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ABSTRACT 

The hierarchical structure and organization of filaments within natural materials 

determine their collective chemical and physical functionalities.  Synthetic nanoscale 

filaments such as carbon nanotubes (CNTs) are known for their outstanding properties 

including high stiffness and strength at low density, and high electrical conductivity and 

current carrying capacity.  Ordered assemblies of densely packed CNTs are therefore 

expected to enable the synthesis of new materials having outstanding multifunctional 

performance.  However, current methods of CNT synthesis have inadequate control of 

quality, density and order.  

In pursuit of these needs, a new technique called capillary forming is used to 

manipulate vertically aligned (VA-) CNTs, and to enable their integration in applications 

ranging from microsystems to macroscale functional films.  Capillary forming relies on 

shape-directed capillary rise during solvent condensation; followed by evaporation-

induced shrinkage.   Three-dimensional geometric transformations result from the 

heterogeneous strain distribution within the microstructures during the vapor-liquid-solid 

interface shrinkage.  A portfolio of microscale CNT assemblies with highly ordered 

internal structure and freeform geometries including straight, bent, folded and helical 

profiles, are fabricated using this technique.  The mechanical stiffness and electrical 

conductivity of capillary formed CNT micropillars are 5 GPa and 104 S/m respectively.  

These values are at least hundred-fold higher than as-grown CNT properties, and exceed 

the properties of typical microfabrication polymers.  Responsive CNT-hydrogel 

composites are prototyped by combining isotropic moisture-induced swelling of the 

hydrogel with the anisotropic stiffness of CNTs to induce reversible self-directed shape 

changes of up to 30% stroke.  

Centimeter scale sheets are fabricated by mechanical rolling and capillary assisted 

joining of CNTs. The mechanical stiffness, strength and electrical conductivity of CNT 



xiii 
 

sheets are comparable to those of continuous CNT microstructures; and can be tuned by 

engineering the morphology of the CNT joints.  Finally, the applicability of 

mechanocapillary forming to other nanoscale filaments is demonstrated using silicon 

nanowires synthesized by metal assisted chemical etching.   Further work using the 

methods developed in this dissertation could enable applications such as directional 

liquid transport, adhesives, and biosensors; toward an end goal of creating 

multifunctional surfaces having arbitrary structural, interfacial, and optical 

responsiveness. 
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Chapter 1 

Introduction and thesis scope 

1. 1 Motivation 

Filamentary materials constitute an essential building block used by nature not only 

to construct different organisms but also to assign to materials their chemical and 

physical functionality, and in some cases, responsiveness. Natural filaments exist on their 

own, or in filament-matrix composites, spanning a wide range of length scales, orders and 

complexities. For instance, in animals, tendons have hierarchical fibrillar vertebrate 

tissues with fibrous structures at the molecular, nanometer, and micrometer level1, hence 

allowing storage and release of mechanical energy and passive enhancement of 

locomotion stability2. In plants, the cellulose fibrils in the cell wall tissue dictate the 

plant’s stiffness and toughness3, and the gradual change in their orientation from the inner 

to the outer walls is responsible for the movements associated with plant tropism3, 4. 

Accordingly, various technologies have been developed to manipulate the synthesis and 

assembly of fibers, in industrial processes spanning from textile combing/weaving, to 

aerospace composite fabrication (pultrusion, preforming).  

While natural filamentary materials comprise hierarchically organized structures, 

current methods of synthetic filament processing suffer from trade-offs between the 

filaments size and the level of organization in the final material assembly.  Nonetheless, 

the integration of nanoscale filaments with novel interfacial properties and interactions 

could enable the synthesis of new materials having outstanding performance and 

responsiveness.  Therefore, the goal of this thesis is to create new techniques for 

manipulating and forming nanoscale filamentary materials, using synthetic filaments, 

namely carbon nanotubes (CNTs).  These nanoscale filament building blocks have
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diameters ranging from approximately 1-100 nanometers and can have lengths up to 

thousands of microns. While many efforts have been invested in controlling the synthesis 

conditions to tailor their structure and properties, the main challenge towards the 

integration of nanoscale filaments in functional materials remains the ability to arbitrary 

control their location, organization and spacing. 

Manipulation of synthetic nanoscale filaments is of interest because of their strong 

and unique functional properties.  For example, synthetic nanoscale filaments such as 

CNTs5 and silicon nanowires (SiNW)6 are under evaluation as potential replacements for 

conductors and semiconductors in microelectronic and optical devices.  Already, the 

integration of CNTs and SiNWs in transistors,7, 8 flexible transistors,9 lasers,10 solar 

cells,11 supercapacitors,12 batteries,13 resonators,14 and interconnect via15 has 

demonstrated outstanding performance due to many specific properties and/or 

combinations of these properties.  Additionally, the exceptional high stiffness and 

strength at low mass density promotes the potential application of CNTs as structural 

fibers for making Micro- Electro-Mechanical Systems (MEMS),16, 17 composites,18 

functional coatings, 19 fibers and yarns.20 

1. 2 Thesis scope 

The goal of this dissertation is to develop methods for the fabrication of new 

materials and surfaces using highly organized assemblies of nanoscale filaments.  To 

this end, new methods and tools have been developed to form Vertically Aligned (VA-) 

CNT and SiNW forests, and to enable their scalable integration in applications ranging 

from microelectronics and MEMS to macroscale functional films and yarns.   

The outcome of this thesis is a portfolio of fabrication techniques that combine 

methods of controlling the material composition, structural characteristics and 

architecture of nanoscale filament assemblies (Figure 1.1).  The mechanisms responsible 

for changing the material properties according to variations in the aforementioned 

parameters are investigated.  
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The material composition axis corresponds to the constituent materials in the filament 

assembly, which in this thesis are CNTs or SiNWs.  The filaments can be coated with 

polymers or ceramics after growth thus forming core-shell filaments.  Finally, the 

assembly can be filled with polymers to form filament-matrix composites.  

The structural characteristics axis manipulates the filament (e.g., CNT) diameter, length, 

alignment, and density.  The structural characteristics of the assembly are also affected by 

the interactions among the CNTs (e.g. van der Waals attraction) or in CNT-CNT joints. 

The architecture axis describes the geometry of the microstructures. This includes their 

orientation (horizontal, inclined, and vertical) and their 3-D profiles (bent and helical). 

Efforts throughout this 3-axis space have been combined to create an understanding of 

the mechanics of organization and interactions in the fabricated thin-films and complex 

structures, and to characterize their electrical and mechanical properties.   

 

Figure  1.1  Axes of material composition; structural characteristics; and architecture. 
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1. 3 Thesis outline 

The thesis is organized into the chapters as follows: 

Chapter 2 reviews the state-of-the art in fabrication of 3-D nano and micro-scale surface 

topographies in functional materials such as metals and polymers.  It highlights the 

outstanding properties of CNTs and the challenges and potential for their integration in 

microfabricated surfaces and devices. 

Chapter 3 describes the methods and tools developed to fabricate VA-CNT 

microstructures by chemical vapor deposition from lithographically patterned catalyst, 

and to coat the microstructures after synthesis with polymers and ceramics.   

Chapter 4 presents the fabrication of microscale horizontally aligned (HA-) CNT 

interconnects by mechanical rolling and dry transfer printing.  This process changes the 

orientation of the VA-CNTs, increases their packing density, and thus enhances their 

properties.  The same technique is also used to make large scale yarns and sheets by 

overlapping and joining CNTs. 

Chapter 5 presents a new process for 3-D microfabrication of filamentary materials, 

which we call capillary forming.  Robust 3-D CNTs with dense ordered internal structure 

and freeform geometries were fabricated from VA-CNTs using controlled elastocapillary 

aggregation.  Solvent condensation and evaporation creates geometric transformations in 

CNT microstructures by changing the CNT organization on multiple length scales.  It 

establishes the design rules for making a portfolio of 3-D CNT architectures including 

straight, bent, folded and helical CNT microstructures.  

Chapter 6 explains the mechanism of capillary forming.  It shows how the equilibrium 

between capillary forces and CNT elastic restoring forces enables the spatial 

programming of the 3-D forms.  The dynamics of the solvent in manipulating the CNTs 

are discussed; and the stresses and material properties affecting the organization of the 

CNTs are elucidated. 
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Chapter 7 characterizes the electrical and mechanical properties of HA- and 3-D CNTs.  

It demonstrates the various microfabrication methods to pattern electrodes for electrical 

addressability to CNTs. Active CNT-hydrogel composite structures are prototyped and 

tested by combining isotropic moisture-induced swelling of the hydrogel with the 

anisotropic stiffness of CNTs to induce directed shape changes which can be electrically 

transduced. 

Chapter 8 presents the fabrication of cm-scale CNT films and yarns by mechanocapillary 

joining of CNT microstructures.  The mechanical and electrical properties were measured 

and validated by comparison to analytical models to enable the prediction of joint 

properties as a function of their morphologies..  

Chapter 9 presents an initial exploration of the synthesis of densely packed SiNW using 

Metal Assisted Chemical Etching followed by capillary densification.  Methods of 

controlling of the nanowire diameter, density, and aggregated bundle morphologies are 

presented. 

Chapter 10 summarizes the findings and contributions of the thesis, and reflects on future 

challenges in harnessing the properties of nanoscale filaments in micro- and macroscale 

assemblies.  Fundamental and practical questions for future work are presented, hoping to 

foster greater understanding of mechanocapillary forming as well as technology transition 

to important applications in Microsystems and engineered surfaces.  
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Chapter 2 

3-D surfaces and CNTs in microfabrication 

 

This chapter reviews the state-of-the art in fabrication of 3-D micro- and nanoscale 

surface topographies in functional materials such as metals and polymers.  In the past 

years, several methods of top-down and bottom-up fabrication techniques enabled the 

engineering of bulk and interfacial properties for microsystems and devices used in 

energy, electronics, photonics, composite materials, and medical devices.  In particular, 

the fabrication of complex 3-D structures such as inclined and helical pillars is desirable 

for applications such as directional adhesives and circular polarizers.  Recent advances in 

nanotechnology stimulated the development of various bottom-up techniques to form 3-D 

surface patterns such as glancing angle deposition and top-down techniques such as self-

directed mechanical deformation of microstructures made by traditional lithography, 

growth or etching methods.   

After reviewing these methods, the chapter focuses on the potential use of CNTs as a 

material for microfabrication.  The scaling of the collective properties of aligned CNT 

assembles from the individual CNT properties according to their packing density is 

demonstrated by comparing the electrical conductivity of various CNT assemblies from 

the recent literature with the predicted assemblies properties based on individual CNT 

properties and their packing density. Important considerations for the integration of CNT 

synthesis and processing with standard microfabrication are discussed.  Finally, examples 

of the recent advances in the fabrication, integration and application of vertically- and 

horizontally-aligned CNT configurations in MEMS and 3-D interfaces are presented.   
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2. 1 Classification and fabrication of 3-D surfaces 

3-D microstructures are defined as micropatterns having high aspect ratio (AR >1) 

and variable geometry along the vertical direction.1  High AR structures perpendicular to 

the substrate are considered 2.5-D structures.  Exemplary 3-D features include bent, 

inclined, zigzag, and helical pillars.  Fabrication methods enabling the creation of 3-D 

microstructures are summarized in Table 2.1.   

 

Figure  2.1 Classification of anisotropic surfaces with 3-D features. (a) Legend. (b-g) SEM 
showing examples of different shapes, placement and order: (b) Uni-directional bent silicon 

nanowires made by oblique direction deposition of metal films.1 (c) Multi-directional bent CNT 
beams made by capillary forming. 2 (d) Uni-directional inclined silicon nanowires made by metal 
assisted chemical etching. 3 (e) Zigzag MgF2 nanowires made by glancing angle deposition. 3 (f) 

Gold helices made by multi-photon lithography.4  (g) Helical epoxy nanowires made by local 
capillary self-assembly.5 

                                                 
1 This section is submitted for publication as a Review Article in the journal Advanced Materials. 
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In order to rigorously compare fabrication methods and feature geometries, it is 

important to establish a consistent nomenclature.  Notably, in current literature, the 

adjectives tilt, bent, slanted and inclined are loosely used to describe any non-vertical 

micro- or nanopillar.  In this chapter, the term inclined is used to denote a straight but 

non-vertical feature; and bent features are described as having a measurable radius of 

curvature, which typically results from a stress gradient.  Further, the 3-D geometry of 

helical structures made by different methods is difficult to discriminate.  Thus the term 

helical is used to describe any structure (solid or hollow) that makes a generally spiral 

trajectory about a vertical axis. 

Several methods enable fabrication of 3-D structures over relatively large areas, albeit 

with different levels of control in the placement and order of the constituent features, as 

well as varying dimensional limits and material capabilities.  As a result, 3-D processes 

are classified according to their ability to control relative position and organization of the 

features on the surface.  Examples are shown in SEM images in Figure 2.1, and a related 

symbology is presented which in turn corresponds to the classification tables.  For 

instance, “top-down” (subtractive) patterns made by photolithography are prescribed, 

because the position and orientation of each feature follows the design of the lithography 

mask.  Imprinting, replica molding, and etching techniques also result in prescribed 

patterns because the master template is typically made by lithography.  As a result, the 

size, absolute and relative positions of the structures (and hence their density and order) 

can be arbitrarily controlled.  We note that these methods are prescribed within the 

allowed resolution (or feature size).  For example, photolithography is limited by optical 

diffraction which make the process non-deterministic beyond this scale; however, the 

dimensions and location of each feature can be accurately prescribed within this limit. 

On the other hand, “bottom-up” (additive) methods typically result in patterns that 

satisfy energy minimization under certain conditions.  As a result, the order of the 

patterns is most likely local but not global, unless a pre-patterned template is used.  Also, 

the type of ordering (packing) may be determined by the interactions among the features 

and/or their components.  For example, self-assembly of spherical molecules of diblock 

block copolymer can result in a hexagonally-packed arrangement of cylindrical domains. 
6, 7  It cannot result in the square or rectangular arrangement without templates.  
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Moreover, the size of the building blocks and the spacing between them are coupled; thus 

the density of the structures can only be indirectly and partially controlled based on the 

lengths of the polymer.  Self-directed mechanical stresses can also lead to self-ordered 

surface features, 8  such as when micron-sized surface wrinkles are formed due to stress 

gradients caused by the deposition of thin metal films on polydimethylsiloxane PDMS 

substrates.  In both cases, the resulting surface structures have order in small domains, 

typically called grains or crystals.  The relative orientation of different domains is 

uncontrolled and cannot be deterministically defined.   

Table  2.1 Comparison of process capabilities for fabrication of anisotropic surfaces with 3-D 
features. 

 

2.1.1. Inclined lithography 

Typically, polymer features made by photolithography have straight sidewalls, and 

conventional lithography methods do not enable variation of the lateral feature 

dimensions (i.e., slope, undercut) in the vertical direction.  Certain photoresists (PR) such 

as SU-8 enable the fabrication of high aspect ratio micropillars; however, these remain 

straight unless special exposure techniques are used.9  To overcome the limitation of 

straight features, inclined lithography (IncL) was developed.10, 11  IncL enables the 

formation of 3-D geometries such as inclined micropillars and truncated cones, by tilting 

the wafer with respect to the light source and optionally rotating the wafer and/or the 
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mask during the exposure.  For example, as shown in Figure 2.2 and 2.3, Beuret et al. 

fabricated multidirectional inclined structures in a commercially available thick PR by 

using an inclined and rotating assembly of two masks and the wafer.10 

 

Figure  2.2  Inclined lithography.  (a) Fabrication of tilted microstructures by inclined lithography 
where α is the incidence angle of UV light and β is the microstructure tilt; α ≠ β because of light 
refraction.  (b) Fabrication of V-shaped inclined structures by increasing the light dosage such 

that the PR is also exposed in the reflected path.  (c) Rotation and/or inclination of the wafer lead 
to the fabrication of hollow or conical structures.  (d) Masks stacks with offset features along with 
substrate rotation are used to fabricate microstructures with different tilt angles or central holes. 

3-D structures made by inclined lithography have lateral dimensions and height 

(defined by the PR thickness and exposure depth) both in the range of 1-100 microns.   

For instance, inclined SU-8 pillars with an aspect ratio (height/width) exceeding 4 have 

been realized in 100 µm thick SU-8.  The angle of inclination is limited by the refraction 

of light entering the mask as shown in Figure 2.2 and has a theoretical limit in air of 

~39°, measured from the normal to the substrate).  Immersion lithography can thus 

achieve larger inclination angles, such as 56.2° in water 12 and 71° in glycerol.13  The 

spacing between individual structures can be as small as the feature size, and is also 

limited by the wavelength of the exposure light.  However, to our knowledge, submicron 

3-D features made by inclined photolithography have not been demonstrated.   

Combinations of standard vertical and inclined lithography allow the fabrication of 

asymmetric pillars with both straight and inclined sidewalls as shown in Figure 2.2.14   

For example, two masks can be stacked (or a double-side mask may be used) such that 

the two patterns have a desired offset.  This configuration enables simultaneous exposure 

of the PR at different angles by allowing the transmission of UV at the angle defined by 



 
 

13 
 

the offset double mask.  This technique can also be used to make hollow conical 

microwells.  Additionally, Tabata et al. fabricated solid conical structures in PR using a 

rotating mask along with a LIGA process.11  The mask has a clear circle with radius R 

offset from the center of rotation as shown Figure 2.2.  The difference in exposure dose 

from the center to edge leads to the formation of the cone.   Moreover, when a reflective 

substrate (e.g. Si wafer) is used, the reflection of the exposure light can result in parasitic 

patterning of material near the base of the structures.  This limitation can also be an 

opportunity; for example, crosslinking of the SU-8 along the reflected path can give V-

shaped geometries (Figure 2.3).15 

 

Figure  2.3  SU-8 microstructure arrays fabricated by inclined lithography.  Tilted 
microstructures made by (a) inclined beams made by inclined lithography in air. (b) V-
shaped microstructures made by inclinded lithography on a reflective substrate.  (c) 
Microtruss structures made by three discrete inclined exposures with 120° wafer rotation 
following each exposure.15 (d) Conical microwells made by inclined exposure and 
continuous wafer rotation.16 

Arrays of structures made by inclined lithography have been exploited to create 

anisotropic wetting or adhesive surfaces.  These surfaces have found several applications 

in microfluidics where they are used as filters, droplet fragmentation devices, truncated 

microchannels, and 3-D mixing channels.12, 17-19  The main limitation of anisotropic 

structures fabricated by inclined lithography remains the performance of the PR as a 

functional material (and not as a sacrificial material).  For example, the mechanical, 

electrical and thermal properties of most PR are inferior to the properties of metals, 

silicon or other inorganic materials (Table 2.2).  Nonetheless, this limitation can be 
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addressed by coating or infiltration of polymer structures with inorganic films or 

nanoparticles specially to enhance their surface properties.   

2.1.2. Metal assisted chemical etching 

Metal assisted chemical etching (MACE) of silicon was first demonstrated in 2003 by 

Peng et al. for the top-down fabrication of silicon nanowires (SiNWs) form single 

crystalline silicon wafers as shown in Figure 2.4.20  In contrast to bottom-up growth of 

SiNWs by chemical vapor deposition (CVD), MACE relies on catalytic etching of silicon 

wafers in a solution of hydrofluoric acid (HF) in the presence of a metal catalyst and an 

oxidant.  MACE can result in the formation of vertically-aligned or inclined SiNW that 

follow a specific crystal orientation.21  Because MACE is a top-down technique, it results 

in the fabrication of single crystalline SiNW of controlled diameter and orientation when 

combined with catalyst patterning.  SiNWs made by MACE have enabled solar cells with 

up to 11.4% conversion efficiencies.2 

Formation of SiNWs by MACE occurs due to the simultaneous oxidation of the 

silicon surface into SiO2 at the catalyst-silicon interface, and the anisotropic etching of 

the formed SiO2 by the HF solution.   Therefore, the projection of the etched area is 

determined by the arrangement of catalyst on the top surface.    The metallic catalyst, 

which is usually a noble metal such as Ag, Au, or Pt, can be deposited by physical vapor 

deposition (PVD) on template of self-assembled polystyrene nanospheres, block-co-

polymers, or anodic aluminum oxide membranes.  When the catalyst metal is deposited 

on the surface prior to MACE, an etching solution of HF and H2O2 (oxidant) is typically 

used (Figure 2.5).  Alternatively, a random etching pattern can be established using a 

solution of HF with a dissolved metal salt such AgNO3.  This causes etching by 

simultaneous precipitation of Ag+ ions and formation of an interconnected 2-D network 

of metal nanoparticles that catalyze anisotropic etching of silicon.   

In both cases, the area of the silicon surface that is not covered by the metal catalyst is 

not etched, thus a forest of vertically aligned or tilted SiNW is formed.  MACE using a 

metal salt solution typically gives SiNWs with 50-200 nm diameter.  MACE using an 

ordered metal mesh as a template gives SiNWs with narrow diameter distributions.  For 

example, masking using nanosphere lithography gave SiNWs with average diameter of 
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200 nm,22 a BCP-templated mesh gave 22 nm diameter SiNWs,23 and using anodic 

aluminium oxide (AAO) template SiNWs as small as 8 nm diameter24 were made.  In 

general, the etching rate is ~ 1µm/min and depends on the [HF]/[oxidant] concentration 

ratio and the etching solution temperature with an optimum temperature ≈55°C.21   

 

Figure  2.4  Metal assisted chemical etching (MACE) of silicon nanowires (SiNW).  (a) Schematic 
showing the mechanism of MACE using Ag catalyst in HF-H2O2 solution.  25 (b) Straight SiNWs 
fabricated by MACE.  Inset shows Au/Ag bilayered catalyst mesh with hexagonally ordered 50 
nm holes replicated from an Anodic Aluminum Oxide (AAO) membrane.2 (c) Slanted silicon 
nanowires fabricated by MACE of (111) wafer with Ag catalyst mesh and etching solution of 

4.6M HF and 0.44M H2O2 etching solution.26 
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Figure  2.5  Nanosphere lithography (NSL) template for the fabrication of hierarchically ordered 
SiNWs by MACE.  (a) Self-assembly of a monolayer of 500 nm silica spheres on a (100) silicon 

wafer. (b) Sintering and etching of the nanospheres to reduce their diameter and increase the 
spacing.  (c) E-beam evaporation of Ag film.  (d) Lift-off of the silica nanoparticles and the 

formation of a Ag mesh with 200 nm hexagonally ordered pores.  (e) The Ag mesh catalyzes the 
etching in HF-H2O2 solution as it moves down the wafer, and a forest of ordered vertical silicon 

posts is formed.22 

Most studies of MACE have produced vertical SiNWs; however, it was recently 

shown that tilted SiNWs can be formed when the etch chemistry is adjusted to manage 

the oxidation versus the etching rates of the single crystal wafer substrate.27  For example, 

when there is preferential etching in the <100> direction,  SiNWs were tilted by β=54.7° 

and 45° from (111) and (110) wafers, respectively.  This preferential etching of the tilted 

crystal planes occurs only at slow etching rates when using a low concentration of H2O2 

oxidant relative to the HF concentration.  Anisotropic etching perpendicular to the wafer 

surface occurs at high H2O2 concentration.  Thus, the etching direction depends on a 

competition between the total strength of the back bonds of silicon atoms in a particular 

crystal direction and the relative rates of oxidation and etching at the catalyst-silicon 

interface.  In silicon, the atoms on the {100} plane have two back bonds, while the atoms 
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on the {111} plane have three back bonds to the atoms underneath them.27  As a result, it 

is generally more favorable to dissolve atoms along the <100> direction (┴ to 28) for 

wafers of non-(100) orientation.  When the rate of etching of SiO2 is higher than the rate 

of oxidation of Si (high [HF]/[H2O2] ratio),  the etching proceeds in the inclined direction 

following the <100> direction.  Conversely, the Si at the catalyst-Si interface is 

adequately oxidized at sufficiently low [HF]/[H2O2] ratio, insuring anisotropic vertical 

etching.  It is also shown that all the Si back bonds (on the different planes) are generally 

weakened due the formation Si-OH terminated atoms at high oxidant concentration 

which effectively suppresses the effect of the back bond anisotropy and leads to vertical 

etching regardless of the crystal plane orientation.  On the other hand, when the solid area 

of the metal mask is sufficiently greater than the open area, etching according to the 

crystallographic directions is suppressed and SiNWs are formed perpendicular to the 

wafer surface due to the limited mobility of the metal catalyst.    

In addition to vertical and tilted etching, in- and out-of-plane rotation and folding of 

catalyst meral patterns have been demonstrated using MACE to fabricate 3-D Si 

geometries as shown in Figure 2.6.25, 29, 30  Star-shaped catalyst geometries were defined 

by e-beam lithography and rotation of the start-shaped catalyst along the vertical etching 

direction was obsereved for a wide range of [HF]/[H2O2] etch ratios thus creating a spiral.  

The mechanism can be explained by local variability in etching rates depending on the 

geometry of the catalyst boundary.  In particular, line width has been identified as an 

important factor which is correlated to the etching rate.  The mechnism of geometry-

dependent etching rate in MACE is not understood, but speculations about 

electrophoretic forces driving the motion of the catlyst layer can explian the etching 

trajectories and catlyst deformations observed in recent studies.30   

Because it can directly form vertical or tilted nanowires with controlled diameters 

over large areas, MACE is potentially advantageous over CVD growth of SiNWs because 

it does not require high temperature conditions.  The ability to form inclined NWs is 

particularly advantageous for fabrication of smart materials, including anisotropic 

adhesives and wetting surfaces.  However, more studies are needed on fabrication of 

structures with variable local densities, and different heights and geometries on the same 

substrate, which would be important steps toward 3-D surface engineering using MACE. 
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Figure  2.6  3-D silicon etching by MACE.  (a) Spiral etching trajectories from rotation of a star-
shaped Ti-Au catalyst pattern. 25  (b) Etching from folding of a triangular-shape catalyst, with 
close-up view of SiNWs protruding from the folded triangular catalyst.29 (c) Curved etching 
trajectory from of a square-shaped catalyst with two lateral arms (width = 164 nm) fixed by 

photoresist lines (vertical stripes in image).  Left is 3-D CAD model, and right is SEM image.  (d) 
Same as (c) but arm width is 210 nm.30 

2.1.3. Glancing angle deposition 

Glancing angle deposition (GLAD) is a physical vapor deposition (PVD) technique 

typically used to sculpt 3-D nanostructured anisotropic thin films.  GLAD attracted 

widespread interest in 1996 when Robbie et al. fabricated helically structured films of 

MgF2 as shown in Figure 2.7d and reported the capability of these films to rotate the 

plane of polarization of transmitted light.31 
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GLAD is based on the local shadowing effect that arises when the target substrate is 

tilted (Figure 2.7) such that the angle between the normal to the substrate and the 

incident vapor flux is α ≥80°.3 GLAD therefore enables self-organization of anisotropic 

surface features by a combination of chemical and physical effects that govern the 

nucleation and growth of the deposited films.   The geometry and density of the deposited 

structures are determined by both physical and chemical effects.   

GLAD anisotropic structures grow when the substrate and source material interact 

such that Volmer-Weber growth occurs.32  This occurs when the newly condensing 

adatoms have a greater affinity to one another than to the substrate, thus forming isolated 

microscopic islands on the substrate.  As deposition proceeds, the islands locally shadow 

the ballistic vapor flux from the source, which leads to vertical growth of the islands into 

individual 3-D structures.  Hence, the nucleation and growth dynamics are governed by 

the source-substrate interfacial interactions and the mobility of the deposited material on 

the substrate, which in turn are dependent on the substrate temperature and surface 

roughness.   

Moreover, rotation of the substrate during GLAD enables the controlled formation of 

four types of archetypal pillar structures, as shown in Figure 2.7b-e: straight, tilted, 

zigzag, and helical.  A substrate fixed at an angle α leads to the growth of pillars tilted by 

at an angle β.  To create zigzag pillars, the substrate tilt is changed from +α to –α after a 

given deposition time which determines the thickness of each segment.  Continuous 

rotation during deposition will cause formation of helical structures with a vertical pitch 

dependant on the deposition and rotation rates.  At high rotation rates, the pillars grow 

perpendicular to the substrate, thus forming straight pillars. 

The lateral dimensions of GLAD structures are typically in the range of 10-1000 nm.  

The height is typically heights are in the range of hundreds of nanometers to a few 

microns.  The column spacing a is comparable to the feature size, and can be estimated as 

 )cos/11( a                    Eq. (2.1) 

where δ is the is the column diameter.33  This simple relation takes into consideration 

only the geometrical shadowing effect and not diffusion of the deposited material.  
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GLAD structures can also grow from pre-patterned seeds where photolithography can be 

used to control the position and density of the based on the position of the seeds.34  

For angled or helical columns, it was found that the angle (β) can be related to the 

substrate tilt angle (α) as 

  2/cos1sin 1                    Eq. (2.2) 

For example, for β = 89°this equation predicts a minimum tilt angle of 30° 

(measured relative to the substrate plane). 

In principle, all materials that can be deposited by PVD can form GLAD structure 

morphologies.  Reported examples include metals (Al, Ag, Bi, C, Co, Cr, Cu, Mg, Mn, 

Ni, Pt, Ti,W, Zn), semiconductors (Si, Ge), and compound semiconductors (MgF2, CaF2, 

ITO, SiO2, SiO, ZrO2, MgO, YBCO, ZnO, TiO2, WO3).
35  

 

Figure  2.7  Glancing Angle Deposition (GLAD).  (a) Setup of the substrate with tilt and rotation 
capability, and illustration of shadowing effect and growth of tilted pillars.  The four archetypal 

structures of GLAD: (b) Tilted pillars (MgF2) (c) zigzag pillars (MgF2) (d) helical pillars 
(MgF2), and (e) straight pillars (Si).3, 31, 35 
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2.1.4. Oblique angle polymerization 

Oblique Angle Polymerization (OAP) is analogous to GLAD except that polymer 

precursors polymerize into individual anisotropic structures on the surface of a substrate.   

OAP was first introduced by Pursel et al. in 2005 who showed the formation of helical 

structures by in situ polymerization.36  For OAP, a nozzle is typically directed at a 

shallow angle (≈10°) with respect to the substrate, in contrast to being perpendicular to 

the substrate in tradition polymer CVD.  Notable applications of OAP include surfaces 

with anisotropic wetting and adhesion,37, 38 and templates for metal deposition that enable 

biosening by Surface Enhanced Raman Spectroscopy (SERS).39   

In the case of parylene deposition by OAP, a dimer is evaporated at 150 - 175°C and 

then pyrolized into a monomer precursor resulting in a chemical structure such as poly-p-

xylene (PPX) that leaves the nozzle at pressure of ≈10 mTorr.36  Because the flux is 

directed onto the substrate at a shallow angle, a network of molecular strands nucleates 

on the substrate without forming a continuous film due to shadowing effects. (Figure 

2.8)   The strands then start to aggregate into columns of 200-400 nm diameter, which are 

tilted with respect to the substrate.   The density of the columns is ~107 mm2.  The tilt 

angle is a function of the nozzle orientation and is approximately 55° for a nozzle 

directed at 10° with respect to the substrate.  When the substrate is rotating, helical 

structures with a pitch of ≈ 2 µm can be formed.  Detailed analysis of the effect of 

deposition parameters on the structure of OAP films is reported by Cetinkaya and 

Demirel.40  Pursel et al. demonstrated OAP in a commercial polymer PVD system with 

modifications including the insertion of a 1/4ʺ diameter nozzle for precursor injection, 

and the addition of the substrate rotation and tilt motors.  The dimer used was para-

chloro-xylylene, and the deposited polymer consisted of a benzene ring with two para-

methylene groups and one chlorine side group, having the chemical formula C8H7Cl.  

Demirel et al. used chloro-[2.2]paracyclophane dimer to fabricate slanted columns of 

poly(chloro-p-xylylene) (PPXC) having 50-100 nm diameter and up to 50 µm thickness 

with an inclinaton angle of 45°.41 Cetinkaya et al. demonstrated columnar nanostructures 

of poly(chloro-p-xylylene) and poly(bromo-p-xylylene) thin films, and co-deposition of 

nanostructured poly(o-trifluoroacetyl-p-xylylene-co-p-xylylene).41, 42 
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Figure  2.8  Oblique angle polymerization (OAP). (a) Growth of tilted PPX nanopillars from a 
dimer flux directed at a shallow angle with respect to the substrate.  (b) SEM images of a film of 
tilted PPX nanopillars, with insets showing top view and cross-section at higher magnification.37 

2.1.5. Directed mechanical deformation 

Arrays of bent pillars can also be fabricated by a number of methods that first create 

straight pillars, and then apply asymmetric stresses to cause bending.1, 43-45  In the first 

fabrication step, vertical micro- or nanopillars are fabricated by etching or molding from 

a master template.  Exemplary studies have used pillars with diameter 0.1-1 µm and 

height of 1-10 µm.  The pillars are subsequently bent by directional metal deposition, 

electrochemical coating, e-beam irradiation, thermal treatment, or a combination of these 

methods.  This step induces a stress gradient across each pillar, causing bending due to a 

mechanical effect analogous to the thermal actuation of a bimetallic strip.  These 

anisotropic arrays have found applications in unidirectional wetting,1, 43 anisotropic 

adhesion,46 chemical and biological sensing, and actuation.45 

Kim et al. demonstrated several approaches to make bent polymer nanohairs for 

applications in unidirectional wetting and dry adhesives.46  First, they fabricated a silicon 
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master template using lithography and deep reactive ion etching (DRIE) as shown in 

Figure 2.9a.44  The holes were 100 nm diameter and 1 µm deep, with tapered side walls 

as an inherent result of the DRIE process.  The silicon master was treated with a self-

assembled monolayer of low surface energy molecules ([CF3(CF2)5CH2CH2SiCl3]) to aid 

demolding.  Three polymers were used for molding: soft polyurethane PUA (E = 19.8 

MPa), hard PUA (320 MPa), and Teflon (1.9 GPa).  Drops of uncured polymer were 

dispensed on the master and pressed with a flexible poly(ethyleneteraphthalate) (PET) 

film (50 µm thickness) that functioned as a mechanical support during demolding.  The 

liquid polymer filled the master by capillary effects while being cured, and this process 

was called capillary molding.  After demolding and curing the polymer, a 4 nm thick film 

of Pt was deposited on the polymer nanohairs by e-beam evaporation to prevent electron 

charging during e-beam irradiation.   Bent nanohairs were formed by irradiating the 

metal-coated array in a Field Emission Gun Scanning Electron Microscope (FEG-SEM) 

at an angle of 30° with a voltage of 5-15 kV, for up to 40s.  The authors attributed the e-

beam induced tilting to decomposition of the C=O groups into CO2 (which outgases), 

subsequent shrinkage of the portion of each pillar that was penetrated by the e-beam.47  

Moreover, local shadowing of the e-beam by the nanohairs affected the final bent shape.   

Seminara et al. also studied nanopillar bending due to SEM beam exposure, and found 

that electrostatic forces resulting from charging and induction caused the pillars to return 

to the vertical when the beam intensity was reduced.48  However, when two or more 

pillars touched during irradiation, they remained bent due to van der Waals forces that 

overcame elastic restoring forces.  At lab scales, both of these techniques are serial (as 

limited by the field of view of the e-beam at the required intensity) and relatively 

expensive because of the high operation costs for most commercial FEG SEM systems.    

Directional thermal stresses provide a more scalable method for bending of nanohair 

arrays.  For example, Yoon et al. coated PUA nanohair arrays with 6-12 nm Pt by oblique 

e-beam evaporation.49  Annealing for 30 minutes at 120°C caused bending of the pillars 

to ≈20° from their initial vertical orientation, and these bent pillars had directional 

adhesion properties.  The authors noted that the pillars bent toward the metal-coated side 

upon thermal annealing, (most likely because of greater thermal expansion of the 

polymer.  Upon e-beam irradiation, the pillars bend toward the polymer side.  Chu et al. 



 
 

24 
 

presented a different approach where metal was deposited on Si pillars at elevated 

temperature (up to 1000°C).1  Internal stresses resulting from the mismatch in thermal 

expansion coefficient caused the pillars to deflect upon cooling to room temperature.  The 

bending angle was controlled from 2-52 ° depending on the thickness of the Au film 

(250-400 nm).    

 

Figure  2.9  Fabrication of bent nanohairs by self-directed mechanical deformation: (a) Fabrication 
process for PUA nanohairs with oblique metal coating. (b) Bending towards metal-coated side, 

induced by thermal annealing. (c) SEM image after process (b). (d) Bending towards non-coated 
side, induced by e-beam irradiation.  (e) SEM image after the process shown in (d).49 

Stresses generated during anisotropic electrodeposition can also induce bending of 

polymer nanopillars.  Kim et al. used UV-curable epoxy resin (UVO114, Epotek) to 

make straight nanopillars using a PDMS mold.45  After demolding, the nanopillars were 

coated with 30-100 nm thick Au film by oblique e-beam evaporation or sputtering.  The 

metal film deposited on only one side of the pillar arrays due to shadowing effects.  This 

film functioned then as the electrode for deposition of PPy from an aqueous solution 

containing 0.1 M pyrrole (Py) and 0.1 M NaDBS (0.5-0.7 V vs Ag/AgCl reference 

electrode).  As selective deposition of the PPy progressed on each pillar, the resulting 

mechanical strain gradients caused the nanopillars to bend in one direction.   

Active anisotropic surfaces are a class of materials having reversibly anisotropic 

building blocks which respond to external stimuli by changing their shape.   For example, 
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flexible polymer nanopillar arrays embedded in a hydrogel matrix can change their shape 

–anisotropically- due to isotropic expansion of the hydrogel.50  The nanopillars can thus 

tilt in one direction as the hydrogel expands and straigthten back up as it re-contracts.  By 

changing the chemistry of the hydrogel, these surfaces can respond to electric, chemical, 

or light stimuli.51  These active composite surfaces can have many applications in 

photonics, wetting surfaces, and microfluidics, where the structural geometry and the 

resulting performance anisotropy can be reversibly controlled.52 

2.1.6. Oriented nanostructure growth 

Synthesis of aligned one-dimensional (1-D) nanostructures such as carbon nanotubes 

(CNTs) and semiconducting or oxide nanowires (NW) allows the bottom-up fabrication 

of high performance anisotropic thin films from organic and inorganic materials.  

Typically, such nanostructures grow from catalyst nanoparticle “seeds” or nanoscale 

surface features by gas or liquid phase methods such as chemical vapor deposition 

(CVD), plasma enhanced CVD (PE–CVD), supercritical, or electrochemical deposition.  

In general, the geometry and orientation of a 1-D nanostructure is determined by the 

precipitation reaction and/or by external forces that act on the structure during growth.  

External forces can be from the synthesis environment (e.g. gas flows or applied electric 

fields), the substrate, and/or from neighboring structures (i.e., van der Waals 

interactions).  An overall challenge in bottom-up fabrication of 1-D nanostructures with 

anisotropic organization is the development of scalable approaches for defining the 

position and spacing of the individual nanostructures over large areas.   

In principle anisotropy of individual 1-D nanostructures can be controlled by the 

motion of the catalyst particle, and model systems are seen with inorganic NWs 

particularly SiNWs.  Tian et al. demonstrated a strategy to fabricate zigzag SiNWs with 

deterministically placed kink locations and angles (Figure 2.10).53  By Au catalyzed VLS 

synthesis, 120° kinks were introduced at pre-determined intervals by purging the growth 

furnace for 15 s, then reintroducing the growth gases.  The growth gases were SiH4 and 

H2 at a pressure of 40 Torr; and during purging, the flows were stopped and the chamber 

was pumped down to 3 mTorr.  Purging dropped the reactant concentration in the super-

saturated catalyst seed, and reintroducing the growth gases led to the saturation of the 
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catalyst seed and heterogeneous nucleation of the kink segment.  The angle of the kink 

was dictated by the most thermodynamically favorable growth direction according to the 

Si crystal structure.  Additionally, pinetree-like lead sulfide (PbS) nanostructures were 

made using CVD, by Bierman and Lau et al..54  The growth of this complex architecture 

was attributed to a screw dislocation along the axial trunk (Figure 2.10).55  According to 

Eshelby theory, an axial screw dislocation exerts a torque at the free ends of the trunk, 

resulting in the twist of the rod along the axial direction.56   Zhang et al. fabricated SiO2 

helical nanowires by CVD and attributed their formation to asymmetric growth chemistry 

around the catalyst.57  Wang et al. fabricated high dense helical SiO2 NW forests by the 

liquid-vapor-solid mechanism using a gold catalyst with contact angle anisotropy 

(CAA),58 where the deposition temperature was 350°C.59  CAA occurs when the catalyst 

size is larger than the NW size and the center of mass of the catalyst is shifted with 

respect to the NW center of mass.  This in turn leads to CAA and hence asymmetric work 

of adhesion for new atoms attaching on the catalyst-NW interface (NW growth), which 

results in asymmetric growth rates across the NW.  Nanosprings have also been made 

from boron nitride and silicon carbide.58, 60 

 

Figure  2.10  Complex morphologies of inorganic NWs.  (a) Deterministic formation of kinked 
SiNWs by purging, re-introduction of reactant, joint growth, and subsequent arm growth.  (b) 

Kinked SiNW segment made by pulsed method.53 (c) Pine tree PbS NW made by VLS.54 (d) SiO2 
nanosprings grown from Au catalyst. Inset shows catalyst particle and TEM image of helical SiO2 

NW.59 
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Because of the widespread work on CNT synthesis for different applications, many 

methods have been developed to control both the anisotropic organization and the 

individual structure of CNTs.  CNTs can be synthesized on substrates in the horizontal 

orientation (parallel to the substrate) or vertical orientation (perpendicular to the 

substrate), depending on their interaction with neighboring CNTs and with the substrate.  

In common CVD methods, CNTs grow from nanoparticle seeds in the tip- or base-growth 

mode, described by, respectively, whether the catalyst nanoparticles are advancing with 

the tip of the CNT or pinned to the substrate.  In the tip growth mode, the convective gas 

flow on the substrate can lift the particles and align the CNTs with the flow direction.  

The alignment of the CNTs to the substrate can also be caused by van der Waals 

interactions between the CNTs and the substrate.  As a result, HACNTs have been grown 

directly on crystalline substrates, such as ST-cut single crystal quartz and a-/r-/c-plane 

sapphire.  On sapphire, atomic step edges (a few angstroms high) become faceted upon 

annealing, and physically guide CNTs during growth.61  However, in all these methods 

the density of horizontally-aligned CNTs is still low (10-50 CNTs/µm).  Recent reports 

demonstrate how the density can be increased by optimizing the gas-catalyst 

combination,62 doing multiple re-growth cycles,63 or transfer printing.64  Nevertheless, in 

order to be a potential replacement for Cu as horizontal interconnects in CMOS chips, 

CNTs must be made at much higher packing densities and with enhanced control of local 

position and orientation.  Other applications of anisotropic films of HACNTs include RF 

transistors, flexible devices and interconnects, and polarization-sensitive near field 

detectors.65, 66   

When the catalyst seeds are densely distributed on a 2-D planar substrate, CNTs self-

assemble into “forests” of vertically aligned (VA) CNTs.67  VA-CNT can be synthesized 

by thermal or PE-CVD from a variety of catalysts such as Fe, Co, or Ni, which are often 

supported by a layer of Al, Al2O3, SiO2, or Ta.  The density of the CNTs in this 

configuration is usually low (<5% by volume) but the length can reach several 

millimeters.68  VACNTs can be transformed to HACNTs by mechanical rolling and 

capillary folding.69, 70   



 
 

28 
 

 

Figure  2.11  3-D CNT morphologies. (a) Zigzag CNTs fabricated by PECVD.71 (b) Helical CNTs 
fabricated by CVD from Ferrocene-In catalyst precursor.72 

In addition to the classic anisotropic vertical morphology, CNTs provide examples of 

the ways that anisotropy can be engineered using intrinsic (catalyst motion) and extrinsic 

(external force) growth effects.  AuBuchon et al. demonstrated growth of anisotropic bent 

and zigzag carbon nanofiber morphologies by controlling the direction of an electric field 

applied during growth (Figure 2.11).71  This morphology was achieved by DC PECVD 

with Ni catalyst particles and a mixed gas of ammonia (NH3) and acetylene (C2H2).  The 

CNTs followed the tip growth mode, and the field direction was changed by moving 

conducting plates that changed the direction of electric field lines in the vicinity of the 

substrate, thus exerting different forces on the catalyst particles.  Bajpai and Dai et al. 

demonstrated the large scale synthesis of VA-CNTs having a helical morphology by 

controlling the gas-catalyst interaction (intrinsic effect).67  To achieve this morphology, 

co-pyrolysis of Fe(CO)5 was performed at 1000°C with a mixture of Ar and H2 flow.  

They attributed the formation of the helical structure to the insertion of carbon dimers C2 

into the C6 hexagonal ring, which led to the formation of two pentagon and heptagon 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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pairs.73  Subsequent insertion of C2 into the heptagon pairs shifted the geometry thus 

forming the helical twist.  The diameter and pitch of the CNT helices were approximately 

100 nm and 500 nm respectively.  Thermal CVD on substrate bound Fe catalyst 

nanoparticles was also be used to fabricate helical CNTs, though the alignment was poor 

compared to the co-pyrolysis method.74   CVD of helical CNTs from floating catalyst was 

achieved by injecting xylene-ferrocine mixture having dissolved indium isopropoxide 

and tin isopropoxide (sources for In and Sn respectively) in a CVD furnace (Figure 2.11).  

Formation of helices was explained by asymmetric growth on compound catalyst 

nanoparticles (Fe-In) due to different carbon precipitation rates in the segregated phases 

of the particle.   

2. 2 Aligned CNTs in microfabrication 

Carbon nanotubes (CNTs) are known for their outstanding properties including 

high stiffness and strength at low density and high electrical conductivity and current 

carrying capacity as described in Table 2.2.  They are considered potential building 

blocks for use in microfabrication and engineered surfaces.  In particular, highly ordered 

assemblies of densely packed CNTs are expected to enable the synthesis of new materials 

having outstanding performance for micro- and macroscale applications.  However, 

current methods of CNT synthesis have inadequate control of quality, density and order. 

Comparison of notable microfabrication materials to CNTs is summarized in Table 2.2. 

To this end, previous research has demonstrated synthesis of CNTs in tangled, VA-75 

and HA- configurations.  The latter two configurations are the focus of this review 

section (Figure 2.13).  Despite seminal advances in CNT synthesis, the integration of 

aligned CNTs is still hindered by many practical processing considerations.   

Accordingly, several processing challenges and considerations, in addition to 

opportunities of the integration of VA- and HA- configurations are discussed in this 

section. 
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Table  2.2 Comparison of some microfabrication material properties with CNTs 

Material 
Mechanical 

stiffness 
[GPa] 

Mechanical 
strength 

[GPa] 

Electrical 
conductivity 
[mΩ-cm]-1 

Heat 
conductivity 

[W/m-K] 

Melting/ 
Oxidation 

temperature 
[°C] 

Si 112 7 =f (doping) 149  1414 
SiO2 70 0.8 low 1.4 1700 
Si3N4 310 3 low 30 1900 
SiC 410 3.9 low 120 2730 
Cu 115 0.4 590 380 1084 
Au 44 0.1 4550 301 1064 
Al 69 0.3 370 170 660 

Al2O3 300 2.1 low 18 2072 
SU-8 2-4 0.05 low <1 250 

PDMS <.001 0.002 low <1 250 
PMMA 1-3 0.04-0.08 low <1 < 200 

Parylene 3 0.07 low <1 290 
SWCNT 1250 20 500 3500 600 
MWCNT 
(dia. nm) 

1049        
(15) 

100         
(15) 

1000       
(100) 

2000        
(9.8) 

600 

2.2.1. Properties scaling of CNT assemblies 

An example of the challenges and opportunities of potential aligned CNT applications 

is considered by examining the integration of CNTs in microelectronic interconnects.  In 

particular, dense assemblies of aligned CNTs are evaluated as replacement to copper 

interconnect via, as suggested by the International Roadmap of Semiconductors (IRS)76.  

Theoretical and experimental studies confirm that CNTs are resistant to electromigration 

at emerging Complementary Metal Oxide Semiconductors (CMOS) linewidths, have µm-

scale electron mean free path and have higher current carrying capacity than Cu (109 

A/cm2)77. Therefore, highly organized CNTs are expected to replace Cu in both vertical 

and horizontal microelectronic interconnects.  Growth of VA-CNT forests is an effective 

means of orienting large numbers of CNTs in an aligned configuration; however, the 

packing fraction of high-quality VA-CNTs is typically 1-2% and no more than 10%, 

which is insufficient for electronic applications.  Notable previous electrical 

measurements of individual CNTs and CNT assemblies are summarized in Figure 2.12 

and Table 2.3.   
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Figure  2.12  Previously published values of CNT electrical conductivity.  Calculations of 
conductivity as a function of the CNT packing fraction are compared to previously measured 

electrical data for individual CNTs and CNT networks.  The packing fraction is defined as the as 
the ratio of the CNT areal density (number of CNTs/cm2) to the areal density of hexagonally 

packed CNTs (modeled as cylinders) having the same outer diameter.  Solid and dashed X marks 
are MWCNT and SWCNT respectively. We assume that the conductivity of aligned CNT 

network is linearly proportional to the number of CNTs per unit cross-sectional area, and that the 
constant of proportionality is the conductivity of an individual CNT.  Data point (i) is for the HA-

CNT ribbons described in Chapter 4 and 7 of this thesis. 

Table  2.3 Details of CNT electrical data plotted in Figure 2.12, cited from previous studies of 
individual CNTs and CNT assemblies. 

Label in 
Figure 2.12 

CNT type Diameter Packing 
fraction 

Resistivity 
[mΩ.cm] 

Ref. 

a SWCNT 1.3 nm 0.4 0.91 78 

b MWCNT 100 nm individual 10-6 79 

c* SWCNT 1 nm 0.01 33 66 

d MWCNT 12 nm 0.33 2.5 80 

e MWCNT 7 nm 0.10 0.7 81 

f MWCNT 70 nm individual 5x10-4 82 

g MWCNT 15 nm 0.45 5 83 

h SWCNT 2.8 nm 0.58 8 84 

i MWCNT 10 nm 0.42 1 † 

* values of packing and resistivity were scaled linearly to fit within the axis limits of Figure 2.12 
† average of measurements (discussed in Chapter 7) taken on bundles fabricated by the method 
presented in Chapter 4  



 
 

32 
 

Figure 2.12 shows the predicted electrical conductivity of aligned CNTs as a function 

of packing density, compared to Cu. The CNT performance is based on values of 

conductivity and mean free path measured for individual CNTs. The packing fraction of 

CNTs is a measure of the density of aligned CNTs.  The packing fraction is the ratio of 

CNTs per unit area to maximum number of CNTs per area in a hexagonally packed 

configuration.  This data suggests that CNT microstructures having packing density 

exceeding 40% could have higher conductivity than 20nm linewidth Cu, and that tightly-

packed CNTs could outperform 50nm linewidth width Cu.  While theoretical 

performance has been matched by measurements of individual CNTs, the measured 

electrical conductivity values of CNT films to date are typically at least two orders of 

magnitude lower than what theory predicts for transport through continuous aligned 

CNTs at the same packing fraction.  The practical packing fraction hence remains one of 

the main challenges towards the integration of CNTs in future devices.   Processing 

temperatures and gases are among other challenges hindering the integration of CNTs in 

microelectronics as discussed in the next section. 

2.2.2. Integration considerations of VA-CNT  

The methods of growth and architecture of VA-CNT are discussed in Section 2.16 

and the details of the CNT growth methods used in this thesis are presented in Chapter 

3.  Here, the focus is on the essential considerations for the integration of the VA-CNT 

configuration in devices.   

Synthesis conditions: 

VA-CNTs are synthesized by CVD at pressures ranging from a few Torr to atmospheric 

pressure.  The temperature is typically 600-900 °C but can be as low as 450°C using 

plasma enhanced CVD85.  Low pressure growth enables more precise dynamics 

controlled gas environment and hence better control of CNT diameter and growth rate.   

CMOS-compatible processing can be achieved using remote plasma and/or dedicated 

thermal decomposition of the precursor gas, along with use of suitable metal catalyst 

materials. 
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Figure  2.13 SEM images of CNT films grown by CVD. (a) tangled thin SWCNT films made by 
ethanol assisted growth. (b) Horizontally aligned (HA-) SWCNTs made directly by CVD with an 

applied electric field between microelectrodes (white).  (c) HA-SWCNT made by CVD with 
methanol and Fe catalyst patterned into 10 mm wide stripes (bright horizontal lines) on quartz.86  

(d) Vertically aligned (VA-) MWCNTs made by CVD with ethylene carbon source. Inset 
showing several mm growth height.87 (e) Capillary densified VA-SWCNT pins made by CVD 

and solvent immersion.88 (f) HA-SWCNTs made by CVD of line patterns and capillary 
collapse.84 

Geometric control:   

VA-CNTs are synthesized from catalyst films.  The lateral dimensions of the films are 

prescribed by photolithographic patterning and lift-off.  Photolithography is used for 

features in the µm range.  For features smaller than 400 nm deep UV, interference or 

nanoimprint lithography can be used.  VA-CNTs grow perpendicular to the substrate 

(2.5-D); and hence don’t have controlled inclination angles to form 3-D geometries.  The 
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growth rate can be controlled by the synthesis environment (gas mixture, pressure and 

temperature) but is usually high (0.1-2 µm/s).  This makes them useful for micro-scale 

structures.  If very high aspect ratios are desired, VA-CNT growth can proceed until the 

self-termination stage (~ 1 hour) leading to growth heights typically ~1 mm but can be s 

high as a few cm.89, 90   VA-CNT microstructure can be stable for up to 10:1 aspect ratios.  

Higher aspect ratios need to be structurally stabilized by larger neighboring CNT 

microstructures as shown in Figure 2.14. 

CNT diameter: 

The diameter, density and alignment of CNTs in this configuration influence the 

properties of the microstructures.  Effective diameter control for VA- multiwalled (MW) 

CNT can be realized by growing from preformed nanoparticles as the catalyst layer.91  

For single and double walled CNTs, diameter control can be achieved by controlling the 

catalyst film thickness and the growth environment.92  For example, control of the 

amount of water vapor in the growth environment can effectively lead to single walled 

(SW) CNT with diameters < 3 nm.93  Chirality2 control for SWCNT remains one of the 

most challenging aspects of SWCNT synthesis and is beyond the scope of this 

discussion.94, 95    

 

Figure  2.14 High aspect ratio straight VA-CNT growth and integration. (a) Structurally supported 
structures of straight high aspect ratio low density VA-CNTs. (b) Integration of VA-CNT 

infiltrated with SiO2 in MEMS.96 

 
                                                 
2 Chirality is the angle between the shell orientation and the tube axis; it determines the tube’s 

electrical properties (conductive/semiconductive) 
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Packing fraction and density: 

VA-CNT forests grown from substrate bound catalyst films are characterized by very low 

density, typically between 1 and 5%.68  This low density is in fact essential for the growth 

to proceed because it accounts for the mechanical stresses developed due to the 

polydispersity in diameter and growth rates among neighboring CNTs.    The low density 

results in (i) low mechanical robustness (stiffness ~ MPa)  and (ii) decreased performance 

per unit area due to the low number of active CNTs.  Further, liquid processing lead to 

the uncontrolled distortion and/or collapse of as-grown VA-CNT microstructures97 due to 

elastocapillary coalescence.97 

Substrate adhesion: 

VA-CNTs are typically adhered to the substrate by weak van der Waals forces and hence 

can be easily delaminated.  Controlling the adhesion of the CNT films to the catalyst film 

can be achieved by modifying the growth environment.  For example, a flow of 

hydrocarbon source at temperatures between 300°C and 600°C can enhance the adhesion 

of the CNT to the catalyst and hence to the substrate by forming thin carbon layers at the 

interface between the catalyst particle and the CNT.98   

Substrate and transferability: 

VA-CNTs are typically synthesized on silicon wafers.  However, quartz and metal foils 

coated with the suitable catalyst (e.g. Al2O3/Fe) can be used as growth substrate as long 

as they have an adequate melting temperature (>1000°C) and are chemically stable in the 

growth environment (hydrocarbon and H2 at high temperature).  Alternatively, VA-CNT 

microstructures can be transferred using thermal bonding to polymer films as shown in 

Figure 2.15.99-101  Polymer films are carefully laminated on top of the VA-CNT films.  

The films are adequately heated until polymer reflow and capillary forces cause partial 

embedding of the CNTs and hence their adhesion to the polymer. Small pressure is 

applied to ensure contact without mechanically distorting the CNTs.   

Coating and functionalization: 

Coating and functionalization of VA-CNTs can be performed by gas phase processes.  

Solution based processing can damage as-grown VA-CNT due to capillary forces.  CNTs 
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can be conformally coated by PVD of metals and ceramics; CVD of polymers and 

oxides; or atomic layer deposition (ALD) of ceramics.  The coatings can enhance the 

chemical, electrical, optical and mechanical functionality of the CNTs.   Owing to the 

filamentary and porous structure of VA-CNT, the coating parameters and CNT 

microstructure geometries need to be optimized to obtain uniform deposition thickness 

across the microstructures. 

Methods of enhancing density 

Capillary forces from liquid processing distort CNT forests by randomly aggregating tem 

into a cellular like structure.97  On the other hand, recent studies showed that capillary 

forces can transform cylindrical patterns (50 µm diameter; aspect ratio <2) into robust 

microstrcutures of densely packed SWCNTs.88  This simple method, which inspired the 

work of this dissertation, transforms fragile as-grown CNT microstructures of 3 % 

density into robust 50% dense CNTs.  Alternatively, cm scale CNT forests can be 

delaminated from the substrate and mechanically compacted then capillary densified to 

form stiff CNT solids. 

 

Figure  2.15 Transfer of VA-CNT to flexible substrates. Schematic showing the transfer of carbon 
nanofibers (CNF) to polycarbonate films.100 
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Methods of making high aspect ratio elements for Micro- Electro- Mechanical Systems 

Owing to their high aspect ratio, high electrical conductivity and good temperature 

stability, VA-CNT microstructures are potential building block elements in MEMS.96  To 

overcome their low density and stiffness, VA-CNTs are infiltrated with conformal layers 

of polycrystalline silicon or silicon nitride.  Due to the conformal nature of CVD, high 

aspect ratio CNT microstructures can be filled at very high rate.  For example, 100 µm 

tall patterns can be filled with poly-Si in about 3 hours.  To ensure uniform deposition 

along the entire height and area, small holes (<3 µm diameter) are designed in the 

catalyst layer to allow for the deposition gases to diffuse into large microstructures (gas 

access holes).  The resulting CNT-silicon microstructures can be processed using 

standard microfabrication techniques such as lithography and DRIE.  Using this 

approach, high aspect ratio (100:1) MEMS actuators are fabricated.  Robust VA-CNT 

microstructures can be fabricated using a similar approach using parylene or other 

polymer deposition.102   

2.2.3. Examples of properties and applications of VA-CNTs 

Interconnect via 

As discussed in Section 2.2.1, it is predicted that the resistance of  70 nm diameter 

CMOS interconnect vertical via filled with close packed MWCNT of 4 nm diameter 

having 6 walls, can be as low as that of a Cu via.  Fujitsu,103-105 Infineon106 and IMEC107 

reported progress in process technology towards achieving this high performance, 

including direct growth of the CNTs within vias at CMOS-compatible temperatures 

followed by deposition of a top electrical contact.   Table 2.4 shows the most recently 

reported results from these groups. 

Despite this encouraging progress, several challenges have to be met before CNTs 

can actually replace Cu interconnect vias. According to the 2009 International 

Technology Roadmap of Semiconductors (ITRS, 2009) the main challenges to overcome 

for vertical vias are:76 
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Table  2.4 Recent advances and benchmarks in CNT interconnect via 

Via 
dia. 

CNT 
dia. 

Stackup Catalyst Recipe Density 
[CNTs/cm2]

Resistance 
 

Ref. 

2 µm 10 nm Cu/Ta/Ti
/Co/CNT
/ Ti/Cu 

2.5 nm 
Co layer 

thermal 
CVD 
450°C 

1010  5 Ω 103 

140-
300 
nm 

15 nm Cu/Al/ 
Ni/CNT/ 
AuPd 

3 nm Ni 
layer 

thermal 
CVD 
520°C 

5 x 1010  20 Ω 108 

2 µm 10 nm Cu/Ta/ 
TiN/Co/ 
CNT/Ti/ 
Cu 

4 nm Co 
nano-
particles 

thermal 
CVD 
510°C 

9x1011 and 
1011  

0.59 Ω 91 

 

150-
300 
nm 

8-12 
nm 

TiN/SiC/ 
PSG/SiC 

1.3 nm 
Ni Layer 

CVD 
400-
470°C 

2x1011 – 
7x1010 

7.9 kΩ 107 

120 
nm 

7 nm Cu/TaN/ 
Tin/Co/ 
CNT 

1.7 nm 
Co film 

thermal 
CVD 
450°C 

1012  not  yet 
reported 

105 

1. Improved control over CNT diameter, number of walls and quality 

2. Achieving high CNT areal density, e.g., at least 5 x 1012 CNTs/cm2 for MWNTs 

3. Achieving ohmic contact to the ends of the CNTs 

Recent advances towards the realization of high density growth at low temperatures 

focus on the decomposition of feedstock gases using a multi-mode (RF plasma, DC 

plasma, hot-filament, and thermal) CVD chamber to scale up the process to obtain 

uniform growth on full 300 mm wafers.105  Uniform diameter catalyst nanoparticles are 

prepared either by dewetting a thin catalyst layer (Co or Ni) through thermal annealing or 

by direct injection of catalyst nanoparticles from gas phase. Both of these variations aim 

at achieving the highest density of active nanoparticles selectively at the bottom of the via 

holes.  More recently, Fujitsu reports a plasma-enhanced formation of small-diameter, 

closely packed nanoparticles from a deposited layer of Co.91 The key to their method is to 

control the nanoparticle size and density and to stop the aggregation of particles before 

the growth starts.  This is achieved using a low temperature (<260 °C) and low-power 

plasma (<0.5 W/cm2) for annealing. The CNT density reaches 1012 CNTs/cm2 

representing a bulk volumetric density of 30-40%. 
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Capacitors and battery electrodes 

  The use of capillary densified CNTs in two-electrode Electric Double Layer 

Capacitor (EDLC) shows an increase in energy density and ion diffusivity compared to 

activated porous carbon28  possibly due to the pore alignment.88, 109  Alternatively, VA-

CNT can be synthesized in aligned porous Anodic Aluminum Oxide (AAO) membranes.  

Using these templates, coaxial CNT/MnO2 can be fabricated and use as Li ion battery 

cathodes.88, 110 The CNTs in this configuration enhance the performance of the batteries 

due to high surface area, improved electrical conductivity and improved ion storage and 

cycling kinetics. 

2.2.4. Integration considerations of HA-CNTs 

HA-CNT configuration provides directional in-plane properties for the 

engineering of anisotropic devices and surfaces.  Moreover, owing to their planar 

structure and robust architecture, HA-CNT can be more readily integrated with standard 

microfabrication processes.  Two routes are currently taken for the fabrication of HA-

CNT films: (i) direct synthesis in the horizontal configuration;61 and (ii) mechanical 

and/or capillary transformation of VA-CNT to HA-CNTs.69, 84, 98  Most important 

considerations for the synthesis and integration of HA-CNT using the two routes are 

summarized in this section.  Routes (i) result in a single layer of low density aligned 

CNT, where the CNTs are straight and isolated; routes (ii) result in high packing density 

films having controlled geometry as discussed in the following sections. 

Direct synthesis of HA-CNT: 

HA-CNT can be directly synthesized high temperature( >900°C) on special cut single 

crystal substrates such as c-cut quartz and sapphire.61  Crystal topography offers a 

template for the unidirectional aligned growth of SWCNTs as described in Section 2.1.6.  

However, the extreme growth conditions hinder the applicability of direct synthesis to for 

example CMOS compatible processes.  This process is also limited to creating a single 

layer of largely spaced CNTs (<100 CNTs/µm).  Controlling the number of layers or 

achieving packed assemblies using direct horizontal synthesis hasn’t to date been 

achieved. 
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HA-CNT by rolling: 

Mechanical rolling enables the transformation of as-grown, low-density, VA-CNT line 

patterns into high density HA-CNT films.69, 98, 111 Considerations for applying this 

process are the same as those for VA-CNT processing (Section 2.2.1). Additional 

considerations include minimizing rolling induced defects and contamination, and 

controlling the adhesion of the CNTs to the receiving substrate.  This process is discussed 

in details in Chapter 4. 

HA-CNT by capillary forming: 

The capillary forces resulting from dipping VA-CNT walls in and out of a liquid surface 

such as acetone can be used to fabricate thin films of HA-CNT on large areas.84  The final 

thickness of the HA-CNT film is controlled by the width of the catalyst line pattern used 

to grow the VA-CNTs.  The considerations for applying this process are the same as 

those for VA-CNT processing.  

 

Orientation of HA-CNT: 

Current methods to fabricate HA-CNT are limited to creating unidirectional films on 

substrates.  Locally multi-directional and multi-layered architectures, which are needed 

for design of next-generation circuits and interconnects, have only been achieved by 

multi-step alignment and transfer printing methods64, 112 or by self-directed capillary 

folding described in Chapter 5 of the thesis.70 

Transfer of HA-CNT films: 

Dry transfer printing of HA-CNT films can be easily achieved using PDMS stamps onto 

arbitrary substrates as shown in Figure 2.16.113  Owing to their viscoelastic properties, 

dry PDMS stamps can be used to pick HA-CNT films from growth substrates by quick 

peeling and transfer to target substrate by slow peeling.114  Thin films of HA-SWCNTs 

synthesized on quartz substrates can only be transferred if coated with carrier films such 

as thin Au to facilitate their separation from the growth substrate and later from the 

stamp.   
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Figure  2.16 Transfer printing of HA-CNTs using PDMS stamps. (a) Schematic of transfer 
printing process using Au carrier films. (b) and (c) printed films of HA-SWCNT having uni- and 

multi-directional configurations.114 

2.2.5. Examples of properties and applications of HA-CNTs 

HA-CNT for flexible electronics 

Transferring ultra-thin films of HA-CNTs to PDMS enables the formation of flexible 

transistors on flexible conformal and stretchable electronic systems.86  Devices formed by 

simple transfer printing of HA-CNT films can withstand up to 20% strain.  An alternative 

design can be adopted with SWNTs arranged in the ‘‘wavy’’ layout, which is formed 

through film buckling process.   These devices can take large stains reaching up to 50%.   

MEMS Switches and resonators 

Forming dense arrays of HA-CNT using the capillary dipping method enables the 

fabrication of micro- electro- mechanical switches from thin CNT films by standard 

lithography, etching and lift-off as shown in Figure 2.17.  Electrical nanorelays of ~ 100 

nm dimensions were fabricated and cycled > 20 times to pass currents beyond 100 µW 

for up to 2 s.84  The performance of these devices is limited by the cantilever drain-

sticking force. Notably, the elastic modulus of the CNT films can be estimated form the 

performance of these devices to be 9.7 GPa.  HA-CNT resonators can be fabricated using 

the same approach for making CNT relays.  The resonators having the CNT parallel to 
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the longitudinal direction behave as cohesive elastic beams with sound velocity of 10100 

m/s.115 

 

Figure  2.17 Integrated HA-CNT MEMS resonators and switches. (a) Low resolution SEM 
showing a large area of HA-CNT suspended on Si pillars. (b,c) High resolution SEM images 

showing the HA-CNT cantilevers. 116  
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Chapter 3 

Synthesis and coating of VA-CNT microstructures 

 

This chapter describes the methods and tools developed to grow VA-CNT 

microstructures by chemical vapor deposition from lithographically patterned catalyst, 

and to coat the CNTs after synthesis.  These methods result in VA-CNT microstructures 

with cross-sections as small as 2x2 µm, over cm-scale areas.  The height is controlled by 

the growth time, and can be up to ~1 mm.  The effects of feature size, pattern density, and 

water vapor content on the growth results are identified and discussed.  The growth rate is 

higher for high pattern density but doesn’t correlate with the individual feature size 

within the investigated range (10-100 µm).  Observations indicate that the water vapor 

content of the growth atmosphere has a strong effect on the growth rate.  This effect can 

be suppressed by achieving dry baseline (low water vapor content) in the CVD system 

before growth by adequate purging with dry gas, although active control of the vapor 

content was not yet implemented.  Additionally, as-grown VA-CNTs can be modified by 

plasma etching and/or coating.  These modification methods tune the chemical and 

mechanical properties of the CNT forest by changing the structural characteristics and the 

surface chemistry and enhancing their functionality. 

3. 1 Catalyst patterning and deposition 

The standard procedure to prepare patterned catalyst for VA-CNT microstructures 

growth is shown in Figure 3.1, and corresponds to the process sequence listed in Table 

3.1.  The process starts with (100) silicon wafers with resistivity of 10-20 Ω-cm.  These 

wafers are acquired from the Michigan Lurie Nanofabrication Facility (LNF) store.  The 

doping type and level does not affect the CNT growth process. The silicon wafers are 

thermally oxidized at 1100°C for a duration ranging from 1 to 4 hours.   
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Table  3.1  Process parameters for catalyst patterning by photolithography 

 Step Description Parameter Comment 

1 Dehydration bake Bake wafer on hot 

plate 

@ 120°C for 5 min Optional step 

2 Dispense and spread 

HMDS 

Spin coat @ 500 rpm for 4s Low speed to cover the 

wafer 

3 Spin HMDS Spin coat @ 3000 rpm for 30s Adhesion promoter for PR

4 Dispense and spread 

SPR 220 -3.0 

Spin coat @ 500 rpm for 4s Dispense a volume 

covering 2/3 of wafer area

4’ Dispense and spread 

AZ 5214E 

Spin coat @ 500 rpm for 4s Dispense a volume 

covering ½ of wafer area 

5 Spin SPR 220-3.0 Spin coat @ 3000 rpm for 30s Target thickness 2.6 µm 

5’ Spin AZ 5214E Spin coat @ 4000 rpm for 30s Target thickness 1.4 µm 

6 Pre-exposure bake     

of SPR 220-3.0 

Bake wafer on hot 

plate 

@ 115°C for 90s Evaporate solvent from PR

6’ Pre-exposure bake       

of AZ 5214E 

Bake wafer on hot 

plate 

@ 100°C for 1 min Evaporate solvent from PR

7 Expose SPR 220-3.0 Expose in MA/BA-6 6s Power density 30 mW/cm2

7’ Expose AZ 5214E Expose in MA/BA-6 6s Power density 30 mW/cm2

8 Post exposure bake   

of SPR 220-3.0 

Bake wafer on hot 

plate 

@ 115°C for 90s  

8’ Post exposure bake   

of AZ 5214E 

Bake wafer on hot 

plate 

@ 110°C for 2 min Reversal bake 

8’’ Expose AZ 5214E Expose in MA/BA-6 50s Flood exposure (no mask)

9 Develop SPR 220-3.0 Submerge in AZ 300 1 min Inspect in optical 

microscope 

9’ Develop AZ 5214E Submerge in MF 319 2-3 min Inspect in optical 

microscope 

10 Clean wafer Submerge in DI water 1-2 min  

11 Dry wafer Dry with nitrogen 

gun 

Hold vertical and 

dry top to bottom 

Wafer ready 
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The target oxide thickness is usually 3000Å but we used wafers with thickness 

ranging from 400Å to 1 µm, without apparent effects on subsequent process outcomes.   

Second, the wafers are coated with Hexamethyldisilazane (HMDS) solution, 

dissolved in a solvent such as propylene glycol methyl ether acetate (PGMEA).  HMDS 

functions as a primer and promotes the adhesion between the photoresist and the oxidized 

silicon surfaces.  The spin coating parameters consist of a spreading step at low speed 

followed by the coating step at a higher speed.   SPR 220-3.0 from Rohm and Haas was 

used as a positive tone resist and AZ 5214E from Clariant GmbH as a negative tone 

resist.  The PR coating recipe is also described in Table 3.1. 

 

Figure  3.1  Fabrication of VA-CNT microstructures. (a) Process schematic. (b) SEM of a variety 
of VA-CNT microstructure geometries. Inset showing VA-CNT side wall structure 

The exposure is carried out in a Karl Suss mask aligner system MA/BA-6 located in 

the LNF.  The total power density of the UV lamp on this tool is 30 mW/cm2 where 

approximately half of the intensity is i-line (365 nm) and half is from the h-line (405 nm). 

Masks with the required microstructure design can have features as small as 3 microns 

with this process.  If smaller features are required, the stepper lithography system GCA 

AS200 equipped with 5x optics can be used for projection lithography.  The smallest 

features achieved using this system were circles with 600 nm diameter.  The exposure 

time with this i-line system for SPR-220 3.0 is 0.35 ms. 
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The PR was developed using a fresh container of developer each time.  After 

development, a very thin layer of PR typically remains in the developed areas; however, 

we found that it was not necessary to remove this to achieve good catalyst deposition and 

CNT growth.  If needed, a descum process (low power oxygen plasma) can be done in 

the Plasmatherm 790 system located in LNF. 

 

Figure  3.2  Chemical Vapor Deposition system used to grow VA-CNTs. (a) Schematic of the 
mass flow controllers (MFCs) controlled by a PC and connected to the tube furnace, then though 
the bubbler to the exhaust. (b) Optical image showing the tube furnace. Inset showing the MFCs. 

(c) Si substrates with catalust micropatterns before and after CNT growth. Figure prepared by 
Davor Copic. 

The standard catalyst film consists of 10 nm Al2O3 and 1 nm Fe.  E-beam 

evaporation and sputtering are used to deposit these films.  The parameters for the 

deposition are listed in Table 3.2. The experiments in this thesis use this standard catalyst 

configuration unless otherwise stated.  Changing the catalyst thickness may however 

change the growth results as discussed in Section 3.3.3. 
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The lift-off process is done in the Mechanosynthesis Group lab.   It consists of 2 

cleaning cycles with acetone in an ultrasonic bath (CREST Ultrasonics 1100D) at power 

setting 8 for 6 minutes.  Acetone is replaced between the 2 cycles.  After the second 

cycle, acetone is replaced with 2-propanol and the samples are blow dried with Nitrogen 

gun.   

Table  3.2  CNT catalyst deposition process parameters 

 Al2O3 Fe 

E-beam Sputtering E-beam Sputtering 

Power 11.6% 175W (RF) 12% 200 W 

Target thickness 100 Å 100 Å 10 Å 10 Å 

Deposition rate 3 Å/s 0.046 Å/s 0.5 Å/s 1.04 Å/s 

Deposition time 33 s 2150 s 20 s 9.6 s 

 

3. 2 VA-CNT growth 

The silicon wafer with the catalyst micropatterns is diced into rectangular pieces 

which are then loaded into the tube furnace as shown in Figure 3.2.  The furnace used in 

all the experiments is a Thermo-Fisher Minimite with 1” diameter quartz tube.  The 

sample’s leading edge is placed at 60 mm downstream the center of the furnace (where 

the thermocouple is located).  We call this location the “sweet spot”.  The reaction gases 

are supplied using digital Mass Flow Controllers (MFCs, Aalborg Inc.) connected to a PC 

with National InstrumentsTM data acquisition (DAQ) card and LabviewTM software 

interface.  As shown in Figure 3.3, the recipe consists of 3 stages: catalyst annealing, 

CNT growth and termination.  This recipe is based on previous work by Hart and 

Slocum1.  The process is at atmospheric pressure and the exhaust gas is regulated using a 

mineral oil bubbler.  The total flow rate is selected to maintain a laminar flow in the tube. 

The standard recipe illustrated in Figure 3.3 uses He/H2 flows of 400/100 standard 

cubic centimeter (sccm) during heating and annealing and He/H2/C2H4 flows of 

400/100/100 sccm during growth at 775°C.  It results in a vertical CNT growth rate in the 

range of 60-100 µm/min.  In separate studies our group has observed that the growth self-
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terminates abruptly, i.e., the height stops increasing, after approximately 20 minutes, at a 

height of approx. 1 mm.2  

 

Figure  3.3  VA-CNT growth recipes. (a) Standard New" recipe. (b) "Hybrid" recipe. 

The mass density of the CNT microstructures is in the range of 0.015 mg/mm3 to 0.035 

mg/mm3.  The density of graphite is 2.2 mg/mm3.3  The microstructures are thus 1% 

dense foams.  The CNT grown by the standard process have mean outer and inner 

diameters of 10 nm and 6 nm as measured by the Transmission Electron Microscope 

(TEM) (Figure 3.1).  Using these values, the areal density of the CNTs is estimated to be 
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≈2.5x1010 CNTs/cm2.  In the following sections, the stages of catalyst annealing and CNT  

growth and termination are discussed. 

3.2.1. Catalyst annealing stage 

As-deposited Fe film is continuous with small surface roughness.  As the substrate is 

heated, the film dewets to form nanoparticles.  Atomic Force Microscope (AFM) images 

of the catalyst before and after annealing are shown in Figure 3.4.  The mechanism of 

film dewetting (Fe-Al2O3 system) is not clearly understood.  In general, film dewetting is 

driven by the contact angle of Fe to the Al2O3 substrate.  In particular, the material 

system here consists of three surface energies: Al2O3-Fe, Al2O3-gas and Fe gas.  If the 

equilibrium contact angle between the Fe and Al2O3 is not equal to zero (i.e. perfect 

wetting), the film is said to be metastable.  Hence a continuous film can be driven to 

another stable configuration where it partially dewets the substrate and forms particles.   

An essential stage in film dewetting is the nucleation of voids  The mechanism of groove 

nucleation can be mechanical due to strain mismatch1 or thermodynamic due grooving at 

the grain boundaries or facets of the Fe film.   The relative contribution of each of the 

factors is beyond the scope of this thesis. 

 

Figure  3.4  Atomic Force Microscope images of the catalyst. (a) Before annealing. (b) After 
annealing. AFM scans taken by Eric Meshot. 

                                                 
1 .    The substrate thermal expansion coefficient is dominated by the silicon property (≈3 x10-6 

strain/°C at 20°C).  The thermal expansion coefficient value for the Fe film is 11.8 x 10-6 strain/°C. 
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The standard catalyst Al2O3 10 nm – Fe 1 nm is widely used for MWCNT forests 

and microstructures growth.  Our results indicate that variation from the standard catalyst 

configuration results in trade-offs between growth rate and density.  For example, Al2O3 

15 nm- Fe 1nm results in 8% higher growth rate but 30% lower density as shown in 

Figure 3.5.   

 

Figure  3.5  VA-CNT growth rate and density for various catalyst compositions. 

Further, the gas composition (He/H2 ratio) during the annealing step also affects the 

CNT structural characteristics by affecting the size and spacing of the particles.  This 

effect has not been studied but will be briefly discussed here.  In principle, the H2 role in 

this process is to reduce the oxidized catalyst (FexOFe).   Additionally, the H2 reacts 

with the O2 traces to form water vapor which is believed to inhibit Ostwald ripening of 

the particles after dewetting.  Ostwald ripening, also known as coarsening is the 

migration of Fe atoms from the smaller catalyst nanoparticles into the larger ones.4  The 

described dynamics affects the diameter distribution and density of the particles which 

change the structure of the CNTs.  He is an inert carrier gas, and its effects on the 

particle-substrate interaction are not considered.   
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My observations indicate that He 400 sccm/H2 100 sccm annealing recipe (Figure 

3.3a also know as “Standard New” Recipe) leads to more consistent and typically higher 

growth rates during the summer, while He 100 sccm/H2 400 sccm (Figure 3.3b also 

known as the Hybrid Recipe) is more suitable in the winter!  Several studies from the 

Mechanosynthesis group indicate that the growth variations are related to the relative 

humidity (RH), because there is widespread work on how small water vapor levels affect 

CNT growth. The RH level in our lab is not controlled and ranges between 65% during 

the summer and 12% during the winter.  Recent experiments performed in our group 

support my observations by showing that the Hybrid Recipe results in consistent growth 

results during the summer only when the tube is sufficiently dried by purging for >30 

minutes using dry gas (e.g He) before growth starts.   The water vapor content was 

measured using a capacitance based water vapor sensor connected in series with the tube 

inlet gas line and the time evolution of the water parts per million (ppm) is shown in 

Figure 3.6.   The results indicate that the water vapor diffuses into the Teflon tubes used 

to transport the gases into the furnace.  The figure shows that after the tube is dried by 

purging, the water ppm in the furnace increases abruptly when new gas (e.g. H2 or C2H4) 

is introduced into the tube.  Results from newly installed stainless steel lines indicate that 

the tube remains dry even when new gases are introduced.  I also observed that increasing 

the annealing time from 10 minutes to 30 minutes leads to more consistent growth results 

during the summer.  This observation is also consistent with the adverse effect of high 

water vapor concentration on the CNT growth during humid days.  However, no 

difference in the surface morphology of the catalyst could be observed by AFM for 

annealing with the two different recipes.  The conclusion of my efforts is the need for a 

standard longer He purging time (40 minutes) especially during summer time where 

humidity is higher than 30%; and possibly introducing controlled amounts of water vapor 

during the winter season.  With a more consistent baseline, the effect of the  He/H2 ratio 

on the film structure can be more controllably studied.  

3.2.2. CNT growth stage 

The CNT growth stage starts immediately after the carbon source gas is introduced 

into the tube.  In the standard recipe, we use 100 sccm of ethylene (C2H4).  As the gas 
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mixture flows through the tube, it heats up by convection from the tube walls and by 

radiation.  C2H4 thermally reacts into a multitude of hydrocarbon species which are active 

precursors to CNT growth.5  Because of the decomposition mechanism of C2H4 in the 

tube, the growth must be performed downstream the tube as shown in Figure 3.2 

although the temperature distribution is symmetric with respect to the furnace centerline.  

The growth rate varies between 60-100 µm/min. 

 

Figure  3.6 Water vapor content time evolution. Plot showing the time evolution of the 
measured water vapor content in the CVD system with the gases connected by Teflon and 

Stainless steel lines. Stainless steel line values remain below 10 ppm. Experiments by Erik Polsen 
and Ryan Oliver. 
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Figure  3.7  VA-CNT growth rate and density for various C2H4 flow rates. 

The C2H4 flow rate affects the growth rate and density as shown in Figure 3.7, 

which also shows a trade-off between the two.  These experiments were performed under 

controlled conditions on patterned and non-patterned catalyst.  The density is estimated 

from mass and area measurements from non-patterned catalyst.  Before the experiments, 

the tube was dried by annealing in air for 30 minutes at 875°C.  The first growth was 

performed and the samples disregarded to eliminate the variation caused by 

environmental effects (i.e., water vapor) on the gas lines.  After each growth the tube was 

baked in air for 30 minutes at 875°C to burn-off any hydrocarbons deposited on the inner 

tube wall during the growth.  All the growth experiments were carried out in the same 

day after the system initialization steps described above.   Te results demonstrate the 

trade-off between growth rate and density as a function of the C2H4 flow rate. 

3.2.3. The termination stage 

The termination recipe affects the adhesion of the CNT to the substrate.  When the 

C2H4 and H2 are abruptly turned off and replaced by He flow, the CNT microstructures 

have low adhesion to the substrate.  On the other hand, if the growth is terminated by an 
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abrupt change in temperature without any change in the supply gases, the CNT 

microstructures have high adhesion to the substrate.6  This is achieved by opening the lid 

of the furnace to allow for a higher cooling rate.  The adhesion to the substrate affects the 

rolling and the capillary forming of VA-CNT microstructures. Figure 3.8. shows 

exemplary low adhesion and high adhesion microstructures made by capillary folding.   

 

Figure  3.8  VA-CNT growth termination recipe. SEMs showing (a) low and (b) high adhesion 
CNT microstructures collapsed by capillary forces obtained by the recipes shown at the bottom. 

The adhesion of the CNTs to the Fe nanoparticles (and hence to the substrate) after 

growth can be enhanced by forming a thin carbon layer around the nanoparticle and at the 

CNT-nanoparticle interface by rapid cooling in the growth atmosphere as shown in 

Figure 3.8b.  As the furnace temperature drops, the CNT growth terminates when the 

temperature reaches ≈550°C.  The continued C2H4 flow during this stage leads to the 

deposition of a carbon shell around the nanoparticles which promotes the adhesion by 

forming C-C bonds.  On the other hand, when the carbon source is abruptly turned off 

(Figure 3.8a), the carbon atoms precipitate out from the Fe nanoparticles and react with 

traces of oxygen and H2O.  In this case, the furnace temperature is allowed to slowly drop 
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by switching-off the power to the heating elements without opening the furnace lid.   

Addition of H2 during this stage is optional and leads to further etching of the carbon.  

This hypothesis is confirmed by Pint et al. using X-ray Photoelectron Spectroscopy 

(XPS). 

3. 3 Effect of pattern size and density (with Yuki Matsuoka) 

The size and density of the catalyst patterns affect the growth results.  This is 

confirmed by the observation of increased CNT growth rate for densely packed catalyst 

patterns compared to highly spaced or isolated features on the same substrate.  Yuki 

Matsuoka and I designed a mask for catalyst patterning to capture controlled variations in 

patterns size and density as summarized in Figure 3.9.  Three arrays of circles with 

diameters of 10, 30 and 90 µm were designed.  The spacing among the circles is 

calculated to achieve constant total fill fraction (fill fraction = catalyst area per substrate 

area) for each diameter. 

 

Figure  3.9  Mask for studying the effect of catalyst size and density on CNT growth. Figure 
prepared by Yuki Matsuoka. 

These results, shown in Figure 3.10, indicate that at fill fraction (i.e. low density 

patterns), the growth rate is smaller.  Varying the fill fraction by an order of magnitude 

changes the growth rate by 15%.  Jeong et al. experimentally studied this effect and they 

contribute the growth rate dependency on the pattern density to the number of walls of 

the individual CNTs.7  Hence, they show that dense patterns have a higher growth rate 

but a smaller number of CNT walls.  While this variation seems small, it can lead to 
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bending the CNT microstructures as shown in Figure 3.11. Variations in the local pattern 

density surrounding an individual catalyst feature can lead to gradients in CNT growth 

rates across the same feature (Figure 3.11).  This creates mechanical stresses on the CNT 

microstructure as it is growing and leads to microstructure bending.  This effect is similar 

to the actuation mechanism of bimetallic strips.   

 

Figure  3.10  VA-CNT growth rate for various pattern diameters and density 

3. 4 Plasma etching of VA-CNT 

Plasma etching can be used to modify the top surface (the “crust”) of the CNT 

forests and hence change the mechanical interactions among the CNTs.  Etching is 

performed in Plasmatherm 790 located in the LNF facility.  This tool consists of parallel-

plate Reactive Ion Etching (RIE) chamber.  The etching conditions are summarized in 

Table 3.3.  Figure 3.11 shows the crust before and after plasma etching. 



 
 

67 
 

 

 

Table  3.3  Process parameters for plasma etching of VA-CNTs. 

Step Gas 1 Gas 2 Pressure RF Power Duration 

1 O2 20 sccm - 75 mTorr 80 mW 20 s 

2 O2 20 sccm Ar 20 sccm 75 mTorr 80 mW 40s 

 

Modifications in the structural characteristics of the crust can hence change 

mechanocapillary forming.  Other changes due to plasma etching include changing the 

CNT density, inducing defects in the CNTs, and forming –OH groups on the CNT and 

substrate surface.  

 

Figure  3.11   VA-CNT bending due to variation in growth rate across the same feature. 
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Figure  3.12  VA-CNT top surface morphology. (a) before and (b) after plasma etching. 

3. 5 Coating of VA-CNT microstructures 

The CNT microstructures can be modified and functionalized by several types of 

coatings.  Developing processes for coating the CNT microstructures with ceramics or 

polymers (e.g. Reactive Coatings) is motivated by the several demonstrations of these 

coatings in enhancing the robustness and the mechanical properties of the CNTs making 

functional interfaces for batteries,8 immobilization of a number of different entities 

including proteins,9, 10 peptides,11 DNA,12 and quantum dots.13 

3.5.1. Ceramics coatings by Atomic Layer Deposition  

Atomic Layer Deposition (ALD) can be used to conformally deposit thin layers of 

ceramics such as Al2O3 around the surface of individual CNTs within the 

microstructures.  ALD is a special type of CVD where the gas phase reaction constituents 

are not simultaneously introduced into the system.  Instead, the deposition in ALD 

consists of an integer number of cycles.  During each cycle, the gas precursors are 

sequentially introduced in two half-reaction stages.  By purging and/or evacuating the 

chamber after each stage, only the gas species adsorbed on the surface remain.  Hence the 

material deposition during each cycle is self-limiting and produces a constant film 

thickness. 

The ALD of Al2O3 on CNT has been studied by Professor Roy Gordon and 

colleagues at Harvard University.14  The challenge in coating CNTs with ALD is 
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achieving a conformal coating during the first half-reaction stage without creating defects 

on the CNT surface.  They found that using nitrogen dioxide (NO2) gas and 

trimethylaluminum (TMA, Al[CH3]3) vapor leads to the formation of uniform conformal 

layers physically adsorbed on the CNT surface.   

 

Figure  3.13  Al2O3 coating of VA-CNT by Atomic Layer Deposition.  (a) SEM of the VA-CNT 
side walls (from left to right) with no coating, 10o cycles of Al2O3 and 1000 cycles Al2O3. (b) 

Schematic showing conformal coating of the CNTs. (c) Thermogravimetric Analysis of VA-CNT 
cylindrical microstructures with30 and 60 µm diameter coated with 1000 cycles of Al2O3. 

I used TMA, Al[CH3]3/DI-H2O 20 ms half-cycle pulses at temperatures ranging 

from 80°C to 300°C in the Oxford OpAL system located in the LNF.  The cycle growth 

rate is 1.1 Å/cycle as measured by ellipsometry on a flat Si substrate. 
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The coating is conformal to the CNT surfaces as shown in SEM images of Figure 

3.13.  Coating the CNT microstructures with a large number of cycles (1000 cycles) leads 

to filling of the microstructures thus forming a Al2O3 matrix-CNT fiber composite.  The 

uniformity of the coating varies across the CNT microstructure due to the gas diffusion.  

More specifically, the coating thickness is higher along the edges and on the top of the 

CNT microstructures.  This effect is characterized by conducting Thermo-Gravimetric 

Analysis (TGA) of ALD coated samples (100 cycles) consisting of cylindrical CNT 

microstructures with 30 µm and 600 µm diameters.  The TGA final temperature is 

1000°C and the remaining mass consists of Al2O3 considering that the CNTs burn at ≈ 

700°C.   

To assess the penetration depth, Alex Hryn (NNIN-REU summer student 2009) and I 

formulated an idealized model of CNTs conformally coated with ALD as shown in 

Figure 3.13b.   An ideally coated sample of CNTs would have ~83% mass remaining 

after the CNTs burn away.  From the TGA graph of Figure 3.13c, the 30µm CNT 

microstructures are fully coated.  The results from the 600µm sample however indicated 

that the CNTs were not fully coated.  Assuming that CNTs are either fully coated or not 

coated at all, a rough estimate of the penetration depth is estimated to be ≈20 µm into the 

pillars.   

3.5.2. Polymer coating by Chemical Vapor Deposition (with Xiaopei Deng) 

Professor J. Lahann’s group in the Chemical Engineering department developed 

CVD polymerization technology for the deposition of a wide range of different Reactive 

Coatings.15 These reactive coatings share the same polymer main chain, poly-p-xylylene, 

but differ in the nature of their substituents, which can be presented on aromatic or 

aliphatic parts of the polymer.   

Xiaopei Deng and I developed a method to conformally coat VA-CNT with various 

functional polymer films using CVD.16  As-grown VA-CNT are plasma etched following 

the process parameters described in Table 3.3.  The CVD coating was done and 

characterized by Xiaopei Deng.  The silicon substrates with the VA-CNTs are placed in 

the polymerization CVD chamber.  The starting material 4-trifluoroacetyl [2.2] 
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paracyclophane was synthesized via Friedel–Crafts acylation of [2.2] paracyclophane.17  

A pressure of 0.3 mbar and temperatures of 90–100 °C are employed for the sublimation 

of the starting material. Then the starting material is transferred in a stream of argon 

carrier gas (20 sccm) to the pyrolysis zone (670 °C). Following pyrolysis, the diradicals 

are transferred into the deposition chamber, where polymerization occurrs. The wall 

temperature is adjusted to 120 °C, and the substrates are cooled to 15 °C to optimize the 

deposition onto the substrate and the deposition rate is controlled at a constant rate 0.5 

Å/s. Rotation of the sample holder ensures uniform film deposition.   

 

Figure  3.14  Parylene coating of VA-CNT by Chemical Vapor Deposition.  (a-d) SEM images of 
side showing (a) no coating, (b) coating for 10 min, (c) for 20 min, and (d) for 30 min. 

We selected poly[4-trifluoroacetyl-p-xylylene-co-pxylylene] as the reactive coating 

because of its documented reactivity towards hydrazides and hydrazines. The process 

could be similarly applied to coatings with other functional groups, such as active esters, 

anhydrides, amines, acetylene, or tertiary bromides.32 Polymer deposition followed a 

modified Gorham process, where 4-trifluoroacetyl [2.2] paracyclophane was sublimated 

at a temperature of 90-100 °C and a pressure of 0.3 mbar. Subsequent cleavage of the C-

C bonds of the bridge at 670 °C resulted in the corresponding quinodimethanes 

(monomers). Next, the reactive species were allowed to enter the deposition chamber, 

where they spontaneously deposited on the CNT structures. 
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This technique can be used to coat the CNTs with various thicknesses as shown in 

Figure 3.14.  The SEM images indicate that the conformal coating forms a shell around 

individual CNTs and/or CNT bundles.  By changing the deposition time we achieved 

control on the coating thickness which allows the tuning of chemical and mechanical 

properties as discussed in Chapter 6.   
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Chapter 4 

Mechanical rolling of VA-CNT 

 

High density assemblies of horizontally aligned CNTs (HA-CNTs) with controlled 

geometry, packing, and placement could potentially replace metals as interconnects in 

existing and emerging electronic systems.  This chapter describes the methods and tools 

developed to fabricate HA-CNT ribbons and sheets with controlled characteristics and to 

transfer them from the growth silicon substrates to flexible polymer substrates.  In this 

process, a small roller is used to “topple” tall VA-CNT microstructures and to 

simultaneously compress them, thus increasing the packing fraction of CNTs from 

approximately 2% to as high as 60%.  The resulting ribbon width ranges from <100 µm 

to 5 cm and the thickness range from 300 nm to 20 µm. CNT sheets are fabricated by 

rolling overlapping ribbons from a line pattern cm-scale.  We formulate design guidelines 

for selection of pattern geometry, roller diameter and material, and the forces in the 

rolling process.   The HA-CNT structures are transferred to other substrates using 

kinetically controlled peeling and printing, enabling integration with CMOS and MEMS 

fabrication, and with alternative substrates such as flexible plastics.   
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4. 1 Process and machine design 

VA-CNT microstructures are grown by thermal CVD on a silicon substrate then the 

VA-CNTs are transformed into densely packed HA-CNTs by direct mechanical rolling 

using a small diameter stainless steel pin, as shown in Figure 4.1 and 4.2.1 The catalyst 

patterning and growth processes are described in Chapter 3.  VA-CNT microstructures 

resembling thin “blades” are grown to 1-2 mm height.  The termination stage in the 

growth recipe is used to control the adhesion of the blades to the substrate.2  Rolling is 

achievable with both low and strong adhesion of the VA-CNT to the substrate.  However, 

if dry transfer printing to other substrates is required, low adhesion recipe is used and the 

HA-CNTs are easily delaminated from the substrate without the need of a carrier film. 

 

Figure  4.1  Rolling of VA-CNT blades into densely packed HA-CNTs. (a) Kinematics of the 
rolling process. (b) Schematic of the force-controlled rolling machine. (c) Optical image showing 

VA-CNT blades mounted in the machine before rolling. 

After growth, the substrate with VA-CNT blades is placed in a custom-built benchtop 

apparatus (Figure 4.1 and 4.4), wherein a stainless steel roller is held between the 

substrate and a pair of rails.  The substrate and rails are moved in opposite directions, 

causing the roller to rotate about a fixed virtual pivot. Contact between the roller and the 

CNTs first topples the VA-CNT blades to the horizontal orientation, and then the contact 

pressure between the roller and CNTs compacts the CNTs as the roller moves across the 
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substrate.  The applied force determines the thickness of the HA-CNT ribbons after 

rolling.  The force is adjusted using springs in the machine frame. 

 

Figure  4.2  SEM images of CNTs before and after rolling. (a) as-grown VA-CNTs having 20 and 
100 mm width and( b) HA-CNTs fabricated by rolling followed by capillary densification. 

Higher-magnification images show CNT alignment in each configuration. 

 

Figure  4.3 Rolling of CNT sheets. (a) Schematic of rolling of line patterns to form overlapping 
CNT sheets. SEM image of (a) as-grown CNT line patterns and (b) HA-CNT sheets after rolling. 

 Initial contact between a VA-CNT blade and the roller topples the blade by kinking 

the structure at its base, causing little shear in the upper portion of the blade.  Minimizing 

shear and buckling of the VA-CNTs during the rolling process is essential for creating 

HA-CNT films with uniform texture, and this is achieved using a roller diameter less than 

the VA-CNT blade height, and designing the VA-CNT blade width to be substantially 
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less than the height.  In the experiments reported here, we use a 0.3 mm to 0.6 mm 

diameter stainless steel pin to roll VA-CNTs with 200 µm to 2 mm initial height and 20-

100 m initial width.  Our method contrasts recent approaches that shear a uniform VA-

CNT forest into a thin film, using a much larger diameter roller that is separated from the 

CNTs by a flexible mesh.3  In our experience with this alternative approach, 

entanglement and van der Waals forces among the VA-CNTs induce significant shear, 

and therefore the resulting CNT films are not well aligned through their thickness.  By 

rolling series of line patterns, overlapping HA-CNT can form cm-scale CNT sheets as 

shown in Figure 4.3. 

 

Figure  4.4 Optical image of the rolling machine showing mounted CNT substrate and pin before 
rolling. 

Further, for effective transformation, the HA-CNTs must not adhere to the roller.  

Since the resultant force from the van der Waals attraction between the CNTs and roller 

is directly proportional to the contact area, it is desirable to minimize the local contact 

area between the CNTs and the roller.  From Hertzian contact mechanics,4 the width of 

the contact area between a cylinder (diameter d, length l, modulus E1, poisson’s ratio ν1) 

and a plane (E2, ν2), is 
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Figure  4.5 Kinematics of rolling.  Based on optical microscopy during the rolling process, 
we observed that the CNTs show only little slip with respect to the roller.  Thus the contact point 

of the CNTs and the roller follow the cycloid curve and cause shear and buckling in this area. 
 

Therefore, a small diameter roller made of a material having high elastic modulus 

gives relatively weak adhesion to the CNTs. This simple formula agrees with our 

observation that the CNTs tend to stick to rollers having a substantially larger diameter 

than used in the present study, and/or to rollers made of a soft material (e.g., PDMS or 

Nylon).  Further, large rollers cause undesirable shearing and buckling of the VA-CNTs. 

(Figure 4.5) 

4. 2 Alignment characteristics of HA-CNT 

Our force-controlled rolling process creates HA-CNT ribbons with uniform thickness 

and significantly higher packing density than the original VA-CNT blades, as shown in 

Figure 4.2. The rolling process preserves and possibly increases the CNT alignment, as 

quantified by calculating Herman’s orientation parameter (H) from synchrotron small-

angle X-ray scattering (SAXS) data.5  Example SAXS images are shown in Figure 4.6. 

For VA-CNT blades characterized by transmission SAXS, H = 0.2; for HA-CNT ribbons 

characterized by grazing incidence (GI-) SAXS, H = 0.4.  Precise comparison of H values 

between the transmission and grazing incidence configurations is not possible as 

Herman’s parameter is highly sensitive to background scattering; however, from the 

FWHM of the azimuthal intensity distribution, we can judge that the alignment of the 

HA-CNTs is at least as good as the initial VA-CNTs, and logically should increase as the 
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CNTs are densified during processing. Further, as we expect that the X-ray beam 

penetrates fully through the HA-CNT ribbon thickness, SAXS verifies that the ribbons 

exhibit strong alignment through their thickness. 

 

Figure  4.6 Characterization of alignment of CNT microstructures by synchrotron X-ray 
scattering. (a) Transmission SAXS image of VA-CNTs before rolling; (b) grazing incidence 

SAXS image of HA-CNTs after rolling; and (c) comparison of azimuthal  intensity distributions 

4. 3 Thickness and density of HA-CNT 

The final thickness (t) and packing density of the HA-CNT ribbons is controlled 

by the initial width (w) of the VA-CNT blades prior to transformation, and by the force 

applied to the roller.  Figure 4.7 plots the densification ratio (w/t) and packing fraction of 

HA-CNT ribbons created from VA-CNT blades having w = 20 µm and 100 µm. The 

densification factor increases linearly with the normal force applied during the rolling 

process.  This linear plastic behavior is due to the initially low density of VA-CNTs; the 

CNTs are easily compacted in the direction perpendicular to their alignment. The HA-
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CNT density is calculated using the known VA-CNT density and the measured 

densification ratio.  The VA-CNT density is calculated from measurements of the mass 

(using a microbalance) and the CNT microstructure volume (using SEM) of a VA-CNT 

forest grown fully over a silicon substrate.  The CNTs used in this study have average 

outer diameter 10 nm and inner diameter 6 nm, as also determined by SAXS. [21]  The 

VA-CNT density is 0.02 g/cm3, corresponding to a packing fraction of 0.016.  The 

density at the maximum packing fraction of 0.9 is 1.26 g/cm3, and for comparison the 

density of graphite is 2.2 g/cm3. 

 

Figure  4.7 Control of HA-CNT geometry by control of rolling force: densification factor and 
packing fraction for (a) 20-mm and (b) 100-mm VACNT blade widths. Insets show side views of 

typical HA-CNT ribbons after rolling and capillary densification at 5.6 N applied force. 
Thickness values are written next to each data point and are averages for three samples processed 

under identical conditions. 

After the rolling process, significant further densification is achieved by infiltrating 

the HA-CNTs with an organic solvent such as acetone, and subsequently evaporating the 

solvent.   Evaporation of the solvent draws the CNTs into a more tightly packed 

arrangement.  In agreement with previous studies of elastocapillary aggregation of fibers 

and hair,[15] the final packing fraction depends on the initial spacing (packing fraction) of 

the HA-CNTs after the rolling process. Therefore, maximal packing of HA-CNTs is 

achieved by combining mechanical and capillary densification methods.  The maximum 

densification factor achieved in this study is 30, giving a final packing fraction of 

approximately 0.6.  Raman spectroscopy (Figure 4.8) shows that the G/D peak intensity 
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ratio is invariant before and after rolling and densification, therefore suggesting that the 

CNTs are not damaged during the rolling and densification steps. 

 

Figure  4.8  Normalized Raman spectra acquired for HA-CNT ribbons after rolling VACNTs 
having w = 20 µm, and (b) w = 100 µm, at various rolling forces. These spectra show that the 

change in CNT structural quality manifested by IG/ID ratio is negligible.  For reference, IG/ID = 
1.2 for a VA-CNT forest grown under the same CVD conditions. 

4. 4 Transfer printing of HA-CNT  

The HA-CNT ribbons can be robustly transfer printed to other substrates, including 

flexible films of PDMS and polyimide (Kapton) as shown in Figure 4.9. A smooth 

PDMS carrier substrate, made by curing and then delaminating the PDMS from a 

template silicon substrate, is laminated onto the original HA-CNT substrate after rolling 

and capillary densification. Taking advantage of kinematically controlled adhesion of 

PDMS to SiO2, the CNTs stick to the PDMS when the carrier substrate is peeled quickly 

from the growth substrate.6 By laminating the PDMS carrying the HA-CNTs onto a 

polyimide film and then peeling it off slowly the HACNT bundles are uniformly 

transferred to polyimide as shown in Figure 6d and e. In contrast to previous PDMS 

transfer of crystallographically aligned HA-CNTs, the high packing density and uniform 

texture of our HA-CNT ribbons facilitates their direct printing without need to infiltrate 

the CNTs with a polymer as a carrier medium.  Raman spectroscopy measurements again 

show no considerable change in the IG/ID ratio, suggesting the printing process does not 

damage the CNTs.  Finally, the HA-CNT ribbons can be processed by standard 
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photolithography and plasma etching methods, enabling straightforward device 

fabrication and electrical characterization as described in Chapter 7.   

 

Figure  4.9  Transfer printing of HA-CNTs. (a) Schematic of the transfer printing process. (b) 
Transfer of CNT ribbons to flexible PDMS substrate; (c) Transfer to kapton substrate; and (d) 

transfer of several CNT sheet to kapton; Au electrodes shown in (d) were deposited by sputtering 
through a laser cut shadow mask. 
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