigations started with foreign support at Pсти罗斯, Nicopolis ad Istrum, Iatrus, and others (Bouzek, Domaradzki, and Archibald 1996). A few domestic research field projects managed to operate, among them Kabyle and Sboryanovo, either thanks to Sofia University or outside sponsorship (Velkov 1990, 1991a; Stoyanov 1992a, 1992b). Rescue excavations at major infrastructure development projects such as Koprivlen or Maritsa Iztok remained the only regular state-funded archaeological enterprise (Panayotov et al. 1991; Panayotov et al. 1995). The volume of rescue work has grown immensely, not only due to the infrastructure, but also, due to unprecedented levels of looting that needed to be contained. The controversial practice of expedited and mechanized mound excavation developed, shrinking the gap between the archaeologists and the looters.\(^{16}\) Despite the economic and existential pressures of the 1990s, the results of these projects have provided a basis for valuable secondary research (Gaydarska 2007).

\(^{15}\) Institutional changes in Bulgaria were slow and less drastic in comparison to other post-communist countries, where the traditional state institutes were significantly trimmed and reconstituted, while private archaeology was introduced. For detailed discussion see: Bőkönyi 1993; Neústupný 1993.

\(^{16}\) The practice is connected with the figure of Georgi Kitov, an archaeologist at the Institute of Archaeology, who promoted expedited mound digging in order to save them from robbery or destruction.
The transition has been a challenging phenomenon for Bulgarian archaeologists; the collapse of state support and protection wreaked havoc in people’s lives as well as in cultural heritage management. Research was stunted with the exception of rescue projects and privately sponsored research. Although the transition was mostly traumatic, it had some positive effect, especially in disrupting the existing structures in archaeology and opening Bulgarian archaeology to western researchers.

Political turmoil and economic decline notwithstanding, Thracian studies continued. Although the introduction of western paradigms was slow, traditional concepts still figured prominently in new writings. Kiril Yordanov and Kalin Porozhanov used the historical sources freely like Alexander Fol, yet started experimenting with new concepts of subsistence mode such as the mobility and stationarity, and the taxonomy of neo-evolutionary theory (Jordanov 1998; Porozhanov 1998). A number of new contributions to Thracian archaeology emerge at this time, whose joint marker is an innovative use of different traditions. Nikola Theodossiev (2000b) published a comprehensive overview on the Northwestern Thracians (Triballi). He presents an indirect historical approach where archaeological and historical data are juxtaposed and linked geographically (2000b, 2-3). Miecsyslaw Domaradzki (1998) assesses Thracian complexity during the transition to the Hellenistic period by looking critically at archaeological remains of the major cities and burial assemblages. Margareta Tacheva (2000b) puts forth her theory of internal rivalry among the Odrysian and Spartokid dynasty during the Hellenistic period. Her booklet problematizes the traditional view of Thracians opposing the Macedonians and surveys the indicators of internal political faction and contrasting loyalties among major Thracian dynasts during the Macedonian conquest. A common denominator to most of these publications is a critical use of historical sources, complemented with a rigorous analysis of the archaeological material. The work of all of these authors interacts with various themes from western scholarship, while keeping a sound historical and culture-historical foundation.

The social structure and organization of the Thracians is revisited in a synthetic manner by Kalin Porozhanov in his publication on Society and State Organization of the Thracians (1998). This monograph focuses on economy, way of life and subsistence of the Thracian

17 Amidst the scarcity of state funding, archaeologists would occasionally engage in so called “media archaeology”. In “media archaeology” attractive research topics such as the archaeology of Thracian mounds and sanctuaries won its proponents greater public funding thanks to heavy media coverage. Often the rigor of archaeological method gave way to speculations and fanciful interpretations in the production of satisfying and popularizing TV programs.
communities. In his opinion, the Thracian economy was characterized by a long-term cycling pattern of “a relatively low stationarity and respectively active mobility” (1998, 205).18

Porozhanov uses terms such as “class/estate” society as well as “tribe” and “chiefdom” when describing Thracian groups in different times in history (1998, 205-206). He draws both on the Marxist tradition introduced by Fol and on the anthropological vocabulary from western literature, although the latter remains unreferenced and undescribed.

Porozhanov’s reconstruction of Thracian society is not without merit. His picture is fluid and accommodates cyclical development, progressing or regressing according to environmental and historical circumstances. Thracian studies seem liberated from an ideological dependency on the idea of linear progress and the need to prove the attainment of high levels of complexity. Furthermore, Porozhanov’s conceptual model is developed to stand independently of Greece and its polis culture, but is capable of accommodating Greek evolution of its own terms. While Thrace is contextualized within, and contrasted with, other cultures around the Aegean, Porozhanov has presented an approach, which deals with Thracian society on its own ground.

While the work of Kalin Porozhanov follows in the footsteps of Alexander Fol’s book on Thracian social structure (1970), Kiril Yordanov’s work (1980) addresses the second line of Fol’s research, the Thracian political organization.

Targeting a shorter timespan than Fol’s publication (1972), Kiril Yordanov’s book Political Relations between Macedonia and the Thracian States (1998) focuses on the Thracian and Macedonian rivalry and the gradually increasing hold of Macedonian rulers on Thrace (Jordanov 1998). This narrative is a high-level military history, centered on the personalities of Thracian and Macedonian monarchs, rather than the processes that underlay the warfare, or the effects it might have had on the lower tiers of social hierarchy. According to Yordanov, Macedon never succeeded in fully subordinating Thrace (1998, 279). Furthermore, Macedonian rule is not fully established in Thrace even after the victories of Alexander, a fact he corroborates by the lack of archaeological evidence.19 Jordanov’s account is valuable in its

18 Porozhanov connects archaeological signs of growth and economic boom with the periods when Thracian society was relatively sedentary, and its institutions had time to evolve. The periods for which archaeological or historical evidence is scarce are interpreted as periods of mobility, during which complex forms of organization devolve to simpler ones, as large proportion of the population undertake a pastoralist mode of life (1998, 205).
19 It is interesting that Jordanov does not discuss whether the Thracians dynasts ever succeed in uniting their realm. One can perceive a double standard in conceptualizing Macedonian as opposed to the Thracian rule.
attention to detail and to the limits of rule of any entity in Thrace. His depiction of Macedon and Thrace as competing peer polities is again a valuable palliative to the conventional image of Thrace as a peripheral and passive zone.

In a later article, entitled Thracian States, Yordanov discusses individual Thracian polities as they emerge from the textual and numismatic data from the Late Bronze Age to the Trajanic wars in the 2nd century AD (Jordanov 2000). This article merges several intellectual traditions. Following in the steps of Höck and Katsarow, Yordanov uses an empirical historical approach, placing primary value on the Greek written texts, even later mythology, and using archaeological evidence only sporadically to corroborate established facts. Overall, the article follows old traditions, adding only a few new discoveries and fitting them within a liberal (and wishful) definition of the state.

The adoption of terms such as “chiefdom”, “peer polity” and “mobility” in Porozhanov and Yordanov mark an attempt to incorporate current archaeological theory in Bulgarian scholarship, and to place Thracian society on a par with similar societies worldwide. The authors, however, fail to define what constitutes the Thracian chiefdom, state or confederacy, and remain vague as to the mechanisms triggering their emergence. The anthropological categories of social evolution (tribe-chiefdom-state) are used as word for word substitutes for old categories of “feudal state”, or ”barbaric society”, instead of adding meaning to the ancient society. As with the old typology, the suitability of the new typology is not questioned, its categories are not reviewed, and their fitness with the evidence from Thrace is not demonstrated. The new evolutionary terms are accepted as a ready package in a move to match step with current archaeological theory. This move remains unconvincing due to the lack of engagement with the new categories. It is also thwarted by the scope of each of the publications, which cover several centuries and hardly allow for nuanced definitions. The scope of both books approaches that of Alexander Fol, yet they fall in the same trap of promoting the authors’ intellectual frameworks uncritically.

Zofia Archibald stands out among the few western scholars in Thracian archaeology in the 1990s and 2000s. With a detailed command of Bulgarian literature, her dissertation presents the most comprehensive synthetic work on the Odrysian Kingdom (Archibald 1998). She relies heavily on archaeological mortuary evidence and makes use of the auxiliary epigraphic, numismatic, ecological, and other, evidence as well historical sources. She treats the sources critically and provides a thorough discussion of methodologies. Her critical reasoning and the
broad swath of her book make it one of the foundation stones for the history and archaeology of Thrace. Despite the years since its original publication, this volume offers constant insight.

Archibald’s treatment of Thracian society is theoretically grounded in the core-periphery model, arguing that the Thracian state emergence is the result of gradual adaptation of social institutions comparable to those of its neighbors. Sandwiched between two dynamically expanding “core” cultures, the “peripheral” culture of Thrace responds to the growing political and economic influence of its neighbors (1998, 4). Thrace resists being swallowed by either the Greeks or the Persians. Instead, local rulers cultivate relations with both, and in the process, introduce fundamental changes to social organization at home. A new state arises, which survives as long as the two “core” areas do. Archibald admits that the power of the kings is not as absolute or unlimited as in the Persian Empire, but rather “fluid, its definition subject to the dictates of geography, social relationships and circumstance” (1998, 3). The Odrysian state is thus less organized and complex than either of its neighbors, but is nevertheless accepted by Persians and Greeks, both of whom seek accommodation with Thrace before furthering their ambitions in the region. Odrysian kings exploit these intentions for their own ends. Their ties with international elites, and acquisition and exchange of exotic goods enhanced their status at home and fuelled further tightening of their immediate retinue as well as the entire Thracian community (1998, 4).

Archibald dates the emergence of the Odrysian dynasty at the end of 6th century BC (1998, 3). The Odrysian “tribe” gradually consolidates into a “supra-tribal polity” in the Early Iron age, and becomes a “well defined state” at the turn of 5th and 4th century BC during the Odrysian heyday (1998, 5). She uses terms such as “prince”, “ruler”, or “king” to label the Thracian nobility based on the physical aspects of their burials.

Archibald writes excellently and provides a captivating picture of Thrace without adhering to any particular model of complexity. Her definition of state remains fluid and somewhat vague as she applies it to Thrace. Although her discussion and interpretations are based mainly on elite history and archaeology, the narrative does not lack nuance. A great variety of elite interactions emerge from her treatment of material evidence. She sees much situational complexity among the Thracians, as well as a less centralized and less rigid structure. Her book sets the stage for the study of non-elites and calls for controlled comparisons with more clear-cut (or better researched) areas such as Homeric Greece, Greek polis, Macedonian polity or Celtic society. Archibald sees the need for a bottom-up analysis to test her conclusions.
and to allow for a more accurate positioning of Thracian society on the continuum of complexity.

An excellent match to Archibald’s synthetic work on the Bulgarian side is Mieczysław Domaradzki. Domaradzki emerged in the 1980s as one of the most prominent scholars and theoreticians in Bulgarian history and archaeology. Having started his career with the study of non-Thracians in Thrace, he promoted surface survey as an independent research method for the study of entire regions. Having excavated and surveyed widely, with an eye for detail and professional honesty, he wrote critically on topics of urbanization and mortuary analysis, issues entwined with the evolution of Thracian society. Domaradzki’s thesis opposes directly those of Yordanov and Porožhanov. He argues that city building proper can be attested in Thrace only with the urbanization program of Philip of Macedon, imposed after his conquest of Thrace in the 4th century BC (1998, 37). Domaradzki’s conclusions are based on an incisive analysis of archaeological data, combined with a critical review of the sources. While he engages with heavily politicized topics in Thracian studies, his interpretations remain judicious and highly professional (Domaradski and Taneva 1998).

II.6. The Last Decade

While some of the malaise of the transitional 1990s has carried into the years of the twenty first century, the political integration of Bulgaria and the European Union in 2004 was an auspicious step for Bulgaria’s cultural heritage. Extensive infrastructure improvements demanded hundreds of rescue projects, which produced data that filled in the picture of ancient Thrace. Large volumes dedicated to discoveries at single sites or regional summaries were produced in this decade (Bozhkova and Delev 2002; Николов, Нехризов, and Цветкова 2008; Georgieva and Momchilov 2010). They were complemented by volumes dedicated to specific personalities and professors, which combined essays on diverse topics (Fol 2002; Rabadjiev and Milcheva 2005; Bozhkova, Popov, and Kuzmanov 2008).

Besides the state-funded rescue work, privately funded initiative continued in Bulgaria, mainly in the sphere of the so called “media archaeology”. This archaeological practice aimed at capturing public attention and private funds through the coverage of intrinsically valuable sites or stimulating topics, such as ancient gold or ancient ritual (Fol 2000; Stanilov 2006; Dimitrova

20 Among the most visible publications of survey work belong the following: Domaradski 1980; Domaradski 1982b; Sliwa and Domaradski 1983; Domaradski 1984; Domaradski, Lisitsov, Kamenerov and Goshev 1988; Domaradzki 1990; Domaradski 1999
The number of foreign-funded projects remained small and limited to well-established projects. Much of the international activity was constrained to major exhibitions and publication of excavation results.

While Thracian archaeology was mainly studied by home-grown scholars, the open borders facilitated scholarly exchange and exposure of Bulgarian scholars to the western education system. Nikola Theodossiev, having obtained his degree at Oxford, wrote his dissertation on the archaeology of Thracian tribes of NW Bulgaria (Theodossiev 2000b). Using an aggregate of “historical and geographic” method, his work fulfills the traditional (culture-historical) criterion of professional competence and typological erudition, but complements it with a new emphasis on spatial organization of human activity. His recent review essay Ancient Thrace during the first Millennium BC is an update on Archibald’s book with an up to date bibliography (Theodossiev 2011). While a useful review of the newest archaeological findings in Bulgaria, methodological issues remain secondary in this review and the Thracian polity is commented on briefly as the “tribal confederacy”, leaving out further explanation. Useful as a synthetic article, the essay exemplifies the position of Bulgarian archaeologists who remain above the theoretical or methodological issues.

Traditional topics of urbanism, coinage and religion receive new treatment from a new generation of young scholars in a series of volumes published by Sofia University and the Archaeological Institute (Rabadjieva and Milcheva 2005; Stoyanov et al. 2005; Bozhkova, Popov, and Kuzmanov 2008; Cholakov and Chukalev 2010). The overall interpretations of the Thracian state proposed during the 1990s remain unchallenged, although a number of critical articles

21 Persisting institutional obstacles and the lack of sufficiently large funding schemes for research (as required by the permitting process) provided the greatest barrier to foreign presence in Bulgaria. The reluctance and insecure attitude of some Bulgarian researchers towards foreigners posed an additional obstacle. A good example of the latter is in Nikolov’s review Nikolov 2004 of the current status of archaeology in Bulgaria in the journal of Arheologiia. He generally argues against the need for foreign presence in the country. In existing joint projects Nikolov assigns the foreign participants the responsibility to fully bear the multi-year project funding, while their Bulgarian partners retain all decision-making power. His article illustrates the post-colonial attitude felt by some Bulgarian scholars. These expectations reflected and reinforced the requirements of the permitting process in Bulgaria until recently.

22 Domaradzki 2000; Bouzek, Domaradzka and Archibald 2002; Echt 2004; Oppermann 2004; Conrad, Einicke, Furtwängler, Lühr and Slawisch 2006; Bouzek, Domaradzka and Archibald 2007; Oppermann 2007; Bouzek, Domaradzka and Archibald 2010
challenge some of its constituent ideas. Gocha Tsetskhadze attacks the inflated view of inland urbanization in his comparative assessment of *emporion* Pistiros, defying its role of internal merchant colony (Tsetskhadze 2000). Zofia Archibald focuses on Thracian religion and identity, underscoring the need for an alternative explanation of Thracian social organization (Archibald 2004; Archibald 2005).

The first decade of the twenty first century finds Bulgarian archaeology in the process of steady reformation. Although the emphasis on culture-history, typological, and historical erudition predominates, young scholars are increasingly experimenting with new paradigms and ideas, and new theoretical and methodological approaches are acquiring a stronger hold in Thracian studies. TRAP has been developed within this multilinear framework to fill in an existing gap in settlement studies. It provides a reading of the Thracian state from an as yet untested (in Thrace) theoretical and methodological perspective.

23 A new discussion of the Persian impact is presented by Delev 2003. Celtic statelet within southeast Thrace is discussed in Emilov 2005. The competition between Seuthopolis and Kabyle is argued for by Tacheva 2000b and numerous other issues concerning Seuthopolis are presented by Димитров 2011.
Chapter III. Thracian Society in the Written Sources

References to Thracian socio-political organization in ancient texts are indirect at best. Few of the ancient authors had first-hand experience of Thrace during the Classical and Hellenistic period and few were genuinely interested in the political organization of their northern neighbors. Most of the histories were produced by, for, and about elites, featuring biographies of “big men”, ethnographies of strange peoples, descriptions of military campaigns, records of dynastic dramas and genealogies, and discussion of diplomatic affairs that impinged on Greek interests. Also available are anecdotal descriptions of geography, customs and curiosities of non-Greek peoples, when those details are relevant to the larger narrative. The majority of the available information has been communicated to the writers orally and filtered through their interests and perception of the world. Most of the Greek and Roman accounts, therefore, need to be accessed with an awareness of the individual writer’s perspectives and agendas.

<table>
<thead>
<tr>
<th>Category</th>
<th>pre-Classical</th>
<th>Classical-Hellenistic</th>
<th>Hellenistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Sources</td>
<td>Homer, Hesiod (8th c BC)</td>
<td>Ephorus of Cyme, Theopompus of Chios</td>
<td>Hieronymus of Cardia</td>
</tr>
<tr>
<td></td>
<td>Herodotus, Thucydides, Xenophon</td>
<td>Demosthenes (384-322)</td>
<td></td>
</tr>
<tr>
<td>Secondary Sources</td>
<td>Sophocles, Euripides, Plato (429–347)</td>
<td>Isocrates (436-338)</td>
<td>Aristophanes (450-386), Aristotle (384-322)</td>
</tr>
<tr>
<td>Tertiary Sources</td>
<td>Polybius (150 BC), Poseidonius</td>
<td>Strabo (64BC-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diodorus (60-30 BC), P. Trogus, Tacitus</td>
<td>Plutarch (60-120 AD), Appian</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Athenaeus, Polyaenus (160AD)</td>
<td>Cassius Dio (164–229 AD)</td>
<td></td>
</tr>
</tbody>
</table>

Table III-1: Ancient sources by category, the lost primary sources are in italics, the available ones are in bold.

The Greek texts can be divided into three groups (see Fig. III.1). The “primary” group encompasses sources written by contemporary (Classical and Hellenistic) historians and commentators, who were either direct eye-witnesses to the political events and customs in Thrace or had some likelihood of having visited the regions. Herodotus, Thucydides, Xenophon and Demosthenes fall into this category. There were other authors, but their accounts have been preserved only by later, Roman authors. The secondary group consists of contemporary or later writers who lacked first-hand experience of Thrace. These use references to Thracian
customs only anecdotally or with moral rather than historical purposes. Aristotle, Plato, Athenian tragedians and comedians of the Classical and Hellenistic periods belong in this group. The third group consists of later writers who use and cite the earlier principal sources; these include authors such as Strabo, Polybius, Diodorus or Plutarch. The value of these authors is in their reuse of the “primary” sources, such as Ephorus of Cyme or Hieronymus of Cardia, late Classical and Hellenistic historians, whose texts are no longer extant.

This chapter focuses on the “primary” authors, as they offer the most direct and immediate contemporary accounts of Thracian culture and society. As such, the Greek sources will be predominantly drawn upon. Roman authors occasionally contribute valuable historical detail depending on which primary source they use and how faithfully they use it. Diodorus might be considered one of the most useful sources because of his use of Ephorus and Hieronymus of Cardia. Later authors, separated by half a millennium from their Thracian subjects, can be too derivative and risky to rely on for the reconstruction of Thracian society.

Herodotus’s Histories presents a narrative of the peoples of the eastern Mediterranean, describing cultural practices and peculiarities of his subjects within an environmentally and historically determined framework. The chronological span of his work is from the mid 6th century BC to the early 420s BC. The geographic range and mass of material in his account suggest he did an astonishing amount of travelling, but its true extent remains unconfirmed. He lists “the locals” or distinguished individuals, or “collective informants” as the sources of his narrative (‘the Corinthians say...’; ‘I heard the story in...’) (Gould 2009, section 3). Much of the information is based on oral tradition, not eyewitness accounts. Later ancient writers as well as modern scholars have critiqued the accuracy of his inquiry, reaching a wide range of conclusions from a charming storyteller to a liar.24 Some of Herodotus’s geographic misconceptions were noted and corrected in antiquity (How 1949). His desire to satisfy his audience with an internally logical narrative has been highlighted more recently (Hartog 1988). The ideological underpinning of his Histories hinges on the contrast between the superior Greek versus the non-Greek world (Hdt. 3.38) (Bakker, Wees, and Jong 2002). While this perspective is not unique to Herodotus, he openly admits it and comments on the distinctive features of other cultures such as Egyptians or Scythians, although he may not like them (Hdt. 4.46). Despite the unreliable nature of his account, Herodotus is still a valuable source. We do not know with certainty whether Herodotus ever visited Thrace. He could have easily travelled through some of the

24 For a bibliography of Herodotus’s critics from antiquity to present see Gould 2009
coastal areas in the northern Aegean and Black Sea, but his information on the interior of Thrace and their genealogy surely came from informants (Hornblower 2002, 374-6). His attention to detail and focus on distinctive features between the Thracians and Greeks are worthwhile reviewing despite the author’s Greek-centered perspective and errors.

Thucydides in his treatment of non-Greek achievements focuses on the “great man” military and political history. His History of the Peloponnesian War is generally accepted as a highly accurate account, something closer to history in the modern sense. Thucydides confirms his first-hand knowledge of Thrace. Being from the clan of Cimon, he is said to have had Thracian blood from his mother’s side (4. 104. 4). He fought against Brasidas at Amphipolis in 424 BC and was exiled afterwards to Thrace for twenty years. Having owned property in the mining district in coastal Thrace, he led a prosperous life during his exile there (Thuc. 4.105.1, 5.26). As a long-term resident of Thrace and an astute observer, his accounts have been taken as highly reliable. Thucydides uses his sources critically (1.20-1.21), cites speeches and written documents, and corrects inaccuracies in Herodotus (1.126.7, 1.89).

Unlike Herodotus, Thucydides is less concerned with the polarities between Greeks and non-Greeks. The soldier Thucydides, as Hornblower emphasizes, is obsessed with war, military affairs and politics (Hornblower 1991, 6; 2009). Μεγαστη (greatness) and αρχη (empire) occur in the History with great frequency, forming a programmatic message of his work (1991, 6). Consequently, the Thracians do not interest him ethnographically but in terms of their political potential. In order to integrate the discussion of Thracian achievement, Thucydides adopts Herodotus’ strategy, focusing on the individual “great men”. Unlike Herodotus though, Thucydides does not look for impressive physical monuments as indices of greatness; political actions such as successful conquest or the ability to mobilize a large army is for him a sufficient proxy for the “greatness” of his subject (Thuc. 10.1-2; Hornblower 1991, 33). Despite these personal preferences, Thucydides is an astute and accurate observer and remains one of the most valued sources for Thracian history.

Xenophon is also a soldier-historian who had first-hand experience with Thrace and its inhabitants (Stronk 1995). His connection with Thrace draws on his military experiences as a Greek army commander. Born to a wealthy aristocratic family in the last quarter of the 5th century BC, Xenophon enrolled into a mercenary army to support Cyrus’ rebellion. After the

26 Cimon was born from the marriage of Miltiades to the daughter of Thracian king Olorus (Plut. Cim.4)
rebellion was subdued, he led the rest of the Greek army out of Mesopotamia. Having participated in other campaigns, he settled at Olympia under the protection of the Spartans, where he died. His *Anabasis*, especially book seven, unfolds with the adventures of Greek troops stranded on the coast of the Hellespont with no other option than to spend the winter in the service of Seuthes II, a warlord and pretender to coastal Thrace. Xenophon conveys in the *Anabasis* his interest in leadership and military stratagems, but also the air of Greek superiority over barbarians (e.g. the resilience of Greek mercenaries in Anatolia, the duplicity of Seuthes II, etc.). Besides the philhellenic attitude, Xenophon’s *Anabasis* offers a self-advertising and slightly didactic narrative colored with adventure and some vivid descriptions of soldiers’ live in the Thracian hinterland. Xenophon is a good source for the description of the customs at the court of Seuthes II and the behavior of Thracian peers, but his account comments only superficially on the customs or lives of the country’s inhabitants.

Demosthenes, one of the greatest Athenian orators, is intimately involved with the political turmoil of the 4th century BC. He offers information on the study of Thracian complexity, but is perhaps the most ambiguous and controversial from the principal group (Cawkwell 2009). Demosthenes was a staunch opponent of Philip II of Macedon and agitated against him through a sequence of speeches that ultimately led to his own death. As a result of his politics, Demosthenes is a highly biased and manipulative source. His agenda was to contort anything that Philip undertook, diminish Philip’s reputation and denigrate every achievement including the latter’s campaigns and consolidation of Thrace. Demosthenes’ commentary on Philip’s actions in Thrace needs to be assessed with caution.

The views of these authors on Thracian society and organization vary according to their background, purpose and political agenda. While Thucydides and Herodotus express awe at the Thracian power and might, Xenophon and Demosthenes present more ambiguous and exasperated views of their neighbors to the north. The personal motives of the latter authors, however, undermine the force and reliability of their arguments. The respectability of Thucydides makes him one of the most reliable authors, and his statement of Thrace as a powerful polity is the strongest evidence in favor of the Thracian state.
III.1. Conceptualizing the Thracians

Despite their divergent view of the nature and character of the Thracians, one thing the Greek authors mostly agree on is where the Thracians can be found. Most of the tribes between the northern Aegean coast up to Danube, and from the Strymon River to the Black Sea coast are referred to as the Thracians (Hdt. 4.48-49; Thuc. 2.97; Strabo 7.6.1-2; Diod. 12.50.1-3).

Herodotus uses the aggregative label the “Thracian people” (Θρηκίων δὲ ἔθνος) but acknowledges also specific tribal names: “The Thracians have many names, each tribe according to its region, but they are very similar in all their customs, save the Getae, the Trausi, and those who dwell above the Crestonaeans.” (5.3.2.) (see Fol and Spiridonov 1982, map p. 34). The tribal names are used when an interesting practice catches Herodotus’ attention (immortality belief among the Getae 4.94; 5.4.1-2) or in connection with a particular territory. Studies into the pattern with which he chooses aggregative versus specific names have met with little success (Archibald 2007, 1). In Thucydides, the label “Thracian” is applied as an epithet to the cities of the North Aegean coast (ἐπὶ Ἐρακίων χωρία, 2.29.4), to residents of the interior near the coastal cities (ὑπὸ τῶν Ἐρακίων ἱμματίων, 1.100), or cumulatively to inland occupants, especially independent tribes (πολὺ γὰρ μέρος καὶ αὐτόνομον ἔστι Θρακῶν, 2.29.2). Like Herodotus, he attributes remarkable deeds and military campaigns to specific tribes or personalities, (such as the campaign of Sitalces in Macedon, or against the tribe of Triballi), showing attention to detail and faithful reporting. Herodotus’ interchangeable use of specific tribal names and the generic “Thracian” suggests that he is transmitting what he was told. In Thucydides, there is a distinction between the use of the cumulative title - in basic geographic description - and specific titles - in political events connected with distinguished leaders - betraying personal interest and first-hand knowledge of the events.

Xenophon uses the label “Thracian” when describing the ethnic and geographic origin of those people he encounters on his journey. It encompasses the autochthonous tribes on the coast of Asia Minor (6.3.1-3), the villagers who provision his army in the Thracian Chersonese (7.1.13), or those he raids at the command of the Thracian prince Seuthes II (7.3.34-7.4.2). Being “Thracian” separates these people ethnically and politically from the Lacedaemonian soldiers, Persian detachments or Greek colonists, all of whom operated in the area as well. The label for Seuthes (Σεύθης δὲ ὁ Θρᾷξ) is particularly interesting. While there is a hint at his Odrysian affiliation, no tribal name is explicitly mentioned in relation to him (7.1.5). This lack of tribal detail in the main personage is curious when all of his father’s subjects are explicitly listed.
Whether the obscurity of Seuthes’ background was an intention of the prince or whether it is a reflection of Xenophon’s attitude to him in light of later perfidy remains questionable. Seuthes hints at his own affiliation by blaming his father’s banishment on the “decline of Odrysians” (τὰ Ὄδρυσῶν πράγματα ἐνόσῃσθεν 7.2.32-33). Xenophon never implements the term, although he takes painstaking care to point out whenever another Odrysian appears on the scene (7.7.2; 7.4.21). Xenophon may be adopting a title that others used to refer to Seuthes (and presumably he himself used it as a pseudonym), or he has doubts about Seuthes’s origin and title to the paternal lands. Given his precision with other phenomena this ambiguity and anonymity is surprising and suggests a personal agenda. Overall, Xenophon is consistent in labeling the origin of the Thracians he encounters similarly to that of the Greeks he interacts with. With the exception of Seuthes he is more consistent than both Herodotus and Thucydides, showing familiarity with his environs and achieving a sense of immediacy throughout his Anabasis.

III.2. The Thracians as Powerful, Warlike, and Rich?

III.2.1. Concept of Power

The theme of Thracian power permeates the principal sources. In Herodotus, Thracians are: “the biggest nation in the world, next to the Indians. If they were under one ruler, or united, they would, in my judgment, be invincible and the strongest nation on earth. Since, however, there is no way or means to bring this about, they are weak” (Hdt.5.3.1).27 His words specifically mention “the large population” (μέγιστόν πάντων ἀνθρώπων) hinting at the vast manpower Thrace commanded. Respect and admiration emanate from the statement as well as an awareness of the potential threat Thracian unity could pose to the Greeks. Commentaries suggest that Herodotus grossly exaggerates the extent of Thrace, because he misconceives of the course of the Danube (Hdt. Hist. 4.99; How and Wells 1949, 2). Herodotus’s statement may be skewed by his exaggerated view of the limits of Thrace, but it is clear that he conceives of power as derived from population numbers.

Thucydides corrects Herodotus’ geographic misconception and gives an exact definition of the limits of Odrysian dominion during his time. King Sitalces’s realm in Thrace spanned “from Abdera to the mouth of Ister, distance that a good walker can march in eleven days. Westwards

27 “Ὀρηίκων δὲ ἐθνὸς μέγιστὸν ἐστι μετὰ γε Ἴνδοὺς πάντων ἀνθρώπων· εἰ δὲ ὕπ’ ἐνὸς ἄρχοις ἢ φρονέοι κατὰ τῶντα, ἄμαχός τ’ ἀν εἶ δι καὶ πολλῷ κράτιστον πάντων ἐθνῶν κατὰ γνώμην τὴν ἐμὴν· ἀλλὰ γὰρ τοῦτο ἀπορόν σφί καὶ ἄμηχανον μή κοτὴ ἐγγέννηται· εἰσὶ δὲ κατὰ τοῦτο ἀσθενέες.”
it spanned from Byzantium to Strymon, a march of thirteen days” (2.97.1-3). Thucydides clarifies that the power of the Odrysian kingdom under Seuthes, Sitalces’ successor, lay in his ability to generate astounding revenues from the coastal cities of Thrace. “The tribute [...] amounted to about four hundred talents in gold and silver. There were also presents in gold and silver to a no less amount, besides stuff, plain and embroidered, and other articles” (2.97.3). At nearly eight hundred talents in cash and kind, the Thracian tribute exceeded that received by Athens from all of her empire in Thucydides’ day, dominating the entire Balkans economically. Thucydides, however, distinguishes between economic and political strength. As for military numbers and resources, the Thracians come “decidedly next to the Scythians” (2.97.5). Placing the Thracians behind the Scythians in number Thucydides counters Herodotus’s claim of Thracian supremacy (2.97.6). Although Thucydides attributes most of the superlatives to the Scythians, he admits to the power and greatness of the Thracians. Rather than basing their strength on a headcount, he defines the greatness in terms of political and economic power (Hornblower 1991, 7; Thuc. 1.2).

Xenophon’s concept of power resembles that of Herodotus, linking power with a large population. He mentions repeatedly how populous the countryside is on both sides of the Hellespont. In Bithynia the locals are numerous and organized enough to repulse the attack of the Arcadian contingent of Greeks and annihilate them (Anab. 6.3.1-3). Later on, Xenophon’s soldiers are agitated about camping in the countryside because they fear the multitudes of enemies in the hinterland, after they are denied entry by the city of Perinthos (Anab. 7.1.16). Although Xenophon may view the Thracians as inferior to Greeks, he nevertheless perceives them as threatening and powerful solely through their large numbers.

III.2.2. Disunity and Emergence – Odrysians and the Others

Herodotus claims that the Thracian potential is diminished by their internal divisions. The political situation in the Balkans (or its perception by Greek authors) seems to have shifted during the 5th century BC, as Thucydides updates Herodotus’s account of Thracian disunity by discussing progress in Thracian consolidation. Thucydides experiences the emergence of the Thracians and attributes it to the figure of Odrysian Teres, father of Sitalces, who was the “first that advanced the kingdom of the Odrysians above the power of the rest of Thrace” (2.29.2). It was under his reign that Thrace reached its greatest extent and embarked on a series of expansive campaigns. Despite this feat, Thucydides is aware that the unification process is far

28 “ὁ δὲ Τήρης οὐτός ὁ τοῦ Σιτάλκου πατήρ πρώτος Ὄδρυσαις τὴν μεγάλην βασιλείαν ἐπὶ πλέον τῆς ἄλλης Ὁράκης ἐποίησεν”
from complete. Numerous gaps remain in Sitalces’ realm and the expansion of Odrysian power
does not mean that all of Thrace stands unified. On the contrary: “many of the Thracian tribes
are still independent” (2.29.2). Mountain tribes in the Rhodopes, especially, retain their
autonomy thanks to their supreme fighting skills. Sitalces, according to Thucydides, manages
to attract some of these tribes to his side on his campaign against Macedon: “many of the
independent Thracians volunteered to join him in the hope of plunder” (Thuc. 2.98.3). Although Thucydides is clearly in awe of Sitalces and his ability to consolidate a great part of
Thrace, he notes the uncontrollability of these mountain tribes and their overall disunity,
consistent with Herodotus’ earlier account of the “factious Thracian tribes”.

The theme of autonomous tribes also resonates throughout the Anabasis. Xenophon
portrays the interior villages of the tribe of Thynoi as largely autonomous, unlike the coastal
cities which were subjugated. At the sight of the combined forces of Seuthes, the villagers flee
into the mountains or employ ruses to resist his authority (7.4.6). The Thracian strategy to sneak
into the villages at night suggests that the villagers resisted to paying tribute and supporting the
troops. The fact that Seuthes II can attack the villages with impunity is another piece of evidence
that these small communities do not have any other protector, who would retaliate or oppose
the ambitious leader. The villagers lived free until his arrival, and surrendered, having no other
recourse (7.7.28). The story of Seuthes’ father – who lost his rule and was evicted from “his”
land - shows that the submission of country folk to a central authority and unification under
Seuthes’ rule may have been temporary and dependent on the continued threat of military
force (7.2.32).

Although many of the Thracian tribes have become united under the banner of the
Odrysians during the 5th century BC, many independent tribes remain in the less accessible
areas. Xenophon’s account confirms that in the coastal hinterland, too, the rule of the warlords
was fluid and circumstantial, as the local tendencies favored autonomy and independence.

III.2.3. Thracian Prosperity
Next to the topics of power and disunity, Thracian prosperity is a common theme among the
Greek authors. Thucydides attributes it largely to the tribute and luxuries flowing in from the

29 “πολύ γὰρ μέρος καὶ αὐτόνομον ἔστι Θρακῶν”
30 “The Satriae, as far as we know, have never yet been subject to any man; they alone of the Thracians
have continued living in freedom to this day; they dwell on high mountains covered with forests of all
kinds and snow, and they are excellent warriors.”(Hdt. 7.111.1)
31 πολλοὶ γὰρ τῶν αὐτόνομων Θρακῶν ἀπαράκλητοι ἐφ’ ἀρπαγήν ἐκείνου ἠκολούθουν
coastal cities and barbarian subjects. The origin of Thracian prosperity, in his view, is their practice of gift-giving (or rather gift-receiving) from solicitors, which they adopted from the Persians (2.97.4). It is interesting that Thucydides does not mention the wealth of the mines, especially since he lived in one such area, but it is likely that this resource was only secondary and was therefore omitted.

Xenophon sees the natural resources and density of inhabitants as the main source of wealth in Thrace calling the Thracian Chersonese a “fair and prosperous country” (Anab. 5.6.25). During a one-day raid in the Thracian interior of Salmýdessos (south of modern day Strandzha Mountains), Xenophon and Seuthes capture 1,000 people, 2,000 cattle, and 10,000 sheep. They carefully plan how to manage their newly subjugated subjects (Anab. 7.3.47-48). By the end of the winter campaign, Seuthes assigns overseers for the newly acquired lands. The revenue from the territory exceeds the 30 talents that he owes Xenophon’s army (Xen. Anab. 7.7.1-2, 25). One would hardly be able to carve a prosperous kingdom out of the Thracian hinterland in the span of a couple of winter months, if it had not been prosperous and well supplied to begin with. Furthermore, if we take into account the operating Greek and Thracian troops, each of which count some 6,000 (7.7.23, 7.5.15), their subsistence during winter campaigns must have required substantial resources, which the Thracian hinterland seems to have easily supplied. Xenophon’s direct comments on the wealth of Thrace stand confirmed when the cost of a non-producing army is imposed on the Thracian hinterland. The ability to generate a surplus of food at such scale speaks for a land rich with resources.

Overall, Herodotus, Thucydides and Xenophon agree that Thrace commanded great resources. While Herodotus and Xenophon attribute the prosperity to a wealth of population and natural resources, Thucydides sees the wealth generated by the cultural practice of gift extraction.

Demosthenes presents a very different view of Thrace. 32 In his fierce opposition to Phillip II, he discusses Phillip’s winnings during his invasion of Thrace in mid-fourth century BC scornfully:

“No man is so simple as to believe that though Philip covets these wretched objects in Thrace—for what else can one call Drongilus and Cabyle and Masteira and the other places that he is now occupying and equipping?—and though he endures toil and winter storms and deadly peril for the privilege of taking them,

yet he does not covet the Athenian harbors and dockyards and war-galleys and silver mines and the like sources of wealth, but will allow you to retain them, while he winters in that purgatory for the sake of the rye and millet of the Thracian store-pits. It is not so, but it is to win these prizes that he devotes his activities to all those other objects” (8. 44-45).

Demosthenes depicts Thrace as an inhospitable land with freezing winters, a population of mud-hut dwellers and millet eaters. His reason for portraying Thrace as devoid of resources and unworthy of conquest is driven by his conviction that Philip’s invasion of Thrace merely masked his real intentions, a plot against Athens. As a part of his agenda Demosthenes belittles Philip’s achievements, and describes the resources of inland Thrace as pitiful and wretched. Given his impassionate oratory, Demosthenes is hardly the most reliable informer. While his description of harsh winters, mud-huts and storage pits may not be far off the Thracian reality, Demosthenes must have been aware of the asset that Thrace represented. Admitting that, however, would have taken away from his invective against Philip and decreased the urgency that he was arousing in his audience. His commentary, while potentially truthful, cannot be taken as the full truth, but an intentionally skimmed part of it. The consistent denial and inversion of Philip’s success in speeches of Demosthenes indicates that much is being silenced and masked about Thrace.

Demosthenes’ account diverges significantly from that of other Greek authors, affected by his political agenda of fierce opposition to Philip of Macedon. The picture of Thracian poverty is used as a ploy to denigrate the conqueror of Thrace and to sow suspicion of the Macedonian leader to his Athenian audience. While in details his account may not be untrue, it is not fully reliable.

33 “ἐν τοῖς Θρακίοις αἰροῖς ἐν τῷ βαράθρῳ”, Vince’s translation of a purgatory is perhaps better interpreted as a pit or dug-out or an abyss of the sort that usually surrounded an acropolis of a town in Greece (Kazarow 1949, 111)
34 “οὐ γὰρ οὕτω γ’ εὐήθης οὐδεὶς ὡς ὑπολαμβάνει τὸν Φίλιππον τῶν μὲν ἐν Θράκη κακῶν (τί γὰρ ἄν ἄλλο τις εἶποι δρογγίλοι καὶ Καβύλην καὶ Μάστειραν καὶ ἃ νῦν ἐξαμει [καὶ κατασκευάζεται];) τούτων μὲν ἐπιθυμεῖν καὶ ὑπέρ τοῦ ταῦτα λαβεῖν καὶ πόνους καὶ χειμῶνας καὶ τοὺς ἐσχάτους κινδύνους ὑπομένειν, [45] τῶν δ’ Ἀθηναίων λμένων καὶ νεωρίων καὶ τρημῶν καὶ τῶν ἐργῶν τῶν ἄγγελεων καὶ τοσοῦτων προοδῶν οὐκ ἐπιθυμεῖν, ἀλλὰ ταῦτα μὲν ύμᾶς ἐςεῖν ἔχειν, ὑπέρ δὲ τῶν μελινῶν καὶ τῶν ὀλυμπῶν τῶν ὕπερ τοῦ Θρακίοις αἰροῖς ἐν τῷ βαράθρῳ χειμάζειν. οὐκ ἔστι ταῦτα, ἀλλὰ κάκειν’ ὑπέρ τοῦ τούτων γενέσθαι κύριος καὶ τάλλα πάντα πραγματεύεται.”
III.3. Thracian Social Structure

Two major classes emerge in Thracian society from the Greek narrative: the wealthy elites and the commoners. Herodotus distinguishes them by the type of life they led: “The idler is most honored, the tiller of the soil most scorned; he is held in highest honor, who lives by war and robbery” (V.6.2). A martial way of life and idle leisure are the markers of high status, indicating a life of toil on the land for everyone else.

Although the elites and the commoners are presented by the Greek authors as the major social divisions in Thracian society, we must keep in mind that the interest of the elite writers was on their peers and that other distinctions among the “commoners” may have escaped them. Even so, there is a small number of outliers that stand outside these categories. Among them are the seers and diviners and merchants and craftsmen. Indirect references to these specialists pepper the texts, but are not recognized as social classes per se, either due to disinterest, aristocratic bias or being categorized among the commoners. Starting from the bottom up, I will address these divisions.

III.3.1. The Commoners and the Specialists

The lowest standing social group in the Thracian system according to Herodotus is that of a manually working farmer. Peasants working in agriculture or animal husbandry, free or slave, appear in the texts, although occluded by disinterest of the authors. The peasant inhabitants of the Thracian hinterland are the secondary protagonists in Xenophon’s Anabasis, and although looked down upon, they clearly form the main pillar of Thracian economy. Little distinction is made in the texts about the non-elite classes. We do not know which conferred more status, tilling the land or tending the herds. Landless laborers or slave labor in Thrace is scarcely discussed in the primary sources. Thracian aristocrats seem to have considered all of the non-elites equally despicable and lowly (Hdt. 5.6.2). Gender differences occasionally come to the surface when they differ strikingly from the Greek standard. Herodotus comments on the engagement and competence of Thracian women in household chores; their duty to work in the field is presented as divergent from the Greek practice, as undoubtedly was women’s greater liberty to choose their husbands (Hdt 5.10-17; Arist. Fr.611.58). When discussing the social order in his Laws, Plato asks which system is the best: “Shall it be that of the Thracians, and many other tribes, who employ their women in tilling the ground and minding oxen and sheep and

35 Καὶ τὸ μὲν ἐστὶ χαί εὐγενεῖς κέρκτεαι, τὸ δὲ ἄστικτον ἀγεννές; ἀργὸν εἶναι κάλλιστον, γῆς δὲ ἐργάτην τιμότατον· τὸ ζῆεν ἀπὸ πολέμου καὶ ληστύος κάλλιστον. Οὕτως μὲν σφεων οἱ ἐπιφανήσατοι νόμοι εἰσί.
toiling just like slaves?" (7.805). The need to employ the labor of women suggests that slaves were perhaps not as common in the countryside as they might have been in elite retinues.

There is almost no mention of specialization among Thracian tribes, economic or administrative. Craftsmen or merchant class, although they must have existed, are scarcely mentioned.\(^\text{36}\) These specialists must have simply been off the radar of the particular Greek elitist writers discussed here. It is also possible that many of the craftsmen and merchants were of Greek origin, which, as a well-known fact, was not worth mentioning to a Greek audience. An inscription dated to the 4\(^{\text{th}}\) century BC found at Vetren in the Plovdiv region, however, is instructive (Domaradzka and Velkov 1994; Domaradzka 2002). An edict of one of king Kotys’ successors guarantees the rights to the community of εμπορίται, traders or merchants in the town of Pistiros.\(^\text{37}\) The wording of the text discriminates between the rights of the traders and the “other” Thracians, suggesting the traders were foreigners (Domaradzka and Velkov 1994, 5; Archibald 1998, 311). Although their ethnicity is not entirely clear (Greek or other?), the edict attests to the existence of entire communities of merchants on the Thracian interior and confirms their high and officially defined status within the kingdom.

Only one merchant is mentioned in the principal sources, Heracleides of Maroneia, in Xenophon. He procures supplies for the Thracian army and purchase gifts for Thracian rulers. Xenophon describes him with scorn as a deceitful middleman and a sycophant, and blames him for trying to cheat the soldiers out of their pay (\textit{Anab.} 7.4.2; 7.5.2). Demosthenes touches on the merchant traffic in Thrace tangentially when he advocates their detention in his speech on actions of general Diopithes, but his account is too general and vague to allow for any assessment of these merchants’ origin and number (8.9, 28).

The marginality of these social groups in the written accounts owes to the social prejudices of the writers. A quote from Herodotus illustrates the class mentality:

“Now whether this, too, the Greeks have learned from the Egyptians, I cannot confidently judge. I know that in Thrace and Scythia and Persia and Lydia and nearly all foreign countries, those who learn trades are held in less esteem than the rest of the people, and those who have least to do with artisans’ work, especially men who are free to practice the art of war, are highly honored. This much is certain: that this opinion, which is held by all Greeks and particularly by the Lacedaemonians, is of foreign origin. It is in Corinth that artisans are held in least contempt” (2.167).

\(^\text{36}\) Finds and imports in the tombs indicate long-distance trade not only of luxuries but also consumables, at a volume that could hardly have been achieved through down-the-line trade alone.

\(^\text{37}\) The name of the ruler is not preserved in the inscription.
Herodotus lays clear the Greek social preconceptions in this paragraph. Artisans and merchants are held in low esteem which earns them minimum coverage in the textual accounts. This silence is not a just prejudice against Thracians but a common practice throughout the Mediterranean world (and possibly a practice in other regions, such as imperial China).

Peasants, farmers, herders, craftsmen and merchants represent occupations and social classes largely neglected by the historical sources, yet their existence in Thrace was crucial and undeniable. Occupying lower steps on the social ladder, they slipped the attention of elite writers. While largely dismissed as unimportant, the communities are instrumental to the exploits of the Thracian elites. They manage the herds that the aristocrats loot, they live in the villages that the warriors raid, and produce or transport prestige objects that elites exchange. The silence that written accounts impose on these classes, however, finds some correctives in the epigraphic and archaeological evidence.

III.3.2. Religious Specialists

Although not explicitly mentioned as a class in the sources, seers and diviners are the most prominent specialists in Herodotus’ and Xenophon’s accounts. Herodotus briefly mentions the specialty of the Thracian tribe of Satrae. “It is they who possess the place of divination sacred to Dionysus. This place is in their highest mountains; the Bessi, a clan of the Satrae, are the prophets of the shrine; there is a priestess who utters the oracle, as at Delphi; it is no more complicated here than there” (Hdt.7.111.1-2). Herodotus does not provide any more detail on the beliefs or common ancestor of the Bessi. It is unclear whether the Bessi represented a clan that controlled the sanctuary by inheritance, or the sanctuary was simply administered by local inhabitants who were then recognized as a putative “tribe”. In any case, their guardianship of the sanctuary suggests that whole villages or clans could be specialists. Herodotus’ account, therefore, provides evidence of horizontal ranking and specialization among different tribal groups in the mountains.

More commonly, the role of consulting the gods and cult administration fell to the leaders and kings of the Thracians. Classical sources report little of the cultic duties of Thracian kings, being drawn only to the strange and barbaric customs (Dionysiac mysteries). Later authors offer sparse references to Kotys’ I delight in natural sanctuaries and his delusion of his own divinity (Athenaios, Deipnosophistai, 12.531e-232a; Polybius 27.12). Sanguinary rites are mentioned with other kings like Dieglys, who allegedly claimed a right to do human sacrifice
because “a royal offering must be different from that of ordinary people” (Diodorus 23.14-15; Polybius 27.12). This statement in particular demonstrates the Greek fascination with odd or cruel accounts and an invocation of old barbaric stereotypes. The feast of Seuthes II, as described by Xenophon, has some appearances of a ritualized performance, but evidence is purely circumstantial (Fol and Marazov 1977).

However, the execution of cult and consulting the gods is not exclusive to the king, but falls to generals and commanders as well. Xenophon reports on sacrifice whenever important decisions are faced on a campaign (Xen. *Anab.* 7.1.40; 7.8.6). Seers and diviners appear in his account with great frequency, suggesting that these specialists skilled in animal sacrifice and interpretation of omens were common and readily available throughout the region.

The specifics of the Thracian cult get relatively little coverage in the historical accounts, an absence that again may be taken as a sign of its familiarity to the Greeks. Herodotus argues for the similarity of ritual behavior when he protests against special rites and magic happening in the famed sanctuary of Dionysus in the Rhodopes. Often the administration of the cult and consorting with the gods was taken as the prerogative of the ruler, but specialists and skilled diviners are attested to have practiced the rituals on demand.

III.3.3. Elites and Warriors

In the principal sources the warrior elite is the most prominent class of Thracian society. The primary occupation of this class, as Herodotus reports, was hunting, raiding and war. Such men are described in the retinue of Seuthes II by Xenophon, travelling from one prince to another depending on who could provide the biggest booty. Besides the permanent standing cavalry there were poorer tribesmen who comprised the light armed infantry when called upon to do so. The light armed infantry could have served as the retinue of local elites or be hired abroad. There is plentiful evidence for Thracian mercenaries serving as guards in Athens (Aristophanes, *Acharnians*), swordsmen in the army (Thuc. 7.27), or in Persian armies in Asia Minor (Webber and McBride 2001, 8, 33). Certain tribes were famed for their martial prowess, especially the hill tribes (Satrae in Hdt. 7.111.1; Dii in Thuc. 7.27). For the hill tribes, soldiering could have been an important source of revenue, supplementing the meager livelihood in the rugged lands.

Additional small groups can be distinguished among the elite warriors - guest friends and strategic allies of the Thracian kings. Into this group we can place the domestic diplomats

38 Greeks claimed the Dionysiac rites came from Thrace and if we accept that statement, we can infer much of the Thracian religious practice from the Greek (*contra* Archibald 1999)
and foreign advisers who bore special knowledge that gave their Thracian friends, hosts or family the necessary advantage over their peers. Numbers of such individuals grow with more successful kings, indicating that special knowledge was an adaptive measure on the part of the Thracian dynasts. Sadokos and Sadalas were royal Odrysians related to Sitalces who were given Athenian citizenship (Höck 1891a, 82-3). Alcibiades, Miltiades and Iphicrates are excellent examples of foreigners who find prosperity in the service of Thracian kings Oloros and Kotys I (Hdt. 6.38.1; Diod. 13.115.3; Nepos, Miltiades, 2.1, 7.3; Athenaios, IV 131; Stronk 1995, 57). In a way, these men form a new class of specialists within the Thracian nobility, comprising the contemporary think-tanks.

III.3.4. The Princes

According to the sources, Thracian leaders emerge from major dynastic lineages in mid-5th century BC (Teres of Odrysians in Thuc. 2.29.3). Other royal clans seem to establish themselves thereafter (Seuthes II in Anabasis, 7). The rest of the nobility either remain independent, or form the warrior retinue in reciprocal relationship with the kings, providing manpower and earning privileges through their service (e.g., officer Medosades in Anabasis, 7.7.1). As a result, the top of the Thracian social pyramid is occupied by the figure of the “king” (basileos). The sources comment heavily on the Odrysians, listing Teres, Sitalces and Seuthes I (Thuc. 2.98; Hdt. 4.78-80), or Amadokos (Xen., Anab. 7.3.16). Other tribes in Thrace also had their royal dynasties, most significantly the Getae or the Triballians, yet their kings emerge in the sources only after the Odrysian heyday, when fighting the Macedonians. As all of them are referred to as basileos, an exasperatingly vague Greek term, a potentially enormous range of differences in the nature and extent of rulership gets collapsed here.

Kings in Thucydides are the rulers of a domain, capable of extracting tribute and mustering men (2.96-98). Their power and authority seems uncontested and stable, yet under more detailed scrutiny their control of their subjects seems rather tenuous. Sitalces’s army of 150,000 is enormous, even if the number is a rough estimate; yet his own people – Odrysians and Getae – comprise merely a third of the army, with the rest being opportunistic volunteers on the lookout for booty, an uncontrolled mob (Thuc. 2.98.4). Xenophon offers an even better

39 Ἐν στρατίῳ δὲ ὀνομασθήσεται Ἑλληνικὸς τῶν Ὀδρυσίων Σίταλκος ἢ Ἱβίδιας ἢ Ἰφικράτης ἢ Σάδαλας ἢ Ῥάκτος ἢ Ἀμαδοκός ἢ Ἀκηλίας ἢ Σέούθης ἢ Αμάδωρος ἢ Υἰθρός ἢ Παύκος ἢ Σεβρόκλας ἢ Σεβρόκλας ἢ Μιλτιάδης ἢ Σεβρόκλας ἢ Σήμιτης ἢ Οὐρανίας ἢ Παύκης ἢ Σεβρόκλας ἢ Σεβρόκλας ἢ Παύκης ἢ Σεβρόκλας ἢ Σήμιτης ἢ Οὐρανίας ἢ Παύκης... ἢ Σεβρόκλας ἢ Σήμιτης ἢ Οὐρανίας ἢ Παύκης ἢ Σεβρόκλας ἢ Σεβρόκλας ἢ Παύκης ἢ Σεβρόκλας ἢ Σήμιτης ἢ Οὐρανίας ἢ Παύκης... ἢ Σεβρόκλας ἢ Σήμιτης ἢ Οὐρανίας ἢ Παύκης... ἢ Σεβρόκλας ἢ Σήμιτης ἢ Οὐρανίας ἢ Παύκης... ἢ Σεβρόκλας ἢ Σήμιτης ἢ Οὐρανίας... ἢ Σεβρόκλας ἢ Σήμιτης ἢ Οὐρανίας... ἢ Σεβρόκλας ἢ Σήμιτης ἢ ΟURRENT/BINARY/DOCUMENT/49
illustration of the limits of royal power in the example of Seuthes II’s father, king Maesades. He ruled several coastal tribes in the Marmara region until his external support from Odrysians diminished and he was banished by his people (Xen. Anab. 7.2.32). Kotys I (the king of Thrace during the 4th century BC) likewise experienced difficulty when he requested tribute in the form of soldiers from the coastal cities in his domain. Although the cities were nominally his subjects bound to supply tribute upon the king’s request, Kotys had to beg for his dues, unable to force his will upon the reluctant cities (Arist. Oeconom. 1351 A 18-32). This difficulty of Kotys is indicative of further limitations of royal prerogatives. It is obvious from these examples that Thracian dynasts did not wield absolute power. Their authority is limited and subject to constant re-negotiation if not backed up with sufficient force.

The limits of royal power are of two kinds, external and internal. The external limits are represented by the fiercely autonomous tribes inhabiting inaccessible places, such as described by Thucydides in the Rhodopes. Only the conquest of sustained imperial scale such as under Philip II of Macedon can force these groups into submission. The internal limitations are usually structural, posed by the difficulty of controlling subordinates at a distance (Webster 1975; Blanton et al. 1996, 4). Such internal structural limitations are attested by the historical sources which mention the existence of outside pretenders and power-hungry individuals within the royal dynasty. The three successors of Kotys I (his son Kersebleptes, and the dynasts Berisades and Amadokos II) carve up the kingdom and feud with each other after Kotys’s death (Dem. 23.8-11). This strife is welcomed and exploited by their rivals both at Athens and in Macedon (Dem. 23.9, 102-3). The figure of an aspiring aristocrat is not uncommon in the sources. When Thucydides discusses the gifts Thracians were getting from coastal cities, he says that they were “not only for the king, but also for the Odrysian lords and nobles” (2.97.3).41 In this sentence he uses the word παραδυναστεύουσα, a “co-ruler”, translated also simply as a “paradynast”. A paradynast was a powerful figure, whose political favor had to be bought through copious gifts. Xenophon shows a specific example of competition from the lower ranks in his narrative of Seuthes II. Seuthes II was undermining the authority of his overlord, the Odrysian king Medokos, by first cheating him out of his gifts (Xen. Anab. 7.3.16-17),42 and second, competing with him

41 “καὶ δώρα οὐκ ἔλασσω τούτων χρυσοῦ τε καὶ ἄργυρου προσεφέρετο, χωρὶς δὲ ὀσα ύφαντα τε καὶ λεία καὶ ἡ ἄλλη κατασκευή, καὶ οὐ μόνον αὐτῷ, ἄλλα καὶ τοῖς παραδυναστεύουσι τε καὶ γενναίοις Ὀδρυσῶν”
42 The Parian gift-bearing messengers destined for the court of Medokos are “persuaded” to leave their gifts with Seuthes II, because he has become the master of the coast and will then take their interests more to heart (7.3.16).
militarily for his realm (Xen. *Hell.* 4.8.26-27). The political maneuvers of the parar dynast Seuthes II witnessed by Xenophon in *Anabasis* offer a prime example of the fissioning tendencies inside the Thracian royal hierarchy. The nature of Thracian rule emerges from Greek sources as limited and structurally weak. Often the rule hinges on one personality with nearly no institutions in place to control the competition. Whenever the authority of the king weakens, numbers of pretenders from within the same dynasty or outside it arise to contest and compete for the rule.

The ways that a dynast could strengthen his rule were several. His main duty was to maintain a warrior retinue, which could be accomplished by organizing successful military campaigns and generously redistributing the booty. Successful raids were a powerful attraction for new followers (Xen. *Anab.* 7.4.21). Kings would throw feasts and exchange gifts, cementing ties between them and their men. They must validate their status through the repeated show of military prowess and generosity. As described in the *Anabasis*, Xenophon was invited to one such feast. According to that report, Seuthes II treated the other men informally as equals, served them food and drink and received gifts or promises of fealty and service in return (Xen. *Anab.* 7.3.15, 7.3.26; 7.7.41).

Another strategy of gaining allies was through marriage alliance. When Seuthes II lures Xenophon into his service, he promises: “to you, Xenophon, I will also give my daughter, and if you have a daughter, I will buy her after the Thracian fashion; and I will give you for a residence Bisanthe, the very fairest of all the places I have upon the seacoast” (Xen. *Anab* 7.2.38). Later, Xenophon is also promised the ports of Ganos and Neonteichos (*Anab.* 7.5.8). Although Xenophon never gets the promised fortresses or the daughter of Seuthes, the promise is attractive and credible enough to compel him to an alliance. Strategic marriages were not uncommon among Thracian princes and Greek elites. The Athenian general Miltiades was offered the daughter of king Oloros in the Thracian Chersonese, who brought him recognition

43 “ἂν τις Ἡρακλείδης Μαρινείτης: οὗτος προσώπων ἐνί ἕκαστῳ οὔστινα ὤθε τὸ δοῦναι Σεύθη, πρῶτον μὲν πρὸς Παραναύζον τινα, οἱ παρῆσαν φιλιὰν διαπραξόμενοι πρὸς Μῆδωκον τὸν Ὀδρυσῶν βασιλέα καὶ δώρα ἄγοντες αυτῷ τε καὶ τῇ γυναικί, ἔλεγεν ὅτι Μῆδωκος μὲν ἄνω εἶπ δώδεκα ἡμερῶν ἀπὸ θαλάττης ὄδόν, Σεύθης δὲ ἔπει τὸ στρατεύμα τούτῳ ἐληφθεν, ἄρχων ἐσοίτο ἐπὶ θαλάττη"
44 “汉语 δε ἔχε τις τρυφλαζαίν δύναμιν ὁ Σεύθης: ἐκ γὰρ τῶν Ὀδρυσῶν ἀκούοντες ἀ πράττει ὁ Σεύθης πολλοί κατέβαινον συστρατευόμενοι”.
45 “νῦν ἄλλως τε καὶ ἄρχωντι κάλλιον εἶναι κτήμα ὦδελαμπρότερον ἀρετῆς καὶ δικαιοσύνης καὶ γενναιότητος”
46 “οὖν δὲ, ὥς Ξενόφων, καὶ θυγατέρα δώσω καὶ εἶ τις σοὶ ἔστι θυγάτηρ, ὑψησομαι Θρακίων νόμων, καὶ Βισάνθην οὖκ εἰσών δώσω, ὅπερ ἐμοὶ κάλλιστον χωρίον ἐστὶ τῶν ἐπὶ θαλάττη"
and royal status among the Thracians. The Athenian statesman and strategist Iphicrates married one of the daughters of Kotys I, becoming the king’s closest ally and influential adviser at the Thracian court (Athenaios, Deipnosophistai, 4.131.b-c).

The networking strategies of Greek and Thracian elites were mutually beneficial for both parties. They helped both allied parties maintain their status and ensure their primacy among their peers. The Thracians deployed both the established strategies (such as marriage alliances) as well as develop new and innovative strategies to keep their edge. Kotys I acquired his diplomatic and military edge by tying a skilled foreign adviser to his side through a marriage alliance to Iphicrates. Instead of using the traditional tactic of marriage alliance, Seuthes II took an unprecedented step to win the respect among his peers. He hired a troop of Greek mercenaries. The victories and spoils Greek mercenaries won attracted a group of Thracian supporters to Seuthes, eventually replacing the expensive mercenaries. Seuthes’s tactic of hiring a mercenary army circumvented the established networking strategies among the Thracians, which may have been unavailable to Seuthes initially. His innovation would have been financially disadvantageous had Seuthes actually paid the mercenaries. Xenophon complains bitterly that Seuthes cheated the mercenaries out of their pay and dispatched them as soon as he built a sufficient army of his own. Seuthes II thus gained strategic edge among his own people through innovative action, and avoided incurring excessive costs through false promises and fraud among his Greek mercenaries.

The historical sources show that the tactics which Thracian princes use to gain and retain authority over their peers are consistent with the so-called exclusionary “network” strategies, described by Blanton and others (1996, 4-7). The network strategies include the establishment of external social ties through the exchange of marriage partners or prestige goods. Participation in extra-local networks and access to exotic goods win their bearers status, and “translate to varying degrees into leadership within the local group” (Blanton et al. 1996, 4). Numerous historical examples show the processes by which Thracian princes gain supporters and acquire military or social skills. While feasting and marriage alliances are well recognized paths to political preeminence among the Thracians, they do not guarantee unlimited and permanent success. On the contrary, the social environment is volatile and governed by competition, imposing strict structural limits on the control any prince can wield over his local followers.
III.3.5. The Succession Rules

The succession rules go hand in hand with the competition for royal authority. The Odrysians’ vague succession rules have been the subject of heated debate for over a century (Höck 1891a; Solari 1912; Fol 1972), as any such rules remain ambiguous in the sources. Direct succession from father to son is rarely attested; the succession may pass to the most competent relatives, passing over candidates more closely related to the previous king. In the case of Sitalces and Seuthes I, scholars argue whether the latter was the grandson47 or nephew48 and why he skipped his living uncle(s) and older cousin, both of whom had a better blood claim to the throne (Aristophanes scholar, Acharn., line 145). Thucydides’s explanation is simple: Seuthes I was selected as heir by acclamation of the soldiers because he was, after Sitalces, the most powerful man among the Thracians (Thuc. 4.101). Vote by acclamation is not unusual in these regions as shown by the election of Philip of Macedon.49 His peers had several strengths to choose from in their favor of Seuthes, be it his military skills exhibited during Sitalces’ campaign or diplomatic shrewdness, demonstrated through profitable marriage to the daughter of the Macedonian king Perdiccas, Stratonike (Thuc. 2.101).

The case of Kersebleptes, son and heir of Kotys I, has been already alluded to. While Kersebleptes nominally inherits the rule, a piece of his paternal land is seized by two other Odrysian princes, Amadokos II and Berisades. These two dynasts promote the interests of their families in their respective regions and feud with Kersebleptes. Kersebleptes secures his rule amidst power-hungry colleagues (relatives?) only after hiring a mercenary force (Todorov 1933, 36-47). A parallel history of a rule-backed-by-force is narrated by Xenophon (Anab.7.2.23). Seuthes II claims paternal lands in the hinterland of the Marmara sea, but is opposed by locals until he enforces his demands with military power. In order to win his land back, Seuthes II must attract into his service, and reward, a retinue of warriors. It is his personal prowess – the innovative skills of hiring mercenaries - that earn him his land in the end.

Höck has maintained that military prowess and personal ability were more important to the Thracians than any particular rules of inheritance (1891, 83). Fol and Marazov agreed that the king needed to give proof of his valor, or prowess to justify his rule (1977, 37). There is little evidence for the practice of any particular inheritance laws – primogeniture or partible. The

47 Höck 1891, 83; Archibald 1998
48 Stronk 1995, 59
49 Walbank 1993, 74; for a minimalist and “anti-constitutional” view of the Macedonian kingship see Borza 1990, 234-236
sources suggest that leadership was open to any competent man within the royal dynasty (Seuthes II versus Medokos among the Odrysians) and the actual succession seems to have been governed by Darwinian rule rather than any preset succession rules. While the survival of the fittest approach may have gained the Thracians the most competent leader, the succession battles contributed to their external weakness and internal fissioning.

Overall, the political rule in Thrace was fluid and not firmly institutionalized. Although access to rule was limited to members of specific royal clans, such as the Odrysians, the line of succession was not set in stone, allowing for the most competent man to rise. The royal authority was subject to structural internal and external limitations and depended on the personal skills and charisma of the ruler. Each dynast had to maintain his preeminence through participation in aristocratic networks abroad and exchange of prestige items that he passed to his subordinates. The networking strategies in place stimulated an environment of constant competition, where local warlords or emergent princes tried to usurp power whenever distance or lapse of royal attention allowed them.

III.4. The Royal History of Thrace during the Classical and Hellenistic periods

Having discussed the Thracian society through Greek eyes in the previous section, I will briefly outline major historical turning points in Thrace as they emerge from the textual sources starting in the mid-first millennium BC (Bulgarian Late Iron Age). I adopt what I perceive as a consensual interpretation of the sources. The purpose of the section is to provide an événtmentiel view of the historical phenomena that can later be compared with the archaeological evidence.

The outlines of the royal successions, battles and diplomatic affairs from the Greek textual sources are complemented here with epigraphic and numismatic evidence that has emerged in Thrace to date. The nuanced view of the sources is contextualized within a broader outline of the developments in the Aegean as seen by Bulgarian and western scholars respectively.50

50 This section builds on the work of Katsarow and Velkov (1949), Kazarow (1933), Todorov (1933), Jordanov (2004), Dimitrov (2011), Yurukova (1992), Fol (1972) and Tacheva (2000). I highly recommend these sources for consultation, as they offer much more detail than it is possible for me to present here.
III.4.1. The Odrysians – a Historic Thracian Dynasty

During the 5th century BC (early phase of the Late Iron Age in Thracian lands), the Odrysians are one of many tribes in Thrace. They figure most prominently in the written Greek records because their histories were intimately entwined with those of the Greeks. According to Thucydides, the Odrysians arose as a dynastic clan after king Teres consolidated several Thracian tribes in southeast Thrace (Thuc. II 29, 2-3; ca 460 BC). Teres shrewdly exploited the political vacuum in the coastal lands that the Persians had marched through during their Scythian campaign. As the local political and social structures had been disrupted by the Persian invasion, these lands represented an easy conquest for Teres and his followers (Hdt. 4.85-125). He strengthened the borders of his newly acquired territory by forging ties with neighboring dynasts, either through guest-friendship or through political marriage (Hdt.4.78-80). He succeeded in unifying the western and southern territories of Thrace from the Aegean coast to the Danube. The silver coins minted by his son Sparadokos demonstrate the incoming tribute from the coastal cities (Jurukova 1992, 36-42; Jordanov 2004, 118). The 800 talents of joint kind and cash tribute received by Sitalces, son of Teres, raises many an ancient eyebrow, exceeding the contemporary Athenian tribute (600 talents average) from the Delian League (Thuc. 2.97.3; 2.13.3).

The efficiency in extracting tribute from coastal cities and gifts from solicitors meets with much resentment among the Greek commentators (Thuc. 2.97.4) (Bouzek and Domaradska 2002; Stronach and Zournatsi 2002). Flush with cash and manpower, Sitalces launched a westward expansion. Sought as an ally, Sitalces entered into an alliance with Sparta, Macedon, and Athens in succession. This eventually embroiled him in much political maneuvering due to a conflict of interests among the respective parties. In 429 BC he was obliged to march against his confederate Perdiccas, king of Macedon, in order to fulfill his promise to the Athenians. Sitalces masked the operation as an enforcement of an earlier promise by Perdiccas so as not to violate the alliance (Thuc.2.98). The size of his army had little effect on the Macedonian cities given the lack of siege weapons and difficulties with supply lines necessary for an extended siege of the

51 As we have only the Greek term to go by in the case of the guest-friendship, it is hard to fathom what was involved exactly in the social and political interaction between Teres and the neighboring rulers. We can safely assume that it denoted a similar exchange as in Greece: exchange of gifts and guarantees, promise of hospitality, alliance and possibly intermarriage. Later commentary in Herodotus on the exchange of prisoners and fugitives between Thracian Sitalces and Oktamasad, elected king of Scythians, demonstrates that an effective and functional system was in place between these two polities (Hdt.4.78-80)
fortified centers (Thuc.2.100). Macedonians hid within the fortresses and did not meet the Thracians in the field. The Thracian army progressed southward through the Macedonian land, looting as they went. Falling inadvertently at the time of the Athenian plague and Spartan incursions into the Attica, the mass of Thracians marching down the Aegean coast left a searing impression in the Greek sources.

Sitalces, however, had little interest in the southern Balkans and abandoned his advance shortly after signing a treaty with Perdiccas. Thracian forces were than redirected north and marched against the independent tribe of Triballians in western Thrace (Diod. 12.51.1). Sitalces died on the battlefield in 424 BC and was succeeded by his nephew Seuthes I.

Seuthes I, according to Thucydides, was a strong leader, popular with the army. He abandoned the westward expansion and focused instead on the northern Aegean coast, strengthening the Thracian hold on the coastal cities and pushing the Athenians out of the Chersonese (Polyaenus 7.38; Jordanov 2004, 120). His name disappears from the sources and is replaced by that of Amadokos, another seemingly capable ruler who likewise focuses his operations in the southeast corner of the Balkan Peninsula. As noted by Xenophon, his rule spanned the turn of the 5th and 4th century BC. After this period of strong rulers, internal dynastic struggles resume among the Odrysians. One ambitious aristocrat emerges in the figure of Amadokos’s officer and paraparadynast Seuthes II. With the help of Greek mercenaries, Seuthes II not only won back his paternal lands, but also rose in status and gained a large following of Thracian warriors. With their backing his confidence increased and he sought to undermine the authority of Amadokos. Xenophon’s portrayal of Seuthes II and his dealings with both the Greek mercenaries and fellow Thracians in the Anabasis depicts not only the chronic instability of the Thracian monarchy, but underscores also the inventiveness of the aspiring leaders-to-be. It seems likely that such a situation is characteristic for the political organization of the 4th century Thrace. Domestically, rival dynasts continually attempted to usurp royal authority. The new phenomenon of mercenary armies roaming through the Aegean provided additional incentives to defiance of central authority and emergence of local leaders in Thrace.

In the 4th century BC, the rule in southeast Thrace is held by Hebryzelmis, and further consolidated by his son Kotys I (383-359 BC). Kotys I restored the Odrysian kingdom to its former greatness, exploiting Greek weakness in the aftermath of the Peloponnesian war (Archibald 1998, 225). He expanded Thracian control along the north Aegean coast, taking over most of the Thracian Chersonese and terminating both the Persian and Athenian operations in the
In 361 BC a pro-Thracian faction came to power in Athens that promoted a treaty between Kotys and Athens to ensure a friendly ally in the Dardanelles, a crucial link to Black Sea resources, especially the grain supplies (Jordanov 2004, 121).

At about the same time (359 BC), Phillip II established himself on the Macedonian throne. Yordanov argues that Philip offered Kotys an alliance in order to strengthen the position of both polities (Badian 1983, 53; Jordanov 1998, 15, contra). Athens reacted to the new threat with a plot against Kotys. Two of his favorites, Peithon and Herakleides, students of Plato and citizens of Ainos, assassinated the king in one of his residences. For the elimination of a powerful Athenian foe they received golden wreaths and honorary Athenian citizenship (Jordanov 1998, 15).

III.4.2. Philip II, King of Macedon

After the death of Kotys, his land was divided among three of his sons. Kersebleptes received lands east of the Maritza River, Amadokos II got the hinterland of the coastal city of Maroneia, and Berisades inherited the land west of Maroneia stretching to the Struma River. The fragmentation of military and political leadership in Thrace facilitated Philip’s expansion (Dem. 23.9-10, 170-179). Having benefited from the Thracian rivalry, Philip secured the gold mines of the Pangaion Mountain in 356 BC (Diod. 16.8.6-7). He negotiated (bought?) temporary peace from the westernmost Thracian ruler Ketriporis, and defeated the kings in Illyria in spring of 358 BC in order to strengthen his position in Macedon (Diod.16.4.4-6; Borza 1990, 200-203; Archibald 1998, 232). A few years later [after the winter campaign of 342 BC], the sources place him in control of most of Aegean Thrace, having forced Kersebleptes into submission and ousted him from his fortress in the Propontis (Dem. 1.13; Theopomp. Philippika). Having neutralized Kersebleptes, Philip technically became the ruler of all Thrace (south of the Haemus) (Jordanov 2004, 122; Archibald 1998, 234). Gradually, he took and fortified strategic places on the Thracian interior. Having established a strong presence in the Central plain, he continued pacifying the intractable mountain communities. The last Thracian dynasts hung on until 341 BC. Although Demosthenes denigrates his achievement, Philip’s systematic conquest of Thrace was no small undertaking given the vast extent, geographic fragmentation and political disunity of the region (Dem. 8.44, 10.15; Archibald 1998, 234-237; Badian 1983, 66-71).
Philip’s plan for conquering Thrace – once the opportunity presented itself - was ambitious and well-conceived.\(^{52}\) He intended not only the conquest of Thrace, but its permanent maintenance as a province. Philip invested in city-building and the development of an infrastructure that would facilitate internal consolidation and control. His urbanizing activities are well-attested in the archaeological evidence. One of his most important foundations was the city of Philippopolis at the site of Thracian Pulpudeva, strategically located in the Maritza valley on an outcrop in the middle of the Central plain. Another urban center was developed at the site of Kabyle in the bend of the Tundzha River, also a fortified post strategically located at the nexus of north-south trade routes between the Aegean and Northern Balkans as well as the interior and the Black Sea. In addition to these two cities, Philip fortified a number of former Thracian hilltop sites and created a network of control and defense points across the Thracian interior (from Topolovgrad in the SE to Pernik in the NW, see discussion in Domaradzki 1998, 29-37). Once he established these control points he put in place a chain of command and recruited reliable men for local administrators (a mix of local elites and Macedonian governors)(Archibald 1998, 236).\(^{53}\) Population relocations were one solution to the scarcity of manpower in conquered regions. According to Livy, Philip introduced Macedonians and Greeks to Thrace, and in return, Thracians to Macedon. He instituted a baby boom policy in order to boost the population in his newly expanded realm (Livy 39.24.2-4; 43.12.8-10).

Excavations at major urban and fortified sites in Thrace provide an overwhelming evidence of 4\(^{\text{th}}\) century renovation and florescence (Popov 2002; Domaradzki 1998; Archibald 1998, 305-310). Having combined the policy of conquest with establishing institutions, building infrastructure, relocating people, and installing faithful administration, Philip effectively secured Thrace as a province of his new empire. He followed the traditional policy of matrimony to secure the friendship of neighboring rulers. Marrying Meda, the daughter of Getic king Kothelas, ensured peaceful relations with tribes north of the Haemus (Borza 1990, 208). Others, such as the Scythian king Ateas, he met in battle at the mouth of Danube and defeated (Jordanov 1998, 86-87).

At the end of Philip’s conquest, Thrace south of Haemus and along the major rivers of Maritza, Tundzha and Arda had been thoroughly restructured (Jordanov 1998, 274). A new

\(^{52}\) See Badian’s (1983) argument that Philip’s plan of conquest developed only gradually after the appeal of Crenides for help.

\(^{53}\) Derogatory comments labelling Philip’s renovated cities in Thrace as “poneropolis” (Theop. Phillipika) attest to Philip’s desperate need for manpower and its rather unscrupulous recruitment.
administration composed of sworn Thracian dynasts and Macedonian officials monitored the network of newly fortified and expanded sites. Population influx at indigenous sites and the unification of the interior of Thrace had stimulated commerce and trade. Life south of Haemus took a new turn. Although the Macedonian control was far from solid and absolute, the new course Thrace was set on left permanent marks in its history.

III.4.3. Alexander and his Successors in Thrace

Alexander lived up to his father’s heritage with a blitzkrieg campaign into the interior of Thrace, designed to reassert Macedonian authority. In 335 BC he set out from the Aegean coast up the Maritza river, bypassing Kabyle and arriving into the Danubian plain, where he defeated the Triballian king Syrmos, crossed the river, and coerced a combined force of Triballians, Getae and Celts to make peace with him. Alexander’s departure from Thrace to embark/continue on his Persian campaign effectively diminished Macedonian power in the area. Local dynasts, however, grew in strength. Seuthes III, with his power base in the Kazanluk valley, rose in prominence in the 320s BC, founding the city of Seuthopolis and reconstituting the Odrysian kingdom, albeit in smaller scale.

Seuthes III became the opponent of Alexander’s ambitious successor in Thrace, Lysimachos. Lysimachos not only had to fight with the Thracians for his “Thracian satrapy”, but also with the powerful Antigonos Monophtalmos, and occasionally both. When Antigonos Monophtalmos incited the city of Callatis to rebel against Lysimachos, Seuthes III joined together with a chain of partisan cities along the Black Sea coast (Kallatis, Historia, Tomis, etc.). Although Lysimachos contained the threat of this coalition of Antigonid and Thracian opponents, his political control over the Pontic cities and Haemus mountain tribes remained tenuous (Jordanov 1998, 281-282). Seuthes maintained his autonomy in the Thracian interior and fostered anti-Macedonian rebellions (Diod. 39.73.1-10; Jordanov 1998, 279). Seuthes’s position was eventually weakened through the machinations of a rival Spartokos, who resided in Kabyle. The latter was of Thracian origin, yet became a vassal of Lysimachos. He cut off the connections between the Kazanluk Valley, the Black Sea, and the Aegean. The city of Seuthopolis, vulnerable to being isolated within its relatively poor intermountain valley, did not long outlast the demise of Seuthes III (Tacheva 2000; Dimitrov 2011).

Lysimachos’s continued claim to Thrace led him into battle in the Hellespont against Antigonus, and later Demetrius Poliorcetes. Afterwards, he had to rush north to fight Dromichaetes, the king of Getae, who grew in power during the time of Odrysian decline
Shortly after his release from Getan captivity, Lysimachos faced Demetrius Poliorcetes again, this time in coalition with all the other diadochi – Seleucus, Ptolemaios and Pyrrhus. Only after Demetrius was neutralized in 286 BC, did Lysimachus avail himself of his Thracian prize. Yet, his luck did not last long. Attacked by Seleukus, he was killed at Corupedium in Asia Minor in 281 BC.

After the death of Lysimachos, Thrace plunged into a deep political crisis. The kingdom of Seuthes III fell with its ruler’s death. Central Thrace remained ungoverned and vulnerable to external threats, such as the invasion of the Celts, or the intrusions of Antiochus II (Delev 2004, 287; Domaradzki 1984). In 277 BC, the Celts established a polity in the vicinity of Byzantion in the Propontis (Domaradzki 1984). A part of the Celtic army was annihilated by Antigonus Gonatas at Lysimacheia in 277 BC. Another contingent stayed in Thrace until the end of the 3rd century BC. Although the Celtic invasion must have been disruptive, recent scholarship has substituted the earlier claims of utter devastation with an obscure, but considerably milder effect on the Thracian hinterland (Emilov 2005, 324-325; with full citations). Sources describe the Celts functioning as a protective mercenary force for Byzantium. The coins of Celtic king Cavarus found at Kabyle show that Celtic presence was stimulating to the local commerce (Emilov 2005, 327). Ancient literature does not provide any clues as to the mode of settlement of the Celtic community in Thrace. Tylis, the Celtic capital, has been vaguely located in the Strandzha foothills (Domaradzki 1980, 56). Harassed by the Thracians, the Celts eventually crossed over the Bosporus into Anatolia and settled in Galatia at the invitation of king Attalus.

Inscriptions indicate that life went on in Thrace during and after the Celtic incursion. The troops of Antiochus II roam the Hellespontine coast, providing protection from both the armies of Ptolemy and the Celts. Bronze mints of Antiochus at Kabyle with local countermarks and a fragmentary inscription point to a treaty between this city and the Syrian ruler (Draganov 1993, 56-58; Emilov 2005).

Thracian activity is attested in the stelai bearing Thracian names in Delphi and Apollonia Pontica. A decree of Mesembria confirms the existence of a Thracian polity between the middle Tundzha River, the Strandzha Mountains, and the Black Sea coast between Mesembria.

54 Polybius (8.24) states that for 80 talents of tribute the Celts protected Byzantium from Thracian attacks.
55 Once in Anatolia (Galatia), the Celts are said to have retreated themselves in defensible locations in the mountains (Strabo, 12.671).
56 A stela found at Delphi, dated to 270/269 BC, preserves the name of Kotys, son of Raizdos – an apparently Thracian dedicant. Another in Apollonia Pontica praises Rhaiskuporis, son of Kotys who had been held here as a hostage. (IG Bulg V: 5136-5138, 75-77)
and Apollonia Pontica (IG Bulg V: Nr. 5086, 47-50). This decree gives the king Sadalas the right to enter the ports of these cities at will, and commits the poleis to an annual payment of tribute to him. This inscription has been dated to ca. 250 BC and points to the autonomy of local dynasts in Thrace within nominally Macedonian territory (Jordanov 2004, 124). There is no indicator that Sadalas was a vassal of either the Antigonids or Seleucids. The example of Spartokos ruling Kabyle on behalf of Lysimachos shows that despite official Antigonid rule local rulers were free to exercise their own initiative. The 3rd century BC was one filled with military disruptions and upheavals. Thracian lands, while officially under the rule of Antigonids, were largely left to their own devices, providing a fertile ground for the establishment of powerful militarized groups, such as the Celts, or for the emergence of competent local leaders such as Sadalas.

During the second century BC, Philip V of Macedon (221-179 BC) and Antiochos III of Syria (223-187 BC) contended for influence over the Propontis and northern Aegean coast, but there is little evidence of any impact on the interior. Gradually, the Romans started exerting their influence over the politics in the Balkan region. After the Third Macedonian war (171-168 BC) between Philip V's son Perseus and the Romans, the Thracian kings remained independent vassals of Rome. The Romans guaranteed the loyalty of the Thracian (or other local) rulers by keeping their sons as hostages (Jordanov 2004, 124).

III.4.4. The Roman Conquest
The Romans, like the Macedonians before them, sought competent local rulers as military allies. During Roman battles at Philippi and Actium, Thracian (Sapaian and Odrysian) as well as Getic kings were allied to the Romans (Cass. Dio, 47.25. 1-2; App. Bell. Civ. 4.2.87).

The Roman involvement on Thracian soil began with the activity of M. Licinius Crassus, proconsul of Macedonia, who protected the Thracian interior from the incursions of neighbors such as the marauding tribes of Bastarnians, Medes, and Serds. After the conflicts and military turmoil of the late Hellenistic period, Thrace was gradually pacified during the 1st century BC. Pro-Roman local leaders, such as the Thracian king Rhoimetalkes I, rule as exemplary client kings over nearly the entire realm of Sitalces. Eventually, the descendants of Rhoimetalkes I were engulfed by dynastic struggle. Internal affairs, too, deteriorated after the king’s death and the resistance to Roman rule became palpable (Tac., Ann., 2.64.1-5; 2.65.1-5; 2.67.1-4). The mountain tribes in the Rhodopes and Haemus rebelled against pro-Roman client kings and refused to commit troops to the Roman army (Tacheva 2000, 180-188; Jordanov 2000, 127). They staged several uprisings until they succeeded in killing Rhoimetalkes III in 45 AD. At this
moment emperor Claudius sent in the Roman army and transformed the former client kingdom of Thrace into a Roman province.57 The history of Thrace from then on becomes one of Rome’s provincial lands.

III.5. Conclusion

Defining the Thracian state on the basis of Greek contemporary accounts can be problematic given the different background, personal interest and agendas inherent in the Greek sources. Vagueness and exclusion result from polarizing views on the Greek and non-Greek world as well as prejudiced attitudes towards difference in social status.

We must be reminded that, especially in Herodotus’s rich ethnographic account, the rhetoric of polarity between Greeks and non-Greeks sometimes overtakes investigative inquiry and leads to the substitution of direct observations with an imaginary world built of literary topoi (Hartog 1988). Thucydides, with his interest in political and military events, provides a narrative emphasizing aristocratic valor, military achievements and the deeds of great men, bypassing entirely any kind of social commentary. Concrete observations in Xenophon’s *Anabasis* provide a corrective to Thucydides’ focus on Thracian power, and resonate with aspects of Herodotus’s narrative. His is also the view of an aristocrat with respect for effective and competent leaders and desire for heroic deeds. Yet between the lines, his account records the simplicity and prosperity of the countryside and highlights the resilience of its inhabitants to political control. Xenophon’s hands–on experience is rich in detail and fills in the many gaps of his literary predecessors.

Overall, the Greek writers agree that Thracian tribes were ruled by kings. Thucydides describes Thrace during its heyday as a mostly unified, expansive and powerful state – monarchy. Herodotus argues for its weakness on account of factious internal divisions. Xenophon alludes to political organization reaching beyond the region where he operates, but points to severe flaws and structural limits in Thracian royal authority. Demosthenes disregards Thracians outright as wretched barbarians, but at the same time sees them as a threat and advocates the need to keep them divided and feuding. Overall, however, the historical sources refer to notable moments of acute stress or political strife and at this level present the best evidence for a state-level society in Thrace.

57 This pattern fits well within the military and diplomatic Roman strategy discussed by Edward Luttwak (Luttwak 1976) and the cultural /anthropological study of Roman revolts study presented by Steven Dyson (Dyson 1975).
The accounts generally provide an elite glimpse of Thracian society, for the most part ignoring non-elite activities and excluding mundane details of everyday Thracian life. The Thracian lands emerge from the historical sources as rich in natural resources, with densely occupied fertile areas and capable of supporting a large idle class. Only a small proportion of the population seems to engage in crafts and trade, or any other occupation other than agriculture or warfare. Yet the power of this populous nation seems unharnessed and mostly dispersed due to weak leadership. Even when strong royal rule is established it rarely outlasts a generation. The lack of institutionalized rule contributes to the promulgation of factions, emergence of rival dynasts, and aspiring aristocrats. The absence of mechanisms that would curb the conflict and competition is a major impediment to Thracian unity and increasing social complexity.
Chapter IV. Methodology

IV.1. Point of Departure

The empirical research for this dissertation comprised of surface survey in two core regions of ancient Thrace. First, the forelands of the Strandzha Mountains in the Middle Tundzha River were investigated (see the Appendix, Fig. A.3-1, A.1.12). This area is on the periphery of the traditional territory of the tribe of Odrysians, whose wealth and resources during the Early Iron Age made Odrysian ascendancy possible (Archibald 1998, 111; Aladzhov 1984). The second study area was in the intramontane valley of Kazanluk in central Bulgaria, which became the holdout of the Odrysians after the Macedonian conquest. This Upper Tundzha River valley is most famous for the Hellenistic capital Seuthopolis (see the Appendix, Fig. A.1.1, 3 and A.2-4). The historical significance of both these regions makes them the primary candidates for an investigation of settlement patterns and by extension the Thracian socio-political evolution.

In my archaeological examination of the Thracian state I draw on the principles and techniques of processual archaeology\(^{58}\), focusing on the quantitative analysis, and comparative and diachronic interpretation of the survey data. The application of landscape archaeology approach seemed highly appropriate to complement the existing datasets used for the study of Thracian complexity. Most of the scholarship to date has been based on settlement excavation and mortuary analysis with the regional aspect largely missing. Operating under the assumption that successful state-formation processes will leave permanent and archaeologically detectable traces at the regional level, I set out to examine the emerging complexity in Central Thrace, utilizing surface survey as a method of regional investigation.

Processual archaeology has emphasized the effectiveness of landscape archaeology and systematic surface survey as a technique of retrieving information on a regional scale (Snodgrass

\(^{58}\) The landscape archaeology approach looks at the entire land surface, not just at settlements. This approach sees landscape as a product of human activity, a palimpsest that has been repeatedly written and erased over the millennia, and has preserved fragmentary traces of past human agency from many eras. Landscape archaeology is not interested exclusively in the monumental remains, but in everyday objects and in the environmental context of all material culture. Along with a regional focus, landscape archaeology emphasizes diachronic research, since change is likely going to be more prominent across the long-term.
Landscape archaeology focuses on rural landscapes, everyday life and less spectacular areas of material culture. It complements the existing data on cities and rich mortuary remains in Thrace. In the focus on ordinary aspects of ancient life, landscape archaeology approach corresponds to the *longue durée* historical approach of Ferdinand Braudel (Braudel 1975). *Longue durée* history, as the opposite of traditional *événementielle* history of great men and military events, focuses on processes and changes happening over long periods of time. Landscape archaeology, similarly, uses everyday material culture, in combination with models derived from ethnography, anthropology, and other social and natural sciences to reconstruct patterns of past human behavior.

IV.1.1. Surface Survey Pros and Cons

Landscape archaeology and surface survey, even in the intensive forms, are not without limitations. These limitations fall into three groups: (1) personal biases - skills of recognition, experience of the archaeologist; (2) archaeological – what can be discovered; and (3) theoretical limitations – expectations and assumptions, with which the archaeologist approaches the observed phenomena. An example of (3) is my expectation of how a state would manifest itself in the landscape as opposed to a different political entity. All of these limitations potentially constrain the discoverability of the Thracian state. While some of the region-specific limitations will be discussed in Chapters Five and Six along with the regional summaries, I will focus on archaeological constraints here, because they are applicable globally.

The results of archaeological surface survey just like any other source of data need to be critically examined to assess the distorting factors that can potentially skew analysis. Perhaps the most detrimental effect on the results of TRAP surface survey can be attributed to the limited ability to differentiate and subdivide local pottery in the crucial periods under study.

Chronological coarseness, caused by a long tradition of local wares, has been a major obstacle to the reliability of the results. Varying chronological schemes – the different length of prehistoric and historic periods, fuzzy boundaries between the Late Bronze Age and Early Iron Age and the Early Iron Age and Late Iron Age periods - likewise render the dating of sites chronologically shaky. The vagueness and coarseness of chronology furthermore undermines considerations of site contemporaneity (Cherry 1983, 379; Jameson et al. 1994, 223). This caveat, in particular, must be taken into account in case of site ranking and settlement pattern reconstruction in Chapters Five through Seven.
The overall quality and preservation of surface material is the second biggest archaeological limitation during survey. A number of studies have addressed the effects of the plough on the landscape and surface material distribution and composition (Ammerman 1985). Both positive and negative effects of ploughing have been noted in Bulgaria. Pottery on the surface suffered from fragmentation, wear, vertical displacement (larger pieces on the surface, smaller in the subsoil), and horizontal displacement (dragged around the source). These negative effects were moderated by a general lightness of ploughing (animal traction and light plows operated mainly in the top soil of ca. 20 cm) and the excellent visibility the resulting fields afforded. Given the zero visibility in pastures and forested areas, the ploughing is seen as the lesser evil, as it brings artifacts to the surface and renders them discoverable (Terrenato and Ammerman 1996).

Low surface material densities and differential preservation of material of low and high quality were another factor that influenced the reliability of the results. Prehistoric sites or prehistoric site components in general exhibited low surface counts. Multi-period site scatters were often dominated by material from the final occupation levels. Even at sites with abundant surface scatters, the proportion of diagnostics was usually minimal (less than 1/10 of total counts). TRAP, furthermore, aimed to avoid the bias of other projects on highly visible and durable material, which indicated high-tier sites. Scatters with relatively low surface densities were sampled to give us a better representation of modest sites and to correct for the low quality material and aggressive post-depositional processes. The risk of inaccurate identification was preferred to the loss of the less obvious sites. It is hoped that in future campaigns the identity of the controversial “sites” will be redressed through revisit and excavation.

The core issue in the (un)reliability of survey results is the unclear relation between the surface and subsurface material. This issue can be clarified only through excavation. Fortunately, several of the sites in both the Yambol and Kazanluk regions were excavated and subsurface remains were found; however, the chronological precision was rarely improved.

59 Occasionally, deep ploughing would have detrimental effects on the subsurface stratigraphy, especially in the case of rose fields that require deep ploughing for the planting of seedlings.
60 Various aspects of quantification of diagnostics have been discussed. While Hayes 2000, despairs over the small ratio of diagnostic wheel made Roman ceramics, others seek the solution in the application of corrections and weighting schemes to low quality, less well represented types of survey pottery: Burgers, Attema and van Leusen 1998; Bintliff 2000.
61 Such as e.g. the Sagalassos survey in Vanhaverbeke 2003, 10.
The TRAP survey was conceived as a survey of varying intensity, whose ultimate purpose was to provide general insight into the settlement history of each of the study regions. The archaeological landscape was seen and approached as a continuous palimpsest, and the surface density of artifacts was therefore recorded continuously.\(^{62}\) Habitation and use areas were considered as a part of this whole and were preliminarily classified and analyzed for the purpose of defining directions for future investigation. The term “site” is avoided in the survey records by TRAP so that it does not suggest traditional implications of permanent settlement; instead archaeological “feature”, “object” or “scatter” is used to denote any archaeological remains of human activity. Unlike in the Mediterranean, Bulgarian landscape in the surveyed regions did not suffer from contiguous and dense carpets of artifacts. Most of the archaeological scatters were relatively clearly delineated against the sterile background as concentrations of higher density or quality that could be interpreted.\(^{63}\) Ambiguous scatters of low quality were included in order to avoid error. If there is any bias in the site numbers, it should be sought in the excessively inclusive criteria of site definition.

It goes without saying that the site definition and interpretation is preliminary and hinges upon verification through excavation. Besides the issues described above, interpretive challenges arise when attempting to define site function, length of occupation, and continuity of settlement only on the basis of surface finds. Questions of rank and significance of sites in the absence of major architecture are, too, highly problematic.

With all these methodological caveats in mind, one should perhaps underscore why it is still useful to conduct survey in Bulgaria. Several reasons can be proposed. Firstly, each archaeological method has its limitations, but those do not necessarily render the method uninformative. The regional perspective, which survey supplies, cannot be generated by any other method and remains the only complementary view to site-based approaches to the past. Second, in Bulgaria the topographic and environmental conditions (geomorphology), easy accessibility, low-impact agricultural strategies, and level of modern development (low in comparison to what is coming) are highly conducive to survey. All of these factors guarantee

\(^{62}\) As has been the practice in so called site-less or non-site surveys, ones that record the surface debris contiguously, such as in: Cherry 1983, 379; Cherry, Davis, Demitrack, Mantzourani, Strasser and Talalay 1988; Bintliff, Kuna and Venclová 2000.

\(^{63}\) No thresholds were used for site definition; instead, a relative peak in the overall density was taken as a symptom of a surface scatter (cf. Plog, Plog and W. 1978, 389; Alcock, Cherry and Davis 1994). As a result of this approach, the landscape was walked at mostly the same intensity whether or not scatters were present.
relatively high surface visibility and good access in comparison with other Mediterranean regions, enabling site discovery.64 Additional advantage to survey in Bulgaria is the large dataset of archival or legacy data. This dataset can be seen as a positive as well as a negative contribution to settlement studies. Legacy data offer a record of large and prominent ancient sites, which may be beyond the immediate survey area or may not exist today. The positive contribution of legacy data is in providing the big picture of important sites that compensates for the small sample size of the survey. The negative aspect of the legacy data is that much of the information on the important sites is inconsistent, incomplete, and has been collected haphazardly. Nevertheless, the legacy data help contextualize the survey results.

IV.1.2. \textit{Interpretive Framework}

The image of settlement patterns and regional development derived from the intensive survey and legacy data is contrasted here with the various political entities known to us through textual, epigraphic, and numismatic sources, and their interpretations put forth by historians and archaeologists (see Chapter 3.5) (Mikhailov 1970; Theodossiev 1991; Woudhuizen 2000-2001; Димитров 2011).

The putative Thracian state and its impact on the settlement of inland Thrace will be the center of investigation. The settlement pattern will be analyzed spatially, resting on the assumption that human decision making, especially the tendency towards the minimization of energy expenditure in movement, would leave discoverable fingerprints in its structure (Johnson 1977, 479-80). Among the approaches to spatial configurations of human societies, the best known is Christaller’s Central Place theory (Christaller and Baskin 1966), which expects a complex system to develop a spatially arranged functional settlement hierarchy. Its underlying assumption is that spatial organization of production and distribution of goods and services in human societies is governed by least effort considerations. In space, such distribution is expressed as a lattice of functionally large sites (regional centers) surrounded by small satellites (local centers).65 This model has been applied to ancient systems with more or less success, depending on the completeness of the datasets. Despite the assumptions of economic

64 See the rationale for survey in Ross et al. (2010); individual aspects of environment, geology and development are discussed in association with regional results in chapters 5 and 6.

65 The functional size refers to the number of types of activities carried out in a settlement. Johnson (1973, 15) points out that a close relationship exists between settlement population and functional size.
minimization and optimization, which are implicit in Christaller’s Theory, the model is useful to think with when describing the ancient Thracian settlement structure.

Productive integration of survey, excavation and historical evidence will be the key issue in cases of divergence and discrepancy. As for the analysis and interpretation of the data, different anthropological models of complexity (state formation) will be tested on the data. Two approaches, in particular, will be used in covering the middle ground between the description of the data and its analysis and explanation.

A neo-evolutionary conceptual framework66 will be used as the starting point for interpreting Thracian social complexity. Thracian society will be assessed on basis of traditional archaeological criteria67, with emphasis on settlement patterns. As human organization in space produces clues about major changes of the period, settlement patterns will be the primary group of evidence scrutinized here.68 Site hierarchies, clustering and settlement patterns will be examined to reveal the levels of social and political complexity and to extrapolate population trends in the region (Wright 1977; Steponaitis 1981; Wilkinson 2000). One of the goals is to present the archaeological evidence from Thrace in such a manner so as to facilitate comparisons with other polities worldwide, an approach that will hopefully benefit Bulgarian as well as western scholars (Marcus 2008).

Another goal is to explore alternatives to a neo-evolutionary framework and assess their utility for the Thracian case study. Considerations of heterarchy, political economy and various non-hierarchical control strategies will be used to attempt a dual narrative of Thrace (Blanton et al. 1996; Ehrenreich and Crumley 1995; Grinin et al. 2004; Pauketat 2007). Given the fact that multiple realities were likely in place in Thrace at any given point of time, a Rashomon-style depiction of reality through several parallel and not necessarily overlapping versions of the past seems a legitimate and adequate way to approach the past.

IV.2. **Surface Survey**

IV.2.1. **Survey in Bulgaria**

Surface survey has a long tradition in Bulgaria, in its extensive and informal form, as a tool for site discovery and registration (Škorpil 1924-25; Panaiotov 1974; Georgieva 1976; Aladzhov and

66 Chapter Eight elucidates the meaning of “neo-evolutionary” in this context.

67 The evidence for complexity of settlement patterns uses information on site size hierarchy, patterning, and distribution, and other evidence of functional site stratification and systemic inequality.

68 Hodder and Orton (1975)
Balabanyan 1984). The 1980s saw significant efforts to standardize survey methods and raise survey’s status to that of an independent research tool (Domaradski 1980; 1982a; 1988; Nehrizov 2005c). The survey practice in regions of Bulgaria remains inconsistent and the quality of results differs largely. Some regions are full of “dots on a map”, in others only specific periods or sites have been explored (Delev 1982; Dimitrova 1985; Vulcheva 1992; Gotsev 1997b). Furthermore, existing survey data are rarely analyzed or discussed; their primary purpose is still the location of promising sites for excavation (Gotsev 1997a; Chankowski and Gotsev 2002). The potential of survey data thus remains largely untapped. One of the aims of TRAP is to utilize both the existing and newly generated survey in order to address important research questions of Bulgarian archaeology, such as the rise of the Thracian state and political organization in the hinterland. The goal of such an undertaking is to underscore the utility of survey as an independent research method and to contribute to the existing discourse in Thracian scholarship.

IV.2.2. TRAP Methods

Surface survey methods employed during the project varied only according to environmental conditions (regardless of region). The strategies included: (1) systematic intensive survey in areas of high surface visibility and easy to moderate passability\(^69\), (2) systematic extensive survey in areas of low surface visibility and easy to moderate passability, and (3) adverse terrain survey [ATS] used in areas of low visibility and difficult accessibility (see Appendix, Figs. A.2-7 and A.3-7 for maps, and Appendix H for survey forms). The area examined through surface survey was supplemented and extended through satellite remote sensing. Correlation between surface scatters and buried features was explored through magnetometry and trial excavations in the Kazanluk region. The ancient environment in both regions was explored through palaeoecology, especially the palynological analysis of lake and wetland samples. All of these methods were combined to arrive at a picture of ancient lifeways and interactions between people and their landscape.

IV.2.2.i. Intensive Survey

Intensive survey consisted of walking at a steady rate using 15 to 20 m walker spacing and 15 to 20 m intervals between records (creating 15 x 15 to 20 x 20 m “cells”) (see Appendix H.1 and H.2). Artifact counts or densities, special finds such as grindstones, lithics, or glass, and

\(^{69}\) The term “passability” refers basically to the ease of access and passage through the particular terrain.
architectural features such as burial mounds or other earthworks were recorded, along with changes in highly variable environmental conditions such as surface visibility and agricultural condition. To better assess the “background scatter”, and to seek out patterns that might indicate low-intensity activities, artifact densities were recorded for every cell, not just where concentrations occurred. The densities were called out orally and, especially at dense scatters, represented estimates rather than exact counts. Samples of diagnostic artifacts were collected as the team proceeded (see below).

Teams usually consisted of four to six members, which produced “units” of 4 x 4 to 6 x 6 cells (square units were preferred, but not mandated). Units thus ranged in size from 60 x 60 m to 120 x 120 m (0.36 to 1.2 ha), with units of 75 by 75 m to 100 x 100 m (0.585-1 ha) preferred. Assuming each walker assesses a 2 m wide swath, 10 to 12.5% coverage was achieved. At the end of each unit, diagnostic artifacts were consolidated and bagged, teams recorded their estimates of type, date, and function of (uncollected) artifacts, and more stable environmental conditions such as slope and topography were recorded. Intensive survey was employed whenever surface visibility rose over 50%.

IV.2.2.ii. Extensive Survey

Extensive survey was used in most cases where the visibility dropped below 50% (see Appendix H.3). Walker spacing and record intervals were increased to 20-30 m (the latter represents the maximum distance allowing easy communication; units were smaller under windy conditions). Thus, teams of four to six people would, in theory, produce extensive survey units measuring from 80 x 80 to 180 x 180 m (0.64 to 3.24 ha). However, we encountered a practical limit of 125 x 125 m (1.56 ha), on all but the calmest days, and an absolute practical maximum of 150 x 150 m (2.25 ha). At the cell level, categories for record keeping changed from artifact counts per meter to coarser features, such as the presence of sherd scatters (including an estimate of average and maximum artifact density), worked stones, and burial mounds. Walkers were encouraged to monitor their entire transect for larger features rather than concentrating on a 2 m wide swath, as was the case with intensive survey. In other respects, such as the recording of environmental conditions and the collection of diagnostic artifacts, extensive survey mirrored intensive.
Adverse Terrain Survey [ATS] also called the "mountain" survey

In difficult mountainous terrain where ground visibility bordered on zero and negotiable routes were constrained, passability and line of sight became the factors that determined walker spacing (see Appendix H.4). The regular spacing and synchronized progress of the normal, grided survey units was abandoned for a more flexible approach dictated by the terrain. Terrain evaluation was left to the judgment of team leaders who assessed the surface visibility and difficulty of passage and decided how to proceed. In dense, scrubby forest or very rough terrain, the team would usually follow a path in a group, keeping a GPS tracklog and noting how far into the surrounding scrub or forest they could effectively see. With thinner vegetation and more manageable terrain, team members would disperse as far as possible across while still keeping one another in easy sight, and make their way forward as a group, adjusting their spacing according to visibility. Again the central walker would keep a GPS tracklog, and a record team alignment, dispersal, and line-of-sight distance. Only earthwork and architectural features were routinely recorded under ATS conditions, while road cuts and other patches of exposed earth were examined for artifact scatters. Since variable spacing ensued, progress and dispersal of the team were carefully recorded using GPS. Coverage was displayed in GIS by creating a variable line-of-sight buffer based on this information.

Appropriate forms were developed that recorded the line-of-sight distances, team dispersal, topography, density of vegetation, and the highly visible surface archaeological remains such as earth and stone works most likely to be encountered under these conditions (while still allowing for the occasional discovery of sherd scatters where bare earth was visible).

The purpose of this recording strategy was to define as precisely as possible the actual coverage of the surveying team (in the past, surveys in Bulgaria often reported many dozens or even hundreds of sq kms “surveyed” when a team had only walked or driven one or two transects across that area). Another reason for such strategy is to facilitate and systematize the documentation of team movement through the forests and mountains. A set of known variables - in this case visibility, dispersal, vegetation, and topography – can help with evaluation of the results. This documentation, being more detailed and accurate than Bulgarian record keeping to date, allows us to reveal biases in “site occurrence” on hilltops as opposed to the slopes and preferential choices of vegetation or topographic zones because “sites are expected to occur there”. With the help of ATS record keeping we obtain a more accurate record of the
actual terrain covered and can compare the density of sites in different topographic zones with the proportion of each topographic zone covered.

IV.2.3. Digital Documentation

Each team leader operated a GPS-enabled PDA that contained high resolution satellite images (IKONOS or QuickBird) and scans of 1:50,000 and, when available, 1:5,000 topographic maps. Using this device, the team leader tracked the location, alignment and heading of each team. Completed units were drawn into the PDA using ESRI ArcPAD and numbered, creating a geodatabase record for each unit. Artifact counts and other variables were recorded on paper in the field and entered into the geodatabase on a daily basis. Another member of the team carried an inexpensive, consumer-grade GPS receiver as a back up.

Walker spacing and record interval distance were maintained primarily by counting paces, but checked regularly with hand-held GPS units carried by a designated team member. At first, flags were used to track progress across large fields, but as the project progressed teams became more comfortable using GPS waypoints to maintain the bearings and ensure complete coverage.

IV.2.4. Collection Strategy

This project followed a “minimalist” policy regarding artifact collection during initial survey, in which only a sample of clearly diagnostic sherds were picked up (rarely, in cases where no diagnostic sherds were encountered when surveying a scatter, a few representative, non-diagnostic sherds were collected instead). This policy was largely dictated by the needs and tight schedules of our Bulgarian colleagues\(^70\), who required this approach for several reasons: (1) pottery processing and analysis had to keep pace with survey progress, as no lengthy study season was possible for most of the Bulgarian specialists; (2) processing large amounts of pottery that could not bear much information was to be avoided; (3) the rate of progress in the field needed to be maintained; and (4) as much material as possible needed to be left in the field for future, systematic sampling. As a result, preliminary identification of surface material in the field proved very important. Workshops were held early in the project to train students and volunteers to distinguish between: (1) ancient and modern material; (2) pottery and

\(^{70}\) All of our colleagues are public archaeologists who are responsible for managing a great deal of cultural heritage and do back to back fieldwork projects for most of the year.
architectural ceramics; (3) coarse (likely handmade) wares and fine (usually wheel-made) wares. These three characteristics were then recorded for each cell along with raw counts or density estimates. This additional information contributed toward a better understanding of the surface debris and the nature of the ancient activities it represented. Having a count of modern sherds allowed the assessment of how distracting modern material was at any given time, while also permitting the reassessment of “modern” scatters that, upon further study of diagnostic material, proved to be older (at first glance it is sometimes difficult to tell some Medieval – or even Roman – ceramics from certain types of early modern pottery or tile). Each team also had at least one local specialist who could identify pottery and other artifacts found in the field more precisely. Drawing upon this expertise, even uncollected material could be assessed with some confidence (reinforced by the study of diagnostic artifacts that were collected), and such an assessment was done at the end of any unit containing more than a background scatter. As the project went on and students gained experience with the ceramics (by working together with specialists on the processing of diagnostic sherds collected for further study), they contributed more and more to this process. This approach – combining a minimalist collection policy with in-field assessment of surface material – kept the volume of samples manageable and contributed to the speed and efficiency of survey. Significant surface concentrations were resampled in the second stage of the survey (see below).

Artifacts that were collected received further study. All ceramics received a preliminary “group” analysis by unit, in which they were divided into similar fabrics and (general) shapes, described, counted, weighed, and photographed (see Appendix H.5). These sherd groups contributed towards a general functional and chronological framework for sherd scatters and associated earthworks. Most non-diagnostic sherds that had been collected as representative were then discarded. Finally, particularly important diagnostic artifacts (typically stone, metal, glass, and pottery rims and decorated sherds) were fully inventoried, which involved assigning an inventory number and recording sherd dimensions, fabric, surface treatment, decoration, date, function, and in some cases a drawing (see Appendix H.6). The accuracy of chronological and functional identification was checked by local museum personnel.
IV.2.5. Recording Archaeological Objects and Sampling

When teams encountered any archaeological phenomenon beyond a sparse background scatter, an “object” record was created (see Appendix H.7).71 Objects fall into two categories: archaeological features and isolated “special finds”. The archaeological features include earthworks (especially burial mounds) and concentrations of surface materials. Following Bulgarian practice in the AKB72, “special finds” include unusual artifacts such as ancient glass or metal, complete or nearly intact artifacts (spindle whorls, lithic tools), or large artifacts such as grindstones. If these special finds were not associated with other objects like a burial mound or surface concentration, they warranted their own object number. If they were associated with another object, then they were always inventoried and receive a standard inventory number.

For all objects except sherd scatters, a GPS point was taken, photographs were made, and a written description (including the condition of the object) produced (supplemented by a sketch when appropriate); the dimensions of earthworks and large artifacts (which were difficult to collect) were also recorded.

Sherd scatters were often recognized in the field on basis of subjective criteria, such as increasing density or markedly higher quality of surface material relative to the surrounding areas. Such scatters were surveyed (or sometimes re-surveyed) using the intensive strategy to ensure consistency. If a sherd scatter was located during extensive survey, the team decreased their intervals to provide a more intense coverage and more accurately trace the extent of the site (some areas were occasionally re-surveyed intensively to the same end). Record keeping and diagnostic collections proceeded as described in “intensive” survey above.

The size and character of sherd scatters was re-assessed after pottery processing at the base, and further refined in a month of analysis conducted during the final season of the project. Based upon surface density records, the boundaries of the scatter were defined. Usually, subjective judgment of boundaries based on a review of survey records and pottery was used to define scatter boundaries. The project did not set arbitrary thresholds for the entire study area; instead, differentiation in density and quality between “site” material and background scatter in the context of field conditions (especially surface visibility) was the determining factor.

71 The word “object” or, more accurately, “археологически обект” has been adopted from Bulgarian to denote a “findspot”, rather than indicate an individual archaeological find. The term is a part of standard Bulgarian survey terminology and was used so as to facilitate intra-team communication. As such it has entered into the forms, diaries and documentation.

72 Archaeological Map of Bulgaria, for explanation see section IV.4.3. below.
IV.2.5.i. **Total Pick-Ups**

The densest areas within each scatter were identified, revisited, and re-sampled using the “total pickup” method. A total pickup consisted of marking a 5 x 5 m or 10 x 10 m area (depending on artifact density) and carefully collecting all material from it. The position of this square was decided on the basis of team leader judgment, informed by the GIS density map. Multiple total pickups were conducted at most scatters to assess internal variability and horizontal stratigraphy. All material was sorted by technique (hand- or wheel-made), fabric quality, and fabric thickness, eventually decoration (Red-Slip, Black-Slip, Glaze). It was then counted, weighed and photographed. Non-diagnostic ceramics were processed in the field and discarded, while diagnostic material was again weighed, counted, and retained for further study. Initial interpretation of total pick-up material in the field was guided by the fabric qualities rather than forms or shapes. On this basis, samples were divided into basic groups of personal table ware, transport, storage, and architectural ceramics. A detailed description of the interpretive process together with the summary tables and location of total pickups can be found in Appendix F, the forms and key can be found in Appendix H.8.

The original intent of the Total Pickups was to systematically obtain a representative and quantifiable sample of artifact groups at a site, including unobtrusive artifacts. Given the labor and time required for collection and sorting of these samples, we usually collected between two to four samples per scatter (processing at one or two sites a day). A greater number of samples were collected at features with a larger size, greater variability of surface material, or higher surface density. Early total pick-up samples revealed that survey was missing handmade pottery, daub and architectural debris, and tiny fragments of fine ware, instigating further training for volunteers and improving the accuracy of subsequent survey. The total pickups, given their limited spatial extent, only rarely improved the known chronology of a scatter, but often added functional details to the scatters. The fragments recovered were usually highly worn and contained relatively few securely datable diagnostic sherds. Intensive survey alone proved more efficient for delineating the horizontal stratigraphy and the chronological breadth of a site. The total-pickups thus worked best in single period sites (e.g. 2046 on page 309). The quantified ratios of different functional types of artifacts (see key in Appendix F for criteria) assisted with mutual comparison and evaluation of site function. Basic categories such as storage, transport, fine table ware, architecture, coarse ware – were monitored. The full potential of total pick-ups (for comparative assessment of site functions) remains untapped. No
Bulgarian excavations quantify all recovered materials by fabric\(^{73}\), so no comparative samples exist that could be matched to the total pickups. Interpretation of total pick-up materials therefore hinges on the limited sample of the TRAP survey and the expertise of our local collaborators. This collection of data will hopefully trigger a more rigorous approach to site sampling, and quantification, and description of fabrics in Bulgaria.

IV.3. Legacy Data

IV.3.1. Introduction

The Tundzha Regional Archaeological Project is the latest in a long line of archaeological investigations in the Kazanluk and Yambol regions, and one of its initial aims was to incorporate and contextualize existing archaeological data, referred to here collectively as “legacy data” or “archival data”. Collection of archaeological information predates the birth of the Bulgarian state (e.g., the work of Jireček and Škorpil in the mid-19\(^{th}\) century) and the century of investigations that elapsed in the meantime has produced a large volume of data.\(^{74}\) The use of this information comprises a complicated issue. The data is wide-ranging and rich in information; but it is not amenable to direct use for regional analysis because of inconsistent methods of acquisition, inaccuracies and omissions.

Data collection started in the 19\(^{th}\) century with horseback registration of ancient inscriptions and collections of information provided by local farmers concerning archaeological remains. Later extensive (usually informal or at least unsystematic) field walking and rescue excavations complemented these records. Multi-year, total excavations (e.g. Seuthopolis, Kazanluk tell, Kran tell) and other large scale investigations followed only in the 20\(^{th}\) century with the modernization of Bulgaria. As a result of different objectives and methods, the scale and type of information recorded during these procedures varies wildly. Its publication also varies, ranging from entries in a regional site gazetteer, concise paragraphs in the Annual reports (AOR), to excavation monographs.

Verification of the data is hindered by the fact that a number of these sites no longer exist today, having been destroyed by modern development. In Kazanluk, the Neolithic tell of Kazanluk disappeared under one of the city’s industrial quarters, the city of Seuthopolis was submerged under a reservoir, and numerous Roman and late Roman structures were

\(^{73}\) Often only the imported materials get quantified, while coarse wares (and local fine-wares) are often neglected. Vessel function is identified through shape or decoration, fabric analysis is extremely rare.

\(^{74}\) Škorpil 1885; Škorpil 1887; Jireček 1888; Škorpil 1925; Škorpil 1926
permanently sealed by the construction of the new road to Shipka. In Yambol, several tell sites were overbuilt by the modern city and a whole county was modified during the construction of a coal burning power plant, Maritsa Iztok II, and its adjacent reservoir. Information on vanished sites and monuments is invaluable and cannot be replicated.

Although the legacy data contains invaluable information, its utility is limited. Inaccuracies, omissions, and differences in scale and resolution of individual entries, disqualify many of the records from inclusion in any formal regional analysis.

IV.3.2. Rationale for the Use of and Approach to the Legacy data

The plan conceived at the beginning of this project was to make the most out of the legacy data, but also to use it cautiously. While systematic survey addresses some of the potential weaknesses of legacy datasets, such as site type focus, (mounds at the expense of settlements) topographic bias (sites in easily accessible or prominent locations), the top-tier site bias (focus on larger, more visible sites), legacy data offer different advantages. Its dataset usually extends over a much larger area than can be captured by intensive survey and includes a greater variety of site type and functions. Its extent may partially remedy the small size of survey samples. Legacy data, with their basic picture of archaeological landscape based on local knowledge and previous fieldwork, provides a backdrop of major sites outside the survey area, extending and complementing our small but systematically surveyed sample.

IV.3.3. AKB

The most obvious way to collect archival data is to do a thorough literature survey. In Bulgaria, the process of data collection is simplified by the existence of the Archaeological Map of Bulgaria (АКБ - Археологическа Карта на България), an official national registry of archaeological sites and monuments. This database - parallel to Magyarország Régészeti Topográfíája in Hungary, (Ecsedy et al. 1982) or Archeologiczne Zdjęcia Polski in Poland, (Brzeziński and Kobyliński 1997) - was conceived, designed and promoted by M. Domaradzki in the 1990s. The AKB was a culmination of efforts at standardization of archaeological documentation that had started during the 1980s. The main incentive behind the database was the need to register and protect archaeological monuments endangered by the land restitution that took place at the beginning of the 1990s (Domaradzki 2005; Nehrizov 2005c).
Other objectives of the AKB were: 1) to facilitate the cultural heritage management in Bulgaria; 2) to standardize data collection and reporting; and 3) to stimulate of regional archaeological investigations and research (Domaradski et al. 1988). Initially, a paper-based archive of all cultural heritage monuments was created in the 1980s. Digitizing of the initial paper records started in the 1990s, yet the digitization of the entire archive is proceeding slowly given many quality control issues. The database as well as the paper archive is administered by the Archaeological Institute in Sofia. Submission of forms detailing the date, nature and location of newly discovered or investigated archaeological sites has become mandatory for any archaeologist conducting fieldwork in Bulgaria (who wants to retain his or her permit).75 Regarding data quality, the records created in the 1990s show a relatively high standard of accuracy and completeness.76 Older archaeological records from the 1980s, however, suffer from a range of problems, including vague, imprecise, or missing information about site location, characteristics, and environment.

A haphazard attitude to data quality in the early stages of AKB implementation contributed to this situation. In order to popularize the AKB and encourage data submission, its managers would accept incomplete record forms. At the moment, all the records still have to be entered manually, which is labor-intensive in the case of new data. In the case of old records and in light of funding shortages over the last two decades, digitization has been a protracted process. Inefficient and protracted data entry is exacerbated by inaccuracies and omissions in the archival records. In 2006 the AKB held some 14,000 site records, increasing annually by 800-1,000 sites as a result of archaeological survey and other discoveries (Нехризов 2007, 2). With so much new work underway, few archaeologists have the interest or resources to ground truth the old records to improve the AKB.

Furthermore, access to the AKB is password-protected and limited to the participating research and commercial institutions (real estate developers and industries) who can justify their need to access the files for CRM or legal purposes. Regional museums (usually but not always) retain electronic copies of their local registries separate from the AKB, which get synchronized at the Annual Meetings. Cadastral offices use the AKB when handling land ownership and development clearances in their area. Access to individual researchers is granted

75 http://www.naim-bas.com/akb/
76 The standards governing procedures during site investigation and recording were codified in 1997 in the “Правилника за провеждане на теренни археологически проучвания в Република България” in the aftermath of normative establishment of AMB by the ruling no. 26 of Ministry of Culture.
on an individual basis upon proof of affiliation and articulation of research goals and intentions. Archaeologists who collect and submit data to the AKB have access to the records in the region where they work. Acquiring direct access to multiple regions in the database is nearly impossible due to strict security and copyright limitations. AKB staff will usually run queries and provide output from the database upon a small payment, and only to qualified and vetted researchers. Such queries, however, have to be period and site-type specific and bounded by a specific region. There is a limit on what questions can be asked and what searches run as the AKB was built primarily as a culture heritage management resource, not a research database. Searches thus need to remain simple, and one needs to beware of pre-defined categories and classifications imposed on the raw data prior to submitting a query (e.g. chronological schemes, site types – megalith versus a burial mound).

The AKB is currently undergoing a modernization process which will put it online, streamline the access procedures, improve the analytical and research capabilities (by making it GIS-aware), and make the records available in English (pers.comm. Michael Elfial, AKB programmer, March 2011). A preliminary version of the new database is running, linked to the official Archaeological Institute website, in Bulgarian only. The upgraded AKB will offer a modern solution to archiving and disseminating archaeological data; its overall conception presents a milestone in imposing and enforcing a national standard on archaeological data. Quality issues remain, especially with old records, and these gaps are only slowly being eliminated through the process of revisiting old sites and manually entering corrected data into the system. While much encouraged, this process is grossly underfunded. Problems of data quality are exacerbated by the numerous limits to access. Strict intellectual ownership rules and fear of looting have made access to AKB virtually impossible for outsiders. Even when access is acquired, the investigations are constrained by administrative boundaries rather than research design. We can only hope that the creators of the new AKB version will remove some of these constraints and unleash the potential of this marvelous resource, supplementing its current CRM role with the capacity for research.

Although AKB is not yet the ideal resource, it is a good start for regional analysis. I have drawn upon it heavily in both regions of study because, regardless of its omissions, the data within is less heterogeneous and problematic than that found in published reports. Using the AKB saves time in tracking down and sifting through the original reports, the acquisition of

77 Often the ‘author’s consent is required for such a query.
which is often problematic. Once the AKB is translated into English, and provisions for access improved, it will be widely available to foreign researchers. Having relied heavily on the AKB for a comparative dataset while researching settlement patterns in two different regions, I experienced both frustration when confronted with inconsistencies and limitations as well as enthusiasm when datasets proved robust and surprisingly well aligned with my survey data. While not entirely consistent, AKB has considerable potential for regional or comparative research when used with care.

IV.3.4. Data Quality Considerations
Archaeology is a data intensive undertaking. Yet, robust data management systems are not widely used, leaving recording procedures unstandardized and allowing for a variable quality in the production of raw data. Data quality and compatibility is a major issue in regional analysis as large amounts of data from different regions need to be examined. Large datasets, however, often suffer from omissions and inconsistencies that need to be eliminated or compensated for before their use. Variation in data quality may be caused by any of the following: inconsistent or haphazard data collection methods, lack of agreement on core recording standards, measurement inaccuracy, and slovenly data management.

The completeness and accuracy of site records is often limited by the site type and its accessibility. Surface scatters may be readily accessible, but will not provide comprehensive information about all chronological components of a settlement, or reveal its full functional range. Fortresses may be easily datable but their position in dense forest and high peaks, where municipal boundaries are blurry, has complicated their assignment to specific municipality. As a result, if a fortress is located at the intersection of several municipalities, it will likely be claimed by each of them and reported several times, inflating the AKB record. Burial mounds are clearly visible, but cannot be dated unless excavated. Depending on which method is applied during their investigation, different types of sites yield information that is limited in various ways. Missing bits of information were the most frequent reason for data exclusion during my analysis.

IV.3.4.i. Scholarly and intellectual agendas
Before I describe in more detail the processing of the legacy data, I want to consider the agendas behind the acquisition of legacy data and situate the registration process better in its social and intellectual environment. The quantity and quality of archaeological information
accumulated in any region is often a function of the resources that local institutions, like museums, can amass for research and cultural heritage management. When research is funded by a local museum, the type of sites and periods explored will tend to reflect the expertise and professional interests of local practitioners. Conversely, when research is funded and driven by infrastructure development, the distribution of period and type of sites explored will be more variable, as shown during the Thrakia Highway explorations.

Archaeology, as a discipline embedded firmly within the public domain, answers also to the intellectual or political agendas governing local or national politics (commanded centrally by the Archaeological Institute, or directed locally by prominent personalities⁷⁸). The Yambol region has over the last 50-60 years built an excellent track record of attracting Bulgarian as well as foreign researchers to conduct high-quality archaeological investigations in the region. While suffering demographically and economically for its reputation as an agricultural backwater, the Yambol region has seen some of the most continuous archaeological effort directed towards several sites. The flagship project of Sofia University has, for the last four decades, been Kabyle, research about which has produced several volumes concerning finds from this major Hellenistic and Roman city. The German-Bulgarian Drama expedition mentioned above (conducted in the 1990s) intensively investigated prehistoric habitation in the southern Yambol region, while the Maritza Iztok power plant rescue project stimulated work in the western part of the region.

The earliest settlements and the arrival of agriculture present one topic that has stimulated archaeological work in the region. Given the proximity to the Bosporus, the Yambol Region has a lot of potential for answering questions about the spread of agriculture. Several expeditions since the beginning of the 20th century have focused on the study of the first farmers in Yambol. French explorations mark its beginning at the turn of the 19th century, while the German-Bulgarian expedition in the 1990s marks the most recent investigation.⁷⁹ Another

⁷⁸ The Yambol region has seen independent action by Diana Agre, an archaeologist and researcher from Sofia, who has been excavating burial mounds in the region. Her work in the region shows skillful evasion of the regular protocol at the regional level. Having acquired the consent of the municipal museum at Elhovo, she filed and had her permit approved by the Archaeological Institute (AI) in Sofia. With a partner in the region and AI backing, she easily bypassed the authority of the regional museum at Yambol.

⁷⁹ Large tells have attracted prehistorians to Yambol region already at the turn of the 20th century; the first expeditions being organized by the Frenchmen (Jerome 1901 and Seure and Degrand 1906), followed up by Bulgarian scholar V. Mikov (Mikov 1939). Their efforts were continued in the 1990s with a massive Bulgaro-German expedition of Professor J. Lichardus and his research group; see Fol, Katinčarov, Lichardus, Betremes and Iliev 1989; Lichardus and Iliev 1994; Lichardus, Fol, Getov, Echt, Katinčarov, Betremes and Iliev 1997; Lichardus, Fol, Getov, Betremes, Echt, Katinčarov and Iliev 2000; Lichardus and al. 2004.
popular topic is Thracian megalithic architecture and burial mounds. Yambol has seen research in these areas in the 1970s as well as in the recent decade with the rise of media archaeology (see Chapter II.5). Given these expeditions, we have a relatively good record of early prehistoric sites, both tells and flat settlements. Among the historic sites, the burial mounds and the city of Kabyle (which has substantial surface remains) and its hinterland have received the most attention. Problems arise when dealing with Bronze Age or Medieval sites, since they were not the focus of Yambol practitioners over this period. Most data concerning these less popular periods will have come from rescue work, village informants, and incidental finds. With regard to diachronic regional analysis, the proportion of investigated sites of less popular periods may be considered random. On the other hand, sites of popular periods have enjoyed a disproportionate amount of attention, which should increase their numbers in the final analysis. Other periods, like the Early Iron Age and Thracian period, fall somewhere between.

Archaeological research in the Yambol region has, like in most other parts of Bulgaria, been subject to intellectual and political agendas operating on the local and national level. Yambol Historical Museum personnel deserve credit for fostering and maintaining ties with Bulgarian and international institutions, and promoting the archaeological potential of the region.

IV.3.4.ii. **Acquisition Methods**

Having discussed the major thrust of previous research I will review in an ascending order the sources and reliability of legacy data in regional site gazetteers or the AKB.

1) The largest single source of known archaeological sites originates from informal reports by farmers and other local inhabitants. Unless the site was promptly visited by the local museum personnel, these reports are the least complete and accurate. They often lack detailed descriptions and accurate locations. In most cases, information about these sites remains rudimentary at best, omitting site size, disposition and secure chronology. Some 154 of 205 sites in Dimitrova and Popov’s Yambol gazetteer (1978) were of this type, comprising mostly fortresses in badly accessible areas and so called “mahalas” – hamlet-sized surface scatters (45 scatters of less than 0.5 ha).

2) Looted sites are another common but problematic category. Their reports unavoidably suffer from incompleteness due to robbing of any potentially marketable materials - often
just those artifacts that might have provided chronological and functional information – and disruption of the rest.

3) Survey is the second largest source of Yambol legacy data, and the most common method employed by History Museum personnel for data acquisition. Survey data are usually a good source of location and basic chronology, at least for site types amenable to survey investigations. Burial mounds, unfortunately, do not lend themselves to dating through survey, reducing the usefulness of the record. Biases and omissions, furthermore, enter the record from different project agendas. In addition to being unavailable to researchers, the German-Bulgarian survey of the Drama region focused exclusively on prehistory, often failing to record later sites (pers.comm. Ilija Iliev 2009). This project thus provides a good idea of prehistoric habitation of the region, but skews the total count of sites towards prehistoric periods. In general, previous survey data has proven to be useful and usable for my purposes – with the usual caveats surrounding site sizes, functions and chronologies.

4) A small proportion of legacy site records stems from excavations, both planned and rescue. While they contribute only the smallest slice of data they usually provide the highest quality functional and chronological information. Given the fact that most excavations in recent years in Bulgaria have been rescue projects dictated by development rather than any systematic research design, the spatial distribution of excavated sites can be considered random.

IV.3.4.iii. Positional (in-) accuracy

Spatial accuracy is the most pressing issue in AKB or any other data source. Given that affordable, consumer-grade GPS receivers have only recently become available, precise coordinates are not widely available for most legacy data. The position of sites has been mostly recorded with reference to towns or villages, local toponyms, and landscape features (e.g. trees, ponds), many of which are ambiguous or have changed over time.

The variation of positional accuracy in old records can be summarized in three categories:

1) Position defined by azimuth and distance from a known location (e.g. “1.5km, 180 degrees of Bolyarovo village”);

80 The usual excavation caveat applies here. The excavation captures only a small portion of a site and many records lack any mention of the estimated full extent of the sites or the full duration of habitation.
2) Position indicated by general direction and distance or approximate location (e.g., “300 m west of Robovo village” or “south bank of the Robovo reservoir”);

3) No precise location noted (“a sarcophagus was found in the Robovo municipality”, “a coin hoard was recovered in the yard of the blacksmith in Bolyarovo village”).

All of these types of location information have a margin of error. Even azimuth and distance – although the most accurate of the list above – can be ambiguous when the origin of the measurement is not made explicit. According to local conventions, the origin should fall in the center of the village. Yet “center of the village” can be very ambiguous. Some authors use the town hall or a large building visible in the map, others a major intersection or a church as the “center of the village.” Occasionally, an unspecified “edge of the village” is used (to add extra confusion). The modern development of settlements since the first creation of legacy records obscures the situation further. Many of the villages had new roads, culture houses and cooperative shopping centers constructed in the last 40 years. Other villages have contracted. Overall the layout of villages may have changed markedly, making the search for an archaeological site predating this development a detective adventure.

Verification of site position requires a revisititation of the site. Ground control of legacy data was attempted in the fall 2010 with little success, as sites were often not found due to land cover, site demise, or vague or incorrect directions. Many sites have disappeared under new suburbs, roads or channels, while mounds have been excavated away and tells built over. Often the vague directions led our teams on a day-long wild goose chase, with no results.

While unknown errors inherent in the data may lead to unrepresentative and misleading results, known errors only hinder some aspects of analysis. In case of limited positional accuracy, sophisticated analysis of spatial distribution may not be possible. The data remains amenable to chronological and functional analyses.

IV.3.4.iv. **Attribute (in-) Accuracy**

Accuracy of site attributes (site type, extent, function and period of use) is crucial for a meaningful analysis of legacy data. Site attributes supply the bulk of the information about a given archaeological feature and inform its rank and significance. Many of the attributes, however, result from interpretation and as such, depend on established archaeological standards and typologies. The AKB offers a set of definitions for various assemblages both recovered on the surface and excavated, which reduce the original information into predefined
categories. Not all AKB entries include “raw data” – a list of materials recovered - which deprives the user of any means to reinterpret the site later. Gazetteers are usually more explicit, allowing the reader to scrutinize the raw data and reassess the final interpretation.

The accuracy and reliability of site interpretation depends on the method of discovery. Excavations usually provide more reliable information, although data quality may differ significantly across different chronological components. The town of Kabyle provides a good example of a site where the Roman structures have been thoroughly investigated, the Hellenistic fortification system is known reasonably well, but only a couple of sherds out of context attest to the earlier periods.81

Surface scatters provide a limited amount of clues about chronology and function of the site, and often leave interpretations tentative. Some site types are more pre-defined than others. A Roman villa, for example, requires the presence of architectural materials, production installations, and quality fine wares. “Mahala” is another frequently used AKB site type that collapses most small sized scatters into the category of a “hamlet” or “farmstead” - or, literally, “a couple of sheds or barns”. In these two cases, spatial extent and diversity of surface materials are the main typological criteria. AKB is pushing archaeologists to record raw surface density and list different types of recovered materials in an effort to make later re-assessment possible, but many existing records lack this information. Most interpretations are still based on the experience and intuitive understanding of the researcher. Quantified analysis of artifact types and ratios to determine site function remain rare in Bulgaria.

Given different methods of discovery, different recording precision, and different archaeological agenda, consistency remains the main issue with site attributes.82 Dimitrova and Popov (1978) provide information on site chronology and extent in only one quarter of the sites in the Yambol region (full, consistent entries exist for 51 sites out of 205 total). Some of these omissions are remedied by the more rigid structure of the AKB, where the information was corrected during later re-entry. Overall, 175 sites were salvaged from the original number of 205

81 The following publications offer summary reports on various archaeological aspects of the city of Kabyle: Velkov, Petrov and Draganov 1982; Velkov 1986; Domaradzki 1990; Velkov 1990; Velkov 1991b. The Early Iron Age materials found at Kabyle were discussed by Gergova and Iliev 1982.

82 While excavations usually provide good detail in a small area, the excavations altogether provide only a few regional data points, limiting their usefulness for a regional analysis. Even if consistently recorded, they hardly yield a representative picture of settlement in the region. Survey data even though poor and often lacking in chronological and functional detail, provides a larger sample and wider distribution than excavation data. To an extent, this quantity and distribution of data can compensate for poor or incomplete information.
for the region. Having nearly 80% of the original dataset preserved, I believe that the patterns from the original dataset are well represented, validating the analysis.

IV.3.5. Final Caveat

Having discussed the origin and character of legacy data it is clear that the archival archaeological data is rich and varied but very problematic. Accuracy, precision and completeness are not yet the standard everywhere. The nature of archaeological residues itself complicates analysis. Bulgarian cultural heritage does not abound in peer sites of the same form. Instead, different functional types within the category of settlements affect the traditionally measured criteria of extent, composition and density of surface remains (e.g. fortress versus a flat scatter). Given the small original dataset, the comparison of peer sites only would jeopardize or invalidate the study. Instead, I aimed to include as much data as possible, streamlined it to the best of my ability, and assessed it with regard to the different site types.

Consistency of records, varying scale of detail and accuracy are major issues when handling legacy data anywhere. The only solution to the problems discussed above is thorough re-survey and re-visit of most known sites. This is, however, a task of no small scale and subject to some serious limitations (site destruction to mention only one). As it will not occur in the near future, I have attempted an analysis of legacy data despite inherent problems. I trust that readers will look at the results with caution and remain alert to the issues mentioned above. While no better data is available at the moment, I will use the results of my systematic survey to highlight problems with the legacy data.
Chapter V. The Yambol Study Area

V.1. Introduction
The Yambol region is the original study area for which the TRAP methodology was devised. The initial goal of TRAP here was to investigate the hinterland of the site of Kabyle, a Macedonian foundation at the site of an earlier Thracian settlement in the bend of the Tundzha valley. This city was strategically located at the nexus of east-west routes between the Black Sea and the Thracian plain and north south routes between the Aegean and Haemus mountains. Mentioned in historical sources, it was a settlement of unquestionable importance. Since the 1970s the site has been a flagship project of the Sofia University, whose professors and students published extensively on their findings. The Roman and Hellenistic levels have been investigated during ongoing excavations (Velkov 1982, 1990, 1991a). Numismatic and epigraphic studies attest to the significance of this site during the Hellenistic period when the city negotiated its identity as a vassal to the Macedonian satrapy. Having later allied itself with the Seleucid Antiochus II, this independent polis of mixed Macedonian and Thracian population rivaled the Thracian capital at Seuthopolis (Draganov 1993; Tacheva 2000b).

V.1.1. Research Questions and Study Area Selection
Our research goal was to investigate the hinterland of this interesting site and study its impact on the surrounding settlement. The extent, structure and evolution of its ancient chora, the rural settlement around the city, were primary research questions for this area. A pilot project was successfully conducted here during spring 2008, but afterwards the work at Kabyle had to be discontinued due to disinterest on the part of our partners from the Sofia University (Ross et

83 The bibliography for this site is immense. To mention just a couple, among material studies figure the treatments of coarse pottery by Handzhyska and Lozanov 2010 and a comprehensive study of imported amphorae by Getov 1995. Locally minted coins are discussed in a sequence of articles by Draganov 1990; Draganov 1993; Draganov 1994b; Draganov 1998. Architecture of Roman period is presented by Tancheva-Vasileva 2000. Overall site analysis, its significance, as well as religious and economic aspects are discussed in Draganov 1990; Getov 1990; Rabadjiev 1990; Sasołov 1990; Stoyanov 1990; Velkov 1991b.
Work in the Yambol region was resumed after new partners were developed with the Yambol museum personnel. In the fall of 2009, TRAP returned into the Yambol region and targeted a new study area.

In the absence of another urban site of Thracian date, the TRAP research goal in the Yambol region shifted to concentrate on the study of the Thracian rural hinterland. The challenge of selecting an area that would be representative of the Thracian interior topographically, environmentally and, as much as possible, also archaeologically fell to TRAP museum partners. With the constraints of time and funding, we aimed for an organic piece of landscape that could be accessed easily, covered efficiently and productively, with the potential of yielding a sufficient amount of material to inform our research question, within a single two month season.

With these concerns in mind, the Yambol museum colleagues suggested a study area south of Kabyle on the border of the Tundzha and Elhovo municipalities (see Appendix, Fig.A.3-1). The area had not been investigated by the museum, but multiple sites were reported here by local authorities. Enclosed by two eastern tributaries of the Tundzha River, it presented one of multiple ridges in the rolling countryside that characterizes the transition from the central Thracian plain into the Strandzha highlands (see Appendix, Fig. A.1-4). Several prehistoric sites were reported in this region by a German survey team that operated during the Drama expedition. A number of Bronze Age and Early Iron Age mounds were excavated here as well as a small Roman town at the village of Stroino, which had been attracting looters (site 6018, see Appendix, Fig. B.2-2 and C.2-1). The chronological range and functional diversity of sites reported here, as well as the environmental representativeness of the area flagged it as a study region fulfilling the criteria of our research design.

Naturally bounded, the study area provided an organic unit. With no major archaeological sites (such as Seuthopolis or Kabyle), but enough potential for small tier sites, it seemed a good example of a rural area. It provided a regularly patterned Strandzha Mountain foreland85, offering many similar parallel ridges and combining higher land and river valleys, in a mosaic of different environmental zones and topography.

84 Use of this survey was useful in helping us to develop appropriate methods, but we found little evidence of Iron Age settlement and will not further consider this initial survey in our maps, tables or analyses. Preliminary results and maps may be consulted in Ross et al. 2010.
85 The Strandzha foothills are purported as the traditional seat of the Odrysians, and a powerbase in which Thracians first consolidated during the Early Iron Age (Aladzhov 1984; Dimitrov 2011).
A contiguous area was chosen so that different tiers of site hierarchy could be monitored. Legacy data collected from the region provided a diverse sample with its collection of tells and Roman villas cut and discovered during various infrastructure improvements. We wanted to supplement such haphazard dataset with a more intensive and representative sample. Last, but not least, any other type of sampling strategy was highly discouraged by TRAP museum colleagues due to permitting difficulties. Survey permits require their organizers to specify very clearly the municipalities of operation and the only approved method of doing survey in Bulgaria is the local version of “total coverage”. This compulsion towards intensive study of one region/municipality is not based only on any scientific premise but is preferred because the survey teams can be more easily monitored and supervised.

V.1.2. **Study Area Profile**

The project study area in the Yambol region consists of two discreet areas investigated in fall 2009 and 2010 respectively. The 2009 study area is a contiguous stretch of land that lies just east of the middle Tundzha (Tonzos) River in the Thracian Plain of southeast Bulgaria, in the Elhovo district of the Yambol region (approximately 30 km south of Yambol and 9 km north of Elhovo on the Yambol-Edirne highway). It falls within the administrative boundaries of seven villages: Karavelovo, Slamino, Robovo, Boyanovo, Stroino, Borisovo, and Kamene. The 2010 Dodoparon survey area surrounds the village of Golyam Manastir ca. 20 km west of the Elhovo study area and includes the administrative boundaries of the villages of Golyam Manastir, Miladinovtsi and General Toshevo. As opposed to the contiguous area in 2009, two transects flanking diagonally the forested hill Gradishteto were selected for investigation here (see Appendix, Fig. A.3.1 bottom left).

V.1.2.i. **Topography**

The 2009 study area includes approximately 40 sq km bounded by two eastern tributaries of the Tundzha River, the streams Gerenska reka and Dereormann (see Fig. V-1 below). The landscape rises above these two streams, from alluvial terraces through rolling hills to a broad ridgeline. Hills leading to the ridgeline are limestone, hosting a large, modern quarry (see Appendix, Fig. A.3-2). Elevation within the study area ranges from 90 to 210 msl. Soils are relatively rich humic smolnitsas, occasionally with high densities of eroded limestone (see Appendix, Fig. A.3-3).

86 Permitting issues entirely complicate shovel testing or any such other intrusive methods, as a new permit is required for each such intrusion. A stratified sample aiming to study the regional settlement with let’s say 20km coverage broken down to 100 smaller units would thus require 100 permits.
In its wider context, the study area straddles one of the first ridgelines encountered when travelling south from the broad bend of Tundzha plain toward the Strandzha Mountains. As the Tundzha turns south, its plain becomes narrower and more rolling at about the point where it passes to the west of our study area, which lies in a transitional zone; the landscape to the north consists of low rolling hills and a flat plain extending some 60 km to the Stara Planina Mountains. To the south, a folded landscape of hills and ridges rises gradually toward the Strandzha and Sakar Mountains, 30 km distant.

The 2010 study area centers on a peak with the name of Gradišteto (or Dodoparon) on the west bank of the Tundzha River, which dominates the uplands called the Manastirski Vuzvishennia. This area forms a geological extension to the Eastern Rhodopes and is ca 20km to the west of the 2009 Elhovo survey area. The Roman (and possibly earlier) fortress of Dodoparon crowns the Gradišteto hill in the middle of this study area and provides a
commanding view of the Thracian plain below, reaching as far as the outcrop of Kabyle some 60 km to the northeast. The surrounding terrain is hilly and forested, with scrub and grasslands spreading under the hills and descending smoothly to the Tundzha River tributaries.

The elevation ranges from 200 to 600 msl, and the soils change with the elevation from fertile smolnitzas on the stream terraces to brown forest soils on the slopes of the hills. The hills are densely vegetated and have well developed soil horizons (40 cm) despite the steep slopes. The meadows on the hillsides and the fields below are covered with a carpet of igneous boulders (granite and gabbro), small ferrous rock and limestone.

From antiquity until recent past the hillsides of Gradishteto and nearby peaks were used for ore extraction. Cakes of iron ore found during excavations at the Dodoparon testify to the presence of iron metallurgy during the Roman period (Bakardzhiev 2011). Mining and smelting of iron and gold is reported from the Sakar Mountains just west of the area (Popov, Jockenhovel, and Groer 2010). Golyam Manastir residents comprise a community of retired miners, who spent their lives extracting zinc and lead from the local mines.

The 2010 study area is relevant for the TRAP project because it offers a glimpse of a mineral-rich region with proven ore-mining potential. Unlike the Elhovo study area that features mostly agricultural lands, this hilly region offers an extractive landscape similar to that of the Eastern Rhodopes, which is traditionally connected with metallurgical centers and megalithic monuments of Early Iron Age Thracian communities.
V.1.2.ii.

Land Use

The land in the Elhovo (2009) study area is primarily devoted to annual agriculture, with some areas of pasture, scrub, and forest. The streams have been channelized, but wetlands still flank parts of each watercourse. Crops include grain (wheat, barley, and rye) as well as sunflowers, hemp, and coriander. Pastoralism involves herdsman driving cattle, sheep, and/or goats (and sometimes turkeys or guinea fowl) from the villages into harvested or fallow fields, dedicated pastureland, or scrub in the mornings, and back again in the evenings. Forests are well defined and heavily utilized, consisting entirely of second growth timber, both deciduous and evergreen. The landscape is managed in such a way as to place all three types of land – agricultural fields, pasture, and forest – within easy reach of each modern village.

In the Dodoparon (2010) study area, land cover comprises mainly forests and grassland, with agricultural fields stretching along the Tundzha tributaries of Malazmak and Mordere. The latter were walked systematically, while the hills covered with dense forests were visited only sporadically, not being suitable for survey.

V.1.3.

Historical and Archaeological context

The lands surrounding the middle Tundzha River have been inhabited since at least the sixth millennium BC, with important Neolithic, Bronze Age, Iron Age, Classical, Late Antique, Medieval, and Ottoman remains. The region has long been important as a crossroads. Thrace was an early center of agriculture in Europe, and the region produced Europe’s earliest metalworking cultures. In prehistoric times, tell settlements followed the course of the streams. The tell of Drama is located between the 2009 and 2010 study areas, with a number of other unexcavated prehistoric tells along the Tundzha River. In the historical era, Greek colonies on the coast of the Black Sea lay some 75 km east across easy terrain at the Bay of Burgas. The Greek *poleis* of the northern Aegean could be reached by following the Tundzha and Maritsa valleys approximately 150 km south. During the Classical and early Hellenistic periods, the region was part of the Odrysian Kingdom of Thrace. The Hellenistic and Roman city of Kabyle, founded by Philip II during his conquest of the Odrysians (ca. 346-340 BC), lay some 35 km to the

87 Dimitrova and Popov 1978; Lichardus and Iliev 1994; Boyadzhiev 1995; Lichardus, Fol, Getov, Bertemes, Echt, Katincarov and Iliev 2000; Gaydarska 2007
88 Renfrew 1978; Todorova 2003; Todorova and Dimitrov 2005
89 Isaac 1986
90 This region, being an extension of the central plain likely formed part of the realm controlled by Odrysian kings from Sitalces to Kotys I (Archibald 1998; Fol and Spiridonov 1983, maps 23 and 29).
north on a rocky outcrop in the Tundzha plain, while the Thracian and Roman fortress of Dodoparon, with its (probable) shrine to Apollo, commanded the Gradišteto, a high peak in the Monastirski Uplands right above the study 2010 area.91 The Thracian Plain was an epicenter for the migrations which transformed the Roman Empire in Late Antiquity (Adrianople lies some 80 km to the southeast), later becoming a frontier zone between the Byzantine Empire and Bulgarian Kingdoms, and then part of the agricultural heartland of the Ottoman Empire (it is situated only 280 km from Constantinople).92

V.1.3. \textit{Surface Survey in Yambol}

The historical museum of Yambol has been involved in the registration of cultural heritage monuments since the 1970s. Information on archaeological places of interest has been collected from informants or through informal reconnaissance. An inventory of these sites was published by the museum (Dimitrova and Popov 1978). Since the 1970s, the site inventory has grown, guided by current research and cultural heritage concerns about development or looting. The most recent survey was undertaken in the region of Drama during the Bulgarian-German campaign, but its results went unpublished. The expedition surveyed the valley of Kalnitsa, but focused exclusively on prehistoric settlement. Despite these biases and some unevenness, the initial inventory triggered the formulation of this project’s research questions and problems.

TRAP extended the existing research framework with its more rigorous methodology, recording all archaeological residues regardless of their period. My own question was whether the emerging social complexity, as it is attested in the historical sources, is traceable through surface survey together with some of the factors that stimulated it. With this and many other questions, we set out in 2009 to explore the regional environment, and investigate the continuity and density of prehistoric and historic settlement in two small areas deemed representative of the rolling landscape of SE Bulgaria surrounding the Middle Tundzha River.

V.1.4. \textit{Work Group}

From 2009 on, the survey group in the Yambol region included four staff members from the Yambol museum: its director and prehistory specialist Ilija Iliev, Roman specialist Stefan Bakardzhiev, Medieval specialist Yavor Russev, and a conservator Georgi Iliev. The museum

91 IGBulg III.2 1796
92 For a brief history of Bulgaria during the Byzantine and Ottoman periods see Crampton 2005; for a more detailed discussion of settlements and road networks during the later periods see Soustal 1991.
personnel were principal specialists who identified the surface debris and assisted in site definition. In addition to the museum personnel the team comprised up to 12 foreign and Bulgarian students of archaeology and volunteers. In each of the two campaigns we fielded up to three five person teams.

Given the experience gained from the pilot project and the chance to troubleshoot and fine-tune the methodology in Kazanluk season of spring 2009, TRAP campaigns in Yambol were more productive, and consequently the data was more consistent. The efficiency and success of the Yambol campaigns are owed largely to the fuller engagement of the local museum staff, who were extremely willing to adopt and experiment with our methodology.

V.1.5. **Survey Distorting Factors**

V.1.5.i. **Military presence**

The Yambol region, with its large alluvial plain east of the Tundzha River and moderately rolling landscape to the west of it, is a most survey-friendly region. Deep humic soils are annually plowed, providing large areas of high surface visibility (see Appendix, Fig.A.3-5 and 6). The region shares a border with both Turkey and Greece, which in the past five decades was a closed military zone. This contributed to the slow pace of development and little modern disturbance of the region. From the 1950s to the 1980s there were many military installations in the area, which did disturb some of the survey area, but these are now abandoned.

V.1.5.ii. **Modern development**

Modern development was slow even in the 1990s, making the region one of the most amenable to survey in Bulgaria. Small portions of the region have seen major drainage projects for the purpose of malaria control (Atolovo municipality) or water damage control and rice field experiments (Kabyle municipality). Traces of the water channels are still visible in satellite imagery. The construction of a power plant on the border of Yambol and Stara Zagora region (Maritza Iztok) in the 1990s is perhaps the only major recent industrial development. None of these enterprises affected directly the survey area. Natural degradation (erosion), agriculture, mining, and military activity remain the major factors distorting the archaeological traces in either Elhovo or Dodoparon study areas.

93 Today, the most conspicuous industries in the Yambol region are organic farming and quarrying.
V.1.5.iii. **Agriculture**

Plowing and agriculture can be seen as the activity with most immediate impact on the study areas. Most of the ploughing has been relatively moderate, either due to old tractors, or traditional use of animal traction for plowing. In the last five years, however, large powerful tractors have appeared that plow 0.5 m deep like in Italy or Greece. The impact of these machines is detrimental not only to surface and subsoil scatters, but also to the burial mounds, parts of which get sliced off every year.

V.1.5.iv. **Participants**

As for the team biases and ignorance, the Yambol campaigns were fortunate to have some of the most experienced practitioners with us on the team. The assistance of the regional museum with pottery processing was invaluable. Chronological and functional definition of surface material was very strong in prehistoric, Roman and Medieval periods, while gaps remained in the Late Iron Age and Late Antiquity. As the museum personnel happily adopted the TRAP methodology, most of the errors and inconsistencies can be attributed to internal TRAP shortcomings. Fortunately, the campaigns in Yambol occurred after those in Kazanluk, which allowed us to tune the field methods and documenting procedures, and refine the pottery typology. As a result, the Yambol seasons were more relaxed and the teams better trained and more efficient.

V.2. **Existing Data**

V.2.1. **Yambol Region Site Estimates and Expectations**

The Yambol region today covers some 3,350 sq km of area, spanning the watershed of the Tundzha River and small patches of highlands and promontories of the Straldzha and Rhodope mountains in the southern half. In the past, the region had included the Topolovgrad municipality in the southwest (now part of the Haskovo region) and spanned a total of some 4,000 sq km. The majority of the legacy archaeological data were collected prior to this administrative division. These data are included in the archaeological maps of the Yambol region despite their current administrative affiliation, and the original size of region is used in most statistical calculations. It is for the original area of 4,000 sq km that the local museum director, a
man of 65 working in the area for his entire life, estimates the total number of over 12,000 archaeological sites (pers. comm. Ilija Iliev, September 2009).94

This site estimate can be translated into 3 sites per sq km. This will not seem excessive if one considers (1) that it represents all chronological periods; (2) that the Yambol region is one of the most agriculturally productive areas in Bulgaria; and (3) that the majority of sites are burial mounds. Despite the authority of its source, the number of sites intrigued me into further testing. I used both surface survey data and existing topographic maps to produce estimates of burial mounds and flat sites and compare them with the official statement.

The total number of mortuary sites – burial mounds – can be extracted from the topographic maps as the prominent burial mounds are recorded, used for navigation and the planting of geodetic points. Russian maps from 1980s (1:50,000) show circa 1,600 mounds in the region.95 During the verification of a 25% sample of the mounds documented in the topographic maps (fall 2010), additional two mounds were registered in field for each mound on the map. This correction raises the burial mound estimate for the region to 4,800 (1600 + 2*1600).96 While this may represent the number of extant mounds, local archaeologists claim that dozens of mounds get excavated or leveled annually. It is impossible to accurately estimate the rate of destruction through past excavation (rescue or research), illicit activity and natural demise. One of the most extreme suggestions has been that for each extant mound one has already been obliterated. Such formula would double the existing number of 9,600 burial mounds. This number is definitely merely an estimate, and the truth might actually be somewhere in between 4800-9600.97 One must consider also two principal assumptions: uniform distribution of mounds throughout the region irrespective of terrain and similar rates of demise in all areas.98 To date, only 235 investigated mounds have been registered in the Yambol AKB.

94 While a rough estimate, this number is based on the personal experience of local museum director who spent over 40 years practicing in the region, and is perhaps the most knowledgeable person to ask. Although the estimate is a communist-era statistic, the authority of Dr. Iliev has been always based on experience rather than bravado, and therefore his words were heeded and used as a starting point for TRAP expectations.

95 Given the small scale the necropoleis are often recorded as a single mound.

96 This ratio applies with greater validity to areas of difficult or remote access such as hilltops, large fields far from roads, as the cartographic accuracy in these spots suffers.

97 In fact, surface survey in Yambol has yielded ca. 2 mounds per sq km, which translates into 8000 mounds in Yambol region.

98 The topographic maps show mounds clustering in SW and NE corners of the Yambol region, with some areas exceeding the density considerably, others falling below the estimate.
As for the settlements, their estimates are much harder to come by. The Yambol site catalogue written by Dimitrova and Popov (1978) lists 205 settlements (if we count individual chronological components where these are known, the total rises to 382 settlements), yet the haphazard mode in which this data was collected does not make it possible to assess what portion of cultural heritage in Yambol this number captures. In 2011, the online AKB record for the Yambol region held 275 records of flat sites, consisting of revised legacy data and information on new chronological components of old sites or newly excavated archaeological sites since the 1980s.99 Like the catalogue, this dataset gives no indication of the portion of Yambol heritage it represents (see Appendix, Fig.A.3-4).

A more representative and systematically collected sample is necessary in order to obtain a more reliable estimate. The nearly 40 sq km area intensively covered by TRAP is too small to represent the entire Yambol region, (1.25 % of the total current area and 1 % of the original). In this systematic sample, an average of one flat site was discovered for every two sq km and 1.3 burial mounds per one sq km (≈ 2.6 if adding in the “destroyed” mounds). If we apply these values to the 4000 (3,350) sq km of Yambol region we come out with 2000 (1,340) flat sites and between 5300 (4440) to 10,400 (9,880) burial mounds. The higher value of the total estimate between 7300 (5780) - 12,400 (11,120) sites comes strikingly close to the original 12,000 estimate of the Yambol History Museum director. The ratio of extant mounds to flat sites in the survey sample is ca 3:1, reconstructed mounds to flat sites is 6:1. The range of expected burial mounds matches the estimate based on topographic maps and the rate of mound destruction.100 The number of expected flat sites comes substantially above the known and registered number of sites, which is understandable due to the respective visibility of the two types of archaeological sites.

Burial mounds with their conspicuous shape and relatively permanent nature lend themselves to detection and monitoring. Despite their visibility, burial mounds are of little use in this analysis, because they cannot be easily dated. The 235 investigated mounds range in date from the Bronze Age to 14th century AD, producing a wide span that can only be confirmed through excavation. 235 mounds out of the estimated total of 7300-12,400 in the region form a 1.5-3\% sample, making any analysis of chronological or spatial patterns highly unreliable. Given

99 This number excludes the scatters discovered by TRAP.
100 Topographic maps showed 23 mounds for the Yambol survey areas, surface survey documented 53 mounds. This not quite 3:1 ratio may be owed to the easy accessibility of the Yambol survey area, which could have facilitated better accuracy in topographic maps.
the poor chronological resolution of the burial mounds in the region, this chapter will focus principally on the analysis of settlement data.

V.2.2. **Available Data Sources**

Records on archaeological sites investigated in the past in Yambol region have been acquired from several different sources: the AKB digital registry, the official site gazetteer (Dimitrova and Popov 1978), the annual reports (Arheologicheski Otkritia i Razkopki, or, AORs)101 and several excavation reports from the region.102 These sources offer a variety of detail and accuracy. The Archaeological Map of Bulgaria is the single most consistent resource, with the Yambol site gazetteer by Dimitrova and Popov coming closely second. Few Bulgarian regions have their own archaeological site gazetteers. The only other regions to possess such a resource are Varna, Plovdiv and, to a smaller extent, Blagoevgrad (Sliwa and Domaradski 1983; Dimitrova 1985; Kisyov 2004). Site gazetteers and the AKB have the advantage of providing a large amount of data points at the regional level.103 Most other sources, be it monographs or AOR reports, provide high quality detailed information for a few individual sites at a local level.104

The Yambol museum gazetteer (Dimitrova and Popov 1978) contains records of 205 sites (mostly settlements), and offers a brief narrative on site disposition, location and surface material. This narrative provides more insight into site type and interpretation than the stripped-to-bone database record of AKB. It also contains plans and maps for a few of the sites, assisting with their location. The sample of sites in the Yambol gazetteer is chronologically and spatially extensive and, despite its publication date in 1978, one of the most complete compilations of Yambol cultural heritage today.

The AKB provides a record of 279 sites, most of them updated (and in some cases revisited) digital versions of sites appearing in Dimitrova and Popov’s publication. I have used the AKB to update the spatial and chronological data of Dimitrova and Popov, as well as to add

101 Iliev 1990; Bakardzhiev 2007; Bakardzhiev 2010

102 Dimitrova 1990; Domaradzki 1990; Velkov 1990; Panayotov, Leshtakov, Georgieva, Alexandrov and Borisov 1991; Velkov 1991a; Velkov 1991c; Borisov 1994; Panayotov, Georgieva, Leshtakov, Alexandrov and Borisov 1995; Velkov and Domaradzka 1996; Borisov 2002

103 I speak of data points rather than “sites” here so as to illustrate the abstract level of my perception of the archaeological sites as parts of a large regional dataset.

104 Excavation reports in the AORs, *Expeditio Thracica*, *Maritza Iztok*, and *Terra Antiqua Balcanica* publications relevant to Yambol region were consulted. AOR summarizes all the work conducted in Bulgaria in chronological sections. The other volumes report on investigation at sites that are considered valuable such as the ancient town of Kabyle, the territory of Maritza Iztok II power plant, or other rescue excavations. While covering the excavated materials in great depth, these reports unfortunately produce only a relatively few data points with largely differing spatial and chronological scales.
information collected since the gazetteer’s publication. In the end, in order to ensure data consistency (especially between Yambol and Kazanluk region), AKB records became the core dataset for legacy data assessment. Excavation reports were used only to improve the chronological resolution of AKB sites.

Given my principal reliance on AKB data and Yambol gazetteer (1978), my dataset is far from complete. It suffers from several omissions that cannot be corrected at this time even with the use of published material. One of them is, for example, the record of German surveys in and around the region of Drama excavations. While many surveys were conducted here and yielded a record of some 250 sites (Lichardus and al. 2004, 39, fig. 1b, pers. comm. Ilija Iliev 2009), potentially doubling the existing record, I found no usable publication of these surveys. The catalogue in the museum is not only closely-held proprietary information that is unavailable to researchers, but the design of the survey, the field techniques used and the definitions of “sites” are unknown to me, so even if I could access the catalogue I have no way of evaluating the data.

V.2.3. Data Processing
Although the initial dataset had obvious gaps, further reduction was necessary. Mortuary data were eliminated and site records that were incomplete or inaccurate were disqualified.

V.2.3.i. Data Filtering
The legacy data on flat scatters, settlement mounds, and citadels have been collected, tabulated in MS Excel worksheets, and filtered for consistent and complete records. Out of 205 records from the Yambol gazetteer, 24 lacked full positional information (11 lacked azimuth and 22 lacked distance, some of them lacked both). 154 records lacked any indication of site area, making the information quite useless. If both filters were applied, only 46 records were amenable for analysis. During a review of these records with museum personnel, a dozen records were amended. Area for 30 sites was added upon ground control or extracted from topographic maps (fortresses mainly). Over 80 records were improved and added on the basis of AKB records. All in all, the final dataset of usable legacy records amounted to 174 archaeological sites. This 85% sample of the recorded site total may be assumed to present most of the spatial and chronological patterns inherent in the original. These 174 sites were digitized into a point file in an ArcGIS geodatabase. Each site was coded according to source and spatial accuracy, indicating the margin of error and status of ground control. This shapefile was used for subsequent analysis and visualization.
V.2.3.ii. **Legacy Site Type Ratios and Biases**

Ratios of site types were the following: 67% flat scatters, 19% fortresses, 14% settlement mounds. It is not surprising that conspicuous sites - either tells or standing fortifications - get a relatively large percentage in comparison to survey dataset (90% flat sites, 5% fortress, 5% settlement mound). More prominent sites get preferentially noticed during informal modes of data collection. It is expected that throughout the legacy data the site ratios are skewed towards larger and conspicuous sites, such as tells and fortresses, while in reality flat settlements probably housed most of the regional population.

The spatial distribution of the legacy settlements is likely accurate regarding the conspicuous sites. Prominent landscape markers get noticed regardless of their location, as attest the high numbers of tells in valleys and fortresses on hardly accessible peaks. Regarding smaller sites, the factors determining their distribution are less readily apparent. There was no one overarching determinant involved in their registration. Several factors contributed to it, among them: 1) the extent of development/and need for archaeological intervention in the region; and 2) the degree of knowledge and helpfulness of local informants. The distribution and number of small sites follows a distinct trend in Yambol: they taper off with closer proximity to the border. A strictly guarded zone existed around the border with Turkey and Greece, which was militarized and largely depopulated, hindering archaeological reconnaissance. This trend has recently started reversing, but the south has not yet caught up with the northern part of the region. An additional factor has affected new site discovery in the last decade - looting. While looting is less intense in Yambol, compared to Kazanluk, it has had substantial impact here since the de-militarization of the area. Illicit activity nowadays contributes to the discovery of new sites in the Yambol region in an almost perversely systematic manner, but operates in a different theater from the development. Development is focused on suburban areas and those with industrial potential, while looters practice their trade within remote findspots in the country. Given these factors, we can expect the archaeological dataset to grow in urban areas and near major communications, while more remote areas will likely escape the scrutiny.

V.3. **Survey Results**

V.3.1. **Coverage**

Three teams averaging five members each surveyed a total of 37 sq km (26 sq km intensive; 11 sq km extensive) of the study area in approximately 25 days of fieldwork in 2009 and 2010.
seasons. Some 71 archaeological findspots were registered, including 53 burial mounds and 18 surface scatters (see Appendix, Fig. B.2-1, B.2-2 and D.3). Material associated with surface concentrations dated to a wide range of periods, including the Late Neolithic/Chalcolithic, Early and Late Bronze Age, Iron Age, Hellenistic, Roman, Medieval, and Ottoman periods; a number of them contained multiple chronological components. The survey site types comprised seventeen flat scatters and one tell. One fortress with standing remains was registered in the area. Six of the surface scatters were sampled by total pick-ups in a search for horizontal stratigraphy and to verify the chronological and functional definition of the associated site. All associated diagnostic artifacts and special finds have been fully inventoried, dated, photographed, and drawn as necessary.

V.3.2. Efficiency Tables, see Appendix D.2

V.3.3. Diagnostics
113,334 sherds were counted on the 37 sq km surface of the Yambol region. Some 55% (62,039) were classified as positively ancient artifacts. 507 unit samples were collected, yielding 1,628 diagnostic sherds (ca 1% of the total and 2% of the ancient artifacts encountered on the surface). Overall, the wear and fragmentation of diagnostics were uniform throughout the Yambol study area. Sherd scatters were well bounded on the relatively sterile background. Occasionally, solitary large diagnostics were detected outside the area of the major scatter (see Appendix A.3-8). This was attributed to a vertical displacement of large artifacts through plowing, rather than to an offsite activity such as manuring (Ammerman 1985, versus; Wilkinson 1989). Handmade ceramics, also, tended to be more fragmented and dispersed due to softness and lower quality of firing.

V.4. Results by Period

V.4.1. Legacy and Survey Data Discussion
The following sections present and analyze the legacy data in light of information gathered during TRAP fieldwork. First, I discuss the trends emerging from the legacy data of Yambol region. The variables observed include site numbers and total and average site size. I have produced histograms of site size and graphs of average size per period. In discussing these statistics, I will point out period- and site-type specific reliability issues and comment on the
overall relevance and applicability of this dataset for detecting settlement hierarchies on a regional scale. Second, I compare long-term trends emerging from the legacy data with patterns indicated by TRAP surface survey results. I emphasize changes in settlement size, development of settlement hierarchy, and settlement continuity. Both the biases and strengths of the dataset will be considered. Third, I present the results of a statistical analysis examining the differences between the legacy and survey datasets. Although much of the data seems easy to interpret, the mean values conceal significant differences between the two datasets. On one hand, the legacy data has good chronological resolution, but on another it is skewed to visible sites; the survey data produces a more systematic sample, but sometimes the sample is too small to be representative. Often the chronological resolution of survey data is coarse due to lack of excavation. Statistical testing of the survey and legacy datasets reveals the degree of their similarity, distinguishing between trends that are significantly different and those where difference could have occurred by chance.

V.4.1.i. **Summary Tables:**

<table>
<thead>
<tr>
<th>Site Count</th>
<th>Legacy</th>
<th>Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CHL</td>
<td>31</td>
<td>3</td>
</tr>
<tr>
<td>EBA</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>MBA</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>LBA</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>EIA</td>
<td>32</td>
<td>10</td>
</tr>
<tr>
<td>LIA</td>
<td>42</td>
<td>9</td>
</tr>
<tr>
<td>RM</td>
<td>86</td>
<td>8</td>
</tr>
<tr>
<td>LA</td>
<td>73</td>
<td>14</td>
</tr>
<tr>
<td>BYZ</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>MA</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>OTT</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure V-2: Site numbers per period based on legacy and survey data
Figure V-3: Number of sites registered during the survey per period

Figure V-4: Aggregate area covered by both legacy and survey sites per period
V.4.2. Prehistoric Period

Description of Trends apparent in Legacy Data

Figure V-6: Neolithic (left) and Chalcolithic (right) period legacy data histograms

Figure V-7: Bronze Age Legacy data histograms (from left to right, Early through Late Bronze Age)
Site Numbers: Legacy data from the Yambol region lists between 20 to 30 sites belonging to any given prehistoric period between the Neolithic and the Late Bronze Age (ca. 6000-1200 BC). The number of sites peaks in the late Chalcolithic where 31 sites have been recorded. The histograms of prehistoric sites show that their sizes are well distributed, with the mode in the left half of the graph indicating a high number of small sites and the drop-off to the right indicating a low number of large settlements. This distribution curve approaches the typical distribution of human settlement and suggests that the available samples for each variable (period) are reasonably representative (or have no blatantly skewed distributions).

The histograms are similar, pointing to a maximum of two settlement tiers and little variation from one period to another. Twenty-one settlements are dated to the Neolithic period (mostly the Late Neolithic), representing the first sedentary communities in the region. The majority of the settlements fall into the lower tier, reaching up to 3 ha, while only three settlements expand beyond 5 ha. In the Chalcolithic period the site number expands to a total of 31 with 10 new foundations. The growth occurs largely in the lower tier of sites, as more flat scatters adjoin the pre-existing tell sites. The Chalcolithic is a time of cultural flowering in Bulgaria, and across the so-called West Pontic Zone (Renfrew 1969a; Bankoff and Winter 1990; Price 1993).

Chalcolithic pottery is characterized by exuberant individualized decoration styles, which render it highly diagnostic and easily recognizable. The large number of Chalcolithic sites in the Yambol region could, therefore, result either from real growth in occupation during this period, or from the higher visibility of its material residues and over-representation in survey collections. The Chalcolithic period, moreover, has been a focus of intensive archaeological research in Yambol, spearheaded by German-Bulgarian expedition in Drama, whose focus on prehistory may have led to an inflation of flat site counts dating to this period.

The total area occupied between the Neolithic and the Late Bronze Age depends upon the number of sites; the average site size remains constant – slightly under two hectares per site. This similarity of the histograms (and site sizes) across individual periods, however, is likely an artifact of the coarseness of the data available for prehistoric sites. Most of the sites are tells, which have usually been only partially investigated. Sondages and trial trenches have limited value for estimating the total spatial extent of occupation at any given time. In the absence of

\[105\] A typical distribution, associated with increasingly complex societies, features a high number of small-size settlements and a smaller number of large centers.
more specific information, the total habitable area of a tell is usually listed for all periods of occupation. In this legacy data, if a tell is inhabited for several successive periods, the same area will be assigned to each period, producing a trend of continuity and masking potential contraction and expansion over time. This limitation can only be overcome through intensive survey of the tells under excellent conditions, or through their complete and systematic excavation. In the absence of more precise measurements, we must accept the coarse data and be aware of the possibly false image of stability built into it.

During the Bronze Age the number of sites declines. Their rank-size histograms retain a distribution similar to preceding periods, despite the lower site count. The decline in the number of sites may reflect tell abandonment and preference for flat settlement. Flat settlements are often short-term and are generally less obtrusive, making their discovery less likely. Their discovery is further hampered by the low quality and lack of distinctive features that characterize Bronze Age pottery, especially in comparison with the well-made, highly burnished Chalcolithic material. Furthermore, the boundary between the local Late Bronze Age and Early Iron Age pottery is blurry, leading some marginal sites to be classified as Early Iron Age (a practice considered cautious and responsible by local archaeologists), further suppressing the Late Bronze Age site numbers. Bulgarian archaeologists have long relied on relative dating only, and given the fact that most of the legacy sites were investigated before radiocarbon dating was in regular use, it is possible that many site chronologies – and indeed dates of particular pottery styles – are in need of adjustment. In the case of the Late Bronze Age and Early Iron Age, the boundary is rather arbitrary, and based primarily on pottery decoration rather than fabric or shape – the least likely diagnostic feature to be present on pottery recovered during surface survey.

Site Types: Among the twenty one Neolithic sites, 17 are tells and only four are flat scatters (ratio ca. 4:1). The Chalcolithic sees new foundations among both tell and flat sites. The number of tells increases to 22 and flat scatters to 9 (ratio ca. 2.5:1). In the Early Bronze Age, the number of tells falls to 14 (a decrease of one third from 22), while flat sites drop to seven, creating a 2:1 ratio of tell to flat sites. The decline is marked mainly because the Bronze Age materials are missing from the tells. The situation improves again in the Middle Bronze Age, when 17 tells are occupied while the same seven flat sites continue being inhabited (2.5:1). The decline in sites continues in the Late Bronze Age, when only 12 tells and 6 sites remain inhabited (2:1).
Few new sites are occupied after the Chalcolithic period. Most of the abandonments and reoccupations are the result of hiatuses at the same set of sites, first inhabited either during the Neolithic or Chalcolithic period. There is no Late Bronze Age site that did not have a Middle Bronze Age predecessor, nor is there a Middle Bronze Age site that did not have an Early Bronze or Chalcolithic predecessor. After the peak settlement of the Chalcolithic, the Early Bronze Age appears as a period of decline, with population adjusting to a new social or environmental situation. Whatever caused the decline, several sites were abandoned only to be reoccupied during the Middle Bronze Age (3 of 24). In the legacy data, the flat site numbers rise and fall in sync with the number of tells. Whether or not this is an effect of data collection or a reflection of the true situation will be addressed in the following sections that compare the legacy with survey data. The expected trend in prehistoric settlements, suggested by Bailey (2000) and embraced by Bulgarian archaeologists, is that while inhabitants at tells are locked within the fortifications and their residues accumulate vertically over time, the occupants of flat sites are less constrained and may shift their location between phases. Their material fingerprints either grow larger (if the settlement shifts gradually, producing horizontal stratigraphy), or higher in number (in case a community resettles) (Bailey 2000, Ch.2). None of the two scenarios is readily apparent in the legacy data, and a more chronologically nuanced dataset would be required to test this proposal.

Comparison of Survey Data

![Figure V-8: Neolithic (left) and Chalcolithic (right) survey data histograms; each of the counts includes the sites labeled as “prehistoric”](image)

108
Figure V-9: Bronze Age Survey site histogram

Legacy and survey data are, at first sight, similar across the prehistoric period. Growth marks the transition from the Neolithic to the Chalcolithic in the legacy data, with site counts rising from 21 to 31, while the number of sites discovered through survey rises from two to three. In both periods, the legacy data seem more reliable as they are based on 20-30 instances, while survey data are based on a tenth of that amount. Qualitatively, however, the legacy data are dominated by tell sites, while survey recorded mainly flat sites. Because of the full-coverage methodology, the two datasets represent two different aspects of the prehistoric settlement.

Survey data show continued growth in the Bronze Age106 with an increase from 3 to 5 flat sites, while legacy dataset drops from 31 to 24 sites in the Early Bronze Age, and oscillates around these numbers during the Middle Bronze Age and Late Bronze Age, marking a period of stability (or stagnation) during the Bronze Age. The problem with comparing the Bronze Age results between survey and legacy data is apparent. The legacy dataset is different in principle, because it offers much better chronological differentiation. The ability to distinguish individual Bronze Age phases at legacy sites owes to their excavation. Survey site chronology remains coarse and generalized, potentially smoothing over significant inter-phase fluctuations. The five sites could be distributed among three phases in at least fifteen possible ways. Since we are unable to date them with any reliability, the only way to relate the two datasets is through generalization of the chronology of legacy data (amalgamating it into a single broad Bronze Age category). As the individual phases of the Bronze Age are registered at a total of 24 spatial data

106 In survey data it was impossible to distinguish the individual phases of the Bronze Age, forcing me to collapse all of the Bronze Age sites into a single chronological category and potentially skewing the results.
points, this number will represent the overall Bronze Age site count for legacy dataset. Even this generalization, however, supports the trend of settlement decline in the legacy data.

The Bronze Age data merits one more consideration. The apparent stability in the observed settlement pattern may pertain only to the tells. While the legacy data indicates the contraction and stabilization of tell communities, it does not capture the trends outside the tell community. Divergence in legacy and survey data may reflect different trends governing the development of tell versus flat sites. Survey data reveals principally flat sites. The survey data indicates that the number of flat sites grows during the Bronze Age, while the tells decrease in number. The observation of growth in Bronze Age flat sites must be approached with caution, however, because of the (1) the tiny overall size of the prehistoric sample in survey data, which has a high probability of random deviation; and, (2) the oft-claimed difficulty of survey data to recover prehistoric settlements due to masking and burial.

Statistical Insights

Despite the differences in number and aggregate settled area of prehistoric sites between legacy and survey data, the values for site count and total area in the Yambol region appear well correlated in the graphs. The graphs plotting the mean values for each period follow a similar trend through time. Yet, as the mean values may hide vast differences in skewness and mode of the data (affecting number of settlement hierarchies, range of site size, etc.), it is worthwhile to test the differences statistically using raw data.

Two standard non-parametric tests, Mann Whitney-U and Kolmogorov-Smirnov, were used to examine the difference of legacy and survey raw datasets. The results of Mann Whitney U non-parametric test for Neolithic and Chalcolithic period yielded a significance of 0.161 and 0.397 respectively. These numbers state that there are no significant differences between the distributions of the two datasets, and that the null hypothesis (that the survey and legacy data were drawn from the similar populations) should be retained. The result is not particularly robust, which is no surprise, given the small survey sample and the marked differences in the site types recorded in legacy and survey data. The Kolmogorov-Smirnov test yielded even higher coefficients (0.236 for the Neolithic and 0.695 for Chalcolithic) confirming the outcome of Mann Whitney U.

For Bronze Age, as much as the statistical tests can be used on such small datasets, the survey one of which is compared to every phase of legacy as the chronological coarseness of survey data did not allow for more detailed phase assignment. Mann Whitney U test yielded
high values of 0.662, 0.636 and 0.683 for the individual phases, which again means a lack of significant differences between the legacy and survey datasets, but the large coefficient marks the result as less robust. The small sample size further marks a significant decrease in the statistical power of the outcome.

In a summary, the distribution of Neolithic and Chalcolithic sites in legacy and survey data do not show differences that would be statistically significant. The low p-value indicates that random chance might be at work in this result. This possibility is even higher in later, Bronze Age periods, when the even smaller sample exacerbates the comparison. However, I consider the consistence between the legacy and survey data significant for the Neolithic and Chalcolithic, given the fact that sites of different duration and type are being compared - the legacy includes more tell sites while survey data draws on flat scatters. In the Bronze Age the sample size is too small to make any conclusion feasible. A larger dataset is needed to produce a reliable interpretation with confidence.

Overall, this analysis suggests that the prehistoric settlement structure in Yambol followed the same pattern whether the sites were occupied in the short or long-term. The survey data contributed a number of short-term sites to complement the permanent/long-term settlements in the legacy dataset. Although different site types were compared and different criteria were applied to their definition, their structure and rank remain remarkably consistent through most of the prehistory.

V.4.3. Iron Age

Description and Trends apparent in Legacy Data

Figure V-10: Early (left) and Late (right) Iron Age Legacy data histograms
Site Numbers: In the Early Iron Age, the number of sites documented in the legacy data nearly doubles in comparison to the Late Bronze Age (see Appendix, Fig.E.2-1). The number of Early Iron Age sites (32) actually reaches the level of the Chalcolithic florescence (31). Tells are in the final stage of their use, while flat settlements grow considerably (and for the first time become more visible). Eleven tells are still in use. Eight of them show signs of continuity from previous periods; two are newly reoccupied after a relatively short Late Bronze Age hiatus and one is resettled after a more substantial break since the end of the Chalcolithic period. The number of flat settlements rises from six occupied in the Late Bronze Age to twenty one; five were in use, while sixteen represent entirely new foundations. Three of the new foundations are located on prominent peaks. The ratio of flat sites to tells is now nearly 2:1; a first, but final reversal marking the end of prehistoric settlement preferences for tells.

Site Area: The population of Early Iron Age Yambol occupies double the area of the Late Bronze Age predecessors. The total inhabited area now increased to 75 ha, compared to 37 ha in the Bronze Age and 60 ha total during the Chalcolithic. This increase in total area is not because the settlements grow in number, but because they also expand. The average site (2.35 ha) is now 20% larger than it was in the Late Bronze Age (1.97 ha). This may be attributed to the previously discussed phenomenon (Prehistory section above) of site size differences between tell and flat sites. It is the prevalence of flat sites that may be credited with increasing the total site area in the Early Iron Age period.

The sharp (60%) increase in settlement numbers at the onset of the Early Iron Age continues at a slightly slower rate (25%) in the Late Iron Age. The number of sites registered reaches 42; only four of these represent remaining tell occupation, while 38 comprise of flat settlements (see Appendix, Fig.E.2-2). Out of these flat sites 14 have roots in the previous Iron Age phase (including the three old hilltop sites), while 24 are newly established (including two new hilltop sites). The aggregate settled area during this period follows the same sharp upward trend (160%). It nearly doubles (128 ha) since the Early Iron Age (75 ha). In contrast to the slower rate of new foundations, the average site size during this period continues to expand, reaching 150% of its Early Iron Age size.

Hierarchy: The Early Iron Age distribution shows that sites range from 0.5 to 7 hectares (histogram, Fig. V-9). Placing a dividing line anywhere is, largely, an arbitrary decision. Overall the data peaks in the 0.5 ha group and then slopes down sharply to 5 ha. Another discreet peak
appears at 6-7 ha. This distribution shows two clearly defined tiers, one containing sites under 5 ha, and another with field scatters reaching around 6-7 hectares. The high amount of large sites may owe a bit to better recognition of larger scatters, but may as well point to expanding settlement system, in which local populations grow and begin to socially/administratively diversify.

The Late Iron Age histogram hints at an incipient three tier settlement hierarchy. The small sites oscillate around 0.5 ha, and the largest now features 22 hectares. This prominent outlier is the Macedonian foundation of Kabyle, a major regional center in the bend of Tundzha River, which is described as a 22 hectare settlement in the peak of its growth in the Hellenistic period (15 ha would be a more conservative estimate). Nevertheless, either of the estimates, 15 or 22 hectares, place this site in the very extremity of the histogram and assigns it the highest rank. The third peak in the site size distribution is centered at 6 ha size, which may represent the tail of the group of small tier sites in the left part of the graph, or, more likely, mark the class of local centers that emerge from their Early Iron Age predecessors.

Comparison of Survey Data

Figure V-11: Early (left) and Late (right) Iron Age Survey data histogram

Early Iron Age: In the Early Iron Age, the survey data reveal a growing settlement (see Appendix, Fig.E.2-1). Rise in site number (10; 50% increase since the Late Bronze Age) as well as total settled area (22 ha) indicate the time of regional prosperity. Individual sites expand in the survey record (either due to a population increase, or due to shift from tell to flat site habitation). The ten sites recorded in survey represent a long-term maximum that only gets overcome during the
Roman period. In survey data, the Early Iron Age aggregate site area represents the biggest settlement expansion since the first sedentary communities in Yambol region.

Average site size in the survey data sites grows slightly from the Late Bronze Age (1.8) to the Early Iron Age (2.3). This trend parallels the legacy data, where the Early Iron Age (2.4) and the Late Iron Age (3.1) site sizes grow. The average area of legacy sites exceeds that of survey data, suggesting again an emphasis on conspicuous features in the former dataset. The smaller better-covered tracts of the survey, on the other hand, are picking up more of the lower level of the settlement size distribution. The growth of sites visible on the regional level may disclose the pattern of the larger Early Iron Age sites. Literature suggests that a typical Early Iron Age site is a large village of 4-6ha (see Chapter Seven). Survey results support this view with evidence for expanding flat sites; at the same time, however, an emergence of new small foundations in the countryside begins the trend of peopling the landscape.

![Figure V-12: Early Iron Age histograms compared with Legacy (left) and Survey (right) data](image)

Hierarchy: Although the distribution of Early Iron Age survey sites in the histogram is somewhat sparse and probably not very representative due to the small sample size, two tiers can be tentatively noted, one in sites smaller than 4 ha and the second at the level of 10 ha sites. By the word “tentatively”, I mean that the number of tiers depends largely on the mode of site size visualization (see histograms in Figure V-11) and on the placement of the dividing line between tiers. In the case of Early Iron Age survey distribution, one can easily interpret it as a three tier hierarchy, of sites at 0.5 ha, 3.5 ha and 10 ha. The highest value depends on whether site nucleus or margin is used in the site size estimate. The largest site in the Early Iron Age dataset (6034) encompassed 10 ha if the site margin is used, and only 6 ha if we accept the conservative size of the nucleus. Even if conservative size were used (site nucleus) the 6 ha peak would stand
at the tail of the distribution. The survey data would align better with legacy, but the initial problem would remain as to how many tiers the distribution contains. Legacy data forms two major peaks, one at 0.5 ha that peters out gradually and another at 6 – 8 ha. If we look hard enough at the legacy graph in Fig. V-9, we may be able to distinguish a “sub peak” at 2 ha size, associated with other sites of 2-4 ha of area. This peak, interestingly, has a counterpart in survey data histogram in Figure V-11, suggesting that perhaps it may indeed represent another tier. Yet, as the survey histogram cannot be taken as representative and the legacy histogram does not show a marked peak, interpreting the 2 ha peak as a separate tier may be pressing the data too far. While a larger dataset would help with identifying possible settlement tiers, currently available data can only suggest the possibility of a three-tier rise size hierarchy.

Late Iron Age: In the Late Iron Age, the number of survey sites drops from ten in the previous period to nine (see Appendix, Fig.E.2-2). Two new sites are registered in the area, while one Early Iron Age site disappears. The total settled area drops slightly (18.65 ha) because of its abandonment. Because the survey sample is small, the average site size (2 ha) is strongly affected by the disappearance of the single large site. The overall trend, however, is that of settlement growth. Small sites that were 0.5 ha in Early Iron Age now grow to 1-2 ha, and entirely new sites appear in the countryside. Small agricultural installations may represent “homesteading” or a similar expansion of distributed agriculture. One factor that needs to be remembered when considering the increasing number of small sites is their better recognition due to the wider use of highly diagnostic wheel-made pottery.

![Late Iron Age histograms compared with Legacy (left) and Survey (right) data](image-url)
Hierarchy: The distribution of the Late Iron Age survey sites is robust in the left half of the graph V-10, with a tail in the right half of the graph, where the largest site features ca 6 ha. Translating this distribution into settlement hierarchy again depends, to an extent, on the arbitrary division between the sites sizes. We can interpret the graph as representing two tiers; the first with site area under 3.5 ha and second at ca. 5.5 ha. This division can be mirrored plausibly in the legacy data histogram (left in V-9 and V-12), where three tiers are apparent. Tier two peaks around 7 ha, peters out at 10 ha and is succeeded by tier three in the site of Kabyle at 22 ha. Alternatively, if we choose to interpret the survey histogram as representing three tiers – small sites at 0.5-2.5 ha, 3.5 ha and 6 ha - then we need to interpret the legacy data histogram as a four-tier hierarchy, with peaks at 0.5, 3.5, 7 and 22 ha respectively.

Site Size The average site size in legacy data jumps up 50% in the Late Iron Age period (3.1 ha). This average does not take account of the urbanized regional center in the town of Kabyle. This important and unique site was not within the survey transect, which leads to an overall lower average site size of survey data. The histograms of the legacy and survey datasets, nevertheless, co–vary as a smaller local center was documented in the survey area. The survey does not capture the entire range of site sizes in the region, especially not the large-size outliers. While it provides a well representative sample of small sites, their separation into ranks remains arbitrary in the lack of pronounced surface debris differences. Survey data distribution does not match the extent /magnitude of legacy data; it is nevertheless, consistent with the left half of the legacy histogram, representing the smaller tiers of sites.

Summary: The type of site most common in the Early and Late Iron Age survey data is a flat site – represented by a concentration of surface material. The obtrusiveness of such sites is lower than that of prehistoric tells; their probability of being discovered through systematic survey is, therefore, higher than through non-systematic methods of legacy data collection. We can, therefore, expect that survey data will be more representative of Iron Age site density and spatial distribution. Site types converge on the flat site during Iron Age. With a single class of site, the type of information recovered using formal and informal methods is likely to be homogeneous. We can, therefore, expect a reasonably good correlation in data distribution among legacy and survey data.

Statistical Insights
In the case of Early and Late Iron Age, the Mann-Whitney U test has returned the recommendation to retain the null hypothesis because no significant difference was discovered.
between the survey and legacy datasets. The coefficient outcomes confirm that the distribution of values in Early Iron Age datasets (p-value = 0.697) as well as in Late Iron Age datasets (p-value = 0.952) are not significantly different from one another. This does not necessarily mean the datasets are exactly matched, only that they are not clearly differentiable on the basis of site size distribution.

Kolmogorov-Smirnov (K-S) test confirms the outcome with Mann-Whitney U, but with less conservative results (assigning p-value of 0.819 to Early Iron Age period and p-value of 0.900 to Late Iron Age). K-S yields higher coefficients for the Early Iron Age, but, overall, parallels the Mann Whitney U results, indicating an absence of discernible significant differences in site size distribution between the datasets. Large sample sizes confer more statistical power to both M-WU and K-S test results, but the low significance shows that the result is not as robust as might be (see Roman period below).

Given the assumed differences in data collection and site boundary definition, the statistical lack of major differences is interesting, and even surprising. It indicates that the methods of site recovery match more than was anticipated, perhaps due to the prevalence of flat sites and more diagnostic pottery compared to previous periods.

Statistical tests do not reject the alignment of data throughout the Iron Age. Close similarities exist between the survey and legacy data distributions.

Conclusion

The number of survey sites expands markedly during the Early Iron Age in both legacy and survey data. In Late Iron Age, the number of sites recorded in the legacy data continue to grow, while the survey area shows a settlement decline. The legacy data provides a fuller picture of site ranks, and illustrates the regional settlement hierarchy. The legacy captures the regional center of Kabyle. The survey data supplies sites at the lower end of the site size distribution, recording small tier sites and less permanent activity areas.

Both the legacy and survey data point to flourishing communities in the Early Iron Age, in which local populations nucleated in hamlets and villages, spread regularly over the landscape, with a smaller installation emerging in the interstices between extant sites. In the Late Iron Age, the legacy data identifies an emerging regional center, while the survey registers an increase in small-scale settlement. When combined, these trends seem to suggest settlement contraction and centralization in the second half of the 1st millennium. Large villages dispersed around the landscape are shrinking in size, and population is either moving into the regional
center or spreading more widely across the landscape in small agricultural installations. The
trend of consolidation and centralization is thus accompanied by one of flowering of the rural
landscape. The emergence of true hinterlands in the Late Iron Age period fits well within the
Greek tradition (Morris 2000; Foxhall 2005).

Extracting an Early Iron Age site hierarchy from the histograms is problematic; two or
three tiers may be seen depending on where dividing lines are drawn between the tiers. A
conservative interpretation is that two tiers are distinct in the settlement hierarchies generated
by survey as well as those generated from the legacy record of the Early Iron Age. More liberally,
less prominent peaks in site size may represent a third settlement tier. So far, there is little
justification for such an approach, especially since these 0.5 ha sites and 3.5 ha sites show little
qualitative difference in the composition of surface assemblages. The only difference is often
the volume of surface material and its dispersion. No signs of public architecture or other
evidence representative of administrative hierarchy help us distinguish between these two or
three putative tiers.

A similar problem recurs in the Late Iron Age, where it is not clear whether the
settlement hierarchy contains three or four tiers. The histograms of both survey and legacy data
support the three-tier interpretation (two tiers in survey overlapping neatly with the two lowest
tiers in legacy), but could also be seen as supporting four such levels of settlement. The
additional evidence provided by excavation will show which one is closer to reality.

Finally, consideration must be given to the question whether these tiers represent
emerging levels of administrative centers. None of the Early Iron Age sites yielded remains of
public structures or other paraphernalia suggesting a shift of authority from local to regional
level. Few Early Iron Age sites are excavated - enough to inform this concern.

For the Late Iron Age, the question of administrative centers is easier to answer. We
have a historically attested center at Kabyle, which peaks prominently in the histograms, and an
associated cluster of hilltop sites at strategic locations in the southern part of the region. These
two groups comprise the two top tiers of settlement hierarchy and likely represent local and
regional administrative centers.
V.4.4. Roman Period

Description and Trends apparent in Legacy Data

The Roman period legacy data shows an explosion of sites (see Appendix, Fig.E.2-3). The number of settlements (86) doubled since the Late Iron Age (42). This trend is paralleled in the total area (70% growth), which reaches 213 ha after the 128 ha of the Late Iron Age. The rate of site area growth has, however, slowed down in comparison to the site expansion during Iron Age. While old sites stay put, new small scale foundations appear en masse (53 new ones). The average site area drops to 2.5 ha after peaking at 3 ha during Late Iron Age. The drop in site size results clearly from the dominance of tiny sites (over 50% of sites are smaller than 0.5 ha) in the legacy dataset of the Roman period. Sites may be small due to more recent deposition (than in prehistoric sites) which has not left as much time for lateral displacement. In addition, the use of roofing tile may make small Roman farmsteads more visible and datable on survey than larger earlier villages built with less permanent materials. Such material makes Roman scatters highly visible despite small size. The drop in site area does not necessarily indicate general shrinking of site sizes, but may be because of better resolution of small scatters. With such resolution, the observed settlement pattern more fully represents the range of actual occupation sizes. While the larger sites strengthen the middle tier in the histogram, their overall area cannot outweigh the mass of small sites.

For the first time, the settlement hierarchy uncontestably shows three tiers of communities: the first one comprises sites under 5 ha with a distinct peak at 0.5 ha, the second tier emerges between 5 and 10 ha of area, and the third tier is represented by an outlier encompassing 22 ha. This site is again the town of Kabyle. Located on a prominent outcrop in
the bend of the Tundzha River, Kabyle is enclosed by a fortification and features public architecture, including soldier barracks, baths and temples. There is less evidence for administrative, military, or cultic function among the sites in the second tier of the size hierarchy, as few of them have been excavated. There are, however, a number of large strongholds and local centers that likely fulfilled auxiliary administrative functions in the region.

The lowest tier of sites is classified as comprising hilltop stations, “villas” and small farmstead sites. The latter two (literally) litter the hinterland. The density of such rural settlement is unprecedented in Yambol legacy data, and indicates a flourishing rural hinterland. The rural settlement seems to have started to expand already in the Late Iron Age, perhaps in response to the Macedonian urbanization of Kabyle.107 In the Roman period the settlement truly takes off, simultaneously with the pacification and commercial development of the area (in the hinterland of Constantinople), and new economic and administrative policies under the Roman rule.108

One issue that merits further note is the question whether the magnitude of infilling the landscape with small installations is new in Thrace during the Roman period, or whether it had existed earlier during the Late Iron Age and merely escaped detection. Small sites in prehistory are nearly untraceable due to burial, degradation or low diagnosticity of the surface material. Locally produced Late Iron Age pottery is not readily distinguishable from Roman wares (Hoddinott 1981, 160). If no imports are registered, Late Iron Age predecessors to Roman sites may go undiscovered. Roman period pottery, on the other hand is reasonably well known, highly diagnostic, durable and has been resting on the surface for mere two millennia. Roman sites are, therefore, harder to miss.

Comparison with Survey

Roman Period: The parallels between survey results and the legacy data are strongest in the Roman period, when both the count of sites as well as the average and total inhabited area reach their absolute long-term maximum (see Fig.V-1,2,3). Survey in 40 sq km area has

107 Given the difficulty of recognition of the Late Iron Age local wares and the similarity of wheel-made pottery used in the LIA and RM periods (mostly Red Slip), it is possible that many Roman sites had a Late Iron Age stage, that was not recognized. Also, during Late Iron Age, the archaeologically attested consolidation of Kabyle could have had a significant impact on the development of the rural settlement as far as Elhovo and Dodoparon study areas (on the post-Macedonian evidence at Kabyle, see Domaradzki 1991).

108 Archaeologically attested in other provincial areas of the Roman Empire (Fentress 2009), the impact of Roman administrative reorganization of Thracia is discussed by Tacheva 2000c.
produced 14 flat Roman sites (5 new foundations), reaching a total of 45 ha, nearly doubling both the site number and total occupied area since the Late Iron Age. Legacy data also registered a 100% increase in site number and a more modest 70% increase in total settled area. With the increase in site numbers, the average site size in the legacy dataset dropped to 2.5 ha from Late Iron Age average of 3.1 ha. The survey data show a reverse pattern, where the average site area grows continuously from 2.1 hectares in Late Iron Age to 3.4 hectares in the Roman period.

Site size growth is a point of small divergence between the survey and legacy datasets. Is the site area growth evident in survey data merely a local trend, characteristic of the particular area of survey, or does the legacy dataset suffer from some major oversight?

This decrease in site size in the legacy data can be attributed to the regional trend of peopling of the countryside, discussed above (Legacy section). Small concentrations of Roman period material were among the most frequently encountered phenomena during surface survey. Their easily recognizable character likely contributed to a high recovery rate. The scatters were interpreted as the remains of small farmsteads or villas (villa rustica), featuring agricultural stations placed in a position where they can more efficiently exploit the land. Similar agricultural establishments figure in the legacy data – twelve instances of villa rustica are directly reported in the archival reports, most of them around major centers such as modern Yambol – which places them within a 10 km radius of ancient Kabyle (Dimitrova & Popov 1978). While “villa” sites are reported to exist across the Yambol region, they cluster around

109 Yambol has in the past been associated with the ancient settlement of Diospolis, but recent research suggests this 3rd century AD city is in the Chirpan heights by Nova Zagora, and attributes the traces of settlement in Yambol to a Late Antique fortress Lozanov 2005.
larger centers, river tributaries and major communications. In the Elhovo survey area, small settlements indeed followed this pattern, as they were embedded into a tight network with a local center (the site 6018) at the village of Stroino.

The site 6018 has been classified as a local administrative center on basis of its numerous and varied surface remains. Public architecture was strewn about in such quantity that it hampered agricultural use of the field. Limestone capitals and column drums lay on the ground near piles of tile and building stones, all overgrown by dense vegetation. Test excavations at this site revealed 3rd century AD houses and pottery. Interpretation of the site as a colony of Roman veterans was supported by the discovery of bronze military diplomas (Bakardzhiev 2007). Several mounds in the vicinity yielded lavish Roman burials, which included military accoutrements (Agre 2009). These were linked to the town’s inhabitants. It has been proposed that a major Roman route between Edirne and Deultum led through here, which also served as a dividing line between three strategies in Roman Thrace, that of St. Zagora (Beroe), Edirne (Hadrianopolis) and that of coastal lands of Burgas (ancient Deultum, Aquae Calidae) on the Black Sea coast (Šopova 2004, map on page 312). Settlements tend to align along road networks and the existence of a road here could, therefore, be a stimulus to local settlement. Roads in Roman Thrace were often guarded by auxiliary troops or Roman veterans settled in small praesidia – one seems present at Stroino; the protection guaranteed by these troops would further encourage the settlement (Nikolov 1994, 131).

Materials recovered from some of the smaller settlements that surrounded the administrative seat at Stroino variously included luxurious furnishings such as high quality Roman Red Slip ware, glass fragments and plumbing tubes (sites 7019, 6021, and 8005). These may represent the private dwellings of administrative officials, high ranking military officers or merchants residing in the town of Stroino.

Because of the effect of the central place at Stroino, the expansion and florescence evident in the Elhovo survey area during the Roman period needs to be treated separately from the Yambol region. The survey area in the Roman period falls on the intersection of the administrative border and major communications and becomes densely settled. Although the overall trend in Yambol is toward increasing population levels and site numbers, first glance at the map of the Yambol region reveals that such a situation is not ubiquitous; many areas of the region are off the beaten track and quite “empty” of sites. Dense settlement, however, occurs occasionally, for example in the vicinity of Kabyle some 35 km due north. Kabyle, a 4th century
BC Macedonian foundation, was still a functioning garrisoned city in the Roman period, controlling traffic between the Central Plain and the Black and Aegean Seas. The officials and elites living here could have been the commissioners of numerous villas encircling modern Yambol.¹¹⁰

Site Types: In comparison with the Early Iron Age, the Roman period surface scatters show more functional differentiation. The Early Iron Age and Late Iron Age concentrations appeared rather homogeneous and culturally uniform. Roman period scatters differ in the range and variability of surface materials and often allow for more detailed typology, including the assessment of owner status, productive and social activities performed here. Iron Age sites stand at a great disadvantage *vis-a-vis* Roman features, because size is often the only distinguishing characteristic among them.

Hierarchy: A two tier hierarchy stands out distinctly in the site size histogram. The two tiers correspond neatly with extended family dwellings – farmsteads and *villas* - on one hand, and local centers on another. A third tier, belonging to a regional center, is absent from the survey data, but supplied by the legacy data. Excavations at the local center at Stroino have shown that the town experienced complex forms of social dynamics and facilitated local administration. One level of administrative hierarchy can be located here.

Statistical view

On visual inspection, there seems to be a reasonably good correlation between the legacy and survey data in the Roman period. Statistical testing shows a similar result. The Mann Whitney U as well as Kolmogorov Smirnov test recommends that the null hypothesis be retained as the two datasets lack significant differences (p-value of 0.088 and 0.136, respectively). These results come with rather conservative values, which in such relatively large samples (the number of sites in survey and legacy data peak in Roman period) means the result is rather robust. The “no

¹¹⁰ It is possible that the rural landscape of the Elhovo area has formed as the response to the urbanization and centralization at Kabyle. According to the numismatist D. Draganov, the territory of Kabyle encompassed some 50km radius around the ancient city. The area around Golyam Manastir, the later Dodoparon, fits this model as at least one locally minted coin was found here Draganov 1998, 67. It is, however, hard to prove a link between coin circulation system and political unity, especially since local coin minting ceases by the Roman period; only weights continue to indicate a regional system of commerce, with less information available on administrative structure Draganov 1994a. The city’s zone of influence likely fluctuated, and the local rural habitation more likely owes its florescence to its position on a major communication and an administrative border line.
significant difference” in survey and legacy data site distributions of the Roman period indicates that the two datasets suffer from little sampling variability. The settlement structure can be expected to be well represented by the legacy and survey data, which despite differences in magnitude are well matched in distribution.

Summary

The evidence indicates that Yambol experienced a time of prosperity and settlement expansion during the Roman Period. Partially owing to the better visibility of high quality Roman pottery and partially to *Pax Romana*, the lowest tier of settlement emerges as more robust than ever before. A hierarchy of local and regional centers is evident in small Roman colonies and the city of Kabyle. The survey data confirms the pattern of legacy data, showing unprecedented site abundance and differentiation.

While the whole region experiences an increase in population and an accelerated foundation of new sites, the exuberance and wealth evident in the Elhovo area needs to be treated as a product of the particular local situation, one that is particularly conducive to settlement.
Chapter VI. The Kazanluk Study Area

VI.1. Introduction- My Journey to Kazanluk

For students of Thracian complexity, the Kazanluk valley should be the natural choice of study area. Home to the Hellenistic capital of Seuthopolis and spectacular necropoleis of Thracian kings, this valley brings together several domains of archaeological record bearing on the indigenous kings and queens (see Appendix A.1-1,2 and A.2-4).111 Yet, the prominence of the Valley of the Thracian kings provides an immediate antidote to the enthusiastic researcher, offering a Pandora’s box of conflicting interests and existing entitlements. The local museum has for over a decade derived its prestige from Dr. Kitov’s excavation of burial mounds in the valley. This emphasis has steered research of the local Iron Age far from the study of the lived landscape. With the death of this eminent Bulgarian archaeologist in the fall of 2008, the Kazanluk museum was on the lookout for a new archaeological initiative. My case confirms the role of serendipity in archaeology. I met Dr. Georgi Nehrizov, my principal Bulgarian partner, just as he was being invited to work in Kazanluk.

Kazanluk valley had never been my intended area of study, as it had been the research domain of Dr. Kitov and his associates. The TRAP methodology was conceived for the Yambol region and tested during a pilot project there in 2008 (Ross \textit{et al.} 2010). The Lower Tundzha watershed was deemed most conducive to survey methodology in general and to my research questions of early Thracian powerbases in particular. Yet, in Bulgaria, political situations and personal relations are everything. Our partnership in Yambol (with the Sofia University Department of History team at Kabyle) deteriorated soon after the pilot study, which made it impossible for us to continue until we found a new partner. The search for a new partner eventually resulted in finding Dr. Georgi Nehrizov and his survey team, which was followed by the transplantation of the survey design into the Kazanluk valley.

While Kazanluk had not been in my initial plans, survey of that region turned out to be easier than expected. The significance of the valley and its potential for improving the research

design soon became obvious. Kazanluk was an Odrysian powerbase during the Hellenistic period in the aftermath of Odrysian Early Iron Age florescence in Yambol. Kazanluk also held the promise of a well-developed urban hinterland, while Yambol seemed primarily rural. The addition of Kazanluk expanded and bracketed my research chronologically, offering a contrasting view of developments from the Early Iron to the Late Iron Age independent from the Yambol region. It provided a synchronous comparison with Yambol in terms of the impact on settlement patterns of the Persian and Greek stimuli, and the Macedonian onslaught. Topographically and environmentally different, the archaeological landscape in Kazanluk was the perfect control sample offsetting the results from Yambol.

VI.1.1. Research Questions and Sampling Strategy

The research questions for the Kazanluk region were twofold: (1) how does the socio-political complexity –evident in the existence of Seuthopolis – manifest itself in the city’s hinterland? Or phrased in other terms: can we detect the economic basis upon which Seuthopolis relied during its short lifespan? (2) What earlier centers of power existed in the valley and how does the foundation of Seuthopolis fit within the traditional settlement patterns in Kazanluk?

The Kazanluk valley, enclosed by steep and almost continuous mountains, provided an ideally small and delimited survey area conducive to different kinds of sampling. The sampling strategy was a compromise between the Bulgarian partners and me as well as the Kazanluk Museum, which was the host institution. The initial strategy was modest – to intensively investigate suburban Seuthopolis. The city of Seuthopolis, having been excavated in 1948-1954 by P. K. Dimitrov, was submerged by the reservoir without any investigation of its environs (Dimitrov et al. 1984, 11). The goal of our first campaign was to attempt to redress this shortcoming.

Based on these goals and research questions, the aims of the Kazanluk 2009 project were to (1) investigate the immediate hinterland of the Thracian capital Seuthopolis, submerged under the Koprinka Reservoir; (2) search for sites subsidiary to this Hellenistic metropolis; and to (3) explore the immediate vicinity of the Koprinka reservoir in search of sites contemporary with and preceding Seuthopolis.

In 2009 a radius of five km around the submerged town of Seuthopolis was covered contiguously, spanning both the agricultural fields north of the reservoir as well as the grassland covered hills and forests of Sredna Gora to the south. Municipalities investigated included: Kazanluk, Koprinka, Dunavtsi, Dolno Sahrane, Vidin, Gorno Cherhovishte and Buzovgrad. Four to
five teams of five people were in the field simultaneously surveying these territories combining different methods according to environmental variables. Intensive (15 m interval) survey of the well visible lowlands and agricultural lands was complemented by extensive (20-25 m interval) walking of areas with low surface visibility such as pastures. Highland regions were covered by a methodology jointly developed with our Bulgarian partners: “adverse terrain survey”, in which teams walk tracks through forested or mountainous areas, recording their paths, sight distances (through trees, etc.), and the width of the track assessed. Although adverse terrain survey is less comprehensive than systematic intensive or extensive survey, the associated recordkeeping allows us to assess the actual area surveyed and treat it as a controlled sample of the region under study.

The initial results from 2009 showed that the immediate vicinity of ancient Seuthopolis has suffered heavily from modern amelioration and dam construction, and yielded a rather incoherent picture of settlement. The only apparent pattern in the ca. 25 sq km radius around the town was a “vacuuming effect”, in which the immediate hinterland of a metropolis is emptied of smaller sites – a pattern sometimes seen around large and long-occupied sites. This pattern was puzzling in the Thracian context because Seuthopolis is not, by Mediterranean standards, particularly large, nor did it exist as a regional center prior to the 3rd century BC. Such a settlement needs an economic basis for its sustenance, but an economic foundation of permanent agricultural settlements failed to materialize upon our first inspection, perhaps due to the limited area surveyed intensively. The results, nevertheless, motivated the conception of a second campaign in Kazanluk that would extend the sample area and verify the accuracy of each of the possible explanations for the lack of sites.

In 2010, the project’s objectives were expanded to: (1) explore the area between the hinterland of Seuthopolis and the slopes of Stara Planina Mountains to the north; and (2) search for regional centers either coeval or preceding the foundation of Seuthopolis in order to understand better the cultural substrate into which Seuthopolis was inserted.

Two one-km-wide transects radiating north from the Koprinka reservoir allowed for the investigation of an additional 30 sq km across various environmental and topographic zones at different rates of intensity. The areas investigated in the Kazanluk region included the municipalities of Kran, Hadzhi Dimitrovo, Sheynovo, Enina, Shipka, Yasenovo, Skobelevo, Gorno Sahrane and Golyamo Dryanovo. An average of four teams of five archaeologists each recorded environmental variables and surface artifacts in digital (using a GPS-equipped PDA) and paper
Sixty team-days were spent in the field between 17 March and 11 April 2010. Twenty two new scatters were registered and an additional 180 burial mounds.

The total sample chosen (60 sq km) represents seven percent of the entire Kazanluk-Karlovo valley (or twelve percent of the valley surrounding the city of Kazanluk). It includes environmentally and topographically diverse areas (see Appendix, Figs.A.2-1, 2, 3), producing systematic data about settlement patterns and development. This dataset offers a useful corrective to the legacy data, which was collected with variable intensity and contains a bias towards monumental sites and chance finds.

VI.1.2. **Study Area Profile**

VI.1.2.i. **Topography**

The Kazanluk Valley (see Fig. VI-1) is the largest Balkan intramontane valley, encompassing 780 sq km between the forested Sredna Gora hills to the south and the higher, more rugged Stara Planina range to the north. The Valley lies between 370 and 540 m above sea level. The relatively young peaks of the Stara Planina rise to 1000-2000 m above the valley; they consist of a mixture of limestone with volcanic intrusions (see Appendix, Fig. A.2-2, and Archibald 1998, 112)

112 Considerable resources were dedicated to training participants. Returning students of archaeology were instructed in using ArcGIS software and operating our PDA-GPS equipment for digital recording in the field. Thanks are extended to the American Research Center in Sofia which allowed us to use its premises for the training prior to the beginning of the project and to the Kazanluk museum for kindly providing bases in Kran and Kazanluk for use during the campaign.
11-12 for local geology). The Sredna Gora hills are composed of older plutonic rocks, and are lower, and more weathered. The valley is shaped like a narrow lozenge, with the Tundzha River following its southern edge and the Koprinka Reservoir sprawling at the foot of Sredna Gora. The landscape of the valley consists of rolling alluvial terraces north of the river that transform into stony colluvial fields and fans below the Stara Planina. The transition between plain and mountains is abrupt. Soils beneath the valley floor are thin and stony near the mountains as they rest on the substrate of quaternary sands and clays; better alluvial soils can only be found on the river terraces (Archibald 1998, 16-18; Dennel, 1975 #1226). In its wider context, the study area consists of a partially isolated valley in the interior of Thrace. Mountain passes guard access from the North, West and South. The valley is more open to the east, with a rolling, narrow corridor following the Tundzha River between the Sredna Gora and Stara Planina. The Black Sea lies about 190 km to the east through relatively easy terrain; the Aegean Sea lies about 300 km away, and can be reached by travelling east and then south along the Tundzha and Maritsa Rivers (see Appendix, Fig. A.1-1,2).

VI.1.2.ii. Environment
Environmentally, Kazanluk falls into a transitional zone between a Mediterranean and Continental climate. The winters can be cold and wet, and the summers cooler than the rest of Bulgaria. Most precipitation falls in April-June, mainly thanks to the peaks of Stara Planina, which retain most of the precipitation coming from the west and north and often have snow-covered summits well into April. The narrow shape of the valley is conducive to high winds that blast the landscape in the winter months and make it into a refreshing retreat in the summer when the rest of Bulgaria chokes in temperatures above 40 degrees Celsius. The single determinant for land cover in Kazanluk is the elevation. Most of the valley floor is used for agriculture or pasturage; the latter is prevalent in the northwest part of valley where the rate of erosion is high and soils are thin and stony. The foothills and mountain slopes are densely forested, transitioning into alpine meadows and stone fields at summits such as that of the Mount Botev at 2376 msl, on the northwest rim of the Kazanluk Valley (see above Fig. VI-1).

VI.1.3. History of Research and Significance
The Kazanluk Valley constitutes one of the richest archaeological landscapes in Bulgaria. Its remains document a remarkable variety of material culture produced by the local inhabitants
across many centuries. Several prominent tells, dozens of flat sites, hundreds of burial mounds, and countless isolated finds testify to the vibrant past of the valley (see Appendix, Fig.A.2-4).

The archaeological potential of the Kazanluk Valley was first recognized in 1948, when Prof. D. P. Dimitrov discovered the Hellenistic city of Seuthopolis (Dimitrov et al. 1984). The upper Tundzha River Valley has remained a hotbed of archaeological research ever since, investigated by successive generations of archaeologists. The tells of Gabarevo, Kazanluk and Kran provide evidence for prehistoric settlement (Миков 1926/1931; Georgiev 1972; Андреева 2007). Single finds such as the Gabarevo bukel-amphora attest to continued activity during the Early Iron Age (Китов and Божинова 2005). Although inhabited for centuries, the Kazanluk Valley became a center of the Odrysian Kingdom during the Late Iron Age, especially in the wake of the Macedonian conquests. Seuthopolis and its associated royal tombs confirm the legendary wealth of the Thracian elites and display strong ties to the Graeco-Macedonian world (Чишкиова 1957; Zhivkova 1975; Китов 2005). While the monuments of the valley are well understood thanks to long-term archaeological investigation, a comprehensive archaeological approach that would contextualize these sites and illuminate the evolution of society is still lacking. A comprehensive evaluation of the archaeological landscape was begun in the 1990s, but was soon discontinued (pers. comm. G. Nehrizov, December 2009).

VI.1.4. Work Group Profile

In the Kazanluk valley the TRAP team included 20-25 people at any given time. Half of them were Bulgarian undergraduate and graduate students of archaeology recruited by Dr. Nehrizov and Dr. Tzvetkova. The other half comprised of international participants - students of archaeology as well as volunteers – from around the world. From the Kazanluk museum only the Roman specialist Ms. Meglena Parvin would regularly join in the field walking. In the field the larger team would break up into 4-5 five-person teams. Each team would have a Bulgarian participant and supervisor, responsible for Bulgarian documentation and public relations. Among the specialists we had the above mentioned Dr. Nehrizov and Dr. Tzvetkova, specialists in local Early Iron Age pottery; Shawn Ross, specialist in Greek Early Iron Age pottery and Bogdana Lilova, specialist in Classical imports. Dr. Desislava Andreeva of the Kazanluk Museum kindly assisted with the assessment of prehistoric pottery, while Dr. Krasimira Stefanova provided consultations of the Late Antique and Medieval wares. Elena Bozhinova, an advanced PhD student at the St. Kliment Ohridski University of Sofia, provided comprehensive assistance.
with pottery recognition. In spring 2010, docent Jiří Musil of the Charles University of Prague visited the project and consulted the Roman period material. Given the fact that only a few of the specialists participated daily in the field walking, the pottery processing was less seamless than in Yambol. Sherds had to be taken to the Kazanluk museum and studied there.

While the core personnel remained permanent, about 50% of the volunteer body kept changing from season to season, making training a major concern to the project.

VI.1.5. **Survey Distorting Factors specific to Kazanluk**

Most survey publications contain a chapter or two on the various types of biases that can enter into the survey data and distort the picture of surface artifact distribution, range and quantity. Some may be inherent in the surface debris itself, which may not be representative of the subsurface. Many others can be identified in the personal characteristics of the walker (tiredness, motivation, experience level, attention span) or conditions of observation, such ground cover, geological conditions and type of artifacts observed. These factors are briefly discussed here.

VI.1.5.i. **Geological Factors**

The severity of climate and geological activity, combined with modern development, have made the Kazanluk region a challenging survey area. The surface debris in the environs of the Koprinka reservoir has been heavily distorted by modern disturbances. The land still bears marks of serious modification and landscaping during the reservoir construction and management. As a result, the surface material is highly fragmented, worn beyond recognition and dispersed widely over the landscape.

The banks of the reservoir were eroded, which occasionally provided a welcome, newly revealed profile, but more frequently resulted in highly eroded pottery concentrations mixed in with the beach gravel. Several new scatters were recorded due to water level drop in the aftermath of a dry year, yet even these were worn and eroded almost beyond recognition.

VI.1.5.ii. **Modern Development**

Kazanluk valley is located roughly in the center of the Bulgarian heartland and on the route between Sofia and the Black Sea. As a region with much recent history (Shipka pass siege in 1878) it attracts thousands of tourists every year and has a reasonably developed infrastructure.
The flourishing industry of rose oil production in the Kazanluk region, a legacy of the Ottoman period, has been a mixed blessing for the Kazanluk landscape. Rose fields when prepared for planting are ploughed 0.70m deep causing tremendous damage to the subsoil. Once planted, the rose bushes are often left growing for a century or more, which saves the fields from continuous ploughing, conserving whatever is left underneath. Two discoveries of high quality pottery in Kazanluk were associated with recent rose field elimination and new ploughing.

Another major disturbance associated with human activity that directly affected the surface survey is the construction of the Koprinka dam. It is nowadays hard to estimate the extent of the soil displacement that accompanied its construction. There were however, noticeable steps and levees protecting the northern banks of the reservoir from flooding. In the tip of the eastern shoulder (peninsula) in the reservoir, a number of manmade positive features disrupted the original landscape. Along the northern limits of the reservoir, there is high likelihood that the terrain was substantially compromised. The pottery – if any was found - was highly fragmented (see entries for 1006, 1015, 5006, and 2019 in the Catalogue, Appendix I.2).

The choice of transects running in the direction of the mountains was motivated not only by the desire to learn more about the archaeological landscape of the Kazanluk valley, but also to escape the compromised environs of the reservoir. The Stara Planina foothills are devoid of development, but suffer from weathering and erosion, leaving deposits as much as 3 m deep (over the last two millennia) (Нехризов и Първин 2010). Surveying these areas tested the impact of geological masking on the surface record. Sediments were noted, that buried large portions of ancient landscape (site 3122 in the Catalogue). This burial impact was counteracted by the activity of mountain streams that eroded gullies through these sediments. In the exposed sections, archaeological deposits were often revealed. One of the tasks for the teams operating in the foothills of the Stara Planina was to scrutinize the river beds, monitor the extent and depth of colluvium, and evaluate the recoverability of ancient debris in the area.

VI.1.5.iii. **Personal Factors**

Lack of experience is often an aggravating factor, and in the intensive systematic survey conducted by TRAP there was something new for every participant.

International participants had to absorb both the project methodology and the material culture in a very short time. The steep learning curve was further intensified by linguistic and cultural challenges in the form of local cuisine, local customs, mixture of languages spoken and
mixture of individuals present at the project. Errors have arisen as a result of poor understanding of documentation procedures and unfamiliarity with the surface material. Both were gradually eliminated with time and tuning. Teams were intentionally mixed to provide a variety of checks on both material definition, accuracy, and the observance of field strategies and documenting procedures. Documenting procedures were designed with an eye to a large amount of novices; and were kept simple and objective, minimizing the number of in-field interpretations.

The lack of experience caused many errors during in-field recognition of material types. Most frequently, the coarse wares were conflated with the handmade artifacts. Yet, most of these errors could be corrected later during pottery processing. On the other hand, the novices provided us with the advantage of attentive and unbiased eyes, that noted and picked up everything, including stones, lithics and glass, without prejudging the relative value of this or that period. They proved to be very comprehensive observers and highly enthusiastic teammates.

Bulgarian colleagues were the most trained and skilled personnel on the teams, although often narrowly specialized. Bulgarian colleagues, just like other volunteers, struggled somewhat with methodology and recording procedures, mainly where these differed from customary Bulgarian field methods. Language barrier, or rather, conceptual differences in research goals that often resisted translation, contributed to many misconceptions and data loss or generalizations that were harder and took longer to eliminate than among true novices.

When speaking of inexperience, I should include myself in the list. While as a graduate student I have been, in theory, exposed to many different approaches to field survey and contribute an international experience, I had never worked in the Kazanluk region before. My experience in Bulgarian local pottery had been limited to the Late Bronze Age and Roman wares (from previous work at Krsto Pokrovnik in Blagoevgrad, and Kabyle, Yambol region). Pottery identification, therefore, was as much a learning curve for me as for other participants.

As for survey methodology, my own experience was relatively minimal, when I arrived to Bulgaria six years ago. I had worked with a survey project run by the Vrije University of Amsterdam in southern Italy, but most of my knowledge came from survey classes, and publications. The bulk of my field experience was from excavations, Roman pottery processing and data management, which did prove useful, but as far as on the ground survey was concerned, mine was the classic case of “it’s nice in theory, does it work in practice?”
VI.1.5.iv. **Local Pottery Knowledge**

The problem of poor knowledge of local pottery, applies in the Kazanluk region. Local pottery is only coarsely known in Bulgaria. Intervals of 200-300 years are about as precise as one can get with formal analysis when no Aegean imports are available. The absence of fabric studies, in particular, is a major problem for survey material analysis and interpretation, as 90% of fragments offer little more than a snap of fabric for scrutiny.

The agenda of TRAP project colleagues in Kazanluk further aggravated the pottery studies. The unofficial goal in 2009, corresponding to their specialization, was to focus on Iron Age and Prehistoric materials. This goal had a negative impact on the recording and collecting of the full chronological range of surface materials. Scatters dating from Roman to Ottoman periods were often not sampled and collapsed into the category of "ancient", or “modern”. The lack of a Roman specialist was rectified by the second season. The objection that Ottoman materials were too recent for archaeological attention was gradually overcome. By the second season, most of the teams in Kazanluk (2010) were consistently documenting and sampling the full (recognized) chronological range of surface material.

VI.1.5.v. **Site Definition**

Site definition remains an issue after several decades of discussion and examples from different regions and continents. For the purpose of the Archaeological Map of Bulgaria (AKB), the official cultural heritage registry that contains archaeological sites and monuments, any findspot, whether a flat site, standing masonry or a single find, qualifies as an “archaeological object” when identified by qualified personnel. A form detailing the nature, dimensions, extent, and quality of such an “object” must be submitted to the AKB in case of discovery. Criteria for site description and definition are outlined in the Legacy Data section (Chapter IV.4). For the purpose of TRAP we had decided to differentiate “sites” and “low density scatters” in the region of Kazanluk. We have used “halo” for low quality scatter surrounding areas of archaeological interest in order to differentiate it from the “background scatter”, a continuous and rather homogeneous blanket of low quality and low density ancient and modern debris covering this region. These categories of “site” and “low density scatter” refer more to our ability of defining the purpose and date of the findsplots, rather than to functional typology of the locality (permanent settlement versus place of short-term activity). A “low density scatter “ refers mostly to a collection of pottery that fits one of these two scenarios: 1) its count stands out from its surroundings, but quality is so poor and worn, that it yields virtually no information of
chronological or functional kind; 2) the count of material is minimal and almost homogeneous with the background scatter, yet some fragments can be precisely dated or identified – such as bits of amphorae, tiles, loom weights, or other well recognizable single finds - which hint at the existence of a site somewhere nearby.

Sites with multiple chronological components were defined as one multi-period site if their components overlapped each other or one subsumed another (e.g. 6021, or 2032). If different chronological components were separated by a boundary of >50m, they were registered as separate sites (3227 & 3114?). This decision was made somewhat arbitrarily. While the basic guideline follows the rule of AKB, AKB is not specific as to how far different components need to be to qualify as separate sites. Such a threshold conceals taphonomic factors that affected the formation of any specific site. Materials at two neighboring sites may get intermixed through the plowing of the soil, or vice versa. Decisions in this instance were made on a case-by-case basis with much reliance on the reports of team-leaders, and on subsequent total pick up collections (see Chapter IV.2.5.i). I am aware of the limitations of such an approach, its impact on statistical assessment and overall settlement interpretation; especially, the question of continued site evolution or displacement, and new site foundations.

VI.1.5.vi. **Issues identified during Pilot Project**

In preparation for the TRAP project, a pilot season was organized to address the issues of feasible and working field methods, quality and efficiency of recording procedures, data management systems and pottery chronologies.

The pilot project helped settle a number of organizational issues, clarified progress and coverage expectations and helped assess field methods and recording procedures (Ross et al 2010). Data management issues comprised the organization of work and system of recording. The former was facilitated by setting up a network that allowed for simultaneous work of multiple teams in the same geodatabase. The latter resulted from limited knowledge of the anticipated results. The lack of any thorough publications of Bulgarian surveys and the omission of any discussion of problems and issues did not help. Our expectations for type, range of variation and quality of surface material was based on the Yambol region, which, as we learned later, differs considerably from Kazanluk.

Each region requires a different set of methods and particular team compositions require diverse approaches. One of the main challenges during the Kazanluk season was to improve and expand our documentation system, which has been calibrated for Yambol. From
2009 to 2010 season new categories were added, such as fragmentation and wear of surface debris. Some chronological and material type definitions were expanded (chronology, lithics, TW-tableware, CW-coarse ware), others collapsed (AC-architectural ceramics), as we recognized the limits to the recognition capabilities of survey participants. Pottery processing remained paramount in identifying the nature of scatters, but rough guesses were considered valuable for immediate feedback and for training.

VI.2. Existing Data

VI.2.1. Kazanluk Valley Archaeological Data - Initial Estimates

Before embarking on a description of the legacy data from Kazanluk, the Kazanluk study area needs to be defined. As was the case with Yambol, neither the survey area nor the “Kazanluk” record-set in the AKB aligns with the modern administrative boundary of the Kazanluk, which officially is one of the municipalities (obshtina) of Stara Zagora region. The Kazanluk municipality covers 633 sq km. Half of this area encompasses the eastern part of the Kazanluk Valley – centered on the city of Kazanluk. The other half includes the ridges of the Stara Planina and Sredna Gora mountains. The AKB records marked as belonging to “Kazanluk”, however, include sites from as far east as the towns of Muglizh and Tulovo, which are now part of the Muglizh municipality. On the other hand, sites from the west half of the “Kazanluk Valley” that fall into the district of Pavel Banya, are missing from the AKB’s “Kazanluk” dataset (with the exception of the well-known Gabarevo and Pavel Banya tells).

The TRAP study area, on the other hand, is roughly coterminous with a narrower, topographic definition of the “Kazanluk Valley”, referring to ca 480 sq km of the valley floor encircled by the foothills of each mountain range, and divided administratively between the municipalities of Kazanluk and Pavel Banya. This “Kazanluk Valley” forms the lowest and eastern-most part of an intramontane valley system, one which starts with a narrow defile in the west and gradually broadens to the East (see Map VI-1 above). This whole valley system, some 100 km long, is also occasionally referred to as the Kazanluk Valley, which is misleading, as the larger valley system encompasses the municipalities of Kazanluk, Pavel Banya and Karlovo (spanning a total of 750 sq km). A more appropriate name for this larger geographic unit is the Valley of Roses, from the ubiquitous rose fields for the production of attar of roses, an
important export product since Ottoman times. While this larger area would have been a more suitable target for regional analysis given its ecological and physical unity, it falls under three different municipalities, making it difficult to acquire the necessary permits. Throughout this work I will refer to “Kazanluk valley” in its narrow sense of the valley surrounding the city of Kazanluk.

According to M. Domaradzki, the Kazanluk valley is supposed to house some 1000 sites (Домадрдски 1991, 133). In his article contributing to the Archaeological map of Kazanluk (1991) he estimates that over 90% of these are burial mounds, dating from Early Iron age through the Medieval period. The prominence of the largest of these mounds, reinforced by the discovery of spectacular grave goods within, has earned the valley its appellation “the Valley of the Thracian kings” (Китов 1994a). Domaradzki only marked some 34 sites as settlements. These settlements can be found mostly on the terraces of the Tundzha River and peaks of the encircling mountain ranges. These counts produce a ratio of 30 mounds to every settlement (or, ca. 2 mounds per sq km). Pedestrian survey in the Kazanluk Valley during 2009 demonstrated that the density of mounds may actually be even higher than previously suspected (see section VI.3.1), yet it raised the number of flat sites even more, reducing the ratio of burial mounds to flat sites to 6:1 (Некризов 2010).

VI.2.1.i. **Available Sources and Their Focus**

After the caveats noted above are taken into account, the AKB remains the fullest and most reliable source of legacy data for the Kazanluk region. It contains 350 records, 90% of them being burial mounds. Most of the AKB records refer to the sites in the Kazanluk valley, with only a few fortresses in the surrounding in mountains. The distribution favors burials and easily accessible areas.

Unlike Yambol, Kazanluk does not have a dedicated site gazetteer, although a number of site lists are scattered through local museum’s publications. The Iskra Historical Museum volume “Thracian culture in the valley during Hellenistic period” (also dubbed the “Kazanluk sbornik”) contains lists of sites reported in the vicinity that were noted by museum curator Gergana Tabakova-Tsanova (processed and organized after her death by Bogdana Lilova and Miecsyslaw Domaradzki) (Табакова-Цанова 1991, 125). These notes refer variously to sites investigated through excavations, or reported by informants, before 1974. Entries usually contain one to two sentences of fragmentary archaeological information (Домарадски). Many entries report discoveries of single finds of spears, fibulae, bones or pottery from farms or
gardens. When a surface concentration is mentioned, the area of the scatter is often missing, as is precise chronological description. Location is only approximately, and sometimes ambiguously, defined. We must remember that these devoted local scholars were working long before accurate Geographical Positioning Systems were available and when access to accurate maps was limited. In many cases, this information came to the museum along with archaeological finds offered for inventory after discovery by local inhabitants. The utility of this list is more limited than that of Dimitrova and Popov (1978) in Yambol. Very few of the sites have been verified or have corresponding records in the AKB.

A number of excavation reports exist for the Kazanluk region. As noted above, most focus on the aristocratic burial mounds, especially their artistic merit (e.g., the painted tomb of Kazanluk, the frescoes in Ostrusha tomb, or the golden implements from Svetitsa or Golyama Kosmatkata).113 Such information is of limited use for the analysis of settlement patterns, although it is relevant to the question of social complexity (see Chapter VIII.3.2.iv). Coins have merited several publications, as well as finds that may indicate the location of sanctuaries.114 Few settlements have been published, most notably the Chalkolithic tells of Gabarevo, Kazanluk, and Kran, the Hellenistic city of Seuthopolis, several Roman villas, and the Late Antique and Medieval fortress of Kran.115

Although the Kazanluk Valley has been the focus of intense archaeological activity since the 1950s, the low number of settlements in the AKB reveals that archaeological work emphasized intensive investigation of a narrow range of “important” sites. Wider-ranging, large-scale research has not been conducted.116 In as much as they exist, records of archaeological sites beyond the “important” ones have only been created in a haphazard manner, as they were brought to the attention of archaeologists by local informants.

113 To mention a few, the mounds have been discussed in: Гетов 1965; Гетов 1969; Zhivkova 1975; Гетов and Николова 1987; Kitov and Krasteva 1992-1993; Kitov 1993; Китов 1994b; Китов 1995; Kitov 2005b.

114 For a treatment of coin finds in Kazanluk see: Герасимов 1950; Домарадски 1987; Димитров 2011). Sanctuaries were identified by (Табакова-Цанова, 1980 #2863 and Табакова-Цанова and Овчаров 1975.

116 М. Domaradzki conducted a two-man survey here in 1990s, of which the only remaining record is his diary. His goal was to find the pre-Seuthopolis center in the region. Once he located what he considered to be this center, the survey was abandoned. The site he had in mind was TRAP inventory no. 3227. Its alleged pre-Seuthopolis roots have not been confirmed by surface collections so far (pers. comm. Nehrizov 2009).
VI.2.1.ii. Research and Politics in Kazanluk

Archaeological work in Kazanluk provides a perfect example of a discipline firmly embedded within the public domain. Since the discovery of Seuthopolis by D. P. Dimitrov in 1948, the valley has loomed large in public and archaeological imagination (Dimitrov and Čičikova 1978; Dimitrov et al. 1984; Angelova, Draganov, and Dimitrov 1995). Throughout the 20th century, Kazanluk figured in both public and scholarly perception as an area of consequence and promise (Dimitrov 1950). In the last two decades the discoveries of splendid treasures in the Thracian burial mounds have further enhanced the reputation of the Kazanluk Valley. With Kazanluk considered the center of Hellenistic Thracian wealth and power, archaeological activities there attract the public media. An end-of-season summary report about archaeological research in Kazanluk could be expected to appear in the news during most years of the last decade, communicating new finds and commenting on the events in this focal point of Bulgarian archaeology (Martin 2008; Hristakieva 2009). Media coverage, as well as steps taken by the regional museum to disseminate and popularize the results of their research, contributed not only to instilling a new sense of pride among Bulgarians, but has also raised awareness of the value of cultural heritage among local residents and provided substantial revenue for future research (through cultural tourism and allocation of public funds to this high-profile area).

V. Gertcheva has argued that the popularization of archaeology offers a number of benefits: it raises the international profile of Bulgarian archaeology and archaeologists, renews the confidence of people in their nation, and helps construct a sense of national identity that is lacking in young people today (Gertcheva 2003, 89). Under a constant public gaze, the agenda of the director of the Kazanluk museum was to serve public needs (and, conversely, the director has been constrained by public demands and political agendas). One such need is that of strengthening national self-awareness and self-confidence, mitigating the painful memory of Ottoman subordination. Another is to demonstrate how Bulgaria belongs within the European Union, with Bulgarian cultural heritage providing evidence that Bulgaria’s antiquity and sophistication deserves respect from the other cultured nations of Europe. In the first decade of the 21st century, excavating Thracian burial mounds that produced world-class treasures seemed to address such needs. Through their excavation, an earlier period of glory is emphasized over less desirable periods of foreign domination, whether Ottoman or Roman. After excavation, Thracian burial mounds are preserved and promoted as the target for cultural
tourism, which has become a significant local industry. Indeed, these burial mounds constitute one of the most popular (and lucrative) attractions offered by the local museum. The long-term support that Kazanluk museum has provided for Georgi Kitov’ TEMP expedition (Trakolozhka expeditsia za mogilni prouchvania), attests to the marriage of “scientific” and public archaeology.

While the Kazanluk museum’s policy has succeeded in sustaining research activity, the exclusive focus on the excavation of monumental burials and large-scale settlements (tells and cities) has created imbalances in the archaeological record. The study of the Thracian mortuary assemblages has revealed much about the preferences of Thracian elites for valuable, status-enhancing accoutrements. Likewise, excavations at Seuthopolis illustrated the life at a Hellenistic royal residence. Neither has revealed much about the lives of ordinary people, especially the rural majority.

In addition to the emphasis on monumental sites (whether burials or settlements), there is also a distinct chronological bias in the work in Kazanluk. The Late Iron Age, especially the Hellenistic period, has been studied with most fervor at the expense of other periods, such as the Early Iron Age, Roman or Medieval eras. The only other systematically investigated period is prehistory, through past and present work on prominent tell sites. Given the absence of systematic survey campaigns around most of these sites, whether Thracian or prehistoric, they now lie within an understudied hinterland.

The factors discussed above resulted in a skewed image of archaeological landscape in the Kazanluk Valley. The disparity between full excavation records (of a narrow range of sites) and haphazard data collected from informers and informal surveys has rendered the regional dataset so heterogeneous that its imbalance jeopardizes any attempt at settlement analysis. Systematic surface survey is almost entirely lacking in the region and remains an urgent scientific priority. Survey has the potential to contextualize excavated sites within their

117 I have not seen a more efficient and security conscious system anywhere else in Bulgaria. Although the agenda of the museum leadership has been to capitalize on the public interest and to promote cultural tourism, the museum personnel is firmly dedicated to research.

118 TEMP project has operated in the region since 1992 until Georgi Kitov’s premature death in the fall of 2008 Kitov 1995. Its aims were to investigate promising burial mounds before the looters got to them so as to save the remains of sensational value for Bulgaria’s posterity. The operations of TEMP have indeed scored some spectacular finds, which contributed to increased popularity of the region and its prominence of Bulgaria’s cultural tourism (see bibliography on the webpage www.thracetemp.org) At the same time his fast excavations have generated much controversy among archaeologists. It is Georgi Kitov who gave the valley its newest powerful nickname “the valley of the Thracian kings” Kitov 1994a; Kitov 1997.
hinterlands, and improve the monitoring of cultural heritage and rehabilitate regional legacy data in the AKB and other registries.

VI.2.1.iii. **Local attitudes towards Archaeology**

After a decade in the spotlight, notable differences emerge between the residents of Kazanluk valley and other regions in Bulgaria. Local residents are much more aware and proud of local cultural heritage. They have developed a positive attitude towards archaeological practice and perceive it as a beneficial activity that boosts the valley’s prominence and provides it with reliable revenues. Many have participated in archaeological fieldwork since the excavation of Seuthopolis in the 1950s, and can recognize and identify archaeological remains if they encounter them. Local residents’ knowledge and enthusiasm facilitates cooperation between them and local authorities. Remarkable levels of awareness and interest were noted among local communities during the TRAP survey, when many individuals shared information and lead archaeologists to findspots that otherwise would have remained undiscovered.

Public interest, on the part of journalists and local elites, also encourages timely publication of archaeological reports. Even though survey is notorious in Bulgaria for yielding “poor” discoveries, TRAP also engendered a public discussion. A press conference was organized in its first season to satisfy local curiosity and answer concerns about its objectives and operations. The Kazanluk Valley, housing many national treasures, remains under intense public scrutiny.

Unfortunately, professional archaeologists, cultural tourists, and local enthusiasts are not the only attracted to the monuments of Kazanluk. A side-effect of the valley’s high profile has been the large numbers of looters attracted to the area. No other region has experienced such high rates of looting and such blatant, illicit excavation of burial mounds and ancient settlements in search of antiquities. While public awareness and local collaboration have been a positive outcome of relentless media coverage, looting has been so severe and detrimental that such publicity seems, in retrospect, to have been rash.\(^\text{119}\)

In Kazanluk, most of the archaeological work over the last decade was controlled by the Iskra History museum and its internal agendas. Its operation in the recent decades has been geared largely towards the excavation of Thracian burial mounds and prehistoric tell sites, at the

\(^{119}\) TRAP remote sensing data show that 90% of the burial mounds across the Kazanluk valley and attached hard to access hillsides of Sredna Gora were looted. During field work, my team would regularly encounter looters shovelling reservoir profiles, eager to share their intelligence of good find spots.
expense of more general investigations of the landscape. Currently, this focus is starting to change with new projects and an evolving agenda, as the museum confronts a number of challenges and moves towards more scientifically responsible, balanced, and sustainable archaeology.

VI.2.1.iv. **Data Quality Considerations**

Similar considerations apply to archival data quality in Kazanluk (positional and attribute accuracy) as the Yambol region and, therefore, will not be repeated here (see Chapter 5.2), other than to note that 90% of sites published in literature lack indication of period or extent. The major problem with internal consistency of the dataset, however, needs to be re-emphasized. The Kazanluk region, unlike Yambol, saw no systematic surface survey until the late 1990s. Data recorded in the published lists, especially, were acquired haphazardly and are, as a result, extremely heterogeneous. Descriptions vary from complete reports about excavated mounds, to the record of a single coin brought to the museum by its lucky finder - in both cases, however, the object is recorded as a “site” (Табакова-Цанова 1991). I have relied primarily on the AKB dataset and ignored published lists because of the problematic or idiosyncratic “sites” there. While the quality and consistency of the data increased as a result of this exclusion, the size of the dataset decreased substantially.

Kazanluk legacy dataset, in general, encompasses substantially fewer data points than the Yambol legacy dataset. This can be partially attributed to the smaller size of the region (10% of Yambol) and partially to the existence of many incomplete records. Incomplete records lack fundamental attributes in their original publication, and can only be entered into the AKB after being revisited. This problem has caused large discrepancies between the data in the literature, where, for example, up to 40 LIA sites are mentioned (Димитров 2011, 96), but only two are actually recorded in the AKB. The small size of the Kazanluk legacy dataset is problematic, because it makes statistical analysis futile.

In light of these data quality problems, the invitation of the Iskra History Museum to undertake a surface survey in Kazanluk marked a major change in the museum agenda. First, it reflects a desire to compile a more comprehensive record of archaeological heritage. Second, it marks a new wave of interest in the settlement life in the Kazanluk Valley. In future, these goals will help redress the existing emphasis on the exceptional urban and elite mortuary landscapes and help to contextualize them within their hinterlands.
VI.2.1.v. **Summary**

While legacy data provide a valuable resource for archaeology of the Kazanluk Valley, any attempt to compare and integrate such heterogeneous data will stall on the issue of data quality and consistency. Kazanluk legacy data, on top of inaccuracy and incompleteness, provides too small a dataset to make results of its analysis statistically significant. TRAP survey data from systematic large-scale pedestrian survey will play a key role here, standing as an equal or perhaps even the primary source of data with its larger number of sites and greater consistency.

VI.2.2. **Data Processing**

VI.2.2.i. **Data Filtering**

Legacy records drawn from Kazanluk AKB amounted to 42 settlement records. This is only a fraction of the records available in informal reports published by Kazanluk museum (Domaradzki 1991; Табакова-Цанова 1991). These records were tabulated and digitized on the basis of the spatial coordinates indicated. Several sites were outside the margins of the valley (Muglizh municipality), but as they were included in the regional database and represent major local settlements, they were included to present a more complete overall picture of settlement. The location of most sites in AKB was defined by azimuth and distance.

VI.2.2.ii. **Statistical Evaluation**

Standard non-parametric testing methods (traditionally used for small datasets) were applied to the Kazanluk legacy dataset in order to determine whether significant differences exist between the legacy data and the survey sample. The results are limited given the miniscule size of both initial datasets.

Besides the legacy data, statistical evaluation was also conducted on the Kazanluk survey data. The goal of this assessment was to test how site extent was defined in legacy data. During survey, two different measurements were recorded when sites were discovered, site nucleus and site margin. The former represents a conservative estimate, which defines only the central area of densest concentration of artifacts as a site nucleus. The assumption is that this portion of the archaeological feature can be directly linked with subsurface structures (a buried structure, pit, etc.). The second, more liberal, approach outlines the total area of the scatter, including less artifact dense margins. This is called the site margin measurement. While this dispersed margin is likely caused by the displacement of surface material (and not a core of built
settlement), it has been outlined as a common measurement among Bulgarian archaeologists and a requirement for CRM purposes. The survey dataset in Kazanluk, having produced two different outputs, is a useful dataset to test the Bulgarian practice of site boundary definition at work. The nucleus and margin survey data will be individually compared to the legacy dataset to test which one matches it closer, so as to reveal which approach was applied towards site boundary definition in the past.

VI.2.2.iii. Test results

Kruskall-Wallis (KW) test was applied to test the difference among the three datasets – legacy, survey margin and survey nucleus. The analysis of survey margin and legacy data yielded the recommendation to retain the null hypothesis (no significant difference among site size distributions) for all but the Chalcolithic period. Applied to survey nucleus and legacy data, the test returned no significant difference in periods that had a small number of sites (EBA-LBA). Whenever the samples were larger, the null hypothesis was rejected (Early Iron Age through Late Antiquity). A visualization of the prehistoric margin and nucleus ranks in Figure VI-1 illustrates the differences in the distribution and ranks in each dataset. The statistical result confirms that the nucleus data and legacy data contain significant internal differences.

Figure VI-2: Histograms of Survey Site nucleus (left) and margin (right) data for prehistory in Kazanluk

120 pers. comm. Georgi Nehrizov, 2009, and Bogdan Athanassov, 2010; also noted to apply to prehistoric scatters by Chapman 1989, 35.
121 There were more distinct differences in the Yambol and Kazanluk regions regarding site identification. In Yambol the sites had very clear boundaries, while in Kazanluk the scatters often spanned a much larger area than that likely to be associated with actual remains. A higher rate of dispersion seems to operate in Kazanluk.
122 Mann Whitney U and Kolmogorov Smirnov tests were applied to the combinations of legacy–survey margin, and legacy–survey nucleus datasets as well. Both methods returned non computable values for each of the combinations. These tests are obviously not suitable for analysis in the case of Kazanluk.
The sizes of site margin data are more exaggerated and while that may not correspond to reality, ranks are more clearly legible in them. Nucleus data represent more accurately actual site extent, yet ranks are rather concealed within them.\(^{123}\)

The conclusion is that the nucleus data represents more accurately the total area of the settlements, while the margin data provides a dataset for CRM purposes, matching the legacy data.\(^{124}\) The next question is which of the two should be used for the comparison of ranks with the legacy dataset, the true measurement or the one which, while exaggerated, matches it better? Margin data and legacy datasets appear to be parallel, peer datasets. Data from the nuclei, being consistently smaller in area, complements the legacy, rather than extend it with an additional dataset of the same kind.

The risk of using nucleus data is in entering untested assumptions (namely that nucleus is coterminous with the occupied area) into the data analysis. The potential benefit of correcting the existing inflated dataset is attractive, but may be flawed. Using margin data carries the risk of perpetuating existing errors, but knowing of the bias on the data we can compensate for it. Through this chapter, I use the margin values in order to avoid the possibility of the TRAP assumptions being erroneous and sites larger. I cross-reference the nucleus data in periods where there is high cumulative error in the margin data.

VI.3. **Survey Results**

VI.3.1. **Coverage**

Some 366 archaeological sites were registered during the 2009 and 2010 survey season, including: 303 burial mounds (many of them small, “defunct” mounds, nearly erased by erosion or human activity) and 63 flat sites and offsite scatters (concentrations of pottery or masonry),

\(^{123}\)Basic descriptive statistics confirm the outcome of the K-W test. Survey margin areas show considerably larger mean values in all periods measured, spanning from 2.8 ha in Early Iron Age to 5 ha in LA, while nucleus values are tightly arranged between area values of 0.8 to 1.8 ha. Difference in range is to be expected, given the nuclei are ordinarily smaller, but it puts the two measurements in perspective, showing that only about a third of the margin area has according to the survey been under actual occupation. Margin data shows greater standard deviation (3.3 -7.3), indicating better distinction of ranks, than in nucleus data (1-3.1).

\(^{124}\) Margin data characteristics are similar to the legacy data, with mean in the range of 4.3-6.5 ha and standard deviation from 5.3 to 9.9.
In addition, six lithic artifacts (grind stones and tools) were collected in the field, with one well preserved Bronze Age stone axe among them. The surface material collected includes material from the Chalcolithic, Early Bronze Age, Early and Late Iron Age, the Roman era, Late Antiquity, and the Medieval and Ottoman periods.

In the two seasons, a total of ca 60 sq km was walked (see Appendix, Figs. A.2-1, 7, and B.1-1 and 2). The large area covered by the survey during 2009-2010 allowed for previously unknown settlement patterns to be confirmed. Most salient was the association of archaeological sites with water sources, particularly the tributaries of Tundzha River. While association of sites with water sources might be a matter of common sense, TRAP actually covered areas between the water sources testing for site presence there. Most of the rivers’ meanders were settled at regular intervals with sites dating from Chalcolithic to the Ottoman period.

Another characteristic settlement location was at the spurs of the Stara Planina hills. Again, this might have been expected beforehand, yet the ATS system of recording captured the situation on the slopes equally to that on the ridges, providing a more systematic record of the topographic setting of settlements. In Antiquity, Kazanluk valley, a significant crossroads into the Central Plain, was surrounded by guard towers or fortresses that controlled access to the valley and monitored traffic along mountain passes. Overall the number of early settlements and mound necropoleis demonstrate that Seuthopolis was founded within a well inhabited landscape.

VI.3.2. Efficiency Tables – see Appendix D.1

VI.3.3. Diagnostic Finds & Reliability

In the Kazanluk study area, 86,251 fragments were counted on the 60 sq km surface covered. Out of these, some 35% (29,844 sherds) were classified as positively ancient artifacts; 3% (1,017 sherds) of the ancient fragments and 1% of the total amount were diagnostic.

The density of artifacts appears similar in the Yambol and Kazanluk regions once we correct for the ground visibility and method applied.126 The wear and fragmentation of

125 Site concentration is defined as a concentration with either large amount of material or sparse highly diagnostic scatter that is meaningful, continuous and stands out from the background. In both cases this scatter is clearly distinguishable from the background noise either on account of density or quality.

126 These numbers are considerably lower than in Yambol (ca 17 diagnostics per sq km as opposed to 27 diagnostics in Yambol). This is likely an artifact of the methodology applied and the higher proportion of
diagnostics in Kazanluk was much more severe than in the Yambol study area (see Appendix, Fig. A.2-8). Several chronological groups were missing in the valley, either as a result of coarse chronological resolution, low obtrusiveness, or the absence of occupation (lack of Neolithic, practical absence of Early, Middle and Late Bronze Age). The boundaries of sites were often difficult to define, as the pottery was low quality and highly dispersed. Site nuclei and site margins datasets were generated to capture these differences and to reflect the reliability of site definition (see different site boundaries in Appendix, Figs. C.1-12, 14, 20, and 34, etc.).

VI.4. **Results by Period**

VI.4.1. **Legacy and Survey Data Discussion**

In the following chapters, the trends evident in the legacy and survey data will be compared and discussed in chronological order, focusing on site emergence, expansion, and settlement hierarchy. Overall results are illustrated in the summary graphs that follow, while settlement structure, hierarchy, and site sizes will be discussed in separate sections by period. All of the area counts are based on site nucleus data.

VI.4.1.i. **Summary Tables**

![Site Count](image)

Figure VI-3: Site numbers per period based on legacy and survey data

low visibility land covered in Kazanluk. If we review the diagnostic numbers in the intensive areas and extensive areas only (38 sq km and 4,888 units) – which is all we have in Yambol – we arrive at the number of 1,007 diagnostics. The average rises to 26.5 diagnostics per sq km – a number almost identical to that in Yambol. In the remaining 12 sq km of ATS terrain only 10 additional fragments were recovered.
Figure VI-4: Survey site numbers per period

Figure VI-5: Aggregate area of legacy and survey sites per period (site nucleus data)
VI.4.2. Prehistory

Description and Trends apparent in Legacy Data

The first sedentary communities in the Kazanluk valley have been documented through the excavation of Neolithic layers at several tell sites: Kazanluk, Pavel Banya, and Cherganovo, (Миков 1926/1931; Georgiev 1972). Two of these settlements continue to be occupied, and three new sites (Gabarevo, Sheinovo, and Tulovo) emerge, in the valley during the Chalcolithic period. All of these new settlements are occupied for a long time, ultimately forming tells themselves. The reported sizes of these new communities are relatively small, from 0.1 to 1 hectare. This is a relatively modest size in comparison to the tells in the Yambol region, and may result either from smaller communities, greater erosion in Kazanluk, or from greater rate of
displacement and re-settlement (tells are then smaller because people do not live on them as long). Geomorphological analysis would provide more precise comparison for the erosion rates in the regions. The placement of the tells on alluvial terraces and agricultural fields is similar in both regions. They should have, therefore, had similar histories of habitation and erosion. No flat sites of the Neolithic or Chalcolithic period are reported in the legacy data, although the existence of early flat settlements is likely. Recent investigations at the Thrakia Highway point to well-preserved subsurface sites at the depth of only 0.2 m which went largely unnoticed on the surface (Калчев and Янков 2004, 44; Лещаков 2004, 17). While these results are from a region south of the Sredna Gora, there is no reason that similar flat sites would not exist in the Kazanluk valley. The settlement mounds are dispersed at ca. 10 km from each other, leaving more than enough hinterland in between for exploitation.

The total area in prehistory peaks during the Chalkolithic period. The estimated total of ca. 6 hectares within a study area of approximately 400 sq km marks the local long-term maximum, doubling the Neolithic value and five times as large as during the Bronze Age. This value attests to the Chalcolithic florescence evident throughout Bulgaria.

![Figure VI-8: Early Bronze Age Legacy data histogram (only a single site is dated to the Middle and Late Bronze Age)](image)

The Bronze Age in the Kazanluk legacy data has little evidence of habitation, which seems to mark a long-term decline. A total of three sites are known in the Early Bronze Age (EBA), declining to one in the Middle and Late Bronze Age. Two of the EBA sites represent the continuation of earlier, existing settlements. Other tells show a hiatus in occupation during the EBA, and only one new site is documented (Kran tell), although it is abandoned in the Middle Bronze Age. The legacy data suggest the valley may have been depopulated in the Bronze Age. Another explanation could be that people moved away from the prominent Neolithic settlements into locations that rendered archaeological residues invisible either through burial or obliteration. Reports on the excavations at Kran tell indicate that there was significant erosion to the Bronze Age levels (Андреева 2007). Given these reports and the other problems
noted above, the legacy data must be treated carefully. We may not be seeing depopulation in the Bronze Age, but simply may not be seeing the Bronze Age at all.

Given the low number of Bronze Age sites, and the total absence of flat settlements, we can hardly start speaking of a settlement hierarchy. We do, however, probably have a complete group of local tells for the Neolithic through to the Bronze Age, and can distinguish as most prominent those that lasted the longest period of time and covered the largest area (Kazanluk, Gabarevo, Pavel Banya, and possibly Cherganovo). To say that these sites were the leading communities in the valley on basis of duration and site area alone, would, however be unwise. The occupational area need not be the base of the tell in each period of use, but is typically recorded as if it was, giving the impression of a permanent community with a fixed size. Given these issues, the hierarchy of prehistoric settlements will likely need more coring or excavation at individual sites, to model the fluctuations of their extent with time. At the moment the data is so coarse as to make any conclusions preliminary at best.

Comparison with Survey

The survey data also shows a modest picture of settlement during the prehistoric period, which suffers from the difficulty of dating handmade materials. Four flat sites are securely dated to the Chalkolithic period. None have been identified as Neolithic on the basis of surface finds. The picture remains poorly defined because of the non-descript quality of prehistoric pottery found during survey. Most of the recovered

127 A Neolithic layer, however, was identified at the site 2032 at the depth of 0.8m during test excavations (Нехризов and Цветкова 2010).
handmade material is highly worn and fragmented and lacks any decoration. Given the lack of formalized fabric typology, small undecorated prehistoric fragments are literally indistinguishable into individual chronological subtypes. These hard-to-date fragments were, nonetheless, noted and feature in the “prehistoric” histogram above. Chalcolithic period pottery is the exception. It could be securely identified because of its remarkable quality (that resulted in better preservation), and high frequency of characteristically decorated fragments (incisions, incrustation, high burnishing). Four Chalcolithic scatters were registered in the study area. Three of them seemed to be in a secondary context rather than primary location. These few sherds were associated with other period materials on low burial mounds, suggesting that they had arrived here with the soil for mound construction.

The average site size of the Chalcolithic concentrations is small, a mere 0.2 – 0.5 ha. The cumulative prehistoric histogram shows a couple of outliers at 3 ha. These mostly comprise multi-period flat sites that have shifted around with successive occupation and created larger residues (such as 2032 – multicomponent scatter). In one case (2044 – marked as prehistoric scatter without closer definition) the site may have been artificially “enlarged” by modern excavation during reservoir construction. Overall while the graph of prehistoric sites seems to present a full distribution of sites, we need to keep in mind that the label “prehistoric” applies to all sites whose pottery was not diagnostic enough to provide a close date. As such it may be palimpsests including sites of disparate periods. It was included only as a visual representation of the potential gaps in the graphs of other prehistoric periods. The total area is almost meaningless during the Chalkolithic, at 0.7 ha, placing the average site area at less than 0.2 ha. This average is consistent with other scatters that yielded chronologically vague prehistoric handmade pottery.

In any case, the number and total settled area of early prehistoric sites is very small for 50 sq km of intensively surveyed area. The excavated sites point to a long tradition of settlement and flourishing community. The incompatibility of survey and excavation as well as an overall low number of sites suggest that the samples are not very representative and that much of the early prehistoric remains is escaping the survey team. Excavation has focused at few sites other than tells, and survey seems to have particularly suffered from burial and degradation of sites of these periods. Burial is the major culprit in hiding the prehistoric landscape, as have shown the test excavations at scatters 3055 and 2032.
The situation in the Bronze Age seems to improve slightly in Kazanluk. The number of flat scatters (8) has risen since the Chalcolithic period, with six new findspots. The site types are divided between one tell (Kran) and seven flat sites. The spatial distribution of scatters is predictable – satellite small hamlets encircle the two tells in survey area – Kazanluk and Kran. The average area doubles in comparison to the Chalcolithic period, but that can be attributed to one outlier, a large (10ha) low density scatter (3053) encountered on the terraces in Sredna Gora. Its extent may owe more to forces of gravity and agricultural terracing than actual site extent in the Bronze Age. Yet, its area having been registered as it was observed effectively inflates the average area value.

The Early Bronze Age occupation of old tells resonates with the early prehistoric settlement pattern. Gradually, however, the changes take root during the Middle and Late Bronze Ages. Middle Bronze Age is almost invisible in the valley (likely a problem of pottery diagnosis rather than pottery absence), and the Late Bronze Age sites show progressive abandonment of the old sites (Gabarevo) and substitution of new foundations on the first terraces of the river Tundzha. Most of the Late Bronze Age sites are flat surface scatters, and their recognition may be attributable to better visibility and preservation of Late Bronze Age fragments than the earlier ones.

Identification of Bronze Age sites during survey remains a major problem, especially recognizing individual phases, which are very elusive in survey pottery. Same as in early prehistory, individual phases are indistinguishable in the pottery due to degradation and the lack of fabric typology. Short term settlements are virtually undatable. Eight sites discovered through survey thus had to be collapsed into one large Bronze Age category, lasting some two millennia. This problem applies to the period of prehistory in general. The histogram (Fig.VI.8 left) shows that 11 of the scatters that had prehistoric pottery in them did not lend themselves
to more detailed identification. These eleven sites (averaging 0.23ha area each) could belong to Neolithic, Chalcolithic or Bronze Age periods. Their number is equal to that of Chalcolithic and Bronze Age settlements together. If these sites could be dated with more accuracy they might reverse the observed trends entirely.

Statistical Evaluation

Statistical testing of the three datasets, the legacy data, site margin and nucleus survey data, provided different results for any two or three group measurements. When all three datasets were tested jointly in Kruskal Wallis test, the result suggested that the Prehistoric and Chalcolithic samples of data were significantly different across the three datasets (p value being 0.004 in Prehistoric and 0.031 in Chalcolithic dataset). When nucleus data was tested with legacy the same result was obtained. When margin data was applied, only the Chalcolithic period came out as significantly different. The statistical difference, therefore, stems from the comparatively tiny values of the nucleus data during the early prehistoric period. These tiny values get smoothed by the overall small sample size during the Chalcolithic and produce more moderate results (with less statistical power)

The difference expressed in the statistic does not provide detail as to the nature of the difference, and it is the task of the interpreter to seek an explanation. Perhaps the two datasets represent two different samples of the mother population of sites in the respective periods. Their dissimilarity may also be structural (capturing areas as they vary between tells versus flat scatters). It does not state which sample is more representative of reality. Both may be two sides of the same coin, neither fully representative and without overlap.

The Bronze Age datasets, on the other hand, came out of testing without significant differences, probably due to the overall small sample sizes (p values: EBA 0.076, MBA 0.368 LBA 0.076). The statistical power of Bronze Age results is very weak.

From the statistical testing, we can conclude that Early Prehistoric datasets in survey and legacy data contain two sets of diverse values. They do not represent overlapping samples, but rather two complementary parts of the prehistoric record, with an unknown amount still missing. The Bronze Age datasets, on the other, hand, do not show any major internal differences, which may be interpreted as evidence that both survey and legacy methods of collection were equally limited, and fell upon similar site types and distributions. The three Bronze Age datasets are more related than the Prehistoric and Neolithic ones, but the similarity may be caused only by the small size of the dataset.
Summary
All in all the data provided by survey has contributed a group of small short term sites to the existing prehistoric landscape in Kazanluk, composed mainly of tells. Statistical analysis showed a degree of difference in the mean ranks in the survey and legacy datasets, pointing to their inconsistency and different distribution. This lack of alignment may be caused by the different nature of the sites captured in survey as opposed to legacy dataset. It, however, may also be attributed to the local hidden landscape – where sites are hard to recognize on the surface due to low quality pottery or burial. The prehistoric dataset thus remains problematic and not very representative. While it points to off-tell activity, its resolution is not good enough to come to any generalizable conclusions.

VI.4.3. Iron Age

Description and Trends apparent in Legacy Data

Figure VI-11: Early (left) and Late (right) Iron Age Legacy data histograms

After the depopulation of the Late Bronze Age settlement in Kazanluk, the Early Iron Age (Early Iron Age) legacy data shows the first signs of recovery (see Appendix, Fig.E.1-1). Four entirely new foundations emerge in place of one during Late Bronze Age and a slow reconstruction of settlement follows (The graphs are not of the same scale; the Early Iron Age one is much enlarged). Two of the new sites span less than two hectares (one of them on top of an old tell), while the third site is registered with the size of four ha and the last one reaches eleven ha. The largest site seems to be a settlement of significance. It is, however, registered at a multi-period scatter spanning from Early Iron Age to Late Antiquity. Chronological components at such large long-term flat scatters have a high likelihood of error, because their extent is usually matched to
the maximum size estimate, regardless of the period. This site, indeed, figures in the record of successive periods. The value of the size of its Early Iron Age component, or any other phase, cannot be discarded nor confirmed without a revisit. At the moment, it needs to be accepted but taken with a grain of salt.

The average site area on account of small samples and two outliers correspondingly jumps to an average of 4 ha a site after the 0.1 of the Late Bronze Age. The distribution of the sites is correspondingly skewed towards larger sites. The appearance of a large site should be accompanied by a concurrent emergence of smaller settlements. Yet, the lowest tier of sites is relatively sparse in the Early Iron Age period, indicating the legacy dataset is incomplete and lacking in this area. With many gaps between few high points there is likely a lot of missing data. Given these reservations and small sample size, the settlement hierarchy is less than clear. Survey should address this imbalance and justify the presence of a tiered settlement hierarchy.

![Figure VI-12: Early Iron Age and Late Iron Age settlement hierarchies as apparent in the legacy data at the same scale for comparison](image)

Late Iron Age: After the slow revival in Early Iron Age legacy data, the Late Iron Age settlement growth literally explodes (see Appendix, Fig.E.1-2). The number of known sites increases six fold and total site area grows (70 ha) correspondingly. Given the large number of sites (21) the average site size actually slightly drops, stabilizing at 3.3 ha. Three Early Iron Age sites are still in use while the rest represents new foundations. The distribution of sites follows a normal distribution with a high number of sites in the smallest tier (<1.5ha), reflecting a natural composition of settlement. The number of high ranking settlements, however, grows as well, indicating a faster rate in site nucleation at this period. Two to three ranks may be separated depending on the perspective of the interpreter. Two ranks would be the small (< 4 ha) and the

128 Only complete raw data is presented here on the basis of AKB and the lists in the Kazanluk volume by G. Tabakova-Tsanova (Табакова-Цанова 1991). Fragmentary information was discarded.
middle one (> 10 ha). The dividing lines of a three tier hierarchy could be drawn at 1.5 ha, 4 ha and 10 ha respectively. This is, however very much a decision that needs to be further justified by trans-regional and diachronic comparison.

Compared to data from other periods the Late Iron Age marks a period of unprecedented prosperity and growth in the Kazanluk valley, which is no surprise given the historical records of its political prominence during the reign of Seuthes III (Dimitrov and Čičikova 1978). It is likely that this region was one of the few that still successfully resisted the Macedonian conquest, and as such we can expect an inflow of refugees from other areas of Thrace that boosted local settlement. Evidence for the claim of local political ascendance is based principally on rich burial assemblages from burial mounds in the valley, most of which date into the 4th and 3rd century BC. While political autonomy and prominence may be one likely scenario that explains the abrupt jump in settlement size, one must keep in mind that the evidence from settlements for all of this growth happening at the beginning of the 3rd century (Seuthes’ III heyday) is not that substantial. Site chronology in AKB places sites in the Late Iron Age, without resolving them to individual centuries. If we take a step back and consider twenty one sites flickering on and off over three hundred years, it no longer seems to have been such tremendously good times.

Comparison with Survey

![Figure VI-13: Early (left) and Late (right) Iron Age Survey site histogram](image)

The survey data for the Early Iron Age also indicate the trend of settlement recovery after the Bronze Age, in correspondence with the legacy records. The number of settlements found through survey is eighteen, which is more than double of the Late Bronze Age sites. All of these comprise pottery scatters. Like the legacy data, which shows several small sized settlements.
and one outlier, the survey captured mostly tiny settlements, averaging less than a hectare and one scatter, whose margin reaches 12 ha. This result was expected and indeed fits in well with the legacy data, compensating for its lack of small tier sites, but correlating surprisingly well with the larger sites. The total settled area reaches 15 ha.

The curve of the survey data follows a distribution that would be expected in a normal settlement pattern. There are no glaring gaps or imbalances evident in the histogram. In addition to ten tiny sites a few sites also reach the upper tiers, giving the impression of a relatively representative sample as opposed to prehistoric survey data. Like in the legacy dataset the hierarchy of settlement can be assessed in two ways; two tiers appear in site nucleus data, while three may be teased out of site margin distribution. The first tier emerges in the distribution of site nuclei at 0.5 ha reaching up to 3 ha (see histograms below in Fig. VI-13). The second tier starts at 5 ha size and is represented by one large settlement. We can expect different social dynamics to be operating in settlements of 5 hectares (60 houses, 250 people) as opposed to those of 1 ha and smaller (1-3 houses, 1-2 families).

![Survey nucleus Early Iron Age](image1)

![Legacy Early Iron Age](image2)

Figure VI-14: Early Iron Age histogram of Survey nucleus (left) and Legacy data (right)

![Survey margin Early Iron Age](image3)

![Legacy Early Iron Age](image4)

Figure VI-15: Early Iron Age histogram of Survey margin (left) and Legacy data (right)

If we push the survey margin data, a three-tier hierarchy emerges (see in Fig. VI-14). The dividing lines are at 2.5 ha, 5-8 ha and above 10 ha. This hierarchy finds support in the legacy data histogram and indicates higher social complexity among the communities. It is, however, a
highly unreliable interpretation, in fact a guess, because the site sizes are based on marginal estimates in an environment that has suffered much disturbance. There is no proof that these thin dispersed scatters extend over the area of actual habitation; in light of the circumstances it seems unlikely.

In the Late Iron Age, the survey data match the legacy data in growth. While the settlement numbers do not skyrocket as in the legacy data, the rise from 18 to 30 is nevertheless substantial. It represents a long-term absolute maximum in site number and marks one of several peaks in the total settled area in the region (33 ha). The average site size grows to 1.1 ha per site if we calculate with the site nucleus data. This naturally falls below the average value from the legacy data, where there are few small tier sites in the dataset. If we base our site size average on the margin data, the average site area in this period grows to 3.4 ha, which parallels the legacy data.

The total site area expands to a temporary maximum of 33 ha, doubling the Early Iron Age extent of settlement. This expansion matches the legacy data, where an almost fourfold expansion is observed in the transition from Early Iron Age to Late Iron Age period.

The distribution of survey data remains very similar to the Early Iron Age typical curve except for increase in the site magnitude. Site numbers have moved up considerably in the smallest tier of sites (16 against 10 in Early Iron Age). The middle ranks also witness some build-up (6-7 ha ranking sites have 3 site each against 1 in Early Iron Age), which is most apparent in the histogram of site margins (liberal site area readings) above.

Figure VI-16: Late Iron Age histogram of Survey nucleus (left) and Legacy data (right)
In the nucleus data, the histogram curve is normal but remains somewhat flattened in the right half of the histogram as well as shorter – there are fewer sites in the higher ranks and their size remains modest at 5 and 8 hectares respectively.

There are two or three settlement tiers present in the survey data for Late Iron Age Kazanluk, depending on how we interpret the histogram and which dataset we choose. The nucleus data shows three peaks, one at 0.5 ha, that tapers off up to 3 hectares. The second peak is at 5 hectares, and third at 8. In margin data this is reflected by peaks at 0.5 ha, 7 ha and 12 ha. Strict interpreters could collapse both these curves into two tiers, with hamlets and villages in the left half of the histogram and regional center on the right extremity.

The differences in margin and nucleus data and their interpretation raise the question of which of the two survey datasets should I use. This conservative view of the valley speaks of moderate growth, and greater dispersion of small settlements, while the liberal site margin data indicates a continued expansion of existing sites, that could be interpreted as the advancement in nucleation and centralization of settlement pattern in the valley. These are two contradictory interpretations. They point to the problem of data quality in the archival records, namely the impossibility to determine what field strategy the original data collectors used. The alignment with “margin dataset” suggests they used the maximum size of scatters. The lack of alignment with “nucleus dataset” fits the expected bias towards larger sites in the legacy.

Statistical Evaluation

The Kruskal-Wallis testing of legacy and site nucleus data pointed out significant differences between the legacy and survey datasets in both Early and Late Iron Age. When the same test was run with legacy and site margin data, it recommended that the null hypothesis be retained. Again, a contradictory result emerges depending on which survey dataset is used, underscoring
both the difference between site definition criteria and incommensurable sample sizes of the datasets (mere four sites are in the Early Iron Age legacy dataset).

Survey nucleus and legacy data test:
The survey nucleus data and legacy data of the Early Iron Age period (18 and 4 observations respectively) when tested by the Kruskal Wallis method, showed to have significantly different distributions (p value = 0.041). The null hypothesis was firmly rejected.

A similar result was produced when Late Iron Age data of survey site nuclei and legacy sites (30 and 21 observations respectively) were assessed. The Kruskal Wallis test showed there were significant differences (p value = 0.003) between the two datasets and recommended the null hypothesis be rejected.

Survey margin and legacy data test:
The testing of the survey margin and legacy data of the Early Iron Age period produced no significant difference between the distributions of these datasets (p value = 0.733). This is the complete opposite of testing with nucleus data, which implies that there are major differences in the nucleus and margin data for the Early Iron Age period and only the margin data share similar distribution with the legacy data.

Late Iron Age site margin data showed no significant difference in distribution from the legacy data (p value 0.730). Again, this is an inverse result to nucleus data analysis. Although the legacy data match the margin data in these tests, the results are not very reliable. The margin data just happens to match the legacy dataset better due to similar biases entering into its collection.

VI.4.4. Roman Period

Description and Trends apparent in Legacy Data
The rise in settlement numbers in Kazanluk legacy data stalls with the Roman conquest. The number of sites falls from 21 during the Late Iron Age to 13, marking the abandonment of ten old settlements (and only 2 new foundations). This decline, however, conceals a degree of stability in the total occupied area. The total area remains at 61 ha, close to the Late Iron Age level of 71 ha. The average site area rises to 4.73 ha, showing the trend of site stabilization and expansion. The settlement distribution is typical, with a majority of sites in the smallest tier (up to 5 ha), two specimens in the second rank of 10 ha and one regional center appearing in the third rank, reaching 25 ha, which however was not discovered during resurvey. The expansion of the average site area suggests a trend of nucleation, which means that population is concentrating in fewer larger settlements and possibly engaging in other than productive agricultural activities.

The legacy data hint at growth in local social complexity, as larger communities require different administrative and social dynamics than small hamlets. Although the site number drops, the extra population may resettle in larger sites.
Comparison with Survey

The number of survey findspots drops from 30 in the Late Iron Age to 24 in the Roman period, but the total inhabited area hovers again around the same size as in the Late Iron Age, namely 28.5 ha from the previous 33 ha. Seven new foundations appear in the Roman period, while 15 of Late Iron Age period are abandoned. The number of Roman findspots documented by survey exceeds markedly that of legacy dataset, underscoring gross omission in the legacy data.

The average site area in nucleus data rises only slightly from 1.1 to 1.19 ha, indicating a gradual site expansion. In site margin data the average area rises to 4.3 ha a site, paralleling the legacy data. This large number is impacted by the appearance of the settlement at Kran, whose size substantially raises the statistic. Yet, this extent reflects a maximum confirmed at this site during Medieval period. A more conservative estimate should be placed here.

The histograms portray a settlement hierarchy of the following character. The site nucleus distribution is normal and indicates two levels of settlement, one at <4 ha and another >4 ha extent. The site margin data suggests three levels of settlement, adding to the previous two tiers a third one of >10ha size.
Statistical Evaluation

Survey nucleus data and legacy data of the Roman period evaluated with a Kruskal-Wallis test have different site size distributions (p-value = 0.03). While the normal curve in the histograms is shaped similarly, the large number of small tier sites brings about the difference in ranks means test. The survey dataset draws on many more small sites in the archaeological record, while legacy dataset comprises more of the large tier sites.

The site size distributions of survey margin and legacy dataset of the Roman period tested in Kruskal Wallis as not significantly different (p-value = 0.886). The statistical power is low. The decision of the outcome, nevertheless, is to retain the null hypothesis, which states that there is no discernible difference between the two datasets.
Chapter VII. Discussion and Interpretation of Results

Zofia Archibald has claimed that the Odrysian kingdom incorporated most of the characteristics sociologists and social anthropologists use to define the “state”: a supra regional unit with a formal administrative hierarchy within a ranked society, specialization of crafts and social functions (including the existence of a bureaucratic elite, priesthood, or ritual caste), regional control centers, literacy, and monumental art or architecture (1998, 93). It is usually assumed that such early polities were articulated by networks of exchange, between one social group and another, between one family or clan and another, and that the centralized organs of government were maintained through some form of tribute, in money or in kind. Long–term settlement is also generally seen as a prerequisite for social complexity (Bintliff 1984). The structural changes associated with state formation should leave their mark on the archaeological landscape, a consideration that has led Archibald to encourage a “more intensive study of settlement patterns and of the ecology of central and southern Thrace” (1998, 93). Such a study would shed light on the material conditions underlying Odrysian power and provide evidence for increased social complexity.

Chapters five and six summarized and assessed survey results. This chapter will examine more closely the developments in Thrace during the Iron Age. By further examining and contextualizing the survey data, I aim to investigate how the spatial behavior of local residents reveals important turning-points in the socio-political development of ancient Thrace.

VII.1. Early Iron Age (1100– 500 BC)

VII.1.1. Introduction
The Iron Age is the first period in Bulgaria for which there is written evidence in Greek sources as well as local inscriptions that comment on the internal development of Thrace. The majority of the written sources refer to the latter part of the Iron Age from the 5th century BC onward, providing a Greek view of the political consolidation of the Odrysians, the rise of their military power, and their expansion to southern Greece (Thucydides, bk. 2; Seuthopolis inscription IG Bulg III.2: 1731).
For the purpose of this chapter the Iron Age is divided into two halves, the Early Iron Age (1100-500 BC) and Late Iron Age (500-70 BC). Such a division is useful if somewhat arbitrary, as it follows the conventional Bulgarian interpretation, first proposed by Mikov (1933) and later followed by Hansel (1976), Toncheva (1980) and Gergova (1986) (Hansel; Toncheva 1980; Gergova 1986) and others. Most scholars also agree that the Early Iron Age is divided into early (11th-8th century BC) and late (8th-6th century BC) sub-phases. Again, however, the Early Iron Age is sometimes divided into three sub-phases at some sites (the third sub-phase usually refers to the transition from the Early Iron Age into the Late Iron Age, and is marked by the presence of Greek imports and wheel made pottery; it is often correlated with the beginning of the Thracian state as reported in the written sources). The Late Iron Age brackets the period from about 500 BC until the Roman conquest, and may be divided into the early and late Hellenistic periods. Given the lack of chronological resolution provided by survey material, indications of sub-phases within the Early or Late Iron Age are given only when outstanding diagnostic pieces allow such precision.

The Early Iron Age in the southern Balkans has long been referred to as the “Dark Age”, but this term has never been appropriate for Bulgaria. Lacking the socio-political and cultural developments of the Aegean Bronze Age, no major rupture in the archaeological record is apparent in Thrace at the end of the Bronze Age. Thrace experienced no Mycenaean collapse, and the cultural transition is much more gradual. Since there are few written sources for the Early Iron Age, the study of this period relies heavily on archaeological evidence. Archaeological remains for the Early Iron Age are scarce and not well stratified, affording little control over the chronology. Given the limits of single-site exploration, the study of the Early Iron Age needs to take into account other possible sources of archaeological evidence including regional survey. It is here that the study of settlement patterns can make its greatest contribution.

The study of the Late Iron Age also benefits from regional studies. Although written sources provide a glimpse of the Thracian world through the eyes of the Greeks during the latter half of the first millennium BC, the sources diverge from author to author, and from the available archaeological evidence. The archaeological remains for the Late Iron Age are also

129 See different opinion for a division of the Iron Age into three main phases by Chichikova 1971
130 If I wanted to apply the label ‘Dark Age’ to Bulgarian archaeology consistently, as a label for a period with a low amount of written sources and archaeological evidence, I would have to start using it at the beginning of the Bronze Age. There is no sharp boundary between the Bronze Age and Early Iron Age in Bulgaria as there is in Greece.
richer and more plentiful, but there is a sharp discord between two of its dimensions, the mortuary and the settlement data. While the mortuary remains attest to the great wealth of the Thracian elite and to significant stratification, settlements appear small, scattered, and poor, reflecting little social complexity. The Thracian polities that were evolving in this time left a challenging cultural legacy for archaeologists and historians to unravel. No monumental architecture remains from settlements that would correspond to the remains of the Greek poleis at Athens, Argos, or Corinth. Indeed, beyond the royal residences of Seuthopolis and Kabyle, there is little settlement evidence at all. The only monumental structures left by the Odrysian kingdom consists of many thousands of burial mounds, some of them grander than any contemporary Greek mortuary remains. It is in this aspect that survey archaeology brings in an important body of new archaeological data for Iron Age Thracian society. Survey contextualizes the few known aristocratic residences and their lavish necropoleis within a greater network of production centers and settlements, and sheds light on the socio-political organization of the Thracian polities.

This chapter will present the evidence for settlement, land use, subsistence, and other forms of human activity in the Yambol and Kazanluk study areas during both phases of the Iron Age. It will point to the ways the survey data can be understood by relating changes in settlement patterns to known historical developments and by placing them within their broader regional context. Site types will be evaluated on the basis of the distribution and composition of surface material, as well as on environmental setting. The main goal of this analysis is to provide an explanation that can accommodate both the historical sources and the available archaeological findings.

VII.1.2. Early Iron Age in Kazanluk (1100-500 BC)

VII.1.2.i. Survey Results - General Commentary

Most of the Early Iron Age sites were identified on the basis of decorated, local, handmade pottery (confirmed by G. Nehrizov and other local specialists), including: canelured wares, burnished handmade fragments with knobs and plastic bands, and incised and stamped Pshenichevo ware. Three of the sites were later confirmed through radiocarbon dating. Unfortunately, the shapes of local Early Iron Age local pottery (urns, tall handled kantharoi, and burnished jugs) persist for some four hundred years. Decoration styles provide closer dating
indices, although dates for individual decoration styles are not firmly anchored (cf. the discussion of knobbed ware in Archibald (1998, 30)). Pshenichevo ware is typical, decorated with stamped and incised decoration. Other diagnostic Early Iron Age decorations include canelures and plastic attachments. This pottery is best known from the eponymous site in Central Thrace, excavated by M. Chichikova in the 1960s (Chichikova 1968). The Pshenichevo ware has been found at Early Iron Age sites throughout Bulgaria, and its typological homogeneity makes detailed periodization difficult (Nehrizov 2005b). More detailed dates have occasionally been assigned to Early Iron Age contexts on the basis of imports or metal finds such as fibulae (Gergova 1987), but such artifacts are rarely found during surface survey. It is only at the end of the Early Iron Age that wheel made pottery makes its way into Thrace; the most characteristic is the so called “Thracian Grey Ware” or “monochrome Grey Ware” that emerges in the late 7th to early 6th century BC in southeast Bulgaria, spreading from there up the river valleys (Bozkova 1992; Nikov 1999; Bozkova 2002). Grey ware benefits from distinctive, changing styles and synchronicities with Classical Greek pottery, allowing better (if still problematic) dating. Site 3126 was dated to the Early Iron Age-Late Iron Age transition (6th century BC) through the presence of well preserved, high-quality Grey Ware. To date, Bulgarian Early Iron Age ceramic studies lack the systematic fabric analysis needed to clarify the dating of survey material.

In the Early Iron Age, the settlement system in Kazanluk valley shows recovery from a slump in the Late Bronze Age. Only four to five (4113 is contestable) settlements are known from the Late Bronze Age, while 18 scatters produced Early Iron Age materials (the three Late Bronze Age settlements all continue, and are joined by 15 new ones). The Early Iron Age marks a shift towards a more dispersed occupation of the valley. The three scatters showing long-term occupation are located on river terraces near the best arable land (2032 and 2036 in the valley, 3055 in the mountain). Most of the other, small sherd scatters occur in locations less conducive to agriculture. Majority of these new sites are small single-phased scatters representing burials or temporary activity or habitation. Nevertheless, only four Early Iron Age sites were known prior to the TRAP survey, making this result a major contribution to knowledge of the Early Iron Age in the valley. One Late Bronze Age site was previously known in the survey area, while three of the new Early Iron Age scatters also have Late Bronze material – but dating of this material is problematic, and the one site excavated yielded conflicting ceramic and radiocarbon
The appearance of new flat sites over the course of the Early Iron Age is not dissimilar from other regions in Thrace.131

Although the increasing number and total surface area of sites may indicate settlement growth, the interpretation is not straightforward. Most “sites” consist of sparse sherd scatters. These low density scatters often provide little to no evidence of architectural remains, agricultural installations, or other permanent structures, making permanent occupation here unlikely. Their character resembles those of campsites or seasonal installations, a conclusion strengthened by the fact that they appear to have relatively short periods of use.132 Short-term, small, low-density scatters may represent traces of a mobile population rather than a growing one. Trial excavations confirmed that two of the major scatters (2032; 3055) represent single-phase sites dating to the 11th and 8th century BC respectively, with a hiatus between.133 Evidence points towards a mobile and fluctuating population in the valley, which experienced a slow transition of the population to a sedentary lifestyle. Only two or three long-term settlements were identified (2036, 2046, and perhaps 2031). The paucity of permanent settlements in the region during the Early Iron Age is quite surprising given the soon-to-follow foundation of Seuthopolis.

\textbf{VII.1.2.ii. Site diversification}

Surface scatters displayed different tendencies in topographic setting and in composition and range of surface material. Site types include cult related sites or necropoleis, habitation sites, activity areas, and hilltop sites with standing masonry.

The cult related sites include inventory numbers 2031 and 3001. 2031 is one of the candidates for a site representing ritual activity. It features a small scatter of high-quality Grey Ware near a burial mound. Excavation of this scatter revealed only later materials (coeval with Seuthopolis), so its Early Iron Age function and chronology cannot be determined; the Early Iron Age component of 2031 may be ritual in nature (due to the high quality of material recovered),

131131Sliwa and Domaradzki (1983) find settlement in southwest Bulgaria slowly developing during the Early Iron Age.

132132 Three of the sites excavated showed only a thin Early Iron Age horizon indicating an occupation of a couple of generations at most; the lack of stratified layers at Early Iron Age sites is unfortunately a common phenomenon in Bulgaria, responsible for the coarse periodization of sites of this period and indicative of settlement shifts during this period.

133133 Although there is some doubt about potential ‘rejuvenation’ of the latter samples through a rising water table; the pottery typology in site 3055 pointed to the first phase of the Early Iron Age and the AMS C14 date came as a surprise. The shift of 300 years was apparent also in the deeper layers at this site, which makes the case for carbon contamination even stronger.
but could also represent some other ephemeral activity. Findspot 3001 represents a flat necropolis with traces of ritual activities. It was found in the gravel fields near Vidin at the western end of the Koprinka reservoir, and has suffered countless inundations and other human intrusions. The site is comprised of profiles (formed by quarrying or erosion) showing skeletal remains and pottery. This necropolis was likely associated with an unknown settlement and was used over multiple periods of time.

Many other scatters in the valley seem to be associated with some sort of habitation. They can be divided into two groups: the first are substantial, dense scatters that cover a sizeable area and contain a wide chronological range of materials. Their size and permanent occupation justify the label of hamlets or villages (2032, 3055, 4097, and 4083). The second group comprises scatters where only a few heavily worn fragments could be dated to the Early Iron Age. These are grouped under the label of sherd findspots. According to their context and surface finds they may be interpreted as activity areas or, if daub was recovered, they are listed as “farmsteads” (small installations with semi-permanent structures). Two of these findspots (3058, 3059) are located near the Sredna Gora granite quarries, and are tentatively connected with early stone extraction (Minkov 2011). Others can be found in the eroded banks of the Koprinka reservoir (2012, 2073, 2001) or in the Stara Planina foothills (4102). The condition of ceramics from these find-spots is very poor, making their function hard to identify.

The last group of features consists of scatters associated with later architectural remains at higher elevations on spurs of the Stara Planina or Sredna Gora. The earliest occupation here may date to the Early Iron Age. Sites of this type may include: 1033, 3169, and 4001, along with the previously known site of the Kaleto Fortress (1027). Some of these sites (4001; 1027) have Medieval masonry visible on the surface, but also yielded Black Slip pottery during survey (1033?) and excavation). Occupation at these elevated locations may demonstrate an interest in control over access to the valley, or perhaps a desire to monitor activities there. Also worth mentioning in this context is the megalithic structure(?) by Buzovgrad on a peak in Sredna Gora. Some scholars suggest that this feature is artificial and was erected during the Early Iron Age to serve as a cult center and an observatory (Фол 2006, 75); the nature and date of this site remain very tenuous as excavations have so far produced only 4th century BC material (Димитрова 2007). In any case, it appears that the spurs of the mountains are starting to be equipped with fortresses or watchtowers, perhaps in the Early Iron Age – a sign of inner organization among local communities and of growth of settlement complexity.
The hybrid type of site emerges at the very end of the Early Iron Age in the northwest part of the valley, near the village of Yasenovo (3126). Surrounded by rocky fields of colluvium that offered no agricultural potential, an elite residence was identified on the hillside at the mouth of a mountain stream. The identification was based on high quality fine ware and coarse ware pottery rescued from the profile created by a road cut eroded by spring rains. The fine ware was reconstructed into two nearly complete Grey Ware kraters and an amphora, and dated to the last phase of the Early Iron Age (6th century BC). The high quality of these wheel-made vessels, their thick micaceous “silver” engobe, and their crisp profiles pointed to the emulation of metal vessels. The type of vessels and their fine finish indicate their function as prestigious objects used for display, feasting, or ritual activity. Besides the fine ware, several pithoi bases were collected from the exposed profile. Layers of daub and stone visible in the profile, along with the excellent preservation of the pottery, suggest that these vessels are near their original deposition context, possibly from a single structure revealed by the road cut and now eroding from it. Excavation will be necessary to ascertain the extent, stratigraphy, and chronology of the Yasenovo elite residence.

The find of such assemblage in the uppermost reaches of the Tundzha River point to active trade routes along the river valleys during the Early Iron Age. They also point to stronger ties between Thrace and Anatolia than between Thrace and central Greece, which is a trend that

134 As noted above, it is difficult to date Grey Ware precisely without excavation; the date proposed here derives from decoration (knobs and incisions imitating metal, thick lustrous slip and deeply profiled ‘frog-leg’ handles), indicating that material from Yasenovo can be identified as the earliest Grey Ware in the valley.

135 The ceramics associated with this site find local and later parallels in a burial mound located in the nearby Dolno Sahrane necropolis, excavated by L. Getov in 1965. A similar wheel made amphora and a kantharos were found here (1965, 203-228). The kantharos was red colored due to the firing and dated to the 4th century by the excavator. Other, closer parallels come from Radnevo in the Maritza-Iztok region, Yambol, where rims of similar krateroi and amphorae with incised decoration were found (Сабатинов 1998; Nikov 2005, Pl. 1-7). These Grey Ware artifacts are deemed atypical for Early Iron Age pottery in Thrace as they do not originate from any local tradition (Nikov 1999, 32). According to Nikov they appear in the Tundzha and Maritza river watersheds at the end of the 7th and beginning of the 6th centuries and consist of two groups, imports and local imitations (Nikov 2005, 336). Their origin is placed in Western Anatolia and the northeastern Aegean islands. Parallels for Bulgarian Grey Ware krateroi can be found in Old Smyrna, where they originate from the lower levels and are dated to 10-6th century BC (Akurgal 1983, 15-6). They all show identical dimensions pointing to the standardization of the shape. Parallels for the kantharos of the Dolno Sahrane type are more numerous, in Troy, Izmir, and Lesbos (Lamb 1932; Blegen, Bellinger, Thompson, Rapp and Gifford 1950, pl. 318, 26).

136 The space is in fact too limited for anything more than a single structure, as the terrace the pottery was found on is ca 15 m in diameter, surrounded by sharp descending and ascending slopes on all other sides.
may have started in the Bronze Age (Leshtakov 2011; Nikov 1999, 40). The presence of metal-imitating serving and drinking vessels points to the increasing wealth of the elites of the Kazanluk Valley, reveals their connections with aristocracies in the Aegean and Western Anatolia, and announces a new elite competition in the valley several centuries before the appearance of Seuthopolis.

Finds at this site also connect the Kazanluk Valley with the territories west of it near the Stryama River, which show evidence of political and social ferment in the finds from local burial mounds, dating to the latter part of the Early Iron Age. Most famously, the Achaemenid-inspired elite drinking vessels from the Duvanli tombs, dating to the 6th century BC, have been attributed to the earliest Odrysian royal aristocracy, possibly even Teres, its founder (Filov, Velkov, and Mikov). The discovery of the elite material in the Kazanluk valley suggests that this region participated in early interactions among the Thracian (and possibly Persian) elites, and that these contacts engendered the growth of social complexity here as well, prefiguring the developments of the Late Iron Age. Taken in its broader context, the discovery of a significant elite residence lends support to the claim that one of the cores of Odrysian political power emerged in the vicinity of Kazanluk (Фол 1975, 7-8; Getov 1991, 40; Димитров 2011).

Site diversification, apparent in the valley during the Early Iron Age, indicates considerable expansion of activities in the valley in comparison with the Bronze Age. Most of the sites remain relatively small, but occupy more diverse environments. The habitation sites range from farmsteads to hamlets, and (at most) villages. The more ephemeral single-phase sites are interpreted as camps or special activity areas such as quarries or ritual activity areas. Early Iron Age roots are postulated for Late Iron Age fortified hilltop sites on the spurs of the local peaks. This new type of site would suggest a system of watch-towers and forts controlling the traffic in the valley. The earliest elite residence in the valley can be identified in the scatter of Yasenovo, no. 3126, which yields luxurious drinking vessels and marks the presence of richer and more differentiated elites in the valley. The discovery at 3126 also points to a new practice of cultic ritual, feasting or ostentatious display, which may revolve around the figure of a local leader or chief. Finally, the elite vessels provide evidence for long distance contact between the Aegean in the center of the Thracian hinterland.

VII.1.2.iii. **Population**

Despite the fact that the number of sites increases in comparison with the preceding Late Bronze Age, there is no clear evidence for a substantial increase in population during the Early
Iron Age. Population change is hard to measure given the length of the Early Iron Age period and the problem of site chronologies and durations discussed above. Even if we consider all of the Early Iron Age sites together, they are still sparsely distributed. While we can see at least two or three long-term sedentary village sites, and 15 shorter-term habitations or activity areas, it is unlikely that they house more occupants than the Chalcolithic or Early Bronze Age tells and hamlets. It is difficult to determine whether the two or three Early Iron Age villages plus numerous smaller, short-duration scatters indicate an increase or decrease vis-à-vis the three or four Late Bronze Age scatters that are also likely to represent settlements. Indeed, three of the Early Iron Age candidates for settlements also produced at least some Late Bronze Age shards (2032, 3055, and 4098). The increase in total site area (if not an artifact of geomorphological conditions and site taphonomy) could be a mark of a moderately growing population, or it could reflect the shift from the previously mobile to more sedentary communities. Meanwhile, the seasonal camps or installations provide little indication of how many people may have frequented them. Any changes in population, therefore, seem rather limited with no evidence of major increase or decrease. Only if we accept the margin area for the settlements, does the village area appear to grow (see the histogram comparison in the Kazanluk Results section; Figs. VI-13 and VI-14; and the overall site area graph in Figs. VI-4 and VI-5). For the purpose of this work, however, the more conservative estimates of “core” area will be used, and those point to at most moderate growth in population since the Late Bronze Age (based on small increases in scatter area).

 VII.1.2.iv. **Economy**

Most of the sites are located on top of quaternary alluvial and drift sediments, which was suitable for the development of light podzolic soils. Storage pits and jars from sites on the valley floor (e.g. 2031 and 2032) and quern stones (from 3001, 2031, 2032) indicate grain storage and processing, but the soils are not of the highest quality and the land beyond the alluvial sediments of the river – most of the northern part of the valley - was likely used for pasturage and grazing (as they are today). A number of low-density find-spots (4) are located in the valley floor. Their character suggests seasonal use, and their presence further away from the agricultural land (4102) could well be connected with use as a pastoralist camp.

In the vicinity of Koprinka and on the slopes of Sredna Gora the soils are eroded and leached; nevertheless, they present moderate opportunities for agriculture if cleared of forest. Given the paucity of sites in the Sredna Gora hills, permanent settlements associated with
agriculture seems to have been largely restricted to the valley floor, while the forests were used for hunting and grazing. The finds of antlers during excavations at 3055 (the largest of the few sites in the Sredna Gora that dated to the Early Iron Age) point to the mixed economy in the hills, while small scatters that appear in the forests of Sredna Gora point to the beginnings of stone exploitation in the area.

The hilltop sites in Stara Planina are more or less devoid of economic potential given the steep slopes and lack of soils. Their occupants (if there were any during the Early Iron Age) likely relied on hunting, toll extraction and tribute payments for their maintenance.

VII.1.2.v. **Nucleation, Centralization or Dispersion**

As with the population, the relative scarcity of sites of Middle to Late Bronze Age and Early Iron Age date (and gaps in the survey area) hampers any assessment of nucleation or centralization. One settlement trend visible in the valley at the Early Iron Age is the dispersion of the smaller populations among more diverse topographic locations. New foundations spread across the valley, occupying different niches including mountain peaks and hillsides, river embankments and terraces, and rock outcrops in the Sredna Gora. Most findspots remain clustered within 2 km of the Tundzha River or its tributaries. Only two find-spots out of eighteen fall outside this area. The remaining landscape of the valley seems largely under-populated, although the absence of evidence makes this statement hardly more than speculation.

VII.1.2.vi. **Complexity**

As with population, very little increase in social complexity is noticeable in the surface material of the Kazanluk valley during the Early Iron Age. Indeed, little complexity is apparent during any phase of the Late Bronze or Early Iron Age. Despite the larger area of occupation, the surface and excavated material across most sites is homogeneous, indicating little differentiation within or between settlements in the region. Excavations have revealed dug-out structures with wattle and daub huts over them, containing with fireplaces, lithic tools, pottery and bone material (Божинова 2010). Ceramic material throughout the valley is mostly handmade and local. Finds of knobbed ware have parallels in the Early Iron Age burials at the Gabarevo settlement mound, pointing to local traditions (Китов and Божинова 2005). Wheel made pottery and imports are documented only at the end of Early Iron Age.

The settlement pattern does not indicate much complexity either. Two tiers are evident in the settlement hierarchy, with most sites smaller than 2ha and four reaching 3 - 5ha. The sites
most likely to be permanent villages increase in size, and short-term habitation or activity areas increase in number, yielding a moderate increase in inhabited area. The most significant change is the emergence of the smaller, short-term sites especially on the borders of the Koprinka reservoir and in the Sredna Gora Mountains. Such sites may represent short-term settlements of a mobile population concentrating on pastoralism or temporary agriculture, or activity areas for quarrying or other specialized activities. Taken together with the two or three larger, longer-term settlements, the transient sites may indicate increasing economic variation.

The first signs of difference in the cultural material and related social interactions appear at site 3126, dated to the very end of the Early Iron Age. While the site is small (probably a single structure) and could hardly be labeled as a regional center, the evidence found here marks a major change in the social dynamics in the valley. No other settlements have been detected in the vicinity that date to the Early Iron Age, so the local background of this site still remains obscure. Associated with this site are necropoleis of burial mounds whose assemblages likewise point to incipient social differentiation (Yasenovo and Dolno Sahrane; Геов 1965). These necropoleis include dozens to hundreds of small burial mounds, some of which date to the Early Iron Age (Геов 1965; Китов and Божинова 2005). Few of the burial mounds have yielded evidence of social stratification (aside from the difference in mound size itself), but large portions of the necropoleis still remain unexcavated.

While the picture of social complexity at the end of the Early Iron Age period is not entirely clear, the 6-5th century BC Yasenovo residence provides the first unambiguous marker of its appearance. Its location amidst unfavorable land suggests that this site had to rely on an external supply line and exchange. The prestige objects recovered here indicate that their users exercised influence that reached far beyond the valley itself and beyond mere subsistence needs. This residential site and the nearby necropoleis, which seem to have grown during the Early Iron Age, indicate the rise of some socio-political complexity in the valley. This early political system can be tentatively classified as a simple chiefdom, where a chief coordinates local social economic and ritual activities. The prestige goods found at Yasenovo site 3126 could have been used as symbols of status to secure hereditary succession and maintain the authority of the chief.

VII.1.2.vii. **Summary**

The survey results in Kazanluk for the Early Iron Age point to slow growth of settlements, including an increase in the size of long-term villages and the proliferation of smaller, dispersed,
short-term habitations or activity areas, likely reflecting an attempt to benefit from the varied environments in the valley. The growth of social complexity is negligible until the end of the Early Iron Age, when the Yasenovo residence and nearby necropoleis reveal some degree of socio-political differentiation.

VII.1.3. Early Iron Age in Yambol (1100-500)

VII.1.3.i. Survey Results – General Commentary

The TRAP research area in the Yambol region presents much more coherent habitation and mortuary patterns than Kazanluk. More specifically, this region experiences more significant settlement growth in the Early Iron Age. This development is critical to understanding the emergence of the historical Thracian state, since current theories tentatively place its heartland in southeast Bulgaria (Aladzhov and Balabanyan 1984). Although the Yambol region is on the periphery of this heartland, findings from the Yambol research areas support this.

Large sites with rich assemblages appear here in the Early Iron Age and expand over time, located near water sources and light but fertile soils. It is possible that the settlement system exhibits such vigorous growth because the Bronze Age was quite stable in Yambol and provided a good basis for development. In the entire Yambol region, 19 legacy sites were known from the Bronze Age, a number that increases to 32 in the Early Iron Age (eight of which had their origins in the Late Bronze Age). The TRAP survey added five new Bronze Age scatters, the two largest of which also contained Early Iron Age components. Eight new Early Iron Age foundations were registered in the study area during survey. Such a number represents a new high in site density during later prehistory (one site per every 4 sq km) and justifies the use of the term “peopling the landscape” during this period. Initially, many of the sites are small, but as they become established over time, they grow and expand. Overall, settlement patterns display both expansion and dispersal across the landscape, producing several large villages and a number of farmsteads or hamlets. No single center emerges, although several villages grow quite large (up to 10 ha; 6036, 8011, and 6034).

As was the case at Kazanluk, most of the Early Iron Age sites were identified on the basis of the local handmade pottery, primarily the Pshenichevo stamped ware and other types with incisions, canelures, plastic attachments, and other diagnostic decoration. Wheel-made pottery was documented at 6034 and 6036. Here it was, however, a ware with a dark slip, rather than
the silvery sheen of Yasenovo 3126 in Kazanluk, which suggests an imitation of Greek Black Slip rather than Anatolian Grey Ware vessels.

VII.1.3.ii. *Settlement pattern*

The expanding settlement pattern follows the topographic and environmental factors: most habitation sites are clustered along the rivers on top of the first terraces in the vicinity of the best arable land in the region. There is also a clear demarcation between residential and mortuary landscapes. While hamlets dot the terraces along the river valleys, their dead are buried on the ridgeline above. Synchronicity between the Early Iron Age hamlets and the burials is suggested by the finds from several looted mounds, whose trenches contained typical Early Iron Age canelured wares. Overall, the Yambol study area was remarkable for its regularly patterned archaeological landscape.

VII.1.3.iii. *Site diversification*

Although settlement area expands during the Early Iron Age, the growth is one of scale rather than kind. The settlement is without exception rural, represented by regularly-spaced agricultural farmsteads or hamlets in similar locations and featuring identical assemblages. Their similarity seems to be the product of settlement mitosis during which the best adapted habitations were duplicated across the landscape. The consistency of surface pottery underscores the uniformity of site character, to the extent that even decorative motifs (such as “bird” and circle stamps and incised lines) repeat.

Some diversity may be found in the size of individual scatters. Three of the sites are larger than others. This differentiation could result from longer occupation or different living preferences, alternatively from cultural masking or post-depositional dispersal. The large scatters are devoid of evidence of later periods (6034, 6036), while the smaller ones are covered by Roman and later debris which partially obscures earlier material (6021, 7020, 7019, etc.). Forces of erosion may also be blamed for the partial loss of sites given their locations on terraces and flanks of hills along river courses. Given the lack of excavation it is impossible to compare the lifespans of the larger versus the smaller rural sites.

As for the burial mounds, their isolation from inhabited areas may demarcate the landscapes of life and death. Without excavation, no detailed discussions of the chronology and character of the burials is possible, but damage from looting and agricultural activity has yielded some information. The mound contents noted at three sites indicated rather similar
construction and assemblages: mounds were piled over simple stone cists that probably held a cremation and contained a few bits of decorated pottery.

VII.1.3.iv. Economy

The rich soils of the Yambol study area indicate that the Early Iron Age population was supported by a mixed agricultural economy. All of the sites are consistently spaced along river and stream terraces or the lower flanks of the hills above, well located for arable soils as well as access to water sources. Given the large tracts of highly productive soils all throughout the area, the regular occurrence of sites near water sources is striking and points to an additional factor in site location. Access to water seems to have been crucial for these Early Iron Age villagers, perhaps for watering livestock and themselves, or, possibly, to ensure access to beds of clay for pottery production.

Defensive considerations did not seem to govern the choices of location in the Yambol study area.137 A couple of sherds discovered on the peak of Dodoparon may indicate some Early Iron Age activity at this elevated site, yet no evidence of fortification or even permanent settlement was found. If the location was used, it was likely on a temporary or seasonal basis either as a refuge from unrest (Xen., Anab. 7.4), or as a cult site during major annual agricultural events (Domaradski 1986).

Most of the material recovered at the sites – table and storage pottery - points to generalized domestic activity. Large coarse storage vessels are well represented in surface assemblages (albeit difficult to date) as are various kinds of grind stones and pestles. The presence of stamped, canelured and incised wares as well as kantharoid shapes confirms that the study area shares the Early Iron Age local material culture that appears throughout southeast Bulgaria, especially the Eastern Rhodopes. The cultural material and settlement patterns documented here are identical with those identified in the Odrysian powerbase, which is traditionally placed further west in the Maritza and Arda River valleys (Aladzhov and Balabanyan 1984).

While TRAP data point to strong local traditions, finds of imitations and imports from burial mounds and surface scatters point to the connections with more distant regions in Anatolia and Greece, similar as found in the Kazanluk valley. Assemblages in Galabnik burial mounds in the Maritza-Iztok region, west of the Dodoparon study area, show imports of Grey Ware which have

137 Perhaps the defensive considerations applied to site layout and structure rather than position.
parallels in the north west Anatolia (Сабатинов 1998). Imitations of Grey Ware and Black Slip appear at sites 6034 and 6036 during the Early to Late Iron Age transition. Despite increasing numbers of the Black Slip imitations in surface scatters and an occasional Grey Ware import in the burial mounds, local pottery dominates the site assemblages and testifies to strong local traditions.

VII.1.3.v. Population
Continuity from Late Bronze Age sites and growth of new Early Iron Age settlements points to an expanding population within the Yambol study area. The settlements not only become more numerous (18) but they also grow in size (20 ha total, 1 ha on average), underscoring their population increase. This picture of growth is much more pronounced in Yambol than in Kazanluk. The sites spaced regularly at 2 km distances along the river banks and terraces give a picture of thriving communities infilling the landscape. This picture is derived from better delineated find spots and better preserved and more diagnostic pottery. The increasing number of burial mounds in the vicinity of the occupied sites also points to increased population and permanent settlement in the area. Only a few of the mounds could be dated on the basis of the surface material; nonetheless, the number of dated Early Iron Age mounds (four) so far exceeds their Late Bronze Age predecessors (one), pointing to a greater density of occupation in the area.

VII.1.3.vi. Nucleation or Dispersal?
Dispersion and growth of individual settlements seems the predominant trend during the Early Iron Age. The largest site (6036) grows to the level of a large village, yet it continues to produce similar material to the smaller scatters elsewhere. The size of other scatters is not as easy to gauge, because of low visibility during our visits (7019, 6021) or masking by later material (8011, 6018). While settlements multiply and experience internal growth, we see no surface signs of differentiation or specialization. There is no evidence that this dispersal would be directed from a “central place”; instead, it appears to represent the opportunistic infilling of productive niches in the landscape. Nor are any regional centers visible in the legacy data, although any such centers, if they existed, should have been conspicuous and therefore documented. The result is a mosaic of small but autonomous peer communities, which establish themselves along the terraces and hillsides that provide the most convenient subsistence. This picture is not unique to the Elhovo or Dodoparon study area. Survey conducted by Mehmet Özdögan in the lower
stretch of Tundzha and Maritsa in the European part of Turkey has revealed evidence of a similar abundance of Early Iron Age sites along tributary streams. Özdögan did, however, find a regional center in the southern foothills of Strandzha Mountain (Özdögan 1979, 530-4). Such an equivalent is so far not available for the Bulgarian part of Strandzha foothills. More refined survey of the distributions together with larger area coverage are needed to reveal it. The overall image is one of robust rural settlement during the Early Iron Age, when the area enjoyed a period of growth and autonomy.

VII.1.3.vii. **Complexity**

The settlement pattern in the Yambol region provides little evidence for the emergence of complexity during the Early Iron Age. The differences in site sizes can be partially attributed to erosion and geomorphological forces and partially to masking by later material. Even if the differences in site size are real, the scale of difference is small. While the surface material may differ in extent and abundance, it is largely uniform in character and range, pointing to little site-to-site variation. No indication of specialization or craft is evident at the sites in the Dodoparon or Elhovo survey areas, while intra-site variability is impossible to assess at such small sites purely on the basis of surface collections.

The clarity with which settlement expands in the Yambol study area during the Early Iron Age correlates well with the claim for an Odrysian heartland in this region. Most of the settlements are still devoted to agricultural exploitation and animal husbandry; nevertheless, their density indicates growing manpower and abundant food supplies. While there is little immediate evidence for hierarchy in the study area, the agricultural surplus and abundance of manpower provide the economic prerequisites for a later emergence of socio-political complexity.

The area seems to be one of the thriving parts of a larger complex in southeastern Bulgaria, one that encompasses the Lower Tundzha and Maritza valley with the surrounding Strandzha and Sakar mountains. Across this larger area, survey has shown a proliferation of Early Iron Age sites. Özdögan’s results in the Maritza valley attest to similar trends in Turkey (Özdögan 1979, 533-4). The Sakar Mountains, especially, have yielded a high number of dolmens – megalithic structures under mounds138 – that have been dated to the Early Iron Age (Delev

138 Dolmens represent an elaboration of typical burial mounds, but are not a separate phenomenon; indeed they are indistinguishable from “typical” burial mounds until they are excavated or eroded away.
1980; Delev 1982, 1984; Agre and Dinchev 2005; Arpe 2005b, 2005a). Most of them consist of up to three interconnected stone chambers, built out of schist slabs quarried in the vicinity, and buried under smaller stones and piles of clay. The dolmens show signs of later reuse and suggest their ownership by clans or families. They are commonly associated with offerings of pottery and food. Although there is some variation in their plan, these monuments exhibit a great deal of similarity. Their contents mostly feature plain pottery and cremated remains of the deceased, offering little in terms of variability of wealth in mortuary offerings. Their size and complexity, directly related to the labor expended in their construction, reveals the resources available to the families which built them, and argues for the emerging social differentiation among local Early Iron Age communities. For a long time, the main problem of these megalithic monuments was that they were not associated with any settlements (Gotsev 1997a). The survey data brings a new body of evidence which better contextualizes these mortuary monuments.

VII.1.3.viii. Summary

The Yambol study areas have yielded evidence of thriving communities in the Early Iron Age. These communities gradually filled the landscape over the course of the era, establishing the footprint for a settlement pattern that would survive for the next thousand years. Population growth and site expansion during this period supports the placement of an Early Iron Age Odrysian heartland in this region. The presence of large burial mounds and dolmens, as well as trade routes to both the northeast and central the Aegean, are further manifestations of the incipient social differentiation and extra-local activity of local communities. No settlement hierarchy is apparent in the survey data in the area. Instead, the settlement pattern is dispersed and consists of largely autonomous units. While the settlement patterns do not produce evidence for the emergence of social differentiation or political centralization during the Early Iron Age period, it nevertheless shares in the general florescence of economic and social life.

The burgeoning settlements of the survey area supply the missing counterpart to the dolmens, the living areas of their builders and occupants. Surface finds also provide a matching dataset for the dense settlement pattern in the Turkish part of the Strandzha. Although the study area shows few signs of complexity and shares in a largely uniform material culture, the prosperity and stability of local settlements marks them as excellent economic bases for future Thracian development.

They represent an elaboration of typical burial mounds (like later burial mounds with stone or brick chambers), but are not a separate phenomenon. Dolmen do, however, require more effort and resources.
VII.2. **Late Iron Age (500-1 BC)**

VII.2.1. **Historical Background and Chronology**

The Greek historical sources anchor the chronology of the Late Iron Age (see Chapter III for a detailed overview). In archaeology, such detailed chronology is rarely attainable. Formal analysis of Greek sculpture and fine pottery provide a foundation for chronological periodization based on artistic styles, while a few dates are available through coins found in sealed deposits, especially tombs. The short-term events described in historical accounts are extremely difficult to trace through archaeological survey, which is based primarily on badly-worn, unstratified pottery. As a result of these factors, settlement development during this period will be discussed as one large block. Distinctions and nuances will be highlighted where the survey data are sufficiently refined or data from excavation is available.

As mentioned in the previous section VII.1.1, the primary marker of the Late Iron Age in the survey data is the widespread appearance of wheel-made pottery. The earliest Grey Ware finds are dated to the very end of the Early Iron Age (6th century BC), but they become more common at the beginning of the Late Iron Age, roughly contemporary with the Classical period in Greece (480-323 BC). Later, material from the Early Hellenistic era can be identified through the presence of black slip imports and imitations, continued use of Grey Ware, profiled pithoi and imports of Thasian and Knidian amphorae. Red-fired, thin-walled fragments of table amphorae and tableware are a more frequent occurrence, yet their date is difficult to specify. The late Hellenistic period is nearly indiscernible in survey scatters, suggesting a possible hiatus in the site occupation (although this “hiatus” may very well be the result of difficulties in ceramic identification).

VII.2.2. **The Late Iron Age in Kazanluk**

VII.2.2.1. **Historical Context**

The Late Iron Age, especially the early Hellenistic period, is a crucial stage of development in the Kazanluk valley. During this period, life in the valley sees the rise of political and social institutions that manifest themselves in an economic revival and the construction of Seuthopolis, a royal center of Thracian administration and control. This center is a symbol of
Hellenistic Thracian consolidation, emerging in response to the invasion and occupation of Thrace by the Macedonian rulers Philip II, Alexander, and Lysimachus (Rabadjieva 2000; Tacheva 2000b). Seuthes III and his retinue retreat into the Kazanluk valley and establish a Thracian state whose key nodes comprise Seuthopolis and several other sites in regions to the west and southwest of Kazanluk. The residence of Vasil Levski near the city of Karlovo in the westernmost extension of the valley and the mountain residence at Kozite Gramadi in the Sredna Gora represent sites of control and pillars of this polity (Kisyov 2004; Hristov and Lazov 2011; Димитров 2011).

This retrenchment of Thracian political power under Macedonian pressure is, however, accompanied by a peak in cultural development in the Kazanluk valley. Active connections to the wider world that the Thracian aristocrats initiated in the 6th century BC intensify and become apparent in the material culture of the valley through the importation of goods and the immigration of skilled craftsmen and artists (Dimitrov and Čičikova 1978). The wealth of the Thracian elite funds the construction, decoration, and generally lavish provisioning of royal and aristocratic tombs, as well as the construction of the royal residence at Seuthopolis itself. Greek inscriptions, bronze finds, and marble sculptures also attest to the new awareness of the wider Hellenic world. One would expect such signs of prosperity to be associated with an increase in population and complexity, but while the burial mounds and the urban centers manifest the increased wealth of Thracian elites, the evidence for growing socio-political complexity is ambiguous.

VII.2.2.ii. Settlement Patterns

In the Late Iron Age, especially the Early Hellenistic period, rural settlement in the Kazanluk grows. A multitude of new, small settlements have now been identified. The long tailed histograms in both the legacy as well as the survey data show that these sites are mainly of small to medium size. Over half of these Late Iron Age sites are new foundations. Of 30 Late Iron Age Sites, 11 continue from Early Iron Age antecedents, while another three have possible Early Iron Age components. Overall, the settlement structure grows denser, indicating more intense exploitation of the landscape. The sherd scatters also appear richer in material with individual sites displaying more functional variety. It is difficult to determine through survey, however, whether all these rural sites were used year-round or on a seasonal basis. Moreover, the details of rural settlement growth are obscured by the lack of fine chronological resolution.
On the basis of the surface material, most of which is coeval with or postdates the foundation of Seuthopolis, three alternative pictures of settlement can tentatively be proposed. In the first scenario, the Late Iron Age sites appear independently prior to the construction of Seuthopolis (which happens in mid-4th century BC) and become subsumed in the city’s productive base after its emergence; these settlements then go into decline after the destruction of Seuthopolis (mid-3rd century BC). In the second scenario, the Late Iron Age sites emerge after the destruction of Seuthopolis and absorb the population fleeing from the city. In a third possible scenario, the sites emerge with Seuthopolis and last until the Roman period, growing and contracting as the valley experiences highs and lows of economic and political development. Given the difficulty of recognizing late Hellenistic materials in the surface data, the third scenario must be set aside for now. The second theory is contradicted by archaeological evidence for activity in the valley’s countryside during 4th century BC, especially the high number of coin finds and especially the large number of burial mounds, which require substantial manpower for their construction. The first scenario for settlement development coeval with the rise Seuthopolis seems the most likely and will therefore be tested against the available evidence.

VII.2.2.ii.a Continuity and Change

The number of Late Iron Age findspots detected through the survey rises by about 60% in comparison with the Early Iron Age (from 14 to 30). As noted above, 13 of the total of 18 Early Iron Age sites continue to be used during the Late Iron Age period, while the others are abandoned. Two of the village sites in Sredna Gora Mountains go out of use (3055; 4098). Four of the peripheral sherds scatters near Koprinka, in Sredna Gora and in the foothills of the valley disappear. Surprisingly, activity around the quarries seems to end as well. Other Early Iron Age sites remain occupied (2032, 2031, and 1033). Still others expand, growing from small, low-density sherd find-spots into farmsteads or hamlets (2036; 2046).

VII.2.2.ii.b Site Diversification

The size of most sites in the valley, with the exception of Seuthopolis, remains small. With most of them occupying less than 1 ha, they resemble the Classical to early Hellenistic rural sites

139 The number of 14 Early Iron Age sites here excludes the four fortresses where Early Iron Age presence was postulated by earlier research and the finds of otherwise unidentified prehistoric sherds.
documented by survey in Laconia, the Argolid, or Boeotia in Greece. The largest site outside Seuthopolis reaches the scale of a village (3.5-4 ha). Seuthopolis itself (4-5 ha) falls in a category of a “large village” by Near Eastern standards, but its character supersedes a mere dense agglomeration of habitation. Epigraphic evidence classifies it as a major regional center during the Late Iron Age in Central Thrace, along with Kabyle and Sboryanovo (Dimitrov et al. 1984; Tacheva 1991; Николов 1991). As one of the best investigated Thracian cities in Bulgaria, it merits further discussion.

(a) Seuthopolis – the first Urban Space

The city of Seuthopolis was excavated during rescue works before the construction of the Koprinka reservoir in 1948-1954 (Dimitrov et al. 1984, 11). Seuthopolis is a Hellenistic royal foundation, the construction of which in the Kazanluk valley was commissioned by King Seuthes III. Coin and amphora finds show its lifespan to have lasted a mere 75 years from the last quarter of the 4th century BC to the mid-3rd century BC (Балканска 1991, 92-3; Димитров 1991, 102; 2011). The excavator reports that it was built over a small Early Iron Age village, and the location was reused in Roman and Medieval periods (Changova 1972; Dimitrov et al. 1984, 12). One may assume that Seuthopolis drives development in the valley, but that assessment can only be true to a limited degree, since its period of occupation is relatively short.

Seuthopolis is situated in an exposed location on the south-facing slope on the left bank of the Tundzha river (possibly even with a harbor) and fortified with a 2m thick wall and bastions. The fortifications are pentagonal, built of stone-faced mud-brick on a solid stone foundation, and fitted to the landscape. Many articles have underscored the Hippodamian plan of the neatly structured city, densely packed with houses and divided into insulae by perfectly perpendicular roads (Chichikova 1983; Domaradski and Taneva 1998; Bouzek 2001). The urban fabric consists of residential insulae of Greek-style prostas and pastas houses, again emulating Greek urban models. One feature missing from the city is an agora for commercial or other purposes. Only gravel roads are reported to have divided the insulae, leaving no space for gatherings and commerce (Domaradzki 1998, 39-40).

The only open space can be found in front of the strongly fortified structure in the northern corner of the city. In the middle of this space was an altar, and along the north side the ruins of a three-room structure. The identification of this structure has oscillated between a

temple and a citadel. The excavator suggested that this fortified quarter resembled numerous fortified manors or citadels around Thrace, and labeled this area as the quarters of the ruler (Dimitrov 1958a; Fol 1965, 1971; Chichikova 1983, 295). Yet an inscription found there (the “Seuthopolis Inscription,” IG Bulg III.2:1731) indicated that the structure could be a temple of the Great Gods. As a result, this quarter entered the literature as a so-called “temple-citadel”. A newer generation of scholars has emphasized the ritual function of the space. Studies have pointed out the features that are uncharacteristic of a royal residence, such as the lack of elaborate furnishings, the overall small size of the residential space, and its open, public layout (Archibald 1999; Rabadjiev 2000, 395). Although the open layout has its analogy in Hellenistic palaces (e.g. Pella), the placement of the Seuthopolis inscription here indicates the space was used for official business, where receptions, meetings, and gatherings could have taken place. No spaces for specialized personnel and facilities for the administrators of cult, pilgrims, and visitors have been identified here to warrant the label “temple” in the classical Greek sense. Given the fact that this is the only open space in the town, the activities happening here were likely of more varied scope, including gatherings of local elites, decision making, and other communal events. It is, however, unlikely that any such events were happening without the sanction of the Thracian gods, which makes this a hybrid space combining political and ritual functions.

(b) Royal Administration at Seuthopolis

Scholars agree that the design of the city, the services and functions it provided, and the lack of industrial activities, correspond better with the definition of a royal residence than a polis (Rabadjiev 2000; Dimitrov 2011). 141 Seuthopolis was one of several residences of the king and his retinue in this intramontane area, housing a royal bureaucracy as well. The Seuthopolis inscription provides direct epigraphic evidence of the administrative role of the city (Elvers 1994; Calder 1996; Tacheva 2000b). The inscription records a royal edict by which personal freedom and property are restituted to an otherwise unknown individual named Epimenes. Epimenes is delivered free of harm to the hyparch Spartokos of Kabyle, despite having been a rival of the

141 Rabadjiev (2000, 396) suggests an interesting interpretation: the foundation of Seuthopolis followed Seuthes’ defeat by Lysimachus in 313 BC as a result of a treaty between these two rulers. Through it Seuthes and his allies were placed in an easily accessible and exposed place in the valley. Jordanov (2000), on the other hand, suggests Seuthopolis was built on a Greek model as an expression of consolidated Thracian force, after the king Seuthes III had successfully resisted the encroachments of Lysimachus of Macedon.
local royal family in Seuthopolis (Tacheva 2000, 33-35). Two copies of this inscription in Greek have been found, one in the “temple-citadel” in Seuthopolis, the other in the phosphorion in Kabyle. This edict illustrates the intricate succession battles and political maneuvering between major Thracian urban elites, and underscores the role of Seuthopolis as a royal administrative center for the Kazanluk Valley and perhaps beyond.

Similar urbanized settlements appear in central Thrace at the end of the 5-4th century. At Vasil Levski in Karlovo municipality (40 km west of Kazanluk), a structure was found outlined by stone walls and a collapse of painted roof tiles. Lavish interior decoration, black-glazed pottery, and Grey Ware indicate the site was a major center (Archibald 2000, 228; Kisyov 2004; Hristov and Lazov 2011). Near Vetren in the Pazardzhik region (120 km southeast of Kazanluk), the remains of robust stone fortification walls were excavated. Majority of the site is now washed away by the Maritsa River; nevertheless, the excavators estimate that the city could have enclosed some 50 hectares (Archibald 2000, 229). The number of imported ceramics and coins from the 5-4th century BC point to a dynamic economic life at this site. An inscription discovered 2 km away has led to the identification of the site as emporion Pistiros, providing evidence that this site was an important economic and administrative center during the Late Iron Age (Domaradzka and Velkov 1994; Archibald 2002; Bouzek and Domaradzka 2007).

Numerous scholars have stressed the character of Seuthopolis and similar urban sites in Thrace as royal residences rather than self-governing poleis. Most of the decisions in these centers came from the rulers and their families, a phenomenon that is manifest both in Macedon and Thessaly (Archibald 2000, 229). These sites emerge as a result of royal direction, not organic growth. These cities, furthermore, are not a product of indigenous socio-political development, but arise as a response to the pressures of the Macedonian invasion. Domaradzki argues that king Philip II’s plan to control Thrace through the establishment of communication and defense nodes at a number of strategic places worked because it disrupted and reconstituted the traditional political networks (Domaradzki 1998). Seuthopolis and related sites do not represent a culmination of inexorable social transformation in the valley; instead they represent a top-down response to a disruptive external threat, a typical example of secondary state formation. Once established, however, these cities continue to influence social processes in their environs.
(c) Non-Urban Spaces - Fortresses

Upland fortresses, which may have their origins in the latter part of the Early Iron Age (see above), become more prominent in the Late Iron Age, with four well attested. Fortress 4001, for example, on the south bank of Tundzha opposite Southopolis is the most securely dated, having yielded coins of Philip II (Домарадски 1991, 127), but 1027, 1033, and 3169 also date to this period. Most of these fortresses are fortified structures of the *tursus* type, never exceeding 1 ha. Their location on the spurs of the mountains with no agricultural hinterland makes it clear that they were dependent on the supply network from the valley for their maintenance. Their assemblages include architectural materials, storage pithoi, amphorae, coins, and fragments of Greek black glazed wares (especially site 1033), pointing to the high status and wealth of their occupants. It is clear these fortresses were important nodes of control in the region (Табакова-Цанова 1991).

(d) Non-Urban Spaces – Places of Ritual

Several of the surface scatters (2031, 4120, and 2044) were identified as local shrines and sanctuaries. Two of these were previously known (4120 and 2044), and produced marble votive plates during earlier excavations. Excavations in the 1980s at Site 4120 produced such a plaque dating to the Roman era and connecting the site to the Thracian Horseman; it also produced Late Iron Age material and coins of Thasian origin (Табакова-Цанова 1980). Site 2044 has a similar character, but perhaps a later date based on the lack of Grey Ware and the presence of Hellenistic fine ware, including Black Slip. Its plaque also invokes the Thracian Horseman and dates to the Roman period (Табакова-Цанова 1991).

While no such direct evidence for religious activity was found at Site 2031, its surface was littered by fragments of Grey Ware, including fine drinking and serving vessels, embedded within a layer of grey ashy soil that contrasted with the surrounding reddish background. No architectural material was found at the site, although there were fragments of grinding stones and a coin of Philip II on the surface. Excavations later in the season (Нехризов and Цветкова 2010) found no permanent structures at this site (beyond a single posthole), but revealed clusters of pottery amid burnt features. Daub was found in large fireplaces and the remains of what could have been decorated escharas (horizontal altars constructed on the floor for sacrifices). Storage, production, and consumption activities were indicated by a spindle whorl, storage pits, and handmade cookware fragments. Animal remains comprised unidentifiable fragments and one dog jaw bone. Typological study of the vessels as well as the AMS dates
place this site as contemporary with Seuthopolis – at the turn of the 4-3rd century BC. The poverty of material under the surface contrasted with the abundance and high quality of the Grey Ware found on the surface, perhaps suggesting the origin of the Grey Ware in pit deposits (missed by sondages) rather than in stratified occupation layers. In light of the diverse materials and lack of stratigraphy this site seems to have been used seasonally but repeatedly as an area of feasting and ritual activity rather than as a permanent settlement. At 2032, the surface scatter also yielded an abundance of Grey Ware but subsurface investigations produced little due to severe disturbance (Нечрізов and Цветкова 2010).

(e) Non-Urban Spaces – Rural Settlements

Besides the mountain forts and potential cult places, the other scatters have been identified as rural settlements. Larger scatters have been classified as villages and hamlets (2032, 3122, 3227). One of them (3227), first detected by Domaradzki and then again during the TRAP survey, featured visible wall foundations and architectural ceramics, mostly of Roman date. A coin hoard of Thasian/Maronean tetradrachmæ was reportedly discovered here (unpublished diary of Domaradzki, pers. comm. Nehrizov 2009). While it was obviously used during the Hellenistic period, this site continued into the Roman and Late Roman period, with later material masking the Hellenistic occupation. The significance of the Hellenistic occupation here is hard to interpret without proper excavations.

All of the other sites (e.g. 1006, 1044, 2010, 2012, 2033, 3130, and 4122) are small scatters, perhaps representing farmsteads or other agricultural activity areas, perhaps temporary in nature. They are characterized by compact high density or highly dispersed low density scatters (up to 1 ha) with wheel-made, red-fired fine ware pottery and various wheel-made coarse storage and transport vessels, generally of low-quality and poorly preserved. Majority of the rural sites in the valley seem rather ephemeral and small-sized. The nondescript local wares make it hard to separate the pre- and post-Seuthopolis development.

VII.2.2.ii.c Permanence - Stability

The scatters are characterized by a greater range of materials and pottery types, with storage vessels and architectural ceramics, which give even the smaller of the scatters an air of more permanence. The overall picture suggests a continued trend of sedentism and population stability, as more and more traces of residents settling down in a dispersed manner, in small but more permanent structures, appear in the pottery evidence. Despite this trend, peripheral low
density scatters are still plentiful in the valley, suggesting seasonal activities in the valley. Ten new sherd scatters, such as the ones just described, were registered, mainly in environments with bad preservation or high erosion rates (e.g., the shore of the reservoir, fields of colluvial deposits in the foothills). Many of them comprised fine and coarse ware pottery—mostly represented by pithos sherds and daub. Richer and more diverse assemblages are present at the Late Iron Age than at the Early Iron Age small scatters. In the Early Iron Age, functional categories can not be distinguished in the highly worn pottery of uniform dimensions and paste. In the Late Iron Age period there is a greater functional range in the surface material, which points to storage, consumption, and production.

VII.2.2.iii. **Dispersal Pattern**

The Late Iron Age scatters seem more evenly distributed than during the Early Iron Age, especially in the foothills of the Stara Planina, where large empty spaces are filled by new settlements or shrines, reflecting increased habitation throughout the study area.

VII.2.2.iii.a **Extra-urban Zone**

In the hinterland of Seuthopolis, Late Iron Age sites appear in relatively dense clusters (especially in comparison with their Early Iron Age predecessors). The most abundant cluster is between Koprinka and Kran. Most of these sites are near rivers and good, cultivable soils. The findspots of Late Iron Age pottery occur here at distances of 1-2 km apart and cover the entire survey area from the suburban zone into the first spurs of the Stara Planina Mountains. Most of them have been identified as small farmsteads or shrines.

Another less dense cluster is between the villages of Skobelevo and Yasenovo in the NW part of the valley. These findspots are not as bounded or abundant as Koprinka-Kran, and are characterized by highly dispersed remains of plain pottery, and daub. We may assume that many of these thin scatters are remainders of former sites like 3122. This site was reported in 1990s as a large surface scatter covering the banks of the Leshnitsa River, while in 2010 it was only detected in the profile of this stream without a trace on the surface. Most of the other findspots identified here are similarly transient, possibly marking farms or even pastoral camps. They are located over stony colluvial soils in the vicinity of Early Iron Age site 3126. None of the Late Iron Age scatters contained as much high quality material as 3126, although occasionally they yielded a fragment or two of Black Slip. Many scatters were located on the banks of mountain streams. Sites 3225, 3269, and 3227 enclosed between them a large mound.
necropolis at Dolno Sahrane; additional large necropoleis (Shipka and Sheynovo) were located to the east just south of the Stara Planina foothills.

Above these extra urban sites, a number of fortresses and watchtowers were detected in the lower spurs of the Stara Planina Mountains. Built near the Shipka and Kran passes and the Yasenovo-Skobelevo defile, these sites were strategically located near important travel routes in positions facilitating control over access to the valley.

VII.2.2.iii.b Suburban Zone

As mentioned above, one of the surprises of the 2009 survey campaign was the realization that the immediate suburban zone was largely free of any substantial sites. A zone of ca 5 km around the city was populated only with burial mounds and a few transient scatters. One of the possible explanations was that sites were present but invisible and inaccessible. The Koprinka reservoir is consistently at least 1.2 km wide and stretches for 5 km in an east – west direction covering the banks of the ancient river valley. Many sites thus could be lying on the bottom of the reservoir and be lost to archaeological assessment. Although no such sites were reported during the original survey in 1948, during which Seuthopolis was discovered, a campaign of 2011 confirmed our suspicions. During a historic low level of the reservoir (10m) TRAP explored the newly exposed banks of the reservoir and inventoried five new sites within 2 km radius of the ancient city. Three of them dated into Late Iron Age, yielding one settlement with abundant material and two ephemeral scatters. Although these new sites are not robust, they indicate that the immediate suburban zone was not as deserted as originally suspected.142

The lack of large agglomeration around the city could be explained in several ways. The city may have absorbed the population from its immediate vicinity but declined before greater expansion. While it stimulated the nucleation of local population, its short-lived existence prevented the growth of settled area.

The immediate environs of the city could have fulfilled other roles next to settlement: they could have been used as pasture for the city’s flocks and horses. Xenophon mentions that in times of need the Thracians kept their horses nearby (Anab., 7.2.21-22). Dimitrov and Chichikova report an abundance of cattle bones in the excavated parts of city (1978, 16). The passion of the Thracian elites for horse-breeding is attested as early as Homer and stands out also in the archaeological evidence in the valley, especially in horse sacrifices in the burial

142 The publication of the results of the 2011 survey campaign is currently under preparation.
mounds. The Thracian aristocracy could have easily kept herds of horses and cattle behind city’s walls for both safety and subsistence.

VII.2.2.iv. **Economy and Interaction**

Having discussed the productive capacity of the valley in the context of rising population levels, it seems appropriate to discuss local economic activity in the light of increasing numbers of settlements.

VII.2.2.iv.a **Rural Economy**

With the exception of Seuthopolis, there is little evidence that any of the settlements in the valley were involved in any other forms of production besides agriculture and pastoralism. Given the relatively sparse network of scattered settlements in the valley combined with the pastoralist potential of the land and the quantity of cattle bones found in Seuthopolis, pastoralism seems to have held a primary role in the economic activity of the Kazanluk valley and in feeding the urban population in Seuthopolis. Pastoral sites are, however, not easily identifiable in the valley archaeologically (e.g., stone enclosures, milking implements, and camps (Cherry 1988; Cribb 1991)). The assessment of the extent of animal husbandry *vis-à-vis* agriculture can so far be done only on the proxy evidence of local soil studies and settlement dispersal, instead of the direct evidence of camps and flock enclosures and farms (Robertshaw and Collett 1983; Shahack-Gross, Marshall, and Weiner 2003; Sellet, Greaves, and Yu 2006). Such studies have not yet been attempted in Bulgaria. Negative evidence is available in the lack of indices for intensification at the detected farmsteads in the valley, such as absence of large grinding installations, presses and other equipment indicating specialization. Most of the farmsteads show only assemblages indicative of self-sufficient production with small grinding stones and an absence of large-scale agricultural installations. Their small size and the absence of these features indicate that they were more like farmsteads supporting individual households catering to their own needs. They may have supplied labor rather than goods to the economy of the area during the Late Iron Age.

The practice and value of animal husbandry in the Balkan world has recently been undergoing a process of reassessment (Paynter 1982; Halstead 1987; Howe 2008). In Greece,

143 A soil study campaign was included in the 2011 fieldwork and its results are expected to shed light on the potential for pastoral practices in the valley.
the scope for extensive pastoralism has been downplayed in light of land shortages, a lack of water supplies, and the economic and political dominance of arable farmers over herders. (Alcock 1993, 87-8; Cavanagh 2002, 227). In Thrace, more generally, and in Kazanluk particularly, however, vast tracts of marginal land have little agricultural potential and are much better used as pasturelands outside the zone of agricultural cultivation. Most of the northern part of the valley is covered with stony fields abundantly watered with mountain streams, providing first-rate pasture. Similarly the floodplain of the Tundzha River (today especially the areas east of the Koprinka dam) is suited to pasturage. Good water sources in the valley, extensive pasture lands in the plain and in the foothills of Sredna Gora offer summer and winter grazing across a range of altitudes, allowing for seasonal movement of flocks with little encroachment on arable lands. Additionally, the labor needed to maintain such flocks is minimal in comparison with agricultural production and would better correspond to the conservative assessments of local population size.

Few sites had a non-agricultural character. The role of fortresses as toll stations and watch towers guarding the access routes to the valley offers one category of non-agricultural sites. A second group is represented by quarrying sites. As noted above, two Sredna Gora quarries were abandoned during the Late Iron Age (3058, 3057). But there is clear evidence in the valley for increased consumption of stone. The construction of Seuthopolis and numerous Hellenistic burial chambers required large-scale exploitation of stone that could have easily been quarried locally. The abandonment of the quarries makes little sense and may be a misinterpretation of the pottery: most of the quarries featured handmade pottery, which is not easy to diagnose and is often ascribed to the previous Early Iron Age period on account of its crudeness. An alternative explanation for the abandonment of the nearby quarries is that better and more abundant stone resources deeper in the Sredna Gora mountain are exploited during the Late Iron Age (so far undetected).

VII.2.2.iv.b Urban Economy

Despite its short-lived existence, the finds at Seuthopolis attest to its vibrant economic life. The population at Seuthopolis, including an affluent elite and a substantial number of non-agriculturalists – craftsmen, masons, artisans – must have created a steady demand for staple foods, raw materials, and luxuries. While many of them might have been supplied locally –
livestock, agricultural produce, local stone and gold144 – the city was also involved in long-distance external exchange networks. Finds at Seuthopolis indicate that this center functioned as an open economic system, supplementing its local resources with imports from other regions, especially the Black Sea and the Thracian plain (Chichikova 1983, 296; Балканска 1991, 93; Dimitrov 1991, 102)

Market activities facilitated by the waterway of the Tundzha are attested in the number of imports in the city. These include large quantities of amphorae including 95 stamped pieces of Thasian, Rhodian, Knidian, Chiote, and Black Sea provenance (Балканска 1991, 93). An accumulation of over 1200 coins attest to economic activity, as well as growth of the city’s own political power. Over 800 are minted by Seuthes III, with the extant ones being of Macedonian provenance. Over 3000 sherds of Greek glazed vessels of Attic origin point to ties with the Greek cities, especially the down-the-line trade over water ways (Dimitrov and Chichikova 1978, 28). Outside the city, flat sites (3227 and 2031) yielded 4th century coin finds of Thasian and Maronean provenance as well as coins of Philip II, and Seuthes III145. They indicate that the entire valley was involved in market activities with active coin circulation.

Evidence for local economy in the city is found in the “tremendous amount of bones of domestic animals found, with cows and oxen predominating” (Dimitrov and Chichikova 1978, 15). Unfortunately no more detailed information is provided about the consumption of livestock beyond this comment, but presumably it was local in origin. Hunting activities are confirmed by finds of wild game bones at the site. Fishing may be presumed from the abundance of black slipped fish plates, but no fish bones were reported by the excavators. Finds of pruning knives attest to viticulture, quern stones indicate the domestic activity of grain processing. Domestic wool production is attested through the presence of spindle whorls and loom weights scattered through the area (Dimitrov and Chichikova 1978, 15). A high frequency of pithoi points to extensive storage facilities in the city. Granite from Sredna Gora was used for stone working and architectural details (Dimitrov and Chichikova 1978, 26). The quantity of public construction in the city, including plumbing and sewage engineering, architectural embellishments, and metal furnishings must have required artisans, masons, and craftsmen.

144 Domaradzki refers to the gold mines in SW part of the Sredna Gora (1991, 130).
145 Coins of Seuthes were recovered at Hadzhidimitrovo, Koprinka and Kran (Tabakova-Tsanova 1991, 120-121; Domaradzki 1991,129). Coins of Philip II were reported in Buzovgrad, Koprinka and Morozovo, a single coin of Alexander in Vidin (Domaradzki 1991, 127-128). Maroneian tetradrachmae were reported at Dolno Sahrane (Domaradzki-diary).
All these urban developments are consistent with the city being integrated into a Hellenistic economic network. The exact mechanisms of the city’s subsistence, specifically the balance between a market and a tributary economy, warrant further economic modeling. More analysis is needed to clarify the role of the urban hinterland in facilitating the city’s florescence as regards demands of manpower, supplies, and resources.

It is clear that the city must have drawn extensively on its hinterland and impacted the local economy as well as the settlement pattern in the valley. It is evidently an emergent economic structure as well as a node of political and social control.

VII.2.2.v. Population trends

The evaluation of population trends in the Kazanluk valley during the Late Iron Age suffers from the same difficulties that have been outlined in surveys elsewhere (Bintliff 1985, 140-145). The survey has registered an increasing number of sites, yet many of them are smaller than their Early Iron Age village predecessors. A portion of them consist of low density scatters, especially in the northwest part of the valley. It is uncertain whether these scatters represent transient settlement or offsite remainders of agricultural activity. The issue of permanency applies even to the urban site of Seuthopolis, which may have seen large fluctuations in population year round. The royal Thracian court or significant military parts of it could have been constantly in flux. The problematic relationship between surface and subsurface data obscures the function of the site and instills further uncertainty into the population estimate. Cult or camp sites pose particular difficulties, because they were not continually inhabited. The completeness of the survey site record needs to be also considered. A number of sites may have been destroyed or masked by post-depositional processes, as is evident in site 3122. The surface survey approach may, therefore, not yield a full record of all habitation sites.

Finally, given the lack of chronological resolution of the available archaeological data, it is difficult to judge what the cumulative effect of settlement changes was on the total population of the valley. All the numbers mentioned here represent maximum estimates and are based on the assumptions that a) sites represent places of permanent habitation occupied at the same time; b) the archaeological record for the surveyed area is complete; c) the ranges for the site categories are correct (e.g. a site classified as a farm really is a farm and contains no more than 15 people). All of these assumptions underscore that the population estimate
remains highly approximate. It also takes no account of carrying capacity of the land around the sites (since soil data is insufficiently detailed at present).

Farms and villages are all categorized on the basis of multi-factored assessment including site size, diversity of artifacts, and sometimes the density of scatter. Farms are estimated as a habitation containing ca 10-15 people, probably from an extended family. More extensive and diverse scatters constitute “villages”, with a higher population of less closely related people. Only the urban area of Seuthopolis has been excavated completely enough to have its population estimated on the basis of the actual number of dwellings.

VII.2.2.v.a Rural

The survey evidence for continued use of several Early Iron Age sites and the rising number of new foundations (albeit mostly small ones) speaks to a growing population in the hinterland of Seuthopolis. The question is to what extent this growth was or was not stimulated by the presence of the urban center. Seuthopolis was a relatively short-lived settlement, but it was, nevertheless, in use for some two to three generations. Even if not occupied permanently, its sudden presence must have had a major impact on the valley’s economy and population. It created a large market for staple and luxury goods, and attracted a new population of artisans and specialists. It provided a major stimulus to local economy by pulling in produce and craft items from neighboring and distant regions through trade. Finally, rulers at Seuthopolis likely exacted tribute from local inhabitants in the form of labor or goods. We can conclude that the royal residence provided a major stimulus to the regional economy, both by bringing with it a new population, creating work for existing residents of the valley, and opening a market for local and long-distance trade. It also placed a new burden on the local population in the expanded demand for labor and supply of foodstuffs. The predominance of small sites outside Seuthopolis suggests that the reaction to these stimuli was a contraction of the settlements in the hinterland to a minimal number of producers and concentration of the population in the valley.

A rough estimate of population in the valley can be calculated according to the following assumptions. If we ascribe five occupants to the low density scatters, 10-15 occupants to the farms, 20-50 occupants to the fortresses, and 100 occupants at the hamlet/villages. Three percent of the survey sample are villages, 17 percent are fortresses, and all others are rural farmsteads and transient scatters. There are several shrines or ritual areas, which may not have been occupied permanently, but they are nevertheless included in this calculation. Using these
assumptions, the Late Iron Age population of the TRAP survey area is about 545 people living in 30 sites. The breakdown of extra-urban population includes 49% living in farms and ephemeral habitations, 29% in fortresses, 22% in hamlets and villages. The study area, however, comprises only about 25% of the Kazanluk valley. If we assume that the sample is representative with the 400 sq km of the valley should yield some 240 sites totaling 4000-4500 people. Extrapolating from the breakdown by site type, this population would have included 2000-2250 rural residents, ca 1000-1500 military personnel and ca 900-1000 village residents.\footnote{Note that this estimate ignores the differences in the clustering of sites according to topography, such as the lower number of sites in the hills of the Sredna Gora and the Tundzha floodplain and the higher clustering of sites in the NE part of the valley.}

\section*{VII.2.2.v.b Urban}
Seuthopolis contained some 60 elite residences within its walls, all similar in size and plan (15-20 to 20-30m), presumably housing aristocrats of roughly equal standing, analogous to Alexander’s Companions (Rabadiev 2000, 388; Chichikova 1978, 1983). If we estimate circa 10-15 people per household based on their average size of 500-600 sq m (e.g., Seuthes III, his wife Berenike and six sons, plus personal servants), the urban residence may have held some 600-1000 inhabitants. In addition, it is reasonable to expect that this (consumer) elite required a number of food-producers, as well as servants and artisans who lived outside the city walls, to ensure their subsistence and comfort. It is difficult to estimate the number of these support personnel, but they may have doubled the overall population of the urban area to ca. 2000 inhabitants. This population been placed by Chichikova outside the northwestern wall (Chichikova 1983, 296). Excavations at another Hellenistic town in Thrace, Sboryanovo, confirm the existence of workshops and mud-hut residences outside the city walls during the Hellenistic period (Stoyanov \textit{et al.} 2004). TRAP survey efforts to identify this extramural habitation failed to find any trace of it in the middle peninsula of the Koprinka reservoir, although a small part of such a productive area may have been captured in the heavily worn scatter of 2019 on the slope east of Seuthopolis. It seems, therefore, that these quarters either did not extend very far beyond the walls, or they were destroyed by the construction of the reservoir.

\section*{VII.2.2.v.c Subsistence}
With regard to the question of rising population, another issue is that of economic subsistence in the valley. Was the population capable of self-sustenance or was it dependent on trade via a
market economy? The city housed a large, unproductive population and had to rely on tribute from its hinterland. Whether this tribute was predominantly delivered in goods or in labor needs to be reassessed. The local soils have been described as less than prime, which may have limited the efficiency of tribute paid in goods. The relatively low total population estimate for the valley, however, indicates that perhaps the resources available in the valley were sufficient. Seuthopolis and its immediate suburban area were estimated to have housed a total of 2000 at the peak of habitation. The rural hinterland was estimated at another 4000-4500, providing a grand total of 6500 inhabitants. Did this a population have enough land in the valley to ensure its subsistence?

According to H. Wright’s estimate that it takes 0.5 ha to support one person, the subsistence needs for the valley could be met by 3000-3250 ha of land during the time of its maximum occupation (Wright 2000, 207). The necessary 30-35 sq km of agricultural land can be easily found within close proximity to the Tundzha River, where the zone of alluvium is 2-5 km wide and runs for tens of kilometers. Deluvial soils north of this zone are likewise arable, although they provide lower yields and require more labor. The necessary amount of land is thus easily available in the valley, especially in its eastern part where one of the major site clusters was found during survey. If we follow with the assumption that someone can work a maximum of 2 ha and feed himself on a minimum of 0.5 ha, then we need ca. 1500-1700 producers to cultivate the 3000-3250 ha of land necessary to feed themselves and the non-producers in the valley (Wright 2000, 207). Since the rural population estimate is 2700 individuals (extra-urban residents and the military present at the fortresses), they should have been producing more than sufficient crops to feed the rest of the valley.

It is possible that not all the rural dwellers were involved in cultivation. Herding and transhumance can be expected to have formed a large portion of non-urban activity, given the marginal land in the northern part of the valley and the Sredna Gora Mountains. Even if only 60% of the producers were involved in agriculture and the rest in other activities, the resulting 1800 farmers would still be able to work ca. 3600 ha of the land, which would be sufficient for the entire population of the valley.147 Given the fact that I am leaving animal products out of

147 This section needs a more thorough assessment of the productivity of individual soils in the valley, and a refined model of site catchments and actual yields per each site. Yet soil yields and productivity rates are as of yet unavailable to me and will only be estimated after a pedological survey in Fall 2011; I also neglect here the preference for consumption of meat and other imported crops by the urban dwellers; and the assessment of ratios at which the land was used for animal husbandry rather than agriculture.
consideration because of a lack of data, it is likely that the combined animal and agricultural resources in the valley provided a substantial surplus.

While these estimates are cursory and very coarse, they are useful to consider vis-a-vis the notion of a rising local population. If the valley did experience long-term population growth, it seems not to have exceeded the productive potential of the region. In none of the above scenarios do the local resources seem strained.

While the population of the Kazanluk valley seems within the margins of the agricultural potential of its landscape, it is apparent that the constant demand for luxuries on the part of the urban population would have exceeded local possibilities for these goods. Excavation confirms that Seuthopolis was heavily involved in dynamic exchange networks and attracted goods from both nearby and coastal regions. Thus, any local surplus production may have been deployed by elites, especially the royal dynasty, for the procurement of imported luxury goods that increased their status.

VII.2.2.v.d Summary

Although the population seems to be on the rise during the Late Iron Age period, this expansion is not as dramatic as formerly imagined, given that the majority of rural sites are small. Seuthopolis provides a major impetus for local growth, but the slowly increasing population level never rises out of the low thousands or exceeds the productive capacity of the valley.

VII.2.2.vi Complexity

The issue of complexity in Late Iron Age Kazanluk valley is inextricably connected with the question of the Thracian state. The historical sources indicate that the Odrysians achieve state-level complexity during the 5th and 4th centuries BC in the Maritza and Tundzha river valleys. An early Hellenistic power center is established in the Kazanluk valley, where it is attested by lavish burial mounds at the turn of 4th and 3rd century BC (Kitov and Krasteva 1992-1993; Китов 1994b; Kitov 2005a; Hatlas and Zyromski 2007).

Despite the historical and mortuary evidence, the settlement data does not display the conventional indicators of statehood (Wright 1978; Flannery 1998). The settlement hierarchy is not well developed, with only one major site and a scatter of small farms and villages. The criterion of the presence of urban sites is satisfied only by a single specimen – Seuthopolis – which lasts only three generations. Complexity of interaction does become more apparent through the spread of imported wares like black glazed pottery, and through increasing coin
finds. Overall, however, the relatively low population and lack of settlement hierarchy argue against a high – let alone state – level of complexity.

Instead, the proliferation of small dispersed sites resembles a Classical to early Hellenistic Greek landscape such as those documented in the hinterland of southern Argolid or Melos, yet even here this pattern may indicate two different social phenomena - that of economic vs. political exploitation (Van Andel and Runnels 1987, 265-6). It is impossible to assess whether the dispersion of sites in Kazanluk is a byproduct of intensified agricultural production in the wake of increasing social complexity, or a manifestation of the opposite phenomenon of site independence and autonomy. Given that Seuthopolis is a short-lived center, the role it plays in the development of its hinterland remains unclear.

VII.2.2.vi. Conclusion

Settlement expands in the Late Iron Age Kazanluk landscape. Most of the sites remain small and ambiguous as far as their duration and function is concerned. The resolution of the survey data does not allow us to specify whether or not the new foundations accompany the growth of Seuthopolis or postdate its abandonment. Further excavation at rural sites will be needed to acquire more precise information about the impact of Seuthopolis on its hinterland. The incipient site hierarchy detected is not consistent with the existence of a state, but it does indicate a short term peak in local complexity. The negative evidence cannot be taken as authoritative when approaching the question of the Thracian state; other data sources, especially literary and epigraphic sources and mortuary evidence need to be considered.

The mortuary evidence points to the strength of a local aristocracy. The historical sources also insist on the strength of Seuthes III’s state in this intramontane region. The settlement data, however, indicate a limited population living in homogenous settlements. This contradiction can be explained in three possible ways. First, the Thracian polity in Kazanluk did not correspond to the conventional model of a state as articulated through neoevolutionary theory, and thus the criteria of site hierarchies may be inappropriate (perhaps because the society was highly mobile, or otherwise invested little energy or resources in settlements). Further discussion of this topic will follow in Chapter Eight. Second, the Thracian state did correspond to the conventional neoevolutionary model, but was too short-lived to make a detectable impression on the local settlement system. Third, the settlement data is not a

148 Careful analysis of soils and excavation of stratified rural sites could illustrate both the relation of these rural sites to Seuthopolis and shed light on the true productive strategies of these farmsteads.
suitable indicator for assessing the emergence of social complexity in this region, perhaps because geomorphological conditions are not amenable to survey. Whether the Thracian polity in Kazanluk can be labeled a state or not, the settlement data suggest that the foundation of Seuthopolis had little effect on the local landscape.

VII.2.3. The Late Iron Age in Yambol (500-0 BC)

VII.2.3.i. Historical Context

The Late Iron Age is a period for which we have historical sources to complement archaeological discoveries. The written sources about Thrace for the Classical and Hellenistic periods depict an era of much political turmoil, from the Persian Wars, through Phillip’s conquest and Alexander’s assertion of power, to his successors’ struggles for dominance. Thrace was directly involved in many of these events. In the Classical period, only the coastal regions were exposed to actual invasion, while the Thracian interior experienced growth and political consolidation under the Odrysians. The campaigns of the Thracian princes Sitalces and Seuthes I left reverberations in Greek memory and took a heavy toll on local communities. Thucydides counts some 150,000 warriors in Sitalces’s army at the turn of 5th century BC. While the number is hardly exact, it communicates the idea of a tremendous force and a large population. Given the fact that the middle Maritza and middle Tundzha are considered as the powerbase of the Odrysian polity, many of the recruits could have come from here.

By the Hellenistic period, all the lands of Thrace from the Aegean coast up to Haemus and beyond had seen military activity in the wake of the Macedonian conquest. First, the territory of Thrace was carved up in a dynastic struggle among the Odrysian princes. Seuthes II’s marauding of the Marmara coast and Strandzha foothills around 400 BC is captured by Xenophon. The drain on local manpower probably continued with Kotys I. As one of the last capable rulers, he managed to unify Thrace, but died before he could cement his domain. His death opened the doors to the Macedonian incursion into Thrace through the Maritza valley, and the gradual conquest of all its territories by Phillip and Alexander. Only after Alexander’s departure for Persia do individual Thracian kingdoms appear in mountain valleys and peripheral zones.

Under Alexander’s successors, the historical turmoil does not cease; Thrace becomes a playground for ambitious local Thracian princes as well as Antigonid and Seleucid dynasts. New
intruders appear on the stage, including migrating Celts and, finally, the Romans. Skirmishes, intrigues and power struggles vex Thrace until it fully incorporated into the Roman Empire in 46 AD.

Given the fact that the Maritza and Tundzha valleys offer two of the easiest routes into the Thracian interior, one would expect that the landscapes of their watersheds would reflect the events of these centuries of conquest.

VII.2.3.ii. **Late Iron Age Survey Results**

VII.2.3.ii.a **Reliability**

The Late Iron Age in Bulgaria encompasses half of the Classical period and the entire Hellenistic era according to the conventional Greek periodization. In Greece, these two periods usually offer a great amount of diagnostic survey material and can be broken down in half-century intervals. In Bulgaria, the situation is less favorable.

The earlier part of the Late Iron Age, the “Classical” period, was usually recognizable on the surface through the presence of Black Slip imports or imitations, as well as the presence of Thracian Grey Ware. Of course the longevity of the local Thracian Grey Ware, which appears in the 6th century BC but remains popular until the Roman period, makes identification on the basis of Grey Ware alone unreliable. Fortunately, the Grey Ware and some kind of Black Slip pottery occurred together frequently enough to justify the early dating.

The Hellenistic period was very hard to recognize in the survey material from Yambol. We did not have a Hellenistic specialist on the team. The local wheel-made pottery was analyzed by our Roman specialist, Stefan Bakardzhiev. Fragments that indicated the forms and shapes of vessels were extremely scarce, while fabric typologies for Late Iron Age local wares are not well developed, so most identification of Hellenistic materials was done by the process of elimination of other alternatives. Wheel-made pottery that did not fit Roman or later types was usually dated to the Late Iron Age. Positive identification happened only when highly diagnostic artifacts such as Greek fine-ware imports or, especially, stamped amphora fragments, were recovered. A group of local wares, imitating Hellenistic Red Slip, offered less secure but plausible Late Iron Age dates.

Two major problems limited our ability to recognize and identify surface material. First, the local fine ware fabrics (Red Slip imitations) were often hard to distinguish from the Roman period local fine ware. Most of the red-slipped fine ware was classified as Roman. Thus, it is
possible that there were local imitations of Hellenistic Red Slip that have gone unrecognized or miscategorised. Second, local coarse wares change little throughout the Iron Age and Roman period, and may have been improperly categorized. The coarse wares were primarily used to bolster Early Iron Age dates only when diagnostic fine ware was also present. If no Early Iron Age fine wares were detected, then coarse wares were usually collapsed into the most represented group within the Early Iron Age to Roman period timespan.

As a result, the Late Iron Age sites can be divided into two groups: 1) the securely identified Late Iron Age sites – those that yielded securely datable imports or imitations, and 2) potential Late Iron Age sites – those where most of the material was Roman, ambiguous, or potentially misidentified, but may be of Late Iron Age date.

Given this uncertainty in the recognition of the Hellenistic component in sites and its potential conflation with Roman material, I will produce two reconstructions of the Late Iron Age (Hellenistic) landscape. The first reconstruction will use only the sites where Hellenistic material is confirmed. The second reconstruction will include all the securely identified Late Iron Age sites plus potential Late Iron Age sites, based on the assumption that the sites identified as Roman also included some misidentified Hellenistic material.

VII.2.3.iii. Settlement Patterns

<table>
<thead>
<tr>
<th>TRAP #</th>
<th>EIA</th>
<th>CL</th>
<th>HEL</th>
<th>RM</th>
<th>LIA Certainty</th>
<th>LIA Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6034</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td>3</td>
</tr>
<tr>
<td>7019</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td>0.4</td>
</tr>
<tr>
<td>8011</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td>3</td>
</tr>
<tr>
<td>6018</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>Y</td>
<td>1.7</td>
</tr>
<tr>
<td>6021</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>N</td>
<td>1.2</td>
</tr>
<tr>
<td>7020</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>N</td>
<td>4</td>
</tr>
<tr>
<td>8005</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>N</td>
<td>8</td>
</tr>
<tr>
<td>8012</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>N</td>
<td>2</td>
</tr>
</tbody>
</table>

Table VII-1: Early and Late Iron Age scatters in the Yambol study area

Late Iron Age material was discovered at eight flat settlements in the Yambol survey area. At four of these scatters, the Late Iron Age date (both Classical and Hellenistic) was confirmed by
the presence of imported amphorae, mostly Chiote and Thasian, supplemented by early (?) Red Slip (6034, 7019, 8011, and 6018). At four scatters, Late Iron Age imports are missing, but Roman material, including diagnostics, are plentiful, and a pre-Roman stage is tentatively assumed (6021, 7020, 8005, and 8012). All scatters except 8005 are horizontally stratified, showing Early Iron Age predecessors. The scatters continue to occupy traditional locations on river banks, terraces, and slopes above them. Their sizes remain small. Only two of the eight sites are larger than 2 ha (6034 and 8011); two are approximately 1 ha (6018, 6021), while the remainder fall below 1 ha (7019, 7020, 8005, and 8012).

VII.2.3.iii.a Reconstruction I

It is apparent from the table above (Fig. VII-1) that the sites where Late Iron Age material was securely identified tend to be the larger scatters with Early Iron Age predecessors. Only four Late Iron Age sites remain from eight during Early Iron Age. These sites are dispersed through the study area, representing two villages, one hamlet, and one farmstead. While all of these scatters contain Early Iron Age material, only 6034 and 7019 show direct continuity into the early phase of the Late Iron Age. The presence of Black Slip imitations at the former and Grey-Ware and amphora fragments at the latter indicate that habitation spanned the 6-5th centuries BC at each. At the two other sites (8011 and 6018), no material that could be associated with the Classical period was recovered, but Hellenistic amphora and Red-Slip fragments indicated occupation during the late phase of the Late Iron Age.

(a) Site Types and Character

The sites all conform to a uniform type. They comprise flat scatters of pottery and architectural material. Their classification is determined solely on the type and variety of surface material. Sites 6034 and 7019 look like a village and a farmstead, respectively, that were both in contact, at least indirectly, with Greek centers. The presence of Chiote amphora fragments at 7019 indicated participation in down-the line trade along the Tundzha River, while Black Slip imitations point to local emulation of Greek pottery forms and styles. Site 7019 is a small scatter, yet contains high quality material, suggestive of a high status farmstead. Site 6034 is a larger village site, which contained a remarkable abundance and variety of material. Besides Black Slip imitations, many amphora fragments were observed here. Their provenances included Lesbos (61574.1 Lesbos type K, but also C II A Nadiman type II after Monachov 2003, 258) and Thasos (Monachov 2003, 266, type I-A-4), both datable to the last quarter of the 5th century BC.
A Thasian amphora stamp was also found here that is comparable with an example at the city of Kabyle dating to the second half of 4th century BC (Getov 1995, either 149, fig. 41, or 53, fig. 75-76). Although not particularly large, site 6034 seems to have been an important settlement, well connected and with enough wealth to participate in the exchange between Kabyle and the Aegean. It seems likely that amphorae reached 6034 through the exploitation of the existing trade route up the Tundzha valley. Over 300 amphorae stamps found at Kabyle attest the popularity of Greek products and their mass trade in the interior of Thrace, especially during the second half of the 4th century BC (Getov 1995). The remaining settlements at 8011 and 6018 are on the larger end of the site size spectrum reaching 1.7 and 3 ha respectively. They contained more Hellenistic fine wares and amphorae dated to 4th and 3rd centuries BC. In both instances, the material is mixed with debris from the previous Early Iron Age and later Roman occupation, making it difficult to gauge the size of the Hellenistic component. The site areas, therefore, must be considered rough estimates.

Overall, two tiers of sites are represented in the data: villages and farmsteads. All sites contain a combination of fine ware, storage, and transport vessels, indicating that the sites were likely habitations with some permanence. It is hard to gauge, however, whether “permanence” means two or three generations or two or three centuries. The locations of the sites are amenable to agriculture and provide easy access to water as well as to nearby communications. They are far enough from the Tundzha River to have some protection from both flooding and, to an extent, from the unwanted attention of armies using the Tundzha corridor. Besides the imported amphorae and Red Slip imitations, there is little elite material. Overall, the sites have the appearance of well-located rural settlements, continuing from earlier periods, that benefitted from good farmland and participation in Tundzha River trade.

If we assume that the missing Classical period in sites 8011 and 6018 is merely due to our inability to recognize indigenous pottery from this period, and categorize all known sites as Late Iron Age, the Yambol survey area still remains quite empty after the florescence of the Early Iron Age. Only four of eight Early Iron Age sites survive, leaving each with a 10 sq km hinterland. These four are on average larger settlements (two villages and two farmsteads), yet their sparseness makes the landscape look empty. If we factor in the post-depositional dispersal of surface debris, the expectation of higher production and deposition rates with more active connections to the Greek markets, the Late Iron Age appears to be a period of settlement and population decline.
(b) Interpretation

The image of a depopulated landscape fits reasonably well with the events documented in the historical records as well as with the evolutionary models for social complexity. The low site numbers in the early phase of the Late Iron Age could be correlated with the political “consolidation” of Thrace during the campaigns of Sitalces and Seuthes I mentioned in the historical sources (consolidation being a euphemistic term for absorption of subordinate areas into the leading polity). The decrease in density fits with the expected pattern of settlement, where increasing complexity should be reflected in a reduction in the number of settlements of the same size, and their replacement with fewer, larger sites – in a word, nucleation. The evidence for nucleation, however, is tenuous. None of the known sites grow in size during the Late Iron Age; any regional centers must lie outside the survey area. Kabyle, some 35 km to the north, is a prime candidate, but its Classical levels have not been excavated to confirm the hypothetical assumption of its leading role in the regional settlement structure (and questions remain about its early Hellenistic levels as well).

The absence of sites in the survey area, however, does not alone provide sufficient evidence for the political unification of SE Thrace, since contraction in site numbers is not accompanied by corresponding growth in site-sizes. Depopulation during the Late Iron Age could instead be explained through internal migration due to political disturbances, which are well documented in the literary evidence. Positioned on the route used by Philip of Macedon and Alexander the Great to conquer Thrace, fought over by rival Successor Kings, and serving as a buffer for the Celtic state in SE Europe, this region must have been a contested and violent borderland, not very conducive to settlement.

In light of the political turmoil, it is possible that the villagers developed strategies to obviate the negative effects of frequent warfare and marauding. They could have invested in mobile wealth and maintained only transient settlements that would allow them to flee whenever a foreign army or tribute-seeking Thracian aristocrat and his retinue approached (Xen. Anab., bk.7). Others among the local population may have joined mercenary armies and thus benefited from the military campaigns, contributing to regional depopulation.

Finally, a more prosaic explanation could account for the low site numbers – archaeological invisibility. Underdeveloped typologies of local wares and missing fabric studies produce a poorly resolved chronology. If we add the possibility of a more mobile lifestyle in the
Late Iron Age, excavations will be needed to assess the decline in Classical and Hellenistic habitation.

VII.2.3.iii.b Reconstruction II

If we make greater allowances for the misidentification of Hellenistic material and assume that it has been conflated with early Roman wares, than we should add four other sites to the Late Iron Age dataset (6021, 7020, 8005 and 8012), raising the total number of Late Iron Age settlements in the Yambol survey area to eight.

(a) Site Types and Character

These additional scatters are small (ca. 0.5 ha average) and well-bounded, with Early Iron Age roots (except for 8005). They yielded large quantities of Roman and later artifacts. The surface materials included ambiguous Red-Slip and coarse wares that may support an extension of their date to the pre-Roman period. The sites were found in exposed and easily accessible locations in between the “confirmed” sites, filling in the landscape. Their position on river banks, terraces, and slopes near water sources and good soils marks them as rural agricultural settlements. Material recovered at them consists of grind stones and coarse ware that could be associated with food production and storage, but higher-status Red Slip fine wares are is also present, indicating a rank of a farmstead rather than a plain farmer’s outbuilding or shepherd’s hut.

(b) Interpretation

If we add these four settlements to the confirmed sites in the Yambol survey area, a different picture of the settlement structure emerges. We obtain a landscape with eight sites, which is only one fewer than during the Early Iron Age. Among the missing settlements are the Dodoparon fortress and 6036, an Early Iron Age scatter which is not resettled. Meanwhile, a completely new foundation appears at 8005. Nevertheless, the overall settlement area has contracted in size has along with the average site size. Thus the same trend apparent in the “confirmed landscape” towards a decline in settlement, possibly associated with depopulation, is still visible. This trend could be explained in the same way as above – as resulting from a combination of flight from conflict, depopulation due to other causes, or nucleation in regional center. In the “potential landscape” scenario, however, settlement appears more dispersed. It is hard to judge what would have caused this dispersion –a fear of invasions, state-making authority, social fissioning, or a new socio-economic preference for smaller production units. As noted above, the sites are more clearly ranked, with smaller sites outnumbering large ones (The
sites remain in exposed locations, but distant from the main route along the Tundzha River. The uncertainty as to their date and function leads us to identify them as ephemeral settlements, but this awaits verification through excavation.

(c) Summary

Even with the added settlements, the population level in “potential landscape” scenario seems almost as depleted as in “confirmed landscape” scenario; even if we double the number of Late Iron Age scatters by adding the four potential Late Iron Age candidates, the settlement area (8.1 ha in the confirmed scenario) increases only by some 25% (2.6 ha) for a total of 10.6 settled ha within a 40 sq km area. Local populations appear to have adapted to this tumultuous period in history through flight or dispersion of settlement.

It is likely that the events presented to us as significant by Greek authors are not the only times when local settlements experience major upheaval. Struggles between local princes, and attempts to impose tribute and exact corvée labor from the villagers of the Strandzha region, are both attested in Xenophon’s depiction of Seuthes’ II process of reclaiming the lands of his father. The results of the survey show that these historical events are corroborated by the archaeological record.

VII.2.3.iv. Conclusion

The decline in site number and area in the Yambol area, along with the absence of any local centers suggests that this area underwent a period of economic and political decline during the Late Iron Age. Even if we accept the “potential site” scenario and increase the number Hellenistic sites, their small scale indicates local population decline, possibly reflecting emigration from a troubled area. The number of imports points to a certain amount of wealth and interaction with Greek centers to the south. This evidence is consistent with the historical context of the Macedonian wars. Conversely, settlement decline could be connected with nucleation – especially the establishment of a regional center (perhaps at Kabyle) – correlated with the emergence of the Thracian province of Macedon. The tenuous evidence for Late Iron Age settlement, however, is perhaps best explained by Late Iron Age depopulation followed by resettlement during the Roman period. Finally, the survey data show that complex settlement patterns indicative of emerging social complexity do not emerge in the Yambol study area before the Roman period.
Chapter VIII. Discussion of the Thracian State

VIII.1. Searching for the Thracian State

Different forms of the organization of human communities have intrigued thinkers and analysts from Aristotle to modern-day political scientists and anthropologists. Nicolas Pauketat in his book *Chiefdoms and Other Archaeological Delusions* singles out the evolution of human society as the main *raison d'être* of American archaeology (2007, 20). In Europe, the development of human society has been treated with equal fascination, especially in the East. During the Soviet Era, research into social evolution was not only an intellectual and scientific priority, but a systematic and state-driven enterprise (Dimitrov 1950, 162, 96-97; Trigger 2006, 212). In the Soviet bloc, evolutionary approaches were paramount because the classification of the past established and cemented a concept of evolution that legitimated the contemporary political order (Miller 1956, 146).

Theoretical approaches to complexity and the criteria defining it have filled volumes on both sides of the Iron Curtain and continued to be explored also after its dismantling.149 The emphasis in studies of complex society, and especially the state, has shifted from searching for the causal mechanisms arising from internal and external factors150, to examining the role played by individual agency (Flannery 1999; Brumfiel 2000). Most of these topics are beyond the scope of this dissertation; I will be focusing on the forms of Thracian complexity.

The questions discussed on the following pages are twofold. First, how does a state, or a state alternate (to use Grinin’s variant151), manifest itself in the archaeological and historical record, and how can survey help us detect it? Second, what anthropological models best fit the Thracian socio-political organization, and how adequate they are?

149 Claessen and Skalník 1978; Cohen 1978; Snodgrass 1986; Morris 1991; Stein and Rothman 1994; Feinman and Marcus 1998; Stefanovich 2003; Grinin 2004b.
150 Barfield 1989; Grinin 2004a.
151 Grinin (2004, 94) argues that we need to define in greater detail the variable complexity of societies that did transition to the early state. He divides them into “inherently pre-state” societies, whose “existing size and complexity prevent their transformation even into a small state”. The other group is “early state analogue” and includes polities that have the prerequisites for transforming into the early state but for one or another reason do not, remaining stateless “state alternatives”.

209
The opinion of scholars differs when it comes to the question of the political organization of the ancient Thracians. In the Early Iron Age, the scarce information leads to a consensus that the Thracians were a “chiefdom” or a “Homerian society”\(^{152}\). In the Classical period (5\(^{th}\)-4\(^{th}\) century) opinions diverge. Did the Thracians form a full-fledged state, or should they be classified with other pre-state or non-state “barbaric” societies existing on the northern borders of Greece?

Seeking to answer both of these questions, I must begin with the definition of state. Written sources have usually been taken as providing decisive evidence for the assessment of ancient societies, yet like other kinds of evidence they suffer from biases, omissions, and errors. It is the definition of the state that determines which one of the two types of evidence is likely to be more accurate and relevant to state formation, and how they should be combined responsibly. An “événementielle” view of the state as a short-term unstable phenomenon may not register in the archaeological remains. A longue durée view, on the other hand, requires longevity sufficient to produce an impact on material culture as a prerequisite for the existence of state (Cohen 1978; Price 1978). As my study derives data from archaeological surface survey, I base my definition on a long-term perspective. For me a state must exist long enough to produce a major transformation of its original society – a transformation significant and durable enough to leave permanent traces in the archaeological landscape.

After a brief review of the diverging opinions on Thracian social organization, the first half of this chapter focuses on the concept of the state from an (American) anthropological standpoint. This is followed by an exploration of Bulgarian ideas of the state in the context of ancient Thrace. In the second half of this chapter, the trajectory of Thracian complexity will be reconstructed on the basis of available archaeological indices, with an emphasis on the new survey dataset and using two theoretical approaches. First, the “ground-plan” approach proposed by Kent Flannery will be used to test the archaeological presence of institutions in Thracian society (1998). This approach compares the remains of buildings, tombs and settlement patterns among different states and can be used as the basis for a neo-evolutionary assessment of Thracian statehood. Second, the other models proposed by neo-evolutionary critics will be used to produce an alternative explanation (Blanton et al. 1996; Pauketat 2007) incorporating historical and survey evidence. The two results will be compared for their explanatory power.

\(^{152}\) Bulgarian scholars actually call it “Mycenaean society” (Jordanov 2004, 15; Fol 1977)
VIII.1.1. **Diverging Opinions**

As the historiography in Chapter Two illustrates, Bulgarian historians are for the most part still happy to accept the Greek view of Thracian society as recorded in the literary sources. The Thracian polity is labeled a state on the basis of the Greek term *arche* used by Thucydides to refer to Sitalces’ Thrace during the 5th century BC.

Historians agree that this polity emerged as a result of multiple causes: contact with the Greek colonies on the Aegean and Black Sea coasts and the resulting intensification of trade; wealth acquired through craft specialization, especially metallurgy; and, finally, interactions with the Persian Empire, especially in the wake of the Persian invasion of Thrace.

Archaeologists are more cautious, preferring to conceive of Thrace as a “tribal confederacy” or more ambiguously as a “kingdom” (Theodossiev 2011; Föl 2000). Some argue that Thrace was a “state” on the basis of coinage or spectacular mortuary finds (Jordanov 2004; Kitov 2000; Dimitrov 2011). Neither the terms “kingdom”, or “state” is based, however, on an explicit theory of state formation. Instead, they arise from the indiscriminate use of archaeological and historical sources, and from anachronistic political and ethnological definitions.\(^{153}\) While Archibald (1998, 4) draws on theoretical debates, employing the core-periphery model for the emergence of the Thracian state, she relies heavily on historical sources to identify the diagnostic features of the Odrysian state. As the historiographical review showed, Bulgarian archaeologists are only beginning to come to grips with a topic that American anthropologists have been working on for the last forty years.

VIII.2. **The Neo-evolutionary Approaches to the Thracian State**

VIII.2.1. **Development of the Neo-evolutionary Model**

The evolutionary theory of state formation was developed in the 19th century by Morgan’s model of stages, which classified societies according to their level of advancement on a scale ranging from “savagery”, through “barbarism”, to “civilization”. This model was later adopted by K. Marx and F. Engels, who modified the central criterion of the model of social stages to reflect...

\(^{153}\) Often the types of archaeological evidence that support the interpretation of Thracian state are used exclusively, while other divergent categories are excluded (absence of cities, absence of writing, legal code, public art, etc.) Using more recent parallels such as projecting the Medieval ‘feudal system’ on the social organization of Classical Thrace is not supported by current evidence (Zlatkovskaya 1969).
economic modes and relations of production. In the 20th century, Morgan’s model was replaced by those of the neo-evolutionary anthropologists Leslie White and Julian Steward whose main agenda was to devise a scientific approach that would allow them to quantify ethnographic data. Different aspects of the societies came under scrutiny, with an emphasis on measurable criteria, such as energy consumption and expenditure, or adaptation to the environment (seen in strategies of food procurement, the accommodation of risk factors, and energy exchange). According to these criteria, societies were placed into the predefined evolutionary categories of "bands", "tribes", "chiefdoms" (a somewhat later addition), and "early states”.

This model was adopted and promoted among archaeological anthropologists by Sahlins and Service (Sahlins, Service, and Harding 1960; Service 1962). Prehistoric societies were modeled after the ethnographic types recorded in the modern "traditional" societies studied by sociocultural anthropologists. Testing and analyzing ethnological types became the core of “Americanist” archaeological research for the next two decades. The debate focused on causal mechanisms associated with different theories of formation. From administrative theory (also called managerial) (Wittfogel 1957, and more recently: Halstead, 1982 #431), the models developed to include coercive theory (Carneiro 1970), internal conflict (Diakonov 1969), and ideological theory (Wright 1994). Mono-causal theories were flanked by multi-causal or synthetic theory (Adams 1966; Renfrew 1972). The intermediate stages between states and tribes have attracted much attention; volumes of commentaries emerged refining and problematizing existing taxonomies.154

Much discussion centered on chiefdoms, a term introduced by Service for “redistributional societies with central agency of coordination” (1962, 134). This definition was adopted, revised (abandoning redistribution as a central criterion) and expanded by anthropologists at the University of Michigan. They shifted the emphasis to top-down political management; with the chiefdoms divided into “simple” and “complex” categories according to the number of administrative levels in the society (Steponaitis 1978; Carneiro 1981; Brumfiel and Earle 1987b; Brumfiel and Earle 1987a).

The emphasis on the political sphere is reflected in the neo-evolutionary approach, where the stress shifts from causal mechanisms to “the transformational potential of political administration.” Information processing emerges as a diagnostic feature of complexity (Wright 1994). A neo-evolutionary approach becomes “modified” as its subjects expand to the inclusion

of social tensions, competition, historical contingencies, and personal agency in governmental organization.155 The stress on the stability of the state and its ability to resolve internal conflict, which was topical in the late 1970s (Cohen 1978), is replaced by an emphasis on the dynamic and adaptable character of political administration.156

Despite these refinements, many criticisms have been leveled at various aspects of the neo-evolutionary approach. The tenacity of its focus on hierarchy and an urban society as a marker of complexity has been heavily contested (Crumley 1987, 1995b). Its typology of social stages has come under attack for its reductiveness, generalization, and idealized rigidity (Yoffee 1993). The linear determinism of progressive evolution has been seen as a step backward, as has its the excessive emphasis on institutions as drivers of social change (Blanton et al. 1996; Grinin et al. 2004; Yoffee 2005a). Some scholars have focused primarily on critiquing the neo-evolutionary conceptual framework (Yoffee 2005). Others, working within the neo-evolutionary framework, have advanced their own modified societal definitions.157 Still others have articulated alternative approaches to social organization of societies, such as heterarchy (Ehrenreich, Crumley, and Levy 1995), corporate strategies of dual-processual theory, or the so-called “backdoor approach” (Pauketat 2007)158

Despite this criticism, the neo-evolutionary approach still dominates the study of social organization in the Americas; the grant funding it wins its proponents affirms its continuing influence (Pauketat 2007). Despite fierce scholarly debate surrounding the terms the “early state” and its putative predecessor the “chiefdom”, these categories remain popular (Flannery 1972; 1998; Grinin et al. 2004; Jordanov 1998). The tenacity of the neo-evolutionary approach has been summarized in review article by one of its proponents, Joyce Marcus. Marcus stresses that the critique was met with the refinement of the existing models as well as of the

155 As mentioned in the text, these themes were respectively presented by Johnson 1982; Brumfiel 1994; Blanton, Feinman, Kowalewski and Peregrine 1996; Flannery 1999.

156 Fascination with change and fluidity of social relationships leads scholars to recognize that political administration “could be rapidly transformed along with the society that was built up around it” (Pauketat 2007, 191-96).

157 The modified definitions include terms such as “inchoate state” or ‘state alternate’, which are intended as finer variants predicting the developmental trajectory of the society or defining its distance from the ‘early state’ (Claessen 1981; Grinin 2004, 94).

158 Hunters and gatherers gradually replaced the ‘bands’, which were deemed a misleading term by ethnologists. ‘Segmentary society’ was substituted for Service’s ‘tribes’(Fried 1967), because that concept already had different meanings in different contexts and cultures. Finally, ‘middle-range society’ became the substitute for the much contested term of ‘chiefdom’, rendering it a bit more palatable (Price and Feinman 1995; Earle 1997). These new labels represent a move towards less bounded and more neutral terms that have the promise of greater utility (Yoffee 2004, 7).
evolutionary theory: "Evolution in its last version in the US is seen as multi-linear and encompasses topics such as cultural and social evolution, and ethnogenesis" (Marcus 2008, 252). As for the neo-evolutionary typology, Marcus states that "no aspect of evolutionary theory is more misunderstood that these social types. They have been attacked as rigid even when they are not, as stages even when they are not, and as unilinear even when they are not" (2008, 252). Their utility is in their function as “ideal social types that may not exist in real record but are useful to think with when dealing with and comparing real-world data”. Serving as "shorthand for different social forms and types," these categories ensure that controlled comparisons can be carried out on societies of the same level of complexity or socio-political integration (Marcus 2008, 252). It has been widely agreed that each of the anthropological categories embraces a wide range of different societies. Describing them via the social types is merely a tool to facilitate comparisons that are easier to think with than let's say placing a society on a "neutral" numeric scale of complexity from 1 to 100.

VIII.2.2. **Concepts and Categories - Approaching Complexity**

Besides developing different theoretical definitions of the state, archaeologists have focused on determining the material indicators of complex societies (Adams 1965; Wright 1977; Brumfiel and Earle 1987a). Material culture tends to reveal only the extensive and long-term residues of major social changes, while their utility is limited when it comes to short-term fluctuations and isolated historical events (Snodgrass 1987).

Before I assess the Thracian polity and try to position its material remains somewhere on the scale of complexity, it is worthwhile to review what the rubrics of tribe, chiefdom, and state commonly mean. Given the goal of this chapter to bridge Bulgarian and western scholarship, such a review of the basic terminology of neo-evolutionary theory will provide a common ground for the reader.

VIII.2.2.i. **Chiefdoms**

VIII.2.2.i.a General Definition

A “chiefdom” is a term for a political unit that transcends local, autonomous villages (Marcus and Feinman 1998, 4). Political unity is attained under the banner of a divinely-sanctioned leader or “chief” (Wright 1994). The mechanisms that bring about the political unification and pave the way for chiefly lines in human society have been addressed in a number of theories,
mentioned above. Perhaps the most effective and elegant ones include the conflict theory of Robert Carneiro (1970) and the ideological model of Henry T. Wright (1994). From decentralized, egalitarian, “tribal” or “segmentary” societies emerge stratified, regional polities with populations of thousands to tens of thousands – the “chiefdoms” (Pauketat 2007, 17; citing Earle 1997, 17). The government of chiefdoms is based on hereditary and hierarchical but still largely kin-based arrangements, with an aristocratic ethos maintaining that the chief should be only the first among equals (Service 1975, 16). The government is rather limited as it has no formal, legal apparatus for forceful repression, or the capacity to prevent fission. In Service’s view, chiefdoms were universally theocratic, with submission to authority taking the same form as that of a religious congregation to a chief-priest (Service 1975, 16).

Over time after the initial unification, the heterogeneous cultural identities of the people involved in a chiefdom also tend to merge. When this transition is complete, a significant threshold is crossed. A society that crosses this threshold makes a “qualitative step...[...].everything that followed, including the rise of states and empires, was, in a sense, merely quantitative” (Carneiro 1981, 38).

Flannery sees the chiefdom managed by fulltime specialists, political, economic, and religious; he agrees with Service that the chief’s most important role may have been that of priest. “The office of ‘chief’, in Flannery’s words, “exists apart from the man who occupies it and it must be filled with someone of equally noble descent. Chiefdoms maintained elaborate genealogies to establish this” (1972, 403). But to what extent did chiefdoms have institutionalized governments and stratified societies? There was a huge variety of chiefdoms, but as a rule there was moderate stratification in the society, since it was still organized along kinship lines.\footnote{The rule of thumb was that there was more stratification than in a segmentary society and less then in a state. Both division lines remain fuzzy as all the criteria are relative.}

If, in anthropological terms, a chiefdom is a moderately stratified society with a permanent ruling class that exercises control that transcends autonomous village units, by what
archaeological markers can we recognize a chiefdom? The archaeological clues for chiefdom come in the form of mortuary variability, growing settlement hierarchy, and intra-site stratification. They mark increasing social differentiation at the site-level as well as the emergence of a decision-making hierarchy at the regional level.

VIII.2.2.i.b Archaeological Markers

(a) Mortuary Record – Inequality and Warfare

The emergence of a chiefdom should be manifest in increasing social inequality among its members. This can be best seen in mortuary variability, including both cultural and skeletal material. One clue used by archaeologists is the appearance of burials of infants of high status – “status which because of their youth must have been ascribed at birth” (Flannery 1972, 403). High-ranking members of chiefdoms reinforce their status with sumptuous goods, some of which archaeologists recover in the form of "objets d’art" in gold, silver, alabaster, glass and whatever material is locally scarce and whose procurement expresses and symbolizes the power of the chief. As for skeletal material, one might expect signs of better nutrition among individuals of the emergent upper class due to access to higher quality food.

Sometimes war-specific injuries or violent death might be evident, particularly on elite skeletons. One of the marked features of chiefdom according to Carneiro is intense warfare engaged in by the leading warrior class. If elite skeletons show consistently higher incidence of violence or injury, we can deduce they belonged to the military aristocracy that supported a chiefdom. Other evidence for warfare might be sought in the destructions of houses, the proliferation of weapons, and the erection of fortifications around settlements. Depictions of warfare in art and official iconography may also be informative.

(b) Settlement patterns

First of all, chiefdoms have larger populations than simpler societies, arranged in more complex hierarchies. The “capital” villages of paramount chiefs may have populations in the thousands, and these large villages may be archaeologically detectable. Not only is the absolute size of the largest villages possible to detect, but settlement hierarchies should also be visible in the archaeological record. Neo-evolutionists agree that settlement patterns in simple chiefdoms should have two tiers, while complex chiefdoms may have a three-tiered hierarchy (Flannery, 1999, 4; Wright 2000). Flannery describes chiefdoms as growing by “taking over their neighbors, demoting the latter’s chiefs to sub chiefs or even replacing them” (Flannery 1999, 4). The
political geography might change as the number of centers of the same size goes down, being replaced by larger centers. The low number of new large centers indicates a reduction in the number of competing polities/neighbors and marks their absorption into a leading polity, the chiefdom. Surface survey can detect this process. For example, archaeological survey in the area of Bronze Age Pylos in Greece has demonstrated that the settlement and mortuary patterns reveal competition among individual polities – in the “further province” and the “hither province” - before their gradual absorption into the state of Pylos (Bennet 1999, 10; 1995, 600-601)

\[c\]

Specialization – Incipient

Some internal specialization should be expected in both bureaucracy and production. This may not include fulltime exclusive specialists. Usually the specialization will involve the emergence of a military aristocracy and a priestly bureaucracy, archaeologically evident in the presence of aristocratic and priestly residences, and intra-site stratification as different spaces are used for different administrative purposes.

Chiefdoms may have higher degrees of craft specialization, both in necessities and in luxury goods. Archaeological examples from the Near East include villages that specialized in the manufacture of high quality pottery, obsidian blades, copper, and flint. Yet, while some village dwellers may start to specialize, “there usually is as yet no class of craft specialists, no occupation castes as in stratified societies. Search every craftsman’s house in the archaeological remains of chiefdom and you will usually find tools which indicate he was a farmer, too” (Flannery 1972; 403). As was the case with hierarchy, chiefdoms thus inhabit an intermediate position on the continuum of social complexity, with some, but incomplete, craft specialization. Archaeological evidence for craft specialization may, therefore, indicate a chiefdom (rather than a state), unless there is evidence for a class of full-time specialists, particularly if they are under the control of a central administration. Such was the case with at least some of the craft specialists associated with the Mycenaean palaces, where the Linear B tablets record the provision of raw materials and the output of craft goods under state control (Shelmerdine and Palaima 1984)

Having summarized the archaeological expectations of chiefdom, the state is the next step to come. Only a tiny percentage of chiefdoms ever gave rise to a state; many of the first states evolved in the dynamic of cycling chiefdoms. Isolated polities do not turn into states.
These arise in the context of competing chiefdoms, when one of the rival chiefdoms succeeds in taking over their neighbors and turning them into a province of their polity (Flannery 1995).

VIII.2.2.ii. States

VIII.2.2.ii.a General Definition

Definitions of the state from the neo-evolutionary perspective converge on the authority and professionalism of the central government and the mechanisms of control, especially the rule of law and the monopoly of force (Service 1962, 175; Fried 1967, 235; Johnson 1973, 1-4). While the exercise of law and monopoly of force have been contested (Cohen 1978), the hierarchical organization of problem solving has been re-instated: “the most striking differences between states and simpler societies lie in the realm of decision-making and its hierarchical organization, rather than in matter and energy exchanges” (Flannery 1972, 412).

Since the 1970s, researchers of the state emphasized the study of information processing. Evolving societies generate more information which needs to be processed, collected, distributed, and used. As Kent Flannery has pointed out, one of the characteristic trends of an evolving state society is a gradual improvement in the capacity for information processing, storage, and analysis (1972, 409).

While in segmentary societies, the basic decision making may be adequately done by a headman, in chiefdoms – where the population is often very large, warfare is frequent, agriculture is complex, crafts are more highly developed, and exchange is intense – information is managed through ritual. Much of it is done by sanctified hereditary chiefs and their retainers, to whom some of the responsibility is delegated. This chiefly retinue may engage in little or no food production and, therefore, must be maintained by the society; presenting an expensive appendage to it.

States may not be qualitatively different, but they are quantitatively different. They require an even more elaborate and centralized managerial superstructure, which must be supported by the producing “commoners”. Royal bureaucracies that process data for hundreds of thousands of people require costly tribute, corvée labor, and are often paid through tribute exacted from less powerful neighbors (Flannery 1972, 409).

161 Segmentary societies are relatively small autonomous groups, often agricultural, integrated by the belief in common ancestor and with no hereditary rank (Flannery 1995, 5-6)
Although Flannery minimizes the issue of energy exchange when comparing states and pre-state societies, a robust economic structure remains a strong correlate of a state, necessary for the maintenance of the bureaucratic apparatus and manifest through the state’s ability to raise large revenues either via tribute collection and the imposition of a draft or corvée labor (1972, 404).

Centralization and the existence of a professional ruling class remain prime diagnostic features of a state. The latter are according to Kent Flannery “largely divorced from the bonds of kinship which characterize simpler societies” (1972, 403). The argument that the state is strictly “government by professionals,” supported also by Wittfogel (1957, 239), should not be conflated with the existence of elections and an official hiring process. Rulers in ancient states may still appoint their kin to leading positions in major institutions, such as temples or economic and military offices. The distinction is that these positions exist independently of their occupants, having been institutionalized.162

A point of some controversy has been the issue of state stability. The conventional expectation is that states should be permanent long-term phenomena. Ronald Cohen (1978, 4) considers fission-prevention a key diagnostic feature: “to be a “true” state the system should exhibit some stable or permanent hierarchy that can withstand the disruptive effects of succession struggles.” Yet, stability need not always be a prerequisite of a state. Kent Flannery has suggested that states may be quite unstable, especially if their decision-making system is highly centralized (Flannery 1972, 409). He distinguishes between states where decision-making is less centralized and those where it is “highly evolved” and complex. In the former, one subsystem takes a long time to affect other subsystems, and as a result the state is likely to be stable. In the latter, more influence is exercised among subsystems under the rule of a strong and more centralized management at the top of the hierarchy. Such centralized, powerful systems are often unstable (Flannery 1972, 409). Joseph Tainter (1992, 116) points out that more complex systems engender more complex interactions. These interactions have a disproportionately higher potential for problems, conflicts, and incongruities. With the increase

162 “States have a powerful economic structure; they are characterized both by reciprocal and redistributive exchange and often by markets as well. The economy is largely controlled by an elite (usually hereditary) with preferential access to strategic goods and services. These elite constitute the usual stratum from which high officers are recruited. As in chiefdoms, the office itself exists apart from the man who fills it; and states have many more offices” (Flannery 1972, 404).
in complex linkages among subsystems, the potential for erroneous decisions and catastrophic accidents increase. Robust centralization may, therefore, lead to system failure.

States may be more successful competitors, pushing aside or absorbing simpler and more stable systems that stand in their way. They are also inherently more costly and prone to cumulative organizational problems. While scholars agree that states are stratified and hierarchical systems with robust information processing capabilities, the importance of stability as a defining criterion remains a controversial issue.

VIII.2.2.ii.b Finding States Archaeologically

States have enjoyed as much attention as they have received because they have left impressive remains in both the material and the immaterial realms. The archaeologically identifiable characteristics of a state are: the existence of a supra-regional unit with a formal administrative hierarchy within a ranked society, specialization of crafts and social functions (including the existence of a bureaucratic elite, priesthood, or ritual caste), regional control centers, literacy, and monumental art or architecture. Some of these characteristics can be pinpointed in the archaeological data, others such as the social networks, reciprocal relationships, exchange networks, and tribute reception may be documented in written sources. None of these sources are unequivocal or straightforward. There are gaps in the archaeological data, and divergences, personal bias, and agendas in the texts; all of these render the identification of the state difficult.

(a) Settlement Patterns and Structures

Given the large populations of states and the need for many levels of decision-making in order to govern them, G. Johnson and H. Wright (Wright and Johnson 1975) suggested that a four-tier settlement hierarchy should be among the diagnostic archaeological features of a state.

They suggested that two to three levels of settlement are indicative of a chiefdom, whereas the states tended to have a hierarchy of at least four levels: cities, towns, large villages and small villages. Flannery adds that while there is no “hard-and-fast "law"” that could be applied here, the number of levels of settlement has proved useful in other world regions, such as the Valley of Oaxaca, the Maya Lowlands and the north coast of Peru (1998, 16, plus citations therein).
In his discussion of hierarchy, Flannery makes a crucial distinction between "administrative hierarchy" and "settlement hierarchy" (1998, 16). While the former refers to the number of tiers of administrators in a system, the latter refers to the number of tiers of community sizes. Settlement hierarchy may be detectable through the comparison of site sizes, but administrative hierarchy need not be archaeologically detectable in societies without written texts. Administrative institutions may be indicated in some of the tiers of the settlement hierarchy, but often they can only be detected through the excavation of public buildings and residences (Flannery 1998, 16).

In addition to a four-level regional settlement pattern, state institutions are correlated with the existence of monumental architecture, including royal residences, priests’ residences, royal tombs, and other buildings (1998, 15). Kent Flannery searches for buried foundations of these structures in his latest state identification process, entitled a “ground plan” approach (1998). Flannery does not explicitly mention what defines a temple or a palace in a given culture. He bypasses defining exact parameters by presenting instead a comparative treatment of archaeological evidence from Mesopotamia, Mesoamerica and the Aegean. While interested mainly in these most prominent features of states, Flannery admits that there are many other equally valid archaeological clues that indicate state-level complexity, such as fortifications, state-sponsored craft production, and military and political expansion (1998, 15).^{163}

(b) Stratification and Specialization

At the level of regional or smaller centers in a state-level hierarchy one expects to find traces of intra-site stratification and functional differentiation, as “residential patterns [are] often based on occupational specialization rather than on blood or affinal relationship” (Flannery 1972, 403). Excavation of houses should flag differences in access to wealth, and the furnishings should indicate corresponding differences in social status and occupation of their owners. The presence of full-time specialists and their workshops, specializing villages, long-distance trade and “official art” are signs of the state’s investment and support of the crafts as well as its use to control ethnically diverse populations (1972, 404).

^{163} Plus there are numerous other clues that require more than excavating, such as literacy and administrative use of script, establishment of laws and the ability to enforce them (Marcus 1998, 6-7).
(c) Information processing

With large amounts of information processed by the state, excavation should reveal complex storage and retrieval facilities. The physical remains may range from governmental buildings and storage and archival rooms to written documents and art. Johnson considers the appearance of writing as “one possible adaptive response to an increase in the amount of information processed by the decision making organization of a society” (1973, 3). The growth and development of these facilities is a measure of the amount of information processed by a society and of its increasing organizational hierarchy.

(d) Decision Implementation, Ideology and Law

Self-awareness and a legal constitution are critical features of a state. The implementation of state decisions is a necessary condition for the existence of state. It signals the acceptance of state authority by its subjects. It is usually expressed through specialized labor, taxes, and tribute collection, whose outputs are visible in long distance trade, state craft production, infrastructure, and building. As Johnson states, “implementation may require standardization of procedures of individual and group behavior. Such standardization may be institutionalized in custom and/or law” (1973, 4). In order for the society to function and be regulated, a monopoly of authority needs to be established. Social inequality needs to be justified and legitimized in order to become accepted. Depictions of the ruler, legitimizing his dynasty, explicating and legitimating his origin, creating a conscious vision of a state, and changing the self-awareness of subjects are among the best examples of accomplished state.

(e) War and Violence

“The state attempts a monopoly of force and is characterized by true law.[…]. While individual citizens must forego violence, the state can wage war; it can also levy taxes, draft soldiers and exact tribute” (Flannery 1972, 404). Archaeological excavation may show the remains of fortifications in the capital cities and a lack of fortifications in towns that have been subjected to the central polity. Survey may point to the growth of fortresses outlining the limits of the state territory (Limes Romanus), or the existence of an empty buffer zone that marks a border between two competing complex polities. The growth of small unfortified settlements on the interior of a polity may also be one of the clues pointing towards a central authority that has claimed a monopoly on force, and supplies both protection and punitive force.
VIII.2.2.iii. **Conclusion**

Archaeological data are ambiguous and circumstantial in nature. Not all the traits of a state may be clearly visible in the archaeological data. Many require considerable extrapolation. If we accept Carneiro’s view, the difference between states and pre-state polities should be quantitative, not qualitative. The principal archaeological marker of a state should, therefore, be its impressive scale. Yet, degrees of this scale are again positioned on a continuum, and cannot be gauged without comparisons.

Having briefly summarized the defining features and archaeological markers of states and pre-state polities, I can now test how well this model applies to the case of ancient Thrace. While my own fieldwork has provided me with a perspective on the settlement patterns, I will contextualize it with excavated archaeological material and available historical and epigraphic sources. As space here is limited and only the most salient structures and historical events can be discussed, I will take Flannery’s ground-plan approach in my treatment of the Thracian state.

VIII.3. **The State in Thrace in a Neo-evolutionary Perspective**

In a review of the evidence for the Thracian polity from a neo-evolutionary perspective, three types of evidence are the most indicative of the character and nature of its organization: the rural landscape, the cities, and the mortuary structures. My expectation is that the landscape will reflect profound social changes. New social structures will transform the size and character of settlement; converting it into urban or rural zones. The accumulation of population in cities and construction within or outside them will be further evidence of social change. The distribution of villages and cities, and the extent of their spheres of economic and political control should disclose power relations at a large scale. At a smaller scale, the construction of individual structures, such as temples, palaces, and burial monuments, will manifest the emergence of new political authority (Flannery 1998, 21). In an attempt to distinguish between a state and a middle-range society, such as a chiefdom, or any other alternative, I am primarily looking for elements of centralization. In a state I am searching for material remains of institutions, such as the seat of a magistrate, along with evidence of greater stability and more complex social and economic organization. With regard to chiefdoms, I seek to identify individuals or groups (not institutions), in whom power and wealth were invested (Collis 1995, 77). Examples of these include charismatic leaders, usurpers, and skillful negotiators, gender
and age groups, who can harness power through the manipulation of social relations, naked force, economic resources, or ideology (Earle 1997, 7).

Flannery cites an interesting observation of Sanders (1974) that differentiates states from chiefdoms archaeologically. Chiefs could organize corvée labor to build temples and other public buildings, yet they could not have their residences built for them. Kings, on the other hand, could use corvée labor to build their palaces (Flannery 1998, 21). An analogue to this distinction of authority should be present in all categories of archaeological evidence. Flannery in his “ground plan” approach argues that the evidence of complexity must be aggregative and consistent through multiple dimensions of the archaeological record: “Taken alone, spectacular tombs are usually insufficient evidence for a state. However, when they occur beneath the floor of a palace in a society with a four-tiered hierarchy, they can represent an additional line of evidence” (1998, 48). This hypothesis is highly relevant to Thrace and will be examined in the following survey of settlements, cities and structures through time.

VIII.3.1. Chiefs and Kings in the Myths and Memories

Given the poor archaeological evidence, the background for the Late Bronze Age and Early Iron Age roots of the Thracian polity is often envisioned with the help of the Homeric epics. The Thracian presence at Troy is used as a marker of a distinctive and independent Thracian ethnic and cultural community during the Late Bronze Age (Jordanov 2004, Fol 2000, 1997, 1972, Porožhanov 1998). The readiness of the Thracians to assist the Trojans points to the existence of friendly relations between the Aegean Thrace and the Anatolian city. The armor and horses of king Rhesus seem to prefigure the Thracian wealth proverbial during the Classical period. In Jordanov’s opinion, the Trojan War testifies to the existence of a confederacy of Achaean chiefdoms on the one hand and a Thraco-Trojan confederacy on another (2004, 35). The idea of this confederacy is not directly supported by the archaeological data. The material culture of Thrace and the Anatolian northwest shows parallels in the use of “knobbed ware”, dated to the Late Bronze Age (Hristova 2011). Interpreted as the evidence of migration, emulation, or intermarriage, these knobbed amphorae can hardly be read as manifestations of a political contract. The Homeric epics, rather than preserving the social structures of the Bronze Age have been shown to depict the contemporary reality of 9–7th century BC Greece (Donlan 1980; Lord 1991). The appellation “Mycenaean Thrace” created by A. Fol to reference the Thracian Bronze Age society on the basis of Homer is based on a naïve use of the epics and should be dropped. If
there was a term based on the epics, it should be the “Homeric Thrace”, which should apply to the Bulgarian Early Iron Age, an equivalent of the Greek Archaic period.

The Greeks of the Archaic period were likely intimately familiar with the Thracians from the north Aegean islands and coast. Homeric epics express the same aristocratic ideal operating among the Greeks and Thracians of the Early Iron Age (Donlan 1980). The Homeric “kings” gain their status through the display of one or a combination of the following personal characteristics: military prowess, cunning, and wealth. The loyalty of their retinue depends on the ruler’s ability to provide loot and feasts (Runciman 1982; Earle 1997, 12). The relationship of the Homeric kings and their followers is consistent with Earle’s or Flannery’s description of the constant competition between aggressive leaders (Earle 1997; Flannery 1999). The “Homeric type of society” with its aristocratic ethos is, therefore, a close parallel of the anthropological type of chiefdom.

It is not clear how widespread “Homeric society” was in inland Thrace, as the epics only discuss the coastal regions. The archaeological evidence for Early Iron Age settlement in the interior shows two levels of settlement hierarchy, tiny sub-hectare scatters, and sprawling 4-6ha villages. In the fertile soils of the Yambol region, these settlements occur at a high density, while in Kazanluk they are sparser. Evidence from the rest of Bulgaria is consistent with these findings. Most Thracians lived in large yet dispersed villages, engaging in agriculture and pastoralism. Some manned the metal production centers in the eastern Rhodopes, others lived at the occasional fortified sites (Koprivlen, Nebet Tepe, Dragoyna, Perperikon). These stone built elevated outposts could have served different functions, ranging from ritual to mercantile (Popov 2002, 676; Nehrizov 2005a), depending on their location near ore sources or road intersections; no traces of civic institutions have been attested in them. The majority of inland Thracians were, it seems, farmers or semi-nomadic pastoralists during the Early Iron Age. This majority was ruled by a small group of hereditary elites, whose remains have been found in the Early Iron Age burial mounds. Their status is best expressed in the prestige goods

164 While the term “Mycenaean Thrace” is retained as late as in Echt (2004), Yordanov (1998, 2000) and Porozhanov (1998), it is based on an old interpretation of the epics by Mihailov (1957) and strictly critiqued by the Bronze Age specialist Leshtakov (2005). Oral tradition scholars point to the differential preservation of social and physical realities within the orally transmitted knowledge; social customs and relations have a short survival time in oral tradition assessed usually at 200 years maximum (cf. Vansina 1985; Foley and Parry 1987; Lord 1991). Since Richard Janko (Janko 2007, 228-31) dated the epics on basis of linguistic analysis to the third quarter of the 8th century BC, the picture of society captured there can hardly be extended to apply to the Late Bronze Age.
and labor expenditure invested in their mortuary structures, megalithic tombs in SE Thrace (Delev 1982; Triandaphyllos 1983) and other burial mounds throughout Bulgaria (Škorpil 1925; Stoyanov 1997; Özdögan 1998). A distinctive image of Thracian Early Iron Age rulers emerges from these tombs. Grave goods including objects of bronze, iron, and precious metals acquired through trade or guest friendship mark their special status and symbolize their skills at social networking (Babic 2001). The presence of weapons signals their military might. Buried under large tumuli, flanked by their family members or sacrificial victims, the style of their burial is analogous to that of the heroon of Lefkandi, a quintessentially Early Iron Age burial of a big man in Greece (Thomas and Conant 2003).

VIII.3.2. **Princes and their Statelets in the Classical Historians**
During the 6-5th century BC, the Thracian rulers emerged from the anonymity of the Early Iron Age; their names and actions are recorded by Greek writers. It is king Teres who leads the Odrysians during the time of their emergence and unifies a large number of the interior Thracian tribes at the turn of the 5th century BC (Kazarow 1933; Fol 2000). The historical sources underscore the growing power of the Thracians, giving a snapshot of the Thracian elites as indulging in conquest, raiding, hunting and drinking, a picture not dissimilar from the Homeric heroes.

The mortuary record, prominent and thoroughly investigated, is reasonably well understood, but supplies only one aspect of the material evidence (Archibald 1998; Theodossiev 2000a; Kitov 2001, 2004). Historical sources provide a valuable but narrow view of contemporary society. Other sources of evidence need to be examined and compared to neighboring, better-researched polities before a balanced interpretation of Thracian complexity can be reached. TRAP results offer the sort of evidence that has so far been missing, namely settlement patterns.

VIII.3.2.i. **Settlement patterns**
It has been mentioned in section VIII.2.2 above, that site hierarchy can be used as a proxy for administrative hierarchy and help with the evaluation of social complexity, distinguishing between chiefdoms and states on the basis of number of levels in the settlement and administrative hierarchy.

165 Early Iron Age burials of females and children with status signs were found north of Haemus at Sboryanovo (Stoyanov 1997) and at Gluhite Kameni in the Rhodopes (Nehrizov 2009).
Since the Thracians did not have a script of their own, and inscriptions have survived only from a handful of sites dated to the 4th century BC (such as Kabyle, Seuthopolis and the coastal poleis), the tiers of the settlement hierarchy emerging from surface survey remain the best proxies for administrative institutions.

Due to the lack of chronological resolution, the TRAP survey results in Yambol and Kazanluk do not reveal 6-5th century BC settlement patterns particularly well, since detailed studies of ceramic fabrics and local wares from stratified, dateable deposits are scarce. The settlements in the Yambol survey area show signs of continuity and conservatism; life at villages carries on in the Early Iron Age pattern with no apparent evidence of integration into any kind of supra-local network. Only two ranks of sites are evident both in the survey and the legacy data. The settlement in Kazanluk shows some spatial variation but remains dispersed and tenuous. The increasing extent of scatters is attributed more to post-depositional processes than to settlement growth. The increasing social differentiation of elites – visible in the mortuary realm – does not seem to be accompanied by a matching increase in site rank here either.

From the densely populated Early Iron Age landscape, Yambol experiences a drop in site number as it moves into the 6-5th century BC. In Kazanluk, the chronological resolution inhibits the differentiation of a distinct pattern here; only one site is securely dated into the 6th century; other Early Iron Age settlements may or may not continue.

If we press the data, the volume of settlement (and possibly population) drops at the transition from the Early to Late Iron Age in Yambol, affected by the abandonment of some of the earlier sites. In Kazanluk, the 6-5th century settlement character remains nearly identical with the earlier Early Iron Age period, but the settlement grows substantially once the Late Iron Age border is crossed. The 6-5th century BC appears rather distinctive when we focus on the scatter composition. Grey Ware imports and imitations appear at several sites, marking the residence (?) of elites who procure status goods in order to distinguish themselves from commoners. In Kazanluk, a lavish Grey Ware drinking set discovered at site 3126 on a mountain slope indicates an aristocratic residence or an area of special activity. In Yambol, imitations of Greek Black Slip enrich the traditional village settlements, marking increasing social differentiation.

TRAP results for the 6-5th century phase of the Early Iron Age point to only two tiers of hierarchy in both the Yambol and Kazanluk regions, giving little support to the claims of the

\[166\] The growth here is associated with later 4th century BC, rather than the 6-5th century period.
Thracian state in 6-5th century BC. Survey does not tell us what kinds of social structures bind these settlements together (if they are tied together at all) and produces the large fields of burial mounds. Kingship, clientship, religious belief, or military hierarchy could all be potential components of the social dynamics during this period. Yet if I were to classify inner Thrace as either a state or a chiefdom, the survey evidence would certainly fit the latter category better.

During the Late Iron Age, three levels of hierarchy emerge in both regions (if we accept the liberal estimates of site sizes in Kazanluk and include legacy data in the settlement analysis in Yambol). Administrative institutions have been archaeologically confirmed at the topmost of these settlement levels, next to fortifications and elite residences. The top tier sites, such as Kabyle, Philippopolis, Seuthopolis, and Pitsiros, take on the appearance of urban centers, marking a major change in settlement structure. This change points to a fundamental shift in social structure during the 4th century BC, a change that includes a broad spectrum of society, not just the elites.

VIII.3.2.ii. Cities
The development of urbanism is an essential part of the study of Thracian complexity. Elsewhere in Iron Age Europe urbanism has been connected with the expansion of craft industries, trade and social hierarchy (Büchsenschütz 1995). In inner Thrace, we can only speak of urban centers starting in the Late Iron Age (Balabanov 1990; Popov 2002; Archibald 2004; Bouzek 2005). Although many of these centers contained some Early Iron Age material, its extent and nature is poorly known due to a lack of study or poor preservation. In the Early Iron Age, only Kabyle, Koprivlen and Philippopolis may qualify as major hubs connecting trade routes between regions (Bouzek 2005, 2; Popov 2002). Archaeological work at the Early Iron Age levels of these sites has, however, been extremely limited.

No large regional centers are known in 6-5th century BC Thrace. By major regional centers, I mean places with a significant spatial extent and a large population that would attest the existence of administrators and specialist producers, whose cohabitation would require advanced information management and regulation (Claessen 2004, 77). The only secure evidence from the Early Iron Age (as opposed to speculation based on a few sherds from limited excavation) points to village settlements, some up to 5-6 ha in extent. Even the largest of these seem to have involved only basic household and communal activities, including the production, consumption, storage and barter of food and basic goods. Not much is known about artisanal production, although the manufacturing of metals was growing more prominent at the hilltop
sites according to the recent archaeological findings in Eastern Rhodopes (Nehrizov 2006; Popov, Jockenhovel, and Groer 2010). Scholars of ancient Thrace explain the absence of urban centers by cultural choices. Domaradžki (1998, 15) suggested Thracians did not invest their resources into permanent structures – just like the ancient Spartans, whose power, according to Thucydides, was not matched by the modest physical aspect of their polis. Archibald (2005) suggests that Thrace does not follow the typical Mediterranean pattern of urbanization because of prevalence of the *ethne* type of social structure. Since excavations have focused largely on sites with public architecture, it is possible – although unlikely - that other important features have gone undetected.

During the 4th century BC, the settlement patterns show substantial changes, especially the development of a more complex site hierarchy. It is at this time when the first large cities appear in the interior of Thrace. Kabyle and Seouthopolis on the Tundzha River, Pernik in West Bulgaria, Philippopolis and Pistiros near the Maritsa River represent some of the major populous centers (Archibald 2004; Loukopoulou 2004). Shumen and Sboryanovo north of the Haemus might also be added, although they may technically belong to the tribe of Getae (Antonova 1985; Stoyanov et al. 2004). While the urbanization of Kabyle, Philippopolis, Pernik, and Pistiros has been attributed to the armies of Philip II of Macedon, Seouthopolis and Sboryanovo emerge as the Thracian response to the Macedonian pressure (Domaradski and Taneva 1998, 41; Stoyanov 2001).

When we consider these sites, several common features emerge. The masonry of their fortification is of Greek Hellenistic style (Bouzek 2005). The sites are mostly compact and in defensible positions (Pistiros and Seouthopolis, which are on flat river banks, have thick defensive walls). The size of Seouthopolis is 5 hectares. The size of Philippopolis is hard to gauge given its burial under a modern city. The city founded here by Philip II of Macedon likely encompassed the rocky outcrop of Nebet Tepe, (ca 200m across) providing the basis for a local garrison. Kabyle is an exception to the site size average with its city wall enclosing 20 hectares. Half of this area comprises a steep rock outcrop of the Kabyle acropolis, which may have been inhabited. The pentagon-shaped wall of Seouthopolis encompasses an area of some 5 ha. None of the sites have yielded traces of any major structures prior to the 4th century, and even after that the traces remain ambiguous. None of them seem like they held more than 2000 inhabitants, if we use a population density of 100 people / ha. The actual city layout is only known in Seouthopolis and partially at Sboryanovo, showing a compact urbanized layout in the former and industrial
workshops in the latter with little intra-site stratification. Seuthopolis with its “citadel” is perhaps the only candidate for containing a structure indicative of a special institution.

Determining the scale of the political system in which these centers operated on archaeological grounds alone yields ambiguous results. Historical sources supplement the archaeological finds with the narrative of Macedonian conquest and shed light on the political structure of the Thracian hinterland. To understand what kinds of settlements these Thracian cities are, we should look to comparisons in the neighbors on the fringes of the Hellenic world who are Thracian peers in complexity (between chiefdom and state) (Khazanov 1978; Arnold and Gibson 1995).

One of the most useful comparisons for Thracian complexity is Celtic society. The Celts comprised indigenous groupings on the northern fringes of the Classical world in western and central Europe; they were the northwestern neighbors of the Thracian tribes. The Celts experienced the same kinds of pushes and pulls from the Hellenic world as the Thracians did, and responded in analogous ways, by creating a market for Greek goods during the Early Iron Age and developing a landscape of cities during the 4th century BC. Celtic society has been interpreted variously as a chiefdom, state analogue, or primitive state (Collis 1995; Haselgrove 1995, 87; Grinin 2004a). Colin Haselgrove (1995, 81) argues that the state interpretation is based on Roman sources, who exaggerate the sophistication of Celtic institutions. In his view the Celtic cities, the oppida, are more chronologically and spatially varied than would be consistent with a state. John Collis (1995, 80), on the other hand takes the appearance of Celtic oppida as a sign that the foundations of the political organization necessary for a primitive state were already in place.

The oppida are taken as a barometer of complexity. They comprise large fortified settlements emerging in the 4th century (in answer to the Hellenizing influence according to Bouzek (2005, 2)). The sizes of the oppida range widely. Heuneburg with its 4 ha belongs to the smallest ones, interpreted as a ruler’s residence rather than a city. Manching, Mont Beuvre, or Závist enclose hundreds of hectares (Büchsenschütz 1995, 54). These huge spaces often include open areas used for commerce and manufacture as well as habitation. It is one of Haselgrove’s arguments against the state that possibly their population was not as large as their size may indicate (1995, 81). All in all, the Celtic oppida exceed the urban centers of Thrace in scale by many times, as well as in diversity of function. The ability of the oppida to enclose large groups of people and livestock in times of stress speaks of foresight and an organizational infrastructure
at a higher level in Gaul than in Thrace.167 Despite this organizational ability and much social differentiation, the Celtic peoples never develop sufficient political power and remain labeled as a “large tribal union” or “confederacy” (Grinin 2004a, 97, 102). The arguments against the existence of a Celtic state should apply doubly in the Thracian circumstances.

Scythian society offers useful parallels to Thrace, due to its spatial, cultural, and social proximity. Strengthened by intermarriage and centuries of interaction, Scythian and Thracian aristocrats shared a similar culture, manifest in the warrior ethos, burial rite, and a love of prestige objects manufactured in Greece. Scythian political organization and social structure according to Anatolii Khazanov (Khazanov 1978) corresponds to that of the early state. The Scythians are known for multiple social classes and a system of exploitation of the agriculturalists by the nomads. The Scythian royal elites, despite their nomadic lifestyle, built large fortified settlements in the interior of the North Pontic steppe. A number of these have been archaeologically investigated, exhibiting remarkable size and the presence of quantities of Greek imports deep in Scythian interior. Kamenskoe, on the bank of the Dnieper River, enclosed some 1200 hectares (Grakov 1954). Belskoe, a Scythian metropolis excavated by Shramko (1987) encompasses an area of 4060 ha. Other defended sites whose palisades enclosed comparative areas were found in the Scythian hinterland (Bouzek 2005, 2, Fig.1).168 The sizes of these Scythian cities are immense. Like the Celtic oppida, they undoubtedly include large empty spaces for the protection of livestock or other purposes. Nevertheless, the excavations also indicate the existence of aristocratic, industrial and trading areas. In Kamenskoe and Elizavetskoe, the latter quarters have been attributed to the Bosporan Greeks due to Greek-type stone houses, artisanal workshops and 80% of imported material (Tsetskhladze 2000, 236-7). Evidence of an astounding volume of imports from amphorae to prestige goods underscores the economic power Scythian elites wielded over trading routes in the Black Sea (Khazanov 1978, 430). The quantity and diversity of structures and the sheer size of the Scythian settlements point to a social organization of yet another scale than that seen in the archaeological record of Thrace.

167 The absence of large cities with space for refugees in Thrace is consistent with the image of raiding in Xenophon (bk.7), where the affected people simply run up the mountains in times of duress.

168 Bouzek (2005, fig. 1) presents the plans of Trahtemirovo, Basovka, and Pastysrkoe. He discusses Elizavetskoe, a 5th century BC city on the bank of the River Don in earlier articles (Marchenko 1992; Zhitnikov 1995).
A final parallel may be sought in the centers of the immediate neighbors of the Thracian to the east, the Illyrians. The Illyrians appear in the Greek sources as bellicose tribes, who harassed their southern neighbors and differed from the Thracians mainly in the geography of their mountainous terrain. In Popov’s review (2002) of the Illyrian urban centers, the towns in the central and eastern Balkans are generally several times larger than those of Thrace. The walls of the coastal city of Dimal and inland Nikaia each enclose 18-20 hectares in area (2002, 193, 201). While the former is said to have grown thanks to its position on the coast and direct contact with trade on the Adriatic, the latter is interpreted as the political center of the Vjosa valley during the Late Iron Age. Amantia, another one of the Illyrian cities of the 5–4th century BC, encloses 20 hectares within its walls (Popov 2002, 208). While the Illyrians’ material culture shows parallels with that of the Thracians since the Late Bronze Age (Babic 2007; Leshtakov 2009b), featuring elite princely burials filled with luxuries akin to those of Thrace (Theodossiev 1998, 2000a; Babic 2001), their political centers consistently exhibit greater size and complexity than those known in Thrace. So far, the political organization of the Illyrians has been interpreted as corresponding to that of a chiefdom (Babic 2001). If we should for a moment forget about the historical sources, Thracian society could easily be seen as similar to Illyrian, not only in the material culture, but also in the level of development.

In looking at urban development in the neighboring regions, I am seeking to identify the impact the city building had on the indigenous population. Büchsenschütz (1995, 62) mentions Caesar’s opinion that the existence of Celtic oppida undermined the position of the local aristocracy who still lived in their adedicia in the country. When cities were created, they destroyed the traditional power bases local aristocrats had in the countryside. With their emergence the traditional networks of commerce and power were disturbed and transformed. In Thrace, most of the coastal cities fit this model. On the interior, only a few correspond to it, though, because some, such as Seuthopolis and possibly Pistiros, were founded by the elites (Archibald 2004). Kabyle laid the foundation for a true transformation of traditional networks in the 4th century BC. The remaining independent Thracian aristocrats lived in Seuthopolis or in fortified manors of the type of Vasil Levski or Kozi Gramadi, and had to rely on trade or the countryside for their sustenance. Kabyle, having developed into a powerful center, disturbed this harmony by cutting off vital commercial lines feeding Seuthopolis (Tacheva 2000a). While we do not have evidence for the effect other inland cities have on the traditional networks, the
example of Kabyle is sufficient to show the potential threat that urban centers exercise on the aristocratic establishment of Thrace.

Most of the centers in inland Thrace are proven to have been urbanized only after the Macedonian conquest in the 4th century BC. When compared to their counterparts in neighboring polities in Scythia, Illyria, and Celtic lands, the Thracian cities remain very compact and small, adequate for only a relatively small population with little social differentiation. Some of them, such as Seuthopolis or Pistiros, are distinctly aristocratic cities with little participation at lower social levels. Others, such as Kabyle, may have attracted a wider community of residents. Despite their small size, there is evidence that the development of urban centers contributed to the modification of the social order in Thrace. The wide distribution of the coins of Kabyle whose imagery promotes civic identity under the banner of “polis” and the goddess Phosphorion, marks a shift in the mentality of the city dwellers. The political and economic control, which the city exercises over its hinterland, is attributed back to the city rather than appropriated by any local elites (Draganov 1990; Draganov 1998). The civic identity expressed in the coins suggests the birth of a new political entity, the city state, but its existence is only brief (4th century BC). It marks a temporary and localized increase in the socio-political organization in Thrace. This increase in complexity, however, does not mean that Thrace is reaching the state-level of organization. Instead, Thracian society during the 4th century is split by opposing pressures, and its power is fragmented among competing polities. The evidence from the analysis of cities in Thrace is consistent with the picture derived from the settlement patterns. The expansion of the site hierarchy into three tiers during the Late Iron Age can be connected with Macedonian pressures and manifests an increase in complexity and the transformation of the landscape into an incipient urban-rural zoning. These changes, however, operate at a small scale, which is not consistent with the classification of a state.

VIII.3.2.iii. Buildings - Temples and Palaces
Identifying temples and palaces in Iron Age Thrace is a difficult task due to the lack of public architecture and the ambiguity of available evidence. Only a few candidates exist prior to the 4th century. Vasil Levski, an elite Thracian residence near Karlovo dated to the 5th-4th century BC seems the best possible candidate for a palace of this period (Димитров 2011, Kisyov 2004, 51-63). The excavator Kostadin Kisyov uncovered the foundations of a 10 x 15m building on a gravel platform inside an enclosure on the foothills of the Stara Planina east of the Kazanluk valley. The massive (2 m) double-faced wall is built in the emplekton style. The platform under the building
contained a large quantity of amphora-, Black Figure-, and Grey Ware- fragments. Painted tiles found on the premises as well all other objects attest an elite residence. Yet, the character of this structure – whether residential or administrative – remains elusive. Its scale is rather small, but its early date – early 5th century – renders it unique. If it was indeed a seat of the ruler, which is the interpretation of the excavator as well as other scholars (Димитров 2011, Theodossiev 2011), its scale and furnishings are relatively modest (in comparison, for example with contemporary Vergina in Macedon). It would qualify for a private residence of a chief or local big man. The courtyard could have held drinking parties and informal councils (attested by amphorae and drinking cups), but there is no evidence for administrative or economic functions on a large scale.

Other early (6-5th century BC) sites suffer from a similar lack of evidence. At Kabyle, a handful of Early Iron Age sherds discovered out of context at the site give little idea of the type, size, and nature of the pre-Hellenistic settlement (Gergova and Iliev 1982). During the rescue work in Koprivlen (Gotse Delchev municipality, western Rhodopes), the foundations of a stone wall were revealed, but provided little information about the structures or the settlement (Bozhkova et al 2002). Overall, there is little evidence of civic structures or monumental architecture prior to the Macedonian invasion to support the idea of a state-level society in Thrace. In this regard, the architectural evidence supports my analysis of the settlement patterns.

The Hellenistic period produces more material on civic structures. The site of Kabyle shows a Hellenistic circuit wall culminating in a guard tower on the top of an acropolis. Velizar Velkov (1990) has presumed the Early Iron Age settlement was situated on the acropolis, next to a rock sanctuary placed there. In the Late Iron Age the existence of a rectangular structure with massive walls (9 x 8m) led Velkov to interpret it as a fortified residence of the local ruler (Velkov 1984, cited in Popov 2004, 116). The interior of the city has not yet yielded any structures dating to the Late Iron Age. The Seuthopolis inscription suggests that by the 3rd century BC Kabyle contained an agora with an altar to Apollo and a temple to Artemis (? Phosphorion (Velkov 1988, 606). The latter seems confirmed by finds of bronze coins minted at Kabyle with the image of the goddess Phosphorion (with torches) (Draganov 1993). Archaeological excavations have not yet found any trace of these structures.

Seuthopolis has long been interpreted as the Hellenistic royal residence of its founder, Seuthes III. Yet this prime candidate for the royal center does not contain a structure that could
be identified as a royal palace. If it is indeed taken as a royal residence, it is not the seat of an exclusive ruler but rather that of the entire ruling class. Given the individual character yet egalitarian plan of the buildings (each similar size, with its own residential quarters, individual storage, etc.), this class seems to be one of equals rather than stratified state officials and administrators. We are encountering the retinue of a chief, according to Flannery’s definition, of which each member is likely related to the king and competes for the chiefly status himself:

“...In a village of 1000 persons, one could find as many as 10 to 15 chiefly families, all with relatively elite residences. It is rarely possible for an archaeologist to specify one residence in such a village as “the house of a chief”, especially since brothers, half-brothers, cousins, and nephews from highly ranked families competed continuously for the post. Many archaic states, on the other hand, were stratified societies that built monumental palaces for their royal families” (1998, 21).

This impossibility of finding the seat of the king and in general of distinguishing status on the basis of intra-site differentiation among the individual structures points to egalitarian relations among the ruling class.

The single large space in Seuthopolis, with a four nave structure, that has in the past been associated with the royal quarters has been disqualified on the grounds of too little glamor, too open a layout and no furnishings. Furthermore, the Seuthopolis inscription speaks of the Temple to the Great Gods at Seuthopolis and there is hardly any space for it in the densely overbuilt city but here. In light of this argumentation, the consensus has swayed in favor of the temple interpretation of the Seuthopolis “citadel” (Dimitrov and Čičikova 1978, contra; Archibald 1999; Rabadjiev 2000, 395). The actual residence of Seuthes and his family remains elusive.

Compactly built and with no discernible economic or administrative structures (except the Temple of the Great Gods) or a civic settlement in the hinterland, Seuthopolis symbolizes the political structure of the Hellenistic Thracian kingdom in the following way. The government of the 3rd century kingdom rests in the hands of the leading aristocratic family, in this case the family of Seuthes III and Berenike and their clan. They are the paramount rulers, seconded by a retinue of warrior aristocrats and temple administrators, who are likely tied to the royal family by blood ties. There is little evidence for intervening middle-level administrators, officials, or bureaucrats. Scribes, suppliers, housemasters, and other servants were probably present in the city, but they were likely associated with individual clans or families rather than servants of the state. A good illustration of a personal assistant is found in Xenophon (Anab., 7.5.2-6), in the
character of the Greek merchant Herakleides, helping Seuthes II sell his loot and procure supplies.

The significance of the scarcity of evidence for craftsmen, artisan quarters, or economic specialists needs to be assessed in light of a thorough reexamination of the material excavated at Seuthopolis, not all of which has been published (Димитров 2011). While there is little direct evidence for their presence within the fortification walls, it has been suggested they lived on the exterior of the town (Chichikova 1983, 296). The presence in Seuthopolis of marble architectural pieces, metal objects, imports of amphorae, Greek black figure pottery, Thracian grey tableware, and pithoi shows that the city required a staff of artisans and craftsmen for its upkeep and maintenance. The maintenance of the elites during their stay (whether permanent or temporary) also required the accumulation and distribution of supplies, which, given limited individual storage and no communal storage, must have arrived from the country, or alternatively, through trade from the Black Sea coast or via the Tundzha River from the Central plain.

In the absence of large scale storage facilities it seems that the provisioning of the city’s inhabitants was largely in the hands of individual households and families or clans.

VIII.3.2.iv. Mortuary realm

The presence of royal tombs provides the strongest evidence for a high degree of complexity in the archaeological record. This class of archaeological data is more eloquent than any other Thracian evidence, pointing since the beginning of the 5th century to the wealth and social stratification of the Thracians.

During the Early Iron Age, a number of different burial rites are encountered in Thrace: cremation or inhumation under a burial mound or a dolmen, in a pithos or large storage vessel or in a flat necropolis (Fol and Venedikov 1976; Nekhrizov 2010). One of the best published Early Iron Age tumular cemeteries can be found north of the Stara Planina Mountains at the site of Sboryanovo (Stoyanov 1997). These burials are dated on the basis of the knobbed ware and metal fibulae to 10-9th century. The five mounds of the Sboryanovo necropolis (one out of seven discreet tumulus clusters) contain stone circles where multiple burials have been deposited in a variety of burial rites (Stoyanov 1997, 11). Often a central cremation might be surrounded by inhumations. As preserved, the mounds consist of clay and rubble and never exceed 16m in diameter and 1m in height. Besides the human remains and ashes, fine handmade drinking vessels (kantharoi and bowls), metal fibulae and brooches, spindle whorls, jewelry, and weapons
were found. Although modest in comparison to the assemblages to come in later periods, these objects are of distinctly elite status. The evidence of Early Iron Age child burials with elite burial goods (e.g. tumulus 5, Stoyanov 1997, 42-46) points to incipient social inequality in the Sboryanovo area. Communal burial, on the other hand, suggests corporate practice for the living. Although the burial of a woman with her children points to their inherited status, it is not clear whether the deceased belonged to an unstratified society with a corporate government or to a ranked polity.

Similarly, the dolmen tombs of the eastern Rhodopes show evidence of more complex human relations as well as communal burial function analogous to the mounds of Sboryanovo (Delev 1982; Triandaphyllos 1983).

During the Classical period, burial rites converge on the burial pit or stone construction under a mound furnished with (sometimes imported) ceramic articles and metalwork. Such structures dot the Maritza River valley and spread to most of its tributaries. The 5th century BC Duvanli Tombs in the Stryama River valley, discovered in 1932, are among the best documented wealthy graves of Thracian aristocrats, and have been associated with the first generation of Odrysian rulers (Filov, Velkov, and Mikov 1934). In Archibald’s words, the burials “are exceptional by contemporary Mediterranean standards and unmatched, either in the quality or quantity of finds, by any known site from interior Thrace prior to the mid-4th century” (1998, 158). The individual graves include female burials, which are indistinguishable in wealth from those of the males. Most of these burials are in rectangular pits with wooden sarcophagi. The burial goods point to long-ranging international connections with Athens as well as with Persia (Archibald 1998, 178-179). The wealth of the funerary assemblages distinguishes the principal mounds from the satellite ones nearby, which have more modest furnishings. The amount of individualized luxury items in the female burials speaks to the exceptional status of these women. Archibald associates the highly varied assemblages with quick social changes in the area before the emergence of clearer status boundaries (1998, 169). The wealth and proximity of the tombs suggests the relatedness of these women and their affiliation to the ruling class, possibly as royal wives or queens involved in the competition for power.

The wealth of burial mounds peaks in the Hellenistic period. Many articles discuss the diverse execution of the tombs of the 4th and 3rd century Thracian aristocrats, including the
internal decoration and burial gifts. The beehive tombs of Alexandrovo and Mezek, the sculptural decoration of Sveshtari, and monolith-tombs, such as those at Ostrusha and Golyama Kosmatka are among the most spectacular mortuary creations in Thrace. Just to give an example of one such tomb, I will focus on the mound which served as the resting place of Seuthes III in the Kazanluk valley. Discovered in 2004, Golyama Kosmatka consists of a dromos, two antechambers and a main burial chamber all covered by a mound of rubble and clay some 60 m in diameter and some 15 m in height. The dromos is built of roughly cut stones set in a wooden grid, some 26 m long. Two antechambers precede the burial chamber: a rectangular one, which contained a horse sacrifice, and a round beehive chamber, whose cupola reaches a height of 4.5m. The two antechambers are connected by a 1m high marble door with reliefs of the sun and human faces and red and blue painted decoration. The main burial chamber consists of a single 50-ton granite monolith. It features a stone cut kline, on which the remains of the king were deposited. The remains of the king were flanked by various gold objects, such as an oak leaf wreath, pieces of armor, and drinking vessels of the ruler, to mention a few. Among more casual burial goods there weree several imported amphorae. A signed silver cup and a helmet were found bearing a pointilé inscription “SEVTHOU”. The ancient ceremony masters made the identification of the ruler yet easier by depositing a bronze portrait of Seuthes in naturalistic Hellenistic style on the floor of the dromos (Китов 2005, 154-5).

While the frequency of wealthy burials seems highest in the Kazanluk valley, a number of exceptional burial mounds are known outside this region. The Mezek or Alexandrovo tombs on the Greek-Bulgarian border stand out for their unique tomb constructions and burial assemblages. The isolation of these funerary monuments from the principal (known) centers of the Thracian plain bespeaks the political independence of their owners from the core Odrysian territory during the Hellenistic period. Their independence is also in accord with the fragmentation of the Thracian polity during and after the Macedonian intrusion.

The royal tombs of Thrace and their sumptuous furnishings are an important indicator of complexity. The mounds populate the entire interior of Thrace, but the most spectacular ones are concentrated in the Central Plain, the Kazanluk valley and a few isolated locations in Eastern Rhodopes. The use of burial mounds goes back to the Bronze Age. Early Iron Age examples show considerable similarity to their predecessors in their simple stone construction and mixed burial

rites. From the 6th century on, the furnishings of the burials change. Their assemblages now include articles of precious metals, imported pottery, and internationally acquired gifts that reflect growing inequality and accentuate the differentiation within the ruling class. No clear divisions emerge that would allow the recognition of a principal and a lesser aristocracy. In burial, women receive equal treatment as men, social class apparently mattering more than ethnic or gender identity. In the 4th century Kazanluk valley, the burial mounds in the hinterland of Seuthopolis become progressively larger and richer. Mounds dating to this period stand out in their elaboration and wealth of burial goods. The tomb of Seuthes III, confirms its bearer as the paramount ruler of the Thracian polity. It may have had parallels and competitors in other unique tombs in the region (such as Ostrusha or the painted tombs in Kazanluk and Kran). Whether or not these tombs belong to Seuthes’ dynasty or his competitors, they nevertheless attest to the continued social differentiation and complexity in the region.

VIII.3.2.v. **Ideology**

The lack of evidence for social and political ideology is the greatest hindrance to the understanding of Thracian society. There is no evidence for the royal expressions of power that would institutionalize the practice of rule and justify the social order (Earle 1997, 8). No public depictions of chiefs or monuments commissioned by them (except for burial mounds) have been identified anywhere in the interior of Thrace (or in the coastal areas of Turkish and Greek Thrace).

Burial mounds, the only prominent constructions of the Thracian leaders, are a limited medium for the role of legitimating the royal rule beyond the local scale. In their external form, the burial mounds of “kings” are not readily distinguishable from hundreds of “lesser” mounds – or from one another. Only their relative size and their interior furnishings mark their status. It is argued that the personal belongings of the rulers, the gold jewelry, weapons, drinking implements, and armor encode the condensed message of power, and justify the established social order. Jerzy Hatlas focuses on the jewellery found in the royal tombs that features images of investiture (Hatlas and Zyromski 2007). Hatlas argues that the images on rings or belts of a goddess crowning a mounted warrior or fighting a dragon represent the leader’s rule as natural and divinely sanctioned (2007, 206-207). While his is a well-argued point, it founders on the fact that none of this imagery is visible after the completion of the burial. Even during the ruler’s lifetime, such small objects would be seen and legible only at short range. The images on rings are hardly legible without magnification. The fact that these items rarely leave the ruler
embodies the limitations of the Thracian rule, namely, the difficulty of exercising power at a distance. Although large scale instances of such imagery are known from the burial chambers of Alexandrovo and Sveshtari, these depictions remain private, invisible to the public spectator once the burial rites are complete. While Thracian leaders may have developed and exploited the notion of divine entitlement, we do not have clear evidence they used it on a large scale to manipulate or control their subjects more effectively at a distance. The inability to deploy the notion of divine kingship effectively on a large scale decreases the ability of kings to control and organize the masses beyond their immediate surroundings. With this failure the integrating institutions of the Thracian polity fall well short of a state.

It is hard to reconstruct the structure of Thracian institutions without documentary evidence. The study of coins and epigraphic monument, for example, bear on the study of Thracian complexity. While some of the most recent numismatic analyses (Dimitrov 2010, Draganov 2003, Tacheva 2000, 15ff) have been used throughout this text, comprehensive treatment of such large body of material is beyond the scope of this dissertation. Written texts provide anecdotal and divergent evidence, on the basis of which one may want to accuse their Greek authors of disinterest, bias, and aristocratic agendas. Eugene N. Borza when faced with similar silence regarding Macedonian institutions acceded, that if Greek sources mention nothing, there may have not been any perceptible political institutions (Borza 1990, 235). While one wants to avoid a naïve acceptance of the sources, the archaeological evidence is consistent with Borza’s conclusion.

VIII.3.3. Conclusion

The historical sources suggest that the Thracian society in the 5th century was expansive and powerful enough to threaten the Greek poleis weakened by the Peloponnesian War. Although Thucydides’ use of the word power implies complexity, it is not always so. In case of Thrace the archaeological evidence suggests otherwise.

When applying Flannery’s “ground plan” approach to the archaic state to Thracian society the following results emerge. No real palaces with urban and administrative accoutrements or temple precincts have been produced before the 4th century BC. There is no evidence for pre-Hellenistic urbanization within Thracian territory. Even after cities were established in the Hellenistic period, most remain small in size and population in comparison with their neighbors in more advanced polities. Sumptuous burials first appear during the
Classical period and peak during the Early Hellenistic period. Although they produce convincing evidence for social stratification, they represent a single class of archaeological record and do not provide enough resolution to define the boundary between the state officials and the pre-state chiefs.

As far as the administrative hierarchy goes, there is evidence for one decision-making level only, that of the clan and the immediate retinue of the king. No administrative documents are available before the 4th century BC.

Settlement during the Classical period shows two tiers of hierarchy, while in the Late Iron Age it develops an additional top tier. The chronological resolution of the data is coarse and likely obscures significant differences. Survey analysis, in Kazanluk especially, employed liberal estimates of site sizes in order to compensate for bad preservation of the surface material. The resulting site ranks in Kazanluk might, therefore, be inflated. All in all, the survey data suggest that while the foundations to increasing social complexity are laid during the Late Iron Age, the social changes fully remake the landscape only during the Roman period.

Most historical sources agree that the Thracians are factious and divided, and lag behind their southern neighbors institutionally. Although their aristocratic polities are capable of conquest and expansion, they do not seem as effective at ruling and maintaining conquered land. This is owing to the lack of infrastructure. The Odrysian kingdom varied in size and regularly fragmented into smaller and variably viable units. It lacked efficient coercive or ideological mechanisms to facilitate control at a distance. The dependence on military power to enforce the exaction of tribute (evident in historically attested battles for the control of the Hellespont straits) points to the lack of systematic taxation. Finally, there is no evidence for a full-time bureaucracy. The level of political differentiation, organizing capacity and integrating institutions achieved by the political groupings of Odrysian or other Thracian tribes stops well short of statehood.

The Odrysian kingdom is a regional polity with some institutional governance, mainly represented by the relationship between a warrior elite and peasant farmers (Earle 1997, 14). The power of the leaders falls neatly among middle-range societies, being more complex than the ascribed or inherited leadership of a village-based polity in the Early Iron Age, but falling short of the large bureaucratic states of the Hellenistic Era. Thrace does not seem to arrive fully at the state level until it is incorporated into the Roman Empire, although the foundations are laid in the aftermath of the Macedonian conquest.
VIII.4. Critique of the Neo-Evolutionary Model

Numerous aspects of the neo-evolutionary model have undergone serious critique in the last two decades. Among them are the assumption of progress, and the focus on hierarchy, technology, and urbanization as indicators of socio-political sophistication (Crumley 1995a, 30; Yoffee 2005b; Pauketat 2007). Carolyn Crumley argued that the emphasis on hierarchy excluded many societies organized along different heterarchical lines (Crumley, Ehrenreich, and Levy 1995). She saw the customary assumption of a positive correlation between rank-size settlement distribution (i.e. cities-towns-villages) and states as discriminatory and biased, and asserted that it is “quite possible for elites to govern without benefit of nested settlement hierarchies, and for marked class distinctions to be played out without leaving the spore of cities” (Crumley 1995, 30). Others have critiqued the paramount role attributed to the external factors and the top-down emphasis on the ruling class driving social development (McGuire 1992). Gradually, the emphasis has shifted from a focus on the roles of hierarchy and control mechanisms to a focus on power and ideology as used by emerging elites (Earle 1997). The importance of individual agency and internal social relations has been recognized alongside the external pressures, while notions of “heterarchical organization” and “factional competition” were integrated into the debate on complexity (Crumley and Marquardt 1987; Brumfiel and Fox 1994; Blanton et al. 1996; Flannery 1999; Brumfiel 2000).

After the narrow focus of the literature on state-making was critiqued and expanded, alternatives to the neo-evolutionary framework became prominent subjects of research. For example, James Scott correctly stressed that: “The huge literature on state-making, contemporary and historic, pays virtually no attention to its obverse, the history of deliberate and reactive statelessness” (Scott 2009, xx). His work continues along the path blazed by the ethnographic reports of David Leach on the tribes of Burma or the research of Mauricio Tosi on Siberian nomads, both of which underscored the limits of neo-evolutionary theory in light of phenomena such as reversals between hierarchy and heterarchy, and institutional instability (Leach 1970; Tosi 1994). These outliers, who do not show spatial and social stratification (settlement hierarchies and urban elites), had previously been considered as “inherently unstable, transitional, and incomplete, and their trajectories unfinished until such time as they become states or their instability leads to collapse” (Crumley 1995, 30). Labeled as “chiefdoms”, these societies were consigned to a single category that seemed to proliferate throughout the
world, eliding considerable diversity. The limited utility of this category, now termed the “middle range”, raised significant concerns (Yoffee 1993).

The critics of neo-evolutionary theory have problematized its typology and stimulated the search for a classification of socio-political forms free of a-priori institutional definitions. This task is hard to achieve, however, since in the absence of predefined criteria the label of state cannot be applied systematically and hinges on personal opinion, jeopardizing regional and cross-cultural comparisons (Marcus 2008).

Norman Yoffee in his book Myths of the Archaic States, attacks the neo-evolutionary definition of state, and formulates “Yoffee’s Rule”, that draws attention to yet another important phenomenon, namely the discursive practice of archaeologists. His Rule reads (2005, 41): “if you can argue whether a society is a state or isn’t, then it isn’t”. This rule seems to offer a quick solution to the definitions of any controversial polity. As for the Thracian state the result of Yoffee’s Rule depends on who is engaging in the discourse. Twenty years ago, when Alexander Fol discussed the matter with his students, the Thracian state existed without any doubt. If we all agreed with Fol today, the Thracians would still have their state. Yoffee’s Rule embodies the risks of scholarly practice, which places the definition of past into the present and is based on majority consensus.

The critique of the neo-evolutionary theory has achieved the following. It has shown the neo-evolutionary model is well suited to exploring hierarchy and administrative evolution (for those who wish to explore that perspective), but it is rather coarse and inadequate when it comes to the “middle range” or non-hierarchical societies. While the survival of the neo-evolutionary approach is seen by some as a failure of the criticism, I would argue that the critics have achieved their goal and revealed both the strengths, and the limitations and biases of this model.

The most important effect of the critique has been to shift the emphasis from the channels of hierarchical rule to the strategies of resistance and competition within the heterarchically organized subsystems of the hierarchy (between the rulers and the ruled), depicting the society as an interacting whole. Nicolas Pauketat promotes this approach in his rejection of the idea “that administrative evolution determines the look and the shape of ancient societies” (2007, 15). He argues that we should not be content with:
“locating the official, elite histories of administrators, ... carved on the stelai of ancient cities. No. The historical approach I have in mind is concerned with the unofficial, illiterate, or unwritten histories as much as the official texts” (Pauketat 2007, 15).

Interesting and very applicable to Thrace is Pauketat’s emphasis on the non-elite and illiterate, which is where majority of evidence from Thrace points towards. This approach represents a faithful rewording of F. Braudel’s longue durée.

Pauketat expresses an aversion to long lists of criteria that need to be mechanically ticked off in order to define a state (Pauketat 2007, 144). He provides his own list of criteria, aiming at a narrative description of the functioning of a polity through the varied and interlacing activities of its constituents. Attempting to avoid the drawbacks of the neo-evolutionary model he compiles four criteria for early states informed by the suggestions of the critics (Pauketat 2007, 145):(1) new site foundations; (2) the reorganization of the countryside; (3) competing factions; and (4) ideology. These new categories touch upon the process the disembedding of old kinship structures and systems of land tenure by relocation of the capital, the changing inter-site dynamics with the expansion of the cities, interplay and competition of political factions, and ideological apparatuses for the control and integration of different groups within a society.

Pauketat stresses that the state was not a top down organization structure as much as a “diffuse, heterarchical phenomenon, hidden in the practices of people. It wasn’t in just one place and wouldn’t exist except as people put it in action” (Pauketat 2007, 146, citing Kus 1989). The definition of diffuse and heterarchical is rather vague, though, and not very helpful when differentiating between the state and middle range society. This list does provide some improvement over the neo-evolutionary “list” (see Marcus 1998, 4) in bringing attention to the limitations of the elite rule and offering a more subtle analysis of the settlement system. On the other hand, it is merely a bottom up investigation of the same scheme, not a radically different model. For anyone who can see beyond the (seemingly) narrow evolutionary categories can use the neo-evolutionary terms to describe the outcome of Pauketat’s model. Nevertheless, the benefit of this “new list” is that it asks the same question differently and may produce a more nuanced narrative that will shift attention to different aspects of a chiefly or state society.
VIII.5. The Thracian Polities, an Attempt at Alternative View

VIII.5.1. New site foundations and reorganization of the Countryside

The survey results for the Early Iron Age in the Yambol survey area show few foundations that did not have Late Bronze Age roots, indicating long term settlement continuity. Only a few Early Iron Age sites have Bronze Age predecessors in the Kazanluk area, suggesting increasing sedentism in later periods. This continuity in Yambol may be considered a widespread phenomenon, as it is confirmed by survey results from both northwest and southwest Bulgaria, indicating a supra-regional trend (Aladzhov and Balabanyan 1984; Gotsev 1997a; Theodossiev 2000b; Grebska-Kulova and Kulov 2007). The early phase of Early Iron Age points to a landscape filled with large prosperous villages in the fertile valleys of the Yambol landscape. The Kazanluk valley, specifically the foothills, is more sparsely settled, but where settlements are confirmed, they have the same character with dug-out wattle and daub houses sprawled over extensive areas within easy access of agricultural land and water sources.

During the 6th century BC, a few new sites emerge in the Kazanluk study area, among them sites 3126 and 2031? and at a further distance, Vasil Levski by Karlovo. These sites manifest local elites breaking out of the established settlement pattern and marking their presence in the landscape with new structures where special activity, such as feasting and drinking were undertaken. No such structures were found in the Yambol region in this period. The Classical occupation in Yambol continues in the same villages as in the earlier phases of Early Iron Age period.

During the Late Iron Age period the settlement systems shows major changes. In Yambol region the Late Iron Age stage at previously occupied sites is poorly visible due to the limits of pottery recognition. In one interpretation, a number of smaller farmsteads now dot the countryside in place of the Early Iron Age villages, with settlements smaller in size but in the same locations. In another reading of the surface finds, the majority of Early Iron Age sites experience a hiatus. A third explanation is that the Late Iron Age stage is completely misidentified. Two of the interpretations support the view of the landscape as a rural one with a contracting volume of settlement. No new foundations were recorded. The scale of previously occupied settlements is becoming smaller. This trend is consistent with the historical evidence for disturbance and unrest from the wars of the successor kingdoms, which was probably not very conducive to rural habitation. If the latter interpretation of emptied landscape is correct, the settlement vacuum may be a marker of a borderland-status in relation to the nearby Celtic
kingdom, or of depopulation in the aftermath of military campaigns. Whichever scenario is true, the landscape seems to be undergoing a major transformation, which signals pronounced social and political changes in the Yambol area.

In Kazanluk the Late Iron Age situation is different – the settlement system is expanding in comparison with its Early Iron Age predecessor. New sites are being founded throughout the valley. Seuthopolis is at the top of the list, given its significance as a seat of aristocratic families. Other elite sites are indicated through survey, although their character is more transient and without permanent structures. Rural sites resemble those of Yambol in their surface appearance and extent. The materials are, however, later and of higher quality – Black Slip imports, fine Grey-Ware marble remnants – betraying a higher standard of life in the valley. Undoubtedly this growth in rural sites can be connected with the presence of Seuthopolis.

The settlement structure clearly does not undergo a major reorganization until the Late Iron Age. While in the Early Iron Age, both of the survey areas expand in comparison with the previous periods, the settlement mostly shows spatial continuity. The settlement structure remains relatively undifferentiated throughout the Early Iron Age.

In the Late Iron Age, a hierarchy of settlements begins to take form, with an increase in small sites and a corresponding emergence of regional centers. A distinct shift towards “ruralization” seems apparent in the countryside of both study areas. Several Early Iron Age villages in Yambol and in Kazanluk are abandoned, leaving the landscape occupied instead by smaller farmsteads and hamlets. A binary landscape emerges of administrative centers and their satellites. The simple functional differences between Early Iron Age sites – few metallurgical and commercial centers with a prevalence of agricultural villages - contrast with the Hellenistic forts, elite residences, and new administrative centers encircled by small rural farmsteads. The new landscape seems characterized by an incipient hierarchy of elite residences, forts or local centers ruling a countryside dotted with small farming installations.

These overall changes in settlement structure including the new foundations in Kazanluk and the decline in settlement in Yambol indicate changes in the existing social structures and kinship ties. The date of these trends points clearly to the 4th century - the time of the Macedonian invasion. Philip’s conquest of the Thracian interior can be credited with the change, as it was the Macedonian monarch who achieved control of Thrace by disrupting and rechanneling traditional networks of political control. He restructured the traditional settlement system by establishing a network of administrative control centers. Newly founded or old but
refashioned sites such as Philippopolis or Kabyle gained in status and power by virtue of their Macedonian garrisons. They stimulated trade, provided protection, and housed new elements of administrative and political control. These hubs attracted new population, creating a new tier of settlement, and sparked the development of the rural countryside. It was the new foundations of Philip and the political and economic power he invested in the cities that imposed on inner Thrace a new system of political and land control. As the development in the valley of Kazanluk and around the city of Sboryanovo north of the Stara Planina Mountain shows, his innovations stimulated similar developments among the indigenous communities in Thrace that remained outside the Macedonian control.

While the foundations for the reorganization of the landscape are laid through the intervention of the Macedonians or in reaction to them, the new networks of power established in this period truly take root across Thrace only after the end of the successors’ wars. Survey gives us a clear picture of settlement expansion and population growth only in the Roman period, when four levels of hierarchy are registered, and rural and urban zones leave clear imprints on the landscape. It is with the pacification under Roman rule that the Classical landscape flourishes in Thrace, characterized by the development of a civic community and identity vis-à-vis the rural hinterland.

VIII.5.2. Rulers and commoners - factions and politicking

As noted numerous times, one principal feature of Thracian social and political organization is its factious nature. A wealth of historical and archaeological data attest the constant competition among the Thracians. Most of this is reserved to the elites. The authority of the ruler is not institutionally governed, but depends on the approval of his peers. Examples of the foreign alliances of Sitalces and Seuthes I with Athens, Persia, and Macedon show how the Thracian rulers constantly negotiate and renegotiate their relations with their aristocratic peers. The feasting and raiding of Seuthes II illustrates the strategies deployed by an ambitious leader to win a following, while his manipulation of envoys and tricking them out of the gifts shows how he undercuts the authority of his sovereign Amadokos (see Chapter Three). In Thrace, leaders need to persuade and win their followers by display of wealth or military power. The power is not invested in the institution of the king, but in his individual qualities, remaining highly fluid and changeable. The decentralized character of royal power is further evident in the lack of a stable capital. The incessant movement of rulers through the country points to the need to constantly reassert their control over the far flung regions of their realm. Although Seuthes III
has a base in the consolidated valley of Kazanluk he must confront the external military attacks of Lysimachus, and the plotting of his rival Spartokos at Kabyle (see Chapter Three). A mobile lifestyle, corporate strategies (communal decision-making) and heterarchical segmentation at the top is not unique to the Thracians, but is typical for the early Hellenistic period as we can see in the retinue of Alexander the Great (Borza 1990, 241-243). In Thrace, there is evidence that similar heterarchic relations permeate the entire society.

Earle has mentioned that military force is a problematic source of power, because warrior followers of the leader can always turn on him. Thracian history illustrates cases of rebellion and betrayal, showing how destabilizing an element it was for leadership in Thrace. The high military skills of the Thracian population provided an equalizing element not only in the relations between elites and also up and down the social ladder. Not only ambitious aristocrats but entire villages, clans or tribes could engage in subversive activity as shown in the examples of mountain tribes in Thucydides or villagers in Xenophon. Sources document equally rebelling individuals as well as groups of commoners resisting the exploitative elites. The widespread military ability of the Thracian tribes and villagers contributed to their successful resistance and prevented greater social differentiation. It likely curbed the development of hierarchical organizing structures, maintaining social and political relations on equal and heterarchical level.

VIII.5.3. Conclusion
The exploration of Thracian spatial and political organization following some of Pauketat’s criteria yields an image of society consistent with a neo-evolutionary interpretation. The major trends of new settlement foundation and countryside reorganization take place after the date of Macedonian conquest. The Thracian elites as well as groups of commoners seem to follow heterarchy as the main organizing principle, with decentralized and communal decision-making, constant competition, and resistance to official authority. Pauketat’s list brings more attention to the power interplay among the studied indigenous groups, yet he does not offer any classification to evaluate the results of this reinterpretation. From this investigation it is clear that complexity crystallizes in the independent Thracians with the impact of the Macedonians. Despite changes in the political landscape, the elite interactions maintain the traditional paths of subversion and politicking. Thracian commoners under the Macedonian rule experience a slow transformation in social structures, as their affiliation slowly transfers from tribal groupings in villages to the civic administration in the newly founded cities. The commoners in the
Thracian-ruled polities seem to remain locked within a power network similar to that of the previous centuries. The application of Pauketat’s criteria helps to underscore the richness of the relations between different groups of society, but while they bring forward nuances in the political interplay, they are not particularly useful in defining the level of complexity of different indigenous groups in Thrace. His definition of the state as “diffuse and heterarchical” fits equally well with the pre- or the post- Macedonian situation, remaining rather vague. This vagueness is partially owed to the ambiguity of Thracian archaeological evidence. In his reassessment of the complexity of Mississippian cultures, Pauketat has enough data to go into microscopic level of analysis. We do not have such luxury in Thrace. The study of social emergence in Thrace is at the level of Mississippian cultures some 20 years ago. It is possible that in future the interpretations of Thracian society will get similarly refined, when surface survey approach is applied consistently throughout Bulgaria and makes together with directed excavation more evidence available.
Chapter IX. Conclusion

This dissertation has sought to address a range of issues concerning social and political developments in Thrace during the 1st millennium BC. Both historical and methodological issues were touched upon. The historical inquiry centered on the problem of state formation among the Thracians. Historical and archaeological evidence for the 1st millennium BC in inner Thrace was combined with the results of surface survey fieldwork conducted in 2009-2010 in Bulgaria. Divergences that emerged between different dimensions of the archaeological and historical record were assessed, and their operating levels explored. The largest gaps were found between the lives of elites and commoners, and between short-term and long-term developments. The surface survey data provided a powerful corrective both for existing archaeological data from burial mounds and cities and for the historical sources.

I have reviewed the various approaches that Bulgarian and western scholars have taken to the study of Thracian complexity since the 19th century. Initial naïve historical analysis focused on systematizing, sorting, and editing of the available historical sources. Textual ambiguities among different documents were carefully scrutinized to tease out accurate dynastic genealogies and lists of successive events. The Classical historians working in the philhellenic intellectual tradition, however, echoed the aristocratic biases of their sources, perceiving the Thracians as marginal and passive participants in the Aegean political theater. Thucydides’s account placing the rise of the Thracian state into the 5th century was taken as authoritative. Despite this bias, the reconstructions of historical events were fairly accurate.

The 20th century brought an increasing amount of archaeological evidence to the disposal of Classical historians, who used it to create a cultural-history of Thrace (Velkov 1979; Hoddinott 1981). The focus on numismatics, inscriptions and elite burials further strengthened the focus on elite histories and high-level political activity in Thrace. Only with the introduction of the Marxist intellectual tradition did the focus shift from big-man history to the political economy and the life of commoners in Thrace. The Marxist tradition, promoted and exemplified by Alexander Fol, provided an antidote to culture-history and an innovative complement to the textual history of Thrace. Major drawbacks of Thracian archaeology in Fol’s time were the lack of reflection on Marxist themes, and research based on a single - material – criterion.
In the post 1990s the approaches of Bulgarian scholars diversified, taking bits and pieces from Western traditions. Processual archaeology bypassed Thracology entirely, but postmodern approaches were manifest in the interest in Thracian spiritual life and religion (Gergova 1992; Fol 2008). This approach was often heavily speculative and hinged on personal reputation of the given proponent as well as the needs of public consumers of archaeology. A healthy counterbalance to occasional flights of fancy has been maintained by rigorous critiques and material based approaches (Archibald 1999; Tsetskhladze 2000). Historical and cultural-historical approaches remain at the core of archaeological practice and interpretation today (Theodossiev 2000b). Refinement of artifact typologies, regional comparisons, and art-historical analysis continue to thrive (Fol 2002; Bouzek and Domaradzka 2005; Nankov 2007).

Visions of Thracian complexity have oscillated between the judgmental “barbaric” of Dimitrov and Chichikova (1950s) to the more neutral “slave-owning” society of Fol and Zlatkovskaya to the cyclical mobile/sedentary society of Porozhanov and Dimitrov (1998-2011). The focus on the Thracian rulers prevails thanks to the much publicized discoveries of rich burial mounds (Archibald 1998; Kitov 1999; Dimitrova 2008). These studies often lack much critical theoretical or comparative perspectives, although they contribute valuable interpretations of material evidence as expressions of royal power. The most recent and worthwhile trend has been to divorce the study of Thracian society from automatic comparison with the Greek neighbors and to interpret the society on its own terms (Porozhanov 1998; Archibald 2000).

A review of the historical sources, in particular of Thucydides and Xenophon, shows that these provide the strongest argument for state level society in Thrace. Their accounts describe the learning curve of Thracian monarchs in their variously successful efforts to consolidate and unify the Thracian hinterland. In my opinion these sources are misleading. The historical data is characterized by an aristocratic voice, which focuses on high-level political events, and neglects everyday life. These authors have their own agendas and biases, and produce a narrative of events that are significant in the short-term. Each of the two authors has first-hand experience of coastal Thrace and both are considered as relatively reliable reporters. Their concept of “state”, however, differs from its modern counterpart and lacks some of its economic robustness and stability. They both report events as they see them, from an événtmentielle point of view full of immediacy and emotional coloring. Their accounts of Thracian expansion have so far found meager support in surface archaeological data and remain an asset that operates on a considerably different level than the surface survey.
If this dissertation was operating on the naïve empirical historical level, my job of analyzing Thracian complexity would be done soon after reading the historical sources. The approach taken here is however, one of landscape archaeology that follows the Braudelian long-durée history. By using surface survey as the archaeological method for the detection of Thracian complexity I cannot but look for social events that trickle down the social ladder and leave detectable traces on the surface.

In order to test the hypothesis of the Thracian state, I have combined the existing archaeological data with my own fieldwork results from the regions of Yambol and Kazanluk. These two regions are deemed as core areas for the development of the Odrysian polity during the Early and Late Iron Age, respectively.

A number of methodological issues were encountered, among them the assessment of surface survey data and the use of legacy settlement data. Both of these datasets suffered from problems of scale, accuracy and reliability. Legacy data captured sites of large scale across a large area but otherwise provides a haphazard collection of smaller sites. Survey data is consistent and systematically acquired but of small sample size, rendering the data not very statistically significant. Through careful combination and statistical assessment of fitness of the two datasets I aimed to acquire a reasonably representative and accurate picture of ancient settlement usable for regional analysis.

The surface survey results in the Yambol region – the reputed Early Iron Age powerbase of the Odrysian dynasty – show great prosperity and stability of settlement throughout the Early Iron Age, which is consistent with the claim of its powerbase and provides suitable conditions for the rise of complexity (Johnson 1973, 14; Grinin 2004, 94). If we consider the Late Iron Age survey and legacy data together, the settlement structure shows a major transformation: a drop in overall population levels at the level of the survey area and a greater differentiation of the settlement hierarchy. This change is hard to pin down accurately, but most indicators point to the Macedonian conquest as the major milestone. The structure of land use and settlement pattern that ensues remains elusive and hard to detect, signaling reversals in the flow of the political power, disturbance, and turmoil in the region.

In the Kazanluk region, Early Iron Age settlement is thin and tenuous, exacerbated by the local geology and modern development. The settlement life seems to pick up at the turn of the 6-5th century BC when a new elite residence is detected. The peak of development accompanies the foundation of Seuthopolis in the last quarter of the 4th century, when a
number of satellite settlements are detected. Again while the settlement hierarchy is boosted by this new foundation (to three levels), the settlement structure is far from robust and permanent. Most sites seem short-lived and subject to displacement with time, indicating impermanent power structures.

Overall, there is little clear-cut evidence for a Thracian state during the 5th century in the surface survey data. There is evidence for the emergence of elites and one level of administrative hierarchy during the Classical period in the settlement data. This trend is supported also in the mortuary record. Otherwise the traditional Early Iron Age settlement pattern experiences little change. It is during the 4th century when some of the traditional sites emerge as the regional centers. This trend – captured archaeologically at Kabyle and Philippopolis, Sboryanovo and Pidros - has been demonstrated to be connected with Philip of Macedon’s conquest of Thrace (Domaradzki 1998). His conquest of the Thracian territory likely triggered the consolidation of remaining free Thracian polities such as the one centered on Seuthopolis in the Kazanluk valley. The lack of robust Late Iron Age settlement structure in Kazanluk, though, indicates that the Thracian state, if it ever existed, was not solid enough to leave unambiguous permanent marks on the landscape. It could have been a short-lived attempt at state-level organization, one in a chain of many failed attempts of other Thracian leaders. A short-term phenomenon as such could have easily escaped detection through surface survey.

The choice of state definition and research methodology are the core issues in defining the Thracian state. The neo-evolutionary approach to the study of state seems a default approach for a survey archaeologist as it offers lists of criteria observable in the archaeological record. Yet, it is this very list of criteria and their rigid association with particular stages of development that has endured much deserved critique. I recognize that this approach has its limitations. It can produce reductive and generalizing results if not used carefully.

Yet, the use of surface survey method requires that I take a neo-evolutionary view of the state, as a pervasive and nested socio-political phenomenon that lasted long enough to leave traces on the surface. Only such phenomena may be detected through surface survey such as conducted by TRAP.

At the same time I am aware that other definitions and approaches to the state have been explored by scholars of state-formation, stressing multi-lineal development, the plurality of power, and corporate ruling strategies. States have been identified in shorter-term
phenomena or altogether avoided in such interpretations. Alternative approaches have their attraction in the fact that they provide less rigid and richer reconstructions of the past societies. They may zoom in at different levels of the society, detect heterarchical power structures, and emphasize individual agency, commenting on complexity in relative manner. Such alternative reconstructions, however, are not always conducive to comparison.

Anthropological theory of the socio-political evolution, whether the neo-evolutionary or any alternative sort has so far not been widely used in Bulgaria, excluding the Thracians from comparative anthropological studies. My work presents an interpretation of Thracian complexity from an anthropological perspective so as to facilitate comparative studies between Thracians and their neighbors. I believe that the Thracian studies could benefit from wider exploration and application of anthropological theory. I hope to illustrate some of the advantages of anthropological approach through my use of the neo-evolutionary “ground plan” approach of K. Flannery and the “backdoor approach” of N. Pauketat.

In the first approach, the settlement structure shows little evidence of hierarchical state level organization until the Macedonian conquest. Even after this event, however, the settlement hierarchies remain ambiguous and difficult to interpret due to insufficient pottery typologies and fabric studies. Other deficiencies such as the unknown relationship between surface and subsurface features undermine the certainty of survey conclusions.

In the alternative perspective I explore the socio-political forms in the 1st millennium BC inner Thrace as a mosaic of regional variation, characterized by peaks and reversals in the settlement structures through time. Dynamic corporate and communal decision-making goes on even at the top levels of administration, although it is mixed with a networking elite lifestyle stressing the role of individual aristocrats in acquiring and maintaining prestige and connections through relations with peers at home and abroad. Although Thracian polities never seem to develop institutions for stable government (that could prevent fissioning) they had the ability to stave off the pressures of many times larger and robust political entities such as the Persian Empire or the rising state of Macedon, which may suggest higher level of complexity. The mere evidence of their survival and independence through the period of turmoil in the Late Iron Age attests to highly developed adaptive strategies. The fact that these adaptive strategies did not take the form of a classical state should not prejudice us against the Thracian complexity. Instead it is evident that Thracians developed strategies that facilitated resistance against both the state-making tendencies at home and helped them deflect external aggression and
competition from state-level societies on their borders. Whether such resilience is a sign of social complexity or not remains to be determined.

In any case, according to my research there was no state in Thrace prior to the Macedonian conquest. Even after that, the evidence for a state is very tenuous and based mainly on the legacy data pointing to large regional centers. While these findings may indicate the futility of the method, evidence from later period - the Roman period - points to a clear-cut case of state level organization. Four levels of settlement, three levels of administrative hierarchy and clearly delineated urban and rural landscapes point to the existence of a state, even if we had no historical records to confirm it. We may attribute the foundations of this development to the Macedonian conquest.

Overall, my dissertation has pointed out the historical and methodological issues one faces when interpreting survey data. As the Tundzha Regional Archaeological Project shows, survey is a powerful approach in Thrace. It captures well the long-term changes and events, that had great impact on large population. Mortuary archaeology, site excavation and historical records for Thrace capture shorter-term phenomena of potentially less wide-ranging impact. Although the detail of the latter group of sources is more striking, information derived from survey is equally valuable. The conclusion is that all of these methods operate at different levels of analysis. Spikes in development may have existed - they remain in the realm of historians and perhaps mortuary archaeologists – but they have not penetrated widely into the lives of people in Thrace. With developments reserved to top elites, the life on the land did not change markedly during most of the Iron Age. These conclusions remain tentative and subject to confirmation through continued archaeological fieldwork to confirm the survey findings.

A legitimate strategy for future research program would include: First, an extensive program of legacy data verification, completion, ground truthing - almost every site in the legacy data that was collected before GPS use became widespread needs to be revisited and inventoried using a standard data protocol. Second, a refinement of pottery typologies, with a special focus on fabric studies, is needed to improve survey resolution. The focus of pottery studies so far has been on decoration and forms at the exclusion of fabrics, which render even specialist advice useless when undecorated and non-diagnostic pottery is found during survey. While local sequences in coarse wares are a problem all over Mediterranean, even undecorated fine wares have yet to be properly studied in Thrace. Third, the extension of intensive survey in the Yambol region and the completion of survey in the Kazanluk region is necessary to obtain a
better representative sample, recover data before impending development and industrialization, and reveal finer local differences between the two regions Fourth, the excavation of typical period sites, especially low ranking rural ones, will be required to verify the nature of the surface scatters. It will allow us to check for the presence of public or domestic architecture and explore signs of intra-site differentiation.
Appendices
Appendix A - Regional Topography and Legacy Maps

A. 1 Study Area Overview

Figure A. 1-1: Position of the study areas in Inland Thrace vis-à-vis the Ancient Greek colonies on the Aegean and Black Sea coasts and the Persian Empire
Figure A. 1-2: Location of Kazanluk (Central Bulgaria) and Yambol (South-East Bulgaria) study area
Figure A.1-3: Kazanluk Study Area relief

Figure A.1-4: Yambol Study Area landscape
Figure A.2: Topography of the Kazanluk Valley
Figure A. 2-4: Kazanluk Legacy Sites, site 100820 in the center of the reservoir is the Thracian capital Seuthopolis
Figure A. 2.5: Kazanluk Valley ground visibility within the survey area.
Figure A.2: Kazanluk Valley Distribution of Diagnostics
A. 3 Yambol

Figure A. 3-1: Topography of Yambol study area
Figure A. 3-2: Geology of Yambol Survey Areas

Figure A. 3-3: Soils in Yambol Survey Areas
Figure A. 3-4: Registered Legacy Sites in Yambol Region
Figure A. 3-5: Surface Visibility in Yambol Survey Areas

Figure A. 3-6: Ease of Access in the Yambol Survey Areas
Figure A. 3-7: Yambol Survey Strategy

Figure A. 3-8: Yambol Distribution of Diagnostics
Appendix B - Survey Areas

B. 1 Kazanluk
Figure B. 1-1: Kazanluk Surface Material Density
Figure B.2-1: Surface Artfact Density
Figure B.2.2. Archaeological Features in Yambol Survey Areas
Appendix C - Individual Site Maps

Appendix C contains maps for individual survey findspots organized by region and TRAP number. They complement the Site Catalogue in Appendix I.2. The scale of the site maps varies from 1:1000-1:10000 depending on site size and its environment. If not listed, the scale is 1:5000. Occasionally, maps at different scales are provided so as to better communicate the setting of a particular findspot. A majority of the maps display surface density of artifacts per survey unit (typically a 1 ha rectangle). Occasionally, a map was provided with surface density per hectare or sq m, to tease out more detail at sites with low material density. Nucleus and margin boundaries are depicted where they were assigned.
C.1 Kazanluk

Figure C.1-1: Scatter 1006

Figure C.1-2: Scatters from the top down: 1006, 1014
Figure C.1-3: Scatters from the top down: 1008, 1012, 1013

Figure C.1-4: Scatter 1033; Scale 1:10 000
Figure C.1-5: Scatter 1015; top figure scaled 1:5 000, bottom figure scaled 1:1 000
Figure C.1-8: Scatters from left to right: 2073, 2001

Figure C.1-9: Scatters from left to right: 2112, 2010
Figure C.1-10: Scatter 2019

Figure C.1-11: Scatters from left to right: 4097, 2031
Figure C.1-12: Scatters on this page are 2031, 2074, 2032 from left to right; bottom figure shows density per sq m
Figure C.1-13: Scatters from the top down: 2044, 2034

Figure C.1-14: Scatters from the top down: 2045, 2046, 2044
Figure C.1-17: Scatters from left to right: 2051, 4113

Figure C.1-18: Scatter 2075
Figure C.1-19: Scatters from left to right 3053, 3059; on the bottom the density represented is in sherds per ha
Figure C.1-20: Scatter 3055; on the bottom the density is represented in sherds per ha
Figure C.1-23: Scatter 3058

Figure C.1-24: Scatters from left to right: 3107, 3225
Figure C.1-25: Scatter 3122

Figure C.1-26: Scatters from left to right: 3126, 3133
Figure C.1-27: Scatters from the top down: 3063, 3062, 3169, 3130; Scale 1:10 000

Figure C.1-28: Scatters from the top down: 3130, 3226, 3231; Scale 1:10 000
Figure C.1-33: Scatters from the top down: 4106, 4114, 4115

Figure C.1-34: Scatters from left to right: 4114, 4115, 1027
Figure C.1-35: Scatters from left to right: 4113, 4122, and 4121.

Figure C.1-36: Scatters from left to right: 4121, 4116.
Figure C.1-37: Scatters from left to right: 4120, 4123, 4118, 4112

Figure C.1-38: Scatters from left to right: 4120, 4123, and 4119
C.2 Elhovo

Figure C.2-1: Scatter 6018

Figure C.2-2: Scatter 6021
Figure C.2-3: Scatters from left to right: 6026, 8012; Scale 1:10 000

Figure C.2-4: Scatters from left to right: 6027, 8020
Figure C.2-5: Scatters from left to right: 6034, 6036

Figure C.2-6: Scatter 7008
Figure C.2-7: Scatter 7009

Figure C.2-8: Scatters from left to right: 7023, 7019; Scale 1:10 000
Figure C.2-9: Scatters from the top down: 7020, 8005

Figure C.2-10: Scatter 7024
Figure C.2-11: Scatters from left to right 7026, 7025

Figure C.2-12: Scatter 8011
Figure C.2-13: Scatter 8020
Appendix D - Survey Results

D. 1 Efficiency Tables, Kazanluk

Kazanluk 2009 & 2010

<table>
<thead>
<tr>
<th>STRATEGY</th>
<th>Intensive</th>
<th>Extensive</th>
<th>ATS</th>
<th>Intensive (ha)</th>
<th>Extensive (ha)</th>
<th>ATS (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibility</td>
<td>Unit Count</td>
<td>Unit Count</td>
<td>Unit Count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>354</td>
<td>401</td>
<td>97</td>
<td>209.4</td>
<td>569.8</td>
<td>1374.4</td>
</tr>
<tr>
<td>2</td>
<td>295</td>
<td>167</td>
<td>20</td>
<td>188.9</td>
<td>209.8</td>
<td>228.0</td>
</tr>
<tr>
<td>3</td>
<td>701</td>
<td>200</td>
<td>26</td>
<td>444.5</td>
<td>271.8</td>
<td>216.7</td>
</tr>
<tr>
<td>4</td>
<td>804</td>
<td>145</td>
<td>6</td>
<td>484.0</td>
<td>195.7</td>
<td>107.1</td>
</tr>
<tr>
<td>5</td>
<td>1706</td>
<td>102</td>
<td>16</td>
<td>1086.0</td>
<td>128.6</td>
<td>234.1</td>
</tr>
<tr>
<td>Sum</td>
<td>3860</td>
<td>1015</td>
<td>165</td>
<td>2413</td>
<td>1376</td>
<td>2160</td>
</tr>
</tbody>
</table>

TOTAL 5040 units 5948.8 ha

KAZ 2009

<table>
<thead>
<tr>
<th>STRATEGY</th>
<th>INTENSIVE</th>
<th>EXTENSIVE</th>
<th>ATS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEAMS</td>
<td>A B C D</td>
<td>A B C D</td>
<td>A C</td>
</tr>
<tr>
<td>1</td>
<td>153 9.1</td>
<td>10 101.8</td>
<td>79.9</td>
</tr>
<tr>
<td>2</td>
<td>45 4.3</td>
<td>0 23.3</td>
<td>6.7</td>
</tr>
<tr>
<td>3</td>
<td>122 10</td>
<td>12.7</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>102 91.2</td>
<td>0 3.7</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>78 246.5</td>
<td>1.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Total</td>
<td>500 361</td>
<td>24 129</td>
<td>79.9</td>
</tr>
</tbody>
</table>

KAZ 2010

<table>
<thead>
<tr>
<th>STRATEGY</th>
<th>INTENSIVE</th>
<th>EXTENSIVE</th>
<th>ATS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibility</td>
<td>A B C D</td>
<td>A B C D</td>
<td>A C</td>
</tr>
<tr>
<td>1</td>
<td>28.96 19.18</td>
<td>14.48 7.87</td>
<td>16.04</td>
</tr>
<tr>
<td>2</td>
<td>16.13 109.95</td>
<td>34.67 23.22</td>
<td>17.83</td>
</tr>
<tr>
<td>3</td>
<td>91.55 122.57</td>
<td>38.69 79.76</td>
<td>38.69</td>
</tr>
<tr>
<td>4</td>
<td>75.32 160.48</td>
<td>1.77 34.63</td>
<td>1.77</td>
</tr>
<tr>
<td>5</td>
<td>90.91 368.45</td>
<td>83.44 41.61</td>
<td>83.44</td>
</tr>
<tr>
<td>Total</td>
<td>302.86 780.64</td>
<td>87.84 196.07</td>
<td>33.87</td>
</tr>
</tbody>
</table>

3025.45
D. 2 Efficiency Tables, Yambol

Yambol 2009

<table>
<thead>
<tr>
<th>STRATEGY VISIBILITY</th>
<th>Intensive (Unit Count)</th>
<th>Extensive (Unit Count)</th>
<th>Intensive (ha)</th>
<th>Extensive (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (0-20%)</td>
<td>183</td>
<td>520</td>
<td>141.3</td>
<td>643.3</td>
</tr>
<tr>
<td>2 (20-40%)</td>
<td>112</td>
<td>167</td>
<td>78.2</td>
<td>193.6</td>
</tr>
<tr>
<td>3 (40-60%)</td>
<td>211</td>
<td>35</td>
<td>153.3</td>
<td>27.8</td>
</tr>
<tr>
<td>4 (60-80%)</td>
<td>552</td>
<td>54</td>
<td>380.6</td>
<td>27.7</td>
</tr>
<tr>
<td>5 (>80%)</td>
<td>1844</td>
<td>63</td>
<td>1097.7</td>
<td>54.0</td>
</tr>
<tr>
<td>SUM</td>
<td>2902</td>
<td>839</td>
<td>1851.1</td>
<td>946.4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3741</td>
<td>units</td>
<td>2797.47</td>
<td>ha</td>
</tr>
</tbody>
</table>

Yambol 2010

<table>
<thead>
<tr>
<th>STRATEGY VISIBILITY</th>
<th>Intensive (Unit Count)</th>
<th>Extensive (Unit Count)</th>
<th>Intensive (ha)</th>
<th>Extensive (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (0-20%)</td>
<td>2</td>
<td>20</td>
<td>1.6</td>
<td>45.6</td>
</tr>
<tr>
<td>2 (20-40%)</td>
<td>14</td>
<td>32</td>
<td>11.2</td>
<td>58.0</td>
</tr>
<tr>
<td>3 (40-60%)</td>
<td>153</td>
<td>16</td>
<td>109.9</td>
<td>29.8</td>
</tr>
<tr>
<td>4 (60-80%)</td>
<td>116</td>
<td>0</td>
<td>95.3</td>
<td>0.0</td>
</tr>
<tr>
<td>5 (>80%)</td>
<td>628</td>
<td>0</td>
<td>518.7</td>
<td>0.0</td>
</tr>
<tr>
<td>SUM</td>
<td>913</td>
<td>68</td>
<td>736.8</td>
<td>133.4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>981</td>
<td>units</td>
<td>870.18</td>
<td>ha</td>
</tr>
</tbody>
</table>

D. 3 Site Table

The table of Kazanluk and Yambol survey scatters and special finds, documented during 2009-2010 seasons, with indication of scatter area (nucleus in hectares) during different periods. The letter “x” in the fields indicates that a period has not been directly confirmed by survey, but is presumed on basis of previous research, or on basis of closely unrecognizable pottery.
311





Type1
site
site
singlefind
singlefind
singlefind
site
site
site
site
lowdensity

lowdensity
lowdensity
lowdensity
site
site
site
lowdensity
lowdensity
site

site
site
site
site
site
lowdensity
lowdensity
site
site
lowdensity
site
site

site

TRAP
#
1006
1008
1012
1013
1014
1015
1027
1033
1044
1049

2001
2010
2012
2019
2031
2032
2033
2034
2036

2044
2045
2046
2049
2051
2073
2074
2075
3001
3053
3055
3057

3058

quarry

scatter
scatter
scatter
fortress
scatter
scatter
scatter
scatter
scatter
scatter
scatter
quarry

Type2
scatter
scatter
pithos
coin
ceramic
scatter
fortress
fortress
scatter
scatter
mound&
scatter
scatter
scatter
scatter
scatter
scatter
scatter
scatter
scatter

0.00

0.34
0.10
3.51
0.11
9.97
1.18
5.59
7.63
4.52
9.54
0.19
0.00

0.46
0.46
0.36
1.40
0.58
3.03
0.00
0.12
12.57

Area(ha)
2.87
0.29
0.00
0.00
0.00
0.07
0.50
0.83
0.36
0.43

2009

2010
2010
2010
2010
2010
2009
2009
2009
2009
2009
2009
2009

2009
2009
2009
2009
2009
2009
2010
2010
2010

Year
2009
2009
2009
2009
2009
2009
2010
2010
2010
2009

42°38.927383'
42°39.136'
42°39.132'
42°40.363562'
42°38.628845'
42°38'14.55"
42°37'2.666"
42°41'2.263"
42°36'45.402"
42°35'17.726"
42°34'56.213"
42°36'47.167"

42°36'47.137"

42°38'10.962"
42°38'43.616"
42°38'39.788"
42°37'24.165"
42°37'0.812"
42°36'55.974"
42°37.462'
42°38.580'
42°38.12.848'

Lat(N)
42°37'18.138"
42°38'52.308"
42°38'56.729"
42°38'28.818"
42°37'11.783"
42°37'20.406"
42°41.521748'
42°43.61275'
42°39.487'
42°37'55.182"

25°17'34.649

25°20.840296'
25°20.711'
25°20.887'
25°24.879935'
25°21.903297'
25°18'51.908"
25°21'19.038"
25°20'14.177
25°14'44.688"
25°16'58.407"
25°17'3.717"
25°17'34.601"

25°19'11.965"
25°17'40.934"
25°17'35.501"
25°18'33.544"
25°21'5.277"
25°21'22.828"
25°21.488'
25°20.508'
25°20.786'



0

0.3
0.1
0.4
0
0
0.1
0
0
0
0
0.2
0

0
0
0
0
0
0.3
0
0
0.1

Long(E)
PH
25°15'10.8"
0
25°16'30.978"
0
25°16'40.229"
0
25°16'42.583"
0
25°15'7.28"
0
25°16'58.502"
0
25°22.982406'
0
25°21.576491'
0
25°21.678'
0
25°16'33.998"
0

0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

Chl
0
0
0
0
0
0
0
0
0
0

0

0
0
0
0
0
0
0
0
0
0.9
0.2
0

0
0
0
0
0
0
0
0
0

EBA
0
0
0
0
0
0.1
0
0
0
0

0

0
0.1
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

MBA
0
0
0
0
0
0
0
0
0
0

0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0.6
0.3
0
0
0

LBA
0
0
0
0
0
0
0
0
0
0

0.002

0
0.1
0.35
0
0
0.12
0
0
4.52
0
0.19
0

0.05
0
0.04
0
0.58
3
0
0
1.26

EIA
0
0
0
0
0
0
x
0.8
0
0

0

0.3
0
3.5
0
0
0
0.6
7.6
4.5
0.9
0
0

0.1
0.1
0
1.4
0.6
3
0.2
0.1
1.3

LIA
1
0.3
0
0
0
0
0.5
0.8
0.4
0

0

0.34
0.1
3.51
0
0
0
0
7.63
0
0
0
0

0
0.05
0.04
1.4
0.58
0.3
0
0
1.26

RM
0
0.29
x
x
x
0
0.5
0.8
0.35
0.4

0

0.3
0
3.5
0
0
0
0
7.6
0
0
0
0

0.1
0.1
0
1.4
0
0.3
0
0
13

LA
2.9
0.3
0
0
0
0
0
0
0
0.4

0

0.3
0
3.5
0.1
0
0
0
0
4.5
0
0
0

0
0
0
0
0
0
0
0
0

BYZ
0
0
0
0
0
0
0.5
0.8
0
0

0

0
0
0
0.1
0
0
0.6
0
4.5
0
0
0

0
0
0
0
0.6
0
0
0
13

MA
2.9
0
0
0
0
0
0.5
0.8
0
0

0

0
0
3.51
0
0.99
0
0.56
0
0
0
0
0

0.05
0
0
1.4
0
0
0
0
12.6

OTT
1
0
0
0
0
0
0
0
0
0


<table>
<thead>
<tr>
<th>Site</th>
<th>Type</th>
<th>Density</th>
<th>Scatter</th>
<th>Year</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Age (Years)</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>3062</td>
<td>fortress</td>
<td>0.25</td>
<td>2010</td>
<td>42°13'24.1"</td>
<td>25°12'7.4"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>3107</td>
<td>scatter</td>
<td>0.05</td>
<td>2010</td>
<td>42°39'29.8"</td>
<td>25°14'44.1"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>3122</td>
<td>scatter</td>
<td>0.37</td>
<td>2010</td>
<td>42°40'35.5"</td>
<td>25°15'3.0"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>3126</td>
<td>scatter</td>
<td>2.26</td>
<td>2010</td>
<td>42°41'29.4"</td>
<td>25°13'49.8"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>3130</td>
<td>scatter</td>
<td>1.36</td>
<td>2010</td>
<td>42°15'34.1"</td>
<td>25°15'55.6"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>3133</td>
<td>masonry</td>
<td>0.64</td>
<td>2010</td>
<td>42°41'22.6"</td>
<td>25°15'42.1"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3169</td>
<td>scatter</td>
<td>0.57</td>
<td>2010</td>
<td>42°39'32.2"</td>
<td>25°12'31.6"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3225</td>
<td>scatter</td>
<td>6.36</td>
<td>2010</td>
<td>42°40'51.5"</td>
<td>25°14'45.7"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3227</td>
<td>masonry</td>
<td>5.02</td>
<td>2010</td>
<td>42°39'34.5"</td>
<td>25°14'5.0"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3228</td>
<td>scatter</td>
<td>89.64</td>
<td>2010</td>
<td>42°13'22.1"</td>
<td>25°13'45.7"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>89</td>
</tr>
<tr>
<td>3231</td>
<td>masonry</td>
<td>60.40</td>
<td>2010</td>
<td>42°40'43.6"</td>
<td>25°13'2.8"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>60.4</td>
</tr>
<tr>
<td>4001</td>
<td>scatter</td>
<td>0.03</td>
<td>2009</td>
<td>42°36'38.5"</td>
<td>25°17'2.3"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4083</td>
<td>scatter</td>
<td>0.75</td>
<td>2009</td>
<td>42°35'10.5"</td>
<td>25°21'48.1"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>4097</td>
<td>scatter</td>
<td>0.18</td>
<td>2009</td>
<td>42°36'49.7"</td>
<td>25°20'2.9"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4098</td>
<td>scatter</td>
<td>0.95</td>
<td>2009</td>
<td>42°34'47.9"</td>
<td>25°17'56.8"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4102</td>
<td>scatter</td>
<td>0.17</td>
<td>2009</td>
<td>42°34'28.5"</td>
<td>25°23.6"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4106</td>
<td>scatter</td>
<td>0.41</td>
<td>2010</td>
<td>42°41'7.3"</td>
<td>25°22.2.1"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4111</td>
<td>scatter</td>
<td>0.01</td>
<td>2010</td>
<td>42°40'41.8"</td>
<td>25°22.5.0"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4113</td>
<td>scatter</td>
<td>0.33</td>
<td>2010</td>
<td>42°38'9.1"</td>
<td>25°22.3"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4114- 5</td>
<td>scatter</td>
<td>10.09</td>
<td>2010</td>
<td>42°41'22.9"</td>
<td>25°22.7"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>4116</td>
<td>scatter</td>
<td>3.83</td>
<td>2010</td>
<td>42°39'3.0"</td>
<td>25°23.1"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.83</td>
</tr>
<tr>
<td>4117</td>
<td>scatter</td>
<td>1.08</td>
<td>2010</td>
<td>42°40'20.8"</td>
<td>25°23.3"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.08</td>
</tr>
<tr>
<td>4118</td>
<td>scatter</td>
<td>0.47</td>
<td>2010</td>
<td>42°42'2.1"</td>
<td>25°22.3"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4119</td>
<td>scatter</td>
<td>0.01</td>
<td>2010</td>
<td>42°39'54.5"</td>
<td>25°22.18"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4120</td>
<td>scatter</td>
<td>1.59</td>
<td>2010</td>
<td>42°40'10.8"</td>
<td>25°21.9"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.6</td>
</tr>
<tr>
<td>4121</td>
<td>scatter</td>
<td>0.42</td>
<td>2010</td>
<td>42°39'0.5"</td>
<td>25°22.9"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4122</td>
<td>scatter</td>
<td>0.09</td>
<td>2010</td>
<td>42°40'6.3"</td>
<td>25°22.6"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4123</td>
<td>scatter</td>
<td>0.07</td>
<td>2010</td>
<td>42°37'45.8"</td>
<td>25°16.5"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5006</td>
<td>scatter</td>
<td>0.28</td>
<td>2009</td>
<td>42°37'45.8"</td>
<td>25°16.5"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6018</td>
<td>scatter</td>
<td>16.92</td>
<td>2009</td>
<td>42°17'19.5"</td>
<td>26°41.5"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.7</td>
</tr>
<tr>
<td>6021</td>
<td>scatter</td>
<td>2.82</td>
<td>2009</td>
<td>42°18'31.3"</td>
<td>26°39.3"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>6026</td>
<td>scatter</td>
<td>0.07</td>
<td>2009</td>
<td>42°18'5.0"</td>
<td>26°40.3"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6027</td>
<td>scatter</td>
<td>4.37</td>
<td>2009</td>
<td>42°18'5.5"</td>
<td>26°43.5"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6034</td>
<td>scatter</td>
<td>3.44</td>
<td>2010</td>
<td>42°16'41.6"</td>
<td>26°19'3.6"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.4</td>
</tr>
<tr>
<td>Site</td>
<td>Type</td>
<td>Density</td>
<td>Year</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Age</td>
<td>Age</td>
<td>Age</td>
<td>Age</td>
<td>Age</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>---------</td>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>6036</td>
<td>site</td>
<td>scatter</td>
<td>2010</td>
<td>42°16'58.904"</td>
<td>26°20'2.145"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7008</td>
<td>site</td>
<td>scatter</td>
<td>2009</td>
<td>42°17'40.4"</td>
<td>26°37'17.712"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7009</td>
<td>site</td>
<td>scatter</td>
<td>2009</td>
<td>42°16'23.461"</td>
<td>26°38'18.226"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7019</td>
<td>site</td>
<td>scatter</td>
<td>2009</td>
<td>42°18'46.584"</td>
<td>26°42'5.693"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>7020</td>
<td>site</td>
<td>scatter</td>
<td>2009</td>
<td>42°18'7.215"</td>
<td>26°38'3.895"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>7023</td>
<td>low density</td>
<td>scatter</td>
<td>2009</td>
<td>42°18'41.424"</td>
<td>26°41'43.833"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7024</td>
<td>site</td>
<td>scatter</td>
<td>2010</td>
<td>42°15'20.558"</td>
<td>26°19'2.024"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7025</td>
<td>site</td>
<td>scatter</td>
<td>2010</td>
<td>42°14'35.429"</td>
<td>26°19'0.566"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7026</td>
<td>low density</td>
<td>mound & scatter</td>
<td>2010</td>
<td>42°16'3.871"</td>
<td>26°18'2.479"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8005</td>
<td>site</td>
<td>scatter</td>
<td>2009</td>
<td>42°17'47.4"</td>
<td>26°38'32.3"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8011</td>
<td>site</td>
<td>scatter</td>
<td>2009</td>
<td>42°16'53.274"</td>
<td>26°39'3.1425"</td>
<td>3.3</td>
<td>3.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8012</td>
<td>site</td>
<td>scatter</td>
<td>2009</td>
<td>42°18'45.732"</td>
<td>26°41'20.805"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8019</td>
<td>site</td>
<td>tell</td>
<td>2009</td>
<td>42°16'27.398"</td>
<td>26°34'53.808"</td>
<td>0.4</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8020</td>
<td>site</td>
<td>scatter</td>
<td>2009</td>
<td>42°18'20.284"</td>
<td>26°43'4.1968"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Appendix E - Ranks per Period

E. 1 Kazanluk

Figure E. 1-1: Early Iron Age survey sites in Kazanluk, ranked; (pink symbols refer to legacy sites).

Figure E. 1-2: Late Iron Age survey sites in Kazanluk
E. 2 Yambol

Figure E. 2-1: Early Iron Age Survey and Legacy Sites in Yambol region, ranked according to extent and significance
Figure E. 2-2: Late Iron Age Survey and Legacy Sites in Yambol region, ranked according to extent and significance
Figure E. 2-3: Roman Survey and Legacy sites in Yambol region, ranked according to extent and material
Appendix F - Total Pick-Ups Finds Processing

The finds collected during the total pick-ups were divided in basic functional categories: pottery, architectural material, glass, metals and lithics. The architectural material was further broken down into two groups - daub and architectural ceramics. Tiles and bricks were collapsed in the latter group as highly fragmented pieces were not readily identifiable. Charts and graphs at the end of appendix F show the results of these classifications at sites 2036, 2046, 1044, 4113, and 2045.

Since majority of surface pottery is not diagnostic enough to allow attribution to a particular functional type (table amphora or hydria) we have chosen to first present criteria that could be objectively/mechanically measured or noted: e.g. sherd thickness, levigation and manner of production (hand-made, wheel-made), and, second, present our interpretation regarding function, where it could be determined with some degree of confidence.

In case of wheel-made (WM) pottery the wear and tiny size of fragments often prevent attribution to a particular functional type. Yet, the fact that WM vessels are mass-produced means their shapes come in standard forms and proportions according to their function. Patterns in these proportions can be measured and natural breaks in them established. Wall thickness and levigation quality represent two indicators that can be used in absence of other diagnostic features. The thickness of sherd (and vessel part it originates from) and its fabric provides guidance about functional category of the artifact – storage, food consumption, serving. Discreet groups based on wall thickness and fabric type have emerged during the artifact processing, that were matched with different functions.

The problem of functional identification of survey pottery material increases exponentially in case of handmade pottery. Shapes of indigenous handmade (HM) vessels lack standardized features. Their thickness, fabric and firing quality remain highly variable, depriving us of clear-cut functional markers. The range of thickness is often devoid of marked gradations in HM fragments, making attribution depend on subtle differences in fabric composition and surface treatment, where preserved. In other cases, functional attribution can be made at very general level, remains flexible and, to a degree, arbitrary.

The measurable categories:

Manner of Production: handmade or wheel-made or mould made. The last category being extremely scarce, only the first two really applied in our study. On average deciding between the two categories was relatively easy except in the case of small fragments of worn coarse wares. In that case hardness, texture and firing were used to make a decision.

Thickness: measured with a gauge or by eye. During the course of the pottery analysis several natural groupings of thicknesses emerged for WM and HM pottery. See nearby table X

Coarseness (Fine-coarse): the fragments assessed for coarseness are placed along the continuum between the coarse and fine. This position was determined on basis of the relative quantity of inclusions in the section of the sherd (that is levigation), their size and sorting. Fine - meant small percentage of well sorted inclusions – well levigated material; coarse - meant high
percentage of sorted (>50%) inclusions or medium amount of unsorted inclusions of different sizes (badly levigated material).

<table>
<thead>
<tr>
<th>Technique</th>
<th>Levigation</th>
<th>Thickness</th>
<th>Mm (roughly)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM</td>
<td>Fine</td>
<td>Thin</td>
<td><= 4</td>
<td>ITW – individual tableware</td>
</tr>
<tr>
<td></td>
<td>Med</td>
<td>4 – 7</td>
<td>TW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thick</td>
<td>>7</td>
<td>Large TW, fine transport</td>
<td></td>
</tr>
<tr>
<td>Coarse</td>
<td>Thin</td>
<td>< 12</td>
<td>Cookware, storage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thick</td>
<td>12-15 and larger</td>
<td>Storage</td>
<td></td>
</tr>
<tr>
<td>HM</td>
<td>Fine</td>
<td>Thin</td>
<td><7</td>
<td>Potential TW</td>
</tr>
<tr>
<td>Coarse</td>
<td>Thin</td>
<td><7</td>
<td>TW or cookware</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Med</td>
<td>7-12</td>
<td>Cookware/storage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thick</td>
<td>>12</td>
<td>Cookware/storage</td>
<td></td>
</tr>
</tbody>
</table>

The interpretive categories:

Individual table ware (ITW): WM <= 4mm. This group of pottery is taken to represent vessels used for food consumption that are personal (small tableware). Bulgarian Neolithic and Chalcolithic period handmade vessels fit within this thickness bracket. In our more chronologically-limited sample (LBA – OTT) the thinnest category of handmade falls between 4-7mm, a degree thicker than wheel-made and has been included in the next category. The only exception from ITW is wheel-made cookware, which can be as fine as 4mm thickness, but can be easily picked out; these are included in the CST category (see below).

Transitional/Unidentifiable table ware: WM 4-7mm, HM 4-7 and 7-12mm. This group includes table wares (either individual or large ones) including serving vessels. Alternatively, thicker WM fragments may represent high quality transport amphora, coming for example from thin shoulder part of amphora. Although none of the HM fabrics can really be defined as fine, there is one type of fabric that is less coarse. Made of better levigated clay with better sorted inclusions, there is a local type of pottery that is used as personal tableware despite relatively thick (4-7mm) walls (KAZ005E site). The second, coarse group of handmade may represent large serving vessels, or potentially cook pots. While we try to separate identifiable cookware, it is possible that thin sections of HM cook pots that don’t show signs of burning could be miscategorized into this category.

Large table ware or high quality transport ware: well levigated, wheel made vessels (WM 7-15mm) all identifiable amphorae, craters, platters and bowls (dinos, lekane types).

Cookware/Storage/Transport: HM >12mm WM cookware, WM >12/15mm; Large heavy handmade vessels may include cook pots, storage jars, pithoi, vats, and other storage or cooking vessels. WM – thin walled coarse fabric cookware and WM >12/15mm large storage and transport vessels.

Illustrations are in the following order: 2036, 2046, 1044, 4113, 2045, all weights are listed in dkg for ease of display,
Site 2036

Sample 235

2036 Count

2036 Weight(dkg)

2036 TP Functional breakdown

<table>
<thead>
<tr>
<th>ITW</th>
<th>Trans TW</th>
<th>Large TW</th>
<th>CST</th>
<th>AC</th>
<th>Daub</th>
<th>Modern</th>
<th>Non-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>0</td>
<td>65</td>
<td>8</td>
<td>0</td>
<td>19</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>Weight(dkg)</td>
<td>0</td>
<td>35</td>
<td>10</td>
<td>0</td>
<td>100</td>
<td>18</td>
<td>5</td>
</tr>
</tbody>
</table>
Site 4113

Surface Finds & Concentrations

<table>
<thead>
<tr>
<th>Count</th>
<th>WM</th>
<th>HM</th>
<th>AC(m)</th>
<th>Daub</th>
<th>Modern</th>
<th>Non-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>34%</td>
<td>9%</td>
<td>26%</td>
<td>17%</td>
<td>5%</td>
<td>9%</td>
<td>4%</td>
</tr>
</tbody>
</table>

Weight (dkg)

<table>
<thead>
<tr>
<th>4113 Weight (dkg)</th>
<th>WM</th>
<th>HM</th>
<th>AC(m)</th>
<th>Daub</th>
<th>Modern</th>
<th>Non-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>25%</td>
<td>4%</td>
<td>4%</td>
<td>10%</td>
<td>3%</td>
<td>4%</td>
<td>54%</td>
</tr>
</tbody>
</table>
4113 TP Functional breakdown

<table>
<thead>
<tr>
<th>ITW</th>
<th>Trans TW</th>
<th>Large TW</th>
<th>CST</th>
<th>AC</th>
<th>Daub</th>
<th>Modern</th>
<th>Non-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>15</td>
<td>32.5</td>
<td>2</td>
<td>3</td>
<td>23</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Weight (dkg)</td>
<td>2.25</td>
<td>19.6</td>
<td>1.75</td>
<td>7.5</td>
<td>57.5</td>
<td>10.15</td>
<td>4.25</td>
</tr>
</tbody>
</table>

Site 2045

2045 TP

<table>
<thead>
<tr>
<th>WM</th>
<th>HM</th>
<th>AC (m)</th>
<th>Daub</th>
<th>Modern</th>
<th>Non-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>19</td>
<td>128</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Weight (dkg)</td>
<td>16</td>
<td>144</td>
<td>20</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>
2045 TP Functional Breakdown

<table>
<thead>
<tr>
<th></th>
<th>ITW</th>
<th>Trans TW</th>
<th>Large TW</th>
<th>CST</th>
<th>AC</th>
<th>Daub</th>
<th>Modern</th>
<th>Non-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>9</td>
<td>42</td>
<td>10</td>
<td>86</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>38</td>
</tr>
<tr>
<td>Weight (dkg)</td>
<td>4</td>
<td>52</td>
<td>12</td>
<td>92</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>
Appendix G - Pottery Drawings and Descriptions

G. 1 Prehistoric pottery

Figure G. 1-1: Prehistoric Pottery
<table>
<thead>
<tr>
<th>Inv #</th>
<th>Object</th>
<th>Tech</th>
<th>Freq</th>
<th>Size</th>
<th>Type</th>
<th>Fabric</th>
<th>Surface</th>
<th>Decoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>61637. 3</td>
<td>6036</td>
<td>HM</td>
<td>5</td>
<td>VF-C</td>
<td>white stone, quartz, void</td>
<td>10YR 5/3 B int/ext core Gley1 4/N DG</td>
<td>burnish, smooth ext</td>
<td>plastic ext, floral rim</td>
</tr>
<tr>
<td>61571. 3</td>
<td>6034</td>
<td>HM</td>
<td>3</td>
<td>VF-C</td>
<td>white stone, mica, quartz</td>
<td>SY 6/1G int SY 2.5 B ext</td>
<td>both smooth</td>
<td>plastic ext, molded handles</td>
</tr>
<tr>
<td>61643. 1</td>
<td>6036</td>
<td>HM</td>
<td>4</td>
<td>VF-VC</td>
<td>void, white stone, quartz, red stone, mica</td>
<td>10YR 6/4 LYB int core 2.5Y 4/1 DG 2.5Y 4/1 DG ext core 2.5Y 6/1 G</td>
<td>both burnish, good quality</td>
<td>mickey mouse shaped handle</td>
</tr>
<tr>
<td>61637. 8</td>
<td>n/a</td>
<td>4</td>
<td>VF-M</td>
<td>white stone, quartz, mica, red stone</td>
<td>2.5Y 4/1 DG int core 2.5Y 6/2 LBG 2.5Y 6/2 LBG</td>
<td>both smooth</td>
<td>incision ext</td>
<td></td>
</tr>
<tr>
<td>61575. 2</td>
<td>6036</td>
<td>HM</td>
<td>5</td>
<td>VF-C</td>
<td>dark stone, white stone, mica, quartz</td>
<td>SYR 4/4 RB int/ext core Gley1 3/N VDG</td>
<td>both smooth, slip</td>
<td>plastic ext</td>
</tr>
<tr>
<td>61641. 1</td>
<td>6034</td>
<td>HM</td>
<td>4</td>
<td>VF-VC</td>
<td>void, white stone, quartz, mica</td>
<td>SY 6/1 G int/ext Gley1 4/N DG int/ext</td>
<td>none</td>
<td>repair</td>
</tr>
<tr>
<td>606.1</td>
<td>8011</td>
<td>HM</td>
<td>4</td>
<td>VF-VC</td>
<td>white stone, quartz, mica</td>
<td>10YR 6/3 PB int/ext core Gley1 4/N DG</td>
<td>slip int 10YR 6/3 PB burnish int shiny</td>
<td></td>
</tr>
<tr>
<td>61631. 1</td>
<td>6036</td>
<td>HM</td>
<td>4</td>
<td>VF-C</td>
<td>white stone, quartz, void</td>
<td>7.5YR 5/4 B int core 2.5Y 3/1 VDG SYR 5/4 RB int/ext</td>
<td>burnish ext</td>
<td></td>
</tr>
<tr>
<td>61638. 2</td>
<td>6036</td>
<td>HM</td>
<td>4</td>
<td>VF-VC</td>
<td>white stone, quartz, red stone, void</td>
<td>7.5YR 5/4 B int/ext core 2.5Y 3/1 VDG</td>
<td>smooth ext</td>
<td></td>
</tr>
<tr>
<td>607.2</td>
<td>8011</td>
<td>HM</td>
<td>5</td>
<td>M-VC</td>
<td>white stone, quartz</td>
<td>SYR 5/4 RB int GLEY1 3/N VDG ext core 2.5Y 5/1 G</td>
<td>burnish ext, smooth int</td>
<td>knobs ext</td>
</tr>
<tr>
<td>80026. 3</td>
<td>offsite</td>
<td>5</td>
<td>VF-VC</td>
<td>quartz, white stone, void</td>
<td>10YR 6/4 LYB int core 2.5Y 4/1DG ext</td>
<td>both smooth</td>
<td>incision ext</td>
<td></td>
</tr>
<tr>
<td>61642. 2</td>
<td>6036</td>
<td>HM?</td>
<td>4</td>
<td>VF-M</td>
<td>white stone, mica, black stone, GrPOT</td>
<td>GLEY1 2.5/N B int/ext</td>
<td>both smooth</td>
<td>incision ext</td>
</tr>
<tr>
<td>607.3</td>
<td>8011</td>
<td>??</td>
<td>4</td>
<td>VF-M</td>
<td>black stone, mica, quartz, white stone</td>
<td>10YR 5/3 B int/ext</td>
<td>burnish ext</td>
<td>incision ext</td>
</tr>
<tr>
<td>80476. 2</td>
<td>8011</td>
<td>HM</td>
<td>5</td>
<td>VF-VC</td>
<td>white stone, quartz, void</td>
<td>10YR 6/3 PB int/ext core Gley1 3/N VDG</td>
<td>burnish ext, smooth int</td>
<td></td>
</tr>
<tr>
<td>61629. 1</td>
<td>6036</td>
<td>HM</td>
<td>5</td>
<td>VF-VC</td>
<td>white stone, quartz, void</td>
<td>SY 2.5/1 B int/ext SYR 5/4 RB int/ext</td>
<td>smooth ext/int</td>
<td></td>
</tr>
</tbody>
</table>

Table G. 1-1: Prehistoric pottery catalogue
G. 2 Neolithic and Chalcolithic Pottery

Figure G. 2-1: Neolithic pottery

Figure G. 2-2: Chalcolithic Pottery
<table>
<thead>
<tr>
<th>Sherd Information</th>
<th>Inclusions</th>
<th>Fabric</th>
<th>Surface</th>
<th>Decoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inv #</td>
<td>Object</td>
<td>Tech</td>
<td>Freq</td>
<td>Size</td>
</tr>
<tr>
<td>61574.3</td>
<td>6034</td>
<td>WM</td>
<td>4</td>
<td>VF-C</td>
</tr>
<tr>
<td>607.1</td>
<td>8011</td>
<td>HM</td>
<td>3</td>
<td>F-VC</td>
</tr>
<tr>
<td>61579.10</td>
<td>8011</td>
<td>HM</td>
<td>3</td>
<td>V-FC</td>
</tr>
<tr>
<td>607.4</td>
<td>6034</td>
<td>HM</td>
<td>4</td>
<td>F-C</td>
</tr>
<tr>
<td>61636.1</td>
<td>6036</td>
<td>HM</td>
<td>5</td>
<td>F-VC</td>
</tr>
<tr>
<td>4097.7</td>
<td>4097</td>
<td>HM</td>
<td>5</td>
<td>VF-VC</td>
</tr>
<tr>
<td>6125.1.1</td>
<td>6026</td>
<td>HM</td>
<td>5</td>
<td>VF-VC</td>
</tr>
<tr>
<td>61642.3</td>
<td>6036</td>
<td>HM</td>
<td>5</td>
<td>F-VC</td>
</tr>
</tbody>
</table>

Table G. 2-1: Neolithic and Chalcolithic pottery catalogue
G. 3 Bronze Age Pottery

Figure G. 3-1: Bronze Age pottery
<table>
<thead>
<tr>
<th>Inv #</th>
<th>Object</th>
<th>Tech</th>
<th>Freq</th>
<th>Size</th>
<th>Type</th>
<th>Color</th>
<th>Type</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3056.1</td>
<td>3056</td>
<td>HM</td>
<td>5</td>
<td>VF-VC</td>
<td>white stone, quartz, black stone</td>
<td>10YR 4/2 DGB int/ext</td>
<td>none preserved, stripped, encrusted</td>
<td>plastic ext</td>
</tr>
<tr>
<td>3055.10</td>
<td>3055-GCH060</td>
<td>HM</td>
<td>5</td>
<td>VF-VC</td>
<td>white stone, quartz</td>
<td>SYR 5/6 YR int Gley1 3/N VDB ext</td>
<td>stripped, encrusted</td>
<td></td>
</tr>
<tr>
<td>DUN005.2</td>
<td>1015-DUN005</td>
<td>HM</td>
<td>4</td>
<td>F-VC</td>
<td>white stone, huge quartz, void</td>
<td>7 SYR 5/6 SB int/ext</td>
<td>stripped, poorly preserved</td>
<td></td>
</tr>
<tr>
<td>DUN005.7</td>
<td>1015-DUN005</td>
<td>HM</td>
<td>4</td>
<td>VF-VC</td>
<td>white stone, quartz, gold mica</td>
<td>2 SYR 5/1 G int/ext</td>
<td>both slip Gley1 3/N VDB, both burnish</td>
<td>plastic ext</td>
</tr>
<tr>
<td>DUN005.11</td>
<td>1015-DUN005</td>
<td>HM</td>
<td>4</td>
<td>VF-VC</td>
<td>white stone, quartz</td>
<td>SYR 5/6 YR int, Gley1 2.5/N B int SYR 5/6 YR ext</td>
<td>slip int Gley1 2.5/N B, smooth ext, burnish int</td>
<td>plastic ext</td>
</tr>
<tr>
<td>DUN005.5</td>
<td>1015-DUN005</td>
<td>HM</td>
<td>4</td>
<td>VF-C</td>
<td>white stone, quartz</td>
<td>2 SYR 5/1 G int/ext</td>
<td>slip stripped partially Gley1 3/N VDB</td>
<td></td>
</tr>
<tr>
<td>DUN005.1</td>
<td>1015-DUN005</td>
<td>HM</td>
<td>5</td>
<td>F-VC</td>
<td>white stone, huge quartz, void</td>
<td>7 SYR 5/6 SB int/ext</td>
<td>stripped, poorly preserved</td>
<td>incision ext</td>
</tr>
<tr>
<td>3056.3</td>
<td>3056</td>
<td>HM</td>
<td>5</td>
<td>F-VC</td>
<td>white stone, quartz, void</td>
<td>Gley1 2.5/N B int/ext</td>
<td>none, encrusted</td>
<td>plastic ext</td>
</tr>
<tr>
<td>3055.9</td>
<td>3055-GCH060</td>
<td>HM</td>
<td>4</td>
<td>F-VC</td>
<td>white stone</td>
<td>Gley1 2.5/N B int/ext</td>
<td>encrusted with deposition</td>
<td>plastic ext</td>
</tr>
<tr>
<td>3053.1</td>
<td>3053-GCH057</td>
<td>HM</td>
<td>4</td>
<td>VF-VC</td>
<td>white stone, void, quartz</td>
<td>SYR 2.5/1 B int SYR 2.5/1 B ext SYR 4/4 RB int/ext</td>
<td>none, stripped, worn</td>
<td>incised rim</td>
</tr>
<tr>
<td>3053.2</td>
<td>3053-GCH057</td>
<td>HM</td>
<td>4</td>
<td>VF-VC</td>
<td>white stone, void, quartz, mica</td>
<td>SYR 2.5/1 B int SYR 3/3 DRB ext</td>
<td>none, stripped, worn</td>
<td></td>
</tr>
</tbody>
</table>

Table G. 3-1: Bronze Age pottery catalogue
G. 4 Early Iron Age Pottery

Figure G. 4-1: Early Iron Age Pottery
<table>
<thead>
<tr>
<th>Sherd Information</th>
<th>Inclusions</th>
<th>Fabric</th>
<th>Surface</th>
<th>Decoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inv #</td>
<td>Object</td>
<td>Tech</td>
<td>Frg</td>
<td>Size</td>
</tr>
<tr>
<td>61220.3</td>
<td>6018</td>
<td>HM</td>
<td>4</td>
<td>VF-VC</td>
</tr>
<tr>
<td>61566.4</td>
<td>6034</td>
<td>HM</td>
<td>3</td>
<td>VF-M</td>
</tr>
<tr>
<td>61071.1</td>
<td>7019</td>
<td>HM</td>
<td>4</td>
<td>VF-M</td>
</tr>
<tr>
<td>71291.1</td>
<td>7019</td>
<td>HM</td>
<td>5</td>
<td>VF-C</td>
</tr>
<tr>
<td>61549.1</td>
<td>6034</td>
<td>HM</td>
<td>4</td>
<td>VF-VC</td>
</tr>
<tr>
<td>8012.7</td>
<td>8012</td>
<td>HM</td>
<td>4</td>
<td>VF-VC</td>
</tr>
<tr>
<td>8012.4</td>
<td>8012</td>
<td>HM</td>
<td>4</td>
<td>VF-VC</td>
</tr>
<tr>
<td>8012.1</td>
<td>8012</td>
<td>HM</td>
<td>5</td>
<td>VF-VC</td>
</tr>
<tr>
<td>61220.2</td>
<td>6018</td>
<td>HM</td>
<td>4</td>
<td>VF-VC</td>
</tr>
<tr>
<td>80841.1</td>
<td>8012</td>
<td>HM</td>
<td>5</td>
<td>VF-VC</td>
</tr>
<tr>
<td>80477.1</td>
<td>8011</td>
<td>HM</td>
<td>4</td>
<td>VF-F</td>
</tr>
<tr>
<td>71391.1</td>
<td>7020</td>
<td>HM</td>
<td>4</td>
<td>VF-VC</td>
</tr>
<tr>
<td>8012.5</td>
<td>8012</td>
<td>HM</td>
<td>3</td>
<td>VF-VC</td>
</tr>
<tr>
<td>61211.1</td>
<td>6018</td>
<td>HM</td>
<td>3</td>
<td>VF-VC</td>
</tr>
<tr>
<td>61563.5</td>
<td>6034</td>
<td>HM</td>
<td>4</td>
<td>VF-C</td>
</tr>
<tr>
<td>61572.3</td>
<td>6034</td>
<td>HM</td>
<td>4</td>
<td>VF-VC</td>
</tr>
<tr>
<td>8012.3</td>
<td>8012</td>
<td>HM</td>
<td>3</td>
<td>VF-VC</td>
</tr>
<tr>
<td>61220.1</td>
<td>6018</td>
<td>HM</td>
<td>4</td>
<td>VF-VC</td>
</tr>
<tr>
<td>80650.3</td>
<td>8011</td>
<td>HM</td>
<td>5</td>
<td>VF-VC</td>
</tr>
<tr>
<td>8012.6</td>
<td>8012</td>
<td>HM</td>
<td>3</td>
<td>VF-VC</td>
</tr>
<tr>
<td>80533.1</td>
<td>offsite</td>
<td>HM</td>
<td>5</td>
<td>VF-VC</td>
</tr>
<tr>
<td>61641.2</td>
<td>6036</td>
<td>HM</td>
<td>5</td>
<td>VF-VC</td>
</tr>
<tr>
<td>80927.3</td>
<td>8012</td>
<td>HM</td>
<td>4</td>
<td>VF-VC</td>
</tr>
</tbody>
</table>

Table G. 4-1: Early Iron Age pottery catalogue
G. 5 Classical Period Pottery

Figure G. 5-1: Classical Pottery
<table>
<thead>
<tr>
<th>Sherd Information</th>
<th>Inclusions</th>
<th>Fabric</th>
<th>Surface</th>
<th>Decoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inv #</td>
<td>Object</td>
<td>Tech</td>
<td>Freq</td>
<td>Size</td>
</tr>
<tr>
<td>61580.2</td>
<td>6034</td>
<td>WM</td>
<td>2</td>
<td>VF-F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61575.1</td>
<td>6034</td>
<td>WM</td>
<td>3</td>
<td>VF-VC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61580.1</td>
<td>6034</td>
<td>WM</td>
<td>2</td>
<td>VF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61579.4</td>
<td>6034</td>
<td>WM</td>
<td>2</td>
<td>VF-F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61580.1</td>
<td>6034</td>
<td>WM</td>
<td>1</td>
<td>VF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61579.5</td>
<td>6034</td>
<td>WM</td>
<td>1</td>
<td>VF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61563.1</td>
<td>6034</td>
<td>WM</td>
<td>2</td>
<td>VF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61580.4</td>
<td>6034</td>
<td>WM</td>
<td>2</td>
<td>VF-F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61577.7</td>
<td>6034</td>
<td>WM</td>
<td>2</td>
<td>VF-F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61566.2</td>
<td>6034</td>
<td>WM</td>
<td>3</td>
<td>VF-M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61574.2</td>
<td>6034</td>
<td>WM</td>
<td>3</td>
<td>VF-F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61574.1</td>
<td>6034</td>
<td>WM</td>
<td>2</td>
<td>VC-VF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table G. 5-1: Classical period pottery table
G. 6 Grey Ware from site 3126

Figure G. 6-1: Grey Ware craters from site 3126, dated to 6th century BC
Figure G. 6-2: Grey Ware amphora from site 3126, dated to the 6th century BC
G. 7 Late Iron Age pottery

Figure G. 7-1: Late Iron Age Pottery
<table>
<thead>
<tr>
<th>Inv #</th>
<th>Object</th>
<th>Tech</th>
<th>Freq</th>
<th>Size</th>
<th>Type</th>
<th>Color</th>
<th>Surface</th>
<th>Decoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>61579.2</td>
<td>6034</td>
<td>WM</td>
<td>2</td>
<td>VF-F</td>
<td>white stone, mica, quartz</td>
<td>Gley1 3/3 VDG int/ext</td>
<td>slip ext Gley1 2.5/N, both WM</td>
<td></td>
</tr>
<tr>
<td>61579.4</td>
<td>6034</td>
<td>WM</td>
<td>2</td>
<td>VF-F</td>
<td>white stone, mica, quartz</td>
<td>Gley1 3/3 VDG int/ext</td>
<td>both slip Gley1 2.5/N, WM ext</td>
<td></td>
</tr>
<tr>
<td>20710.1</td>
<td>2031-KA2004</td>
<td>WM</td>
<td>2</td>
<td>VF-F</td>
<td>void, mica</td>
<td>SYR 5/6 YR int/3/1 DG</td>
<td>both slip 7.5YR 6/4 LB</td>
<td></td>
</tr>
<tr>
<td>61579.5</td>
<td>6034</td>
<td>WM</td>
<td>1</td>
<td>VF</td>
<td>white stone, mica</td>
<td>Gley1 3/3 VDG int/ext</td>
<td>both slip Gley1 2.5/N, both WM</td>
<td></td>
</tr>
<tr>
<td>225.2</td>
<td>2031-KA2004</td>
<td>WM</td>
<td>2</td>
<td>VF-M</td>
<td>white stone, silver mica</td>
<td>7.5YR 3/1 VDG int/ext</td>
<td>Slip int 10YR 6/3 PB, slip ext 10YR 6/3 PB, 2.5Y 4/1 DG</td>
<td></td>
</tr>
<tr>
<td>2001.4</td>
<td>2001-KOP015</td>
<td>WM</td>
<td>2</td>
<td>F-M</td>
<td>void, GrPOT, white stone</td>
<td>SYR 6/6 RY int/ext</td>
<td>Smooth</td>
<td></td>
</tr>
<tr>
<td>2031.2</td>
<td>2031-KA2004</td>
<td>WM</td>
<td>1</td>
<td>VF</td>
<td>mica</td>
<td>Gley1 6/N G int/ext</td>
<td>Slip ext Gley1 6/N G, WM int, burnish ext</td>
<td></td>
</tr>
<tr>
<td>2001.1</td>
<td>2001-KOP015</td>
<td>WM</td>
<td>3</td>
<td>F-C</td>
<td>white stone, quartz, mica, void</td>
<td>SY 6/1 G int/ext</td>
<td>Smooth</td>
<td></td>
</tr>
<tr>
<td>61579.3</td>
<td>6034</td>
<td>WM</td>
<td>2</td>
<td>VF-M</td>
<td>white stone, mica</td>
<td>SY 6/1 G int/ext</td>
<td>both slip SY 6/1 G both WM</td>
<td></td>
</tr>
<tr>
<td>225.3</td>
<td>2031-KA2004</td>
<td>WM</td>
<td>2</td>
<td>VF-VC</td>
<td>mica, white stone</td>
<td>SYR 4/6 YR int ext</td>
<td>Smooth</td>
<td></td>
</tr>
<tr>
<td>2001.3</td>
<td>2001-KOP015</td>
<td>WM</td>
<td>3</td>
<td>VF-M</td>
<td>white stone, void, quartz</td>
<td>7.5YR 7/6RY int/ext core Gley1 4/N DG</td>
<td>Smooth</td>
<td></td>
</tr>
<tr>
<td>225.1</td>
<td>2031-KA2004</td>
<td>WH</td>
<td>1</td>
<td>VF</td>
<td>mica</td>
<td>Gley1 6/1 G int/ext</td>
<td>both slip Gley1 6/1 G both WM both burnish</td>
<td></td>
</tr>
<tr>
<td>2031.1</td>
<td>2031-KA2005</td>
<td>WM</td>
<td>3</td>
<td>VF-C</td>
<td>white stone, quartz, mica, void</td>
<td>SYR 5/8 YR int/ext</td>
<td>Slip ext 2.5YR 5/6 R WM ext</td>
<td></td>
</tr>
<tr>
<td>20709.5</td>
<td>2031-KA2006</td>
<td>WM</td>
<td>3</td>
<td>VF-C</td>
<td>white stone, quartz, mica, void</td>
<td>10YR 4/3 B int/ext</td>
<td>Both slip? Gley1 6/1 G both WM, burnish?</td>
<td></td>
</tr>
<tr>
<td>20709.2</td>
<td>2031-KA2007</td>
<td>WM</td>
<td>3</td>
<td>VF-C</td>
<td>white stone, quartz, mica, GrPOT</td>
<td>SY 4/1 DG int/3/1 DG</td>
<td>WR stripped, worn</td>
<td></td>
</tr>
<tr>
<td>10125.1</td>
<td>1008.1</td>
<td>WM</td>
<td>3</td>
<td>VF-F</td>
<td>white stone, quartz, mica</td>
<td>SY 6/1 G int/ext core Gley1 3/N VDG</td>
<td>Slip int Gley1 3/3 VDG</td>
<td></td>
</tr>
<tr>
<td>3001.3</td>
<td>3001</td>
<td>WM</td>
<td>3</td>
<td>VF-M</td>
<td>white stone, mica, black stone, GrPOT</td>
<td>Int/3 ext</td>
<td>Slip ext SY 6/1 G incision ext</td>
<td></td>
</tr>
<tr>
<td>2031.3</td>
<td>2031-KA2004</td>
<td>WM</td>
<td>1</td>
<td>VF-F</td>
<td>mica</td>
<td>7.5YR 3/1 VDG int/ext</td>
<td>Slip int 10YR 6/3 PB, slip int Gley1 3/N VDG WM ext, both burnish</td>
<td></td>
</tr>
<tr>
<td>1008.4</td>
<td>1008-GD001</td>
<td>WM</td>
<td>1</td>
<td>VF</td>
<td>mica</td>
<td>SY 5/1 G int/ext</td>
<td>Slip int Gley1 4/N DG slip ext sparse wheelmarks incision ext</td>
<td></td>
</tr>
<tr>
<td>225.4</td>
<td>2031-KZ004</td>
<td>WM</td>
<td>3</td>
<td>VF-M</td>
<td>mica, white stone, void</td>
<td>2.5Y 2.5/1 B int/ext</td>
<td>Both slip Gley1 3/N VDG WM int, burnish ext</td>
<td></td>
</tr>
<tr>
<td>80650.2</td>
<td>8011</td>
<td>WM</td>
<td>4</td>
<td>VF-C</td>
<td>quartz, GrPOT, white stone, void, mica</td>
<td>7.5YR 6/6 RY int/3/1 DG</td>
<td>Smooth ext</td>
<td></td>
</tr>
<tr>
<td>71264.4</td>
<td>7019</td>
<td>WM</td>
<td>3</td>
<td>VF-M</td>
<td>red stone, white stone, mica, GrPOT</td>
<td>SYR 6/6 RY int/3/1 DG</td>
<td>Slip int 7/8 RY smooth ext</td>
<td></td>
</tr>
<tr>
<td>2022.4</td>
<td>2022-KOP018</td>
<td>WM</td>
<td>2</td>
<td>VF-M</td>
<td>white stone, GrPOT, void</td>
<td>2.5YR 5/8 R int/ext</td>
<td>Smooth</td>
<td></td>
</tr>
</tbody>
</table>

Table G. 7-1: Late Iron Age pottery description
G. 8 Roman Pottery

Figure G. 8-1: Roman Pottery
<table>
<thead>
<tr>
<th>Inv #</th>
<th>Object</th>
<th>Tech</th>
<th>Freq</th>
<th>Size</th>
<th>Type</th>
<th>Color</th>
<th>Surface</th>
<th>Decoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>61237.9</td>
<td>6018</td>
<td>WM</td>
<td>1</td>
<td>VF-C</td>
<td>white stone, black stone, mica, void</td>
<td>7.5YR 6/6 RY int/ext</td>
<td>slip int 2.5YR 5/8 R = ext 2.5YR 5/8 R ; WR int WM ext</td>
<td></td>
</tr>
<tr>
<td>80965.25</td>
<td>6021</td>
<td>WM</td>
<td>2</td>
<td>VF-F</td>
<td>white stone, void</td>
<td>5YR 5/4 RB int/ext</td>
<td>slip int 2.5YR 3/6 DR slip ext 2.5YR 2.5/2 VDR both WmMGley1 3/N VDG</td>
<td></td>
</tr>
<tr>
<td>604.1</td>
<td>6021</td>
<td>WM</td>
<td>2</td>
<td>VF-F</td>
<td>mica, white stone, void</td>
<td>5YR 5/8 YR int/ext core Gley1 3/N VDG</td>
<td>both slip</td>
<td>Incision ext</td>
</tr>
<tr>
<td>61237.4</td>
<td>6018</td>
<td>WM</td>
<td>2</td>
<td>VF-F</td>
<td>white stone, grey stone mica, void</td>
<td>7.5YR 6/6 RY int/ext core 10YR 5/1 G</td>
<td>slip int 2.5YR 5/8 R slip ext 2.5YR 5/8 R both WM</td>
<td>Grooves/ridges top rim, below rim slip</td>
</tr>
<tr>
<td>61062.9</td>
<td>7019</td>
<td>WM</td>
<td>3</td>
<td>VF-M</td>
<td>white stone, quartz, void</td>
<td>5YR 6/6 RY int/ext</td>
<td>both slip 2.5 YR 5/6 R WM</td>
<td></td>
</tr>
<tr>
<td>80964.4</td>
<td>6021</td>
<td>WM</td>
<td>2</td>
<td>VF-F</td>
<td>GrPOT, void, mica</td>
<td>5YR 5/8 YR int/ext core Gley1 3/N G</td>
<td>both slip 10YR 5/8 R</td>
<td></td>
</tr>
<tr>
<td>61001.8</td>
<td>6021</td>
<td>WM</td>
<td>2</td>
<td>VF-F</td>
<td>quartz, void</td>
<td>2.5Y 5/1 G int/ext</td>
<td>both smooth WM int</td>
<td></td>
</tr>
<tr>
<td>60991.8</td>
<td>6021</td>
<td>WM</td>
<td>2</td>
<td>VF-F</td>
<td>mica, white stone</td>
<td>5YR 7/6 RY int 5YR 6/6 RY ext core 10YR 6/1 G</td>
<td>slip ext burnish ext both WM</td>
<td></td>
</tr>
<tr>
<td>61001.10</td>
<td>6021</td>
<td>WM</td>
<td>1</td>
<td>VF</td>
<td>dark stone, void, mica</td>
<td>5YR 5/6 YR int/ext</td>
<td>both slip 10YR 5/8 R both WM</td>
<td></td>
</tr>
<tr>
<td>61225.1</td>
<td>6018</td>
<td>WM</td>
<td>1</td>
<td>VF</td>
<td>grey stone, void</td>
<td>5YR 6/6 RY int/ext</td>
<td>both slip 2.5YR 5/6 R, 5YR 2.5/1 B</td>
<td></td>
</tr>
<tr>
<td>71390.3</td>
<td>7020</td>
<td>WM</td>
<td>1</td>
<td>mica</td>
<td>7.5YR 7/8 RY int/ext</td>
<td>both slip 5YR 6/8 RY, 7.5YR 5/4 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71390.2</td>
<td>7020</td>
<td>WM</td>
<td>2</td>
<td>F-M</td>
<td>white stone, red stone, void</td>
<td>7.5YR 6/6 RY int/ext</td>
<td>slip ext 5YR 6/8 RY</td>
<td></td>
</tr>
</tbody>
</table>

Table G. 8-1: Roman pottery I description
<table>
<thead>
<tr>
<th>Sherd Information</th>
<th>Inclusions</th>
<th>Fabric</th>
<th>Surface</th>
<th>Decora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inv #</td>
<td>Object</td>
<td>Tech</td>
<td>Freq</td>
<td>Size</td>
</tr>
<tr>
<td>61600.1</td>
<td>6036</td>
<td>HM</td>
<td>1</td>
<td>VF</td>
</tr>
<tr>
<td>61220.10</td>
<td>6018</td>
<td>WM</td>
<td>3</td>
<td>VF-M</td>
</tr>
<tr>
<td>61237.22</td>
<td>6018</td>
<td>WM</td>
<td>2</td>
<td>VF-C</td>
</tr>
<tr>
<td>61237.21</td>
<td>6018</td>
<td>WM</td>
<td>2</td>
<td>VF-C</td>
</tr>
<tr>
<td>61062.7</td>
<td>7019</td>
<td>WM</td>
<td>2</td>
<td>VF-F</td>
</tr>
<tr>
<td>61241.3</td>
<td>6018</td>
<td>WM</td>
<td>2</td>
<td>VF-M</td>
</tr>
<tr>
<td>61062.8</td>
<td>7019</td>
<td>WM</td>
<td>2</td>
<td>VF-F</td>
</tr>
<tr>
<td>61223.11</td>
<td>6018</td>
<td>WM</td>
<td>1</td>
<td>white stone, void</td>
</tr>
<tr>
<td>71268.1</td>
<td>7019</td>
<td>WM</td>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>61223.7</td>
<td>6018</td>
<td>WM</td>
<td>2</td>
<td>VF-M</td>
</tr>
<tr>
<td>61223.10</td>
<td>6018</td>
<td>WM</td>
<td>2</td>
<td>VF-M</td>
</tr>
<tr>
<td>61220.8</td>
<td>6018</td>
<td>WM</td>
<td>3</td>
<td>VF-C</td>
</tr>
<tr>
<td>71273.3</td>
<td>7019</td>
<td>WM</td>
<td>2</td>
<td>VF-M</td>
</tr>
<tr>
<td>604.3</td>
<td>6021</td>
<td>WM</td>
<td>3</td>
<td>VF-M</td>
</tr>
<tr>
<td>60078.5</td>
<td>8005</td>
<td>WM</td>
<td>2</td>
<td>VF-M</td>
</tr>
<tr>
<td>80594.1</td>
<td>8011</td>
<td>WM</td>
<td>1</td>
<td>7.5YR 5/3 B int/ext core 10YR 6/1 G</td>
</tr>
<tr>
<td>80667.1</td>
<td>8011</td>
<td>WM</td>
<td>2</td>
<td>VF-VF</td>
</tr>
<tr>
<td>61062.10</td>
<td>7019</td>
<td>WM</td>
<td>1</td>
<td>VF</td>
</tr>
<tr>
<td>61062.11</td>
<td>6018</td>
<td>MM</td>
<td>VF</td>
<td></td>
</tr>
<tr>
<td>61213.8</td>
<td>6018</td>
<td>WM</td>
<td>2</td>
<td>VF</td>
</tr>
<tr>
<td>61217.2</td>
<td>6018</td>
<td>WM</td>
<td>1</td>
<td>VF-F</td>
</tr>
<tr>
<td>61228.7</td>
<td>6018</td>
<td>WM</td>
<td>1</td>
<td>VF-M</td>
</tr>
<tr>
<td>61550.2</td>
<td>6034</td>
<td>WM</td>
<td>2</td>
<td>VF</td>
</tr>
<tr>
<td>71273.1</td>
<td>7019</td>
<td>WM</td>
<td>2</td>
<td>VF-M</td>
</tr>
<tr>
<td>71268.2</td>
<td>7019</td>
<td>WM</td>
<td>1</td>
<td>black stone, mica</td>
</tr>
<tr>
<td>61241.2</td>
<td>6018</td>
<td>WM</td>
<td>2</td>
<td>VF-M</td>
</tr>
<tr>
<td>80476.1</td>
<td>8011</td>
<td>WM</td>
<td>2</td>
<td>VF</td>
</tr>
</tbody>
</table>

Table G. 8-2: Roman pottery II description
G. 9 Late Antique Pottery

Figure G. 9-1: Late Antique Pottery
<table>
<thead>
<tr>
<th>Inv #</th>
<th>Object</th>
<th>Tech</th>
<th>Freq</th>
<th>Size</th>
<th>Type</th>
<th>Fabric</th>
<th>Surface</th>
<th>Decoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>61577.2</td>
<td>6034</td>
<td>WM</td>
<td>3</td>
<td>VF-F</td>
<td>black stone, mica</td>
<td>5YR 3/4 DRB int/ ext core Gley1 3/N VDG</td>
<td>both slip 2.5YR 4/4 RB both WM</td>
<td>incision ext</td>
</tr>
<tr>
<td>71390.1</td>
<td>7020</td>
<td>VF-VC</td>
<td>5</td>
<td>black stone, mica, white stone</td>
<td>5YR 5/6 YR int 2.5YR 5/6 R ext SYR 2.5/1 B int/ ext</td>
<td>smooth WM ext</td>
<td></td>
<td></td>
</tr>
<tr>
<td>227.4</td>
<td>2019</td>
<td>VF-VC</td>
<td>4</td>
<td>white stone, dark stone, mica, void</td>
<td>2.5YR 6/6 LR int/ ext core 2.5Y 4/1 DG</td>
<td>both WM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019.9</td>
<td>2019</td>
<td>VF-VC</td>
<td>4</td>
<td>quartz, white & black stone</td>
<td>2.5YR 5/8 R int/ ext core (2.5Y 5/1 G)</td>
<td>both WM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61217.3</td>
<td>6018</td>
<td>VF-VC</td>
<td>3</td>
<td>white stone, quartz, grey stone, CrPot, voids</td>
<td>2.5Y 4/1 DG int/ ext core 2.5 4/1 DG</td>
<td>slip int/ext 10YR 6/4 LYB plastic ext</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1006.1</td>
<td>1006</td>
<td>F-C</td>
<td>4</td>
<td>white stone, quartz, black stone, GrPOT</td>
<td>7.5YR 7/6 RY int/ ext core Gley1 4/N DG</td>
<td>both smooth WM ext</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61573.1</td>
<td>6034</td>
<td>VM-M</td>
<td>4</td>
<td>mica, white stone</td>
<td>5YR 5/4 RB int/ ext core 5YR 5/2 RB</td>
<td>both smooth WM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61577.3</td>
<td>6034</td>
<td>VF-F</td>
<td>2</td>
<td>black stone, void</td>
<td>Gley1 2.5/N B int/ ext</td>
<td>both slip? 5YR 5/3 RB, Gley1 2.5/N B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>227.3</td>
<td>2019</td>
<td>VF-VC</td>
<td>5</td>
<td>white stone, quartz, void, red stone</td>
<td>2.5Y 3/1 VDG int/ ext</td>
<td>slip int 5YR 4/4 RB slip ext 7.5Y 5/4 B, WM ext</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80606.4</td>
<td>8011</td>
<td>VF-M</td>
<td>2</td>
<td>quartz, white stone, black sand</td>
<td>2.5YR 4/6 R int/ ext</td>
<td>WM int comp. Ext</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72169.1</td>
<td>7025</td>
<td>VF-M</td>
<td>3</td>
<td>white stone, quartz, mica</td>
<td>2.5YR 6/8 LR int/ ext smooth? incision rim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4001.6</td>
<td>4001</td>
<td>VF-VC</td>
<td>3</td>
<td>white stone, quartz, mica, void</td>
<td>2.5YR 6/8 LR int 2.5YR 6/8 LR ext 2.5YR 6/8 LR int/ ext core 2.5YR 6/8 LR</td>
<td>both WM incision ext</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019.7</td>
<td>2019</td>
<td>VF-VC</td>
<td>5</td>
<td>quartz, white stone, void, GrPOT, black stone</td>
<td>2.5YR 6/6 LR int/ ext SYR 6/1 G int/ ext</td>
<td>both smooth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>223.1</td>
<td>2019</td>
<td>VF-M</td>
<td>3</td>
<td>white stone, quartz, GrPOT, mica</td>
<td>7.5YR 6/4 LB int/ ext core 10YR 4/1 DG</td>
<td>both smooth incision ext</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61575.7</td>
<td>6034</td>
<td>VF-F</td>
<td>3</td>
<td>dark stone, mica, void, white stone</td>
<td>10YR 5/3 B int/ ext 2.5Y 2.5/1 B int/ ext core SYR 4/1 DG</td>
<td>WM int slip ext burnish ext</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4001.4</td>
<td>4001</td>
<td>VF-M</td>
<td>3</td>
<td>mica, vodi, white stone</td>
<td>10YR 5/3 B int/ ext SYR 5/4 RB ext</td>
<td>both WM grooves ext</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80608.4</td>
<td>8011</td>
<td>VF-M</td>
<td>2</td>
<td>mica</td>
<td>7.5YR 6/4 LB int/ ext core 2.5Y 5/1 G</td>
<td>both smooth WM int grooves ext</td>
<td></td>
<td></td>
</tr>
<tr>
<td>227.1</td>
<td>2019</td>
<td>VF-M</td>
<td>3</td>
<td>white stone, quartz, mica</td>
<td>5YR 7/8 RY int/ ext core 5Y 5/1 G</td>
<td>slip ext 2.5YR 5/8 R, WR int incision ext</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60910.4</td>
<td>6018</td>
<td>VF-C</td>
<td>4</td>
<td>white stone, grey stone, void, CrPot</td>
<td>5YR 5/6 YR int 10YR 5/3 B ext core SYR 5/6 YR int</td>
<td>smooth ext WM int combed ext</td>
<td></td>
<td></td>
</tr>
<tr>
<td>223.2</td>
<td>2019</td>
<td>VF-C</td>
<td>4</td>
<td>white stone, GrPOT, mica</td>
<td>7.5YR 6/4 LB int/ ext core 10YR 4/1 DG</td>
<td>both smooth incision ext</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4001.5</td>
<td>4001</td>
<td>F-C</td>
<td>3</td>
<td>quartz, white stone</td>
<td>5YR 5/6 YR int 2.5Y 3/1 VDG ext core 10YR 3/1 VDG</td>
<td>both smooth incision ext</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72168.7</td>
<td>7025</td>
<td>VF-F</td>
<td>4</td>
<td>mica, white stone</td>
<td>GLEY1 2.5/N B int 7.5YR 5/4 B ext core 2.5Y 4/2 DGB both smooth both WM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table G. 9-1: Late Antique pottery description
G. 10 Medieval Pottery

Figure G. 10-1: Medieval Pottery
<table>
<thead>
<tr>
<th>Inv #</th>
<th>Object</th>
<th>Tech</th>
<th>Freq</th>
<th>Size</th>
<th>Type</th>
<th>Color</th>
<th>Surface</th>
<th>Decoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>61574.6</td>
<td>6034</td>
<td>WM</td>
<td>4</td>
<td></td>
<td>black stone, mica</td>
<td>7.5YR 6/4 LB int/ext</td>
<td>both slip</td>
<td>both WM</td>
</tr>
<tr>
<td>60959.1</td>
<td>6027</td>
<td>WM</td>
<td>4</td>
<td></td>
<td>white stone, quartz, void,</td>
<td>2.5YR 5/6 R int/ext</td>
<td></td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>black stone</td>
<td>core 10YR 7/3 VPB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61563.5</td>
<td>6034</td>
<td>HM</td>
<td>4</td>
<td>VF-C</td>
<td>mica, white stone, quartz,</td>
<td>Gley1 3/N VDG int/ext</td>
<td>both smooth</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>void</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61575.10</td>
<td>6034</td>
<td>WM</td>
<td>4</td>
<td>VF-C</td>
<td>dark stone, mica, void</td>
<td>Gley1 2.5/N B int</td>
<td>slip int</td>
<td>incision ext</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.5YR 5/4 B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>slip ext</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5YR 5/4 RB WM ext</td>
<td></td>
</tr>
<tr>
<td>80098.1</td>
<td>7008</td>
<td>WM</td>
<td>2</td>
<td>M-C</td>
<td>white stone, quartz, void,</td>
<td>SYR 5/6 YR int/ext</td>
<td></td>
<td>incision int</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>black stone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61232.3</td>
<td>6018</td>
<td>WM</td>
<td>2</td>
<td>VF-C</td>
<td>white stone, black stone,</td>
<td>SYR 5/6 YR int</td>
<td></td>
<td>decorative ext</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mica, void</td>
<td>SYR 5/4 RB ext</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4001.8</td>
<td>4001</td>
<td>WM</td>
<td>3</td>
<td>VF-M</td>
<td>mica, white stone</td>
<td>10YR 5/3 B int</td>
<td>smooth slip</td>
<td>incision ext</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SYR 5/4 RB ext</td>
<td>Ext golden</td>
<td></td>
</tr>
<tr>
<td>60098.1</td>
<td>7008</td>
<td>WM</td>
<td>3</td>
<td>F-C</td>
<td>white stone, mica, void</td>
<td>SYR 5/6 YR int/ext</td>
<td>glazed int light</td>
<td>incision ext</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>green WM ext</td>
<td></td>
</tr>
<tr>
<td>61216.4</td>
<td>6018</td>
<td>WM</td>
<td>2</td>
<td>VF-F</td>
<td>black stone, white stone,</td>
<td>SYR 6/6 YR int</td>
<td>glaze ext</td>
<td>sgraffito ext</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mica</td>
<td></td>
<td>5Y 7/4 PY</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WR int</td>
<td></td>
</tr>
<tr>
<td>3001.10</td>
<td>3001</td>
<td>WM</td>
<td>3</td>
<td>VF-VC</td>
<td>white stone, quartz, void,</td>
<td>Gley1 3/N VDG int/ext</td>
<td>both smooth</td>
<td>plastic ext</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>black stone</td>
<td>2.5YR 4/4 RB ext</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mica</td>
<td>Gley1 3/N VDG ext</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80626.3</td>
<td>8011</td>
<td>WM</td>
<td>1</td>
<td></td>
<td>void, black stone, mica</td>
<td>2.5YR 5/8 R int/ext</td>
<td>slip ext</td>
<td>incision ext</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>core 10YR 6/3 PB</td>
<td>2.5YR 5/6 R</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>both burnish</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>both WM</td>
<td></td>
</tr>
<tr>
<td>80664.2</td>
<td>8011</td>
<td>WM</td>
<td>2</td>
<td>F-VC</td>
<td>black stone, white stone,</td>
<td>SYR 5/6 YR int/ext</td>
<td>both slip</td>
<td>incision ext</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mica, void</td>
<td>core 2.5Y 6/1 G</td>
<td>5YR 5/6 R</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>both burnish ext</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>wheelridges int</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>polished lines ext</td>
<td></td>
</tr>
<tr>
<td>61575.5</td>
<td>6034</td>
<td>WM</td>
<td>3</td>
<td>VF-M</td>
<td>dark stone, mica, void</td>
<td>7.5YR 5/3 B int/ext</td>
<td>burnish ext</td>
<td>polish ext</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gley1 2.5/N B int/ext</td>
<td>WR int</td>
<td></td>
</tr>
<tr>
<td>80664.3</td>
<td>8011</td>
<td>WM</td>
<td>2</td>
<td>VF-VC</td>
<td>black stone, mica, void</td>
<td>SYR 5/6 YR int/ext</td>
<td>slip ext</td>
<td>impression ext</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>core 2.5Y 6/2 LBG</td>
<td>only 5YR 5/6 YR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WM int</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>burnish ext</td>
<td></td>
</tr>
<tr>
<td>80626.4</td>
<td>8011</td>
<td>WM</td>
<td>2</td>
<td>VF-F</td>
<td>mica, black stone, void</td>
<td>7.5YR 5/4 B int/ext</td>
<td>burnish ext</td>
<td>plastic ext</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10110.1</td>
<td>1006</td>
<td>WM</td>
<td>4</td>
<td>VF-M</td>
<td>white stone, quartz</td>
<td>7.5YR 5/6 SB int/ext</td>
<td>slip ext</td>
<td>glaze int</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5Y 7/1 LG</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WM ext</td>
<td></td>
</tr>
<tr>
<td>4001.7</td>
<td>4001</td>
<td>WM</td>
<td>4</td>
<td>VF-VC</td>
<td>white stone, quartz, mica,</td>
<td>2.5YR 5/6 R int/ext</td>
<td>smooth , WM ext</td>
<td>paint glaze int</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>void</td>
<td>core (10YR 5/3 B)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table G. 10-1: Medieval pottery description
G. 11 Ottoman pottery

Figure G. 11-1: Ottoman Pottery
<table>
<thead>
<tr>
<th>Inv #</th>
<th>Object</th>
<th>Tech</th>
<th>Freq</th>
<th>Size</th>
<th>Type</th>
<th>Color</th>
<th>Surface</th>
<th>Decoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>61574.4</td>
<td>6034</td>
<td>WM</td>
<td>4</td>
<td>VF-M</td>
<td>dark stone, quartz, mica</td>
<td>2.5YR 5/6 R int/ext core 5Y 4/1 Dg</td>
<td>both slip 2.5YR 5/6 R (int), 7.5YR 6/6 YR (ext) both WM</td>
<td></td>
</tr>
<tr>
<td>60100.4</td>
<td>7008</td>
<td>WM</td>
<td>1</td>
<td>VF</td>
<td>mica</td>
<td>2.5Y 5/1 G int/ext</td>
<td>both glaze WR ext</td>
<td>paint int</td>
</tr>
<tr>
<td>61552.1</td>
<td>6034</td>
<td>WM</td>
<td>2</td>
<td>F-C</td>
<td>white stone, mica, void</td>
<td>SY 5/1 G int SY 5/6 YR int/ext</td>
<td>smooth ext both slip 7/5YR 5/4 B both WM</td>
<td>paint ext glazed int colored glazed ext green WR ext both glaze incision</td>
</tr>
<tr>
<td>60099.3</td>
<td>7008</td>
<td>WM</td>
<td>1</td>
<td>VF-F</td>
<td>mica, white stone, void</td>
<td>2.5YR 6/8 RY int/ext</td>
<td>both glaze lustrous WM int</td>
<td></td>
</tr>
<tr>
<td>70203.5</td>
<td>7008</td>
<td>WM</td>
<td>1</td>
<td>VF-F</td>
<td>mica, white stone, void</td>
<td>SYR 6/8 RY int/ext</td>
<td>glazed int green glazed ext green brown WR ext both glaze incision</td>
<td></td>
</tr>
<tr>
<td>60102.1</td>
<td>7008</td>
<td>WM</td>
<td>1</td>
<td>VF</td>
<td>mica</td>
<td>SYR 5/6 YR int/ext</td>
<td>slip ext SYR 5/6 YR</td>
<td>paint ext</td>
</tr>
<tr>
<td>60097.3</td>
<td>7008</td>
<td>WM</td>
<td>1</td>
<td></td>
<td></td>
<td>SYR 6/8 RY int/ext</td>
<td>both glaze green to abalone, WM int</td>
<td>incision ext</td>
</tr>
<tr>
<td>60099.8</td>
<td>7008</td>
<td>WM</td>
<td>1</td>
<td>VF-F</td>
<td>mica, white stone</td>
<td>SYR 4/6 RY int/ext</td>
<td>slip ext 10R 4/6 R</td>
<td></td>
</tr>
<tr>
<td>70203.3</td>
<td>7008</td>
<td>WM</td>
<td>1</td>
<td>VF-F</td>
<td>mica, white stone</td>
<td>SYR 6/8 RY int/ext</td>
<td>glazed int green glazed ext green brown WR ext both glaze incision</td>
<td></td>
</tr>
<tr>
<td>61550.3</td>
<td>6034</td>
<td>WM</td>
<td>3</td>
<td>VF-F</td>
<td>black stone, mica</td>
<td>2.5Y 3/1 VDG int/ext</td>
<td>slip ext SYR 5/6 YR</td>
<td>perforation ext</td>
</tr>
<tr>
<td>60102.3</td>
<td>7008</td>
<td>WM</td>
<td>2</td>
<td>VF-F</td>
<td>mica, void</td>
<td>SYR 6/6 RY int/ext core 2.5Y 4/1 Dg</td>
<td>both smooth</td>
<td></td>
</tr>
<tr>
<td>61575.12</td>
<td>6034</td>
<td>WM</td>
<td>5</td>
<td></td>
<td>dark stone, quartz, mica, GrPOT, void</td>
<td>7.5YR 7/3 P int SYR 5/4 RB ext core Gley1 3/N VDG</td>
<td>both smooth</td>
<td></td>
</tr>
<tr>
<td>70137.8</td>
<td>7008</td>
<td>WM</td>
<td>2</td>
<td>VF-C</td>
<td>stone, mica, void</td>
<td>SYR 6/8 RY int/ext</td>
<td>smooth Discolorations on surface - lost paint?</td>
<td>glaze ext</td>
</tr>
<tr>
<td>61575.8</td>
<td>6034</td>
<td>WM</td>
<td>3</td>
<td>VF-M</td>
<td>void, stone</td>
<td>SYR 7/6 RY int/ext</td>
<td>both slip 7.5YR 5/3 B WM int burnish ext</td>
<td>paint int</td>
</tr>
<tr>
<td>61574.5</td>
<td>6034</td>
<td>WM</td>
<td>3</td>
<td>VF-M</td>
<td>mica, stone, void</td>
<td>10YRS/3 B int/ext core SYR 2.5/1 B</td>
<td>glazed int rich yellow green slip ext SYR 6/6 RY WM ext</td>
<td></td>
</tr>
<tr>
<td>60097.1</td>
<td>7008</td>
<td>WM</td>
<td>2</td>
<td>F-M</td>
<td>white stone</td>
<td>SYR 6/6 RY int/ext core 2.5YR 5/8 R</td>
<td>glazed int green-brown slip ext 7.5YR 6/4 LB WM ext</td>
<td>incision int</td>
</tr>
<tr>
<td>70138.1</td>
<td>7008</td>
<td>WM</td>
<td>2</td>
<td>VF-C</td>
<td>void, mica, white stone</td>
<td>SYR 6/8 RY int/ext</td>
<td></td>
<td>incision int</td>
</tr>
</tbody>
</table>

Table G. 11-1: Ottoman pottery description
Appendix H - Keys and Forms

H.1 Intensive record sheet

Intensive record sheets are the most commonly used, intended to record counts (or densities) of surface artifacts under conditions of good surface visibility, when walker and row intervals are 20 m or less. Record sheets are customised to each study area and designed to be completed quickly. Sized to print four per A4 page.

![Intensive record sheet](image)

<table>
<thead>
<tr>
<th>Form item</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit surface material recording grid</td>
<td>The grid represents the cells in each survey unit; ancient count or density is recorded in the upper left half of each cell, modern count or density in the lower right half. Write walker names or initials in numbered boxes.</td>
</tr>
<tr>
<td>WP</td>
<td>Waypoint (in the event of PDA failure, waypoints are taken on a GPS unit at the beginning and end of each field; record the waypoint number here)</td>
</tr>
<tr>
<td>RP</td>
<td>Recent precipitation (check box if “yes”)</td>
</tr>
<tr>
<td>Sherd count type</td>
<td>“Density” or “Raw count” (circle one)</td>
</tr>
<tr>
<td>Land Use - Annual</td>
<td>Annual agriculture</td>
</tr>
<tr>
<td>Land Use - Per</td>
<td>Perennial agriculture</td>
</tr>
<tr>
<td>Slope</td>
<td>Very steep</td>
</tr>
<tr>
<td>Visibility</td>
<td>Overall surface visibility (percentage of bare earth visible)</td>
</tr>
<tr>
<td>Pass</td>
<td>Passability (“Easy” through “Impassable” on 5-point scale)</td>
</tr>
<tr>
<td>Drain</td>
<td>Drainage (“Dry” through “Wet” on 5-point scale)</td>
</tr>
<tr>
<td>Veg</td>
<td>Vegetation (“None” through “Much” on 5-point scale)</td>
</tr>
<tr>
<td>Stone</td>
<td>Stoniness (“None” through “Much” on 5-point scale)</td>
</tr>
<tr>
<td>Shade</td>
<td>Shadow (“None” through “Much” on 5-point scale)</td>
</tr>
<tr>
<td>Sample</td>
<td>Check box if unit sample taken</td>
</tr>
<tr>
<td>Frag</td>
<td>Surface material fragmentation (“Low”/fist-sized fragments through “High”/coin-sized fragments on a 5-point scale)</td>
</tr>
<tr>
<td>Same as below</td>
<td>If date, weather, intervals, environmental conditions, etc., are the same as the previous unit, check here (only the survey unit must be entered)</td>
</tr>
</tbody>
</table>
H. 2 **Detail record sheet**

Detail record sheets are used when much surface material is present, especially for “urban survey” at major sites and high-intensity resurvey of surface scatters. An expanded version of intensive record sheets, they allow simultaneous recording of ancient and modern pottery and architectural ceramics on two parallel grids (printed larger to allow room for notes). Sized to print two per A4 page and used in conjunction with normal intensive survey forms (where basic unit information and environmental conditions are recorded).

<table>
<thead>
<tr>
<th>Total count:</th>
<th>Notes</th>
<th>Total count:</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total modern:</td>
<td></td>
<td>Total modern:</td>
<td></td>
</tr>
<tr>
<td>Total ancient:</td>
<td></td>
<td>Total ancient:</td>
<td></td>
</tr>
</tbody>
</table>

Figure H. 2-1: Unit detail record sheet (for high-density concentrations)
H. 3 Extensive record sheet

Extensive survey sheets are used when surface visibility is low and walker / row interval is 20 m or more. In most respects these forms resemble intensive survey sheets, with the exception that coarser categories of surface features, like mounds or scatters, are recorded in unit grid rather than artifact counts or densities. Such features are sketched into the grid and labelled using the following codes. Sized to print four per A4 page.

<table>
<thead>
<tr>
<th>Form item</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codes – MND</td>
<td>Burial mound</td>
</tr>
<tr>
<td>Codes – EW</td>
<td>Other earthworks</td>
</tr>
<tr>
<td>Codes – MAS</td>
<td>Masonry</td>
</tr>
<tr>
<td>Codes – WS</td>
<td>Worked stone (grindstone, stele, architectural element, etc.)</td>
</tr>
<tr>
<td>Codes – OSF</td>
<td>Other small find (glass, metal, etc.)</td>
</tr>
<tr>
<td>Codes – ##</td>
<td>If a scatter is encountered, sketch its extent and enter representative artifact density per sq m</td>
</tr>
</tbody>
</table>

H. 4 ATS record sheet

“Mountain” or Adverse Terrain Survey: record in your form & diary your strategy for coverage, especially whether you are walking as a tight group or have spread out into a row. Estimate the area actually covered considering your walking configuration and line-of-sight visibility ("LoS"). Indicate the length ("Lg") of the unit you are examining in meters and whether you walked this unit in spaced out in a “row” of walkers or as a “group”, and if you walked it in a row what the interval was ("Int"). Note how dense the vegetation was ("Veg density" meaning at eye level, e.g., trees or tall reeds, not surface vegetation) and considering this vegetation how long lines of sight are, in meters. Use the blank box to sketch the shape of the unit, your path across it, and anything you found. Use GPS to record the beginning & end of each ATS unit.
H. 5 Sherd group record sheet

Sherd group record sheets are used for preliminary ceramic analysis. Sherds are divided into groups based on fabric and gross form (tableware, transport, storage); each group is described, counted, and weighed. A record is made of all material discarded or retained. Printed landscape format on A4 paper.

<table>
<thead>
<tr>
<th>Form item</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entity #</td>
<td>Unit or object number</td>
</tr>
<tr>
<td>Photo #</td>
<td>All sherd groups are photographed</td>
</tr>
<tr>
<td>W/HM</td>
<td>Wheel or hand made</td>
</tr>
<tr>
<td>Thick</td>
<td>Representative thickness (or range of thicknesses) in mm</td>
</tr>
<tr>
<td>C/F</td>
<td>Course or fine (based on levigation and inclusion size/regularity)</td>
</tr>
<tr>
<td>Fabric</td>
<td>A description of the fabric</td>
</tr>
</tbody>
</table>

H. 6 Sherd inventory record sheet

Sherd inventory record sheets are used to inventory individual sherd of pottery retained after sherd group analysis (or sherds, if they join). Sized to print landscape on A3 paper (or two joined A4 sheets).
Figure H. 6-1: Inventory record sheet

<table>
<thead>
<tr>
<th>Form item</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragment – Part</td>
<td>Vessel part (lip, rim, handle, body, foot, etc.)</td>
</tr>
<tr>
<td>Fragment – Height</td>
<td>Measuring the sherd as if it were part of a complete vessel</td>
</tr>
<tr>
<td>Fragment – Width</td>
<td>Measuring the sherd as if it were part of a complete vessel</td>
</tr>
<tr>
<td>Fragment – Length</td>
<td>Only used for handles, or when proper orientation of sherd cannot be determined</td>
</tr>
<tr>
<td>Fragment – Thick</td>
<td>Sherd thickness in mm</td>
</tr>
<tr>
<td>Fragment – Diam</td>
<td>Estimated vessel diameter (rim, base, or maximum, when possible)</td>
</tr>
<tr>
<td>Form – Op/Cl</td>
<td>Open or closed vessel form</td>
</tr>
<tr>
<td>Form – Shape</td>
<td>Vessel shape (cup, bowl, plate, transport amphora, pithos, etc.)</td>
</tr>
<tr>
<td>Form – Size</td>
<td>Small (<15 cm diameter), medium (15-30 cm), or large (>30 cm)</td>
</tr>
<tr>
<td>Fabric – Tech</td>
<td>Technology: hand or wheel made (slow or fast wheel indicated when evident)</td>
</tr>
<tr>
<td>Fabric – Hard</td>
<td>Hardness (very soft, soft, medium, hard, very hard)</td>
</tr>
<tr>
<td>Fabric – Cleave</td>
<td>Cleavage texture (smooth, fine, irregular, hackly, laminated)</td>
</tr>
<tr>
<td>Fabric – Feel</td>
<td>Feel (soapy, powdery, smooth, chalky, sandy, rough)</td>
</tr>
<tr>
<td>Fabric – Fire</td>
<td>Evenness of firing (even, uneven) based on consistency of each fabric zone colour</td>
</tr>
<tr>
<td>Fabric colour</td>
<td>Munsell colour of each fabric zone</td>
</tr>
<tr>
<td>Inclusion – Freq</td>
<td>Inclusion frequency (one to five scale; 0% to 30%)</td>
</tr>
<tr>
<td>Inclusion – Type</td>
<td>Inclusion type (mica, quartz, sand, stone, ground pottery, voids)</td>
</tr>
<tr>
<td>Inclusion – Sort</td>
<td>Inclusion size sorting (one to five scale)</td>
</tr>
<tr>
<td>Surface treatment – Type</td>
<td>Type of surface treatment (wheel marks, smoothed, burnished, slip, gloss, glaze)</td>
</tr>
<tr>
<td>Surface treatment – Int/Ext/B</td>
<td>Location of surface treatment (internal, external, or both)</td>
</tr>
<tr>
<td>Surface treatment – Thick</td>
<td>Thickness of surface treatment (thick, thin)</td>
</tr>
<tr>
<td>Surface treatment – Cover</td>
<td>Coverage of surface treatment (continuous, sparse)</td>
</tr>
<tr>
<td>Surface treatment – Colour</td>
<td>Munsell colour</td>
</tr>
<tr>
<td>Condition – Wear</td>
<td>Sherd wear (one to five scale mirroring survey forms)</td>
</tr>
<tr>
<td>Decoration – Type</td>
<td>Type of decoration (point, incised, plastic)</td>
</tr>
<tr>
<td>Interpretation – Date</td>
<td>Date range in calendar years</td>
</tr>
<tr>
<td>Interpretation – Origin</td>
<td>Geographic origin (local or import, with the latter specified if possible)</td>
</tr>
<tr>
<td>Interpretation – Function</td>
<td>Function of vessel (tableware, transport, storage, cooking, votive, other, unknown)</td>
</tr>
</tbody>
</table>
H. 7 Object record sheet

Object record sheets are used when a mound, scatter, or other find spot is designated as an archaeological “object”. Sized to print two per A4 sheet.

<table>
<thead>
<tr>
<th>ELHOVO 2009</th>
<th>Date:</th>
<th>Obj #:</th>
<th>Parent Obj #:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name / Desc:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Units:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Nos:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length (max):</td>
<td>Width (max):</td>
<td>Height (max):</td>
<td>Other dim:</td>
</tr>
<tr>
<td>Length (min):</td>
<td>Width (min):</td>
<td>Height (min):</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Admin</td>
<td>Environment</td>
<td>CRM urgency: 1 - 2 - 3 - 4 - 5</td>
</tr>
<tr>
<td>Mound</td>
<td>Region: Yambol</td>
<td>LU:</td>
<td>Robbers' trenches / activity:</td>
</tr>
<tr>
<td>Surf Conc</td>
<td>Municip:</td>
<td>Ag. Cond.:</td>
<td></td>
</tr>
<tr>
<td>Necropolis</td>
<td>Locale:</td>
<td>Vis:</td>
<td></td>
</tr>
<tr>
<td>Multi Conc</td>
<td>Kadastre #:</td>
<td>Slope/Aspect:</td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source type:</td>
<td>Source info:</td>
<td>GPS pts:</td>
<td>Notes / sketch:</td>
</tr>
<tr>
<td>Informant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Form item	Explanation
Parent Obj # | Parent object number; objects may be nested (a mound as part of a necropolis, for example), so this field is provided as a reference to the parent object (if any)
Units | A cross-reference to survey units that overlie the object
Type | Mound, surface concentration, necropolis, multiple concentration, other
Admin | Information about the administrative region, municipality, locale, and kadastre
Environment | Land use, agricultural condition, visibility, slope and aspect
CRM urgency | 1-5 point scale, with 1 = entirely undamaged through 5 = in immediate danger of complete destruction
Robbers’ trenches / activity | Number, aspect, and size of robbers trenches
Source type | Means by which the object was discovered
Source info | Further information about a source (informant or bibliographic reference)
GPS pts | Waypoint numbers of all GPS points taken at the object
Photo Nos | Image number of all photographs taken of or from the object
Notes / sketch | A sketch of the object (usually a plan) and any robbers’ activity, or other notes
H. 8 Total pick-up record sheet key

Total pick-up record sheets are used when a sample is analysed in the field. Analysis is based on (relatively coarse) sherd group and chronology. These forms are designed to process large volumes of poorly preserved ceramics; most commonly they are used for the preliminary analysis of total pick-ups at a surface scatter. Space is provided to analyse five types of pottery, two types of architectural ceramic, one type of stone artifact, one type of glass, one type of metal, and one other artifact class per sheet. Printed two per A4 page.

<table>
<thead>
<tr>
<th>ELHOVO 2009</th>
<th>Date:</th>
<th>Oct</th>
<th>Sample #:</th>
<th>Entity #:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Dimensions</td>
<td>Notes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o Unit sample</td>
<td>o Point grab</td>
<td>o Linear grab</td>
<td>o Total pickup</td>
<td></td>
</tr>
<tr>
<td>Mat</td>
<td>Technology and chronology</td>
<td>Number</td>
<td>Kg</td>
<td>Frg (b-s)</td>
</tr>
<tr>
<td>Pot1</td>
<td>Hand: Crs / Fine / ??</td>
<td>Wheel made: Coarse / Fine / ??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH Anc PM</td>
<td>??</td>
<td>GW</td>
<td>H-R</td>
<td>Med</td>
</tr>
<tr>
<td>Pot2</td>
<td>Hand: Crs / Fine / ??</td>
<td>Wheel made: Coarse / Fine / ??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH Anc PM</td>
<td>??</td>
<td>GW</td>
<td>H-R</td>
<td>Med</td>
</tr>
<tr>
<td>Pot3</td>
<td>Hand: Crs / Fine / ??</td>
<td>Wheel made: Coarse / Fine / ??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH Anc PM</td>
<td>??</td>
<td>GW</td>
<td>H-R</td>
<td>Med</td>
</tr>
<tr>
<td>Pot4</td>
<td>Hand: Crs / Fine / ??</td>
<td>Wheel made: Coarse / Fine / ??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH Anc PM</td>
<td>??</td>
<td>GW</td>
<td>H-R</td>
<td>Med</td>
</tr>
<tr>
<td>Pot5</td>
<td>Hand: Crs / Fine / ??</td>
<td>Wheel made: Coarse / Fine / ??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH Anc PM</td>
<td>??</td>
<td>GW</td>
<td>H-R</td>
<td>Med</td>
</tr>
</tbody>
</table>

AC1 Brick	Tile	Note:
AC2 Brick	Tile	Note:
Stn Chip	Grmd	Note:
Gls H-R	Later	Note:
Mtl Coin	Impl	Note:
Alia Other		

Figure H. 8-1: Total pick-up record sheet

<table>
<thead>
<tr>
<th>Form item</th>
<th>Explanation</th>
<th>Form item</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entity #</td>
<td>Unit or object number</td>
<td>Anc</td>
<td>Ancient</td>
</tr>
<tr>
<td>Method</td>
<td>Type of sample taken (Unit sample, point grab, linear grab, total pickup)</td>
<td>PM</td>
<td>Pre-modern</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Size of area sampled</td>
<td>GW</td>
<td>Grey ware (Thracian)</td>
</tr>
<tr>
<td>Mat</td>
<td>Material (Pottery, architectural ceramic, stone, glass, metal, other)</td>
<td>H-R</td>
<td>Hellenistic – Roman</td>
</tr>
<tr>
<td></td>
<td>Med</td>
<td>Medieval</td>
<td></td>
</tr>
<tr>
<td>Pot</td>
<td>Pottery</td>
<td>Ott</td>
<td>Ottoman</td>
</tr>
<tr>
<td>AC</td>
<td>Architectural ceramic</td>
<td>Mod</td>
<td>Modern</td>
</tr>
<tr>
<td>Stn</td>
<td>Stone</td>
<td>##</td>
<td>Count</td>
</tr>
<tr>
<td>Gls</td>
<td>Glass</td>
<td>g</td>
<td>Weight in grams</td>
</tr>
<tr>
<td>Mtl</td>
<td>Metal</td>
<td>Frg (b-s)</td>
<td>Material fragmentation ("big"/fist-sized through "small"/coin-sized fragments on a 5-point scale)</td>
</tr>
<tr>
<td>Alia</td>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand</td>
<td>Crs / Fine / ??</td>
<td>PH</td>
<td># kpt</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>Handmade</td>
<td>Coarse / fine / undetermined (based on levigation and inclusion size and uniformity)</td>
<td>Prehistoric</td>
<td>g kpt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># kpt</td>
<td>Weight of sherds retained for further study</td>
<td>Metal implement (a tool as opposed to a coin)</td>
<td></td>
</tr>
</tbody>
</table>
Appendix I - Site Catalogues

I. 1 Chronological abbreviations used

<table>
<thead>
<tr>
<th>Timespan</th>
<th>Period</th>
<th>Abbreviation used in text</th>
</tr>
</thead>
<tbody>
<tr>
<td>6th - 2nd m BC</td>
<td>Prehistoric (e.g. PH-looking low diagnostic material)</td>
<td>PH</td>
</tr>
<tr>
<td>6th – 4th m BC</td>
<td>Neolithic</td>
<td>NL</td>
</tr>
<tr>
<td>4th m BC</td>
<td>Late Neolithic or Chalkolithic</td>
<td>CHL</td>
</tr>
<tr>
<td>31 – 25th c BC</td>
<td>Early Bronze Age,</td>
<td>EBA</td>
</tr>
<tr>
<td>25 - 17th c BC</td>
<td>Middle Bronze Age</td>
<td>MBA</td>
</tr>
<tr>
<td>16th – 11th c BC</td>
<td>Late Bronze Age</td>
<td>LBA</td>
</tr>
<tr>
<td>11 – 9th c BC</td>
<td>Early Iron Age, phase I, Pshenichevo</td>
<td>Early Iron Age I; EIA</td>
</tr>
<tr>
<td>8 – 6th c BC</td>
<td>Early Iron Age, phase II</td>
<td>Early Iron Age II; EIA</td>
</tr>
<tr>
<td>6 – 5th c BC</td>
<td>Early Iron Age, phase III</td>
<td>Classical period (CL)</td>
</tr>
<tr>
<td>4th – 1 c BC</td>
<td>Late Iron Age, phase I – III</td>
<td>Hellenistic period (LIA, or HEL)</td>
</tr>
<tr>
<td>1st c BC - 4th c AD</td>
<td>Roman period</td>
<td>RM</td>
</tr>
<tr>
<td>4-7th c AD</td>
<td>Late Roman and Late Antique period</td>
<td>LR or LA</td>
</tr>
<tr>
<td>8 – 11th c AD</td>
<td>Byzantine or Early Medieval Period</td>
<td>BYZ or EMA</td>
</tr>
<tr>
<td>11-15th c AD</td>
<td>Medieval period</td>
<td>MA</td>
</tr>
<tr>
<td>16 – 19th c AD</td>
<td>Ottoman period</td>
<td>OTT</td>
</tr>
<tr>
<td>20th century</td>
<td>Modern</td>
<td>MOD</td>
</tr>
</tbody>
</table>

I. 2 Site Catalogue Legend

The catalogues of Kazanluk and Yambol survey findspots can be found below in numeric order. The heading of each site comprises the TRAP number, short description, local name and a number of figure in Appendix C where the map is available. In the second line, there is an AKB number and a temporary Bulgarian regional code, if either was assigned. The third line condenses the site information in code which features: site chronology (see table above) listing the number of diagnostics in parentheses; site function (MOR-mortuary, HAB – habitation, PROD/AGR – agricultural, industrial activity, ACT – activity area, DEF-defensive structure; RIT – ritual function); site elevation in meters above sea level (extracted from the ERDAS DEM); and site extent in hectares, in the format of nucleus/margin. The text with each findspot explains its topographic and environmental setting, composition of surface debris, survey strategy and sampling used, and comments on the chronology and function.
Kazanluk Site Catalogue

1006 Agricultural processing structure or metal workshop on the bank of Koprinka (Fig. C.1.1, C.1.2)
AKB 5510222, DS006
LIA(17), LA(47), MA(18), OTT(6); Hab, Prod; 364 msl; 2.9 / 3.3 ha

Two concentrations of pottery and architectural ceramics were discovered on the bank of Koprinka reservoir in Karatoprak locale. This two-part scatter is some 2.3 km SE of the Dolno Sahrane village. The terrain here has been heavily disturbed by modern gravel quarrying. The soils are sandy covered with tufts of wetland vegetation, indicating frequent flooding. Interpreting the original extent and location of the scatter is a challenge due to these circumstances. The material recovered from the northern sector is dominated by wheel-made and handmaded pottery, with only a few architectural ceramics (bricks and daub pieces). Glass bracelet fragments and a piece of a piece of pottery have been retrieved. The southern sector consists of two nuclei on its south and north extremes with a density trough in between. The nuclei peak at the density of 2 sherds / sq m (850 sherds / ha), while the density in between oscillates between 0.3 - 0.5 sherds / sq m. The material recovered here included handmade and wheel-made pottery; the ratio of diagnostics between these groups was roughly 1.2, including fine decorated pottery and one spindle-whorl. Half a dozen of chipped lithics (diganyi) were found as well as a metal piece and two clusters of slag. The north and south boundaries of each of these two parts of the original scatter were clearly demarcated; the western and eastern boundary could not be ascertained. East part of the scatter descends into the reservoir and the west part of scatter is obscured by vegetation. The surface debris density drops off sharply on the western border of each of the two scatters. Surface visibility may not be the only accountable factor for the drop. The drop suggests that the two scatters form the western and NW peripheries of an original scatter, whose core lies to the east and has been drowned by the reservoir. Its putative size would be quite large (150 ha) given the extent and alignment of the two scatters.

Chronology: Most of the diagnostic pottery was dated to Medieval period with a smaller component of Ottoman. LIA and LA material was tentatively identified.

Function: The presence of pottery, lithic tools and slag indicates a number of functional interpretations of the scatter. Handmade and wheel-made pottery indicate food processing and storage activities, while diganyi fragments point to crop processing (threshing); the slag points to metal working. All of these activities could potentially have been associated with individually standing rural agricultural structures/facilities. The character and spatial alignment of the two scatters as well as their proximity to the reservoir suggest they could form a margin of a larger site. The pottery speaks for domestic activities of food processing and storage, which seems to be indicated also by the spindle whorl and glass fragments. These could originate from a discard or secondary context and be just an evidence of activities happening elsewhere. Even if they were in primary context here, activities indicated by these finds – spinning and women’s presence/labor – were never strictly spatially limited and do not preclude the interpretation of registered scatters as activity areas associated with settlement. All in all both parts of 1006 most likely represent portions of a multifunctional habitation and production areas, in which a number of different activities were executed by different agents in different seasons.

1008 Low density scatter on the left bank of Leshnitsa (Fig. C.1.3)
AKB 5510230, GD001
CL-RM(3), LIA(17), LA(7), LA-BYZ(2); Hab; 381 msl; 0.29 / 19.5 ha

This low density scatter is in the municipality of Golyamo Dryanovo, ca.1.9 km SE of the village. It is situated on the left bank of Leshnitsa stream, 150 m south of the Kazanluk-Kalofer road in the SW part of the Koprinka peninsula. The core of the scatter is some 30 m in diameter (0.29 ha). The density of material is low with a sherds every 3 - 5 m. Material comprises mainly hand and wheel-made pottery of LIA, including lithics.

Near this core (some 20 m away from the river bank) another concentration of pottery similar in type and date was found. The core of this scatter spans 30 - 50 m. The surface material is mostly handmade and heavily worn. It having been churned beyond recognition makes dating of the scatter difficult. Among the sherds the only safely recognizable fragment is a wheel-made piece that dates to LA, others suggest an “ancient” origin (CL-RM), with majority identified as dating to LIA.

Chronology: Finds are mainly from the period of LIA.
Function: Unknown.

1012 Pithos in situ near Gorno Dryanovo (Fig. C.1.3)
AKB 5510231, GD002
LIA(2), RM(3); Mor?, Act?; 381 msl; 0.19 / 1.9 ha

Pithos scatter was discovered in a ploughed field about 150 m south of the Kazanluk-Kalofer road in a small round depression some 2.9 km from the village of Gorno Dryanovo. The findspot was 40 cm in diameter, with a scatter of thick walled pithos fragments extending through the survey unit. During a more detailed investigation, a number of fragments were
found inside the *pithos*, as well as a fragment of a bronze object. The fragments of *pithos* were left in situ, only the bronze object was picked up.

Chronology: *Pithoi* are a class of long lasting artifacts. The situation in site does not indicate whether it is primary or secondary deposition stage and the dating therefore remains unclear. According to the rim it is Hellenistic or Roman *pithos*.

Function: Clearly, 1012 was a buried *pithos*, a storage jar, that could have served for water storage in the field or burial of supplies.

1013 **A Roman coin of the Emperor Nerva** (Fig. C.1.3)

AKB 5510233, **DH11001**

RM (1); ?; 377 msl; 0 / 0 ha

Near dirt path in Dunavtsi municipality a single silver denarius of emperor Nerva was discovered. In its surroundings a background scatter of ancient materials were recovered, but besides those there is no sign of a settlement in vicinity. There is a possibility that the coin marks an ancient road or a deposition grave but none of these theories was proved. It could also be secondary lost in the field recently.

Chronology: Roman period, specifically, 1st century AD is the postquem.

Function: Burial gift or lost & found

1014 **Isolated pottery find (not scatter) on the bank of Koprinka**

AKB 5510223, **DS007, associated with DS006 (1006)**

LIA; Hab, Mor; 365 msl

150 m SW from the 1006 findspot, a small spatially bounded pottery scatter was registered on the bank of the Koprinka reservoir. This scatter is some 2.3 km far from the modern village of Dolno Sahrane. Its surroundings have been heavily disturbed both by modern activity and frequent flooding (in the 2001 satellite image the area is shown as dry land, while during the survey most of it was under water).

The scatter comprises a single cluster of wheel-made pottery of the same fabric contained within a strip of 20 x 7 m along the beach. Its context is unclear given the partial flooding of the site. It looks either like an isolated find, or a margin of a more extensive scatter that is obscured by the waters of Koprinka.

Chronology: Diagnostic handmade fragments indicate the date as LIA.

Function: Single discard, burial event or a margin of a larger site (1006).

1015 **Scatter of Settlement on the bank of Koprinka** (Fig. C.1.5)

AKB 5510239, **DH11005**

EBA(27); Hab; 361 msl; 0.07 / 0.63 ha

On the west bank of the Koprinka peninsula, a large rectangular trench was found in the field 30 m far from the water line. The trench was 36 x 6 x 0.6 m large and contained a spot of gravel and dark brown soil of an elongated shape of 16 x 6 m. This feature contained ceramics fragments and a high concentration of daub, at the density of 1 sherd / sq m. A grindstone was discovered here. Coarse ware *pithoi* fragments were recognized; wheel-made finer pottery and handmade wares were among a number of highly fragmented non diagnostic sherds. A lower density scatter of the same composition continued towards the water and south along the beach for ca. 200 m. Northern boundary disappeared in the oak scrub, while the southern edge of the scatter descends into the reservoir. The surface of the fields around the trench also contained a low density scatter of modern debris.

Chronology: The diagnostic fragments were identified as dating to the Early Bronze Age.

Function: Margin of a settlement

1027 **Fortress above the village of Kran** (Fig. C.1.34)

AKB 5500079; “Kaleto”, **KRAN003**

THR?, RM(1), BYZ- MA(12); Set, Def; 720 msl; 0.5 ha / 0

A fortress is situated on the top of a mountain pass leading into the Kazanluk valley from the Stara Planina above the village of Kran. The remains of fortifications are clearly visible through the vegetation. Stretches of walls run on the ground, some of them look excavated in the past. These consist of medium size unworked stones of different dimensions and shapes. We registered a partly exposed wall 2 m long and a bastion. This structure consists of two different kinds of masonry. Low layers up to about 1.20 m the comprised of larger (30 - 60 cm) stones, while on top of them ran a layer of smaller sized ones (20 - 40 cm). The dimensions are: wall to bastion – 4.20 m x 6.30 m, inside wall – bastion 3.40 m, and height of the wall of bastion in NE corner 1.60 m, height in the SW corner 2.2 m. The masonry is tied together by mortar. In some places, one can still see preserved bits of plaster covering inner walls. Another interesting structure stood nearby. It was a room with a partition in the middle. This partition was 0.77 m wide. Its interior dimensions were 2.6 x 7.9 m. Its walls were preserved to the height of 1.20 m. Up to six rows of stone were visible in places, sometimes combined with roof tiles and joined together with mortar. Same as with the bastion, the stones were of different sizes and shapes, with rests of plaster on the interior. Roof tiles and bricks lay scattered around the structures. Only a few ceramics, and even fewer diagnostics were collected.

Chronology: Most diagnostic surface material appears to be medieval, dating from the 12th - 14th century AD; an exception is one Red Slip fragment from the 3rd - 4th century AD.
Function: The building materials point to standing structures. The ratios of brick and tile matched and exceeded by a lot the number of pottery sherds. Given its location and effort invested in the fortification, this site was likely built as a watchtower for defense and control over the mountain pass and access to the valley.

1033 Standing masonry at Kale “Градишката Могила” (Fig. C.1.4)

AKB; SHIP003
EIA (11 or 12), LIA (16), RM (11), BYZ-MA (22), LA (2); Set, Def: 1043 msl; 0.8 / 0 ha

A site with standing walls on a spur of Stara Planina above the town of Shipka. Shaped as a mound/tumulus (it is the reason for the name) the site is accessible only from the North via a dirt path. All other access routes are blocked by steep cliffs. The ‘mound’ is littered with small stones scattered over the area of 0.8 ha. Outer walls were marked by piles of stones. Robber’s trenches were found all over the place. In many cases they exposed the walls, showing the preserved wall dimensions of 2 x 1 m. The stone layers visible were 35 and 20 cm high. One of the trenches (1 x 1.2 m) held a collection of architectural ceramic (tiles and bricks) and some pottery, probably used as a dump by the looters. Two types of roof tiles were documented. One had regular dimensions, but the other one was thicker in the middle of its body. There was also an unusual fragment of tile with small knob, probably used to hold the tile in position. Tiles were ca 2 cm thick, some red slipped; bricks 3.5 cm. A black layer of charcoal, hummus and handmade pottery was clearly visible ca 40 cm below surface in this trench. Below the dark layer was brown-reddish soil with “ancient” materials. The position of this trench suggested it was located inside the structure. Several trenches contained medieval ceramic fragments and roof tiles. Over 50 large storage vessel sherds were recovered (pithoi); two base joints among them. There were many fragments of table and transport amphorae; one of them had a stamp on the rim - a symbol of labrys. The most interesting fragment is a piece of Black Slip.

Chronology: Handmade wares and lug handles indicate EIA occupation. The bulk of material, including BS fragment, amphorae and pithoi fragments as well as Grey Ware show intense use of site in LIA and early Roman period. Medieval tiles and pottery show the site was again in use during 10th-14th century AD.

Function: The elevation and exposure of the site together with preserved masonry are a clear indicator of the defensive purpose of this site. The variety of materials discovered – from domestic to storage and transport vessels as well as some luxuries (BS) hint at a full-fledged settlement with good connections to local market, trade routes and of economic resources.

Fortified settlement with toll extracting or traffic monitoring function?

According to literature, there is a Thracian settlement (EIA-CL) here, as well as a Roman paved road.

1044 Field scatter of Hellenistic and Roman pottery (Fig. C.1.6)

AKB – not yet assigned
EIA?0, LIA (45), RM 0; Set, Act; 432 msl; 0.36 / 0 ha

A moderately dense scatter of pottery was located along the line of windbreak poplar trees running N-S, ca 500 m off the western edge of Kran. The highest density peaked at 4 sherds / sq m, over a rather limited area of 30-40 m radius. The pieces we found ranged in size from small worn fragments to medium sized, well preserved pieces of bodies, bases, rims and handles, a number of them featured pinched plastic decoration. Fine ware, especially Grey Ware, was complemented by coarse ware, storage fragments (amphora toes and handles), brick and some daub. A light background of modern bricks and ceramics, and some ottoman pieces was noted.

Chronology: Majority of fragments dates to LIA with some Roman specimen.

Function: Small structure or activity area? Very little architectural material and high quantity of fine wares seem to suggest an activity area rather than a permanent structure.

1049 Low density scatter (Fig. C.1.7)

AKB 5510224; D5008
HEL-RM? (1), LA? (1 or 0), LIA (9), IA (13), MA (1), ANC (4) ; Set; 372 msl; 0.43 / 4.25 ha

Low density concentration was found on the western Koprinka peninsula. Its southern boundary is cut off by the bay of a stream feeding into the Koprinka reservoir. The surface bears marks of frequent flooding – gravel deposits, no soil development, stagnant vegetation. Maps from 1980s show this terrain under water (including the mounds). Archaeological material peaks at 100 fragments / dka spread between two concentrations. It includes large pieces of armatured daub (9), bone fragments, storage coarse ware pottery as well and handmade and wheel made pottery fragments. Some 2/3 of them are identifiable as ancient, most likely Roman or later periods.

Function: Presence of building materials, bones, handmade and wheel-made pottery, both table ware and storage indicate a small settlement. Given the unknown extent of the scatter and its transformation through various forms of lacustrine activity of Koprinka, it may be a single structure or a part of hamlet.

Chronology: The pottery was fragmented and heavily abraded, offering almost no diagnostic pieces. The most
that can be said is that the fabric resembled common Roman wares in the area.

2001 Concentration of the artifacts around burial mound in Koprinka municipality (Fig. C.1.8)
AKB 5510186, KOP001
EIA(4), LIA(3), LA(4), OTT(2); Mor, Rif; 372 msl; 0 / 0.46 ha

A small bounded scatter of wheel-made and handmade artifacts surrounding a low (destroyed?) mound was found in Koprinka municipality, ca. 2.2 km west of the village. The mound was only mildly elevated above the surrounding ploughed fields and was overgrown with scrub. The scatter is located down slope on the west side under the mound and comprises fragments of EIA and LIA. 10 x 5 m total pick up square yielded some 150 fragments of three major periods, EIA coarse fabric jug, LIA Grey Ware, LA and OTT fine ware sherds. A number of them were joins, suggesting that the material was only starting to surface with renewal of the plowing activities.

Chronology: EIA, LIA, LA and Ottoman periods.

Function: The collection of sherd origins from jugs, small bowls, table amphora and a storage vessel. Lack of architectural remains and the proximity of the mound indicate ritual activity area, (cult of the ancestors?), or sacrificial offerings being ploughed up. The more recent pottery likely suggests the strip of brambles and bushes was used during lunch breaks and pasture.

2010 Low density scatter on the left bank of the Tundzha River (Fig. C.1.9)
AKB 5510195, DUN041
LIA(23 or 24), RM-LA(4); ?, 370 msl; 0 / 0.46 ha

A low density scatter is located 1.3 km from the village of Dunavtsi on a low and easily accessible terrace on the left bank of the Tundzha River. A sparse and uneven distribution of worn ceramic fragments covers the area of 0.46 ha in the middle of a sown field. The density reaches 1 sherd / sq m. The location of the scatter is not marked by any features; it merely stands out in a freshly ploughed field. Artifacts include wheel and handmade pottery of medium fragmentation, its dispersion and wear suggest either long exposure to the surface agents and consequent attenuation or low initial quantity and quality. Surface collection as well as total pickups yielded only very few diagnostics.

Chronology: Among the most diagnostic artifacts were thin walled Grey Ware body and handle fragments, which dated the scatter to LIA. A handful of RM-LA fragments accompanied this collection, yet given their minimal number, these are likely not associated with any permanent structures.

Function: Given the rather uniform and undifferentiated collection of artifacts the low density scatter seems to result from a single event deposition of fine ware vessels, whether structured or incidental. Lack of daub or traces of other construction material disqualifies an interpretation as a standing structure.

2012 Settlement or low density scatter on the left bank of the Tundzha River (Fig. C.1.9)
AKB 5510196, DUN042
IA(12 or 6) CL-RM(1), MA(1) RM, LA-not justified in StatsTable; Hub; 363 msl; 0 / 0.36 ha

A low density scatter is located 1.5 km from the village of Dunavtsi on an elevated yet easily accessible terrace on the left bank of the Tundzha River and above current reservoir. A low density distribution of worn ceramic fragments covers a narrow and elongated area of 0.36 ha in the middle of a stony field. Its densest core surrounds a patch of brush in the middle of the field. Handmade pottery of high fragmentation prevails in the concentration, although a few litchs are present. The even distribution and heavy wear of surface material suggests a long exposure to the plow. Surface collection as well as total pickups yielded only very few diagnostics.

Chronology: Diagnostic lugs and handmade body fragments set the date for prevalent part of low density scatter to IA. A handful of ancient fragments (pithos and plain wares) occur in the collection, yet their minimal numbers correspond more to a background scatter than to a site.

Function: IA cook ware, fragment of portable oven and general lack of construction materials suggest an impermanent structure, perhaps a campsite or a seasonally used hamlet of perishable materials.

2019 Settlement belonging to the later phase of Seuthopolis (Fig. C.1.10)
AKB 5510204, KOP015
LIA3 or 5(7), RM(7 or 28/3), CL-RM(11), LA(6 or 12), MA(21) OTT(2 or 11); Hab, Prod?; 358 msl; 1.4 / 6.28 ha

A dense concentration of ancient materials was recovered on the SW side of the eastern Koprinka peninsula in the locale of “Nine Mounds”. The findspot was in the Koprinka municipality, ca. 2.2 km westwards from the village. The scatter was recovered in a low visibility fallow field covered with tall old grass after the discovery of well-preserved pithos fragments in the eroded bank of the peninsula. While its eastern edge disappears into a scrubby meadow (from a fallow field), the western boundary is washed by the reservoir. On an exceptionally clear day the Red Slip fragments stood out clearly in the shallow water. The concentration comprised several nuclei of high
density pottery suffering from high fragmentation and heavy wear. Two of them were located ca 50 m far from the central mound while the third one was 100 m far. They were interconnected by a less dense halo of artifacts of similar composition that gave no indication of horizontal stratigraphy. Architectural ceramics comprised 2/3 of the total number and volume of artifacts. The number of diagnostics was rather low despite the density of material. The long exposure of the material on the surface is likely the cause for this drawback.

Chronology: The nuclei were rather similar in composition of pottery and architectural ceramics. A number of Red Slip fine ware fragments date the two scatters into high Roman period. The third scatter contained a number of fresh looking architectural ceramics, building stone and very little ceramic at all. This collection seemed more of recent origin than its two predecessors, with fragments of LA and possibly even Ottoman period.

Function: The discovery of *pithos* in situ, as well as high concentration of building material and fine ware suggests a permanent settlement. The overall density of material (a 10 x 10 m pickup yielded 12 kg of material) suggests a more substantial settlement, albeit churned on the surface to the pieces. Given the proximity to Seuthopolis (some 200 m East), it is not unlikely that this site represents an attached settlement, production area in later (RM-MA) periods of Seuthopolis.

2031 **Ritual scatter near the present city of Kazanluk (Fig. C.1.11, Fig. C.1.12)**

AKB 5510214, KAZ004

BA(14), EIA(16 or 18), Iron Age 1? LIA(54 or 56), RM(1 or 4), MA(3); Hab; Mor; 339 m²; 0.58 / 9.96 ha (the nucleus is 0.58, two possible margins were defined at 3.7 a 9.96 ha)

A well bounded, high quality scatter was found on an old Tundzha River terrace near the city of Kazanluk (3.4 km west from the downtown). The concentration spreads evenly over the area of 9.96 ha enclosed to the east and west by two little streams. The nucleus comprised a distinct grey brown patch of ashy soil (0.58 ha) located in a washed ploughed field. The artifact densities in the core reached 6 - 7 sherds / sq m, while on its margin it fluctuated around 1 / 10 sq m. Among the surface artifacts predominated large fragments of high quality drinking vessels, as well as of wheel-made and decorated *craters* and drinking cups. There were also plainer wares, handmade fragments, stone tools (one grindstone) and few pieces of metal including a coin of Phillip II.

Chronology: The majority of the surface materials date to the LIA, corresponding with the heyday of Seuthopolis itself. Few fragments from the very core of the scatter belong to EIA. On the northern margin of the scatter several BA fragments were picked up in polygons 20699 & 20700. Among the fragments on the periphery of the scatter, Roman Red Slip and Medieval fragments were recovered.

Function: The association of the scatter with the ashy layer suggests its origin from some deposits within it. This hints at the possibility of pit structures: either structured, intentionally buried features, or simply remains of abandoned domestic or sacred features (excavations have recovered fire places, post holes, scatters of pottery and two large storage pits dug into the bedrock). Among their contents figured pottery and daub fragments, some of them decorated. The quality of material decreased with further revisits of the scatter, suggesting a shallow deposit that was freshly ploughed up and gradually destroyed by agricultural practices.

2032 **Long term inhabited settlement (Fig. C.1.12)**

AKB 5510215, KAZ005, divided into KAZ005E and KAZ005W

LBA(0 or 2), EIA(30+), LIA(100+), RM(0 or 6), LA(6 or 8); Hab; 344 m²; KAZ005E, 84 (ha), KAZ005W 0.3 / 13.06 ha nucleus 0.3 and a margins of 13.06 ha.

A dense concentration covering an area of 13 ha was found in the municipality of Kazanluk, located 3 km westwards from the downtown. The scatter is evenly spread over a rolling ridge of the first northern terrace above the Tundzha River. The middle of the terrace is cut by a gully form seasonal stream flowing southwards. The surface of the field was ploughed and harrowed during the survey offering excellent visibility. Two nuclei of grey ashy patches were found North and due west of the mound at KAZ009 and labeled respectively KAZ005East and KAZ005West. Their diameter was ca 20 m and the concentration of artifacts in them peaked at 2 / sq m. The two nuclei upon inspection turned out to represent two different chronological components of site use. Most of the pottery in the KAZ005E was wheel-made, featuring high quality Roman period Grey Ware, Red Slip fine ware, large tile and brick fragments, blue glass bracelet fragments, slag and wasters. KAZ005W on the other hand was overall more extensive and contained earlier lower quality material. It yielded multiple bountiful clusters of daub, EIA and LBA pottery, two spindle whorls, loomweights figurines, three grindstones, and lithic flakes.

Chronology: Eastern part belongs to RM, western part is earlier, finds are dated to the LBA and EIA.

Function: The presence of pottery assemblage and other important finds (lithic flakes, grindstones, spindle whorls and loomweights figurines) indicate a number of functional interpretations and different periods of human activity.

2034 **Secondary prehistoric scatter at a low mound (Fig. C.1.13)**
A sparse low density scatter of Chalcolithic and Thracian Grey Ware was found on top of low mound 2034 in an area of 300 sq m. The sparsity and mixed nature of overlapping material suggest it was brought in from other location, similarly to sites 4102 and 4112. The date of material suggests there might be a prehistoric site in vicinity. Site with Thracian LIA material was found 300 m to SE (2036).

Chronology: Very few but strongly diagnostic fragments were found dating to Chalcolithic and LIA periods.

Function: Unclear.

A low density artifact scatter was discovered on a terrace with SE exposure sloping gently down towards a small stream ca 750 m NW from the village of Koprinka. The visibility on harrowed field during cloudy day was excellent. Surface materials varied in obtrusiveness from virtually invisible tiny crumbs of handmade and Grey Ware to highly prominent glazed wares. Highest concentrations of pottery and architectural ceramics were recorded in Units 21242 to 21249, with density oscillating between 0.3 - 1 sherd/sq m (averaging 150 sherds / ha). Three lithics were collected, from Unit 21247, 21251 and 21252 (chipped were collected, one polished grindstone was recorded with GPS and photographed in situ). The surface debris comprised equal ratios of modern and ancient fragments, as well as architectural and domestic ceramics. The architectural remains included brick and tile, which in the modern component were well balanced, while in the ancient assemblage were dominated by tiles. A handful of daub was located in the northern part of nucleus. Most handmade ware was located in units 21249 and 21242; this category was also the only one that was documented west across the dirt road.

For the pre-Ottoman material the average background density ranged from 4 - 6 sherds per 75 linear meters (ca 10 - 25 / ha), with the concentration peaking twice over the area at 10 sherds / 75 m. The scatter covers an area of 6 ha spreading 200 m in N-S direction and 100 m E-W. Most of the ancient fragments suffered from heavy wear and high fragmentation (5), but occasionally larger pieces with fresh breaks appeared among them, suggesting a recent exposure.

Material: Pottery fragments included modern (glazed and unglazed) and ancient. Ancient finds included Ottoman (fuzzy boundary as always), Thracian (or Roman-period?) Grey Ware and other hand and wheel-made fragments, some possibly of EIA date. Fragmentation varied from medium to high, same as the wear. The fragments spanned between less worn recent glazed wares, washed and rounded Grey Ware fragments, tiny daub and architectural ceramics fragments. All in all, the modern fragments were worn, but not as heavily as everything else in the field. Two well preserved amphorae feet were found as well as a Grey Ware cup foot.

Chronology: Earliest components documented include adjoining wall fragments of a burnished (?) handmade vessel, daub and wasters that suggest EIA period. Majority (80 percent of the material falls into the LIA period, with some possibly spanning to Roman period (slipped frags and amphorae under consultation at the moment) Finely crafted Grey Ware table ware, table and storage amphorae (one 5th century BC Chiote foot) and thick walled brown fabric large jugs/bowls suggest a full range of household vessels. All of these were dispersed over a large area of the “site”. The second most prominent chronological component was a group of Ottoman to modern pottery. Fragments of with green or yellow glaze were scattered uniformly in a low density over the whole scatter area, as were modern brick & tile. If any structures can be posited at this site, they would most likely date to more recent period.

Function: The presence of domestic, storage and architectural material suggests the presence of a small open site, perhaps a small structure or a hamlet. While the material is relatively scant and poor, it is very diverse. Used for food processing, storage and consumption, and with some standing structures, 2036 seems to have been used in historic as well as more recent periods.

2044 Hellenistic – Roman structure/shrine/sanctuary? (Fig. C.1.13, Fig. C.1.14)

AKB 5510043; Kran018
LIA(7), RM(11), LA(13), BYZ(3), OTT-MOD(3); Set, Cul, Mor; 385msl; 0.34 / 2.63 ha

Site located at the northern bank of the south lake in the Kran municipality was registered by Domaradzki in the 1990s. The 100 x 120 m large triangular area was overgrown with tall grass and has not been regularly ploughed. Yet, there are visible deep furrows and holes at places, which the pond owner explains were ploughed by Plovdiv mafia. He brought a well preserved iron wheel as evidence, claiming the looters left it behind. Overall the area bore traces of being picked over. Roof tiles and bricks were lying in small clusters while ceramic fragments were scarcer, often concentrated to one of the pits – where the pieces deemed not valuable had been dumped. Two large stone circles could be distinguished as boundaries of two structures. The ceramic material comprised large fragments of Hellenistic bowls and Grey Ware rims.
(LIA mostly) and some Red Slip fragments, possibly of a later date. There were a couple of badly fired tile wasters on the northern edge of the field. According to Domaradzki the site was supposed to contain prehistoric fragments but none have been seen.

Material: prevalence of architectural ceramics to pottery roughly 70:30 at site. Most architectural ceramics were of low fragmentation. Pottery was mostly highly fragmented except for a number of large fragments pulled out of robber trench. Majority was utilitarian, with heavily worn Red Slip fragments. Coarse, thick-walled vessels comprised 20 percent of diagnostics collected, among them one fragment of handmade cook ware, and of a mortarium. Remaining fine wares varied widely among slipped, incised and plain wares.

Chronology: Three chronological components appear in the pottery samples: Pottery life at this site starts in LIA period (mainly Hellenistic), picks you in Roman period and carries on to Late Antiquity until it declines in early Medieval period. A few BYZ and MOD-OTT pottery clusters were found.

Function: The high number of architectural ceramics, stones and pottery on the surface indicate a standing structure (or perhaps multiple). Domaradzki argued for a sanctuary of Apollo here on basis of report of marble plaques, yet little evidence was found to support this claim, except the surviving iron wheel. The presence of wasters and lack of any mortar or plaster remains to connect the stones suggest a rural structure. While a shrine function cannot be discounted, the surface materials correspond better with a production area of a workshop.

2045 (238) Prehistoric scatter (Fig. C.1.14)
AKB 5510256; HADZ005
PH(29), CH(2), EBA(1), ELA(50+), RM(5); Set; 442 msl; 0.1 / 0 ha

A medium density scatter of prehistoric pottery was discovered spread over a defunct burial mound (h = 0.3 m) some 300 m west of the 2046 scatter and 100 m east of the northern reservoir. A thin scatter comprised unobtrusive fragments, which were noticed during a break on top of the mound. Grey and orange-grey fabrics with highly burnished surface as well as coarse ware lug handles suggested an early date. A total pick up collected during the second pass, yielded 0.6 sherds / sq m; again similar grey and orange wares, with soapy surface and a new stamped fragment, numerous chunks of daub and lithic.

Chronology: Orange fragments with highly burnished surface were dated tentatively to Chalcolithic period, lug handles and other diagnostics to EIA. One stamped and one punctuated fragment are of younger date (LBA/ELA). Total pick up yielded nearly a hundred small handmade fragments dated to EIA. Later, mostly RM material, occasionally appeared on the surface.

Function: Given the sparse material, possibly in secondary context (cf. 4102), the sample is too tiny to allow for firm definition of original function. The presence of daub suggests the presence of structures or daub features. The quality of surface treatment of the preserved pieces is relatively high, and the repertoire contains vessels of everyday use as much as can be conjectured from the tiny fragments.

2046 (236, 237) Roman scatter (Fig. C.1.14)
AKB 5510047; HADZ003
PH(6), EIA(4), LIA(2), RM(21+9anc), LA(10), BYZ(4), OTT-MOD(16); Set; Prod; 373 msl; 3.51 / 13.06 ha

In the middle of the field 200 m east of the northern reservoir, exactly where Domaradzki put his site 003, we registered a dense scatter of architectural ceramics and Roman pottery, and other materials including slag, lithics, handmade and storage ware. The concentration centered on a pile of stones, collected from the field. The scatter was ca 100 m wide (E-W) and 250 m long N-S. Red Slip fine ware, black burnt cook ware, large storage vessels as pithoi and amphorae were scattered over the surface. Two grindstones were documented, one rotational and one boat-shaped. This concentration was well bounded with clearly defined peak along the center of the N-S oriented scatter. Material at 2046 was better distributed among different categories than at 2044 (no looting here). The fragmentation of the material varied between low (architectural ceramics and larger thick-walled pottery) to high (Red Slip fragments, handmade and fine ware). Among pottery the ratio of fine ware to coarse ware was 40:60. The ratio of architectural ceramics to pottery was 2:1. There were a number of wasters recorded at the site, two grindstones (one rotational and one saddle-shaped) and a fragment of a stone percussion as well as a number of chipped flakes. In the unit 21523 a picture was taken of significant ceramic cluster and of a waster.

Chronology: While LIA and Roman material is by far the most numerous and obtrusive on the surface, the samples contained handmade prehistoric pottery (BA or EIA7) and a significant amount of LA and BYZ pottery and architectural ceramics.

Function: The density of surface material and its composition (presence of both architectural ceramics and pottery, presence of other functional materials – grindstones, wasters) suggest domestic structure(s) or production areas. The proximity to 2044 and similarity of material suggests the sites may have been functionally related during their coexistence. Later on 2046 seems to outlive its neighbor.

2048 Defensive structure possibly of 19th century, used by Turks during the Russo-Turkish War (Map not available)
AKB 5510259; SHEY022
A rectilinear earthen structure (15 x 25 x 1.7 m) was found on the south slope of Stara Planina, covered in forest and with a thick layer of leaves obscuring the ground. Bits of supporting small stone structure was exposed at place, but yielded no datable cultural material.

Chronology: The 19th century date is postulated on the basis of the structure location opposite the Shipka pass and the overall lack of datable surface materials.

Function: The function of this enclosure has been interpreted as an offensive post for the Turks during the Russo-Turkish war of 1878, as it offers the best position from which one can assault the Shipka pass.

2049 Byzantine-Medieval fortress (Fig. C.1.16)
AKB 5500107; “Chillyacheto” Entnt001
BYZ(1), MA(11); Def: 0.11 / 0 ha

This site is first mentioned in Popov 1982 (60), who describes fortification walls and a tower and traces of crenellations. The site spreads over some 200 sq m on the slope of Stara Planina above the village of Enina. The N-S slopes are gentle, east and west ones steep, the area covered in coniferous growth. The site consists of a structure collapsed and looks like a mound. On the north side, the height of standing remains reaches 4 m, suggesting a multi-story building. Southern and western sides of the collapse are covered with robbers’ trenches that expose the 1.5 m wide walls. The walls are held together by mud or very little mortar. The trenches contain lots of architectural ceramics as well as domestic and storage pottery (pithoi).

Chronology: Early Byzantine, according to literature. The diagnostics fall half into the 10th - 12th century AD and half into the 12th-14th century AD.

Function: Fortress.

2051 Low density scatter of Ottoman pottery (Fig. C.1.17)
AKB 55102c1; KRAN028
OTT; Prod: 373 msl, 0 / 10 ha

A thin but persistent scatter of architectural ceramics and glazed pottery was found in a flat agricultural field, SW of the village of Kran. It seems of better quality, less fragmented and more diagnostic than a usual Ottoman background scatter that is usually devoid of diagnostics. The scatter density is 1 sherd every 15 m. Possibly, it represents the remains of an Ottoman rural structure (shed) that once stood here, or the remains of agricultural or dumping activity (manuring?).

Chronology: Ottoman period.

Function: Agricultural structure in the midst of fields.

2073 Low density scatter (Fig. C.1.8)

2074 Low density scatter (Fig. C.1.12)

Scatter of modern debris spreads across a gully from the site of 2031 (KAZ004) and across the road from 2032 (KAZ005). The debris is dominated by glazed and wheel-made Ottoman and modern wares. Fragments of earlier amphora and red fine ware appear occasionally; their highest quantity is constrained to the SW edge – point of contact with site 2031. The recent material is fragmented yet not very worn, indicating recent exposure. The ratio of brick and tile is roughly equal to the pottery. Most of the recent pottery is fancy and representative, almost no handmade is encountered in the western part of scatter. The locals claimed this area once was an Ottoman cemetery. In the eastern part of scatter, more handmade ware appears, with potentially some prehistoric fragments. These appear in the vicinity of one of the mounds (KAZ008) and can be associated with its construction or use. This low density scatter has a fairly extensive halo stretching northwards along the furrows of this large field. The field contains a number of spots of different shade of soil color, again a possibility for cultural layers being cut by the surface. While the density of material is relatively higher than at other low density scatters it needs to be scaled down due to the high obtrusiveness of the glazed wares and their good preservation.

Chronology: A thin layer of LIA pottery probably washed down from 2031, and lots of medieval and Ottoman pottery and implements (pipe fragment, pottery).

Function: It could be a chronologically more recent component of 2031/2032, one that connects to the obviously ancient landscape manifested by four mounds and pottery scatter on the surface. More likely
appears the information of locals who claim there is an Ottoman cemetery under this field.

2075 Site found through Remote Sensing (RSS1) (Fig. C.1.18)
AKB; SHEY
LIA(3?), RM(10), LR(10+); Set, Mor; 445 msl, 7.63 / 11.76 ha

A dense continuous concentration of archaeological material was found during remote sensing ground control in the Sheynovo municipality. The nucleus of the site covered 7.6 ha reaching the density of 1 sherd / sq m. The margins of the site extended nearly 12 ha, including standing remains of collapsed structure/burial mound. The ground was rising towards the north and had been recently ploughed at the time of survey. Recent precipitation and ash had been freshly exposed, featuring large fragments with fresh breaks; sometimes whole half vessels were found sitting in the furrows. Most dominant were red chalky and soft table and storage wares, next were tiles (several complete) and architectural materials including daub. The fine wares included thin walled table ware as well as thick walled amphorae. The coarse wares were dominated by cook ware and few storage vessels. Handmade fragments were scarce, heavily worn and fragmented. The scatter included one black slip fragment and several metal spurs and slag. No grindstones or other domestic implements were registered.

Chronology: Most of the diagnostics were dated to Roman and Late Roman period respectively.

Function: The range and volume of the recorded materials, presence of tile, daub and brick, indicate the presence of Roman – Late Roman structures with some LIA materials (heirlooms or a previous settlement?). The settlement was deeply buried until 2009. Recent exposure is the only explanation for the low fragmentation of artifacts and their dispersion over a large area.

3001 Necropolis on the northern slope of Sredna Gora Mountains (Fig. C.1.21)
AKB 5510124-27, VIDO02
EIA(6), IA(4), LA(4), MA(1); Mor, Agr; 365 msl; 4.52 ha

Directions of the local informer Michail Nikov led to the discovery of an artifact scatter and a necropolis on the northern slope of the Sredna Gora Mountains. Extent of margin which is formed by 2 nuclei is 4.52 ha. Distance from the village of Vidin is 1.5 km in NE direction. The northern boundary stood out clearly on the bare surface on the 100 x 150 m terrace. There were several discontinuous concentrations reaching 1 sherd / sq m. The terrain suffers from flooding. The material was heavily worn and fragmented, of coarse paste and many mineral inclusions. A number of periods were registered, under the modern debris masking the surface. Within the same area lies a discreet cluster of river stones 10 m in diameter saturated with architectural material and ceramics. Undoubtedly there was once the foundation of a standing structure. Two more such stone clusters are registered within 20 m radius. The necropolis 100 m away has suffered from gravel quarrying. Trenches and excavations reach 2 m in depth. Wall sections in these trenches are lined with pottery and architectural ceramics in multiple layers. A large concentration of pottery and architectural material is registered.

Southern boundary of site is marked by large blocks of stone, fallen here as a result of the stone quarrying of the cliff above. Three trenches line the boundary with architectural ceramics appearing at half meter down their west sections. No other diagnostic pottery is registered. In the east part of the necropolis bones were noted at half meter depth – inhumation still in situ. Another inhumation is found 20 m away in an eastern profile of the same trench at 0.25 m depth.

In the profile immediately under the quarry a layer of IA pottery were registered in the depth of 1 m (6 pieces). IA pithos fragments were found 40 - 50 m far from the quarry on the piles of earth. They were documented but not collected.

Towards the center of the necropolis in an eastern profile, half of a skull was discovered at 1.2 m below the surrounding surface. It was out of context, possibly washed out from higher position in the profile.

West towards the river the trenches thin out and the terrain changes to sandy from gravelly. Pottery concentration dwindles to single pieces in 10 m. One diagnostic sherd of EIA handmade pottery with highly polished black surface was collected.

Chronology: The abundance of pottery and its composition indicates the site was used over a number of different periods with potentially different function. The greatest portion of finds dates to Ottoman period, the next to LA, while earlier materials remain slightly underrepresented. IA sherds were scarce, but present.

Function: Early use of this site has been mortuary as attest the inhumations and burial gifts. The latest period of occupation is most likely connected with corrals and troughs for cattle and a couple associated huts/pastoralist camps. Trenches at the graves point to the earlier use for habitation. The site could have housed a hamlet and associated necropolis.

3083 Site scatter in Gorno Cherkovishte municipality (Fig. C.1.19)
AKB 5510178, GCH057
BA(2), LIA, MOD; Hab; 428 msl; 0 / 9.54 ha
A scatter of handmade material was found on a terraced hillside in Sredna Gora, 3.1 km NW from Gorno Cherhovishte. The terrace forms the top of a cascade of terraces exposed to the east, encircling the ridge in N-S direction and descending down to the valley of a small Tundzha tributary called Beglishka. Most of the terraces are planted with annual crops while the top most one has an orchard on it. The scatter comprises multiple low density concentrations of handmade ceramics and daub. Its extent is 130 x 300 m, circumscribed by the boundaries of the terraces. The highest concentration of artifacts is on the topmost terrace on the ridge and gradually decreases from terrace 2 to 3. The surface debris includes isolated fragments of modern discard. The visibility is good, the soil yellow-brown, with lots of gravel. The area of highest concentration is reddish-brown. A number of lithic tools and two lithic flakes were found. On terrace 3 a grindstone fragment is recovered. In the northern extremity of the terraces stands Kopanata Mogila, a burial mound, known and registered in the local topographic map.

In an attempt to define the boundaries of 3053 the field walkers surveyed a 50 m wide strip west of the terraces inside the orchard. The visibility is limited by surface vegetation, which is only partially broken up. Despite this drawback a concentration of daub and pottery is detected within the orchard. The concentration is highest near the southeast edge of the orchard which is flanked by a number of grindstone fragments and large daub pieces. The concentration is higher than on the terraces below, indicating that this could be the nucleus and origin of the debris.

Second strip is walked in the orchard, yielding handmade architectural ceramics and daub. The terraces below 4 contain very low density of pottery. Among the few diagnostics, however, figure BA sherds. Terrace 5 contains barely a background scatter. Terraces 6 and 7, likewise, do not contain any ancient materials. Only a few modern fragments are noted.

Chronology: BA, LIA, modern period.

Function: Long term occupation or activity without clear definition of the function.

3057 Quarry at the highest point of Sredna Gora ridge (Fig. C.1.22)
AKB 5510136, GCH054
??; Prod; 416 msl; 0 / 0 ha

The findspot was registered at Sredna Gora ridge located 5 km NW from Gorno Cherhovishte. The site is on a rounded cliff. Large cut stone blocks were discovered here, which seem to have been quarried and dropped here. Four further elongated rocks are regularly laid out next to each other.

Chronology: Insecure, probably LIA?

Function: Quarrying, infrastructure, resource exploitation, activity area.

3058 Quarry on the ridge of Sredna Gora Mountains (Fig. C.1.23)
AKB ??; GCH053
EIA(1)?; Prod; 494 msl; 0 / 0 ha

Another potential quarry site was registered on the ridge of the Sredna Gora, just east of findspot 3057 (GCH051) and before the steep slopes to the south. It is located 5 km NW of the village of Gorno Cherhovishte. A cluster of cut stones was registered, ranging in size from 0.05 - 0.5 m, and another collection of large ashlars of 1 m across was located 20 m further northwards. To the West lay exposed the surface of bedrock, which appeared to have been the provenance of the stone. Small sized stones were piled up in a 7 m long and 1 m high pile. To the North a robber's trench was noted, which produced handmade ceramic fragments and daub. The soil was ashy, dark brown, possibly containing a cultural horizon. The profile of the trench indicated that the layer of stones continued for 40 cm beneath the surface. Large sized stones were ordered in a 10 m line and oriented in E-W direction, forming a terrace wall on the northern slope. At a number of places along the northern boundary, bedrock lay exposed and surrounded with clusters of rubble.

Chronology: Insecure, probably EIA-LIA?
Function: Quarrying, infrastructure, resource exploitation, activity area.

3059 BA Scatter on the Terraces (was 3056) (Fig. C.1.19)
AKB 5510179, GCH058
BA(2), EIA(1) NOT IN THE ceramicsTAB; Hbl; 380 msl; 0 / 8.01 ha

This site scatter is in fact a different chronological component of 3053 (GCH057) that spreads over terraces 8—9, especially their northern edges. A 100 m zone off the north edge of these fields contains multiple concentrations of burnt hand made pottery and daub. Its location is 2.9 km in NW direction from Gorno Cherhovishte. The maximum extent of this scatter is 120 by 300 m. Some fragments were found washed down on a meadow below the terraces as well as dispersed by ploughing westwards along the terraces. The diagnostic material was dated to the Bronze Age. Besides the pottery fragments two joining pieces of grindstone and other stone tools were recovered from two terraces. This seems to be the origin of the ceramic and lithic fragments discovered on the river terrace below.

Its margin contains mainly handmade ceramics, while the nucleus contains 20 sherds / ha. In the northern edge an exposed 30 cm deep section was located. In it lay half a grindstone and a lithic tool. (These could be secondary context reused to support terrace wall.) The western part of the terrace contained few modern fragments.

Only a low density concentration of pottery was found on terrace 8. It rises towards the north edge, where the second half of the grindstone was found. North of the ridge, a small medium density concentration of pottery spread, featuring a number of stone tool fragments.

Chronology: The nature of the finds points to their prehistoric date. Stone tools in general do not allow for precise dating, and the grindstone could likewise be in secondary context. The pottery, however, points very likely to the BA date of associated materials.

Function: settlement

3062 - 3063 Medieval fortification above Yasenovo (Fig. C.1.27)
AKB ???; YAS015
LIA(1), BYZ-MA(9); Def; 850 msl; 0.25 ha / 0 ha

A concentration of artifacts and standing masonry was located on ridge connecting two peaks NE of the village Yasenovo. First, lower peak of the hill (its elevation is 819 msl according to the topographic map 1:25 000) features a platform of 15 x 40 m (N-S dimension being the longer). The site extends from this platform 300 m to the second peak (elevation – ca 900 msl) where the remains of standing masonry were registered. Overall its boundaries are difficult to trace throughout the entire area due to lot of trees and leaves obscuring the surface. There are stone features and clusters dispersed over the surface without clear boundaries or function. Five recent (2 or 3 years old) robber’s trenches are visible on the surface. Majority of finds come mainly from these trenches, specifically from a distinct layer of the organic black soil full of tiles, bricks and table wares. On the surface, only 5 pieces of each category were found. Overall, diagnostics are scarce even in the trenches; outside the trenches, the low visibility hindered any additional assessment. The material was fairly worn – due to exposure to elements after abandonment, rather than due to mechanical wear on the surface. Standing walls were documented on the higher of the peaks.

Chronology: Fragments date mainly to the periods of the 10th—12th and of the 12th—14th century AD. One LIA handmade fragment was registered.

Function: The presence of walls, bricks and tiles attest to the existence of structures. The location on a high peak with very good view of the Kazanluk valley and control of the gully of Leshnitsa River suggests strategic function.

3107-3225 LIA/MA Site northern from Gorno Sahrane (Fig. C.1.24)
AKB; G5008
LIA(3), LIA(12), RM??(9), MA(14);
Set; 451 msl; 0.05 ha / 1.42 ha

A concentration of pottery and architectural material was found near a mound on a river terrace of Leshnitsa north of Gorno Sahrane. The handmade materials and daub were concentrated in an excavated agricultural trench (25 diags) and around the mound 3104. Further to the SW edge of the terrace enclosed by trees, a higher density scatter of LA pottery was located (1 sherd / 2 sq m) over an area of 4.6 ha. Tiles and brick of LA or Medieval period were registered.

Chronology: Three periods are distinguished in horizontal stratigraphy according to the pottery. It is LIA, LA and Medieval period. Modern debris is distributed evenly over the area.

Function: LIA ceramic material is relatively poor and mostly still buried in the ground as the discovery situation suggest; together with the daub it suggest an isolated semi-permanent structure. In LA and Medieval periods the focus of activity has shifted to SW, tile and brick remains suggest a structure existed here through that time, a shelter of sorts.

It appears that this place was used in three periods with a potential hiatus between them.

3122 Site embedded in the profile of the Leshnitsa River (Fig. C.1.25)
AKB ???; YAS014
LIA, RM, BYZ; Set;
The map M. Domaradzki used during his field walking in 1990s marked a site between Yasenovo and Gorno Sahrane, on the left bank of Leshnica. He reported a discreet scatter of some 80 sq m in a ploughed field and dated it to LIA, Roman and Early Medieval period. During TRAP survey, a pasture obscured the entire surface and Domaradzki’s site could not be found. Only a few sherds were found on the surface that dated to the LIA. These were isolated, heavily worn and not very diagnostic. The bank of Leshnica River produced a site in its profile, ca 0.5 m below the surface. A meter thick layer of brown soil contained LIA ceramics (both handmade and wheel-made), animal bones, and stones which seemed to originate from some architectural structures.

Chronology: During TRAP survey it only LIA sherds were recovered. It is possible other periods were present at the site at some point in time, but were missed because of low visibility.

Function: A rural structure – hut of a hamlet.

3126 Late Iron Age site NE of Yasenovo (Fig. C.1.26)

AKB?; YAS018

EIA(100+), LIA; Set, Cul, Mor; 550 msl, 2.26 / 0 ha

A concentration of pottery and construction material was located NE of Yasenovo at the side of the Kayal Dere valley. Large quantity of pottery was found in the profile of the dirt road winding up into the mountains. Almost four complete vessels were assembled from the remains, but many more individual sherds were present. The remains of masonry were also registered. Worked stones, and a layer of daub was visible in the eroded tracks of the road. The material included elite Grey Ware vessels and *pithoi*, all from large vessels whose exterior imitates prestigious metal in shape and surface treatment. Additional debris was found south from the site, down the hill. Flanking a small rose factory, lots of fragments of *pithoi* were found in and around a newly excavated septic trench (10 x 4 x 1.5 m). According to the owner, an entire preserved vessel once came from this spot. The eastern profile of the trench showed a layer of dark brown soil with some worked stones in it, clearly distinguishable from the light brown soil around. This layer started 40 cm under the surface. The area between the road profile and the rose factory was disrupted by an artificial lake and overgrown with scrub. Rose fields spread further to the south. The vegetation and the lake hindered the recovery of additional materials and better definition of site boundaries. The boundaries were tentatively set to follow SE from the profile and reach as far as the first rows of the rose field.

Chronology: Metallic silver-engobed remains of four large Grey Ware vessels (*craters* and *amphorae*) were dated to the 6th century BC.

Function: The quantity and quality of the pottery (likely imports from the Aegean) suggests a major center, preceding Seuthopolis. The vessels point to feasting or cultic activity connected with ostentatious display. Additional evidence of the significance of this finds spot is provided in the proximity of three large tumular necropoleis east of Yasenovo.

3130 Very low density scatter (Fig. C.1.27, Fig. C.1.28)

AKB; YAS017

LIA; low density; 502 msl, 0 / 1.36 ha

Sparse scatter covered a hectare and half of pasture land on the western rim of Yasenovo. Fragments of slag and pottery were encountered in limited amounts, coarse wares (*pithoi*) were present, but heavily worn and not very diagnostic. Scatter is very thin and its origin is not clear.

Chronology: LIA

Function: material looks like it is in secondary position as a result of dumping or soil transport/manuring?

3133 Medieval site NE of Yasenovo (Fig. C.1.26)

AKB; YAS019

MA; Def; 623 msl; 0.64 / 0 ha

A concentration of architectural debris and standing masonry is located on a spur of the Stara Planina shield, 1 km NE from Yasenovo. There are many robber trenches of all sizes around the site. Boundaries of the site are difficult to trace due to the trees and leaves obscuring the surface. There are stone clusters on the surface. Rugged terrain suggests more latent structures beneath the surface, but the only visible standing masonry is a wall that had been exposed by treasure hunters. It is 3 m long and 1 m high. In one of the smaller robber trenches diagnostic pottery and worked stones were documented. A tile with strange stripes on was also registered. A second path seems to lead to Yasenovo from this site – possibly an original medieval one, which now is almost impassable.

Chronology: Very few diagnostics came from the trenches; one datable piece places this site in the 12th – 14th century AD. This date is countered by the rough opus cementicum used in the wall, which suggests an Ottoman date.

Function: Standing structures, possibly, but not clearly fortified. Possibly, we are dealing with a small hamlet (sheep sty?) in this naturally elevated position.

3169 Late Iron Age structure west of Yasenovo (Fig. C.1.27)

AKB;

LIA?, MA(1); Def, Agr?; 691 msl, 0.7 / 0 ha

A concentration of architectural debris and standing masonry is located on a spur of the Stara Planina shield, 1 km NE from Yasenovo. There are many robber trenches of all sizes around the site. Boundaries of the site are difficult to trace due to the trees and leaves obscuring the surface. There are stone clusters on the surface. Rugged terrain suggests more latent structures beneath the surface, but the only visible standing masonry is a wall that had been exposed by treasure hunters. It is 3 m long and 1 m high. In one of the smaller robber trenches diagnostic pottery and worked stones were documented. A tile with strange stripes on was also registered. A second path seems to lead to Yasenovo from this site – possibly an original medieval one, which now is almost impassable.

Chronology: Very few diagnostics came from the trenches; one datable piece places this site in the 12th – 14th century AD. This date is countered by the rough opus cementicum used in the wall, which suggests an Ottoman date.

Function: Standing structures, possibly, but not clearly fortified. Possibly, we are dealing with a small hamlet (sheep sty?) in this naturally elevated position.
Halfway between Yasenovo and Skobelevo a scatter of *pithoi* fragments was documented on the foothill and terrace above it. Visibility was very low due to lot of trees and leaves obscuring the surface. Two masonry structures were registered on the south and north limit of the terrace. The structures were 3 m wide and 0.5 m tall. The rest of the terrace was destroyed by robber's trenches.

Chronology: Despite low visibility, two samples of heavily worn diagnostics were collected and dated to LIA and MA.

Function: Walls on the terrace indicate an enclosure, either agricultural structures (pens, etc) or dilapidated remains of fortification.

3225 – see 3107

3226 Late Iron Age low density scatter near Skobelevo (Fig. C.1.28)

AKB;

ANC/LIA(1), LA(1); low density scatter; 450 msl; 0 / 6.36 ha

A sparse scatter was documented southeast of the village Yasenovo, spreading in a radius of ca.300 m around the mound 3226. The surface visibility was nearly null, due to a pasture covering the surface. Heavily worn large fragments of LIA ceramic (both handmade and wheel-made) were picked up in this area. The collection counted several pieces of storage ware fragments and medium sized wheel-made sherds with rounded edges.

Chronology: LIA according to the ceramics.

Function: Unclear, as the nucleus was not found. If in primary context, then the scatter may represent an activity area, if in secondary context, then product of manuring and garbage dumping.

3227 Roman “city” between Yasenovo and Dolno Sahrane (Fig. C.1.29)

AKB; G5001

RM(50+); LA(10+); Set, Cal; 424 msl; 5 / 0 ha

An alleged pre-Southopolis center was situated in a walnut orchard between Yasenovo and Dolno Sahrane, south of the major connecting road. It was first registered by Domaradzki in 1997. In 2009, during the first TRAP campaign, the area was overgrown with grass, but parts were visible as they had been ploughed up by looters in recent months. The furrows, partially overgrown, revealed enough underground masonry, tiles and pottery to warrant the ambitious label “city”. In 2010, the site was almost completely overgrown with few visible remains. What remains quite obtrusive though are the positive earthen features (1.2 m wide and 20 cm tall), which while covered with scrub connect at right angles and outline the walls underneath. Several mound-like structures probably contain remains of ancient architecture Also, many isolated robber trenches yielded bricks and tiles from Roman period. The site is approximately 200 m long from South to North and 270 m from West to East. All this area is full of positive structures, tiles, bricks and worked stones.

Chronology: The surface pottery was dated to Roman and LA period. Very few diagnostics were found in the trenches. The bricks and tiles also pointed to Roman period. No LIA or earlier fragments were recorded, the claim of M.Domaradzki about an earlier center is not confirmed

Function: Considering the organized design of the structures, presence of tiles, and masonry, a significant Roman site is posited. It could be a small fortified settlement/station in Roman times, and possible a basilica in LA period (judging by the apsidal structures on the south side).

3231- Medieval town of Yasenovo, called “Hamidlu” (Fig. C.1.28)

AKB, YA5

OTT (10), Set, Prod; 435 msl, 60.5 / 0 ha

Positive structures of stone and debris indicating the boundaries of former structures and large houses were found southeast of Yasenovo on an expansive green meadow. Outlines of the walls are visible in the satellite images. The walls run on for 50 – 100 m, forming enclosures or “yards”. Inside the “yards” there are piles of stones, as farmers tried to consolidate the collapsed rubble in order to cultivate the fields. Now the entire area is fallow and used for grazing. Glazed pottery is scattered over the surface as well as modern garbage.

Chronology: Glazed pottery, stone walls and local memory all suggest Ottoman period.

Function: The houses and enclosures of the Turkish town of Hamidlu.

4001 Fortress of Kaleto above the Koprinka reservoir (Fig. C.1.22)

AKB 5510007; GCH001

IA(0), RM(3), LA(3 or 4), MA(2 or 3) podle SMALL FINDS TAB; Def, Hab; 438 msl; 0.03 / 0.16 ha

A fortress of Kaleto (also called Tvarditsa) was registered in the locale of Giurla on a small spur at 434.4 msl, NE of Gorno Cherkhovishte. Hanging south of an above the Koprinka reservoir, the only access to this site is from the West. The surface visibility is low in the dense meadow surrounding the remains. Northern, eastern and southern boundaries are formed by steep cliffs (60 – 45 degrees) only the western side provides a gentler slope. A number of old and new robbers' trenches have been dug into the slopes around the fortress. The trenches are full of football-sized stones.
but ceramic fragments appear only scarcely. An iron bracelet was recovered from one trench. The soil is clayey, black and full of organic material. The area of the crest is 20 by 9 m. In the North and East, the remnants of fortress walls can be traced in piles of mortar and brick.

Chronology: The collected sample yielded daub fragments, shell and bone as well as thin walled pottery dating to LIA, Roman and Medieval ages (one fragment featuring gold-engobe typical of 12th century AD, 12 fragments dated to the 13th - 14th century AD).

Function: Fortress and watchtower.

4083 Short term settlement above a river terrace (Fig. C.I.30)

AKB 5510113, BUZ001

EIA(2), LIA(1); Hab; 363 msl; 0 / 0.75 ha

A short term settlement registered on a terrace immediately above the river NE of the town of Buzovgrad. Density of concentration is 1 sherd / 10 sq m in the ploughed field and small garden plots. The surface debris contains mainly handmade fragments, coarse and fine fabric, with characteristic EIA canelured ware. A later period is represented by Grey Ware fragments.

Chronology: EIA, LIA material

Function: Hamlet or small single structure-settlement is posited here, although there is very little architectural or other remains. Likely, this was a short-term residential area.

4097 Iron Age Settlement in the Koprinka municipality (Fig. C.I.11)

AKB 5510163, KOP070

LBA(1) EIA(7), MOD; Hab; 343 msl; 0.15 / 1.5 ha

An extensive concentration of ancient debris spans a small terrace on the left bank of Tundzha in the Koprinka municipality, some 1.5 km south of the village. The density of artifacts is medium to high with the peak at 1.5 – 2 sherds / sq m. The extent of nucleus is 0.15 ha. The fragments are dispersed over an area of 1.5 ha. Concentration is not accompanied by any soil color changes; the soil remains homogeneous. Daub, handmade and wheel-made thin walled sherds are present as well as lithic flakes and a grindstone.

Chronology: The pottery features traits characteristic of the Early Iron age (double vessel handle, fluted or canelured ware, burnished and plastic decorated ware). Wheel made Grey Ware of the LIA is also present, as well as few fragments of modern debris.

Function: The variety of surface finds including the agricultural processing implements and tools, as well as the armatures in the daub fragments indicate that the scatter represents an ancient settlement, used for agricultural production and maintained over several generations during the IA.

4098 Scatter at “Batałčak” (Fig. C.I.31)

AKB 5510681, GCH025

EIA(1+2?); OTT(2); Hab; 398 msl; 0 / 0.95 ha

A low density concentration of pottery was found in a ploughed field 300 m NE of Gorno Cherhovishite. The material included handmade pottery identified as EIA, and wheel-made pottery of recent date.

Chronology: EIA

Function: The coarse storage vessel fragment and cook pot walls indicate the possibility of semi-permanent standalone structure – hut - , if we press the data, but the low amount of material leaves the function of the concentration somewhat elusive

4102 Early Iron Age scatter around the mound of the same code (Fig. C.I.32)

AKB 5510246, Tuumbova Češma II, ENIM03 [was Kran 021 or Enina 007]

PH(2), EIA(2), MA(2); displaced Set, Mor; 481 msl; 0.17 / 0.95 ha

A low density scatter of crumb-like EIA pottery (2 - 3 sherds / ha) was identified in the survey unit 40311 (75 x 75 m), south of the burial mound registered under the same code 4102. The visibility in a field of small seedlings averaged 70 percent. After the intensification of the walker interval to 5 m and resurvey of the area, the density remained relatively low (1 - 2 sherds / 25 sq m; 40 - 150 sherds per ha). It peaked in a single round concentration 25 m wide (unit 40313 reaching 1 - 2 sherds / sq m). The materials consisted of handmade pottery and daub fragments. Few pieces of wheel-made Grey Ware were collected, but all the fragments were very small, highly fragmented and heavily worn. Very few sherds were diagnostic (4 total) despite good visibility. According to Domaradzki, there should have been a late medieval site with marble fragments here, but we didn’t find any trace of it.

Chronology: A preliminary assessment of current evidence indicates a single-phase, based on the fact that all the pottery is from EIA with a few sherds of Grey Ware being of later date. The mound dates to LIA by the association with Kran tumular necropolis. Domaradzki’s findings from earlier surveys suggest the presence of Medieval remains nearby (perhaps a secondary use of the mound?).

Function: The EIA scatter appears to be in a secondary context here, transported from its original site to serve as construction material for the burial mound. It is hard to assess its original function and location as the quality and preservation of the remains are poor. The taphonomy remains unclear and no traces of original
Late Byzantine fortress is situated on a hilltop overlooking the Kran municipality. It lies in the forest along the Buzludzha road and W of the stream Dere Azl. Its dimensions are 90 x 60 m, area ca. 0.4 ha. It is marked on the 1:5000 map and has been investigated by D. Nikolov. There are well preserved walls; one of them is opus mixtum, six rows of red bricks between large worked ashlars. The outline of a gate can be discerned on the south side, proteichismus delineates the northern boundary. The surface material is dominated by worked stones and architectural ceramics. Few pieces of cook ware and rotational grindstone conclude the surface assemblage.

Chronology: M. Domaradzki identified three periods of habitation at this site: Hellenistic, LA and Late Byzantine/medieval period

Function: Fortress with semi-permanent habitation.

A scatter was found on the side of a large burial mound (5.5 x 35 x 26 m) disposed in similar fashion as at site 4102. The concentration of ca. 1 sherd / 2 sq m consisted of handmade ceramics and a few litches, concentrated on the SW and W slope of the mound. The west slope bore signs of erosion, with pottery in the matrix. Sherd fragmentation varied from low (7-10 cm) to high (1-2 cm frags). Fabric and surface treatment pointed to a heterogeneous original assemblage. Many of the fragments bore decoration (wavy incised decoration, crisscross patterns, combed decoration, cannelured décor on black polished thin-walled wares) or were functionally diagnostic (a strainer, bowls and jugs). The team did not register any architectural ceramics or daub.

Chronology: Diagnostics among the sherds seem to all fall into the Chalcolithic period, with some that could be also interpreted as Early Bronze Age incrusted ware. The mound itself communicates visually with the Hellenistic necropolis north of Kran.

Function: The chronological as well as functional variety points to the origin of this assemblage in domestic food production/storage area. The lack of architectural remains and the origin in a fill of a burial mound (a member of LIA tumular necropolis) beg the question of primary context. The most likely source of this prehistoric domestic assemblage is the Tell of Kran, located mere 130 m far to the SW.

A low density artifact scatter was found in the SW corner of a harrowed field approximately 1.5 km SW of Kran. A small stream/canal ran along the western edge of the field. The concentration was spread over an area of ca. 275 m E-W and 200 m N-S. Upon intensive re-survey at 5m intervals, one nucleus was found in bordering units 40829 and 40831, and second one in the adjoining units 40814-18 and 4024-22 to the North. There are very few modern artifacts at this site and most of the artifacts we found were pottery sherds, the vast majority being handmade. We found relatively few Roman sherds (only 2 diagnostics are likely to be Roman) and few architectural ceramics consisting of brick and tiles, though we did find 2 millstones in 40814 and 40818. The ancient finds ranged from small, worn sherds to medium, well preserved pieces. Most of samples collected were coarse ware and likely dating to LBA. All of the 11 unit samples came from units 40804 - 40829. The most diagnostics (8) per unit came from 40829. Nearly all the samples were small-medium in size and quite thick, averaging 10 - 15 mm. The pottery is black to grey/ochre in color with small (<1mm) quartz inclusions, though some sherds had inclusions up to 3 - 5 mm. There were a few fragments that were oddly shaped, probably a handle attachment molded into plastic decoration. From the broad curvature of some of the rims, some of the original vessel sizes would have been considerably large, probably serving vessels while the thick walled fragments suggested storage jars.

Chronology: BA

Function: Settlement, a farmstead.
were recovered from the garden of a private residence here. The survey recorded medieval pottery adjacent the stream as well as the western side of the residence extending further W side of Buzludzha road. The site was not recorded as a new object as it has preexisting record. Its condition was merely reviewed. The highest density nucleus of medieval pottery measuring approximately 40 m NW-SE x 20 m NE-SW, was located in Unit 40756. Fragmentation was high (5 out of 5) and wear was moderate (3 of 5). Density ranged from 20 – 50 sherds / sq m. The dense scatter extended further to the South (40 m) and West (300 m). Among the finds the architectural ceramics, glazed wares and coarse wares dominated. One piece of slag was discovered. Visibility stayed high on the E side of the Buzludzha road exposing surface with >80 percent visibility; on the W side the visibility was somewhat hampered by seedlings 40 – 60 percent. Most ceramics on the W side of the road were found embedded in the piles of stones that had been cleared from the fields by farmers (probably during harrowing). The margin of this scatter was traced to extend up 200 m in radius around this core in southerly direction. Bones and skulls can be seen on the surface or in the stream bed in the margins of the scatter. On the E side of Buzludzha road they are close to the gully and pottery nucleus, on the west side of the road they seem associated with low mounds (<0.5 m) ca 250 m south of the hills and 300 m SW from the nucleus.

Chronology: Late Byzantine and Medieval according to surface materials and excavation accounts. Finds of coins from the 5th - 6th and the 11th - 14th century AD reported in the necropolis.

Function: Medieval village and a cemetery of Kran.

4116 Roman scatter south of Kran (Fig. C.1.36)

AKB No 5510252; Kran 022
RM(3), LA(1), BYZ(1); Set; 360 msl; 1.1 ha

(Tабакова-Цанова 1991)

Excavations in the last century have revealed remains of a Roman villa on the border of Kran and Enina municipalities. Survey succeeded in localizing the boundaries of this Roman site some 700 m south of the edge of Kran. Clusters of stones were spread over an area of 6 ha. The stones were of similar proportions (20 x 20 x 20 cm) and appeared to have been worked. It is likely that the stones are remains of the said Roman structure and their dispersal is due to agricultural activity. There was only a dusting of Roman pottery (<50 sherds / ha) lying on the surface. Most were highly worn and fragmented, mixed with a background scatter of late Byzantine and Medieval sherds.

Chronology: Roman period

Function: Villa - residential and productive base.

4117 Low density scatter around the reservoir NE of Kran (Fig. C.1.32)

AKB 5510253; KRAN023
EBA(13 or 31); ?; 437 msl; 0 / 1.08 ha

A low density scatter of pottery found on the banks of a small reservoir NE of the village of Kran. Density ranged from 1 - 2 sherds / 10 linear m along the dam. The high wear and fragmentation make it impossible to indicate the origin of this scatter. Its nucleus – if there was ever one – may have been destroyed or buried by the reservoir. The scatter could also result from soil accumulation at the banks of the reservoir. In the latter case the fragments could have been collected from different areas around the village, or from more distant location. The nature of this concentration remains uncertain.

Chronology: 13 fragments of EBA pottery were collected here.

Function: Unclear

4118 Tell of Kran (Fig. C.1.37)

AKB 5500091; “Ploskata Mogila”; KRAN015
EBA(50+); Set; 446 msl; 0.47 ha

An excavated settlement mound with the history of EBA settlement and ritual activity.

Chronology: EBA.

Function: Long term residential, possibly ritual.

Bibliography: Ангарева 2007

4119 “Basilica” – excavated in rescue during the planning of the Shipka road (Fig. C.1.38)

AKB ????
LA, EBYZ, Cul; 412 msl; 0.01/ 0 ha

South of the crossroads for Sheynovo and Kran, remains of a late Roman basilica were discovered during the construction of the road to Shipka. Excavated by Табакова-Цанова in 1975 it was defined as a three nave basilica from 4th - 6th century AD. Paved over afterwards its location is on the western rim of Kran, 200 m east of “Bostandzhiiskata kuria”. The survey team recovered only a few well preserved roof tiles next to the road. They have been dated to Late Antiquity and Early Middle Ages (pers.comm. J.Musil) respectively. Tile fragments were registered with GPS. Low visibility of below 20 percent and paved surface hindered further investigations.

Chronology: LA, BYZ

Function: Based on excavation diaries, possibly a cult structure.

Bibliography: Табакова-Цанова 1975.

4120 Low density scatter south of Chernov Dol reservoir west of Kran (Fig. C.1.37, Fig. C.1.38)
A low density scatter of handmade pottery and daub was located on the SE edge of a reservoir west of Kran, above the Sheynovo road. The visibility varied from 100 percent in harrowed field to less than 20 percent close to modern structures. The scatter was too sparse and non-diagnostic, hindering a more precise identification of chronology. On SW edge of the reservoir a grindstone was registered. It is assumed that the stone and scatter are associated remains of a prehistoric village, but this remains a conjecture. During the excavation of the reservoir, fragments of marble stelai and statuettes were reported, leading to the attribution of the area to a sanctuary of Thracian horseman.

Chronology: prehistoric, where is LIA, RM
Function: Domestic and residential, with food processing apparent (grindstone). Cultic activity attributed, but no evidence retrieved.

4121 Low density scatter of Roman pottery in Dolnata Koria (Fig. C.1.35, Fig. C.1.36)

AKB 5510041; KRAN016
RM(6), LA(1); Set; 384 msl; 0 / 0.42 ha
In a harrowed field with excellent visibility the survey team was reviewing the condition of a site registered by Domaradzki as KRAN016 in Dolnata Koria. On the field only half a dozen Roman and LA diagnostics were recovered in Unit 40861 despite excellent surface conditions.

Chronology: Roman, LA
Function: N/A

4122 Low density scatter (Fig. C.1.35)

AKB 5510042; KRAN017
LIA(1), OTT(0 or 5); Set; 383 msl, 0 / 0.09 ha
Review of KRAN017 registered by Domaradzki yielded very little pottery (5 - 6 fragments) scattered across ca 3 polygons west of Shipka road in a rose field. Low density concentration of highly worn handmade and wheel-made fragments seems to be all that has survived on the surface of a LIA site.

Chronology: (LIA) extremely little material.
Function: N/A

4123 “Sanctuary of Apollo” near Chernov Dol (Fig. C.1.37, Fig. C.1.38)

PH(1), LIA(1), Rom(1); Cul; ? msl; 0 / 0.07 ha
A sanctuary of Apollo was identified in 1950s on the basis of architectural remains and Thracian horseman reliefs/plaques/votives. It was located west of Kran and north of Sheynovo road, east of today’s Chernov Dol pond, near a well. TRAP survey in 2010 documented a concentration of stones at the location. Given the dearth of other material, their presence is the only indicator of the possible location of the sanctuary.

Chronology: Roman
Function: Cult

5006 Low density Scatter (Fig. C.1.7)

Function: N/A

Yambol Site Catalogue

6018 The Roman town at Stroino (Fig. C.2.1)

AKB 2790003
EIA(5), HEL(1), RM(27), LA(4), MA(2), OTT(2); Hab; 230 msl; 16.92 / 29.24 ha
A dense and spatially extensive scatter is associated with a previously known Roman town on the NE side of Stroino reservoir. This town constitutes one of the largest concentrations surveyed by this project, a site important enough to have been partly excavated by the Historical Museum. The debris surrounding the town covers almost 17 ha, and is comprised of several nuclei of brick and tile accompanied by large quantities of Red Slip and other fine ware, amphora, and coarse ware. Broken bits of worked stone (polished or cut) identified as tools and architectural remains lie on the surface. The northern part of the associated surface concentration lies in harrowed fields with good surface visibility. It is here where Grey Ware and EIA material was registered. The southern part is overgrown with vegetation and studded with robbers’ trenches to the point that it proved very difficult to walk. Assessment of the low visibility area is, however, possible thanks to the prominence of large quantities of pan and cover tiles, limestone blocks, and fragmentary architectural remains, while the ubiquitous robbers’ trenches offer a glimpse of subsurface material. In the West, the site borders on a small reservoir and a dirt road. Along this stretch LA and modern debris were plentiful.

Chronology: The main body of the scatter in the immediate vicinity of the town contains diagnostic artifacts (Red Slip, amphorae) dating to the Hellenistic-Roman transition and Roman period, with smaller quantities of LA and more recent pottery in the very West. Indications of earlier habitation were found in the
eastern and NE margin of the site; an EIA scatter was traced along an area of scrub, yielding a strainer and other prehistoric artifacts. This area, however, suffers from bad surface visibility, hindering a more intensive investigation of older components of the site.

Function: A Roman town, likely a veteran settlement, built on top of previous EIA farmstead or hamlet and LIA settlement.

Bibliography: Bakardzhiev 2007.

6021 Multi-component surface concentration near Slamino (Fig. C.2.2)

AKB 2790006

EIA?2, HEL?2, RM(20+), LA?2; Hbl; 197 msl; 0.72 and 1.24 / 15.8 ha

An extensive scatter with two concentrations is located on a hill slope 2.7 km SE of the village of Slamino, with a maximum area of 16 ha. The site is defined by two Roman concentrations plus one earlier concentration. One of the two Roman concentrations (south and upslope) is dense (with nucleus at about 10 shards / sq m), while the second (northern and downslope) is sparser (about 2 - 4 shards / sq m). Surface material is heavily worn and highly fragmented. The northern half of the site lies in meadows and overgrown fallow fields, which makes surface debris harder to discern. Moving uphill to the southern half of the site, the surface visibility improves and counts in places exceed 10 shards / sq m. Despite the low density in the northern part of the site, pottery is high quality Red Slip and slipped amphora. Debris from across the site is uniform in composition, containing consistent ratios of Hellenistic and Roman amphora fragments, Red Slip fine ware from the 2nd and the 3rd century AD, local coarse wares of the Roman period, as well as brick and tile. The densest southern part yields one groundstone and one millstone as well as a small metal blade.

At the NE edge of this concentration Hellenistic and Roman material gives way to earlier handmade coarse ware and finer incised material (area of 1.1 ha; 2 - 3 fragments / sq m). Pre-Roman Grey Ware and pithoi with plastic decoration were also discovered, as well as a chipped stone point. This earlier material is more fragmented and mixed with Roman brick and tile. It is nevertheless clearly visible in two eastern polygons in a harrowed field with good surface visibility. The overgrown surface to the West, which obscures even Roman ceramics, conceals highly fragmented handmade pottery than elsewhere on this site, making it difficult to trace the full extent of the prehistoric component of this site.

Total Pick-ups: Two 10 x 10 m Total Pick-up samples (604 and 605) in the southern area of the scatter showed a similar trend of fabric and functional distribution of artifacts. The greatest number of fragments came from the category of fine table ware including *terra sigillata* (by weight it was fourth, since the fragments were plentiful but small). The second most numerous category consisted of storage and large serving vessels (also second by weight). Architectural ceramics (brick and tile) were third by count and first by weight. Handmade ceramics were numerically the least common, but with medium fragmentation were third in weight. The number of unidentified shards varied greatly between the two samples; in 604 this group was by far the most numerous, but it weighted little as it consisted mainly of tiny, heavily worn fragments of brick or daub. In 605 the unidentified group of was only a fifth as large, perhaps due to better preservation of the material. Besides ceramics the samples recovered pieces of Roman glass, bits of metal sheet, and small fragments of lithics. The overall consistency of the two samples (aside from unidentifiable fragments) indicates a similarity of structures and functions, which included food preparation, storage and consumption. Chronologically, the samples display uniformity, consisting mostly of Hellenistic to Roman fine wares and amphorae. Handmade pottery represents local production of contemporary cook ware types.

Total Pick-ups in this concentration had two objectives: (1) determining the density and composition of the upper (southern) nucleus, and (2) verifying its status as the source of debris for this scatter. Total Pick-ups accomplished these goals (see above); overall, the southern nucleus represented a dense Roman scatter with diverse materials including table ware, amphorae, glass, metal, and architectural ceramics. This nucleus appears to be the source of the Roman materials, but not of earlier material. The Total Pick-ups yielded very little earlier material such as handmade pottery; as a result, further investigation will be needed to investigate the IA section of the scatter identified during survey. The best location for additional Total Pick-ups with that aim would be along a line between the northern Roman component and the prehistoric component. Unfortunately, this part of the concentration was overgrown at the time of fieldwork, preventing satisfactory survey and sampling results in this area.

Chronology: The most extensive component dates from Hellenistic to Roman times, approximately from the 3rd century BC to the 3rd century AD. The earlier (EIA) component at the NE margin is spatially more constrained (and difficult to define), due to the problems with surface visibility described above.

Function: This site was most likely a residential structure of the Hellenistic to Roman period. The quantity of Red Slip (and of the pottery more generally) as well as the presence of glass and metal fragments and a grindstone, indicate a rural residence of higher status.
A low density, dispersed scatter is located on the left bank of the Gerenska reka, 2.1 km SW of the village of Slamino. It is covered by a harvested sunflower field with limited visibility. The scatter extends over almost 1.9 ha with an average density of ca 1 fragment per sq meter. Most fragments are heavily worn, non-diagnostic, handmade with large inclusions and coarse paste. Their size is typically that of a large coin, with a worn surface devoid of (or having lost) any decoration. At the north edge of the scatter adjacent to the stream, a concentration of large pieces of daub and less-fragmented pottery was encountered and identified as the source of the entire scatter. Diagnostic pottery and pieces of daub with impressions of armature were collected for analysis. Even the diagnostic pieces are badly worn, however.

Chronology: A preliminary assessment indicates a single-phase prehistoric date, based on the fact that all the pottery is handmade, homogenous, coarse, poorly levigated, and badly worn. Further precision is difficult. The heavy wear, limited number of diagnostic shards, and particularly coarse paste might argue for an early date (pre-Iron Age), but a precise date remains elusive.

Function: This scatter appears to represent low-quality vessels made by a non-specialist for everyday use at an isolated rural structure.

A small dense scatter on the right bank of the Dereorman is located 1.2 km NW of Borisovo village. Modern construction debris masks the southern edge of this feature, but earlier material is also discernible. Ancient fine ware extends in a light scatter along the south margin, accompanied with chipped lichics of unknown date. On the northern margin, diagnostic fragments were recovered from prehistoric, handmade, knobbed jug (including some which joined, indicating relatively recent disruption by agricultural activity). The density in southern half of the scatter ranges from 3 - 5 shards / sq m. Walking to the North, the density abruptly drops to 1 shard / sq meter or less, clearly marking the boundary of the scatter. Across most of the site, modern debris masks the ancient material, and the latter stands out most clearly near the boundaries of the scatter where the modern noise dwindles. Due to this complication, determining the precise spatial extent and density of the prehistoric and ancient components of this scatter will require more detailed survey.

Chronology and Function: Modern material is by far the most common, complicating assessment of the scatter. The older components indicate sparse pre-modern activity from the prehistoric and ancient period. Several joining pieces of a prehistoric knobbed jug may indicate a BA discard event, but data for further analysis is lacking. Ancient fine ware has fabric similar to Roman period wares, but is worn to the point of making any assessments pure conjecture.

Site is located NW of the village Miladinovtsi on a terrace that is gently descending to a small stream of Mordere. The area belongs to a nearby cooperative farm and is covered with the stubble of sunflower stalks and seeds. Soil has rich dark brown color, humic and fertile. The visibility easily reaches 90 percent; the missing 10 percent is caused by masking by small weathered calcareous rocks where the bedrock protrudes and weathers on the edge of the terrace. The field was walked intensively (15 x 15 m). The entire concentration was characterized by a relative lack of architectural ceramics. The material that prevailed was pottery (fine and coarse ware, handmade), several lithic flakes and two fragments of polished stone, recorded and left in situ (6032, 6033). The fragmentation of pottery was medium to high (3 - 4) in the middle of the nuclei and high (5) at the margins. Background scatter covered the entire field – consisting of a continuous carpet of highly fragmented red thin walled fragments (possibly Medieval).

The scatter was multi-centric and contained three major nuclei. Southernmost part comprised Medieval fragments (coarse ware with large white inclusions and rough surface, glazed) as well as a toe of Greek Classical period amphora (61754.2). The concentrations were separated by ca 40 m gaps of low density scatter. The second nucleus was associated with a grey patch of soil, which was saturated with small weathered calcareous rock. The scatter was ca 60 m in diameter. The pottery was of good quality, low fragmentation (in the best cases fragmentation equaled 2 and 3 on a 1 - 5 scale), little ware and an overall high frequency of diagnostics. Most of the pottery was Black Slip imitation, black burnished or other typical IA material. Pieces of daub, lithics and other more modern materials peppered the field.

The last and northernmost nucleus stretched from the dirt road to the East for ca 50 m and was characterized by another concentration of highly diagnostic pottery of these types: PH, (probably BA), EIA, IA, and Medieval. Majority of the shards indicated elite table
6036 Prehistoric concentration near Miladinovitsi (Fig. C.2.5)
PH(4), NL (?) , LBA(?3), EIA(?3 or 9), RM(1); Hab; 158 msl; 3 / 11.64 ha

A concentration of predominantly prehistoric material was situated on NE from the scatter of ceramic marked as 6034. It was spread over a small ridge rising over a small river in the North – Malazmak stream. The characteristics of this scatter have been impacted by local topography; erosion and mechanical wear were noticeable on the top of the ridge while its east and west sides offered an abundance of well preserved material. The densest parts of scatter were on the slopes. The fragmentation of material was likewise higher on the top of the ridge, while hand-sized or larger fragments protruded from the sides of the terrain wave. This situation suggests that the concentration had been mostly ploughed away from the plateau, eliminated or dispersed while its destruction was proceeding slower on the slopes.

6038 Medieval concentration near Karavelovo (Fig. C.2.6)
AKB 2790043, KAR001
MA(10+), OTT(50+); Hab; 124 msl; 13.18 / 33.41 ha

A dense and extensive scatter on the river terrace south of the Gerenska reka 1.9 km SE of the modern village of Karavelovo marks the location of a medieval to early modern site. The field covering much of this scatter is harrowed with excellent surface visibility. The nucleus of highest density oscillates around 10 shards / sq m over an area of 13 ha. If densities between 300 and 500 shards per unit (ca 1 - 2 shards / sq m) are included in the core area of the concentration (within the area of intensive use, discard or dispersion), its size grows to 17 ha. All surface material is in relatively good
condition, with little ware and low fragmentation. Surface finds include discreet scatters of tile, brick, and stone outlining what are likely individual houses, with haloes of other ceramics surrounding them. Metal finds include candle stands, farming tools and wooden fasteners (ties), and others. Stone finds include a large grindstone (photographed and left in situ due to size). To the south (and uphill) of the largest concentration, separated from the core of the scatter by a line of scrub, is an additional harrowed field that contains handmade materials of earlier, probably Thracian, date – hinting at an ancient, if smaller scale, habitation. This older component is hard to outline due to the limited size of the area with good visibility (most is covered by scrub), heavy wear and high fragmentation of surface material, and masking by large quantities of Ottoman and recent material.

Chronology: Most of the datable pottery spans from the late medieval (14th century AD; sgrafitti wear and ash-glazed near-eastern imports or local copies) to Ottoman period (18th - 19th century AD; green and yellow glazed vessels). Dates for the earlier material have been provided by local specialists.

Function: The wide variety of ceramic and metal finds, combined with plentiful building materials (and even traces of house outlines) indicate the presence of a village, supporting local traditions that the village of Karavelovo was once located here but was moved in modern times.

7019 Multiple component concentration near Robovo reservoir (prehistoric through Roman) (Fig. C.2.8)

AKB 2790030

EIA?(4), LIA?(6), RM(20); 200 msl; 0.54 / 1.96 and 4.53 ha

Site is an extensive, low density scatter on two opposing slopes above a gully leading to the Robovo reservoir, 2.2 km away to the SE; maximum extent 6 ha. The low density results partially from poor surface visibility of 20 - 40 percent – the ground is covered by stubble and regrown vegetation. Despite that the surface material can be discerned, especially Roman Red Slip and dark fabric handmade fragments, especially on patches of bare ground and mole hills. The number of fresh breaks and joins among the recovered fragments indicates that the site has only recently been disturbed. Thracian Grey Ware is present, especially in the western component of site near the gully. Prehistoric handmade material (including incised ware) was also found, particularly along the northern margin of the scatter (downslope towards the reservoir), but its spatial distribution is more difficult to discern due to the low surface visibility and masking by more common and obtrusive later (Roman) material. The core of the scatter reaches maximum densities of 4 shards / sq m (in discontinuous patches), while the margins include densities of 1 shard / 5 sq m (not corrected for low visibility). A Roman conical grindstone, with lead-covered iron handle attachments still preserved, was also found (again indicating that the site has only recently begun to be ploughed to the surface). Brick and tile occur as well, albeit in low quantities than at other Roman sites. Fragmentation of the artifacts is moderate.

Total Pick-up: Only one sample (10 x 10 m) was collected. It yielded a relatively low number of artifacts (1 per sq m) which can be attributed to bad visibility and previous collection during two survey passes (first extensive and second intensive, the latter occurring once the scatter had been identified). Similarly to the Roman site of 6021, the ratio of counts follows the pattern (in descending order): architectural ceramics, fine ware, and storage ware, unidentified and handmade artifacts. The low count of fine ware is due to previous pick up, as noted above. The weight curve diverges only slightly from this sequence: the storage ware is seven times heavier than the fine ware despite there being more shards of fine ware. Amount of handmade pottery is negligible in the sample (weight
and count). Architectural ceramics comprise roughly half of all material collected, storage vessels one quarter, and fine ware, unidentified and handmade ceramics together represent the last quarter.

Chronology: The Roman period at the site is well attested by high-quality, diagnostic Roman Red Slip and amphora fragments (71264.4). Thracian Grey Ware also appears, but it remains to be determined whether this material is Hellenistic or Roman (form rather than fabric determines the specific date, but little diagnostic material was found). Prehistoric (LBA-EIA) handmade fragments recovered from the northern margin of the site firmly attest earlier habitation on the hillside. Indeed, a number of diagnostic fragments of this early material were found north of the scatter and east across the gully, probably transported further downslope through erosion or agricultural activity.

Function: Considering the presence of the grindstone and the quantity of fine ware and brick, the site appears to be a productive base, perhaps a farm, during the Roman era, similar in type to 6021 (density, but also surface visibility, is lower here than at 6021). Function of earlier components could not be determined.

Recommendation for further investigation: As discussed above, this site appears to have been disturbed only recently. It has multiple chronological components. It also lies in a moderately overgrown field (without bushes or scrub) that is not, at present, deeply ploughed. As a result, it is a good candidate for geophysical investigation.

7020 Roman site on a terrace near Karavelovo (Fig. C.2.9)
AKB 2790031
EIA(1), HEL(2), RM(11), LA(4); Habi?, Agr.; 140 msl; 0.37 / 3.52 ha

A small, dense scatter is situated on the top of a terrace 1.2 km SE of the village of Karavelovo. The elongate nucleus of the scatter is located along its NE edge, with material density reaching 15 shards / sq m. The scatter is characterized by low quality and very high fragmentation. It contains a high proportion of architectural material. The remaining pottery – mainly fine ware – occurs in tiny, heavily worn fragments suggestive of long exposure to the plough. A very few pieces of coarse cook ware and handmade pottery were found. The diversity and chronology of material appears uniform across the scatter hindering any attempt to recover horizontal stratigraphy.

Total Pick-ups: Two 5 x 5 m samples (609 and 610) were collected at the densest locations of this scatter. Each sample yielded ca 10 shards / sq m and 250 grams of material / sq m. The composition varied somewhat between the two samples. In 609 architectural ceramics were the most numerous artifacts, followed by unidentified material comprised of highly fragmented bits of what may be daub and brick or tile. The third most common type of ceramic was fine ware, followed by handmade. Storage vessels could not be detected. The relative weight of different artifact types follows the same sequence. In sample 610 the most numerous class is that of unidentified fragments (again mostly consisting of what looks like highly fragmented daub and brick or tile), followed by architectural ceramics, storage ware and, lastly, fine ware. Unlike 609, no handmade shards were recovered in this sample. Again, weights match counts for these categories. These samples yielded higher counts that at other scatters, but this fact is attributable to high fragmentation and wear rather than a denser concentration. The quality of material from this scatter was uniformly poor, with a narrow range of artifact types and little diagnostic material. The spatial extent of the densest area was rather small and well bounded.

Chronology: The majority of surface material (fine ware and tile) suggests Roman to LR habitation. A few isolated but highly diagnostic (stamped) shards indicate EIA activity. Poor preservation complicates dating.

Function: The relative lack of amphora and lower proportion of fine table wares compared to other scatters in the research area suggests that this site had a utilitarian, agricultural purpose, possibly seasonal. A late Roman agricultural installation would fit the material comfortably.

7023 Roman scatter in Robovo municipality (Fig. C.2.8)
HEL - RM (based on tile); Mor, Habi; 220 msl; 1.54 / 0 ha

A dense but spatially limited scatter predominantly consisting of badly worn and highly fragmented Roman brick and tile was discovered on top of a terrace 1.1 km SW of Robovo village. The area of the highest density covers 1.5 ha and reaches ca 20 fragments / sq m. Very little other material, including pottery, was seen or recovered.

Chronology: All material appears Roman in date.

Function: The predominance of brick and tile, combined with the lack of pottery, indicate either a small, isolated structure that had been thoroughly evacuated prior to abandonment or, perhaps, a flat necropolis of Roman tile-lined burials (disturbed by ploughing sometime in the past and now thoroughly destroyed, leaving only highly fragmented ceramics).

7024 Ottoman scatter west of Miladinovtsi (Fig. C.2.10)
MA(10+), OTT(5); Set; 181 msl; 0 / 6 ha

A low density highly dispersed scatter was encountered in units 71541 to 71549. The ploughed fields provided a good visibility. The artifacts observed were glazed ceramics and daub of recent origin. The area could have possibly been used on seasonal basis by shepherds or farmers.
Chronology: Medieval to Ottoman period.
Function: The scatter looks like the remainders of a mudbrick toolshed or seasonal hut/shack in the field.

7025 Spatially bounded Roman scatter (Fig. C.2.11)
EIA(1), RM(20+), LR(3); Set; 228 msl; 1.73 / 8.69 ha

A Roman scatter was discovered in a harrowed field SE from tumulus 200318, stretching between polygons 72168 – 72171. The surface material comprised Roman - Late Roman pottery, including fine and coarse wares. Architectural ceramics was concentrated on its northern margin and included bricks and daub. Fine and coarse ware was present, as well as Red Slip pottery and a mold made Roman lamp fragment (72178.1). Most of the Red Slip fragments feature the pale, thin slip of the post 3rd century AD. Samples were collected from several polygons in this field, but the nucleus spanned only two units, denoting a well bounded, highly contained concentration. Very little masking material of modern or multi-period sort was present.
Chronology and Function: The scatter seems like a small rural structure of Roman to Late Roman period, little before and little after.

7026 Mound & Scatter (Fig. C.2.11)
RM(4?); Rit/Mor; 225 msl; 0.1 / 2.7 ha

A sparse dusting of wheel made Roman looking pottery surrounded a mound no 9335, some 300m south of finspot 7024. Located in a field of seedlings, the visibility was over 80 percent. Red fine ware and some Grey Ware were spread all over the surface but in quite low concentration (1 / 10 sq m). Occasionally a larger fragment was present such as a pithos rim at the foot of the mound (known from legacy data, registered as 200318 by GC team, TRAP 9335). The feature qualifies for a low density scatter.
Chronology: (Late?)Roman period
Function: The presence of storage vessel and thin walled fine ware indicates consumption activities such as drinking and feasting at the site connected with cult of ancestors or funerary festivities. In any case this is more likely a remainder of one-time activity rather than residence or repeated events.

8011 The multiple component site between Stroino and Boyanovo (Fig. C.2.12)
AKB 2790040
PH(5), NL(3), LBA(?2), EIA(?8), LIA(?2), RM(6), LR(3), MA(5); Hab; 170 msl; 3.32 / 27.16 ha

A low density scatter spread over a large area on the northern bank of Dereorman stream some 1.65 km NE of Stroino village. Exposed on both sides of a dirt track, this scatter belongs among the largest and most diverse in the study area. The area of the densest concentration (2 shards / 1 sq m) covers 3.3 ha; the density decreases but continues at the rate of 1 shard / 5 sq m over 27 ha. Most likely the outer boundary is so large due to shift in ancient settlement as well as post-depositional processes. The debris is highly fragmented and dispersed thanks to agricultural activity (wear is substantial). This site appears to have been exposed and peaking at patches of debris reaching 5 - 7 shards / sq m. The margin of the scatter (0.5 - 1 shard / sq m) extends to 1.6 ha. The artifacts show moderate fragmentation and wear. The scatter is characterized by fine wares, amphorae, and a relative scarcity of building materials. A fragment resembling a pipe was collected. Greek amphora and Red Slip fine ware were recovered, but no coarse or handmade wares.
Chronology: Material from this scatter brackets the Hellenistic and Late Roman period on the basis of amphorae feet and fine wares discovered. Roman material dominates.
Function: The function of this scatter remains unclear. The Roman period is notorious for high production and discard rates (as encountered at other sites in the study area). The distribution of material at this site seems to indicate a single, original concentration subsequently dispersed by ploughing. In the debris, large fine ware and amphora prevail, while brick and tile are relatively scarce. Tile can be found on the southern margin of the scatter, possibly indicating the location of the original structure.
Considering these factors, the function of this site may have been: (1) a single residential structure/small farm for temporary or seasonal use with Red Slip fine wares and imported amphorae, built mostly of perishable material and plus some reused tile and brick. In this scenario, the low density of material speaks at the best for a short lived structure with lots of post depositional movement and destruction. The relative lack of building material points towards an odd combination of fine ware, transport amphorae, and perishable architecture. A more likely explanation might be, (2) a burial consisting of a tile or brick structure containing gifts of amphorae and fine ware. The density is low enough to warrant some small event rather than an agricultural or representative structure. The material is rather homogeneous as if in a single function burial.

8005 Roman site in Karavelovo municipality (Fig. C.2.9)
AKB 2790034
HEL(3), RM(20+), LR(3); Hab, Mor; 156 msl; 0.84 / 9.73 ha

A sparse scatter of Roman material was found on the ridge 1.3 km SSW from the village of Karavelovo. The nucleus of this scatter is relatively small (0.8 ha) with density of surface material averaging 1 shard / sq m and extending to 2.1 ha. The artifacts show moderate fragmentation and wear. The scatter is characterized by fine wares, amphorae, and a relative scarcity of building materials. A fragment resembling a pipe was collected. Greek amphora and Red Slip fine ware were recovered, but no coarse or handmade wares.
Chronology: Material from this scatter brackets the Hellenistic and Late Roman period on the basis of amphorae feet and fine wares discovered. Roman material dominates.
Function: The function of this scatter remains unclear. The Roman period is notorious for high production and discard rates (as encountered at other sites in the study area). The distribution of material at this site seems to indicate a single, original concentration subsequently dispersed by ploughing. In the debris, large fine ware and amphora prevail, while brick and tile are relatively scarce. Tile can be found on the southern margin of the scatter, possibly indicating the location of the original structure.
Considering these factors, the function of this site may have been: (1) a single residential structure/small farm for temporary or seasonal use with Red Slip fine wares and imported amphorae, built mostly of perishable material and plus some reused tile and brick. In this scenario, the low density of material speaks at the best for a short lived structure with lots of post depositional movement and destruction. The relative lack of building material points towards an odd combination of fine ware, transport amphorae, and perishable architecture. A more likely explanation might be, (2) a burial consisting of a tile or brick structure containing gifts of amphorae and fine ware. The density is low enough to warrant some small event rather than an agricultural or representative structure. The material is rather homogeneous as if in a single function burial.
indicate the existence of a prehistoric phase at the site. Ware, lug handles and burnished wall fragments indicate the existence of a prehistoric phase at the site. Further Neolithic fragments emerged during Total Pick-ups. (606)

Total pick-ups: Three Total Pick-ups sized 10 x 10 m were collected at different parts of the scatter. Within the sampled areas, artifact density varies, but is typically about 1 to 1.5 shard / sq m. Each of the samples offered a slightly different composition of materials, more likely a result of different plough zone effects than horizontal stratigraphy. Chronological indicators remained stable throughout the three samples.

The first sample (606) contains equal counts of ancient fine ware and prehistoric handmade artifacts and only about half as many storage and architectural ceramics. While lower in count, storage vessels and building materials consists of large and heavy fragments and outweigh the other, more fragmented ceramics. By weight, construction materials dominate comprising two-thirds of all material recovered.

The second sample (607) produced count and weight ratios that favored handmade pottery, closely followed by architectural ceramics. The proportion of storage and fine (table) wares remains low both in count and weight. This sample produced the most diagnostic prehistoric wares, suggesting proximity to the nucleus of the early component of the site. These were, however, accompanied by Roman amphorae and architectural ceramics, albeit with lower frequency than in sample 606. The architectural ceramics in 607 dropped to less than half of the amount recovered from 606.

In the third and final sample (608) Roman fine wares predominate, with handmade Roman and prehistoric material second, and storage vessels third. We recovered little architectural material. The first two samples both contained large fragments of pottery and architectural ceramics, indicating a location closer to the original features, while the last sample could have resulted from colluvial accumulation of material washed downhill from the original site. Also, material in the latter sample was more highly fragmented and consistently fine, as if pre-sorted by transportation. While the scatter stretches along the Dereorman stream for several hundred meters, the site where the materials originate is likely located higher up the hill.

Chronology: Hellenistic table wares dominate the site, seconded by Roman Red Slip fragments. Architectural fragments from Hellenistic and/or Roman times are plentiful including large pieces of plumbing tubes. IA lug handles and burnished fragments of daub indicate a prehistoric component. Further evidence of an early phase came to light during total samples, which yielded incised and burnished EIA and possibly even Neolithic pottery. The stone axe and adze may represent important, if isolated, Neolithic finds.

Function: The combination of fine ware, cook and storage ware accompanied by architectural remains, bits of slag and grindstones indicate a permanent settlement and productive area, at least during the Hellenistic to Roman phase. Earlier material is also diverse and relatively plentiful, indicating continuity.

8012 Multiple component site of Robovo (Fig. C.2.3)

AKB 2790047
EIA(9), HEL?2(2), RM?4(4), MA(15+); Hab; 170 ms, 0.49 / 8.5 ha

A concentration of varying density and multiple chronological components is found on a ploughed field with 100 percent visibility 800 m S-SW from Robovo square. The prehistoric nucleus (1 - 1.5 shard / sq m) of this multi-centric site covers 0.5 ha, while its greatest extent (1 shard / 10 sq m) reaches 8.5 ha, extending onto an overgrown meadow with visibility of ca 20 - 40 percent. The later dated nucleus reaches 1 shard / 3 sq m. Thin-walled, prehistoric handmade wares prevailed on the eastern margin, while Hellenistic and Roman amphorae body and handle fragments dominated the western half of the scatter. The materials encountered vary between highly fragmented and severely worn prehistoric material to Roman and Medieval fragments of lesser wear and lower fragmentation. Tile and brick likewise occurred more frequently in the western half of the concentration. Two pieces of lithics were found, one polished (possibly an ecofact) and one sharpening tool. Assessment of the western component of the scatter was complicated by the presence of modern debris and the low surface visibility of the fallow field.

Total Pick-up: One sample (601), sized 10 x 10 m was collected in the middle of the scatter, mainly to ascertain its chronology, which had been described as Roman during the initial survey of the area. The most common type of artifact in this sample, however, was prehistoric handmade vessel (fine and coarse) with a variety of functions from storage to table ware. Very few architectural ceramics were retrieved, comprised of highly fragmented daub. Very few wheel made wares.
of later periods were recovered from the Total Pick-up, although their presence was recorded in other areas of the scatter during survey. Thus, the Total Pick-up extended the date range of this scatter from Roman-MA (assigned during survey) to EIA. **Chronology:** The debris contained a large amount of incised ware identified as EIA (with, possibly, an admixture of LBA). Shapes included kantharoi, serving, and storage vessels. (e.g. 8012.3, see Appendix G, Fig G.1 5) Numerous handles of amphorae and incised fine ware in the western margin have shapes common in the Roman through Medieval periods (80921.7). **Function:** Defining the function of the EIA component requires further investigation. Tentatively, it may represent a small settlement (farmstead or a hamlet) that included a few prehistoric dwellings, indicated by the variety of serving and storage vessels and daub recovered. Later habitation remains ambiguous due to lack of a representative sample from the SW sectors of the scatter where Hellenistic/Roman and Medieval wares had been identified during survey. The quantity of wheel made storage vessels, spindle whorl and grindstone fragments registered in the W-SW sector during survey suggests the presence of domestic activity. The scarcity of architectural ceramics reported suggests that either the occupation here was not permanent or that local dwellings followed the EIA tradition of mud-hut and wattle and daub structures. Given the lack of excavation this interpretation remains unconfirmed.

8019 Tell Konevetz known from legacy data
NL(10+), CH(5), EBA(?); 100 msl, 0.38 / 0 ha
Settlement mound east of the village of Konevetz, on the opposite bank of the Tundzha River. The site was overgrown with a young deciduous forest. Incised pottery was recorded in several robber’s trenches in considerable quantities, but surrounding terrain hindered detailed investigation of the flat scatter due to low visibility
Chronology: Late Neolithic to EBA.
Function: Settlement.

8020 Pre-Roman scatter at Borisovo (Fig. C.2.4, Fig. C.2.13)
AKB 2790052
EIA (1 to 3), RM(3); ?; 150 msl; 0.28 / 1.2 ha

A spatially constrained pre-Roman scatter lies on a terrace above the Dereorman ca 1.3 km north of Borisovo village. Area of highest concentration (1 shard / sq m) covers 0.28 ha while the whole scatter spreads across some 1.2 ha. The western edge of this concentration yielded a small, dense scatter (up to 10 shards / sq m) of prehistoric material (pottery and daub), a small amount of Thracian Grey Ware, and a larger amount of locally made Roman-era pottery. Daub pieces with armature were recovered. The nucleus of the scatter is small, while sparser surface material spreads evenly across the surrounding pasture. The pottery is highly fragmented and few diagnostics were found, but otherwise the pottery shows low wear suggestive of recent exposure. **Chronology:** This scatter appears to represent a small multi-period site, one which includes EIA Thracian and Roman material.
Function: The relatively low average density of the scatter and small size of the dense nucleus seems to indicate low-intensity use or origin in pits or burials. The highly fragmented nature of the ceramics recovered; combined with a lack of diagnostic shards, complicate chronological and functional description of the scatter.
Bibliography

Archibald, Zofia Halina. 2007. Introductory Address. In *Thrace in the Graeco-Roman world: proceedings of the 10th International Congress of Thracology, Komotini -

Büchsenschütz, Olivier. 1995. The Significance of Major Settlements in European Iron Age Society. In Celtic Chiefdom, Celtic State. The Evolution of Complex Social Systems in

Hodgkiss, R. F. 1981. The Thracians, Ancient peoples and places v.98. [London]: Thames and Hudson.

Арге, Д. 2005b. Семейни гробни съоръжения от територията на Централна Странджа (I хил. пр. Хр.—IV в. сл. Хр.). In Земите на България – люлка на тракийската култура. София.

Андреева, Д. . 2007. Проучване на пласта от ранната бронзова епоха в тел Крън, Казанлъшко (предварително съобщение). Проблеми и изследвания на тракийската култура 2:3-16.

Кацаров, Гаврил. 1933. Произход и пръв разцвет на Одриското царство в древна Тракия. Училищен преглед 32:737-54.

Китов, Г., и Елена Божинова. 2005. Манчова могила от Ранножелязната епоха в Долината на тракийските владетели. In Земите на България люлка на тракийската култура, II. София: Университетско издателство „Св. Kl. Охридски”.

Китов, Георги. 1994а. Долината на царете в Казанлъшкия котловина. Анали 1 (2-3):46-76.

Табакова-Цанова, Г., и Т. Овчаров. 1976. Villa rustica край Казанлък. ИМЮИБ I.

Фол, Александър. 1975. Тракия и Балканите през ранноелинистическата епоха. София.

Фол, Александър. 2006. Свещеното пространство. In Проблеми и изследвания на тракийската култура София.

Чичикова, М. 1957. Поява и употреба на тухлата като строителен материал у траките в края на IV и началото на III в. пр. н. е. Известия на Археологически институт 21:129-52.