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ABSTRACT

A Novel Multiscale Physics-Based Progressive Damage and Failure Modeling Tool
for Advanced Composite Structures

by

Evan Jorge Pineda

Chair: Anthony M. Waas

A novel, multiscale mechanics model for predicting the evolution of damage and fail-

ure in continuous fiber-reinforced laminates was developed. The thermodynamically-

based work potential internal state variable (ISV) theory, Schapery theory (ST), is

utilized to model matrix microdamage at the lamina level within a finite element

method (FEM) setting. Failure due to transverse cracking and fiber breakage is mod-

eled at the microscale within a repeating unit cell (RUC) using the semi-analytical

generalized method of cells (GMC). A multiscale procedure is employed to link the

microscale GMC calculations to the macroscale at every integration point in the FEM

model. Micromechanics calculations are precluded if the macroscale damage is below

some nominal value, increasing the overall computational efficiency of the multiscale

scheme. Computational results and predicted failure modes are compared to exper-

imental data of two center-notched, carbon fiber/epoxy panels containing different

stacking sequences. A novel, single-scale extension of ST, the enhanced Schapery

theory (EST), is also presented. Three additional ISVs are introduced to account

for failure via matrix transverse cracking (mode I and mode II) and fiber breakage

xvi



(mode I only). These ISVs incorporate a characteristic finite element length scale,

and are directly related to the fracture toughnesses of the material. In doing so, the

pathological mesh dependency, resulting from the failure degradation scheme that was

used in the previous multiscale model is eliminated; however, the explicit influence of

the fiber-matrix architecture is lost. The EST model is evaluated against the same

center-notched panel data. Finally, a mesh objective, smeared crack band model is

implemented into the high-fidelity generalized method of cells (HFGMC) microme-

chanics theory. This failure model utilizes local fields to resolve the orientation of the

crack band locally within the subcells of the RUC. The capabilities of the model are

demonstrated using an RUC containing multiple randomly oriented fibers subjected

to transverse tension and compression. The results of the model are compared to

experimental data, and it is concluded that the newly developed model is viable for

mesh objective, multiscale simulations.
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CHAPTER I

Introduction

The first known use of composite materials, or materials composed of two or more

constituents, in load bearing structures dates back to the people of the Mehrgarh

region during the Neolithic Era between 7000 B.C. to 2500 B.C. [Possehl (1996)].

The people of the Mehrgarh used mud bricks composed of clay, mud, sand, water and

straw to build homes. Composite materials have continued to maintain prevalence in

structural designs throughout history, as well as the present.

Although composites, more specifically reinforced concrete, are still used in con-

struction, the applications utilizing composite materials have also become more tech-

nologically advanced and can be found in industries such as aerospace, automotive, de-

fense, sporting goods, biomedical, and electronics. The high-level application of com-

posite materials requires high-performance constituents ranging from carbon fibers,

glass fibers, polymers, ceramics, metals, and carbon nanotubes. Furthermore, natural

fibers like jute and hemp can be used with thermoplastics to yield environmentally

safe, biodegradable, composite materials. In addition to constituent selection, the

micro-architecture of the composite can take various forms. Typical composite ma-

terials utilize chopped, continuous, woven, or braided fibers, or particles in a matrix.

Due to the broad composition of composite materials, engineers are afforded con-

siderable flexibility when designing with composite materials, and the multi-faceted
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nature of a composite material results in the composite behaving closer to a small-

scale structure than a traditional monolithic material. This tailorability ultimately

leads to more efficient, cost effective designs. As manufacturing techniques advance,

the economic feasibility of producing large scale composite structures will continue

to improve. In this regard, textile composite materials are an emerging area [Pankow

(2010)].

To further advance the efficiency of composite structures, while reducing the ex-

pense, virtual testing of materials can be employed to supplement some of the physical

testing [Cox and Yang (2006)]. While physical material testing will always remain

the most important component in the design and certification process of composite

structures, virtual testing and simulation can be exploited during early stages of de-

sign to consider more design possibilities than is practical with physical testing alone,

and it can be used to eliminate unsound designs before time and money is wasted on

manufacturing the material to test the design. Moreover, numerical (or analytical)

predictions can provide guidance for the physical experiments, especially when large

components of full-scale structures are to be tested.

However, to obtain dependable and accurate predictions, robust, physics-based

numerical tools must be developed. The heterogeneity responsible for the appeal

of composites also contributes to their complex behavior, making numerical model-

ing of composites a challenging feat. Relating to structural integrity, the numerous

constituents and inherent length scales present in a composite material elicit various

damage and failure mechanisms in the separate constituents at the different length

scales. Thus, the overall, observed response of a composite material is the culmination

of and interaction between the damage and failure mechanisms in the constituents

and across the length scales.

Not only do emerging numerical tools need to contain the fidelity and detail nec-

essary for accurate predictions, they must also be computationally efficient if any
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large scale predictions are desired. Furthermore, the tools must be accessible to the

engineers who will be using them if widespread use is sought. The objective in this

work is to progress towards this goal for modeling progressive damage and failure in

continuous fiber-reinforced laminates (FRLs). The formulation of the theories, de-

velopment of the frameworks, and examples presented are specific to polymer matrix

composites (PMCs). To adapt the models to ceramic matrix composites (CMCs) or

metal matrix composites (MMCs), the appropriate damage and failure mechanisms

would need to be accounted for.

FRLs are most often comprised of layers of unidirectional fibers that are pre-

impregnated with resin (pre-preg). The pre-preg layers are stacked and cured under

specific temperature cycles and pressure. The orientation of the individual layers are

chosen to customize the directional stiffness, strength, and damage tolerance of the

laminate. Thus, the global damage and failure mechanisms that arise in the FRL

depend considerably on the lay-up and directionality of the applied loads.

Damage and failure in the individual layers, within the FRL, are also functions

of the load orientation relative to the axial direction of the fiber. For instance, axial

failure is primarily fiber dominated, while transverse and shear failure are essentially

controlled by the behavior of the matrix. Although the nonlinear response of a lam-

ina, due to damage and failure evolution, may be controlled by one constituent or the

other, the other constituent still contributes. For instance, fibers impede the growth

of matrix cracks during transverse or shear failure, and the matrix surrounding the

fibers provide a means to dissipate additional energy, through interfacial friction, dur-

ing axial failure. Furthermore, the response of a lamina, or laminate, in compression

(axial or transverse) can differ vastly from that in tension. Additionally, the damage

and failure mechanisms in the constituents are occurring at, and interacting across,

multiple length scales. It is because of this complex manner in which the global dam-

age and failure mechanisms in FRLs arise that the correct physics must be accounted
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for, at the appropriate scale, to actualize truly predictive models.

1.1 Damage and Failure Mechanisms in Fiber-reinforced

Laminates

Initially, for low to moderate load levels, damage manifests in the matrix of

the laminae in an FRL as matrix microdamage [Schapery (1989); Sicking (1992);

Schapery and Sicking (1995)]. Matrix microdamage consists of all preliminary struc-

tural changes in the matrix including shear banding, microcracking, fissuring, fiber-

matrix debonding, and micro void growth. Matrix microdamage is a highly dis-

tributed phenomenon, and the evolution of these mechanisms manifest as progressive

changes in the stiffness of the material. The individual mechanisms associated with

microdamage manifest at scales near or below that of the diameter of the fiber, but

they are very widespread and encompass a scale well beyond the diameter of the fiber.

Matrix microdamage accounts for all time independent nonlinearity (other time de-

pendent, preliminary nonlinearities may be a result of viscoelastic or viscoplastic

mechanisms), in the composite up until the onset of more catastrophic matrix, fiber,

or interlaminar damage or failure mechanisms. A scanning electron microscope (SEM)

image of microcracking in [±45◦]S angle ply laminate is displayed in Figure 1.1. A

plethora of microcracks are present spanning the distance between adjacent fibers.

Arrays of microcracks extend along the axial fiber direction. Additionally, there is

a region of matrix, between two fibers, that has been completely pulverized. This

region demonstrates a more catastrophic failure mechanism subsequent to matrix

microdamage.

Local states of transverse tension, that may also be combined with shear, produce

transverse cracks, or simply matrix cracks, in the matrix phase of the FRL, as shown

in Figure 1.2. The effects of these cracks are more significant than the previously
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described matrix microdamage, and the progression of individual transverse cracks is

more abrupt, rather than progressive. Matrix cracks may be a result of the coalescence

of microdamage, as observed in Figure 1.1, or they may nucleate from preexisting flaws

in the matrix, not necessarily affiliated with microdamage Sicking (1992); McCartney

(1987). These cracks are very localized and generally span the thickness of a layer

and run parallel to the fiber direction. Figure 1.2a shows the localized nature of the

individual transverse cracks. It is shown that the local placement of the fibers affects

the transverse crack path, and the cracks navigate around the inclusions to reach the

boundaries of the ply. A magnified SEM image of a single transverse crack is shown in

Figure 1.2b. Figure 1.2b exhibits the coalescence of numerous fiber-matrix debonds

into a single transverse crack.

In PMCs, axial ply failure (under tension) involves loss of the load carrying ca-

pability of the fibers, which are the primary load bearing members in the composite.

Thus, tensile, axial ply failure commonly leads to ultimate failure of the laminate

or structure. The integrity of the fiber is jeopardized when the fiber fractures as

shown in Figure 1.3. Since the axial response of the composite is dominated by the

properties of the fibers, experiments on [0◦] unidirectional, PMC laminates yield a

load versus displacement response that is linear until the specimen fails suddenly and

catastrophically. However, in a multi-angle laminate, fibers from off-axis plies bridge

the macroscopic crack (see Figure 1.4) preventing immediate fracture. Furthermore,

energy is dissipated through friction between the surfaces of the debonded fibers

and matrix as fractured fibers are pulled out of the surrounding matrix [McCartney

(1992b); Rudraraju (2011)].

The compressive response, both axially and transverse, of a fiber-reinforced lamina

is drastically different than the tensile response. It is energetically favorable for cracks

in monolithic materials, such as the matrix phase of a composite, to advance under

mode I (tensile) conditions. However, conditions arise where mode I crack growth is
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impossible, such as when constraints are imposed by interfaces or compressive loads.

In these cases, the crack progresses under pure mode II, mode III, or mixed-mode

conditions. When a FRL layer is subjected to transverse compression, internal Mohr-

Coulomb friction in the matrix causes the damage and failure to evolve in shear [Puck

and Schürmann (1998); Aragonés (2007); Gonzaléz and Llorca (2007b)]. Figure 1.5

shows the failed state of composite layers subjected to transverse compression. Figure

1.5a exhibits shear band and crack progression through the ply at roughly and angle

of 56◦. A more magnified SEM image of an additional composite, presented in Figure

1.5b, displays significant shear banding, accompanied by microcracking and fiber-

matrix debonding. A great degree of damage bridging between the damage paths is

also observed.

Fiber kinking, or microbuckling, is the predominant damage or failure mode un-

der axial compression [Budiansky and Fleck (1993); Schapery (1995); Yerramalli and

Waas (2003); Basu (2005)]. An SEM image of a kink band is displayed in Figure

1.6. Although it would seem that fiber kinking is dominated by the properties of the

fiber, this mechanism depends more on the shear properties of the matrix. As the

ply is loaded, slight misalignments in the fiber direction, with respect to the load,

lead to rotation of the fibers. This fiber rotation increases the shear strain in the

surrounding matrix, which advances matrix microdamage. Increasing matrix micro-

damage degrades the shear stiffness of the matrix making it easier for the fibers to

rotate. This feedback loop eventually leads to a runaway instability, and a fiber kink

band forms. Kink bands are also responsible for lowering the compressive strength of

notched composites [Waas et al. (1990b,a)].

Evolution of damage and failure is not restricted solely to the composite layers. In-

terlaminar damage and failure can occur through delaminations. Delamination cracks

run along the ply interface under mixed mode conditions, and usually result from high

transverse shear, or peel, stress near free edges, discontinuities, or intralaminar trans-
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verse cracks that have approached a ply interface [Green et al. (2007); Hallett et al.

(2008)]. Figure 1.7 contains a photograph of a FRL failed under three-point bend-

ing. A single crack can be seen transitioning from a transverse crack in a layer to a

delamination (or vice versa).

1.2 Computational Progressive Damage and Failure Analy-

sis

A multitude of different damage and failure theories have been developed over the

years that have been utilized for progressive damage and failure analysis (PDFA) of

composite structures. These theories range from phenomenological, to physics-based,

to based on first principles. Most contemporary PDFA is performed numerically using

the finite element method (FEM) to discretize the continuum structure of interest.

Within an FEM setting, discretization of the continuum may lead to pathological

dependence of the solution on the mesh density. For a predictive model, the numerical

results must be mesh objective. Some of the theories and techniques for PDFA are

summarized in the following sections. A review of recent PDFA approaches is given

in Tay et al. (2008); Tsai (2009); Liu and Zheng (2010)

1.2.1 Mesh Dependency Resulting from Post-Peak Strain Softening

The lack of positive definiteness of the elastic, or inelastic, tangent stiffness tensor

leads to imaginary wave speeds in the material. The longitudinal wave speed in an

isotropic material is given by

cL =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
(1.1)

where cL is the wave velocity, E is the Young’s modulus of the material, ν is the Pois-

son’s ratio, and ρ is the material density. A one-dimensional approximation yields
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v =
√

E
ρ
. The existence of an imaginary wave speed results in a boundary value

problem that is ill-posed [Bažant and Cedolin (1979); Pietruszczak and Mroz (1981);

deBorst (1987); Bažant and Cedolin (1991)]. Physically, a material must possess a

positive-definite tangent stiffness tensor, and in fact, at the micro-scale the material

tangent stiffness tensor always remains positive-definite. However for practical pur-

poses, engineers must model structures at scales much larger than the flaws in the

material, and the homogenized continuum representation of a material with nucle-

ation and propagation of discontinuities, such as cracks or voids, exhibits post-peak

strain softening in the macroscopic, homogenized, stress-strain response. This ho-

mogenized response is assumed to govern over a suitable volume of the material,

appropriate to the microstructure of the material.

Loss of positive-definiteness of the tangent stiffness tensor leads to a material in-

stability which manifests as a localization of damage into the smallest length scale in

the continuum problem; in FEM this is a single element[Bažant and Cedolin (1991)].

Thus in a numerical setting, the post-peak softening strain energy is dissipated over

the volume of the element to which the damage localizes. Since a stress-strain rela-

tionship prescribes the energy density (energy per unit volume) dissipated during the

failure process, the total amount of energy dissipated in the element decreases as the

size of the element is reduced. Figure 1.8 illustrates the load-displacement response

of a discretized, tensile bar as the size of the elements is reduced (i.e., as the FEM

mesh is refined). For a given element size, the load-displacement response exhibits

non-physical snap back, and in the limit as the element size approaches zero, the

amount of energy dissipated during the failure also approaches zero.

1.2.2 Mesh Dependent Theories

Numerous PDFA methodologies utilize failure criteria to indicate the initiation of

damage or failure. These criteria range from strictly phenomenological to physics-
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based and include: maximum stress, maximum strain, Tsai-Hill, Tsai-Wu, Hoffman

[Herakovich (1998); Jones (1999); Daniel and Ishai (2006)] Hashin-Rotem [Hashin

and Rotem (1973)], Puck [Puck and Schürmann (1998)], and LaRC [Pinho et al.

(2005)]. Mesh subjectivity does not arise from the use of a particular failure crite-

rion but is predicated upon the degradation scheme utilized subsequent to initiation

through any failure criterion.

Early PDFA tools implemented popular quadratic, multiaxial failure criteria into

an FEM framework. Upon satisfaction of a failure criterion, a predetermined penalty

is imposed on the corresponding component of the elastic stiffness tensor [Knight, Jr.

et al. (2001); Bogert et al. (2006)]. Unfortunately, it is difficult to obtain a converged

solution using static, implicit FEM with this methodology because of the abrupt

changes in the stiffness tensor [Belytschko and Mish (2001)]. Moreover, this approach

fails to capture progressive nonlinearity that may arise in the material response, and

furthermore, due to reasons discussed earlier, causes lack of mesh objectivity when

implemented within FEM.

Continuum damage mechanics (CDM) (see Chapter II, Section 2.1 for an overview

of CDM theories) has also been implemented within an FEM setting to predict the

response of composite structures. Damage is typically introduced through one or

more internal state variables (ISVs), and damage evolution is either postulated or

obtained from experiment, and nonlinear functions are utilized to control the influence

of the damage on the components of the stiffness tensor. Matzenmiller et al. (1995)

employed three scalar damage variables to introduce stiffness degradation, and two

separate power law evolution laws, for fiber degradation and matrix degradation, were

used in thermodynamically-based damage potentials to control the damage evolution.

Basu et al. (2006); Pineda et al. (2010b) implemented a thermodynamically-based

work-potential theory developed by Schapery (1989, 1990) into an FEM framework

to model matrix microdamage using a single ISV under global compressive and tensile
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loading, respectively. The polynomial damage functions relating the ISV to the model

can be obtained from experiment [Sicking (1992)]. Schuecker and Pettermann (2008)

utilized separate ISVs for transverse and shear matrix degradation. Exponential

functions of stress, which are calibrated to experimental data, control the evolution

of the ISVs. These methods work well in predicting the non-linear response of the

composite, before the onset of post-peak strain softening, but may utilize numerous

non-physical parameters. Furthermore, they are pathologically mesh dependent in

the post-peak softening regime because a characteristic length scale is not introduced

in the formulation of the damage evolution.

1.2.3 Mesh Objective Theories

The current, industry standard for failure analysis of composites is the use of

failure criteria to determine first-ply failure. This method is incredibly efficient and

useful for design stages where a multitude of configurations must be evaluated to arrive

at a preliminary design. Additionally, this procedure is mesh independent, in as much

as the mesh density is sufficient to accurately capture the fields in regions where high

stress or strain gradients may be present. However, these analyses severely under

predict the ultimate load carrying capability of composite materials, especially when

damage initiation is followed by significant nonlinearity before final failure [Hinton

et al. (2004)].

Bažant and Oh (1983) developed the smeared crack band approach which intro-

duced a characteristic element length into the post-peak softening damage evolution

formulation. The tangent slope of the softening stress-strain curve was scaled by

the characteristic length to ensure that the total strain energy release rate (SERR)

upon complete failure (i.e. zero stress) is always equal to the prescribed fracture

toughness, regardless of the element size. In the original formulation, the band was

always oriented perpendicular to the direction of maximum principal stress; thus, the
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crack band always advanced under pure mode I. de Borst and Nauta (1985); Rots and

de Borst (1987) later reformulated the model to incorporate a fixed crack band that

evolved under mixed-mode conditions. Both formulations employ linear degradation

schemes. Later, Camanho et al. (2007) incorporated more sophisticated initiation

criteria to predict the onset of mixed-mode crack bands. All of these smeared crack

formulations assume linear elastic behavior up to the initiation of the crack band,

followed by immediate post-peak strain softening. However, Spencer (2002) coupled

pre-peak plasticity with crack band post-peak strain softening in modeling failure of

concrete.

Mesh dependent behavior arises because the failure localizes, and all of the en-

ergy dissipated via failure is dissipated over a volume that is a function of the dis-

cretization. Nonlocal, or gradient, failure theories assuage this dilemma by preventing

failure localization [Eringen (1966); Bažant (1994); Jirásek (1998)]. The post-peak,

stress-strain behavior of an element is influenced by the field gradients of surrounding

elements within a characteristic radius. Thus the localization volume is a function of

the assigned characteristic length, which is independent of the mesh size.

Nodal enrichment methods, such as the extended FEM (XFEM) [Sukumar et al.

(2000); Belytschko et al. (2001)], and element enrichment methods, such as the varia-

tional multiscale cohesive method (VMCM) [Garikipati and Hughes (1998); Garikipati

(2002); Rudraraju et al. (2010)], embed small scale fields into the finite element for-

mulation to model discontinuities in the continuum. The evolution of the small scale

fields is based on the behavior of cohesive cracks [Dugdale (1960); Barenblatt (1962)]

which follow traction versus separation laws, ensuring mesh objectivity. By embed-

ding the discontinuity in the formulation of the element, the crack path need not be

known ahead of time.

The Arlequin method embeds discontinuities within the finite elements as they

arise [Ben Dia and Rateau (2005); Qiao et al. (2011)]. Essentially, the element is

11



partitioned into subdomains corresponding to the orientation of the crack, or cracks

in the element. Coupling matrices are used to introduce the subdomains into the

global FEM problem, and the interfacial behavior of the newly created subdomains

behaves as a cohesive crack. It should be noted that discrete crack methods (Arlequin,

XFEM, VMCM) are useful for modeling macroscopic fracture in structures; however,

they are impractical to use in materials where numerous distributed cracks arise

during the loading history. They can, however, be coupled with a CDM theory or one

of the continuum failure theories (smeared crack band or nonlocal gradient theories).

If a macroscopic crack path is known a priori, e.g. delamination, additional meth-

ods can be used to model the crack evolution. The virtual crack closure technique

(VCCT), developed by Krüger et al. (1993) involves calculating the SERR of the

structure if the crack progresses one element length along the predetermined path. If

the SERR required for crack advancement is less than the available SERR, the crack

is allowed to proceed. An overview of various VCCT methodologies is presented by

Krüger (2002).

Alternatively, discrete cohesive zone method (DCZM) elements can be placed

between potential surfaces along the predetermined crack path [Xie and Waas (2006);

Gustafson and Waas (2009)]. Initially DCZM elements are assigned an incredibly

high, fictitious, penalty stiffness, simulating perfect adhesion between the surfaces.

Once the cohesive strength of the material is met, the element begins to unload

according to the cohesive traction versus separation law. The use of cohesive zone

model (CZM) elements has become the standard for modeling delamination in FRLs.

It should be mentioned, though, that the fictitious, initial stiffness required prior

to decohesion can cause numerical problems [Turon et al. (2006); Ranatunga et al.

(2010b)].

Although delamination contributes significantly to the damage and failure of com-

posite structures under numerous loading scenarios, adequate progress has been made
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towards modeling this mechanism; therefore, the computational efforts in this work

will focus on development of novel methods for modeling in-plane damage and failure

mechanisms. Addition of interfacial DCZM elements is an accessible extension left for

future work, and in fact, steps towards that realization have already been presented

by Ji et al. (2011).

1.3 Micromechanics

Micromechanics techniques can be employed to model the individual constituents

within the composite material. Typically a repeating unit cell (RUC) in the com-

posite microstructure is identified, and analysis is performed on that RUC assuming

periodic boundary conditions. In addition, representative volume element (RVE)

methodologies exist which incorporate applying non-periodic boundary conditions

to a subvolume that accurately represents the composite microstructure. Microme-

chanics can be utilized to provide the homogenized composite stiffness or to model

damage and failure within the constituents and provide the resulting homogenized

composite response. If utilized for the latter, the global mechanisms can arise through

the natural evolution and interaction of the mechanisms in the constituents in the

micromechanics model. Numerous micromechanics frameworks exist that encompass

analytical, semi-analytical, and numerical techniques. An expansive review of many

micromechanics theories is given by Aboudi et al. (2012) and Kanoute et al. (2009).

The first micromechanics models were used to calculate the elastic stiffness of the

composite from the properties of its constituents. The simplest approximations by

Voigt (1887) and Reuss (1929), are commonly referred to as the rule of mixtures

and calculate the elastic stiffness, or compliance, tensor, by through a weighted sum

of the stiffness (compliance) tensors of the constituents using the volume fraction of

the constituents. Work by Hill (1952) proved that the actual stiffness tensor was

bounded by the Voigt and Ruess approximations. The composite sphere assemblage
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(CSA) model for spherical inclusions, and the concentric cylinder assemblage (CCA)

model for long cylindrical fibers, provided more accurate estimates on the stiffness of

the composite by assuming the composite was composed of a distribution of spheres,

or cylinders, containing a inner fiber core and outer matrix shell [Hashin (1962);

Christensen and Waals (1972)]. The homogenized properties of single sphere, or

cylinder, can be determined by solving a set boundary value problems (BVPs), and

those properties can be averaged over the desired distribution of orientations. The

generalized-self consistent scheme assumed the spherical, or cylindrical, fiber and ma-

trix were embedded in an effective medium representing the homogenized composite

[Christensen and Lo (1979)]. The properties of the effective medium could then be

calculated. This method can be used to provide the transverse shear modulus which

cannot be calculated using the CSA or CCA.

Mori and Tanaka (1973) originally developed a method for calculating the average

fields in a fiber contained in an infinite volume of matrix by assuming the fields in the

matrix are equivalent to the applied far fields and calculating concentration matrices

for the fields in the fiber. The Eshelby inclusion method provides concentration

matrices for calculating the average fields in both of the constituents by assuming the

presence of an eigenstrain in an ellipsoidal inclusion [Eshelby (1957); Mura (1982);

Timoshenko and Goodier (1970)]. The availability of average, constituent level fields

provided by these methods make them amenable for damage and failure modeling

by prescribing the appropriate constitutive laws in the constituents. However, these

methods neglect the variation of the local fields within the constituent materials.

Approaches developed by Nemat-Nasser et al. (1982); Walker et al. (1989) dis-

cretized an RUC of the composite into a number of subvolumes. Global constitutive

laws were formulated in terms of the constitutive behavior of the subvolumes in the

form of a set of integral equations. These integral equations were solved approxi-

mately using a Green’s function approach or a Fourier series approach.
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The transformation field analysis (TFA) assumes the fields in a discretized RUC

are piecewise uniform [Dvorak (1992)]. Furthermore, the local stresses and strains

contain contributions from the eigenstrains and eigenstresses, respectively. The eigen-

fields may include thermal, inelastic ad damage effects. Elastic strain concentration

tensors (calculated using other methods) are used to relate the global fields to the

local fields for the purely elastic case, and account for the shape and volume fraction

of the phases in the RUC. These concentration tensors simply need to be calculated

once, and nonlinearity is achieved through the evolution of the local eigenstrains and

eigenstresses. Thus, the number of unknowns that need to be solved throughout the

problem are reduced considerably. TFA was later extended to non-uniform trans-

formation field analysis (NTFA) by Michel and Suquet (2003) to incorporate fully

non-uniform local fields.

The method of cells (MOC) developed by Aboudi (1991) discretized a rectangu-

lar composite RUC into four subvolumes, called subcells. One of the subcells was

occupied by the fiber material and the rest were occupied by the matrix. Linear

displacement fields were assumed in each of the subcells. Displacement and trac-

tion continuity conditions were enforced, in an average integral sense, at the subcell

interfaces, along with periodic boundary conditions at the RUC boundaries to de-

rive a set of equations that yield a strain concentration matrix. This could, in turn,

be used to obtain the local subcell strains from the applied fields. Following deter-

mination of the subcell strains, the subcell stress are readily calculated using the

local constitutive laws, and volume averaging can be used to obtain the homogenized

thermomechanical properties of the composite. MOC was later extended to the gen-

eralized method of cells (GMC) by Paley and Aboudi (1992) which accommodated

any number of subcells and constituents in two periodic directions. Aboudi (1995)

adapted the formulation to accommodate triply-periodic materials. Finally, Aboudi

et al. (2001) developed the high-fidelity generalized method of cells (HFGMC) which
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utilized second order displacement field approximations in the subcells, rather than

linear. Aboudi et al. (2003); Haj-Ali and Aboudi (2009) showed the local field accuracy

produced by HFGMC corresponded very well to FEM for elastic and inelastic phases.

Bednarcyk et al. (2004) utilized HFGMC to model fiber-matrix debonding in metal

matrix composites (MMCs), and Bednarcyk et al. (2010) implemented a multi-axial

damage model in HFGMC. Reformulations, of GMC and HFGMC, which reduced the

total number of unknowns in the problem were introduced by Pindera and Bednarcyk

(1999) and Bansal and Pindera (2004), respectively.

The semi-analytical methods (Green’s function/Fourier series approach, TFA,

GMC, HFGMC) offer a distinct advantage over the analytical, mean-field approaches,

in that, spatially varying local fields can be determined. This robustness allows for

better representation of the damage and failure mechanisms at the constituent scale.

Furthermore, their semi-analytical formulations retain a computational advantage

over fully numerical methods

However, as computational power increases, detailed fully numerical microme-

chanics simulations are more feasible. Recent works by Gonzaléz and Llorca (2007a);

Totry et al. (2008, 2010) modeled multiple random fibers using a two-dimensional

(2-D) FEM model. The matrix was modeled using plasticity, and the fiber and ma-

trix was allowed to debond using CZM elements at the fiber-matrix interfaces. The

response of the RUC was investigated under combinations of transverse compression

and transverse shear loading. Cid Alfaro et al. (2010) modeled fiber-matrix debonding

and matrix cracking under global transverse tension in a single-fiber RUC by including

CZM elements between every matrix-matrix or fiber-matrix interface. Mishnaevsky

Jr. and Brønsted (2007) simulated fiber-matrix pullout in a three-dimensional (3-D)

RVE by modeling the fiber-matrix interface as a damaging solid.
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1.4 Multiscale Modeling

Multiscale modeling involves sharing information between two or more length

and/or time scales often using localization and homogenization techniques. This has

been achieved through three different multiscale techniques: hierarchical, concurrent,

or synergistic [Sullivan and Arnold (2011)]. With hierarchical multiscale modeling,

simulations of the separate scales are employed sequentially, and subsequently, infor-

mation is passed up through homogenization (or down through localization). Concur-

rent multiscale modeling operates across all of the identified time and length scales

simultaneously, and data is shared as fields evolve at all scales. Finally, synergistic

multiscale modeling utilizes a combination of concurrent and hierarchical modeling

in either the spatial or temporal domains. Various physical models can be employed

at the various scales. Often, the coarser-scales adopt continuum models, as is ap-

propriate, but the finer-scales can incorporate other analytical, semi-analytical, or

numerical continuum models, or atomistic models, depending on the size of the scale

of interest. When modeling FRLs, usually the finest-scale of interest is the fiber-

matrix scale; thus, the following overview is limited to multiscale continuum models.

A breadth of literature is available relating to this subject as evidenced in numerous

review papers and books [Ladeveze (2004); Kwon et al. (2008); Fish (2009); Kanoute

et al. (2009); Gilat and Banks-Sills (2010); Sullivan and Arnold (2011); Aboudi et al.

(2012)]

Many multiscale techniques employ FEM at the fine-scale to determine the re-

sponse of the RUC or RVE. This method, called FE2 developed by Feyel (1999);

Feyel and Chaboche (2000), uses the FEM simulation of the RUC or RVE to dictate

the constitutive behavior of an integration point in the coarse-scale FEM problem.

This technique can be computationally expensive and may require a relatively coarse

mesh at the finer scales for feasibility.

Other methodologies utilize micromechanics to reduce the order of the fine scale
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problems. Asymptotic field expansion is a widely used multiscale technique that

expands the fields into any number of fine-scale fields [Suquet (1987); Fish et al.

(1997, 1999)]. The fine-scale fields are related to the coarse-scale fields through a set

of homogenization functions. The homogenization functions are obtained by solving

the fine-scale BVPs, either analytically or numerically. Fish and Yu (2001) utilized

FEM to solve the for the asymptotic fields in the fine-scale problem. Fish et al.

(1997) used FEM to solve for the fine-scale problem generated from TFA. Finally,

Oskay and Fish (2007) further improved the efficiency of the fine-scale FEM problem

by combining asymptotic field expansion and TFA.

The Voronoi cell method, introduced by Ghosh and Mukhopadhyay (1991); Ghosh

et al. (1995); Ghosh and Moorthy (1995); Ghosh and Liu (1995) uses Dirichlet tes-

sellation to resolve the composite microstructure into an optimal mesh composed of

Voronoi polygons that contain, at most, one inclusion. The Voronoi polygons con-

taining an inclusion were formulated as finite elements used to solve the fine-scale

FEM problem. The finite element formulation of the Voronoi cells can be adjusted

to include all manner of constitutive nonlinearities.

Wilt (1995) implemented GMC within an FEM framework; wherein, a GMC RUC

problem is solved at every integration point using the integration point fields as the

far fields in the micromechanics solution. This offers a computational advantage over

most of the coupled FE problems because the semi-analytical solution of the GMC

problem is less expensive than an FEM solution. Bednarcyk and Arnold (2002a, 2006)

successfully used a multiscale methodology incorporating GMC to model damage in

metal matrix composites

It should be mentioned that Bažant (2007) inquires whether multiscale analysis

is a viable tool for modeling post-peak strain softening in materials. Several incon-

sistencies in multiscale methodologies are raised including lack of mesh objectivity

due to the inconsistent length across the scales, and inappropriate transfer of the
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SERR across the scales. Additionally, Bažant (2007) cites the common absence of a

localization limiter in the fine-scale problem, and in the case where a fine-scale lo-

calization limiter exists, absence of the transfusion of that limiter from the fine-scale

to the coarse-scale. As described below, these issues are addressed briefly in this

dissertation in Chapter V, Section 5.7.

1.5 Objective and Scope of Dissertation

Throughout this document an intentional distinction between damage and failure

is drawn. Damage is defined as the resulting effect of all structural changes in the

material that yield pre-peak nonlinearities in the stress strain curve through degra-

dation of the secant stiffness tensor. Failure is characterized as the consequence of

structural changes in the material that manifest as post-peak strain softening in the

stress-strain response of the material. Although particular mechanisms may manifest

as both damage and failure, its influence is predominantly one or the other. There-

fore, to minimize confusion in this work, mechanisms are treated as either damage

mechanisms or failure mechanisms, but never both. Three major mechanisms appli-

cable to in-plane damage and failure of PMCs are considered: matrix microdamage,

transverse cracking, and fiber breakage. Matrix microdamage is categorized as a dam-

age mechanism, whereas, transverse cracking and fiber breakage are considered local

failure mechanisms. Fiber kinking is acknowledged in this work; however, evolution

of this mechanism is directly related to the shear behavior of the matrix, and thus,

it is implicitly accounted for. Furthermore, tension dominated problems are chosen

to demonstrate the capabilities of the models because fiber kinking was thoroughly

explored by previous authors [Basu (2005); Basu et al. (2006)]. The main objective

of this work is to develop a physics-based numerical tool for modeling these in-plane

damage and failure mechanisms in PMC FRLs. The four subsequent chapters and

two appendices mark the progress towards this development.
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In Chapter II a detailed evaluation of the thermodynamically-based work po-

tential theory, established by Schapery (1989, 1990); Sicking (1992); Schapery and

Sicking (1995), for modeling matrix microdamage is performed. The evolution of

microdamage is investigated under an expansive combination of transverse tension,

transverse compression and in-plane shear loading. Furthermore, the stability of the

microdamage evolution equations with respect to perturbations in the microdamage

ISV is probed with the intention of determining if loss of stability of the microdamage

evolution equations can be used as a criterion for the initiation of more severe matrix

failure mechanisms, such as transverse cracking.

A synergistic multiscale framework is developed in Chapter III for modeling ma-

trix microdamage, transverse cracking, and fiber failure. The work potential theory

from Chapter II is implemented within FEM and used to model distributed matrix

microdamage at the lamina/laminate level, or macroscale. GMC is used to resolve

the microstructure and model the fiber-matrix level, or microscale, of the FRL via

an RUC at integration points throughout the macroscale domain. The MAC/GMC

suite of micromechanics codes, developed at the NASA Glenn Research Center (GRC)

is utilized to execute the numerical implementation of GMC [Bednarcyk and Arnold

(2002b,c)]. The FEAMAC software facilitates communication between the microscale

(GMC) and the macroscale (FEM). Localized failure due to transverse cracking and

fiber breakage is modeled at the microscale using GMC. Simple failure criteria are

employed in the subcells of the RUC to indicate failure of that subcell as a result

of transverse cracking or fiber breakage. Subsequent to failure initiation, the elas-

tic properties are severely degraded so that the failed subcell no longer contributes

significantly to the overall stiffness of the subcell. It is apparent that this failure

degradation procedure bares pathologically mesh dependent results. However, it rep-

resents a first attempt to utilize micromechanical fields to mark the termination of

macroscale damage in lieu of more catastrophic mechanisms.
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The benefits of modeling distributed damage and localized failure at separate

scales are two-fold. First, the mechanisms are modeled at more appropriate scales.

Matrix microdamage, which is distributed over volumes surpassing the fiber-matrix

scale (Figure 1.1), is modeled at the macroscale. Whereas, transverse cracking (Fig-

ure 1.2) and fiber fracture (Figure 1.3) are extremely local mechanisms, and they are

modeled at the microscale. Second, by modeling microdamage at the macroscale, mi-

cromechanics calculations can be foregone if the macroscale microdamage is not above

some nominal level. Even if this value is set very low, microscale calculations can be

avoided in large domains where there is little to no nonlinear action. This variable

fidelity approach vastly improves the computational efficiency of the methodology.

The performance of the multiscale model is evaluated against experimental results

for two carbon fiber/epoxy center-notched panels (CNPs). These panels were tested

under uniaxial tension at the NASA Langley Research Center (LaRC), and the ex-

perimental data was presented in Refs. [Bogert et al. (2006); Satyanarayana et al.

(2007)]. Global load versus displacement, local strain gage data, and post-test failure

images are compared to results from the computational model.

Chapter IV presents a reformulation of the work potential theory to include addi-

tional ISVs for transverse cracking and fiber breakage. Evolution of the new failure

ISVs is based upon the fracture toughness of the material and incorporates the char-

acteristic length of the element, ensuring mesh objectivity. However, no microscale

analysis is performed and the influence of the composite micro-architecture must be

inferred when the failure initiation and evolution laws are formulated. The new ca-

pabilities of the single-scale model are demonstrated using the same example as in

Chapter III, and the results are compared to the experimental data.

Finally, Chapter V directly remedies the mesh dependence resulting from the

failure model implemented in the micromechanics in Chapter III. A variation of the

mesh objective, smeared crack band model formulated by Bažant and Oh (1983) is
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implemented within the HFGMC micromechanics model. The crack band is assumed

to always orient in accordance to the direction of the maximum principal stress. If

that stress is positive, or tensile, the crack band is oriented perpendicular to the

principal stress and the crack band grows under mode I conditions if a maximum

stress criterion is achieved. It is not physically realistic for cracks to grow in mode

I when the faces of the crack tip are subjected to normal compression. Thus, if the

principal stress exhibiting the maximum magnitude is negative, or compressive, it

is assumed that the crack band evolves because of internal, Mohr-Coulomb friction,

and the crack band is oriented parallel to the plane of maximum shear stress in

the matrix subcell. The crack band advances under mode II conditions if a Mohr-

Coulomb initiation criterion is satisfied. An RUC containing 13 randomly positioned

fibers is subjected to transverse tension and compression. The results are compared

to experimental data from Hinton et al. (2004). Finally, a novel, consistent, mesh

objective multiscale framework is outlined and suggested for needed future work in

this research field.
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Figure 1.1: Highly distributed Matrix microcracks in [±45◦]S carbon fiber/epoxy
laminate. Coalescence of microcracks into matrix failure also observed [Ng et al.
(2010)].

(a) Multiple transverse cracks. [Roberts
(2000)].

(b) Magnification of a single transverse
crack. [Gamstedt and Sjögren (1999)].

Figure 1.2: Transverse cracks in glass/epoxy laminates.
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Figure 1.3: Fiber breakage in 0◦ ply and transverse cracking in 90◦ ply of cross-ply
glass/epoxy laminate [Beaumont et al. (2006)].

Figure 1.4: Fracture of a quasi-isotropic carbon fiber/epoxy laminate exhibiting
significant fiber bridging and fiber-matrix pullout [Rudraraju et al. (2010)].
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(a) Macroscopic failure [Aragonés (2007)]. (b) Localized shear bands and cracks
[Gonzaléz and Llorca (2007b)].

Figure 1.5: Transverse compressive failure of carbon fiber/epoxy laminates. Macro-
scopic failure path observed at an angle. Magnification illustrates shear banding,
cracking and fiber-matrix debonding.

Figure 1.6: Kink band in carbon fiber/epoxy composite under axial compression
[Yerramalli and Waas (2003)].

25



Figure 1.7: Transverse crack/delamination interaction in carbon fiber/epoxy lami-
nate. Photograph courtesy of Dr. Bradley Lerch, NASA GRC.

Figure 1.8: Effects of element size on overall load-displacement response for a material
exhibiting post-peak softening. Dashed lines indicate non-physical snapback.
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CHAPTER II

Modeling Progressive Microdamage in a

Unidirectional Composite Lamina using a

Thermodynamically-Based Work Potential Theory

2.1 Introduction

Much of the observed nonlinearity in the stress-strain response of polymer matrix,

fiber-reinforced composites can be attributed to progressive damage evolution in the

matrix phase of the composite. Progressive damage may involve microcracking, trans-

verse cracking, shear banding, micro-fissure growth, micro-void growth, fiber-matrix

debonding, and kink band formation, as well as delamination in fiber-reinforced lam-

inates (FRLs). Typically, fiber failure in composite materials is not progressive but

rather abrupt. However, when accompanied with fiber bridging and fiber-matrix

pullout, the axial failure response of an FRL may be progressive. It is important to

capture the underlying physics of the various damage mechanisms to yield accurate

predictions of the response of composite structures subjected to service loads.

Continuum damage mechanics (CDM) has emerged as a viable option for predict-

ing the nonlinear behavior of composite structures. The first CDM theory was de-

veloped by Kachanov (1958, 1986). Subsequently, many publications on this subject

were produced, including numerous books [Talreja (1985a); Lemaitre and Chaboche
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(1994); Lemaitre (1996); Krajcinovic (1996); Voyiadjis and Kattan (2005)]. Typi-

cally, a set of scalar damage variables, or internal state variables (ISVs), introduce

anisotropic damage into the composite constituent behavior by penalizing the com-

ponents of the material stiffness tensor, and nonlinear functions are used to control

the damage evolution. Various authors have used crack density, geometry, strain

energy release rate, and other crack features to characterize the damage evolution

[Dvorak et al. (1985); Talreja (1985b); Laws and Dvorak (1988); Lee et al. (1989);

Nairn (1989); Tan and Nuismer (1989); Gudmundson and Östlund (1992); McCart-

ney (1992a, 1998)]. Others postulate damage evolution laws and characterize those

laws using experiments [Allen et al. (1987a,b); Talreja (1994); Paas et al. (1992);

Matzenmiller et al. (1995); Bednarcyk et al. (2010)]. CDM models must also employ

failure criteria to indicate damage initiation. More recently, increasingly sophisti-

cated failure criteria have been developed to better represent the phenomenological

behavior of a damaging composite lamina [Puck and Schürmann (1998, 2002); Pinho

et al. (2005)] and are used in conjunction with CDM.

CDM techniques offer computationally efficient and readily implementable means

to capture the effects of damage and failure in composite materials. Unfortunately,

the majority of the criteria and evolution laws are formulated upon phenomenological

observations of the directional dependence of damage evolution, rather than modeling

the physics of the actual damage mechanisms. That is, separate damage variables are

used to degrade different components of the stiffness tensor (directions) depending on

whether the damage is said to accrue in the matrix or fiber constituents of the com-

posite, but the variables do not explicitly distinguish between the separate damage

mechanisms. Furthermore, many theories involve a multitude of parameters that are

difficult to measure and must be calibrated to correlate with experimental data.

In this chapter, the formulation of a thermodynamically-based work potential the-

ory developed by Schapery (1989) is presented for modeling progressive matrix micro-
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damage in FRLs, which includes microcracking, micro-fissure growth, shear banding,

micro-void growth, and fiber-matrix debonding. Schapery theory (ST) extends the

theory developed by Rice (1971), which uses internal state variables (ISVs) to control

the material nonlinearity, by assuming that damage evolution in composites under

combined transverse-shear loading exhibits limited path-dependence [Lamborn and

Schapery (1988, 1993)]. A single ISV is used to represent the potential needed to

drive structural changes in the material associated with microdamage evolution. The

derogative effects of the microdamage mechanisms on the stiffness of the compos-

ite are related to the ISV associated with energy dissipated via advancement of the

mechanisms through a set of measured microdamage functions. Sicking (1992) suc-

cessfully predicted the response of numerous laminated, graphite-epoxy plates using

ST. Subsequently, Basu et al. (2006); Basu (2005) implemented ST in a finite element

method (FEM) framework to evaluate the compressive response of edge-notched lam-

inates, and Pineda et al. (2009, 2010d) implemented ST in a multiscale framework to

investigate the tensile behavior center-notched laminates.

Section 2.2 details the formulation of ST for modeling progressive microdamage

in a fiber-reinforced lamina. In Section 2.3, ST is used to predict microdamage

evolution in a unidirectional, AS4/3502 (graphite-epoxy) lamina under a range of

combined transverse-shear loading. Finally in Section 2.3, the stability of the lamina

with respect to small perturbations in the ISV is assessed under the same combined

loading conditions to determine if loss of stability can be used to indicate transition

between damage mechanisms.
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2.2 Thermodynamically-Based Work Potential Theory

2.2.1 Thermodynamic Driving Force

Progressive microdamage in the matrix phase of a composite material is mod-

eled using Schapery theory(Schapery , 1989, 1990; Schapery and Sicking , 1995). This

thermodynamics-based, work potential theory can capture the nonlinear effects of

microdamage mechanisms by partitioning the total work potential, WT , into a recov-

erable part (elastic), W , and a dissipated portion (free energy available to generate

structural changes in the material), WS.

WT = W + WS (2.1)

Both W and WS are functions of a set of ISVs, Sm, (m = 1, 2,M). These ISVs

account for any nonlinear structural changes in the material. Differentiating WS with

respect to any ISV Sm, assuming limited path-dependence (Schapery , 1990), yields

the thermodynamic force, fm, available for advancing structural changes associated

with the mth ISV.

fm =
∂Ws

∂Sm

(2.2)

It is shown by Schapery (1989, 1990) that the total work potential is stationary with

respect to each ISV.

∂WT

∂Sm

= 0 (2.3)

Additionally, Rice (1971) utilized the second law of thermodynamics to establish the

inequality:

fmṠm ≥ 0 (2.4)

which suggests that “healing” is not allowed for a material undergoing structural

changes. Equations (2.2), (2.3), and (2.4) form the foundation of a thermodynamically-
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based work potential theory for modeling nonlinear structural changes in a material

exhibiting limited path-dependence.

2.2.2 Application of ST to Model Progressive Microdamage in Fiber-

Reinforced Composites

The irrecoverable potential available to advance structural changes WS can be a

function of any number of state variables. To utilize the work potential model to

capture the effects of progressive microdamage in a fiber-reinforced composite, it is

assumed that the structural changes which result from microdamage, including ma-

trix microcracking, shear banding, and fiber-matrix debonding, depend on only one

ISV: S. It is assumed that S accounts for all microdamage present in the compos-

ite, and controls all material nonlinearities, prior to the onset of more catastrophic

damage mechanisms such as mesoscopic matrix cracking (transverse cracking) and/or

fiber breakage (and/or delamination in laminated composites). It should be noted,

that additional ISVs may be included to account for additional damage and failure

mechanisms. Sicking (1992); Schapery and Sicking (1995) used a dual-ISV formula-

tion to capture both microdamage and transverse cracking, and in Chapter IV, ST is

extended to account for axial failure, mesoscopic transverse, and shear crack growth.

It can be assumed that WS is an additive function of the ISVs, WS =
∑m

i Wi(Si).

Furthermore, Wi are in one-to-one correspondence with their arguments, so, Wi can

be chosen such that Wi = Si. Since, in this case, WS is a function of only one

ISV, WS = S. Therefore, the ISV governing the potential responsible for advancing

microdamage and that potential are equivalent. Equation (2.1) can now be recast as,

WT = W + S (2.5)

As the material is loaded, a portion of the work potential facilitates structural
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changes in the material, such as microdamage, which affect the elastic properties of

the material. Energy that is not dissipated is recovered when the structure is un-

loaded, and the magnitude of energy recovered is contingent upon the degraded, elas-

tic properties at the previously attained maximum strain state. It is assumed, upon

subsequent reloading, the material behaves linearly, exhibiting the elastic properties

observed during unloading, until the material reaches the preceding maximum strain

state. After this state is achieved, structural changes resume, affecting degrading the

instantaneous elastic moduli of the material. This process is shown in Figure 2.1.

The area above the unloading line represents dissipated potential S, and the shaded,

triangular area under is the elastic strain energy density W . It is assumed that the

material behaves as a secant material and there is no permanent deformation upon

unloading. This a reasonable assumption for FRLs Sicking (1992); however, plastic

deformation can also be incorporated, if necessary (Schapery , 1990). Extension to

treat viscoelastic and viscoplastic response is outlined in Hinterhoelzl and Schapery

(2004).

Differentiating (2.5) with respect to S, and utilizing Equation (2.3) yields:

∂W

∂S
= −1 (2.6)

Additionally, combining Equations (2.2) and (2.4) with WS = S results in

Ṡ ≥ 0 (2.7)

which is a statement on the inadmissibility of microdamage “healing”. Equation (2.7)

dictates that the amount of energy dissipated into the progression of microdamage

cannot be recovered. The combination of Equations (2.6) and (2.7) represent the

evolution equations for microdamage in the matrix of a polymer matrix composite

(PMC). If S was a crack length, instead of the energy dissipated through microdamage
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evolution, then Equation (2.6) would be the fundamental fracture mechanics condition

for crack extension [Griffith (1921)].

2.2.3 2-D Plane Stress Constitutive Law for a Unidirectional Fiber-Reinforced

Lamina

Plane stress-strain relationships for a FRL can be written in principal material

coordinates as:

σ11 = Q11ε11 + Q12ε22

σ22 = Q12ε11 + Q22ε22

τ12 = Q66γ12

(2.8)

where γ12 is the engineering shear strain and

Q11 =
E11

1− ν12ν21

Q22 =
E22

1− ν12ν21

Q12 = ν12Q22

Q66 = G12

ν21 =
ν12E22

E11

(2.9)

where E11 is the axial elastic modulus, E22 is the transverse elastic modulus, ν12 and

ν21 are the transverse Poisson’s ratios, and G12 is the elastic shear modulus. After

assuming that the quantity ν12ν21 << 1, Equations (2.9) simplify,

Q11 = E11

Q22 = E22

Q12 = ν12Q22

Q66 = G12

(2.10)
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2.2.4 Determining the Damage State

To calculate the damaged state of the material, a relationship between the stiffness

of the lamina and the ISV must be defined. Since the damage mechanisms associated

with S accrue only in the matrix of the composite, it is assumed that the moduli

affected by this damage are limited to E22 and G12. This is a reasonable assumption

for the in-plane behavior of PMCs. Experimentally it has been determined that S

behaves as the strain cubed (ε3); thus, it is convenient to introduce a reduced damage

variable Sr (Sicking , 1992).

Sr ≡ S1/3 (2.11)

Furthermore, the use of a reduced ISV transforms the dependence of the moduli on

the microdamage variable into polynomial form:

E22 = E220es(Sr) (2.12)

G12 = G120gs(Sr) (2.13)

where E220 and G120 are the undamaged transverse and shear elastic moduli, and es(S)

and gs(S) are polynomial microdamage functions relating the transverse and shear

moduli to the reduced microdamage ISV Sr. Sicking (1992) provided a procedure

for determining es and gs experimentally from three uniaxial coupon tension tests.

The stress-strain curve from a [±45◦]S angle-ply laminate yields gs(S); whereas, a

[15◦] unidirectional laminate can be used to obtain es(S) under transverse tension,

and a [±30◦]S angle-ply laminate provides es(S) in transverse compression. The

experimental curves can then be fit with polynomials (such that, the stiffness values

at S = 0, are E22 = E220 and G12 = G120) and used in Equations (2.12) and (2.13).

The elastic strain energy density W can be written using the plane stress consti-
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tutive relationships.

W =
1

2
(E11ε

2
11 + E22(S)ε2

22 + G12(S)γ2
12) + Q12ε11ε22 (2.14)

Employing Equation (2.6) with (2.12), (2.13), and (2.14), and assuming the quantity

Q12 = ν12Q22 is constant (independent of S) yields an ordinary differential equation

which can be solved for the damage evolution S.

1

2

(
ε2
22E220

des

dS
+ γ2

12G120
dgs

dS

)
= −1 (2.15)

Using the reduced ISV the evolution equation, Equation (2.15), becomes

1

2

(
ε2
22E220

des

dSr

+ γ2
12G120

dgs

dSr

)
= −3S2

r (2.16)

Once Sr is determined from Equation (2.16), taking into account Equation (2.7), the

transverse and shear moduli can be degraded accordingly using Equations (2.12) and

(2.13). The above equation indicates that the work of structural change depends

only on the strain state, the initial virgin composite moduli (E220 and G120), and

the microdamage functions (es(S), gs(S)). Moreover, the microdamage state is only

a function of the current strains and is independent of the loading history. This

arises from the postulation of the existence of a work potential and the definition

of Equation (2.2). Lamborn and Schapery (1988, 1993) demonstrated limited path-

dependence experimentally for a graphite/epoxy laminate and deduced that the small

amount of path-dependence exhibited is primarily due to rate effects, so long as, the

loading is such that the active damage modes change continuously or remain constant.

Additionally, unlike most continuum damage theories, Equation (2.16) requires no

separate initiation criterion. For low strain levels, Sr will remain near zero, and

its effect on the composite moduli will be negligible. However as the strain levels
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increase, the rate of evolution of the ISV will also change as dictated by the slope of

the microdamage functions
des

dSr

and
dgs

dSr

.

2.3 Microdamage Evolution in a Graphite/Epoxy Lamina

Sicking (1992) measured the microdamage curves for an AS4/3502, graphite/epoxy

laminae with virgin, elastic properties listed in Table 2.1. The polynomial coefficients

of the microdamage functions of Sr, obtained from [±45◦]S angle-ply, [15◦] unidirec-

tional, and [±30◦]S angle-ply laminate coupon tests, are presented here in Table 2.2,

and these functions,

E22 = E220

(
es0 + es1Sr + es2S

2
r + es3S

3
r + es4S

4
r

)
(2.17)

G22 = G120

(
gs0 + gs1Sr + gs2S

2
r + gs3S

3
r + gs4S

4
r

)
(2.18)

are plotted in Figure 2.2. Numerous laminates were tested, but these three laminates

achieved the maximum Sr for the given, local loading scenario (shear, transverse

tension, or transverse compression) before failing due to transverse cracking.

The AS4/3502 microdamage functions and elastic properties were utilized, and

Equation (2.15) was solved numerically for a range of applied transverse and shear

strains: -0.04 ≤ ε22 ≤ 0.04 and 0.00 ≤ γ12 ≤ 0.05. Only positive shear strain is

applied because gs(Sr), and hence Sr, is independent of the sign of γ12. Depending

on the strain state, a maximum Sr was enforced based upon reaching the endpoints

of the microdamage functions in Figure 2.2. If no transverse strain was applied, the

maximum Sr was limited to 114.7 Pa
1
3 ; if the applied transverse strain was positive,

the maximum Sr was 62.13 Pa
1
3 , and the maximum Sr was set at 97.49 Pa

1
3 if the

transverse strain was negative. If the calculated Sr was above the predetermined

maximum, it was set equal to the maximum, and further damage evolution was not

permitted. These endpoints indicate the arrest of microdamage in the experiment
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and the initiation of transverse cracking, or other damage mechanisms, which leads

to abrupt failure in the angle ply or unidirectional laminates. An additional state

variable would be required to damage (or failure) evolution beyond the maximum Sr.

The microdamage curves were obtained by Sicking (1992) using numerous different

laminate lay-ups. All the lay-ups produced similar microdamage functions; however,

the stacking orientation affected the value of Sr at which transverse cracking initi-

ated and the microdamage function ended (i.e. the endpoint of the microdamage

functions). The limiting Sr values used here are chosen to be the results from Sicking

(1992) that reached the largest values of Sr among all the laminates tested.

Figure 2.3 displays a contour surface of Sr as a function of applied ε22 and γ12. This

surface displays that applied shear strain leads to rapid increase in Sr. As the ratio of

tensile transverse strain to shear strain increases, the microdamage progression is less

rapid but still significant. In the compressive strain regime, microdamage evolution

is stagnant, even for relatively low ratios of ε22 to γ12. It is not until this ratio is

below unity, and γ12 dominates the applied loading, that the microdamage evolves

at a rate similar to that in the tensile transverse strain regime. Thus, microdamage

evolution is driven primarily by shear strain, and furthermore, will not accumulate if

a compressive transverse strain greater than the shear strain is applied.

The endpoints of the microdamage functions in Figure 2.2 are the maximum at-

tainable microdamage for the lay-ups that were tested ([±45◦]S, [±30◦]S, and [15◦]).

At those damage levels more catastrophic damage mechanisms initiate, and micro-

damage progression ceases. It is possible that other configurations could accrue more,

or less, microdamage, and in fact, Sicking (1992) tested other laminates that failed at

lower values of Sr, but the data from all tested laminates coincided with the micro-

damage curves. Assuming that there is a configuration for which microdamage growth

is never superseded by the evolution of other damage mechanisms, the microdamage

curves presented in Figure 2.2 were extrapolated to zero in Figure 2.4. The end slope
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of the gs curve in Figure 2.2a was used to linearly extrapolate gs to zero at Sr = 132.6

Pa
1
3 . Additionally, es in tension and in compression were both extrapolated linearly

to zero at Sr = 132.6 Pa
1
3 ; thus, both the transverse and shear moduli would van-

ish at the same damage levels. The three extrapolated microdamage functions were

fit with fourth order polynomials (see Equations (2.17) and (2.18)); the coefficients

are presented in Table 2.3, and they are displayed in Figure 2.5. Reduction of the

transverse and shear moduli to zero through microdamage evolution may not be a

physical possibility, but it provides mathematical insight into the evolution of S and

the stability of the material with respect to progressive microdamage.

Evolution of Sr as a function of ε22 and γ12 is presented in Figure 2.5 using the

extrapolated microdamage curves in Figure 2.4. This shows that if microdamage was

not limited to 62.13 Pa
1
3 when transverse tensile loading is applied, the microdamage

would continue to grow until E22 and G12 reached zero. Additionally, if the compres-

sive transverse strain is between -0.015 and 0.00, the microdamage will progress with

increasing shear strain. However, if the compressive transverse strain is below-0.015,

and the shear strain is low (<0.02), a trend as similar to Figure 2.3 is exhibited;

microdamage will not advance. As γ12 increases, for this ε22 level, Sr increases, but

reaches a plateau. Under these loading scenarios, the settled value of Sr decreases

as the magnitude of the compressive transverse strain is increased. This exemplifies

that even if experimental microdamage functions were available for AS4/3502 that

contained transverse and shear stiffness data points equal to zero, microdamage is

not a dominating mechanism when compressive transverse strains are present.
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2.4 Stability of Microdamage Evolution

Microdamage growth is a stable process if the second variation of the total work

potential with respect to the ISV is positive (Schapery , 1990).

δ2
SWT > 0 (2.19)

Taking the second variation of Equation (2.5), while using Equations (2.11) and (2.16)

gives an expression for stability of microdamage evolution in a unidirectional, fiber

reinforced lamina.

δ2
SWT =

∂2WT

∂S2
(δS)2 =

1

9S4
r

[
1

2

(
ε2
22E220

d2es

dS2
r

+ γ2
12G120

d2gs

dS2
r

)
−

1

Sr

(
ε2
22E220

des

dSr

+ γ2
12G120

dgs

dSr

)]
(δS)2 > 0

(2.20)

Noting that Sr ≥ 0 and S ≥ 0, the condition for stability becomes

δ2
SWT =

1

2

(
ε2
22E220

d2es

dS2
r

+ γ2
12G120

d2gs

dS2
r

)
−

1

Sr

(
ε2
22E220

des

dSr

+ γ2
12G120

dgs

dSr

)
> 0

(2.21)

where the overbar indicates that the
1

9S4
r

and (δSr)
2 terms have been divided out. The

left hand side of the inequality (δ2WT ) in Equation (2.21) is evaluated for the same

range of ε22 and γ12 used in Section 2.3 and with the properties in Tables 2.1 and 2.3.

A contour surface plot is presented in Figure 2.6. The stability condition is satisfied

for all values of ε22 and γ12. For a particular region in quadrant I of the ε22-γ12 plane

where ε22 and γ12 are high, δ2WT = 0. However, this corresponds to a regime where

there is no change in Sr (i.e. δSr = 0); therefore, stability is automatically satisfied.

Figure 2.6 indicates that microdamage evolution in AS4/3502 is an unconditionally

stable process. Thus, loss of stability pertaining to microdamage cannot be used to
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determine the onset of more catastrophic failure mechanisms in the matrix, such as

transverse cracking.

2.5 Conclusions

The formulation for the thermodynamically-based, work potential continuum dam-

age theory, Schapery theory, was presented. ST is capable of capturing the effects of

progressive matrix microdamage in FRLs by relating the transverse and shear mod-

uli to an ISV associated with the microdamage. Unlike many existing continuum

damage theories, ST uses a single damage variable, but degradation of the moduli

is controlled by three distinct microdamage functions which are obtained from three

uniaxial coupon tests. Additionally, ST requires no initiation criterion.

Microdamage evolution for a range of applied transverse and shear strains was

also investigated for an AS4/3502 unidirectional lamina. When positive transverse

strains are applied, microdamage growth continues, with increasing transverse and/or

shear strains, until the moduli reach a value of zero. However, the actual material,

as observed in experiments, exhibits transverse or mesoscopic cracking, leading to

rapid failure far before matrix microdamage could degrade the moduli to zero. Under

compressive transverse strains, microdamage evolution remains fairly dormant unless

a large shear strain is also applied. This indicates that compressive transverse strains

constrain microdamage, and another mechanism must be responsible for degradation

in transverse compression.

The stability of microdamage evolution in AS4/3502, under a range of applied

transverse and shear strains, was calculated. It was shown that microdamage growth

is an unconditionally stable process under any transverse-shear strain loading com-

bination. Therefore, loss of stability cannot be used to indicate the initiation of

other matrix damage mechanisms, such as transverse cracking, which are ultimately

responsible for failure. Moreover, an additional ISV [Sicking (1992); Schapery and
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Sicking (1995)] or separate initiation criteria must be used to predict the onset of

more catastrophic mechanisms.
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Property Value

E11 (GPa) 125.8
E22 (GPa) 9.31
ν12 0.329
G12 (GPa) 5.1

Table 2.1: Virgin elastic properties for AS4/3502 (Sicking , 1992)

es (Tension) es (Compression) gs

es0 1.00 1.00 gs0 1.00
es1 -1.91E-3 -2.87E-3 gs1 -3.59E-3
es2 -2.75E-5 2.23E-4 gs2 -1.20E-4
es3 -2.48E-7 -3.42E-6 gs3 1.40E-6
es4 2.51E-9 1.46E-8 gs4 -5.64E-9

Table 2.2: Microdamage polynomial coefficients for AS4/3502 (Sicking , 1992)

es (Tension) es (Compression) gs

es0 1.00 1.00 gs0 1.00
es1 -2.75E-3 -2.08E-3 gs1 -4.02E-3
es2 3.14E-5 1.32E-4 gs2 -9.45E-5
es3 -1.24E-6 -1.03E-6 gs3 1.03E-6
es4 5.57E-9 -2.27E-9 gs4 -3.90E-9

Table 2.3: Extrapolated microdamage polynomial coefficients for AS4/3502
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Figure 2.1: Typical stress-strain curve showing the elastic (W ) and irrecoverable (S)
portions.
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(a) Shear microdamage function obtained from
[±45◦]S angle-ply laminate.
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(b) Transverse tension and compression micro-
damage functions obtained from [15◦] unidirec-
tional and [±30◦]S angle-ply laminates, respec-
tively.

Figure 2.2: ST microdamage curves for AS4/3502 (Sicking , 1992).
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(a) Isometric view. (b) Top-down view.

Figure 2.3: Microdamage Sr evolution in AS4/3502 as a function of applied ε22 and
γ12 using data from Sicking (1992).
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damage functions obtained from [15◦] unidirec-
tional and [±30◦]S angle-ply laminates, respec-
tively.

Figure 2.4: Extrapolated ST microdamage curves for AS4/3502.
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(a) Isometric view. (b) Top-down view.

Figure 2.5: Microdamage Sr evolution in AS4/3502 as a function of applied ε22 and
γ12 using data extrapolated from Sicking (1992).

Figure 2.6: Condition for stable microdamage evolution as a function of applied ε22

and γ12 for AS4/3502. δ2WT > 0 when δSr > 0; therefore, microdamage growth is
unconditionally stable.
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CHAPTER III

Multiscale Modeling of Progressive Damage and

Failure in Fiber-Reinforced Laminates

3.1 Introduction

The complex nature of damage and failure in composite materials arises from their

heterogeneity. The separate constituents introduce additional length scales, below the

operational, structural length scale, at which damage and failure mechanisms accrue.

Thus, the observed, global failure mechanisms of a composite structure are results of

the evolution and interaction of damage and failure mechanisms at the subscales. It is

in this reciprocative manner that a composite material behaves more like a structure

than a material.

The two-scale, multiscale technique (ST-FEAMAC) developed in this chapter uti-

lizes the finite element method (FEM) for the coarse-scale, lamina-level modeling

of a fiber-reinforced laminate (FRL). Schapery theory (ST, see Chapter II) is imple-

mented in FEM and used to model progressive matrix microdamage at the macroscale.

Conversely in this chapter, micromechanics will be used to mark the localization of

damage into failure. The fine-scale, or fiber/matrix microscale, is modeled using the

generalized method of cells (GMC)[Paley and Aboudi (1992)]. The software imple-

mentation of GMC, the MAC/GMC suite of micromechanics codes developed at the
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NASA Glenn Research Center (GRC) [Bednarcyk and Arnold (2002b,c)], is used to

evaluate failure at the microscale.

Within GMC, a repeating unit cell (RUC) is discretized into a number of subcells,

each of which is occupied by a particular constituent of the composite. Traction

and displacement continuity are enforced, in an average sense, at subcell interfaces

in, along with periodic boundary conditions at the boundaries of, the RUC. These

conditions can be utilized to calculate a strain concentration matrix which relates

the local subcell strains to the globally applied strains. Once the local strains are

resolved, the subcell constitutive laws yield the local stresses, and the global stresses

and homogenized stiffness of the RUC follow readily. Failure criteria are utilized in

each subcell to model the effects of matrix cracking and fiber failure. If a failure

criterion is satisfied in a particular subcell, the stiffness of that subcell is greatly

reduced and that reduced subcell stiffness is used to calculate the local subcell stresses

as well as the homogenized stiffness of the RUC and the global stresses. Thus, the

effects of failure at the microscale manifest as a reduction of the global, homogenized

stiffness of the composite. This methodology is known as subvolume elimination

method [Aboudi et al. (2012)].

The FEAMAC software [Bednarcyk and Arnold (2006)] is employed to facilitate

communication between the MAC/GMC core micromechanics engine and the Abaqus

[Abaqus (2008)] finite element solver. Integration point strains are applied to the

GMC RUC, and GMC is used to calculate the homogenized stiffness tensor of the RUC

(accounting for potential subcell failure) and update the integration point stresses. To

improve computational efficiency in ST-FEAMAC, micromechanics calculations are

precluded unless the lamina-level microdamage is above a predetermined threshold.

The GMC formulation is presented in Section 3.2. Whereas, details on the mul-

tiscale ST-FEAMAC methodology developed are given in Section 3.3. Experimental

data from two laminated center-notched panels (CNPs), tested at the NASA Lang-
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ley Research Center (LaRC) [Bogert et al. (2006); Satyanarayana et al. (2007)], are

compared to ST-FEAMAC in Section 3.4.

3.2 The Generalized Method of Cells

A micromechanical analysis technique, coined the method of cells (MOC), was

developed by Aboudi (1991); subsequently, Paley and Aboudi (1992) expanded MOC

into the generalized method of cells, and later Aboudi et al. (2001) further increased

the robustness of this method with the high-fidelity generalized method of cells

(HFGMC). These methods provide semi-closed form solutions for determining global

anisotropic composite properties in terms of the constituent materials, as well as, the

fully three dimensional (3-D) stresses and strains in each of the constituent subcells.

The sophisticated methods (GMC and HFGMC) offer a high degree of accuracy at a

relatively low computational cost.

Displacement and traction continuity are enforced in an average, integral sense

at the subcell interfaces of a discretized RUC in GMC. These continuity conditions

are used to formulate a set of semi-analytical linear algebraic equations that can be

solved for the local subcell strains in terms of globally applied strains or stresses. Sub-

sequently, local constitutive laws can be utilized to obtain the local subcell stresses,

and a constitutive law for the effective, homogenized composite can be formulated.

It is assumed that a composite microstructure can be represented as a collection

of triply periodic RUCs containing a general number of constituents, as shown in

Figure 3.1. The RUC is then discretized into Nα x Nβ x Nγ parallelepiped subcells,

as exhibited in Figure 3.2. Each of these subcells is occupied by one of the constituent

materials of the composite. The number of subcells and the materials occupying each

subcell are completely general. For a two-phase fibrous composite, any desired micro-

architecture can be represented by occupying each subcell with either a matrix or fiber

constituent. Since the microstructure does not vary along the axial, fiber-direction,
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a unidirectional composite can be modeled using a doubly-periodic RUC (Figure

3.3), where only the x2-x3 plane is discretized. Herein, doubly-periodic formulations

of both GMC [Paley and Aboudi (1992)] and HFGMC [Aboudi et al. (2001)] (see

Chapter V) will be employed; the reader is referred to Aboudi et al. (2012) for the

fully 3D formulations.

3.2.1 Definition of subcell strains and stresses

The objective of this method is to determine the average behavior of the composite

material; thus, the displacement fields in each subcell are approximated to be linear

(HFGMC employs a quadratic displacement approximation). If a local coordinate

frame is defined with the origin at the center of each subcell with dimensions hβ x lγ,

as in Figure 3.4, the corresponding displacement field is approximated as:

u
(βγ)
i = w

(βγ)
i + x̄

(β)
2 φ

(βγ)
i + x̄

(γ)
3 ψ

(βγ)
i i = 1, 2, 3 (3.1)

where w
(βγ)
i is the displacement at the center of subcell βγ. Microvariables (φ

(βγ)
i , ψ

(βγ)
i )

characterize the first-order dependence of the displacement field on the local coordi-

nates x̄
(β)
2 and x̄

(γ)
3 . Note that in this doubly-periodic formulation, the displacements

are not a function of x1, but all three displacement components are present.

The components of the strain tensor follow from Equation (3.1) as,

ε
(βγ)
ij =

1

2

(
∂iu

(βγ)
j + ∂ju

(βγ)
i

)
(3.2)

where ∂1 = ∂
∂x1

, ∂2 = ∂

∂x̄
(β)
2

, ∂3 = ∂

∂x̄
(γ)
3

. Substituting Equation (3.1) into Equation

(3.2) results in the six components of the strain tensor ε
(βγ)
ij for each subcell in terms
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of the microvariables.

ε
(βγ)
11 = ∂1w

(βγ)
1

ε
(βγ)
22 = φ

(βγ)
2

ε
(βγ)
33 = ψ

(βγ)
3

2ε
(βγ)
23 = φ

(βγ)
3 + ψ

(βγ)
2

2ε
(βγ)
13 = ψ

(βγ)
1 + ∂1w

(βγ)
3

2ε
(βγ)
12 = φ

(βγ)
1 + ∂1w

(βγ)
2

(3.3)

A constitutive relationship between the local subcell stresses and strains can be

established.

σ
(βγ)
ij = C

(βγ)
ijkl

(
ε
(βγ)
kl − ε

P (βγ)
kl − ε

T (βγ)
kl

)
(3.4)

where ε
P (βγ)
ij and ε

T (βγ)
ij are the plastic and thermal strains in subcell βγ, respectively.

In this work, plastic and thermal effects are not considered and all material non-

linearity is due to progressive degradation of the components of the elastic stiffness

tensor C
(βγ)
ijkl . Therefore, Equation (3.4) reduces to

σ
(βγ)
ij = C

(βγ)
ijkl ε

(βγ)
kl (3.5)

3.2.2 Displacement continuity conditions

Subcell displacements are required to be continuous at the interfaces between

adjacent subcells, as well as at the boundaries between neighboring repeating cells.

u
(βγ)
i

∣∣∣
x̄
(β)
2 =hβ/2

= u
(β̂γ)
i

∣∣∣
x̄
(β̂)
2 =−hβ̂/2

(3.6)
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u
(βγ)
i

∣∣∣
x̄
(γ)
3 =lγ/2

= u
(βγ̂)
i

∣∣∣
x̄
(γ̂)
3 =−lγ̂/2

(3.7)

where hβ and lγ are the subcell dimensions shown in Figure 3.4, and the ‘ˆ’ symbol

indicates the adjacent subcell.

β̂ =





β + 1, β > Nβ

1, β = Nβ

(3.8)

γ̂ =





γ + 1, γ > Nγ

1, γ = Nγ

(3.9)

The displacement continuity conditions given in Equations (3.6) and (3.7) are

enforced at the interfaces in an average, integral sense.

∫ lγ/2

lγ/2

u
(βγ)
i

∣∣∣
x̄
(β)
2 =hβ/2

dx̄
(γ)
3 =

∫ lγ/2

−lγ/2

u
(β̂γ)
i

∣∣∣
x̄
(β̂)
2 =−hβ̂/2

dx̄
(γ)
3 (3.10)

∫ hβ/2

hβ/2

u
(βγ)
i

∣∣∣
x̄
(γ)
3 =lγ/2

dx̄
(β)
2 =

∫ hβ/2

−hβ/2

u
(βγ̂)
i

∣∣∣
x̄
(γ̂)
3 =−lγ̂/2

dx̄
(β)
2 (3.11)

Substituting the displacement field approximation Equation (3.1) into Equations

(3.10) and (3.11) yields statements of displacement continuity in terms of the mi-

crovariables.

w
(βγ)
i +

1

2
hβφ

(βγ)
i = w

(β̂γ)
i − 1

2
hβ̂φ

(β̂γ)
i (3.12)

w
(βγ)
i +

1

2
lγψ

(βγ)
i = w

(βγ̂)
i − 1

2
lγ̂ψ

(βγ̂)
i (3.13)

All field variables are evaluated at the center of each subcell; therefore Taylor

expansions of the field variables in Equations (3.12) and (3.13), omitting second order

and higher terms, results in

w
(βγ)
i − 1

2
hβ

(
∂w

(βγ)
i

∂x2

− φ
(βγ)
i

)
= w

(β̂γ)
i − 1

2
hβ̂

(
∂w

(β̂γ)
i

∂x2

− φ
(β̂γ)
i

)
(3.14)
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w
(βγ)
i − 1

2
lγ

(
∂w

(βγ)
i

∂x3

− ψ
(βγ)
i

)
= w

(βγ̂)
i − 1

2
lγ̂

(
∂w

(βγ̂)
i

∂x3

− ψ
(βγ̂)
i

)
(3.15)

where the field variables are evaluated at the corresponding subcell interface. In

order to map the RUC to a single point within an equivalent, homogenous medium,

Equations (3.14) and (3.15) must hold for all β = 1, . . . , Nβ and γ = 1, . . . , Nγ.

Subtracting Equation (3.12) from (3.14) and Equation (3.13) from (3.14) gives

∂w
(βγ)
i

∂x2

=
∂w

(β̂γ)
i

x2

(3.16)

∂w
(βγ)
i

∂x3

=
∂w

(βγ̂)
i

x3

(3.17)

To satisfy Equations (3.16) and (3.17), the displacement field must be such that

w
(βγ)
i = wi,

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(3.18)

it is now clear that wi represents the average displacements of the multiphase RUC

that maps to a single point in an equivalent, homogenous continuum that effectively

represents the multiphase composite. As such, the linear terms in the displacement

field Equation (3.1) provide the local variations from the average displacements.

Utilizing Equation (3.18) and summing Equations (3.14) and (3.15) over all β and

γ, respectively, results in Nβ+Nγ relations between the displacement of the equivalent

continuum point and local, subcell microvariables in the RUC

Nβ∑

β=1

hβφ
(βγ)
i = H

∂wi

∂x2

, γ = 1, . . . , Nγ (3.19)

Nβ∑

β=1

lγψ
(βγ)
i = L

∂wi

∂x3

, β = 1, . . . , Nβ (3.20)
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3.2.3 Derivation of the displacement continuity conditions in terms of

average subcell strains

Equations (3.19) and (3.20) relate the global, equivalent displacement field of an

equivalent continuum wi to the local, subcell microvariables φ
(βγ)
i and ψ

(βγ)
i . It is

possible to recast these equations in terms of the average, local subcell strains ε
(βγ)
ij .

First, because wi are the average displacement components of an equivalent con-

tinuum, it follows that the average global RUC strains are defined as

ε̄ij =
1

2

(
∂wi

∂xj

+
∂wj

∂xi

)
(3.21)

Substituting the first relation in Equation (3.3) yields

ε
(βγ)
11 = ε̄11, β = 1, . . . , Nβ, γ = 1, . . . , Nγ (3.22)

These NβNγ equations are a result of the doubly periodic assumptions and indicate a

state of generalized plane strain; i.e., the average strain in x1-direction of all subcells

is uniform and equal to the global strain in the x1-direction.

Setting i = 2 in Equation (3.19) and utilizing the second relationship of Equation

(3.3) and Equation (3.21) yields

Nβ∑

β=1

hβε
(βγ)
22 = Hε̄22, γ = 1, . . . , Nγ (3.23)

Similarly, using Equation (3.20) with i = 3, the third relationship of Equation (3.3)

and Equation (3.21) gives

Nγ∑
γ=1

lγε
(βγ)
33 = Lε̄33, β = 1, . . . , Nβ (3.24)
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Two of the shear strain continuity conditions can be derived by adding H
∂w2

∂x1

to

Equation (3.19) with i = 1, noting the sixth relation in Equation (3.3) and Equation

(3.21),
Nβ∑

β=1

hβε
(βγ)
12 = Hε̄12, γ = 1, . . . , Nγ (3.25)

and adding L
∂w1

∂x2

to Equation (3.20) with i = 1, using the fifth relation in Equation

(3.3) and Equation (3.21).

Nγ∑
γ=1

lγε
(βγ)
13 = Lε̄13, β = 1, . . . , Nβ (3.26)

Finally, averaging the local subcell strains to obtain the global composite strain

Nβ∑

β=1

Nγ∑
γ=1

hβlγε
(βγ)
ij = HLε̄ij (3.27)

with i = 2 and j = 3 yields the finally strain continuity condition.

Nβ∑

β=1

Nγ∑
γ=1

hβlγε
(βγ)
23 = HLε̄23 (3.28)

Equations (3.23)-(3.26) and (3.28) represent 2(Nβ +Nγ)+NβNγ +1 average strain

continuity conditions, and can be written in matrix form as

AGεS = Jε̄ (3.29)

where the global, average strain vector is

ε̄ = [ε̄11, ε̄22, ε̄33, 2ε̄23, 2ε̄13, 2ε̄12]
T (3.30)
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and the local subcell strain vector is

εS =
[
ε(11), ε(12), . . . , ε(NβNγ)

]T
(3.31)

where ε(βγ) are vectors containing the subcell strains in the same order as Equation

(3.30).

The displacement continuity conditions can be relaxed to account for interfacial

debonding by introducing a displacement jump at the subcell interfaces. The interfa-

cial displacement can then be related to the interfacial traction through appropriate

interfacial constitutive law. Bednarcyk et al. (2004) utilized the evolving compliant

interface (ECI) model to relate traction to separation at fiber/matrix interfaces in ti-

tanium matrix composites. A cohesive zone based debonding formulation is presented

in Appendix B.

3.2.4 Traction continuity conditions

Traction continuity must also be enforced, on average, at the interface between

adjacent subcells, in order to arrive at the correct number of equations needed to

solve for the 6NβNγ subcell strain unknowns. The traction continuity equations are

expressed as,

σ
(βγ)
2j = σ

(β̂γ)
2j (3.32)

σ
(βγ)
3j = σ

(βγ̂)
3j (3.33)

After eliminating repeating traction continuity conditions, the following 5NβNγ −
2(Nβ + Nγ)− 1 independent equations remain:

σ
(βγ)
22 = σ

(β̂γ)
22 , β = 1, . . . , Nβ − 1, γ = 1, . . . , Nγ (3.34)

σ
(βγ)
33 = σ

(βγ̂)
33 , β = 1, . . . , Nβ, γ = 1, . . . , Nγ − 1 (3.35)
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σ
(βγ)
23 = σ

(β̂γ)
23 , β = 1, . . . , Nβ − 1, γ = 1, . . . , Nγ (3.36)

σ
(βγ)
32 = σ

(βγ̂)
32 , β = Nβ, γ = 1, . . . , Nγ − 1 (3.37)

σ
(βγ)
21 = σ

(β̂γ)
21 , β = 1, . . . , Nβ − 1, γ = 1, . . . , Nγ (3.38)

σ
(βγ)
31 = σ

(βγ̂)
31 , β = 1, . . . , Nβ, γ = 1, . . . , Nγ − 1 (3.39)

These traction conditions can be recast in terms of the average subcell strains using

the constitutive relationship, in this case Equation (3.4) or (3.5). The equations can

then be written in matrix form.

AMεS = 0 (3.40)

where εS is given in Equation (3.31)

Note that the traction continuity conditions require that particular components

of the stress tensor must be equal along certain rows or columns of the RUC. For

instance, given a particular column of subcells γ, all subcells in that column must

have the same σ
(βγ)
22 for all β. Pindera and Bednarcyk (1999) used this characteristic

to reduce the total number of unknowns by introducing a mixed formulation in terms

of local stresses and strains. This reformulation is employed in all numerical GMC

simulations provided here, but the reader is referred to Pindera and Bednarcyk (1999)

for details on the reformulation. It should also be noted that this same feature is an

indication of the lack of normal shear coupling (meaning applied normal stress can

only induce local normal stresses) in GMC arising from the linear approximation of

the displacement fields in the subcells, and the enforcement of the displacement and

traction continuity at the subcell interfaces in an average, integral sense.
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3.2.5 Determining local subcell fields and global effective composite con-

stitutive relations

Once AG, AM , and J have been determined, the subcell strains can be computed

by solving

ÃεS = Kε̄ (3.41)

where

Ã =




AM

AG


 (3.42)

and

K =




0

J


 (3.43)

The local subcell strains are related to the global composite strains through

εS = Aε̄ (3.44)

where A is the strain concentration matrix given by

A = Ã−1K (3.45)

Once the relationship between local and global strains has been established with

Equation (3.44), the local subcell stresses are readily obtained using the local consti-

tutive law, Equation (3.5).

σ(βγ) = C(βγ)A(βγ)ε̄ (3.46)

where A(βγ) is a submatrix of A that relates the local strain in subcell βγ to the

global composite strains.

ε(βγ) = A(βγ)ε̄ (3.47)
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The global, composite stresses can be defined as a standard average of the local,

subcell stresses.

σ̄ =
1

HL

Nβ∑

β=1

Nγ∑
γ=1

hβlγσ
(βγ) (3.48)

Then, substituting Equation (3.46) into Equation (3.48) yields the global constitutive

law.

σ̄ = Bε̄ (3.49)

where

B =
1

HL

Nβ∑

β=1

Nγ∑
γ=1

hβlγC
(βγ)A(βγ) (3.50)

3.3 Multiscale Methodology

The multiscale model developed involves linking the GMC micromechanics model

to the lamina-level FEM model. A synergistic approach is employed which utilizes

concurrent multiscaling in time, but sequential in length [Sullivan and Arnold (2011)].

The commercial finite element software, Abaqus [Abaqus (2008)], is used as the FEM

platform, and the MAC/GMC core micromechanics software [Bednarcyk and Arnold

(2002b,c)] is used to perform microscale calculations. To tie the scales together,

the FEAMAC software implementation [Bednarcyk and Arnold (2006)] is used. In

the following analyses, damage and failure are separated. Damage is the evolution

of mechanisms which result in nonlinear, positive-definite changes in the stiffness

tensor of the material while failure is considered to be all structural changes that

result in post-peak strain softening within the material. Here matrix microdamage is

considered responsible for all damage in the composite lamina. ST (see Chapter II)

is implemented at the lamina level within FEM. Intralaminar failure is taken as the

evolution of matrix cracks, and fiber breakage. Micromechanics is used to percolate

the influence of these failure mechanisms up the scales. Since failure is a highly

localized phenomenon, it is hypothesized that the fiber-matrix architecture influences
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the evolution of failure. Thus, fiber and matrix failure is initiated at the microscale

using the MAC/GMC core engine. If failure does initiate in a GMC subcell, the

stiffness of the subcell is severely reduced, and the global stiffness is recalculated

and passed to Abaqus using the FEAMAC framework. Both ST and FEAMAC

are implemented in Abaqus/Standard with a user material subroutine UMAT [Abaqus

(2008)].

The ST algorithm is displayed in Figure 3.5. The ST evolution equations derived

in Chapter II are restated below.

1

2

(
ε2
22E220

des

dSr

+ γ2
12G120

dgs

dSr

)
= −3S2

r (3.51)

Ṡr ≥ 0 (3.52)

At the beginning of the analysis, the derivatives of microdamage functions e′s(Sr) and

g′s(Sr) (where the prime indicates a derivative with respect to Sr) are approximated

using linear spline interpolants and the coefficients of the interpolants are saved.

Using linear interpolants for the derivatives of the microdamage functions results in

a form of Equation (3.51) that is quadratic in Sr, yielding an efficient, analytical

solution for Sr. Since the solution of Equation (3.51) is multi-valued, the solution

which is closest to Sr from the previous increment is chosen as the correct solution.

The value of Sr from the previous solution is used to estimate the appropriate spline

regime used in the calculation of the current Sr solution. If the current solution

falls outside the applicable range of Sr for those splines, new splines associated with

the current solution are used to resolve Equation (3.51). This iteration continues

until the solution of Sr and the splines used to obtain the solution correspond. A

maximum number of iterations can be set, after which Equation (3.51) is solved using

the full polynomial forms of the damage functions by finding the eigenvalues of the

complimentary matrix of the polynomial coefficients of the evolution equation.
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If Sr increases from the previous increment, the transverse and shear moduli

are degraded using the damage functions: Equations (2.12) and (2.13). The new,

degraded stiffnesses are used to calculate the stress state. In an Abaqus/Standard

analysis the material Jacobian (tangent stiffness matrix) is also calculated.

It is possible to integrate ST directly into the micromechanics through the subcell

constitutive relationships by using a 3D extension of ST. Details of a novel, 3DST

formulation are presented in Appendix A. However, matrix microdamage is highly

distributed and often spans regions beyond the fiber-matrix scale (see Figure 1.1).

Conversely, transverse cracking and fiber breakage are highly localized and are on the

order of the microscale, as shown in Figures 1.2 and 1.3. Additionally, separating

damage from failure and performing all damage calculations at the lamina-scale and

all failure calculations at the microscale enables judicious use of the micromechan-

ics calculations. A minimum critical value for the microdamage S∗r can be chosen,

wherein if Sr remains below that value, the micromechanics calculations are fore-

gone. This assumes that failure must follow some degree of damage, but even if S∗r

is chosen as a relatively small value, immense computational savings are achieved by

eliminating FEAMAC calculations at integration points that are exhibiting little to

no microdamage.

Once the global stresses and Jacobian have been calculated using ST and Sr is

above the assigned threshold, FEAMAC is called to evaluate failure criteria locally in

the subcells of an RUC using GMC. However, before any micromechanical analysis can

be performed, it must be ensured that the homogenized stiffness tensor calculated by

GMC, using Equation (3.50), is consistent with the degraded stiffness calculated with

ST. To this end, the lamina-level microdamage is taken to be distributed uniformly

throughout the matrix phase of the RUC; therefore, the properties of all matrix
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subcells are degraded equally according to

Em = Em0em(Sr) (3.53)

Gm = Gm0gm(Sr) (3.54)

where Em0 and Gm0 are the virgin matrix Young’s and shear modulus, and em(Sr) and

gm(Sr) are the matrix microdamage functions. The matrix microdamage functions

are determined a priori using a series of standalone micromechanics simulations.

Equations (2.12) and (2.13) are evaluated for numerous values of Sr. Then for each

Sr, Em and Gm are calibrated such that GMC calculates the same E22 and G12 as

Equations (2.12) and (2.13). The values of Em and Gm are normalized by Em0 and

Gm0 (obtained from Sr = 0) and the (Em/Em0, Sr) and (Gm/Gm0, Sr) pairs are fit

with polynomials yielding em(Sr) and gm(Sr).

After the consistent matrix properties are calculated, the micromechanics can be

executed using FEAMAC. FEAMAC consists of four ABAQUS/Standard user defined

subroutines, as well as six subroutines exclusive to the FEAMAC package (see Figure

3.6). The Abaqus/Standard UMAT provides the strains, strain increments, and cur-

rent values of state variables to MAC/GMC through the front end subroutine FEAMAC.

MAC/GMC then returns a new stiffness and stress state, as well as updated state

variables, to the UMAT via the FEAMAC subroutine. The Abaqus/Standard user sub-

routine SDVINI initializes the state variables used in UMAT. The ABAQUS/Standard

user subroutine UEXPAN is used for thermal analysis by providing the integration point

temperature, temperature increment, and current state to MAC/GMC, which in turn,

calculates new thermal strains and thermal strain rates. Problem set-up task, ini-

tialization, and writing MAC/GMC level output data to files is achieved through

the ABAQUS/Standard user subroutine UEXTERNALDB, which communicates between

ABAQUS/Standard, the FEAMAC PRE, and FEAMAC PLOTS subroutines. The reader is
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referred to Bednarcyk and Arnold (2006) for further details on the FEAMAC software

implementation.

Micro-constituent failure is evaluated within MAC/GMC. Through localization

(Equation (3.44)), the local fields in the subcells of the RUC are obtained, and failure

criteria are enacted within each subcell. Herein, for the fiber subcells, a maximum

strain criterion is used.

ε
(βf γf)
11

Xf
T

= 1 (3.55)

where βf and γf are fiber subcell indices, and Xf
T is the axial fiber tensile strain

allowable. Softening due to axial compression arises automatically due to fiber rota-

tion; see Chapter IV, Section 4.2.3 [Basu (2005)]. A strain-based Tsai-Hill criterion

is used to determine failure in the matrix subcells.

ε
(βmγm)
11

2
+ ε

(βmγm)
22

2
+ ε

(βmγm)
33

2

Ym
2

−ε
(βmγm)
11 ε

(βmγm)
22 + ε

(βmγm)
11 ε

(βmγm)
33 + ε

(βmγm)
22 ε

(βmγm)
33

Ym
2

+
ε
(βmγm)
23

2
+ ε

(βmγm)
13

2
+ ε

(βmγm)
11

2

Z2
m

= 1

(3.56)

where βm and γm are matrix subcell indices.

If subcell failure criteria are satisfied, the properties of the failed subcells are

severely reduced instantaneously so the stiffness of the failed subcells no longer con-

tribute significantly to the overall stiffness of the RUC. This failure procedure is meant

to simulate the localization of damage into matrix cracks or fiber breakage. Equa-

tions (3.55) and/or (3.56) mark the initiation of the localization, and the reduction of

subcell stiffness simulates the effects of cracking on the RUC. This procedure does not

correctly capture the physics of matrix and fiber cracking, but it is computationally

efficient and was readily achievable using pre-existing modules within MAC/GMC.

Furthermore, the degradation scheme results in mesh dependent solutions [Bažant
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and Cedolin (1979)]. However, this methodology represents a first attempt to couple

micromechanics driven failure with global, distributed, lamina-level damage. Chapter

V introduces physics-based failure criteria and evolution schemes into the HFGMC

micromechanics frameworks.

It is assumed that strain localizes to a vicinity near the failure within the RUC;

therefore, strain relaxes in the surrounding bulk material, and subsequent increases

in strain do not advance lamina-level progressive damage any further. Thus, once

failure occurs in any subcell, the ST calculations for Sr are circumvented in successive

increments at the applicable point in the FEM model. FEAMAC is called immediately

at the start of each increment with the matrix subcell properties that were used just

prior to first subcell failure, calculated with Equations (3.53) and (3.54).

In order to set up an FEAMAC problem, a standard Abaqus input file is used that

includes a user material with a name ending in either “.mac” or “ mac”. These ex-

tensions indicate to FEAMAC that the material is a MAC/GMC composite material

whose constituent properties and architecture (e.g., fiber volume fraction and fiber

arrangement) are defined in a MAC/GMC input file of the same name. The appli-

cable MAC/GMC input file(s) must be located in the same directory as the Abaqus

input file. Materials that are not associated with MAC/GMC are also permitted in

FEAMAC problems. The Abaqus input file will also typically include an orientation

definition (as composite materials are usually anisotropic), while the necessary cards

usually associated with a user material must be specified as well. Only one additional

card, not typically associated with a user material problem, must be specified in or-

der to trigger certain initialization tasks: *INITIAL CONDITIONS, TYPE=SOLUTION,

USER. These initialization tasks are executed within the Abaqus/Standard user sub-

routine SDVINI. FEAMAC problem execution is accomplished identically to any prob-

lem that utilizes a user material, wherein the FORTRAN source file containing the

appropriate user subroutines is specified. The FEAMAC subroutines are compiled in
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a static .lib library file which is linked to Abaqus/Standard when the FEM job is

executed. The location of the .lib file is indicated in the abaqus v6.env file. Finally,

FEAMAC problem post processing is accomplished identically to any Abaqus prob-

lem, as all typical Abaqus output, including the .odb file, is available. Constituent

level field variables are stored internally within the Abaqus state variable space and

are also available for postprocessing.

3.4 Example - Center Notched Panels Subjected to Uniaxial

Tension

3.4.1 Experimental Details

Two center-notched panel configurations were tested at NASA LaRC [Bogert et al.

(2006); Satyanarayana et al. (2007)]. The geometrical details of the panel and testing

boundary conditions are presented in Figure 3.7. The panels were 3” wide and 11.5”

long. Two 3” x 2.75” tabs were placed on both ends of the specimens, leaving a gage

section of 3” x 6” which is displayed in Figure 3.7. A central notch was machined

in each panel that was 0.75” wide and had a notch tip radius of 0.09375”. The

end tabs were clamped and a vertical, tensile displacement (in the y-direction) was

applied to the top tab using a servo-hydraulic testing machine. The bottom tab

was fixed preventing any y-displacement of the bottom boundary of the gage section.

The gripped tabs also prevented any displacement in the x-direction at the top and

bottom boundaries of the gage section.

The panels were comprised of laminated T800/3900-2 carbon fiber/toughened

epoxy composites. Three different lay-up configurations were tested; however one of

the configurations exhibited significant delamination. Since the focus of this work

is modeling in-plane damage and failure mechanisms, this configuration is not con-

sidered here. The two remaining configurations are presented in Table 3.1. The
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first lay-up, Laminate-1, consists of 12 0◦ plies, and the second, Laminate-2, is a

symmetric, multi-angle lay-up with 40% |45◦|, 40% 0◦, and 20% 90◦ layers.

Several strain gages where affixed to the test panel, labeled Sg-1 through Sg-4 in

Figure 3.7. Sg-1 was placed in the center of the panel, 1.5” above the notch. Sg-2 was

placed 1.5” above the notch tip. Sg-3 was attached in front of the notch, 0.5” from

the free edge, and Sg-4 placed at the notch tip. Global load versus displacement data,

and local strain gage data was reported by Bogert et al. (2006); Satyanarayana et al.

(2007), along with a post-test C-Scan of Laminate-1 and photograph of Laminate-2.

3.4.2 Finite Element Model Details

Simulation of the two CNPs were performed using Abaqus/Standard, version 6.10-

1 [Abaqus (2008)]. The domain was modeled using linear, quadrilateral S4R layered

shell elements. The refined finite element mesh, shown in Figure 3.8 was chosen

after simulations with coarser meshes indicated locations where the most damage and

failure should be expected. The average size of the elements in the refined regions was

0.0469” x 0.0469” and was selected to accommodate two elements per length equal to

the notch tip radius in the regions where the greatest non-linearities were expected.

Outside of the suspected critical areas the element size was allowed to grow. Elements

with an area equal to 0.0254” x 0.0254” were used at the locations of the strain gages

shown in Figure 3.7.

The displacement in the x-direction as well as all rotations where prohibited at

the nodes along the top and bottom edges, and displacement in y−direction was fixed

at the nodes on the bottom edge to simulate the gripped boundary conditions present

in the experiments. A uniform displacement was applied to all the nodes on the top

boundary in the positive y-direction to model tensile loading.

The linear elastic properties of T800/3900-2 used in the FEM models are pre-

sented in Table 3.2, and were taken from Bogert et al. (2006). The shear microdamage
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function gs utilized in Equation (2.13) was obtained from T800/3900-2 [45◦/-45◦]3S

angle-ply coupon tests. The [±30◦]S and [15◦] laminates needed to determine the

transverse tensile and transverse compressive microdamage functions were not avail-

able. Therefore, these microdamage functions were inferred by scaling the coefficients

of the microdamage curves presented by Sicking (1992) for AS4/3502 (see Table 2.2)

by the ratio of the virgin transverse modulus of T800/3900-2 to that of AS4/3502.

The same procedure described in Section 2.3 was used to extrapolate the microdam-

age curves to values of zero stiffness. The coefficients of the microdamage curves

(Equations (2.17) and (2.18)) are presented in Table 3.3, and the curves are plotted

in Figure 3.9.

The multiscale methodology (ST-FEAMAC) described in Section 3.3, is utilized

to model the response of the T800/3900-2 laminates. A doubly-periodic, seven sub-

cell by seven subcell RUC shown in Figure 3.3 was chosen to model the composite

microstructure, assuming square packing. The 13 blue subcells represent fiber sub-

cells, and the 36 green indicate matrix subcells. The size of the fiber was chosen

to maintain a 54% volume fraction. The virgin elastic properties used for the fiber

and matrix constituents were calibrated such that the composite stiffness calculated

using the seven subcell by seven subcell RUC matched the lamina stiffnesses in Table

3.4. The elastic properties of the constituents are given in Table 3.4. The microdam-

age functions for the matrix subcells were obtained using the procedure outlined in

Section 3.3, the curves are plotted in Figure 3.10.

Em = Em0

(
em0 + em1Sr + em2S

2
r + em3S

3
r + em4S

4
r + em5S

5
r

)
(3.57)

Gm = Gm0

(
gm0 + gm1Sr + gm2S

2
r + gm3S

3
r + gm4S

4
r + gm5S

5
r

)
(3.58)

The strain allowables used in the maximum tensile strain criterion for fiber fail-

ure, Equation (3.55), the strain-based Tsai-Hill criterion for matrix failure, Equation
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(3.56) are displayed in Table 3.5. These allowables were calibrated using characteris-

tic experimental loads (see Sections 3.4.3 and 3.4.3). Once Equation (3.55) or (3.56)

is satisfied, the local moduli of the subcell are reduced by 99.99%.

Displacement was applied to both laminates using the *DYNAMIC keyword in

Abaqus with the parameter APPLICATION = QUASI-STATIC. This implicit dynamic

solver is recommended for quasi-static problems exhibiting a high-degree of non-

linearity. This procedure uses numerical damping to stabilize the problem. The

numerical damping does not significantly affect the simulation results because the ve-

locities in these simulations are low. For Laminate-1 a total displacement of 0.0236”,

and for Laminate-2 a displacement of 0.0472”, is applied over 1000 seconds. The

panels were assigned a representative density of 0.057 lb/in.3. This technique has

advantages over traditional static, implicit solvers which have difficulty converging

when the material exhibits post-peak softening [Belytschko et al. (2000); Belytschko

and Mish (2001)], and is not limited by a minimum stable time step required with

explicit solvers [Hughes (2000)].

3.4.3 Results - Laminate-1

Figure 3.11 compares the global load P versus the displacement ∆ of a 4” section

results from ST-FEAMAC to the experiment. The relationship is initially linear, but

at the splitting load, reported as 8,250 lbf. by Bogert et al. (2006). ST-FEAMAC

captures the global nonlinearity well. The numerical splitting load is inferred from the

global load versus local Sg-1 strain gage results in Figure 3.12a as the load at which the

strain relaxation begins. The numerical splitting load was 8,490 lbf. The splitting

loads from the experiment and simulation are tabulated in Table 3.6. The matrix

strain allowables used in Equation (3.56) were calibrated to obtain the best correlation

between the numerical results and the experimental data at Sg-1; however, the global

load versus displacement and data at the other strain gage locations obtained from the
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model are predictions. The results for the other three strain gages are also presented

in Figure 3.12. For the gage locate far above the notch, ST-FEAMAC predicts the

onset of nonlinearity and the nonlinear trend matches the data reasonably. Both the

experiment and ST-FEAMAC exhibit slight nonlinear behavior at Sg-3 which is in

front of the notch, near the free edge. For the gage located directly at the notch, the

results from ST-FEAMAC are in agreement with the experimental data, although

ST-FEAMAC shows a slightly stiffer response.

A C-Scan of the failed Laminate-1 specimen is displayed in Figure 3.13. The

C-Scan shows four splitting cracks propagating from the notch in the loading direc-

tion towards the free edge. Figure 3.14 shows the normalized microdamage contour

predicted by ST-FEAMAC. In Figure 3.14 Sr is normalized by the maximum achiev-

able value, 144.12 Pa
1
3 , which was obtained from extrapolating the measured damage

curves to zero stiffness. At the splitting load, the microdamage pattern mirrors the

splitting pattern. The microdamage is more dispersed, but contains localized regions

of highly degraded elements. At a load of 16,400 lbf., nearly twice the splitting load,

the microdamage splits have nearly progressed to the gripped boundary of the panel,

and Sr is 38% of its maximum.

The failure pattern in Figure 3.15 plots the number of subcells that have failed

within the RUC at each integration point. An initial single scale simulation contain-

ing only ST was used to determine which regions of the panel were most susceptible

to failure. To improve computational efficiency, regions that did not exhibit an micro-

damage were not modeled using the multiscale procedure. These regions are displayed

in gray. Black regions indicate no subcells have failed. Blue indicates one subcell has

failed. Yellow marks that 36 subcells, or all of the matrix subcells have failed. Red

would indicate that every subcell has failed, but there was no fiber failure in this

example. The same splitting pattern, observed in Figure 3.13 is observed in Figure

3.15. Subcell failure is localized into a one element wide regions that propagate to-
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wards the gripped boundary of the specimen. However, it appears that the tip of

the splitting crack progresses discontinuously, in every other element. Scrutiny of the

strains just in front of the crack tip revealed that the element adjoined to the splitting

crack tip had lower shear and transverse strains than is present two elements in front

of the crack tip. Therefore, the splitting failure occurs in every other element as the

splitting crack progresses.

3.4.4 Results - Laminate-2

The P versus ∆ results obtained from ST-FEAMAC for Laminate-2 are compared

against the experimental data in Figure 3.16. The experiment exhibits linear behavior

up until the specimen fails catastrophically at 15,300 lbf. The axial strain allowable

in Equation (3.55) was calibrated to provide the best correspondence between the

ultimate loads from the experiment and the simulation; however, the simulation re-

sults at all the strain gage locations are predictions. The ST-FEAMAC simulation

produced an ultimate load of 14,740 lbf., but there was some nonlinearity behavior

exhibited just before final failure. The load versus local strain gage data, shown in

Figure 3.17, predicted by ST-FEAMAC agrees very well the experimental data. How-

ever at Sg-4 (Figure 3.17d), just in front of the notch tip, there is a discrepancy in the

stiffness from the model and the experiment. This could be result of the very high

strain gradients at the notch tip. A very small misalignment in the strain gage from

what was reported could yield a significantly different strain state. Secondly, Bogert

et al. (2006) attributed the nonlinear behavior of Sg-4 to local delamination in the

CNP at the notch.

A photograph taken of the failed specimen is presented in Figure 3.18. The pho-

tograph shows that two macroscopic cracks initially propagate from the notch tip

towards the free edges, perpendicular to the applied load, in a self-similar fashion.

Eventually, the cracks turn and proceed towards the free edge at an angle. Bogert
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et al. (2006) claim, supported by visual image correlation displacement data, that

there was some eccentricity in the specimen alignment which results in deviation

from self similar crack growth.

Figures 3.19-3.22 present microdamage contours and failure patterns in each of

the unique layers in the laminate (i.e. 45◦, 0◦, -45◦, and 90◦). The first normalized

Sr contour, Figure 3.19, is given at a load of 12,770 lbf. and is right before any

fiber failure initiation. At this point, the load-displacement curve (Figure 3.16) from

ST-FEAMAC is still nearly linear. The 45◦ and -45◦ layers exhibit moderate levels of

highly distributed microdamage, whereas, the 0◦ ply displays localized microdamage

around the notch tips. The 90◦ layer shows a similar pattern as the 0◦, but there is

some low level microdamage distributed throughout the ply.

The subcell failure pattern at the ultimate load is presented in Figure 3.20. The

45◦, -45◦ and 0◦ plies all display the same fiber subcell failure pattern (red), and

the 90◦ does not show any fiber subcell failure, but has a region of compete matrix

subcell failure (yellow) that matches the fiber subcell failure pattern in the other

plies. This indicates that a crack extends through all of the plies in the laminate. It

should be noted that doubly-periodic GMC assumes generalized plane strain. Thus,

the fiber strain allowable will always be met in all fiber subcells within a given ply

simultaneously. The 45◦ and -45◦ layers exhibit regions of matrix subcell failure that

are biased towards the fiber orientation in the plies. The 0◦ ply shows extensive

matrix subcell failure surrounding the fiber subcell failure path. Numerous elements

in the 90◦ layer exhibit some degree of subcell failure.

The microdamage contours in each unique layer are given at the end of the simu-

lation in Figure 3.21. Widespread microdamage is observed in the 45◦ and -45◦ plies.

Substantial microdamage surrounds the fiber subcell failure path (Figure 3.22). Mod-

erate microdamage is present on the boundaries of the matrix subcell failure pattern

(Figure 3.22b) in the 0◦ layer. The 90◦ layer exhibits low levels of microdamage
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throughout but moderate levels propagating outward from the notch.

In Figure 3.22 the fiber subcell failure pattern can be seen in the 45◦, 0◦ and -45◦

plies, and a corresponding region of matrix subcell failure is seen in the 90◦ ply. Since

all stiffness in the direction of the loading is lost in these regions, that failure pattern

essentially represents a crack propagating out from the notch in the same fashion as

shown in the photograph in Figure 3.18. In all the layers, significant matrix subcell

failure surrounds the crack.

3.5 Conclusions

A multiscale methodology, ST-FEAMAC, was presented which models matrix

microdamage at the lamina level, or macroscale, and models failure due to transverse

cracking and fiber failure at the constituent scale. Matrix microdamage was modeled

with the thermodynamically based Schapery theory, presented in the last chapter.

The generalized method of cells is the micromechanics framework employed to resolve

the local fields at the microscale. Local failure criteria are used to predict failure due

to transverse cracking in the matrix subcells, and fiber breakage in the fiber subcells.

Results from ST-FEAMAC were compared to global and local experimental data from

two center-notched panels, tested at NASA LaRC.

The degradation scheme used at the microscale yields mesh dependent results,

but it is readily implemented and ultra-efficient. In the following chapter a single

scale model is developed that alleviates the mesh dependency associated with failure.

Finally, in Chapter V a mesh objective failure model is implemented at the microscale.
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ID Stacking Sequence Thickness (in.)

Laminate-1 [0◦]12 0.078
Laminate-2 [45◦/0◦/-45◦/0◦/90◦]S 0.065

Table 3.1: T800/3900-2 lay-up configurations used in CNP tests at NASA LaRC.

Property T800/3900-2

E11 (Msi) 23.2
E22 (Msi) 1.3
G12 (Msi) 0.9
ν12 0.28

Table 3.2: Linear elastic properties for T800/3900-2 used in FEM models.

es(Sr) Coefficients Tension Compression gs(Sr) Coefficients

es0 1.0000 1.0000 gs0 1.0000
es1 -6.0373E-2 8.4887E-4 gs1 -3.0567E-2
es2 2.5937E-2 2.8002E-2 gs2 -1.2135E-1
es3 -1.5789E-2 -6.2122E-3 gs3 3.7438E-2
es4 2.2571E-3 N/A gs4 -4.5405E-4
es5 -1.0440E-4 N/A gs5 1.9532E-4

Table 3.3: Microdamage function coefficients for T800/3900-2 used in FEM models.

Property Fiber Matrix

E11 (Msi) 42.27 0.79
E22 (Msi) 1.77 0.79

ν12 0.2 0.35
G12 (Msi) 17.61 0.29

Table 3.4: Virgin elastic properties for T800 carbon fiber and 3900-2 toughened
epoxy matrix used in GMC subcells. These elastic properties were calibrated so that
the composite properties of the RUC calculated by GMC corresponded to the elastic
lamina properties presented in Table 3.2

Property Strain Allowable

Xf 0.031
Y T

m 0.0125
Y C

m 0.04685
Zm 0.091

Table 3.5: Strain allowables used in failure criteria implemented in GMC subcells.
These allowables were calibrated to provide the best match between the characteristic
loads (see Table 3.6) from the experiments and the ST-FEAMAC simulations.
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Type Experimental Numerical

Laminate-1 Splitting 8,250 lbf. 8,490 lbf.
Laminate-2 Ultimate 15,300 lbf. 14,740 lbf.

Table 3.6: Characteristic loads obtained from experiment and ST-FEAMAC simu-
lation.
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Figure 3.1: Representation of triply-periodic microstructure of a composite material
Bednarcyk et al. (2010).

Figure 3.2: Discretization of a 3D, triply-periodic RUC Bednarcyk et al. (2010).

Figure 3.3: Discretization of a 2D, doubly-periodic RUC.
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Figure 3.4: 2D GMC/HFGMC subcell with local coordinate frame.

Figure 3.5: ST computer code architecture.
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Figure 3.6: Hierarchy of FEAMAC software implementation for use with
Abaqus/Standard.

Figure 3.7: Geometry and boundary conditions of CNPs tested at NASA LaRC
[Bogert et al. (2006)].
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Figure 3.8: FEM mesh used to simulate tensile loading of CNPs.
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Figure 3.9: Microdamage functions for T800/3900-2 used in FEM models.
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Figure 3.10: Microdamage functions used in GMC matrix subcells.
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Figure 3.11: Applied load versus displacement of a 4” section for Laminate-1.
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(a) Sg-1.
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(b) Sg-2.
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(c) Sg-3.
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(d) Sg-4.

Figure 3.12: Applied load versus local strain for Laminate-1.

Figure 3.13: C-Scan of failed Laminate-1 specimen [Bogert et al. (2006)].
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(a) P = 8,490 lbf.

(b) P = 16,400 lbf.

Figure 3.14: Normalized matrix microdamage contour Sr

Smax
r

in Laminate-1.
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(a) P = 8,490 lbf.

(b) P = 16,400 lbf.

Figure 3.15: Failed GMC subcells in Laminate-1. Black indicates no failure has
occurred; gray indicates failure was not permitted.
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Figure 3.16: Applied load versus displacement of a 4” section for Laminate-2.

0 1 2 3 4 5 6

x 10
−3

0

2000

4000

6000

8000

10000

12000

14000

16000

εyy

P
(l
b
f.
)

 

 

Experiment
ST−FEAMAC
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(b) Sg-2.
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(c) Sg-3.
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Figure 3.17: Applied load versus local strain for Laminate-2.

82



Figure 3.18: Photograph of failed Laminate-2 specimen [Bogert et al. (2006)].
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(a) 45◦ Layer. (b) 0◦ Layer.

(c) -45◦ Layer. (d) 90◦ Layer.

Figure 3.19: Normalized matrix microdamage contour Sr

Smax
r

in Laminate-2 just prior
to first axial failure initiation P = 12,770 lbf.
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(a) 45◦ Layer. (b) 0◦ Layer.

(c) -45◦ Layer. (d) 90◦ Layer.

Figure 3.20: Failed GMC subcells in Laminate-2 at ultimate load P = 14,740 lbf.
Black indicates no failure has occurred.
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(a) 45◦ Layer. (b) 0◦ Layer.

(c) -45◦ Layer. (d) 90◦ Layer.

Figure 3.21: Normalized matrix microdamage contour Sr

Smax
r

in Laminate-2 at end of
simulation.
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(a) 45◦ Layer. (b) 0◦ Layer.

(c) -45◦ Layer. (d) 90◦ Layer.

Figure 3.22: Failed GMC subcells in Laminate-2 at end of simulation. Black indicates
no failure has occurred.
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CHAPTER IV

Numerical Implementation of a Multiple-ISV

Thermodynamically-Based Work Potential Theory

for Modeling Progressive Damage and Failure in

Fiber-Reinforced Laminates

4.1 Introduction

Many progressive damage and failure analysis (PDFA) methodologies breakdown

when the material enters the post-peak strain softening regime locally within an

element. Loss of positive definiteness of the tangent stiffness tensor leads to patho-

logical mesh dependence [Bažant and Cedolin (1979); Pietruszczak and Mroz (1981)].

To overcome this deficiency, Bažant (1982) developed the smeared crack, or crack

band, model that introduces a characteristic element length into the formulation of

the damage evolution. The original formulation assumed that the mode I crack band

always aligns with the principle axes [Bažant and Oh (1983)]. de Borst and Nauta

(1985) altered the formulation to accommodate a fixed crack band under mixed mode

conditions. An encompassing overview of smeared crack band models is provided by

Spencer (2002).

In Chapter II, the thermodynamically-based, work potential theory, Schapery the-
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ory (ST), was presented for modeling matrix microdamage in fiber-reinforced lami-

nates (FRLs). Sicking (1992) and Schapery and Sicking (1995) extended the formula-

tion to include the effects of transverse cracking by adding an additional internal state

variable (ISV) and predicted the evolution of microdamage and transverse cracking

in coupon laminates analytically. Pineda et al. (2010b) implemented this extended

formulation in a numerical setting to simulate the failure of a buffer strip-reinforced,

center-notched panel (CNP). However, due to the cumbersome nature of the evolu-

tion equations, the microdamage and transverse cracking evolution equations were

decoupled to arrive at a more efficient implementation. Since no characteristic length

was introduced into the formulation, the theory produces mesh dependent results

in a computational setting. In the previous chapter, micromechanics was used to re-

solve the localization due to failure. Unfortunately, the microscale failure degradation

scheme utilized also produces mesh dependent results.

In this chapter, the Schapery theory (ST) formulation is modified to the enhanced

Schapery theory (EST) to accommodate the effects of macroscopic transverse and

shear matrix cracking, as well as fiber breakage, using an approach that differs from

Refs. [Sicking (1992); Schapery and Sicking (1995); Pineda et al. (2010b)]. As in

the previous chapter, a deliberate distinction between damage and failure is made.

Damage is defined as the effects of any structural changes resulting in a nonlinear

response that preserves the positive definiteness of the tangent stiffness tensor of

the material. Conversely, failure is considered to be the consequence of structural

changes that yield post-peak strain softening in the stress versus strain response of

the material. Here, matrix microdamage is categorized as a damage mechanism,

but macroscopic matrix cracking and fiber breakage are hypothesized to be failure

mechanisms resulting from damage localization. The traditional ISV used in Chapter

II is maintained to model microdamage. Upon failure initiation, the element domain

is no longer considered a continuum, and a smeared crack approach is used to model
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the embedded discontinuities. Three new ISVs, which incorporate the characteristic

length of the finite element, dictate the evolution of the failure mechanisms. Although

the refinement gained in the multiscale model is lost, the EST formulation presented

in Section 4.2 offers nonlinear progressive damage coupled with mesh objective, post-

peak strain softening.

Mesh objectivity is demonstrated in Section 4.3. In Section 4.4, EST is verified

against experimental results for two CNPs. Global load versus deflection data, local

strain gage data, as well as observed failure mechanisms obtained from experiments

performed at the NASA Langley Research Center (LaRC) [Bogert et al. (2006); Satya-

narayana et al. (2007)] (also presented in Chapter III) are compared to numerical

results.

4.2 Enhanced Schapery Theory

The previously developed ST (Chapter II) [Schapery (1990, 1995); Schapery and

Sicking (1995); Basu et al. (2006); Pineda et al. (2009, 2010b)] is extended to accom-

modate mesh objective, post-peak strain softening. Separate ISVs are used to govern

the evolution of matrix microdamage, transverse (mode I) matrix failure, shear (mode

II) matrix failure, and fiber breakage (mode I). The first and second laws of thermo-

dynamics are enforced, establishing thermodynamically consistent evolution laws for

progressive matrix microdamage, as well as post-peak failure. The following sections

detail the formulation of this work potential theory.

4.2.1 Multiple ISV Formulation of ST to Account for Multiple Damage

and Failure Mechanisms

Due to the generality of the thermodynamically-based evolution equations, Equa-

tions (2.3) and (2.4) presented in Chapter II, the work potential theory can account

for any number and type of structural changes that may occur in a material. This is
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especially useful for modeling progressive damage in composites because the hetero-

geneity of the composite, and multiaxiality of the local fields, enables multiple damage

mechanisms to arise during a typical loading history. For instance in the matrix phase

alone, microdamage accrues until its effects are superseded by the growth of larger

transverse cracks. Microdamage is considered the advancement of microcracks, voids,

fissures, shear bands, and other flaws that are present in the matrix of a composite

[Sicking (1992); Schapery and Sicking (1995); Basu et al. (2006); Ng et al. (2010)].

The size of these flaws is typically on the order of that of the fiber or smaller. Trans-

verse cracks nucleate from preexisting flaws within the matrix but grow parallel to

the fibers and span the thickness of the lamina [Talreja (1985b); Allen et al. (1987a);

Laws and Dvorak (1988); Gudmundson and Östlund (1992); Yang and Cox (2005);

Noda et al. (2006); Green et al. (2007)]. Often, the growth of individual transverse

cracks is extremely rapid; however, the effects of transverse cracking on the stiffness

of a composite laminate can be progressive if multiple cracks form over an extended

period of time, and there are adjacent layers in the laminate that can support the

additional load that cannot be sustained by the cracking ply. Eventually, transverse

cracking is succeeded by more catastrophic damage mechanisms including interlam-

inar delamination, fiber breakage, pullout and bridging associated with macroscopic

laminate fracture [McCartney (1992a,b); Hallett et al. (2008)].

Here it is assumed that three major intralaminar mechanisms are responsible for

all observed non-linearities in the stress-strain curve of a composite lamina: matrix

microdamage, matrix macroscopic cracking, and axial fiber failure. Each of these

mechanisms can be accommodated by partitioning the total dissipated energy density

WS into portions associated with each mechanism.

Matrix microdamage is the primary cause of observed non-linearity in the stress

versus strain response of polymer matrix composites (PMCs) (not including nonlinear

elasticity, plasticity or viscous effects) up to localization of microdamage into more

91



severe failure mechanisms, such as transverse cracking, fiber breakage, kink band

formation, or delamination. Microdamage can be considered the combination of ma-

trix microcracking, micro-void growth, shear banding, and fiber-matrix debonding.

Figure 2.1 shows a typical uniaxial response of a material exhibiting microdamage

evolution, where the recoverable energy potential is given by W and the potential

dissipated into evolving structural changes associated with microdamage is given by

S.

Typically, matrix microdamage continues to grow until the onset of more catas-

trophic failure mechanisms initiate. It should be noted that this work explicitly

distinguishes between damage and failure in the following manner:

Damage - Structural changes in a material that manifest as pre-peak non-linearity in

the stress-strain response of the material through the degradation of the secant

moduli.

Failure - Structural changes that result from damage localization in a material and

manifest as post-peak strain softening in the stress-strain response of the ma-

terial.

Here, three major failure mechanisms are considered: transverse (mode I) matrix

cracking, shear (mode II) matrix cracking, and axial (mode I) fiber fracture. It is

assumed that the evolution of these mechanisms yields an immediate reduction in

the load-carrying capability of a local subvolume surrounding the mechanism. Three

ISVs are used to account for mode I matrix cracking, mode II matrix cracking, and

mode I fiber failure, respectively: Sm
I , Sm

II , and Sf
I . These ISVs are defined completely

in Section 4.2.2, and are taken to be the potentials required to advance structural

changes associated with these failure mechanisms. The uniaxial stress-strain response

of a material exhibiting post-peak strain softening is displayed in Figure 4.1. The

shaded area above the unloading line represents the total, dissipated potential WS,
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and the triangular area underneath is the total, recoverable, elastic strain energy

density WE.

At any given state the total dissipated energy density WS can be calculated as a

sum of energy dissipated through the aforementioned damage and failure mechanisms,

given by the four ISVs.

WS = S + Sm
IF + Sm

IIF + Sf
I (4.1)

According to the first law of thermodynamics, Equation (2.1), the total work potential

(ignoring thermal dissipation) is given by the sum of the elastic strain energy density

and the potentials associated with each of the damage or failure mechanisms.

WT = WE + S + Sm
I + Sm

II + Sf
I (4.2)

where WE is the elastic strain energy density. Invoking the stationarity principle,

Equation (2.3),
∂WE

∂S
= −1

∂WE

∂Sm
I

= −1

∂WE

∂Sm
II

= −1

∂WE

∂Sf
I

= −1

(4.3)
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and the second law of thermodynamics, Equation (2.4), gives:

Ṡ ≥ 0

Ṡm
IF ≥ 0

Ṡm
IIF ≥ 0

Ṡf
F ≥ 0

(4.4)

Equations (4.3) and (4.4) constitute the evolution equations for damage and failure

in a material experiencing matrix microdamage, matrix cracking, and fiber breakage

in tension.

It should be noted, that EST can also account for kink band formation under

axial compression [Schapery (1995); Basu (2005); Basu et al. (2006)]; although, the

applied loading in the examples presented in Sections 4.3 and 4.4 are tensile, and kink

banding does not occur. As the lamina is loaded, the fibers in the composite rotate

by some angle φ, given by the deformation gradient in the model. To model the kink

band mechanism, all calculations are then executed in the instantaneous fiber frame

given by φ; therefore, fiber rotation induces larger shear strains, γ12. Increased shear

strain yields more damage, leading to a reduction in the shear modulus. The increase

in shear compliance allows for further progression of the shear strain. Under axial

compression, this leads to a runaway instability, and a kink band will form.

4.2.2 Failure Initiation

As stated previously in Chapter II, matrix microdamage requires no initiation

criterion. For low strain levels, the microdamage ISV S remains small and its effects

on the composite moduli are not apparent. As S evolves, with increased strains,
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its effects on the stress-strain response of the composite become more noticeable.

However, it is postulated that the evolution of the failure mechanisms immediately

yield a negative tangent stiffness; therefore, initiation criteria are required. Further-

more, criteria are required to mark failure initiation because the macroscopic cracks

responsible for failure may result from localization of microdamage, or they may nu-

cleate from preexisting flaws in the material not necessarily associated with evolving

microdamage.

EST is implemented in homogenized laminae; therefore, phenomenological criteria

must be utilized that account for the composite microstructure. The Hashin-Rotem

failure criterion incorporates separate equations for matrix failure and fiber failure

initiation [Hashin and Rotem (1973)]. The matrix failure criterion involves contribu-

tions form both the transverse (ε22) and shear (γ12) strains.

(
ε22

YT

)2

+
(γ12

Z

)2

= 1 ε22 ≥ 0

(
ε22

YC

)2

+
(γ12

Z

)2

= 1 ε22 < 0

(4.5)

where YT is the transverse lamina failure strain in tension, YC is the transverse failure

lamina strain in compression, and Z is the shear failure strain. The fiber failure

criterion only involves the axial strain ε11.

(
ε11

XT

)2

= 1 ε11 ≥ 0 (4.6)

where XT is the maximium allowable axial strain of the lamina. A local, lamina

coordinate frame is chosen such that, 1- is the axial direction of the fibers, 2- is the

in-plane transverse direction, and 3- is the out-of-plane direction. When Equation

(4.5) is satisfied the matrix failure ISVs Sm
I and Sm

II are activated, and when Equation

(4.6) is satisfied fiber failure evolution Sf
I is permitted; otherwise, S remains the only
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active ISV. Upon satisfaction of either Equation (4.5) or Equation (4.6), it is assumed

that the more severe failure mechanisms dominate, superseding the effects of matrix

microdamage; therefore, Ṡ = 0, and additional microdamage is precluded.

4.2.3 Use of Traction-Separation Relationships to Define the Failure Po-

tentials

Sicking (1992) and Schapery and Sicking (1995) used a single ISV to model the

effects of transverse cracking on a composite lamina. Similar to microdamage, the

transverse and shear moduli were related to transverse crack evolution through a set

damage functions obtained from coupon experiments. Predictions of the nonlinear

response of numerous laminates were presented assuming a homogenous strain state

in the laminates. Pineda et al. (2010b) implemented the dual-ISV formulation of

ST for predicting microdamage and transverse cracking within FEM to model the

response of a center-notched laminate that was reinforced with buffer strips. The

original formulation required the solution of two, coupled, bi-variate polynomials,

which is computationally intensive in an FEM framework. Thus, Pineda et al. (2010b)

decoupled the microdamage and transverse cracking evolution equations.

In the aforementioned publications, it was assumed that the transverse cracking

affected the relationships between stress and strain. However, the existence of a

macroscopic crack invalidates the assumption of a continuum. Here, it is presumed

that failure arises from the evolution of cohesive cracks within the continuum, and the

ISVs associated with failure (axial, transverse, and shear) influences the relationship

between traction on the crack faces and the crack-tip opening displacement. The

satisfaction of Equations (4.5) and/or (4.6) indicates the material behavior transitions

from that of a damaging continuum to that of a cohesive crack, and the essential fields

become traction and separation, rather than stress and strain (see Figure 4.2).

Once a cohesive crack initiates in the continuum, opening of the crack yields a
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reduction in traction on the crack faces at the crack tip. If subsequently the crack

is closed, it is assumed that traction at the crack tip will unload linearly towards

the origin of the traction versus separation law (see Figure 4.3). The strain energy

release rate (SERR) Gj
M is taken as the total energy dissipated per unit area of new

surface that is created through crack advancement and can be calculated as the area

under the traction-separation law (for a given traction and separation pair) minus

the energy per area that can potentially be recovered by unloading.

Gj
M =

∫ δj
M

0

tjMdδj
M − 1

2
tjMδj

M (4.7)

where j indicates the material (fiber f or matrix m), M represents the corresponding

mode (mode I or mode II), δj
M is the crack tip opening displacement in mode M and

material j, and tjM is the corresponding traction at the crack tip.

Theoretically, the shape of the traction-separation laws for mode I crack growth

in the fiber, and mode I and II crack growth in the matrix can take any shape.

Gustafson and Waas (2009) investigated triangular, trapezoidal, beta distribution,

and sinusoidal traction-separation laws in discrete cohesive zone method (DCZM) el-

ements and determined that the shape only affected convergence of the FEM solver,

but not the overall results. For simplicity, it is assumed here that all three types of

cracks obey triangular traction-separation laws, presented in Figure 4.3. The total

area under the traction-separation curves is controlled by the corresponding material

fracture toughness in the appropriate mode, where Gf
IC is the mode I fracture tough-

ness of the fiber, Gm
IC is the mode I fracture toughness of the matrix, and Gm

IIC is the

mode II fracture toughness of the matrix. The cohesive strengths of the materials

tfIC (mode I fiber strength), tmIC (mode I matrix strength), and tmIIC (mode II matrix

strength) are given by the stresses in the continuum when Equations (4.5) and/or

(4.6) are satisfied. Mode I, normal cracks are not allowed to grow under compres-

97



sion, but mode II, shear cracks can evolve under normal compression. Therefore, the

mode I traction-separation laws for the fiber and matrix (Figures 4.3a and 4.3b) do

not accommodate negative crack tip displacements. However under negative mode

II displacement (see Figure 4.3c), the traction on the crack faces will increase lin-

early until the maximum, previously attained displacement magnitude is reached,

after which, the crack faces will resume unloading according to the negative portion

of the traction-separation law. The traction-separation laws exhibited in Figure 4.3

do not require any initial, fictitious, pre-peak stiffnesses because the cracks are em-

bedded within a continuum. This is an advantage over the use of DCZM elements

which do require an initial stiffness because these interfacial elements do not actu-

ally represent physical material within the model and must simulate initially perfect

bonding between adjacent material domains [Xie et al. (2006); Gustafson (2008)]. If

set incorrectly, these fictitious stiffnesses can cause numerical problems [Turon et al.

(2006)].

Although no mode I crack can advance under compression, it is possible for post-

peak softening to occur under compressive loading situations. For instance a kink

band could form under global axial compression, or the matrix could fail in local

shear due to internal friction (Mohr-Coulomb) in quasi-brittle materials under trans-

verse compression (see Chapter V) [Hoek and Bieniawski (1965)]. Since these failure

mechanisms involve local shear at a the fiber/matrix scale which is typically below

the operating lamina/laminate scale, it appears that these mechanisms evolve under

mode I compression. In a numerical model containing homogenized laminae, there

is no subscale shear to drive these compressive failure modes. However, EST could

be extended further to incorporate these mechanisms through phenomenological ac-

cessions. The methods, developed by Basu (2005); Basu et al. (2006) and described

in Section 4.2.2, can be used to track the instantaneous fiber angle, and a critical

fiber angle can be assigned to indicate the initiation of post-peak softening due to
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kink band formation. Similarly, a matrix compression criterion, such as the one de-

veloped by Puck and Schürmann (1998, 2002) could be used to signal the initiation

of Mohr-Coulomb compressive failure. The traction-separation laws for mode I fiber

compression and mode I transverse matrix compression could be adjusted to include

the post-peak softening effects of microbuckling and Mohr-Coulomb matrix failure.

These postulated, compressive, mode I traction-separation laws could account for

energy released through these subscale failure modes in a homogenous model at the

lamina/laminate scale. However, the examples presented in this chapter are tension

dominated, and extension of the theory to accommodate apparent mode I compressive

failure is left for future work.

Using the traction-separation laws in Figure 4.3, the SERR can be calculated with

Equation (4.7).

Gf
I =

1

2
tfICδf

I (4.8)

Gm
I =

1

2
tmICδm

I (4.9)

Gm
II =

1

2
tmIICδm

II (4.10)

It is assumed that the energy released due to cracking is smeared over the entire

element [Bažant (1982); Bažant and Oh (1983)]. Thus, the dissipation potentials

resulting from macroscopic cracking in an element are related to the SERRs using

the suitable element dimensions.

Sf
I =

Gf
I

l
(θ+90◦)
e

(4.11)

Sm
I =

Gm
I

l
(θ)
e

(4.12)

Sm
II =

Gm
II

l
(θ)
e

(4.13)

If there is a single integration point in the element, l
(θ+90◦)
e is the length of a line
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running perpendicular to fiber direction in the element that intersects two edges of

the element and the integration point, and l
(θ)
e is the length of a line that is parallel

to the fiber direction in the element that intersects two edges of the element and

the integration point. If there is more than one integration point in the element,

the element can be partitioned into a number of subvolumes equal to the number of

integration points, and the lengths l
(θ+90◦)
e and l

(θ)
e are lengths of lines that intersect

the corresponding integration point as well as two element edges or integration point

subvolume boundaries. Incorporating a length scale into the ISVs results in mesh

objective, post-peak, softening. This is elaborated upon further in Section 4.4.

4.2.4 EST Evolution Equations for a Fiber-Reinforced Lamina

To arrive at the evolution equations for the four ISVs, the elastic strain energy

density must be defined for a material which may contain cohesive cracks. Therefore,

the elastic strain energy WE comprises of a contribution from the continuum W and

any possible cohesive cracks W j
M . The elastic strain energy density in the continuum

remains as defined in Equation (2.14), and the elastic strain energy density of the

cohesive cracks are defined as the recoverable energy per unit crack surface area

smeared over the entire element.

W f
I =

tfI δ
f
I

2l
(θ+90◦)
e

(4.14)

Wm
I =

tmI δm
I

2l
(θ)
e

(4.15)

Wm
II =

tmIIδ
m
II

2l
(θ)
e

(4.16)

The tractions in Equations (4.14)-(4.16) can be related to the secant stiffness’ in the

traction-separation laws kj
M .

tfI = kf
I δf

I (4.17)
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tmI = km
I δm

I (4.18)

tmII = km
IIδ

m
II (4.19)

Hence, the total elastic strain energy density in the continuum is given by

WE =
1

2

(
E11ε

2
11 + E22(S)ε2

22 + G12(S)γ2
12

)
+ Q12ε11ε22

+
kf

I (Sf
I )

2l
(θ+90◦)
e

δf
I

2
+

km
I (Sm

I )

2l
(θ)
e

δm
I

2 +
km

II(S
m
II)

2l
(θ)
e

δm
II

2
(4.20)

Substituting Equation (4.20) into Equations (4.3) gives the ISV evolution equa-

tions.

1

2

(
ε2
22E220

des

dSr

+ γ2
12G120

dgs

dSr

)
= −3S2

r (4.21)

which is unchanged from Equation (2.16); keeping in mind Equations (2.11)-(2.13).

1

2l
(θ+90◦)
e

dkf
I

dSf
I

δf
I

2
= −1 (4.22)

1

2l
(θ)
e

dkm
I

dSm
I

δm
I

2 = −1 (4.23)

1

2l
(θ)
e

dkm
II

dSm
II

δm
II

2 = −1 (4.24)

Using the chain rule and minding that

dSf
I

dδf
I

=
tfIC

2l
(θ+90◦)
e

(4.25)

dSm
I

dδm
I

=
tmIC

2l
(θ)
e

(4.26)

dSm
II

dδm
II

=
tmIIC

2l
(θ)
e

(4.27)
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by Equations (4.8)-(4.13), the cohesive secant stiffnesses are determined.

kf
I = −

∫
tfIC

δf
I

2dδf
I (4.28)

km
I = −

∫
tmIC

δm
I

2dδm
I (4.29)

km
II = −

∫
tmIIC

δm
II

2 dδm
II (4.30)

Evaluating the integrals in Equations (4.28)-(4.30), while enforcing kj
M = 0 when

δj
M =

2Gj
MC

tjMC

results in expressions for kj
M in terms of δj

M .

kf
I = tfIC

(
1

δf
I

− tfIC

2Gf
IC

)
(4.31)

km
I = tmIC

(
1

δm
I

− tmIC

2Gm
IC

)
(4.32)

km
II = tmIIC

(
1

δm
II

− tmIIC

2Gm
IIC

)
(4.33)

Note that the thermodynamically consistent stiffnesses derived in Equations (4.31)-

(4.33) can also be derived directly from the traction-separation laws using geometry.

Finally, it is assumed that following failure initiation the strains are related to the

crack tip opening displacements by

l(θ+90◦)
e ε11 = l(θ+90◦)

e εC
11 + δf

I (4.34)

l(θ)e ε22 = l(θ)e εC
22 + δm

I (4.35)

l(θ)e γ12 = l(θ)e γC
12 + 2δm

II (4.36)

where εC
11, εC

22, and γC
12 are the strains when Equations (4.5) and/or (4.6) are satisfied.

Equations (4.34)-(4.36) imply that the strain in the continuum remains at the values
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obtained when failure initiates, and that any incremental change in the global strain

after failure initiation is used wholly to advance the crack tip opening displacement.

To account for changes in the continuum strain after failure initiates, it can be as-

sumed that the stress state in the cracked body is homogenous and the tractions on

the crack tip faces are equal to the stresses in the continuum. Then, the strains in

Equation (4.20) can be formulated in terms of the cohesive secant stiffnesses and the

crack tip opening displacement. However, it is believed that the evolution of strain

in the continuum is negligible once cohesive cracks form. Equations (4.34)-(4.36) can

be utilized in Equations (4.31)-(4.33) to obtain kj
M as functions of the global strain

at an integration point.

kf
I = tfIC

[
1

l
(θ+90◦)
e (ε11 − εC

11)
− tfIC

2Gf
IC

]
(4.37)

km
I = tmIC

[
1

l
(θ)
e (ε22 − εC

22)
− tmIC

2Gm
IC

]
(4.38)

km
II = tmIIC

[
2

l
(θ)
e (γ12 − γC

12)
− tmIIC

2Gm
IIC

]
(4.39)

Once failure initiates, it is assumed the effects of failure supersede the effects of

microdamage and evolution of Sr ceases. The cohesive stiffness in a cracked element

is calculated using Equations (4.37)-(4.39) for a given strain state; then, Equations

(4.17)-(4.19) and (4.34)-(4.36) are used to calculate the tractions on the crack tip

faces and the crack tip opening displacement. It is assumed that the stress state in

the element is homogenous, and the tractions on the crack tip faces are equal to the

stresses in the element. Lastly, the axial, transverse, and shear moduli of the element
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can be calculated [Bažant and Oh (1983)].

E11 =





1

E110

− ε11 − εC
11

tfIC

[
1 +

l
(θ+90◦)
e tfIC

2Gf
IC

(
ε11 − εC

11

)
]





−1

(4.40)

E22 =





1

E∗
22

− ε22 − εC
22

tmIC

[
1 +

l
(θ)
e tmIC

2Gm
IC

(
ε22 − εC

22

)
]





−1

(4.41)

G12 =





1

G∗
12

− γ12 − γC
12

2tmIIC

[
1 +

l
(θ)
e tmIIC

4Gm
IIC

(
γ12 − γC

12

)
]





−1

(4.42)

where E110 is the elastic axial modulus, and E∗
22 and G∗

12 are the degraded transverse

and shear moduli, due to microdamage, when Equation (4.5) is met.

For visualization purposes in the FEM simulations, degradation parameters are

defined which relate the current, degraded stiffnesses to their original values upon

failure initiation.

Df
I = 1− E11

E∗
11

(4.43)

Dm
I = 1− E22

E∗
22

(4.44)

Dm
II = 1− G12

G∗
12

(4.45)

The degradation parameter can have a minimum value of zero, which indicates that

no degradation has occurred, or a maximum value of one, signaling that the corre-

sponding modulus has been completely diminished.

The negative tangent stiffness of the stress-strain curve necessary for post-peak

strain softening to occur imposes a restriction the maximum allowable element size,
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as shown by Bažant and Oh (1983).

l(θ+90◦)
e <

2Gf
ICE11

tfIC

2 (4.46)

l(θ)e < min

{
2Gm

ICE∗
22

tmIC
2 ,

2Gm
IICG∗

12

tmIIC
2

}
(4.47)

The analyst must be careful to ensure the dimensions of any failing elements are

smaller than the conditions given in Equations (4.46) and (4.47).

In summary, Equations (4.5) and (4.6) mark the transition from evolving mi-

crodamage to failure via macroscopic cracking. Prior to failure initiation, Equation

(4.21) is used to calculate the microdamage reduced ISV Sr, and the failure ISVs

Sf
I , Sm

I , and Sm
II remain zero. Equations (2.12) and (2.13) are used to calculate the

degraded transverse and shear moduli. Subsequent to matrix failure initiation, mi-

crodamage growth is precluded, and Sr remains at S∗r , the value of Sr when Equation

(4.5) was satisfied. The degeneration of the transverse and shear moduli, resulting

from matrix transverse and shear cracking, is calculated using Equations (4.41) and

(4.42). Finally if Equation (4.6) is satisfied, the axial modulus is calculated using

Equations (4.40) as fiber breakage evolves in the element. Once the material moduli

have been calculated using the appropriate evolution equations, the stresses can be

updated accordingly using Equations (2.10).

4.3 Mesh Objectivity

The theory outlined in Section 4.2 solves the mesh dependency ill-posedness when

the elements enter the post-peak softening regime by introducing a characteristic

length into the formulation. The total SERR dissipated during the evolution of the

discontinuity is equal to the prescribed fracture toughness and is independent of the

element size. This approach, commonly referred to as the smeared crack approach,
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or crack band model, has been used to alleviate mesh dependency in FEM since it

was first developed by Bažant (1982) for post-peak strain softening in concrete.

To exhibit the mesh objectivity of EST, a simple example is presented in this

section. One quarter of a 200 mm x 100 mm panel is modeled with finite elements

using the Abaqus, version 6.10-1 finite element software ?. The panel contains a hole

with a radius of rh = 5 mm in the center. The left edge of the panel is constrained

in the x-direction to simulate symmetry. Similarly, the bottom edge is constrained in

the y-direction. A uniform displacement is applied to all the nodes on the top edge

of the panel in y-direction. Details on the panel geometry and boundary conditions

are displayed in Figure 4.4. The panel is composed of a generic composite [90o]

lamina with the fiber angle measured with respect to the y-axis; thus, the applied

displacement is perpendicular to the fiber direction in the panel. EST is used to

model damage and failure in the panel.

Four different meshes are used to evaluate the effect of mesh size on the response

of the panel. All four meshes consist of two-dimensional (2-D), plane stress, quadri-

lateral, S4R shell elements. The elements are linear, reduced integration elements and

contain four nodes and one integration point each. The density of the four meshes,

shown in Figure 4.5, increases within a region near the central hole. Average ele-

ment sizes equal 0.5rh, 0.2rh, 0.1rh, and 0.04rh are used in the four different meshes.

Coarser elements are used away from the hole to improve computation time. The four

meshes are subjected to the same boundary conditions and loading, and are composed

of the same material properties. The same elastic, damage and failure parameters are

also used in all four simulations.

The resultant, applied tensile stress (given by two times the sum of the reaction

forces at the nodes on the top edge divided by the cross-sectional area) normalized

by the critical strain times the axial Young’s modulus σ̄ is plotted versus the applied

displacement normalized by the radius of the hole ∆̄ for the four different meshes in
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Figure 4.6. It can be seen that the mesh density has a minimal effect on the load-

deflection results. The small discrepancy in the results between the four meshes can

be attributed to the increased accuracy in the fields as the mesh is refined. Moreover,

the total energy dissipated is preserved from mesh to mesh.

Figure 4.7 displays contours of the normalized, reduced microdamage ISV Sr im-

mediately before failure initiation in the four different meshes. Sr is normalized by the

maximum Sr obtained in all four simulations which is 27% of the maximum allowable

Sr required to bring the moduli to zero. The four meshes exhibit similar micro-

damage contours, but as the mesh is refined, the microdamage is contained in the

vicinity of the hole. Additionally, the global stress at which failure initiates reduces

as the mesh is refined; this supports the previous speculation that the discrepancies in

the stress-displacement responses were a facet of increasing field accuracy with mesh

refinement.

The transverse matrix failure degradation parameter Dm
I is plotted for all four

meshes in Figure 4.8. Figures 4.8a-4.8d show the failure pattern at the ultimate,

global load. The coarsest mesh shows that a crack has grown at the intersection of

the hole and the bottom symmetric boundary and is propagating towards the free

edge, while moving away from the bottom boundary when the specimen ultimate

load is achieved. In the finer meshes, the crack path is different. In Figures 4.8b-4.8c

the crack initiates at the hole slightly above the bottom boundary and propagates

towards the free edge while approaching the bottom boundary. Since crack band

initiation is governed by the quadratic H-R failure criterion (Equation (4.5)), both

the transverse and shear strains are contributing to the initiation leading to crack

band initiation at the hole boundary away from the symmetric, horizontal edge where

the transverse strain is not the maximum. Any failure criterion, in theory, could be

used to govern crack band initiation, and if a maximum strain criterion was used,

the crack band would always initiate at the hole boundary at the symmetric edge of
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the model, which is the location of the maximum transverse strain. The finest mesh,

Figure 4.8d, exhibits multiple cracks near the hole, but only one of the cracks grows

significantly. Moreover, Figures 4.8c and 4.8d show some crack beginning to initiate

at the free edge and propagate inwards. Figures 4.8e-4.8h display the transverse crack

pattern once the specimen has lost all load carrying capability. The solution for the

simulation with the finest mesh 0.04rh diverged before all the load carrying capability

was lost; so, Figure 4.8h presents the crack path at the final converged state, which is

still far below the ultimate load state. In Figures 4.8e-4.8h the same crack patterns

that developed in Figures 4.8a-4.8d are evident, except those cracks have saturated

to maximum degradation: Dm
I = 1. Additionally, the cracks advancing from the free

edge observed in Figures 4.8c and 4.8d have progressed further. However, this is well

after the specimens reached their ultimate load; therefore, it is assumed that those

cracks did not influence the load carrying capability of the panels. The discrepancy in

crack path observed for the different meshes indicate that the crack path is dictated

by the accuracy of the fields surrounding the leading boundary of the crack path.

4.4 Example - Center Notched Panels Subjected to Uniaxial

Tension

The same examples used to demonstrate the capabilities of ST-FEAMAC in the

previous chapter are used here to exhibit the performance of the EST. The experi-

mental details of the two center-notched laminates are given in Chapter III, Section

3.4.1. Similarly, details on the FEM modeling of the panels is presented in Chapter

III, Section 3.4.2.

To increase computational efficiency, the first derivatives of the higher order mi-

crodamage polynomials are approximated using linear spline interpolants. Thus, the

microdamage evolution equation, Equation (4.21) is always a second order in Sr,
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yielding a very efficient, analytical solution. Since the value of Sr from the previous

increment is used to estimate which spline regime should be used to solve for Sr in the

current increment, the solution is checked to ensure that it falls within the applicable

range of the spline that was used. If it falls outside of the range of Sr that are valid for

the splines, the solution is calculated again using splines that accord to the solution

of the previous iteration. This procedure continues until the solution of Equation

(4.21) falls within the relevant range of Sr for the splines used in Equation (4.21).

A maximum number of iterations can be set, after which Equation (4.21) is solved

using the full polynomial forms of the damage functions by finding the eigenvalues of

the complimentary matrix of the polynomial coefficients of the evolution equation.

The axial mode I, transverse mode I, and shear mode II critical cohesive strains,

and fracture toughness’ are given in Table 4.1. The matrix mode I and mode II

parameters were calibrated using the Sg-1 data from Laminate-1, but this laminate

did not exhibit any axial failure; so, the fiber mode I parameters were calibrated using

the global load-deflection data from Laminate-2.

Displacement was applied to both laminates using the *DYNAMIC command in

Abaqus with the parameter APPLICATION = QUASI-STATIC. This implicit dynamic

solver is recommended for quasi-static problems exhibiting a high-degree of nonlin-

earity. This procedure uses numerical damping to stabilize the problem. The numer-

ical damping does not significantly affect the simulation results because the velocities

in these simulations are low. For Laminate-1 a total displacement of 0.0236”, and

for Laminate-2 a displacement of 0.0472”, is applied over 1000 seconds. The panels

were assigned a generic density of 0.057 lb/in.3. This technique has advantages over

traditional static, implicit solvers which have difficulty converging when the material

exhibits post-peak softening [Belytschko et al. (2000); Belytschko and Mish (2001)],

and is not limited by a minimum stable time step required with explicit solvers [Hughes

(2000)].
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4.4.1 Results - Laminate-1

Global load P versus displacement ∆ of a 4” section of Laminate-1 is compared

to results from the EST simulation in Figure 4.9. Very good agreement between

the model and the experimental results is achieved. The response of the specimen

appears to be linear until near 8,000 lbf., where the specimen begins deforming non-

linearly. The EST simulation captures the initiation and progression of the global

nonlinearity accurately. This panel was not loaded until catastrophic failure; hence,

the data presented in Figure 4.9 represents load versus displacement data prior to the

ultimate load of the specimen.

Local strain gage data (global load P versus local y-direction strain εyy) from

Laminate-1 is plotted with the results from the EST FEM model in Figure 4.10;

please refer to Figure 3.7 for locations of strain gages. Strain relaxation is observed

in the gage farthest away from the notch: Sg-1, shown in Figure 4.10a. The mode I

and mode II matrix failure parameters in EST where calibrated such that the model

demonstrates the same transition into strain relaxation at this location and at a

similar global applied load. This load, taken as the splitting load, is 8,250 lbf. in

experiment and 8,210 lbf. in the model (summarized in Table 4.2). The transition to

strain relaxation is more abrupt in the experiment as evidenced by the sharp knee in

the load-strain curve, whereas, the transition in the model is more gradual. Prior to

strain relaxation at this point, the experiment displayed slight stiffening not observed

in the model. Additionally, the model response is much smoother than that of the

experiment in the strain relaxation regime. Even though the global loading is quasi-

static, local events, such as cracking, may be dynamic; therefore, the discrepancy in

the strain relaxation portion of the load-strain curves could be a result of dynamic

matrix crack growth and arrest in the test specimen. Local crack dynamics were not

accounted for in the model. Additionally, the jaggedness of the experimental data

may be a facet of the stochastics related to the local microstructure of the composite
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that are not included in the model. The data from the experiment and simulation for

Sg-2, which is located 1.5” directly above the notch, are presented in Figure 4.10b.

The model predicts less strain at Sg-2, for a given load, than the experiment, but

the non-linear trends are very similar. This gage lies directly in front of the splitting

crack path, shown in Figure 3.7, and it is not realistic to expect perfect agreement in

areas experiencing high levels of damage and failure because of idealizations used to

model the evolution of cracks in the simulations. Figure 4.10c displays data for Sg-3,

located in front of the notch near the free edge. Very good agreement between the

experimental and simulation results are exhibited. The model accurately captures the

nonlinear evolution of strain, away from the highly damaged regions, as a function

of applied load. Finally, results for Sg-4 (located directly at the notch tip) are given

in Figure 4.10d. Both the experiment and simulation display axial strain relaxation.

As with Sg-2, Sg-4 shows less strain for a given applied load. However, the load at

which the strain at Sg-4 relaxes in both the experiment and model correlate well, in

accordance with the splitting load. Again, the relaxation response of the experiment

is discontinuous, but the model exhibits continuous behavior.

A C-Scan of the failed Laminate-1 specimen is displayed in Figure 3.13. Four

splitting cracks can be observed propagating outward from the notch tip, parallel to

the loading direction, towards the gripped edges. Contour plots of the normalized mi-

crodamage obtained from the simulation are presented in Figure 4.11 at the splitting

load 8,200 lbf. and at 16,400 lbf. In these plots, Sr is normalized by the maximum

achievable value, Smax
r = 7.57 psi

1
3 , obtained from Figure 3.9. In Laminate-1, Sr

reached a maximum value equal to 0.171Smax
r . At the splitting load, the regions of

maximum damage are localized to small regions, along the same crack path observed

in Figure 3.13, embedded in a more widespread domain exhibiting less severe micro-

damage. A similar microdamage contour is observed at P = 16,400 lbf., except the

localized damage region has nearly proceeded to the fixed boundaries of the panel.
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Figure 4.12 shows the shear failure degradation factor Dm
II at the splitting load

and 16,400 lbf. The shear failure localizes into crack bands that are a single element

wide and progress equivalently to the cracks observed in the experiment. At the

splitting load (Figure 4.12a), the crack bands have progressed less than half of the

way between the notch and the panel boundary on either side of the notch. In Figure

4.12b, the crack bands have nearly reached the fixed grip boundaries. Additionally,

Figure 4.12b displays some irregularity in the crack path. In these regions, the mesh

is not uniform because it needed to accommodate larger elements used to represent

the strain gages (see Figure 3.8). No axial failure was observed in this simulation.

The shear crack path was in a state of transverse compressions, and according to the

traction-separation relations used in Figure 4.3b, transverse failure does not progress

under compressive conditions. Thus, contours of Df
I and Dm

I are not shown.

4.4.2 Results - Laminate-2

Numerical results for applied load versus displacement of a 4” section of Laminate-

2 are presented in Figure 4.13. The experimental ultimate load 15,300 lbf. correlates

well (axial failure parameters were calibrated to obtain an ultimate load the most

closely matched the experimental data) with the ultimate load obtained from the

model, also 15,300 lbf., and is summarized with the splitting load from the Laminate-

1 analysis in Table 4.2. The global response up to failure is nearly linear and failure

occurs suddenly and catastrophically.

Figure 4.14 compares the applied load versus strain gage results from the model

to the data from the experiment. Sg-1 and Sg-2 exhibited similar behavior; the

strain increases until the ultimate load is obtained, after which the strain relaxes

abruptly. The experimental data and numerical results both display this behavior.

The model exhibits slightly more strain, for a given load, prior to ultimate failure.

At Sg-3, the model predicts strain localization after the ultimate load is achieved.
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The gage data shows a slight reduction in strain as the load drops; however, the gage

was placed directly in the crack path and may have been damaged when the panel

failed. The model results and experimental data for Sg-4 exhibit similar trends, but

the strain gage shows a large degree of nonlinearity at the notch tip. Bogert et al.

(2006) attributed this observed nonlinearity to local interlaminar stresses near the

notch free edge which caused some local delaminations. Since the focus of this work

was modeling in-plane damage mechanisms, these effects are not captured; however,

the model could be easily extended to incorporate delamination by placing DCZM

elements between continuum shell layers [Satyanarayana et al. (2007)].

In the experiment, the gages measure the strain over a continuous area associated

with the size of the gage, but in the model, the strain is taken at the integration point

of an element; thus, these measures should not be expected to correspond exactly.

In areas where there are large gradients present, such as near a notch tip (Sg-4) or

near cracks (Laminate-1, Sg-2 or Laminate-2, Sg-3), it becomes even more difficult to

relate the strain gage data to numerical strains from a discretized continuum. This

may contribute to some of the discrepancies between the local gage data and the

model results in Figures 4.10 and 4.14.

A photograph taken of the failed, Laminate-2 specimen is presented in Figure

3.18. The photograph shows that two macroscopic cracks initially propagate from

the notch tip towards the free edges, perpendicular to the applied load, in a self-

similar fashion. Eventually, the cracks turn and proceed towards the free edge at an

angle. Bogert et al. (2006) claim, supported by visual image correlation displacement

data, that there was some eccentricity in the specimen alignment, which resulted in

deviation from self similar crack growth.

Normalized microdamage contours just prior to the ultimate load are presented

for the outermost 45◦, 0◦, -45◦, and 90◦ plies in Figure 4.15. Similar microdamage

patterns are evident in the 45◦ and -45◦ layers. Microdamage propagates outward,
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toward the free edge, from the notch tip in petal-like patterns. The microdamage

in these layers is highly distributed throughout the plies. The 0◦ ply displays a

more contained microdamage pattern along the lines of the microdamage contours

associated with axial splitting shown in Figure 4.11. A moderate level of microdamage

is also displayed in the 90◦ layer, but a low degree of microdamage is distributed

throughout most of the layer.

Figure 4.16 shows the axial failure degradation parameter Df
I at the ultimate

load for the four unique layers. A small amount of axial failure in the 45◦, 0◦, and

-45◦ layers can be observed at the notch tips. It appears that more failure occurs

at one notch tip than the other. This can be attributed to numerical imperfections

resulting from dissimilar meshes at the opposite notch tips, that is the mesh is not

symmetric about the y-axis. No axial failure is observed in the 90◦ layer. Contours

of the transverse, mode I, failure degradation parameter Dm
I at the ultimate load are

plotted in Figure 4.17. The failure patterns are similar in the 45◦ and -45◦ plies in

Figures 4.17a and 4.17c and are comparable to the microdamage contours in Figures

4.15a and 4.15c, except the failure is restricted to regions on either side of the notch.

Furthermore, small, highly degraded domains can be observed propagating from the

notch tip at an angle corresponding to the fiber direction in the ply. The 90◦ layer

exhibits some moderate degradation in a localized region around the notch tips, and

the 0◦ layer does not exhibit much Dm
I . Contours of the shear, mode II, failure

degradation parameter Dm
II are presented at the ultimate load in Figure 4.18. Very

similar failure paths can be seen in the 45◦ and -45◦ layers and the patterns are nearly

symmetric across both centerlines of the panel. This is expected because as Figure

4.3c indicates, the sign of the local shear strain does not affect the failure degradation.

Dm
II in the 0◦ and 90◦ is limited to very small regions surrounding the notch tips.

Contours representing the microdamage in the four unique layers are presented

in Figure 4.19 after the panel has completely failed and lost all of its load carrying
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capability. Although further matrix microdamage evolution is prohibited in elements

that have failed (transverse/shear or axial), in the other elements that have not failed,

matrix microdamage evolution continues. Nearly the entire 45◦ and -45◦ layers reach

a microdamage level of 0.18Smax
r . The 0◦ and 90◦ plies exhibit similar microdamage

patterns; however, low levels of microdamage are more widespread in the 90◦ ply.

Figure 4.20 shows the fiber failure path once the specimen has completely failed. All

the layers, except the 90◦ layer, show self similar cracks propagating from the notch

tips towards the free edges of the panel. The angled crack path shown in Figure

3.18 was not reproduced because the eccentric loading (suspected in the test) was

not introduced into the simulation; therefore, the crack growth remained self-similar.

A high degree of transverse matrix failure can be seen in the axial crack path in the

45◦, -45◦, and 90◦ plies in Figure 4.21. In the 0◦ layer, some transverse failure is

observed surrounding the fiber failure, as well as away from the axial failure path,

which resulted from a stress wave reflecting off the free edges when the axial crack

band reaches the boundary. Finally, Dm
II is presented after the specimen has failed in

Figure 4.22. Similar failure to Figures 4.18a and 4.18c in the 45◦ and -45◦ is exhibited,

but a highly degraded region has localized in the axial crack path. Figures 4.22b and

4.22d show fairly extensive regions containing a high degree of shear matrix failure

surrounding the axial failure path.

4.5 Conclusions

A thermodynamically-based, work potential theory for damage and failure in com-

posite materials, EST, was developed. A marked distinction between damage and fail-

ure was introduced. Damage was considered the evolution of mechanisms that cause

structural changes in the material such that the non-linear tangent stiffness tensor

remains positive definite. Failure was taken to be the effect of structural changes in

the material which result in loss of positive definiteness of the tangent stiffness matrix
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and post-peak strain softening. Separate ISVs were used to account for damage and

failure mechanisms.

Matrix microdamage, which includes matrix microcracking, shear banding, and

microvoid growth, is responsible for all damage in a composite lamina and was ac-

counted for with a single ISV, along the lines of the original ST formulation. The

relationship between the transverse and shear moduli of the lamina were related to

the ISV through a pair of experimentally obtainable microdamage functions.

Three major, in-plane failure mechanisms were identified: mode I matrix cracks,

mode II matrix cracks, and fiber breakage. A failure initiation criterion was used to

mark the transition from a damaging continuum to a damaged continuum with an

embedded discontinuity. After failure initiation, microdamage evolution ceases and

separate ISVs are introduced incorporate the effects of the three major failure mech-

anisms. Evolution of the failure ISVs is based upon traction-versus separation laws

(which are a functions of the appropriate fracture toughness’) and a characteristic el-

ement length. Typically, the existence of a non-positive definite stiffness tensor would

result in pathologically mesh dependent solutions; however in EST, mesh objectivity

is ensured by incorporating a characteristic length scale into the failure evolution.

In Section 4.3 mesh objectivity is demonstrated. A unidirectional composite plate

with a central hole obeying EST is loaded in transverse tension and the response is

calculated using four different, increasingly refined, meshes. The global stress versus

strain response remained unaffected by the change in mesh, save for the effects from

increased accuracy of local fields in the vicinity of the hole with denser meshing.

Two CNPs, with different lay-ups, composed of T800-3900-2 were tested under

tensile loading at NASA LaRC. Global load versus displacement and global load ver-

sus local, strain gage strain data was compared to results obtained from an FEM mod-

els utilizing EST in Section 4.4. Quantitatively, very good correlation was achieved

for both laminates. Furthermore, damage and failure paths predicted by the models
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matched the experimental results.
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Property T800/3900-2

XT 0.021
YT 0.0048
YC 0.0119
Z 0.0075

Gf
I 1026 lbf.-in.

in.2

Gm
I 170.0 lbf.-in.

in.2

Gm
II 13.54 lbf.-in.

in.2

Table 4.1: Failure parameters for T800/3900-2. The transverse and shear parameters
were calibrated using the Sg-1 experimental data from Laminate-1. The axial param-
eters were calibrated using the global load versus displacement data from Laminate-2.

Type Experimental Numerical

Laminate-1 Splitting 8,250 lbf. 8,210 lbf.
Laminate-2 Ultimate 15,300 lbf. 15,300 lbf.

Table 4.2: Critical experimental and simulation loads for Laminate-1 and Laminate-
2.
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Figure 4.1: Typical stress-strain curve showing the total elastic (WE) and total dis-
sipated (WS) potentials.

Figure 4.2: Schematic showing the transition form a continuum to a cohesive zone due
to the initiation of macroscopic cracks. The essential, constitutive variables switch
from stress and strain to traction and separation.
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(a) Mode I fiber fracture. (b) Mode I matrix fracture.

(c) Mode II matrix fracture.

Figure 4.3: Triangular traction versus separation which dictates the behavior of
cohesive cracks embedded in the continuum. The total area under the traction-
separation law represents the material fracture toughness Gj

mC . The area above the
unloading line for a given traction-separation state is the strain energy release rate
Gj

m.
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Figure 4.4: Example problem used to demonstrate mesh objectivity of EST. One
quarter of a 200 mm x 100 mm containing a central hole with a radius of 5 mm
is loaded in tension with symmetric boundary conditions on the bottom and left
boundaries.

(a) 0.5rh. (b) 0.2rh. (c) 0.1rh. (d) 0.04rh.

Figure 4.5: Four mesh densities used to demonstrate the mesh objectivity of EST.
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Figure 4.6: Reaction stress normalized by critical axial strain times axial Young’s
modulus verse applied displacement normalized by hole radius for four different mesh
densities.

(a) 0.5rh, σ̄ = 0.50. (b) 0.2rh, σ̄ =
0.42.

(c) 0.1rh, σ̄ =
0.37.

(d) 0.04rh, σ̄ =
0.36.

Figure 4.7: Contours of the reduced microdamage ISV Sr, normalized by the maxi-
mum Sr obtained from all simulations, immediately prior to failure initiation for four
different mesh densities.
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(a) 0.5rh, σ̄ =
0.80.

(b) 0.2rh, σ̄ =
0.81.

(c) 0.1rh, σ̄ =
0.82.

(d) 0.04rh, σ̄ =
0.82.

(e) 0.5rh, σ̄ =
0.030.

(f) 0.2rh, σ̄ =
0.018.

(g) 0.1rh, σ̄ =
0.042.

(h) 0.04rh, σ̄ =
0.242.

Figure 4.8: Contours of the transverse degradation parameter Dm
I , indicative of the

transverse crack path in the specimens. The contours are presented at the ultimate
load achieved by the specimens and after the specimens have lost their load carrying
capability.
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Figure 4.9: Applied load versus displacement of a 4” section for Laminate-1.
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(a) Sg-1.

0 0.5 1 1.5 2 2.5

x 10
−3

0

2000

4000

6000

8000

10000

12000

14000

εyy

P
(l
b
f.
)

 

 

Experiment
EST

(b) Sg-2.
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(c) Sg-3.

0 1 2 3 4 5

x 10
−3

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

εyy

P
(l
b
f.
)

 

 

Experiment
EST

(d) Sg-4.

Figure 4.10: Applied load versus local strain for Laminate-1.
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(a) P = 8,210 lbf.

(b) P = 16,400 lbf.

Figure 4.11: Normalized matrix microdamage contour Sr

Smax
r

in Laminate-1.
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(a) P = 8,210 lbf.

(b) P = 16,400 lbf.

Figure 4.12: Matrix shear failure degradation Dm
II in Laminate-1.

126



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

2000

4000

6000

8000

10000

12000

14000

16000

∆ of a 4” Section (in.)

P
(l
b
f.
)

 

 

Experiment
EST

Figure 4.13: Applied load versus displacement of a 4” section for Laminate-2.
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(a) Sg-1.
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(b) Sg-2.
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(c) Sg-3.
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(d) Sg-4.

Figure 4.14: Applied load versus local strain for Laminate-2.
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(a) 45◦ Layer. (b) 0◦ Layer.

(c) -45◦ Layer. (d) 90◦ Layer.

Figure 4.15: Normalized matrix microdamage contour Sr

Smax
r

in Laminate-2 just prior
to first axial failure initiation P = 8,640 lbf.
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(a) 45◦ Layer. (b) 0◦ Layer.

(c) -45◦ Layer. (d) 90◦ Layer.

Figure 4.16: Fiber failure degradation Df
I in Laminate-2 at ultimate load P = 15,300

lbf.
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(a) 45◦ Layer. (b) 0◦ Layer.

(c) -45◦ Layer. (d) 90◦ Layer.

Figure 4.17: Transverse matrix failure degradation Dm
I in Laminate-2 at ultimate

load P = 15,300 lbf.
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(a) 45◦ Layer. (b) 0◦ Layer.

(c) -45◦ Layer. (d) 90◦ Layer.

Figure 4.18: Shear matrix failure degradation Dm
II in Laminate-2 at ultimate load P

= 15,300 lbf.
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(a) 45◦ Layer. (b) 0◦ Layer.

(c) -45◦ Layer. (d) 90◦ Layer.

Figure 4.19: Normalized matrix microdamage contour Sr

Smax
r

in Laminate-2 after
specimen has lost load carrying capability.
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(a) 45◦ Layer. (b) 0◦ Layer.

(c) -45◦ Layer. (d) 90◦ Layer.

Figure 4.20: Fiber failure degradation Df
I in Laminate-2 after specimen has lost load

carrying capability.
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(a) 45◦ Layer. (b) 0◦ Layer.

(c) -45◦ Layer. (d) 90◦ Layer.

Figure 4.21: Transverse matrix failure degradation Dm
I in Laminate-2 after specimen

has lost load carrying capability.
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(a) 45◦ Layer. (b) 0◦ Layer.

(c) -45◦ Layer. (d) 90◦ Layer.

Figure 4.22: Shear matrix failure degradation Dm
II in Laminate-2 after specimen has

lost load carrying capability.
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CHAPTER V

Implementation of a Smeared Crack Band Model

in a Micromechanics Framework

5.1 Introduction

A multiscale model for progressive damage and failure was developed in Chapter

III. One of the shortcomings of the model was the inherent discretization dependent

behavior of the model resulting from the post-peak softening degradation scheme that

was employed. This issue is addressed in this chapter.

Progressive failure within the subcells of an RUC is modeled using a variation of

the crack band model developed by Bažant and Oh (1983) for concrete structures.

The crack band model uses SERR to dictate the softening behavior of the material;

thus, it is completely objective to the discretization of the RUC, beyond that necessary

to resolve the local stress and strains accurately.

In this chapter, the focus is restricted to the microscale to evaluate the capabilities

of the smeared crack band model to predict progressive failure evolution within a com-

posite microstructure. Thus, a detailed, multiple-fiber RUC is chosen to demonstrate

these capabilities. HFGMC is utilized as the micromechanics platform because the

level of fidelity required to accurately model detailed failure evolution in a complex

microstructure is not provided by GMC.
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In Section 5.2 the formulation for HFGMC is given, followed by the implementa-

tion of the smeared crack band model in Section 5.3. Two scenarios are considered to

determine the mode in which the cracks within the crack band grow. If the principal

stress that has the highest magnitude is tensile, it is assumed that it is more energet-

ically favorable for the crack band to form perpendicular to the maximum principal

stress and for the cracks within the band to advance under mode I conditions. Con-

versely, if the magnitude of a compressive principal stress is higher than the other

principal stresses, the cracks within the crack band evolve under mode II conditions

(due to internal, Mohr-Coulomb friction) and are oriented with the plane of maximum

shear stress. In Section 5.4 the objectivity of the post-peak softening behavior of the

model with respect to the subcell mesh is shown. An example is presented in Section

5.5 that consists of an RUC composed of 13, randomly placed fibers that is subjected

to transverse tension and compression. The model is verified against experimental

data in Section 5.6.

The motivation behind the following developments is to arrive at a failure method-

ology that is capable of accurately capturing localization in a multiscale model without

any spurious dependencies. This intention of this chapter is to verify a model for such

an application. In Section 5.7 a multiscale methodology is introduced that ensures

mesh objectivity and addresses the issues presented by Bažant (2007).

5.2 The High-Fidelity Generalized Method of Cells

HFGMC, first introduced by Aboudi et al. (2001) resolves some the shortcomings

of the original GMC. The biggest of these is the lack of normal-shear coupling in

GMC which results from the enforcement of displacement and traction continuity in

an average, integral sense and a linear approximation of the displacement fields in

each subcell. HFGMC employs quadratic displacement approximations. However,

this requires more equations than can be produced using displacement and traction
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continuity. Thus, the zeroth, first, and second moments of equilibrium are used to

solve the problem. The original, doubly-periodic formulation of HFGMC contained

in Aboudi et al. (2001) is outlined in this section. The reader is referred to ? for a

more efficient reformulation, as well as the 3D formulation.

5.2.1 Governing Equations

The 3D equilibrium equations for subcell βγ (see Figure 3.4) in a doubly-periodic

RUC (Figure 3.3) are given by

∂1σ
(βγ)
1i + ∂2σ

(βγ)
2i + ∂3σ

(βγ)
3i = 0 (5.1)

Since there is no variation in the x1-direction for a doubly-periodic material, ∂1 =

∂/∂x1 = 0. Therefore Equation (5.1) becomes

∂2σ
(βγ)
2i + ∂3σ

(βγ)
3i = 0 (5.2)

Averaging Equation (5.2) over the volume of the subcell yields

J
(βγ)
2i(00) + K

(βγ)
3i(00) = 0 (5.3)

where

J
(βγ)
2i(00) =

1

hβ

[
(2)t

+(βγ)
i −(2) t

−(βγ)
i

]
(5.4)

and

K
(βγ)
3i(00) =

1

lγ

[
(3)t

+(βγ)
i −(3) t

−(βγ)
i

]
(5.5)

The surface tractions are given by

(2)t
±(βγ)
i =

1

lγ

∫ lγ/2

−lγ/2

σ
(βγ)
2i

(
x̄

(β)
2 = ±hβ

2

)
dx̄

(γ)
3 (5.6)
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(3)t
±(βγ)
i =

1

hβ

∫ hβ/2

−hβ/2

σ
(βγ)
3i

(
x̄

(γ)
3 = ± lγ

2

)
dx̄

(β)
2 (5.7)

where “(2)” and “(3)” are superscripts that indicate the applicable normal direction

to the subcell surface and “±” indicates the sign of the normal. Similarly, the first

moment of equilibrium can also be averaged over the subcell volume resulting in

J
(βγ)
2i(10) − S

(βγ)
2i(00) = 0 (5.8)

and

K
(βγ)
3i(01) − S

(βγ)
3i(00) = 0 (5.9)

where S
(βγ)
ij(mn) is an average stress quantity, and

J
(βγ)
2i(10) =

1

2

[
(2)t

+(βγ)
i +(2) t

−(βγ)
i

]
(5.10)

K
(βγ)
3i(01) =

1

2

[
(3)t

+(βγ)
i +(3) t

−(βγ)
i

]
(5.11)

S
(βγ)
ij(mn) =

1

hβlγ

∫ hβ/2

−hβ/2

∫ lγ/2

−lγ/2

σ
(βγ)
ij (x̄

(β)
2 )m(x̄

(γ)
3 )ndx̄

(β)
2 dx̄

(γ)
3 (5.12)

Finally, the second moment of equilibrium can be averaged over the subcell volume,

then utilizing integration by parts leads to

h2
β

4
J

(βγ)
2i(00) +

h2
β

12
K

(βγ)
3i(00) − 2S

(βγ)
2i(10) = 0 (5.13)

and
l2γ
12

J
(βγ)
2i(00) +

l2γ
4

K
(βγ)
3i(00) − 2S

(βγ)
3i(01) = 0 (5.14)

Substituting Equations (5.13) and (5.14) into Equation (5.3) gives

J
(βγ)
2i(00) =

12

h2
β

S
(βγ)
2i(10) (5.15)
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K
(βγ)
3i(00) =

12

l2γ
S

(βγ)
3i(01) (5.16)

Utilizing Equations (5.15) and (5.16) in Equation (5.14):

1

h2
β

S
(βγ)
2i(10) +

1

l2γ
S

(βγ)
3i(01) = 0 (5.17)

Equation (5.17) represents the average form, in HFGMC, of the equilibrium equations,

Equation (5.2), of subcell βγ within a doubly-periodic composite RUC.

5.2.2 Second Order Displacement Approximation

Contrary to GMC, HFGMC employs a quadratic expansion of the subcell dis-

placements

u
(βγ)
i = ε̄ijxj + W

(βγ)
i(00) + x̄

(β)
2 W

(βγ)
i(10) + x̄

(γ)
3 W
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1

2
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(β)2

2 − h2
β

4
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W

(βγ)
i(20) +

1

2

(
3x̄

(γ)2

3 − l2γ
4

)
W

(βγ)
i(02)

(5.18)

where ε̄ij are, as in GMC, the average global strain components, and W
(βγ)
i(mn) are

microvariables describing the spatial variation of the displacement field and are de-

termined by enforcing interfacial and periodic conditions.

5.2.3 Constitutive Relations

The local strains in subcell βγ are related to the global strains and local displace-

ment fields through

ε
(βγ)
ij = ε̄ij +

1

2

(
∂iu

(βγ)
j + ∂ju

(βγ)
i

)
(5.19)

Employing the local constitutive law,

σ
(βγ)
ij = C

(βγ)
ijkl ε

(βγ)
kl (5.20)
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ignoring plastic and thermal effects (for HFGMC formulation with plasticity and

thermal strains please see Ref. [Aboudi et al. (2003)]) in Equation (5.12) along with

Equations (5.18) and (5.19), the relationship between zeroth order stress components

and the microvariables is determined to be:

S
(βγ)
11(00) = C

(βγ)
11 ε̄11 + C

(βγ)
12

(
W

(βγ)
2(10) + ε̄22

)
+ C

(βγ)
13

(
W

(βγ)
3(01) + ε̄33

)

+ C
(βγ)
14

(
W

(βγ)
2(01) + W

(βγ)
3(10) + 2ε̄23

)
+ C

(βγ)
15

(
W

(βγ)
1(01) + 2ε̄13

)

+ C
(βγ)
16

(
W

(βγ)
1(10) + 2ε̄12

)
(5.21)

S
(βγ)
22(00) = C

(βγ)
12 ε̄11 + C

(βγ)
22

(
W

(βγ)
2(10) + ε̄22

)
+ C

(βγ)
23

(
W

(βγ)
3(01) + ε̄33

)

+ C
(βγ)
24

(
W

(βγ)
2(01) + W

(βγ)
3(10) + 2ε̄23

)
+ C

(βγ)
25

(
W

(βγ)
1(01) + 2ε̄13

)

+ C
(βγ)
26

(
W

(βγ)
1(10) + 2ε̄12

)
(5.22)

S
(βγ)
33(00) = C

(βγ)
13 ε̄11 + C

(βγ)
23

(
W

(βγ)
2(10) + ε̄22

)
+ C

(βγ)
33

(
W

(βγ)
3(01) + ε̄33

)

+ C
(βγ)
34

(
W

(βγ)
2(01) + W

(βγ)
3(10) + 2ε̄23

)
+ C

(βγ)
35

(
W

(βγ)
1(01) + 2ε̄13

)

+ C
(βγ)
36

(
W

(βγ)
1(10) + 2ε̄12

)
(5.23)

S
(βγ)
44(00) = C

(βγ)
14 ε̄11 + C

(βγ)
24

(
W

(βγ)
2(10) + ε̄22

)
+ C

(βγ)
34

(
W

(βγ)
3(01) + ε̄33

)

+ C
(βγ)
44

(
W

(βγ)
2(01) + W

(βγ)
3(10) + 2ε̄23

)
+ C

(βγ)
45

(
W

(βγ)
1(01) + 2ε̄13

)

+ C
(βγ)
46

(
W

(βγ)
1(10) + 2ε̄12

)
(5.24)

S
(βγ)
55(00) = C

(βγ)
15 ε̄11 + C

(βγ)
25

(
W

(βγ)
2(10) + ε̄22

)
+ C

(βγ)
35

(
W

(βγ)
3(01) + ε̄33

)

+ C
(βγ)
45

(
W

(βγ)
2(01) + W

(βγ)
3(10) + 2ε̄23

)
+ C

(βγ)
55

(
W

(βγ)
1(01) + 2ε̄13

)

+ C
(βγ)
56

(
W

(βγ)
1(10) + 2ε̄12

)
(5.25)
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S
(βγ)
66(00) = C

(βγ)
16 ε̄11 + C

(βγ)
26

(
W

(βγ)
2(10) + ε̄22

)
+ C

(βγ)
36

(
W

(βγ)
3(01) + ε̄33

)

+ C
(βγ)
46

(
W

(βγ)
2(01) + W

(βγ)
3(10) + 2ε̄23

)
+ C

(βγ)
56

(
W

(βγ)
1(01) + 2ε̄13

)

+ C
(βγ)
66

(
W

(βγ)
1(10) + 2ε̄12

)
(5.26)

where the contracted notation for the stiffness tensor components C
(βγ)
ij is used. Sim-

ilarly the first stress moments are

S
(βγ)
11(10) =

h2
β

4

[
C

(βγ)
12 W

(βγ)
2(20) + C

(βγ)
14 W

(βγ)
3(20) + C

(βγ)
16 W

(βγ)
1(20)

]
(5.27)

S
(βγ)
11(01) =

l2γ
4

[
C

(βγ)
13 W

(βγ)
3(02) + C

(βγ)
14 W

(βγ)
2(02) + C

(βγ)
15 W

(βγ)
1(02)

]
(5.28)

S
(βγ)
22(10) =

h2
β

4

[
C

(βγ)
22 W

(βγ)
2(20) + C

(βγ)
24 W

(βγ)
3(20) + C

(βγ)
26 W

(βγ)
1(20)

]
(5.29)

S
(βγ)
22(01) =

l2γ
4

[
C

(βγ)
23 W

(βγ)
3(02) + C

(βγ)
24 W

(βγ)
2(02) + C

(βγ)
25 W

(βγ)
1(02)

]
(5.30)

S
(βγ)
33(10) =

h2
β

4

[
C

(βγ)
23 W

(βγ)
2(20) + C

(βγ)
34 W

(βγ)
3(20) + C

(βγ)
36 W

(βγ)
1(20)

]
(5.31)

S
(βγ)
33(01) =

l2γ
4

[
C

(βγ)
33 W

(βγ)
3(02) + C

(βγ)
34 W

(βγ)
2(02) + C

(βγ)
35 W

(βγ)
1(02)

]
(5.32)

S
(βγ)
44(10) =

h2
β

4

[
C

(βγ)
24 W

(βγ)
2(20) + C

(βγ)
44 W

(βγ)
3(20) + C

(βγ)
46 W

(βγ)
1(20)

]
(5.33)

S
(βγ)
55(01) =

l2γ
4

[
C

(βγ)
35 W

(βγ)
3(02) + C

(βγ)
45 W

(βγ)
2(02) + C

(βγ)
55 W

(βγ)
1(02)

]
(5.34)

S
(βγ)
66(10) =

h2
β

4

[
C

(βγ)
26 W

(βγ)
2(20) + C

(βγ)
46 W

(βγ)
3(20) + C

(βγ)
66 W

(βγ)
1(20)

]
(5.35)

S
(βγ)
66(01) =

l2γ
4

[
C

(βγ)
36 W

(βγ)
3(02) + C

(βγ)
46 W

(βγ)
2(02) + C

(βγ)
56 W

(βγ)
1(02)

]
(5.36)

5.2.4 Displacement Continuity

The unknown microvariables (the volume-averaged displacement vector W
(βγ)
i(00) and

the higher order terms W
(βγ)
i(mn)) can be calculated from the governing equation, Equa-

tion (5.17), subcell interfacial continuity conditions, and periodicity conditions.
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The periodic boundary conditions for an RUC are given by

ui|x2=0 = ui|x2=H (5.37)

σ2i|x2=0 = σ2i|x2=H (5.38)

ui|x3=0 = ui|x3=L (5.39)

σ3i|x3=0 = σ3i|x3=L (5.40)

The displacement continuity conditions are enforced, as in GMC, in an average (in-

tegral) sense, yielding:

∫ lγ/2

−lγ/2

[
u

(1γ)
i

∣∣∣
x̄
(1)
2 =−h1/2

]
dx̄

(γ)
3 =

∫ lγ/2

−lγ/2

[
u

(Nβγ)
i

∣∣∣
x̄
(Nβ)

2 =hNβ
/2

]
dx̄

(γ)
3 , γ = 1, . . . , Nγ

(5.41)∫ hβ/2

−hβ/2

[
u

(β1)
i

∣∣∣
x̄
(1)
3 =−l1/2

]
dx̄

(β)
2 =

∫ hβ/2

−hβ/2

[
u

(βNγ)
i

∣∣∣
x̄
(Nγ )
3 =lNγ /2

]
dx̄

(β)
2 , β = 1, . . . , Nβ

(5.42)

Using the definition of the subcell displacements, Equation (5.18), in the average

displacement continuity conditions, Equations (5.41) and (5.42), gives:

W
(1γ)
i(00) −

h1

2
W

(1γ)
i(10) −

h2
1

4
W

(1γ)
i(20) = W

(Nβγ)

i(00) − hNβ

2
W

(Nβγ)

i(10) −
h2

Nβ

4
W

(Nβγ)

i(20) , γ = 1, . . . , Nγ

(5.43)

W
(β1)
i(00) −

l1
2

W
(β1)
i(01) −

l21
4

W
(β1)
i(02) = W

(βNγ)

i(00) − lNγ

2
W

(βNγ)

i(01) − l2Nγ

4
W

(βNγ)

i(02) , β = 1, . . . , Nβ

(5.44)

Equations (5.43) and (5.44) represent the displacement continuity conditions neces-

sary to enforce periodicity of the RUC. Similar relations can be derived to enforce
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displacement continuity across adjacent subcell boundaries,

W
(βγ)
i(00) +

hβ

2
W

(βγ)
i(10) +

h2
β

4
W

(βγ)
i(20) = W

(β+1γ)
i(00) +

hβ+1

2
W

(β+1γ)
i(10) +

h2
β+1

4
W

(β+1γ)
i(20) ,

β = 1, . . . , Nβ − 1, γ = 1, . . . , Nγ

(5.45)

W
(βγ)
i(00) +

lγ
2

W
(βγ)
i(01) +

l2γ
4

W
(βγ)
i(02) = W

(βγ+1)
i(00) +

lγ+1

2
W

(βγ+1)
i(01) +

l2γ+1

4
W

(βγ+1)
i(02) ,

β = 1, . . . , Nβ, γ = 1, . . . , Nγ − 1

(5.46)

Note that Equations (5.43)-(5.44) can be relaxed to incorporate the effects of local,

interfacial debonding [Bednarcyk et al. (2004)].

5.2.5 Traction Continuity

Using Equations (5.6) and (5.7), the average implementation of the stress period-

icity conditions (Equations (5.38) and (5.40)) is

(2)t
+(1γ)
i =(2) t

+(Nβγ)
i , γ = 1, . . . , Nγ (5.47)

(3)t
+(β1)
i =(3) t

+(βNγ)
i , β = 1, . . . , Nβ (5.48)

Using Equations (5.4) and (5.5) with Equations (5.10) and (5.11) gives

(2)t
±(βγ)
i = J

(βγ)
2i(10) ±

hβ

2
J

(βγ)
2i(00), β = 1, . . . , Nβ, γ = 1, . . . , Nγ (5.49)

(3)t
±(βγ)
i = K

(βγ)
3i(01) ±

lγ
2

K
(βγ)
3i(00), β = 1, . . . , Nβ, γ = 1, . . . , Nγ (5.50)

Substituting Equations (5.8), (5.9), (5.15), and (5.16)

(2)t
±(βγ)
i = S

(βγ)
2i(00) ±

6

hβ

S
(βγ)
2i(10), β = 1, . . . , Nβ, γ = 1, . . . , Nγ (5.51)
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(3)t
±(βγ)
i = S

(βγ)
3i(00) ±

6

lγ
S

(βγ)
3i(01), β = 1, . . . , Nβ, γ = 1, . . . , Nγ (5.52)

Thus, the average stress periodicity conditions, Equations (5.47) and (5.48), become

S
(1γ)
2i(00) −

6

h1

S
(1γ)
2i(10) = S

(Nβγ)

2i(00) −
6

hNβ

S
(Nβγ)

2i(10) , γ = 1, . . . , Nγ (5.53)

S
(β1)
3i(00) −

6

l1
S

(β1)
3i(01) = S

(βNγ)

3i(00) −
6

lNγ

S
(βNγ)

3i(01) , β = 1, . . . , Nβ (5.54)

Equations (5.53) and (5.54) represent the stress continuity conditions at the bound-

aries of the RUC necessary to enforce periodicity. Similarly, traction continuity be-

tween adjacent subcells is given by:

S
(βγ)
2i(00) −

6

hβ

S
(βγ)
2i(10) = S

(β+1γ)
2i(00) − 6

hβ+1

S
(β+1γ)
2i(10) , β = 1, . . . , Nβ − 1, γ = 1, . . . , Nγ

(5.55)

S
(βγ)
3i(00) −

6

lγ
S

(βγ)
3i(01) = S

(βγ+1)
3i(00) − 6

lγ+1

S
(βγ+1)
3i(01) , β = 1, . . . , Nβ, γ = 1, . . . , Nγ − 1

(5.56)

5.2.6 Summary of Global Equations

The number of unknown microvariables in the displacement expansion, Equation

(5.18), is 15NβNγ. The governing equations, Equation (5.17) provide 3NβNγ relations

for the unknown microvariables while Equations (5.43) and (5.44) provide 3(Nβ +Nγ)

relations, Equations (5.45) and (5.46) provide 3[(Nβ − 1)Nγ + Nβ(Nγ − 1)] relations,

Equations (5.53) and (5.54) provide 3(Nβ + Nγ) relations, and Equations (5.55) and

(5.56) provide 3[(Nβ − 1)Nγ + Nβ(Nγ − 1)] relations, which yields a total of 15NβNγ

linear equations for the unknown microvariables.

This system of equations can be expressed as

KU = f (5.57)
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where K, the structural stiffness matrix, contains geometric and mechanical consti-

tutive information from each of the subcells in the RUC. The displacement vector U

contains the unknown displacement microvariables for each subcell.

U = [U(11), . . . ,U(NβNγ)] (5.58)

and

U(βγ) = [W
(βγ)
(00),W

(βγ)
(10),W

(βγ)
(01),W

(βγ)
(20),W

(βγ)
(02)] (5.59)

where the vectors W
(βγ)
(mn) contain the three components of that displacement mi-

crovariable for that particular subcell

W
(βγ)
(mn) =

[
W

(βγ)
1(mn),W

(βγ)
2(mn),W

(βγ)
3(mn)

]
(5.60)

The force vector f contains details of the applied average strains ε̄ij. To prevent

rigid body motion, the displacement of the corners of the RUC are pinned and those

equations are eliminated from Equation (5.57).

Solving Equation (5.57) yields a strain concentration matrix that relates the local,

average subcell strains to the global, applied, average strains.

ε̄(βγ) = A
(βγ)
HF ε̄ (5.61)

Once the local strains are obtained, the local stresses are readily determined through

the local constitutive laws, Equation (5.20). The average global stresses are simply

the volume average of the local stresses.

σ̄ =
1

HL

Nβ∑

β=1

Nγ∑
γ=1

hβlγσ̄
(βγ) (5.62)

where σ̄(βγ) are the average subcell stresses.
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The global, composite constitutive relationship is taken to be

σ̄ = C∗ε̄ (5.63)

Thus, the effective elastic stiffness matrix for the composite is given by substituting

Equations (5.61) and (5.62) into Equation (5.63).

C∗ =
1

HL

Nβ∑

β=1

Nγ∑
γ=1

hβlγC
(βγ)A

(βγ)
HF (5.64)

It should be noted that HFGMC was reformulated using the displacement continuity

conditions to reduce the overall number of unknown microvariables, thus reducing

computer memory requirements and computational cost. The reader is referred to

[Bansal and Pindera (2004); Aboudi et al. (2012)] for details on this reformulation.

5.3 Modeling Constituent-Level Post-Peak Strain Softening

with the Smeared Crack Band Approach

HFGMC is an efficient, useful tool for modeling intricate details of the microstruc-

ture of a composite material. Additionally, it is readily amenable for implementation

into a multiscale framework. Although, physics-based, discretization objective, pro-

gressive failure constitutive models must be in place for the constituents of the com-

posite to accurately predict the response of a structure that is a damaging. For pre-

peak loading (i.e. positive-definite tangent stiffness tensor), there are a multitude of

non-linear elasticity, plasticity, continuum damage mechanics, and visoelastic/plastic

theories available that can predict the evolution of the appropriate mechanisms in the

composite. However when the local fields enter the post-peak regime of the stress-

strain laws, most of these theories breakdown in a numerical setting and display

pathological mesh dependence [Bažant and Cedolin (1979); Pietruszczak and Mroz

147



(1981)]. See Chapter I, Section 1.2.2 for more on pathological mesh dependence.

A simple way to remedy this non-physical behavior in a numerical setting is to

judiciously scale the post-peak softening slope of the stress-strain constitutive law.

Then, the failure energy density dissipated becomes a function of the characteristic

length of discretized continuum. Bažant (1982); Bažant and Oh (1983) first proposed

a crack band model in which post-peak softening damage (herein referred to as fail-

ure) in the material was assumed to occur within a band. The post-peak slope of the

material constitutive law was scaled by the characteristic length of the finite element

exhibiting failure; such that, the total strain energy release rate in the element, upon

reaching a state of zero stress, and the material fracture toughness were coincident.

In this reference, equivalence between this smeared crack approach and a line crack

approach is presented. Subsequently, Bažant and Cedolin (1983) exhibited propa-

gation of a crack band not aligned with the mesh bias. In this chapter, the crack

band model is implemented within the HFGMC framework, in the MAC/GMC suite

of micromechanics codes developed at the NASA Glenn Research Center [Bednarcyk

and Arnold (2002b,c)], and used to analyze crack band growth in composite RUCs.

The following subsections provide theoretical details on the crack band model.

5.3.1 Physical Behavior of Crack band

The smeared crack band model is meant to capture the behavior of a region of

a material wherein numerous microcracks have initiated and now coalesce to form a

larger crack. Figure 5.2 displays a crack band of width wc embedded in a continuum.

The domain of the crack band is denoted as Ω′ and the remaining continuum as Ω.

The crack band is oriented within the continuum such that, for a given point within

the crack band, the unit vector normal to the crack band is n.

The total energy dissipated during the failure process is dissipated over Ω′, and the

size wc of Ω′ is a material property directly related to the material fracture toughness
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[Bažant and Oh (1983)].

wc =
2GC

σ2
C

(
1

E
− 1

ET

)−1

(5.65)

where σC is the critical stress for initiation of the post-peak regime in the 1D material

stress-strain law (given in Figure 5.3a), and ET is the negative tangent slope in that

regime. The fracture toughness GC , or critical strain energy release rate, of the

material is given by the area under the 1D traction-separation law (Figure 5.3b) which

governs the cohesive response of the separation of crack faces as a crack propagates

in the material. The energy density dissipated during failure WF is related to the

material fracture toughness by the characteristic length in the material.

GC = wcWF (5.66)

5.3.2 Numerical Implementation of Crack Band Model in GMC/HFGMC

The crack band model is implemented in the HFGMC micromechanical frame-

work. The local subcell fields are used to govern crack brand evolution in the con-

stituents of the composite. Figure 5.4 shows the discretization of the continuum

displayed in Figure 5.2. A magnified view of the crack band embedded in a single

subcell is also displayed in Figure 5.4. Since the all of the energy dissipated in the

crack band is smeared over the subcell volume, the subcell must be large enough to

contain the crack band of width wC . Note that Figure 5.4 shows a 2D geometry for

illustrative purposes, but the crack bands can also evolve in a general 3D space.

5.3.2.1 Mode I Crack Band Growth Under Tensile Principal Stress

The orientation of the crack band in subcell βγ is given by the vector n
(βγ)
1 (see

Figure 5.4) and is determined from the local principal stress state (σ̄
(βγ)
1 , σ̄

(βγ)
2 , σ̄

(βγ)
3 ).

In a monolithic material, cracks orient such that the crack tips are always sub-

jected to pure mode I (opening mode) conditions unless there are constraints that
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limit the crack orientation. In a micromechanical analysis the composite material

is composed of separate, monolithic constituents; thus, in the matrix, the crack

band runs perpendicular to σ̄
(βγ)
1 , the principal stress with the largest magnitude,

|σ̄(βγ)
1 | > |σ̄(βγ)

2 | > |σ̄(βγ)
3 |, if σ̄

(βγ)
1 ≥ 0 (tensile). Under these conditions, a crack

oriented as such, is subjected to pure mode I loading, locally. Although, the resulting

global behavior may appear to be mixed mode because of the influence of the fibers

on the matrix crack band path. Crack orientation and evolution is determined differ-

ently if σ̄
(βγ)
1 < 0 as described in 5.3.2.2. The characteristic length of the subcell l

(βγ)
C

is determined as the dimension of the subcell running parallel to n
(βγ)
1 . Crack band

initiation is determined using a very simple, but physical, maximum stress criterion.

σ̄
(βγ)
1

σ
(βγ)
C

= 1, σ̄
(βγ)
1 ≥ 0 (5.67)

where σ
(βγ)
C is the cohesive strength of the crack band. Once the crack band has

initiated, the crack band orientation is fixed as time evolves.

Once the crack band orientation has been calculated, the subcell compliance is

rotated into the principle frame using the transformation matrix.

T = [n
(βγ)
1 n

(βγ)
2 n

(βγ)
3 ][e1e2e3] (5.68)

where n
(βγ)
1 , n

(βγ)
2 , and n

(βγ)
3 are the principal stress directions, and e1, e2, and e3

are the unit basis vectors. All material degradation due to crack band evolution is

imposed on the rotated compliance S̄(βγ), the components of which are given by:

S̄
(βγ)
ijkl = TpiTqjS

(βγ)
pqrsTkrTls (5.69)

The strain energy released during the formation of new surfaces corresponding

to the growth of cracks within the crack band is assumed to be dissipated over the
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entire subcell volume. Therefore, the post-peak softening slope E
(βγ)
IT , and the strain

at which a the principle stress state is zero, is calculated using the characteristic

length of the subcell l
(βγ)
C and the material fracture toughness G(βγ)

IC (see Figure 5.3a).

ε
(βγ)
F =

2G(βγ)
IC

σ
(βγ)
C l

(βγ)
C

(5.70)

E
(βγ)
IT =

(
1

Ē110

− ε
(βγ)
F

σ
(βγ)
C

)−1

(5.71)

where Ē110 is the undamaged, axial Young’s modulus in the principle frame. It should

be noted that E
(βγ)
IT must be less than zero; therefore, by Equations (5.70) and (5.71),

a restriction is placed on the maximum allowable subcell size.

l
(βγ)
C <

2G(βγ)
IC Ē110

σ
(βγ)
C

(5.72)

The local, rotated, subcell strain state ε̄
(βγ)
i





ε̄
(βγ)
1

ε̄
(βγ)
2

ε̄
(βγ)
3





=





T
(βγ)
1i ε̄

(βγ)
ij T

(βγ)
1j

T
(βγ)
2i ε̄

(βγ)
ij T

(βγ)
2j

T
(βγ)
3i ε̄

(βγ)
ij T

(βγ)
3j





(5.73)

is used to degrade the rotated compliance components. The scalar damage factor

D(βγ) is calculated using the rotated strain corresponding to σ̄
(βγ)
1 .

D(βγ) = 1 +
E

(βγ)
IT

(
ε
(βγ)
C − ε̄

(βγ)
1

)

Ē110ε̄
(βγ)
1

(5.74)

where ε
(βγ)
C is the value of ε̄

(βγ)
1 when the initiation criterion, Equation (5.67), is

satisfied. If D(βγ) is less than zero, no damage occurs, and a maximum damage level

of one corresponds to a zero stress state on the softening stress-strain curve. Also,
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damage healing is inadmissable.

Ḋ(βγ) ≥ 0 (5.75)

Components of the rotated compliance matrix are degraded with the damage factor.

S̄(βγ) =




S̄0(βγ)

1111

(1−D(βγ))
S̄

(βγ)
1122 S̄

(βγ)
1133 0 0 0

S̄
(βγ)
1122 S̄

(βγ)
2222 S̄

(βγ)
2233 0 0 0

S̄
(βγ)
1133 S̄

(βγ)
2233 S̄

(βγ)
3333 0 0 0

0 0 0 S̄
(βγ)
2323 0 0

0 0 0 0
S̄0(βγ)

1313

(1−D(βγ))
0

0 0 0 0 0
S̄0(βγ)

1212

(1−D(βγ))




(5.76)

Since the crack band orientation is fixed upon initiation, the S̄
(βγ)
1313 and S̄

(βγ)
1212 shear

compliances in the rotated frame are degraded, as well as the S̄
(βγ)
1111 compliance, so

that the crack band faces normal to n
(βγ)
1 are free of normal and shear tractions when

all of the crack band energy has been dissipated (i.e. l
(βγ)
C W

(βγ)
F = G(βγ)

IC ). Once the

compliance in the rotated frame is degraded, the compliance is transformed back to

the global frame to yield the new subcell compliance.

S
(βγ)
ijkl = T−1

pi T−1
qj S̄(βγ)

pqrsT
−1
kr T−1

ls (5.77)

Note that, damage introduced in the principal frame, through Equation (5.76), can

induce normal-shear coupling in the global frame.
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5.3.2.2 Mode II Crack Band Growth Under Compressive Principal Stress

Crack band growth under pure mode I conditions are energetically favorable; how-

ever, conditions arise, under which, mode I crack growth is not possible. For instance,

the crack cannot grow under in mode I if the normal traction at the crack tip is

compressive. This occurs when the principal stress with the maximum magnitude is

compressive (σ̄
(βγ)
1 < 0). However, experimental data shows that monolithic materials

subjected to global compression will eventually fracture.

In brittle and quasi-brittle materials, it has been shown that local, internal friction

results in shear (mode II) fracture when the monolithic material is subjected to com-

pressive stresses [Hoek and Bieniawski (1965); Horii and Nemat-Nasser (1986); Ashby

and Sammis (1990); Chen and Ravichandran (2000)]. Consequently, if σ̄
(βγ)
1 < 0 it

is assumed that the crack band is aligned with plane of maximum shear stress τ̄ (βγ)

in the matrix subcell and a Mohr-Coulomb failure criterion will be used to indicate

crack band initiation under maximum principal compression.

τ̄
(βγ)
E

τ
(βγ)
C

= 1, σ̄
(βγ)
1 < 0 (5.78)

where τ
(βγ)
C is the cohesive shear strength of the matrix, and τ̄

(βγ)
E is an effective shear

stress that includes the influence of the traction normal to the crack band σ̄n
(βγ).

τ̄
(βγ)
E = |τ̄ (βγ)|+ µiσ̄n

(βγ) (5.79)

where µi is the internal friction coefficient and must lie between 0 < µi ≤ 1.5 to ob-

tain physically reasonable surface friction coefficient [Chen and Ravichandran (2000)].

Since the principal stress with the largest magnitude is compressive, the traction nor-

mal to the maximum shear stress plane σ̄n
(βγ) must also be compressive. Hence, in

Equation (5.79), an increase in the normal compressive stress will yield a reduction
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in the effective shear stress and an increase in apparent shear strength. Taliercio and

Sagramoso (1995) derived relationships between internal friction coefficient, shear

strength, the tensile strength and compressive strength of the material, yielding an

expression for µi in terms of σ
(βγ)
C and τ

(βγ)
C .

µi = tan





sin−1




(
2τ

(βγ)
C

)2

− σ
(βγ)
C

2

(2τ̄ (βγ))
2
+ σ

(βγ)
C

2








(5.80)

Similar criteria are used for shear failure under compressive loading in homoge-

nized composite materials [Puck and Schürmann (1998, 2002); Pinho et al. (2005)].

In these theories, the orientation of the crack is not aligned with the plane of maxi-

mum shear stress because of the influence of the fibers on the crack path, but rather,

orientation is an input to the theories obtained from experimental data. Since the

influence of the fibers are explicitly accounted for in the present methodology, the

crack may remain oriented with the maximum shear stress plane and the local stress

in the matrix will drive the crack path.

Subsequent to mode II crack band initiation via Equation (5.78), the compliance

tensor of the subcell is rotated into the maximum shear stress frame using Equations

(5.68) and (5.69), where n
(βγ)
1 is a unit-vector perpendicular to the plane of maximum

shear stress. Features of the post-peak softening shear stress-shear strain curve, such

as the endpoint and post-peak tangent stiffness, can be calculated from the mode II

fracture parameters.

γ
(βγ)
F =

2G(βγ)
IC

τ
(βγ)
C l

(βγ)
C

(5.81)

E
(βγ)
IIT =

(
1

Ḡ120

− γ
(βγ)
F

τ
(βγ)
C

)−1

(5.82)

where Ḡ120 is the undamaged, axial shear modulus in the maximum shear stress

frame. Again the tangent stiffness E
(βγ)
IIT must be less than zero; therefore, Equations
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(5.81) and (5.82) place a restriction is on the maximum allowable subcell size.

l
(βγ)
C <

2G(βγ)
IC Ḡ120

τ
(βγ)
C

(5.83)

The shear strain corresponding to the maximum shear stress γ̄(βγ) is obtained by

rotating the strain tensor.

γ̄(βγ) = T
(βγ)
1i ε̄

(βγ)
ij T

(βγ)
2j (5.84)

An effective shear strain γ̄
(βγ)
E can be defined that is work conjugate with the effective

shear stress tEbg.

τ̄
(βγ)
E dγ̄

(βγ)
E = τ̄ (βγ)dγ̄(βγ) + σ̄n

(βγ)dε̄n
(βγ) (5.85)

where τ̄ (βγ) and σ̄n
(βγ) are the shear and normal tractions acting on the crack faces

oriented parallel to the plane of maximum shear stress, and γ̄(βγ) and ε̄n
(βγ) are the

apparent shear and normal strains with respect to the maximum shear orientation

in the subcell, including the effects of crack tip opening displacement. Taking the

derivative of Equation (5.85) with respect to τ̄ (βγ) yields

∂τ̄
(βγ)
E

∂τ̄ (βγ)
dγ̄

(βγ)
E = dγ̄(βγ) (5.86)

and along with the derivative of Equation (5.79) with respect to τ̄ (βγ)

∂τ̄
(βγ)
E

∂τ̄ (βγ)
= 1 (5.87)

finally, after integrating, gives:

γ̄
(βγ)
E = γ̄(βγ) (5.88)

which states that the shear strain in the rotated, maximum shear stress frame and

the effective shear strain that is work conjugate to the effective, Mohr-Coulomb shear

stress are equivalent.
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Thus, γ̄(βγ) is used to degrade the rotated compliance components. The damage

factor D(βγ) is calculated using γ̄.

D(βγ) = 1 +
E

(βγ)
IIT

(
γ

(βγ)
C − γ̄(βγ)

)

Ḡ120γ̄(βγ)
(5.89)

where γ
(βγ)
C is the value of γ̄(βγ) when the initiation criterion, Equation (5.78), is

satisfied. In the case of mode II fracture, only the shear moduli are degraded. The

normal direction is subjected to compression, and thus, retains its stiffness.

S̄(βγ) =


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0 0 0 0
S̄0(βγ)
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(1−D(βγ))
0

0 0 0 0 0
S̄0(βγ)

1212

(1−D(βγ))




(5.90)

Then, the compliance tensor is rotated back to the global frame using Equation (5.77).

5.4 Subcell Mesh Objectivity

The key advantage of using the smeared crack band approach is that it has been

verified to provide mesh objective results within an FEM setting; this can also be said

for implementation of this model within HFGMC. To illustrate this, a uniform, uni-
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axial, tensile displacement u was applied to monolithic, doubly-periodic, unit square

RUCs in the x3-direction. As shown in Figure 5.5, the levels of subcell refinement

ranged from: 35 subcells x 35 subcells, 45 subcells x 45 subcells, 55 subcells x 55

subcells, to 65 subcells x 65 subcells. The elastic properties were chosen to match

data for in-situ MY750/HY917/DY063 epoxy matrix [Hinton et al. (2004)]. The

fracture properties were chosen such that the problem would demonstrate significant

post-peak energy dissipation. All properties are given in Table 5.1. A single subcell,

colored red in Figure 5.5, was given a 10% lower initiation strain then the rest of

the domain. Additionally, only the subcells that lie along a horizontal line running

through the weaker subcell were allowed to fail because as the damaged region grows,

the opposite ends of the damaged region would interact with each other (due to pe-

riodicity), as a result of the periodic boundary conditions, altering the damage path

and resulting in damage growth that is not self-similar. Restricting the damage path

ensures that only subcell dimensions would influence the results from case to case.

The resulting load P in the x3-direction is plotted in Figure 5.6 against the applied

displacement for the four different levels of subcell refinement. It is clear that the total

strain energy release rate dissipated in the system, and the ultimate load, is insensitive

to the dimension of the subcell size. Of course, in more complicated RUCs, a certain

level of subcell refinement is necessary to capture the local fields accurately; however,

that behavior is not pathological subcell mesh dependence because the solution is

bounded.

5.5 Details of Numerical Models

The smeared crack band model, presented in Section 5.3.2, is implemented within

HFGMC, and it is used to investigated the progression of post-peak softening damage

within a unidirectional fiber-reinforced composite RUC. The main objective was to

capture the failure evolution of a composite RUC under transverse tension and com-
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pression. In tension, the lamina is susceptible to transverse cracking, as evidenced

by Figure 1.2. The behavior of this mechanism is observed to be quite brittle, as is

evidenced by tension tests on 90◦ coupon laminates. However, in compression a net-

work of shear bands develop, accompanied by some matrix cracking and fiber-matrix

debonding (see Figure 1.5) and the stress-strain response if much more ductile. To

emulate these failure modes, a doubly-periodic HFGMC RUC of the 2-3 plane of the

composite was created (see Figure 5.7). This RUC was subjected to global tensile

and compressive, transverse, uniaxial strains: ±ε̄22. The constitutive behavior of the

matrix subcells follows linear elasticity, coupled with the crack band model for post-

peak strain softening formulated earlier. This model is verified against experimental

data in Section 5.6.

A representation of the 2-3 plane of a typical composite lamina (where the 1-axis

runs in the longitudinal direction of the fibers and the 2- and 3-axes span the plane of

transverse isotropy) was produced to examine the evolution of transverse cracks within

the composite. The blueprint for the discrete model is created by randomly placing

thirteen circular fibers with a diameter of 5 µm in a square box. The domain was

then discretized into a number of subcells. The considered formulation of HFGMC

only admits rectangular subcells in doubly-periodic models (parallelepiped in triply-

periodic models); so, some of the fiber domains would overlap or lie directly adjacent

to one another. An isoparametric formulation of HFGMC has been recently developed

by Haj-Ali and Aboudi (2010). Mesh objective, subcell interfacial debonding has been

formulated for GMC (see Appendix B, also Pineda et al. (2010a,c)) but has not been

fully developed within the HFGMC framework. As a result, thin matrix channels

were inserted between any adjacent fibers to avoid arrest of the crack band for non-

physical reasons such as the inability of two adjacent fiber to separate. The final

architecture and discretization is shown in Figure 5.7, which contains 81 subcells x 85

subcells. The blue subcells indicate fiber material and the green represent the matrix.
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The dimensions of the RUC (21.25 µm x 21.25 µm) were chosen such that the final

fiber volume fraction in Figure 5.7 would be preserved at 58%, corresponding to the

experimental data provided in Hinton et al. (2004).

The elastic properties for a Silenka E-glass/MY750/HY917/DY063 lamina were

taken from data from the world wide failure exercise (WWFE) [Hinton et al. (2004)].

Elastic properties for Silenka E-glass fiber and MY750/HY917/DY063 epoxy matrix

used are given in Table 5.2. Note that the matrix properties were correlated to

represent the in-situ properties of the matrix, which differ significantly from those of

the neat material [Ng et al. (2010)], and match the global properties of the composite.

As a result of this calibration, the isotropic relationship between the shear modulus

and the Young’s modulus and Poisson’s ratio of the matrix is not maintained. The

fracture properties (also Table 5.2) were calibrated to produce and ultimate transverse

tensile stress of 40 MPa, and the compressive properties were calibrated to match

transverse compression data, reported in Hinton et al. (2004).

5.6 Results

5.6.1 Transverse Tension

A comparison between the tensile results obtained from the HFGMC model and

the experiment is provided in Figure 5.8. Only one data point is given in Hinton et al.

(2004), implying that the tensile response is linear until ultimate failure. The first

peak in the σ̄22-ε̄22 obtained from HFGMC at σ̄22 = 39.76 MPa and ε̄22 = 0.00244

was calibrated to match the experimental data, and thus, correlates well. Subsequent

to the first peak, the model exhibits a sudden drop in the global stress; however, the

RUC then continues to reload in a nonlinear manner. A second peak is achieved at

an applied transverse strain of 0.00308 and a transverse stress of 37.97 MPa, which is

slightly less than the stress at the first peak. After the second peak, the load carrying
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capability of the RUC is severely diminished.

The evolution of the tensile crack band in the RUC is presented in Figure 5.9. At

σ̄22 = 37.84 MPa a crack band initiates near the top of the RUC between two fibers

(please refer back to Figure 5.7 for the fiber-matrix architecture). At the ultimate

stress 39.76 MPa, the initial crack band has grown significantly into a fully developed

crack band that propagated across the periodic boundary into the bottom of the

RUC. The tips of the initial crack band are arrested in lower stress, matrix rich

regions. At σ̄22 = 35.09 MPa, after the ultimate stress has been achieved and the

RUC is reloading, A new crack band initiates between two adjacent fibers. When the

second peak is reached, the subcells composing the second crack band have degraded

significantly, and the original crack band has extended further. As the stress drops,

Figure 5.9e, a third crack band initiates. The newest crack band develops rapidly, and

the second crack band becomes stagnant. When the RUC has completely failed and

can no longer sustain any load, the first and third crack band have bridged to form a

nearly continuous crack that has maneuvered around the fiber inclusions and spans

the entire height of the RUC. This failure path closely resembles the SEM image of a

transverse crack in the glass/epoxy composite shown in Figure 1.2b, and although the

model does not account for fiber-matrix debonding, the model exhibits appreciable

matrix failure in matrix subcells adjacent to fiber subcells.

5.6.2 Transverse Compression

The same HFGMC RUC is loaded in transverse compression and the stress-strain

response is compared to the experimental data in Figure 5.10. The nonlinear behavior

of the model and experiment correlate well until the model exhibits catastrophic

failure at -104.8 MPa, which is well below the reported ultimate compressive strength

of 145 MPa.

Investigations into the failure progression within the RUC reveal the cause of
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the premature ultimate failure. Figure 5.11 shows the progression of mode II failure

(DC), resulting from maximum, compressive principal stresses (left column), mode I

failure (DT ), resulting from maximum, tensile principal stress (middle column), and

the superposition of mode I and mode II failure (DT + DC , right column) as the

RUC is loaded in global, transverse compression. The first failure initiation occurs

between two fibers near the top of the RUC under mode II conditions at a global

stress of -65.68 MPa. As the applied strain increases, many mode II crack bands

form in angular matrix regions between closely packed fibers. This is exhibited in

Figures 5.11b and 5.11c. When the global stress reaches -92.88 MPa, a mode I crack

band initiates in the top-right corner of the RUC. At the ultimate stress, Figure 5.11f

both the mode I and mode II crack band have evolved. In Figure 5.11g, shortly

after the ultimate stress was reached, a network of angular mode II crack bands has

formed. These mode II crack bands are bridged by a horizontal, mode I crack band

forming one continuous crack band that has progressed throughout the RUC. When

the global stress has dropped severely, in Figure 5.11h, there is substantial matrix

degradation resulting from mode II crack band propagation. Furthermore, one fiber

is completely surrounded by crack bands. Comparing Figure 5.11h to an SEM image

of a compressively failed carbon fiber/epoxy laminate in Figure 1.5b, displays closely

resembling failure patterns, indicating that the qualitative failure mode was captured

accurately, despite the quantitative discrepancy.

The development of mode I crack bands corresponded to a drop in global stress

shortly thereafter. Thus, to determine if the mode I crack bands were responsible

for the premature failure of the RUC, the simulation was re-executed but mode I

crack band growth was prohibited. The global σ̄22-ε̄22 response is presented in Figure

5.10, along with the previous results and experimental data. It can be observed that

ultimate failure is delayed considerably until the σ̄22 = -146.4 MPa, which corresponds

well to the strength reported in Ref. [Hinton et al. (2004)] although the ultimate
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failure strain 16% higher. Moreover, the majority of the stress-strain response of the

RUC matches the experimental data. This indicates that, in the model, the mode II

crack bands are responsible for the observed nonlinearity; whereas, the mode I crack

bands are responsible for the early onset of ultimate failure, as the mode I fracture

toughness is an order of magnitude lower than mode II.

Extending this observation to the behavior of actual composite would suggest

that its non-linearity is controlled by shear band evolution, and the ultimate failure

is due to progression of tensile cracks and fiber-matrix debonding. It may be that

the size of the RUC (i.e. number of fibers included in the RUC) was too small to

get an accurate representation of the quantitative response of the composite under

compression, and the growth of the tensile crack band made an unrealistically large

impact on the response of the RUC. Further studies evaluating the influence of fiber-

matrix architecture on the compressive response of composites needs to be performed.

Additionally, adjacent constraining plies with different local architectures, present in

the experiment, may have helped to diminish the effect of formation of tensile cracks,

which is an effect not captured in this analysis.

The mode II crack band progression, produced by the simulation in which mode

I crack band growth was disabled, is displayed in Figure 5.12. Prior to the initiation

of the mode I crack band in Figure 5.11, Figures 5.11 and 5.12 are identical. However

as the stress continues beyond the ultimate stress observed in the original simulation,

more angular, distributed, mode II crack bands arise, as shown in Figure 5.12i at the

ultimate stress of the simulation with mode I crack band preclusion. Upon ultimate

failure, the expansive array of mode II crack bands is almost entirely adjoined and

nearly all of the matrix subcells in the RUC have failed. The SEM image, Figure

1.5b, does not display such extensive failure. This further supports that the failure

mode predicted with both mode I and mode II crack bands is more physically correct,

and other factors are influencing the discrepancy between the response of the model
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and the experiment.

5.7 Conclusions

A mesh objective, smeared crack band model was implemented at the matrix

subcell level within the HFGMC micromechanics framework. Mode I crack bands

were allowed to propagate normal to the maximum principal stress when the princi-

pal stress component with the maximum magnitude was tensile, and the associated

strain exceeded a critical value. If the principal stress component with the maximum

magnitude was compressive, however, it was assumed that mode I cracks within

the crack band could not evolve, and instead, they grew in mode II as a result of

Mohr-Coulomb friction, upon satisfaction of a Mohr-Coulomb failure criterion. The

mode II crack bands were aligned with the plane of maximum shear stress. Interfa-

cial debonding was not considered in this analysis; however, a cohesive zone-based

debonding model, formulated in Appendix B has been implemented within GMC and

is currently being verified. Future efforts will be focused towards implemented the

same debonding model in HFGMC.

An RUC containing 13, randomly distributed fibers was simulated under global

transverse tension and compression. The results for both cases were compared to ex-

perimental data. The tensile response correlated extremely well with the test results.

Furthermore, the predicted failure mode mirrored SEM images of composites failed in

tension. Under compression, the micromechanics model predicted failure well below

the reported compressive strength. This was attributed to the formation of tensile,

mode I crack bands in the matrix which exhibit very low fracture toughness. A sim-

ulation wherein mode I crack band evolution was restricted, provided quantitative

results that more closely agreed with the experiment. However, the failure mode

exhibited by the simulation allowing for both mode I and mode II crack bands more

closely resembled an SEM image of a compressively failed composite compared to
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the latter simulation. This indicates that a sensitivity study on the size and level of

refinement of the RUC should be enacted. Future studies will determine the number

of fibers in the RUC required to achieve convergence of the stiffness and the failure

progression.

Additionally, the response of the RUC to applied intralaminar shear strain γ̄12 was

not enacted. As seen in the SEM image presented in Figure 1.1 of shear microcracking

in a composite lamina, numerous cracks form between fibers along the fiber direction.

This 3-D effect results in the composite exhibiting a very ductile response in shear.

To capture these 3-D, geometric effects with the proposed model, a very complex,

3-D RUC is required.

The RUC examples that were provided are far too computationally expensive for

a multiscale analysis. However, insight gained from the micromechanics analysis can

be utilized to formulate traction-separation laws, or to postulate fracture toughnesses

that include the geometric effects and can be implemented into simpler, more com-

putationally feasible RUCs. To preserve the stress-strain response a consistent strain

energy density must exist across the scales. However, the mesh objectivity gained by

utilizing the smeared crack band model at the microscale is lost if the SERR is not

also preserved across the scales. To accomplish this, a consistent length must be used

at both scales. Thus, the volume of the microscale RUC and the volume associated

with the corresponding macroscale integration point must be equivalent.
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Property Value

E (GPa) 3.7
ν 0.35
εC 0.0135

εC (weak) 0.01215
GIC (N/mm) 750

Table 5.1: Elastic and fracture properties used in mesh objectivity study.
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Property Value

Ef (GPa) 74.000
νf 0.200
Em (GPa) 4.65
νm 0.350
Gm 1.4

ε
(βγ)
C 0.0167

γ
(βγ)
C 0.0256

G(βγ)
IC (N/mm) 0.00076

G(βγ)
IC (N/mm) 0.00435

Table 5.2: Elastic and fracture properties used in RUC simulation of 2-3 plane of a
Silenka E-Glass/MY750/HY917/DY063 composite lamina. The fracture properties
were calibrated to provide the best correlation with experimental data.
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Figure 5.1: Effects of mesh refinement on overall load-displacement response for a
material exhibiting post-peak softening. Dashed lines indicate non-physical snapback.

Figure 5.2: Crack band domain Ω′ of width wc oriented normal to vector n within a
continuum Ω.
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(a) (b)

Figure 5.3: Stress-strain (a) and traction-separation (b) laws governing material be-
havior. Failure energy density WF is related to fracture toughness GC through the
characteristic length.

Figure 5.4: Crack band embedded in discretized continuum. Magnified subcell dis-
plays crack band orientation within subcell as well as characteristic length of subcell.
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(a) 35 subcells x 35 sub-
cells.

(b) 45 subcells x 45 sub-
cells.

(c) 55 subcells x 55 sub-
cells.

(d) 65 subcells x 65 sub-
cells.

Figure 5.5: Four subcell meshes used in mesh objectivity study. Red subcell was
given a lower crack band initiation strain than others.

Figure 5.6: Load versus displacement for four different subcell meshes. Total strain
energy release rate and ultimate load are unaffected by mesh refinement.
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Figure 5.7: GMC/HFGMC and FEM mesh used in simulations of RUC in 2-3 plane
of lamina containing 13 fibers and a fiber volume fraction of 58%. Subcells/elements
occupied by fibers are colored blue, and subcells/elements occupied by matrix are
colored green.
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Figure 5.8: Transverse tensile stress versus transverse strain of E-glass/Epoxy com-
posite from experiment compared to HFGMC micromechanics model.
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(a) ε22 = 0.00232, σ22 = 37.84 MPa. (b) ε22 = 0.00248, σ22 = 39.76 MPa (First peak
stress).

(c) ε22 = 0.00268, σ22 = 35.09 MPa. (d) ε22 = 0.00300, σ22 = 38.35 MPa (Second peak
stress).

(e) ε22 = 0.00308, σ22 = 37.88 MPa. (f) ε22 = 0.00316, σ22 = 32.68 MPa.

Figure 5.9: Evolution of mode I crack band in RUC subjected to applied transverse
tensile strain.
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(g) ε22 = 0.00336, σ22 = 4.11 MPa.

Figure 5.9: Evolution of mode I crack band in RUC subjected to applied transverse
tensile strain.

Figure 5.10: Compressive Transverse stress versus transverse strain of E-glass/Epoxy
composite from experiment compared to HFGMC micromechanics model.
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(a) ε22 = -0.00403, σ22 = -65.68 MPa.

(b) ε22 = -0.00490, σ22 = -79.66 MPa.

(c) ε22 = -0.00543, σ22 = -87.71 MPa.

(d) ε22 = -0.00578, σ22 = -92.88 MPa.

Figure 5.11: Evolution of mode I (left), mode II (middle), and superposition of mode
I and mode II (right) crack band in RUC subjected to applied transverse compressive
strain.
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(e) ε22 = -0.00630, σ22 = -99.56 MPa.

(f) ε22 = -0.00683, σ22 = -104.78 MPa (ultimate stress).

(g) ε22 = -0.00770, σ22 = -96.37 MPa.

(h) ε22 = -0.01750, σ22 = -16.06 MPa.

Figure 5.11: Evolution of mode I (left), mode II (middle), and superposition of mode
I and mode II (right) crack band in RUC subjected to applied transverse compressive
strain.
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(a) ε22 = -0.00403, σ22 = -65.68 MPa. (b) ε22 = -0.00420, σ22 = -68.53 MPa.

(c) ε22 = -0.00490, σ22 = -79.66 MPa. (d) ε22 = -0.00543, σ22 = -87.71 MPa.

(e) ε22 = -0.00578, σ22 = -92.88 MPa. (f) ε22 = -0.00630, σ22 = -100.15 MPa.

Figure 5.12: Evolution of mode II crack band in RUC subjected to applied transverse
compressive strain if mode I crack band evolution is suppressed.
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(g) ε22 = -0.00683, σ22 = -106.75 MPa. (h) ε22 = -0.00770, σ22 = -116.36 MPa.

(i) ε22 = -0.01420, σ22 = -146.43 MPa (ultimate
stress).

(j) ε22 = -0.01750, σ22 = -82.87 MPa.

Figure 5.12: Evolution of mode II crack band in RUC subjected to applied transverse
compressive strain if mode I crack band evolution is suppressed.
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CHAPTER VI

Concluding Remarks

6.1 Conclusions

The focus of this dissertation was to develop multiscale analysis tools that capture

as much of the physics of intralaminar damage and failure in polymer matrix com-

posite fiber-reinforced laminates (FRLs) as possible while remaining suitable for use

in engineering. Several models were developed to meet these requirements, and their

capabilities were evaluated against experimental data. One theme used throughout

this work was the separation of damage and failure. Damage was defined as the

evolution of distributed structural changes in the material that manifest as pre-peak

nonlinearities in the stress-strain response of the material. Conversely, failure was

defined as effects of structural changes in the material that yield post-peak strain

softening, which results in degradation localization. If not handled properly, failure

results in discretization dependent solutions in a numerical setting. By separating

damage and failure, the appropriate measures can be enacted to reformulate the evo-

lution of failure, by incorporating a characteristic length, such that pathological mesh

dependence is eliminated.

In Chapter II, the thermodynamically-based work potential theory, Schapery the-

ory (ST) was presented. ST utilizes the stationarity of the total work potential with

respect to internal state variables (ISVs) to arrive at evolution equations for the ISVs.
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A single ISV was employed to model the effects of lamina level matrix microdamage

in the FRL. The evolution of microdamage was investigated under a wide range of

combined transverse and shear loading. It was determined that transverse, compres-

sive strains impede microdamage growth while shear strain promotes it. Additionally,

the stability of the work potential with respect to perturbations in the ISV was in-

vestigated to determine if the loss of stability could be used to mark the initiation of

more catastrophic failure mechanism, such as transverse matrix cracking. The results

indicated that the total work potential was unconditionally stable with respect to

perturbations in the ISV; thus, explicit criteria are required to signal the onset of

failure.

In Chapter III micromechanics was used to predict failure in the constituents of

the composite in a numerical multiscale framework. ST was retained to model matrix

microdamage at the macroscale, or lamina level. The micromechanics method, the

generalized method of cells (GMC), was used model the localization of failure, at

the appropriate scale, by employing failure criteria, meant to capture the effects of

transverse cracking and fiber breakage, in the matrix and fiber of a repeating unit

cell (RUC). Upon satisfaction of a criterion, the stiffness of the corresponding sub-

cell was immediately diminished. The effects of the fiber-matrix architecture on the

failure response of the composite were percolated up the scales through the homog-

enized stiffness of the RUC. Modeling distributed microdamage at the macroscale

improved the computational efficiency of the model by avoiding function calls to the

micromechanics subroutines unless the microdamage was above some nominal value.

The multiscale model, ST-FEAMAC, was evaluated through comparison to global

and local experimental data for two center-notched panels (CNPs) with different ply

stacking orientations. Very good agreement between the model and experimental

data was achieved, and the correct, global failure modes were predicted. One major

drawback of this methodology was that the degradation scheme used at the microscale
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was inherently mesh dependent. However, the demonstrated technique provided uti-

lized intricate details of the composite microstructure while remaining computational

feasibly and readily implemented.

The fourth and fifth chapters sought to remedy the mesh dependence of the fail-

ure methodology utilized in Chapter III. In Chapter IV, the multiscale approach was

omitted, and instead, both damage and failure were accounted for at the macroscale.

ST was reformulated as the enhanced Schapery theory (EST) by adding additional

ISVs to account for failure due to transverse cracking and fiber breakage. The evo-

lution of these ISVs was based upon the fracture toughness of the material, and it

incorporated the characteristic length of the finite element, ensuring mesh objectivity.

The evolution equations for the ISVs were derived within the thermodynamical con-

sistent framework presented in Chapter II. Since the micromechanics was no longer

used to incorporate the influence of the fiber and matrix in the laminae, assumptions

were made on how the ISVs affected the stiffness tensor of a lamina. Additionally,

separate ISVs had to be included for mode I and mode II transverse cracking. The

performance of EST in an FEM setting was assessed by comparing the results of

the numerical models of the same CNPs used in Chapter IV to the experimental

data. The model results correlated well with the experimental data, and the globally

observed failure modes in both specimens were predicted. Although EST requires

more parameters to characterize the material failure than ST-FEAMAC (strengths

and fracture toughnesses in the axial, transverse, and shear directions as compared to

critical fiber strength, and transverse and shear strengths for the matrix), the failure

parameters can be obtained from coupon level tests. Whereas, designing experiments

for measuring in-situ matrix strengths is more difficult.

Finally, Chapter V revisited the micromechanics, and implemented a mesh objec-

tive, smeared crack band model into the HFGMC framework. The model utilized the

principal stresses to determine the orientation of the crack bands in the subcells of the
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RUC. It was assumed that the cracks within the band evolved under opening, mode

I conditions perpendicular to the direction of maximum principal stress magnitude.

However, if the principal stress component with maximum magnitude is compressive,

it was assumed that the cracks inside the band grow under mode II conditions and are

aligned with the plane of maximum shear stress. An RUC with 13, randomly placed

fibers was loaded in transverse tension and compression. Global stress-strain results

were compared to experimental data and exhibited good agreement. It was discovered

that under global, transverse compression, mode II crack band evolution led to the

observed non-linearities in the stress-strain response of the RUC, but it was tensile,

mode I crack bands that dictated the ultimate failure of the RUC. This model can

be utilized in future studies to determine the effects of the RUC size and geometry

on the predictions of failure evolution in a composite lamina. Moreover, Chapter V

presented a suitable micromechanics methodology that is capable of modeling the lo-

calization of failure objectively, at the microscale, and is suitable for implementation

within a multiscale framework.
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APPENDIX A

Three-Dimensional Thermodynamically-Based

Work Potential Theory for Orthotropic

Microdamage Growth

Provided in this appendix are developments by the author to extend the thermodynamically-

based work potential theory developed Schapery and Sicking (1995) for modeling pro-

gressive microdamage in two-dimensional (2D), plane stress, transversely isotropic

solids to three-dimensional (3D), isotropic materials. The intention of this develop-

ment is to use new theory to predict damage growth in the constituents of a composite

material at the microscale, where, locally, plane stress assumptions are no longer valid.

This microscale may then be tied to the macroscale via multiscale modeling [Pineda

et al. (2008); Gilat and Banks-Sills (2010)].

Here, it is assumed that the matrix constituent of the composite is initially

isotropic. Microdamage accrues within the solid; however, this damage growth is not

necessarily isotropic. In fact, since induced microdamage in homogeneous materials

is due to microcracking, damage will be dependent on the orientation of the microc-

racks. Thus, as microdamage evolves, the material will not behave isotropically, but

rather will respond in a generally anisotropic manner.
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A.1 Formulation of Three-Dimensional Thermodynamically-

Based Work Potential Theory

A.1.1 Formulation of ST for Microdamage Growth in a 3D Isotropic

Solid

In this section, the previously outlined work potential theory, Schapery the-

ory (ST), will be specified for a 3D, isotropic solid exhibiting microdamage growth

(3DST). As in ST, it is assumed in 3DST that the secant properties of the dam-

aged material are related to the ISVs through a set of microdamage functions. Three

functions are needed to characterize the material: normal tensile response function

eT
S (WS), normal compressive response function eC

S (WS), and shear response func-

tion gS(WS). Although there are only three microdamage functions, damage evolves

through six different ISVs associated with the six, generally anisotropic moduli.

WS = S̃1 + S̃2 + S̃3 + S̃4 + S̃5 + S̃6 (A.1)

Even though all Young’s moduli, and all shear moduli, depend on the same normal,

or shear, microdamage functions, the arguments of those functions are different for

each moduli

E11 = E0e
n
S(S̃1) G23 = G0gS(S̃4)

E22 = E0e
n
S(S̃2) G13 = G0gS(S̃5)

E33 = E0e
n
S(S̃3) G12 = G0gS(S̃6)

(A.2)

where n is either tension (T ) or compression (C). If all six ISVs were not indepen-

dent, then damage growth would be independent of direction, and thus, would be

more representative of spherical void growth, than microcrack growth. Utilizing the

definition of the six state variables in the evolution equations, Equations (2.3) and
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(2.4) yields six evolution equations for a 3D solid.

∂WT

∂S̃i

= 0, i = 1 . . . 6 (A.3)

S̃i ≥ 0, i = 1 . . . 6 (A.4)

A.1.2 Reduction to a Single ISV Using Damage Directionality

The 3DST evolution equations presented in Equation (A.3) involve the solution

of six equations for six ISVs. In a computational setting, where these evolution

equations would needed to be solved a multitude of times, the solution process can

be cumbersome. Here, the notion of directional damage and crack orientation will be

used to reduce the number of independent ISVs to one, thus significantly reducing

the computational intensity of the formulation.

It is assumed that microcracks grow in the material such that the crack surface

normal is parallel to the direction of maximum principal strain p. Figure A.1 shows

an array of microcracks in a material oriented with the principal strains (ε1 ≥ ε2).

The components of the maximum principal strain vector in the basis frame are:

p =





p1

p2

p3





(A.5)
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Using the components of p, the six ISVs S̃i can be related to a single ISV S,





S̃1

S̃2

S̃3

S̃4

S̃5

S̃6





=





p2
1

p2
2

p2
3

p2
2 + p2

3

p2
1 + p2

3

p2
1 + p2

2





S

3
(A.6)

where S is a scalar measure of the total energy dissipated through all the directional

damage variables S̃i. Thus (and from Equation (A.6)),

6∑
i=1

S̃i = S (A.7)

The vector on the right-hand side of Equation (A.6) was postulated such that the nor-

mal damage components (S̃1, S̃2, and S̃3) only evolve if the maximum principal strain

contains components that lie in the i-direction, and the shear damage components

(S̃4, S̃5, and S̃6) only evolve if the maximum principal strain contains components that

lie in the plane on which the shear modulus, associated the evolving shear damage

component, operates. Note that no damage will accrue in direction i if pi = 0; there-

fore, the presence of microcracks oriented such that the normals to the crack faces

are perpendicular to i will not affect the stiffness in the i-direction. The postulation

of Equation (A.6) reduces Equation (A.1) to a function of a single ISV.

WS = S (A.8)

Utilizing Equations (2.1) and (A.9) in Equation (2.3) yields a single evolution
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equation for S.

∂W

∂S
= −1 (A.9)

Once S is determined Equation (A.7) can be used, along with p, to determine S̃i.

Note that Equation (A.7) cannot be used to reduce Equation (A.4) to a single expres-

sion; thus, inadmissability of healing must be enforced for each of the original ISVs

individually.

The elastic strain energy density function can be defined.

W =
1

2

(
C11ε

2
11 + C22ε

2
22 + C33ε

2
33 + C44γ

2
23 + C55γ

2
13 + C66γ

2
12

)

+ C12ε11ε22 + C13ε11ε33 + C23ε22ε33

(A.10)

Where Cij are the orthotropic stiffness constants which can be represented with the

moduli given in Equation (A.2) [Jones (1999)]. The elastic stiffness tensor is or-

thotropic because microdamage can induce orthotropy; therefore, isotropy cannot be

assumed. Substituting the 3D, orthotropic definition of W into Equation (A.9) yields

the evolution equation that must be solved for the ISV S,

1

2

(
ε2
11

∂C11

∂S
+ ε2

22

∂C22

∂S
+ ε2

33

∂C33

∂S
γ2

23

∂C44

∂S
+ γ2

13

∂C55

∂S
+ γ2

12

∂C66

∂S

)

+ ε11ε22
∂C12

∂S
+ ε11ε33

∂C13

∂S
+ ε22ε33

∂C23

∂S
+ 1 = 0

(A.11)

keeping in mind Equations (A.4). The partial derivatives in Equation (A.11) are

functions of S and the components of p given by Equations (A.2) and (A.6).
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Figure A.1: Array of microcracks in material element oriented with principal strain
frame.
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APPENDIX B

Cohesive Zone-Based Debonding in the

Generalized Method of Cells

B.1 Formulation of Cohesive Zone-Based Interfacial Debond-

ing

B.1.1 Displacement Continuity Conditions

The generalized method of cells (GMC) employs displacement and traction conti-

nuity at the boundaries of all subcells in, and the periodic boundaries of, the repeat-

ing unit cell (RUC), shown in Figure 3.2. Debonding can modeled at these interfaces

by including a displacement jump in the interfacial displacement continuity relations.

These six conditions, which admit interfacial displacement discontinuities and replace

Equations (3.22)-(3.26) and (3.28), are given by Aboudi et al. (2012)

ε̄11 =
1

d

Nα∑
α=1

(
dαε

(αβγ)
11 + [u11]

(αβγ)
)
,

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.1)
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ε̄22 =
1

h

Nα∑
α=1

(
hβε

(αβγ)
22 + [u22]

(αβγ)
)
,

α = 1, . . . , Nα

γ = 1, . . . , Nγ

(B.2)

ε̄33 =
1

`

Nα∑
α=1

(
lγε

(αβγ)
33 + [u33]

(αβγ)
)
,

α = 1, . . . , Nα

β = 1, . . . , Nβ

(B.3)

ε̄23 =
1

h`

Nβ∑

β=1

Nγ∑
γ=1

[
hβlγε

(αβγ)
23 +

1

2

(
[u23]

(αβγ) + [u32]
(αβγ)

)]
, α = 1, . . . , Nα (B.4)

ε̄13 =
1

d`

Nβ∑

β=1

Nγ∑
γ=1

[
dαlγε

(αβγ)
13 +

1

2

(
[u13]

(αβγ) + [u31]
(αβγ)

)]
, β = 1, . . . , Nβ (B.5)

ε̄12 =
1

dh

Nβ∑

β=1

Nγ∑
γ=1

[
dαhβε

(αβγ)
12 +

1

2

(
[u12]

(αβγ) + [u21]
(αβγ)

)]
, γ = 1, . . . , Nγ (B.6)

where d, h, and ` are the RUC dimensions in the x1-, x2-, and x3-directions (Figure

3.2). Similarly, dα, hβ, and lγ are the subcell dimensions and α, β, and γ are the

subcell numbers in the x1-, x2-, and x3-directions, respectively. The average, global,

tensorial strains are represented with ε̄ij, and ε
(αβγ)
ij are the strains in each subcell.

The interfacial discontinuity [uIj]
(αβγ) is the displacement jump in the j-direction

across interface with unit normal in the I-direction. Note that Equations (B.1)-(B.6)

represent the displacement continuity conditions for a triply-periodic RUC (see Figure

3.2), whereas, Equations (3.22)-(3.26) and (3.28) are for a doubly-periodic RUC (see

Figure 3.3).

B.1.2 Relationship Between Interfacial Displacement Jump and Traction

The displacement jump across the interface is related to the traction at the inter-

face through a scaling parameter, first proposed by Jones and Whittier (1967).

[uIj]
(αβγ) = R

(αβγ)
Ij σ

(αβγ)
Ij ; f

(αβγ)
DBI

≥ 1; (B.7)
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where σ
(αβγ)
Ij is the traction in subcell αβγ at interface I. Thus, Equation (B.7) is

a traction-separation law for the interfaces. Note that, Einstein notation is not be-

ing used; here, repeated indices do not indicate a summation. Interfacial debonding

is precluded (i.e. R
(αβγ)
Ij = 0, and the interface is perfectly bonded) if the value of

interfacial strength criterion f
(αβγ)
DBI

remains below unity. This strength criterion is

completely general and can involve stresses or strains. Compliance of the interface

is represented with R
(αβγ)
ij , and can take numerous forms. In the Jones and Whittier

(1967) flexible interface model, the compliance of the interface is taken to be a con-

stant. The flexible interface model was originally implemented into the method of

cells (MOC) by Aboudi (1987) and GMC by Sankurathri et al. (1996). Debonding was

restricted if the interface was subjected to compression by Achenbach and Zhu (1989).

The flexible interface model was further extended by Bednarcyk and Arnold (2000,

2002a); Bednarcyk et al. (2004) with the evolving compliant interface (ECI) model.

The ECI model utilized a time dependent compliance, altering Equation (B.7).

[uIj]
(αβγ) = R

(αβγ)
Ij (t) σ

(αβγ)
Ij ; f

(αβγ)
DBI

≥ 1; (B.8)

where the interfacial compliance is explicitly related to time.

R
(αβγ)
Ij (t) = Λ

(αβγ)
Ij

[
exp

(
t− tDB

B
(αβγ)
Ij

)
− 1

]
; t ≥ tDB, (B.9)

where tDB is the time at which debonding occurs, and Λ
(αβγ)
Ij and B

(αβγ)
Ij are param-

eters that characterize the relationship between the evolving interfacial compliance

and time. The ECI model was used in GMC and the high-fidelity generalized method

of cells (HFGMC) to study fiber-matrix debonding in titanium matrix composites.

Ranatunga et al. (2009, 2010a) used ECI and GMC in a multiscale framework to

investigate delamination and in-plane fracture, and compared the results to DCZM

finite elements, the virtual crack closure technique (VCCT), and the extended finite
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element method (XFEM). Pineda et al. (2010a) used ECI to model matrix cracking

in very simple GMC RUCs.

The current work focuses on using the Jones and Whittier traction-separation

relationship to model fracture within polymer-matrix composite (PMC) RUCs. Frac-

ture can occur not only at a fiber-matrix interface, but also within the bulk matrix

surrounding the fibers. To incorporate the physics of fracture, by relating the evo-

lution of the interfacial compliance to measurable quantities using a cohesive zone

model, the form of the interfacial compliance is such that the incremental change in

the interfacial compliance takes the form

dR
(αβγ)
Ij =

A
(αβγ)
Ij

G(αβγ)
CIj

− G(αβγ)
Ij

,

dR
(αβγ)
Ij = 0, if dG(αβγ)

Ij < 0

dR
(αβγ)
Ij = 0,

if j=I, and

σ
(αβγ)
Ij < 0

(B.10)

where G(αβγ)
Ij is the strain energy release rate (SERR) of the interface,

G(αβγ)
Ij =

∫
σ

(αβγ)
Ij d [uIj]

(αβγ), no sum on I, j (B.11)

If I = j the interface undergoes mode I (normal) fracture. Under mode I conditions, if

the traction is compressive, the interface is treated as perfectly bonded, and the crack

cannot grow in mode I. If I 6= j then the interface is subjected to mode II (shearing) or

mode III (twisting) fracture [Sanford (2002)]. See Figure B.1 for diagrams exhibiting

the three modes of fracture. Additionally, if the interface unloads (dG(αβγ)
Ij < 0),

it unloads along the secant stiffness from the previous increment; thus, there is no

change in the compliance. ? introduced cohesive-zone based debonding to MOC by
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including five additional subcells between the original fiber-matrix and matrix-matrix

interfaces. The micromechanics equations were reformulated incrementally, and the

behavior of the five additional subcells was governed by traction-separation laws.

In Equation (B.10), G(αβγ)
CIj

is the critical fracture energy of the debonding interface.

As G(αβγ)
Ij approaches G(αβγ)

CIj
, R

(αβγ)
Ij →∞, and the interface cannot carry any traction.

Thus, the form of Equation (B.10) ensures that the area under the traction versus

separation curve is always equal to the critical fracture energy upon complete fracture

of the interface (i.e., the interface loses all load carrying capability), as is common

with tractions-separation laws (TSLs) used in discrete cohesive zone models (DCZMs)

[Xie et al. (2006); Xie and Waas (2006); Gustafson and Waas (2009)], and nodally

enriched finite elements (FEs) [Garikipati (1996); Rudraraju et al. (2008, 2009)]. A

triangular TSL, typically used in FE applications, is displayed in Figure B.1; however,

the TSL can take any applicable shape as long as the area under the curve is equal

to the critical fracture energy [Gustafson and Waas (2008, 2009); Wang (2010)].

Crack growth initiates when the interfacial traction exceeds strength σ
(αβγ)
CIj

(or σC

in Figure B.1), or when the interfacial tractions satisfy some mixed-mode initiation

criterion. If the interface subsequently unloads along the arrowed line in Figure

B.1, then the purple area under the TSL curve is the SERR. The total area under

the curve (both the purple and orange areas) is the critical fracture energy. If the

interface is reloaded and the displacement discontinuity across the interfaces reaches

δf , the interface has completely fractured, the traction at the interface is zero, and the

SERR is equal to the critical fracture energy. In Equation (B.10), the denominator

preserves the critical fracture energy, but the parameter A
(αβγ)
Ij controls the shape of

the TSL. This parameter can be calculated to ensure the slope of the TSL is equal

to K
(αβγ)
TIj

, or KT in Figure B.1, and the law is triangular.

If it is desirable to capture micromechanical crack growth in a composite RUC, all

fiber-matrix and matrix-matrix interfaces can be modeled using cohesive zones with
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the form of the interfacial compliance increment given by Equation (B.10). Addition-

ally, the fracture parameters (G(αβγ)
CIj

, σ
(αβγ)
CIj

) used at the different interfaces need not

be the same. Furthermore, crack evolution in bulk, composite materials, or mono-

lithic materials, can be investigated by using an RUC containing a single constituent,

where every subcell has properties equal to the homogenized properties of the com-

posite, or the monolithic material. The fracture properties of the RUC interfaces

will be equal to the fracture properties of the bulk material. This type of analysis is

suitable for investigating interlaminar, as well as through-thickness, crack growth. A

demonstration of crack growth in the two different types of RUCs is shown in Figure

B.2.

B.1.3 Mixed-Mode Crack Initiation and Fracture

Interfacial debonding does not occur (the interfacial compliance is zero and the

interface is perfectly bonded) until a damage initiation criterion is satisfied; f
(αβγ)
DBI

≥ 1

at interface I. The criterion can be a simple, maximum stress criterion

f
(αβγ)
DBI

=





∣∣∣σ(αβγ)
Ij

∣∣∣
σ

(αβγ)
CIj

if j 6= I, or if j = I and σ
(αβγ)
Ij ≥ 0

0 if j = I and σ
(αβγ)
Ij < 0

(B.12)

where σ
(αβγ)
CIj

is strength of interface I in the j-direction. Equation (B.12) must be

satisfied for a particular mode if debonding is to occur in that mode, and j is the

direction associated with the crack tip opening displacement needed to advance a

crack under that mode. If j = I, the interface is subjected to mode I traction, and

σ
(αβγ)
Ij must be greater than zero for crack initiation. If σ

(αβγ)
Ij < 0 the interface is

under compressions, and the crack cannot advance.

One disadvantage of using a maximum value initiation criterion, such as Equation
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(B.12), is that debonding can initiate in one mode but the interface remains perfectly

bonded in the other two modes, which is not consistent with the physics of fracture.

A quadratic, stress criterion can be used to obtain more realistic crack initiation

conditions.

f
(αβγ)
DBI

=




〈
σ

(αβγ)
Ii

〉

σ
(αβγ)
CIi




2

+

(
σ

(αβγ)
Ij

σ
(αβγ)
CIj

)2

+

(
σ

(αβγ)
Ik

σ
(αβγ)
CIk

)2

,

i = I, j 6= i, and k 6= i 6= j

(B.13)

where i is the direction associated with normal mode I fracture along interface I, and

j and k are the directions corresponding to the two shearing modes (modes II and

III). Note that the mode I stress σ
(αβγ)
iI is contained in Macaulay brackets signifying

that only tensile, mode I stresses contribute to crack initiation. If the interface is

subjected to mode I compression, mode I cracks cannot nucleate.

In addition to interfacial crack initiation, crack evolution must also be defined.

Similar to Equation (B.12), an uncoupled damage evolution law can be used based

on the SERR and critical fracture energy.

G(αβγ)
Ij

G(αβγ)
CIj

= 1 (B.14)

When Equation (B.14) is satisfied, the interface has fractured completely in the mode

associated with the displacement in the j-direction, and the traction σ
(αβγ)
Ij is equal

to zero.

Equation (B.14) does not introduce energy dissipation interaction between the

different modes. Therefore, it is common practice to use a mixed-mode, energetic,

power law for fracture evolution,

(
G(αβγ)

Ii

G(αβγ)
CIi

)m

+

(
G(αβγ)

Ij

G(αβγ)
CIj

)n

+

(
G(αβγ)

Ik

G(αβγ)
CIk

)p

= 1 (B.15)
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where m, n, and p are experimentally correlated parameters, for a given material

system [Johnson and Mangalgiri (1985)]. When Equation (B.15) is satisfied, the

interface has fractured completely in all three modes, and the tractions associated

with those modes are zero. It should be noted that Equations (B.13) and (B.15)

are simply empirical fits to experimental observations. To arrive at true mixed-mode

initiation and evolution conditions, atomistic investigations into fracture are required.

B.1.4 Introducing Cohesive Zone-Based Interfacial Debonding into GMC

The traction-separation relationships, Equation (B.8), can be used in the displace-

ment continuity equations, Equations (B.1)-(B.6).

ε̄11 =
1

d

Nα∑
α=1

(
dαε

(αβγ)
11 + R

(αβγ)
11 σ

(αβγ)
11

)
,

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.16)

ε̄22 =
1

h

Nβ∑

β=1

(
hβε

(αβγ)
22 + R

(αβγ)
22 σ

(αβγ)
22

)
,

α = 1, . . . , Nα

γ = 1, . . . , Nγ

(B.17)

ε̄33 =
1

`

Nγ∑
γ=1

(
lγε

(αβγ)
33 + R

(αβγ)
33 σ

(αβγ)
33

)
,

α = 1, . . . , Nα

β = 1, . . . , Nβ

(B.18)

ε̄23 =
1

h`

Nβ∑

β=1

Nγ∑
γ=1

[
hβlγε

(αβγ)
23 +

1

2

(
lγR

(αβγ)
23 σ

(αβγ)
23 + hβR

(αβγ)
32 σ

(αβγ)
32

)]
,

α = 1, . . . , Nα

(B.19)

ε̄13 =
1

d`

Nα∑
α=1

Nγ∑
γ=1

[
dαlγε

(αβγ)
13 +

1

2

(
lγR

(αβγ)
13 σ

(αβγ)
13 + dαR

(αβγ)
31 σ

(αβγ)
31

)]
,

β = 1, . . . , Nβ

(B.20)

ε̄12 =
1

dh

Nα∑
α=1

Nβ∑

β=1

[
dαhβε

(αβγ)
12 +

1

2

(
hβR

(αβγ)
12 σ

(αβγ)
12 + dαR

(αβγ)
21 σ

(αβγ)
21

)]
,

γ = 1, . . . , Nγ

(B.21)
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Written in matrix form, the displacement continuity equations become

(AG + AR) εs = Jε̄ (B.22)

where AG and J remain unchanged from the GMC formulation with perfect bonding,

and AR contains the debonding information. If there is no debonding, AR = 0. Local,

subcell strains are contained in the vector εs.

εs =
{

ε(111), . . . , ε(NαNβNγ)
}

(B.23)

where

ε̄(αβγ) =
{

ε
(αβγ)
11 , ε

(αβγ)
22 , ε

(αβγ)
33 , 2ε

(αβγ)
23 , 2ε

(αβγ)
13 , 2ε

(αβγ)
12

}
(B.24)

The vector ε̄ houses the average, global strains.

ε̄ = {ε̄11, ε̄22, ε̄33, 2ε̄23, 2ε̄13, 2ε̄12} (B.25)

After including the traction continuity conditions, the overall relationship between

the global strains and the local, subcell strains becomes

Ãεs = Kε̄ (B.26)

where

Ã =




AM

AG + AR


 (B.27)

and

K =




0

J


 (B.28)
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Equation (B.26) can be solved for the subcell strains

εs = Aε̄ (B.29)

where A is the strain concentration matrix, containing the interfacial compliances,

given by

A = Ã-1K (B.30)

B.1.5 Solving for the Interfacial Compliance Scaling Parameter

The shape of the TSL curve at a debonding interface is controlled by the scal-

ing parameter A
(αβγ)
Ij in the interfacial compliance evolution relationship, Equation

(B.10). To obtain a triangular TSL, the appropriate A
(αβγ)
Ij can be determined from

the traction continuity equations. It should be noted that, for a given strain incre-

ment, A
(αβγ)
Ij can remain constant due to the form of Equation (B.7), which ensures

that the area under the TSL is equal to the critical fracture energy. Upon debonding

initiation, a particular A
(αβγ)
Ij will results in an initial interfacial compliance increment

dR
(αβγ)
0Ij

=
A

(αβγ)
Ij

G(αβγ)
CIj

(B.31)

noting that, initially, there is no displacement jump across the interface; therefore,

[uIj]
(αβγ) = 0, and thus, G(αβγ)

Ij = 0. If this interfacial compliance increment produces

subsequent traction and separation increments,

dσ
(αβγ)
Ij

d [uIj]
(αβγ)

= K
(αβγ)
TIj

(B.32)
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where K
(αβγ)
TIj

is the tangent slope of the TSL. If

K
(αβγ)
TIj

= −
σ

(αβγ)
CIj

2

2G(αβγ)
CIj

(B.33)

then the shape of the TSL is triangular because Equation (B.32) is equal to the slope of

the hypotenuse of a right triangle with an area of G(αβγ)
CIj

. The form of Equation (B.10)

requires that the area under the TSL is equal to the critical fracture energy. Therefore,

if the initial slope of the TSL is given by Equation (B.33), K
(αβγ)
TIj

will not need to

change for the area under the TSL to be equal to G(αβγ)
CIj

. If A
(αβγ)
Ij is chosen such that

the initial traction and separation increments do not satisfy Equation (B.33), then

the slope of the TSL will adjust accordingly as debonding evolves, yielding a TSL

that is not triangular in shape, but still has an area that is equal to G(αβγ)
CIj

.

For normal debonding in the x1-direction at interfaces with unit normals in the

x1-direction, Equation (B.16) can be re-written in incremental form. To solve for

A
(αβγ)
11 , the incremental form of Equation (B.16) only needs to be solved upon initial

debonding, therefore R
(αβγ)
11 = 0.

dε̄11 =
1

d̄

Nα∑
α=1

(
dαdε

(αβγ)
11 + dR

(αβγ)
011

σ
(αβγ)
11

)
,

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.34)

where, for notational clarity, d̄ is now the RUC dimension in the x1-direction, and d

represents an increment in the adjacent variable. The local subcell strain increments

can are related to the local subcell stress increments through the subcell constitutive

properties.

dε
(αβγ)
11 = S

(αβγ)
11 dσ

(αβγ)
11 + S

(αβγ)
12 dσ

(αβγ)
22 + S

(αβγ)
13 dσ

(αβγ)
33 ,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.35)
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Equation (B.35) assumes that the elastic properties of the subcells do not change

due to strain induced damage (dS
(αβγ)
Ij = 0). If subcell damage is desired, the strain

increment (Equation (B.35) can be recalculated assuming dS
(αβγ)
Ij 6= 0. Substituting

Equation (B.35) into Equation (B.34) and introducing a new global strain measure

dε̂11 = dε̄11 − 1

d̄

Nα∑
α=1

dα

(
S

(αβγ)
12 dσ

(αβγ)
22 + S

(αβγ)
13 dσ

(αβγ)
33

)
,

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.36)

yields

dε̂11 =
1

d̄

Nα∑
α=1

(
dαS

(αβγ)
11 dσ

(αβγ)
11 + dR

(αβγ)
011

σ
(αβγ)
11

)
,

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.37)

Equation (B.37) can be utilized in Equation (B.1), and Equation (B.1) can be

differentiated with respect to dε̂11.

1 =
1

d̄

Nα∑
α=1

(
dαS

(αβγ)
11

∂σ
(αβγ)
11

∂ε̂11

+
∂ [u11]

(αβγ)

∂ε̂11

)
,

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.38)

Using the chain rule,

∂σ
(αβγ)
11

∂ε̂11

=
∂σ

(αβγ)
11

∂ [u11]
(αβγ)

∂ [u11]
(αβγ)

∂ε̂11

,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.39)

and realizing Equation(B.32), yields

∂ [u11]
(αβγ)

∂ε̂11

=
1

K
(αβγ)
T11

∂σ
(αβγ)
11

∂ε̂11

,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.40)
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If subcell (αβγ) is not debonding at interface I = 1 in the x1-direction the interface

is perfectly bonded; therefore K
(αβγ)
T11

= ∞ and ∂ [u11]
(αβγ) /∂ε̂11 = 0. Due to the

traction continuity conditions and the linear displacement fields used in GMC, for a

given β and γ, σ
(αβγ)
11 are equal for any α; thus, σ

(αβγ)
11 is independent of α.

σ
(αβγ)
11 = σ

(βγ)
11 ,

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.41)

Substituting Equations (B.40) and (B.41) into Equation (B.38), results in

∂σ
(βγ)
11

∂ε̂11

=

[
1

d̄

Nα∑
α=1

(
dαS

(αβγ)
11 +

1

K
(αβγ)
T11

)]−1

,
β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.42)

Equation (B.42) is similar to the expression for the length of the cohesive zone

[Turon et al. (2006)]:

lcz = ME
GC

σ2
C

(B.43)

where lcz is the length of the cohesive zone in front of the crack tip, E is the stiffness

of the material surrounding the crack, GC is the critical fracture energy, σC is the

cohesive strength, and M is a scaling parameter close to unity. The length associated

with Equation (B.42) is the dimension of the RUC perpendicular to any cohesive

zones, for a given β, and γ. Equation (B.42) implies that this dimension is related to

the length of the cohesive zone in front of the crack tip. Therefore, the dimension of

the RUC perpendicular to the length of the crack must be approximately less than

twice the length of the cohesive zone.

Equations (B.31) and (B.42) can be used in Equation (??) to determine A
(αβγ)
11 in
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terms known quantities.

σ
(βγ)
11

d̄

Nα∑
α=1

A
(αβγ)
11

G(αβγ)
C11

=

dε̂11

Nα∑
α=1

1

K
(αβγ)
T11

Nα∑
α=1

(
dαS

(αβγ)
11 +

1

K
(αβγ)
T11

) ,
β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.44)

However, additional relationships must be established because Equation (B.44) rep-

resents Nβ̃×Nγ̃ equation for Nα̃×Nβ̃×Nγ̃ unknown values of A
(αβγ)
11 , where Nα̃, Nβ̃,

and Nγ̃ are the number of debonded subcells in each direction. Utilizing Equation

(B.41) and the chain rule gives

∂σ
(βγ)
11

∂ [u11]
(αβγ)

d [u11]
(αβγ) =

∂σ
(βγ)
11

∂ [u11]
(α̂βγ)

d [u11]
(α̂βγ) ,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

α̂ 6= α

(B.45)

Equations (B.32) and (B.33) can be substituted into Equation (B.45) resulting in

K
(αβγ)
T11

d [u11]
(αβγ) = K

(α̂βγ)
T11

d [u11]
(α̂βγ) ,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

α̂ 6= α

(B.46)
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Taking the increment of Equation (B.7) gives a new form of Equation (B.46)

K
(αβγ)
T11

(
R

(αβγ)
11 dσ

(αβγ)
11 + dR

(αβγ)
11 σ

(αβγ)
11

)
= K

(α̂βγ)
T11

(
R

(α̂βγ)
11 dσ

(α̂βγ)
11 + dR

(α̂βγ)
11 σ

(α̂βγ)
11

)
,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

α̂ 6= α

(B.47)

Since A
(αβγ)
11 only needs to be determined upon initial debonding, Equation (B.47)

becomes (making use of Equation (B.41))

K
(αβγ)
T11

G(αβγ)
C11

A
(αβγ)
11 =

K
(α̂βγ)
T11

G(α̂βγ)
C11

A
(α̂βγ)
11 ,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

α̂ 6= α

(B.48)

which relates each all A
(αβγ)
11 for a given β and γ.

Using Equation (B.48) in Equation (B.44) gives Nα × Nβ × Nγ equations for

determining A
(αβγ)
11 .

A
(αβγ)
11 =

d̄G(αβγ)
C11

dε̂11

σ
(βγ)
11 K

(αβγ)
T11

Nα∑

α̂=1

(
dα̂S

(α̂βγ)
11 +

1

K
(α̂βγ)
T11

) ,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.49)

Note that if I = 1 of subcell (αβγ) is bonded in mode I, K
(αβγ)
T11

= ∞, and therefore,

A
(αβγ)
11 = 0. If the denominator of Equation (B.49) is less than zero, the increment in

the interfacial compliance will be negative, resulting in a stiffer interface as debond-

ing evolves. Additionally, as the denominator of Equation (B.49) approaches zero,
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dR
(αβγ)
11 →∞. Both of these situations result in non-physical values for dR

(αβγ)
11 ; thus,

the denominator of Equation (B.49) must remain well above zero. This imposes a

restriction on the subcell and overall RUC dimensions for given TSL slope, fracture

and elastic properties. Conversely, for a particular geometry, there is a limit on the

steepness of the TSL, potentially making it impossible for the area under the curve

to be equal to the critical fracture energy.

Nα∑
α=1

dαS
(αβγ)
11 << −

Nα∑
α=1

1

K
(αβγ)
T11

,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.50)

If the traction separation law is triangular, the slope is dictated by Equation (B.32)

and Equations (B.49) and (B.50) become

A
(αβγ)
11 =

2d̄G(αβγ)
C11

2
dε̂11

σ
(βγ)
11 σ

(αβγ)
C11

2
Nα∑

α̂=1


2G(α̂βγ)

C11

σ
(α̂βγ)
C11

2 − dα̂S
(α̂βγ)
11




,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.51)

and

Nα∑
α=1

dαS
(αβγ)
11 <<

Nα∑
α=1

2G(αβγ)
C11

σ
(αβγ)
C11

2 ,
β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.52)

If debonding has not initiated in subcell (αβγ) on interface 1 in the x1-direction,

A
(αβγ)
11 = 0. Also, only σ

(αβγ)
C11

and G(αβγ)
C11

of debonded interfaces contribute to Equa-

tions (B.51) and (B.52).

A similar procedure can be used to formulate A
(αβγ)
Ij for the shear debonding modes

(j 6= I). If interfaces I = 1 and I = 2 are subjected to shear tractions σ
(αβγ)
12 and

σ
(αβγ)
21 , respectively, then upon initial debonding the incremental form of Equation
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(B.21) is

dε̄12 =
1

d̄h

Nα∑
α=1

Nβ∑

β=1

[
dαhβdε

(αβγ)
12 +

1

2

(
hβdR

(αβγ)
012

σ
(αβγ)
12 + dαdR

(αβγ)
021

σ
(αβγ)
21

)]
,

γ = 1, . . . , Nγ

(B.53)

The constitutive equations of each subcell yield

dε
(αβγ)
12 =

1

2
S

(αβγ)
66 dσ

(αβγ)
12

dε
(αβγ)
21 =

1

2
S

(αβγ)
66 dσ

(αβγ)
21

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.54)

assuming the elastic compliance of the subcell does not change. Using the constitutive

relationship Equation (B.54) in Equation (B.53) gives

dε̄12 =
1

d̄h

Nα∑
α=1

Nβ∑

β=1

[
1

2
dαhβdS

(αβγ)
66 σ

(αβγ)
12

+
1

2

(
hβdR

(αβγ)
012

σ
(αβγ)
12 + dαdR

(αβγ)
021

σ
(αβγ)
21

)]
, γ = 1, . . . , Nγ

(B.55)

Using the derivative chain rule for dσ
(αβγ)
12

dε̄12 =
1

d̄h

Nα∑
α=1

Nβ∑

β=1

[
1

2
dαhβdS

(αβγ)
66

∂σ
(αβγ)
12

∂ε̄12

dε̄12

+
1

2

(
hβdR

(αβγ)
012

σ
(αβγ)
12 + dαdR

(αβγ)
021

σ
(αβγ)
21

)]
, γ = 1, . . . , Nγ

(B.56)

Differentiating Equation (B.6) with respect to ε̄12 will result in an equation that can
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be solved for ∂σ
(αβγ)
12 /∂ε̄12,

dε̄12 =
1

d̄h

Nα∑
α=1

Nβ∑

β=1

[
1

2
dαhβdS

(αβγ)
66

∂σ
(αβγ)
12

∂ε̄12

dε̄12

+
1

2

(
hβ

∂ [u12]
(αβγ)

∂ε̄12

dε̄12 +
∂ [u21]

(αβγ)

∂ε̄21

dε̄21

)]
, γ = 1, . . . , Nγ

(B.57)

noting that

∂σ
(αβγ)
12

∂ε̄12

=
∂σ

(αβγ)
12

∂ [u12]
(αβγ)

∂ [u12]
(αβγ)

∂ε̄12

∂σ
(αβγ)
21

∂ε̄21

=
∂σ

(αβγ)
21

∂ [u21]
(αβγ)

∂ [u21]
(αβγ)

∂ε̄21

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.58)

which leads to

∂ [u12]
(αβγ)

∂ε̄12

=
1

K
(αβγ)
T12

∂σ
(αβγ)
12

∂ε̄12

∂ [u21]
(αβγ)

∂ε̄12

=
1

K
(αβγ)
T21

∂σ
(αβγ)
21

∂ε̄21

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.59)

where K
(αβγ)
T12

is the tangent slope of the traction σ
(αβγ)
12 , on interface I = 1, versus

the displacement discontinuity in x2-direction, and K
(αβγ)
T21

is the slope of traction

σ
(αβγ)
21 , on interface I = 2, versus the displacement discontinuity in the x1-direction.

Additionally, because of traction continuity conditions and the linear displacement

fields used in GMC, σ
(αβγ)
12 and σ

(αβγ)
21 are equal for all α and β, for a given γ.

σ
(αβγ)
21 = σ

(αβγ)
12 = σ

(γ)
12 , γ = 1, . . . , Nγ (B.60)
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Utilizing Equations (B.59) and (B.60) in Equation (B.57) yields

∂σ
(γ)
12

∂ε̄12

=


 1

d̄h

Nα∑
α=1

Nβ∑

β=1

(
hβlγS

(αβγ)
66 +

hβ

K
(αβγ)
T12

+
dα

K
(αβγ)
T21

)

−1

, γ = 1, . . . , Nγ (B.61)

Substituting Equations (B.31) and (B.61) into Equation (B.56), and making use

of Equation (B.60), results in a set of expressions for A
(αβγ)
12 .

σ
(γ)
12

d̄h

Nα∑
α=1

Nβ∑

β=1

[
1

2

(
A

(αβγ)
12

G(αβγ)
C12

+
A

(αβγ)
21

G(αβγ)
C21

)]
=

Nα∑
α=1

Nβ∑

β=1

(
hβ

K
(αβγ)
T12

+
dα

K
(αβγ)
T21

)

Nα∑
α=1

Nβ∑

β=1

(
dαhβS

(αβγ)
66 +

hβ

K
(αβγ)
T12

+
dα

K
(αβγ)
T21

) ,

γ = 1, . . . , Nγ (B.62)

Equation (B.62) contains Nγ relationships for Nα × Nβ × Nγ unknown values of

A
(αβγ)
12 and A

(αβγ)
21 ; therefore, additional equations must be established relating the

scaling parameters for different α and β. Equation (B.60) can be used, along with

the chain rule and a procedure similar to that used to determine Equation (B.41), to

give

K
(αβγ)
T12

G(αβγ)
C12

A
(αβγ)
12 =

K
(α̂β̂γ)
T12

G(α̂β̂γ)
C12

A
(α̂β̂γ)
12 ,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

α̂ 6= α

β̂ 6= β

(B.63)
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Similarly, Equation (B.60) can be manipulated

∂σ
(γ)
12

∂ [u12]
(αβγ)

d [u12]
(αβγ) =

∂σ
(γ)
12

∂ [u21]
(αβγ)

d [u21]
(αβγ) ,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.64)

to yield

K
(αβγ)
T12

G(αβγ)
C12

A
(αβγ)
12 =

K
(αβγ)
T21

G(αβγ)
C21

A
(αβγ)
21 , γ = 1, . . . , Nγ (B.65)

Equations (B.65) and (B.62) can be substituted in to Equation (B.62),leading to

an equation for each shear scaling parameter A
(αβγ)
12 and A

(αβγ)
21 for all α, β, and γ.

A
(αβγ)
12 =

2d̄hG(αβγ)
C12

dε̄12

σ
(γ)
12 K

(αβγ)
T12

Nα∑

α̂=1

Nβ∑

β̂=1


dα̂hβ̂S

(α̂β̂γ)
66 +

hβ̂

K
(α̂β̂γ)
T12

+
dα̂

K
(α̂β̂γ)
T21




,

γ = 1, . . . , Nγ

(B.66)

As with Equation (B.49), the denominator of Equation (B.66) must not be negative

or approach zero. This leads to a constraint on the RUC dimensions and material

parameters.

Nα∑
α=1

Nβ∑

β=1

dαhβS
(αβγ)
66 << −

Nα∑
α=1

Nβ∑

β=1

(
hβ

K
(αβγ)
T12

+
dα

K
(αβγ)
T21

)
, γ = 1, . . . , Nγ (B.67)

If the TSL is triangular, utilizing Equation (B.33), Equations (B.66) and (B.67)
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become

A
(αβγ)
12 =

4d̄hG(αβγ)
C12

2
dε̄12

σ
(γ)
12 σ

(αβγ)
C12

2
Nα∑

α̂=1

Nβ∑

β̂=1


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2hβ̂G
(α̂β̂γ)
C12

σ
(α̂β̂γ)
C12

2 +
2dα̂G(α̂β̂γ)

C21

σ
(α̂β̂γ)
C21

2 − dα̂hβ̂S
(α̂β̂γ)
66


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,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.68)

and

Nα∑
α=1

Nβ∑

β=1

dαhβS
(αβγ)
66 <<

Nα∑
α=1

Nβ∑

β=1


2hβG(αβγ)

C12

σ
(αβγ)
C12

2 +
2dαG(αβγ)

C21

σ
(αβγ)
C21

2


, γ = 1, . . . , Nγ (B.69)

Similar procedures can be used to determine A
(αβγ)
Ij for all I and j. Summarizing

these results, assuming triangular TSLs:

A
(αβγ)
11 =

2d̄G(αβγ)
C11

2
dε̂11

σ
(βγ)
11 σ

(αβγ)
C11

2
Nα∑

α̂=1


2G(α̂βγ)

C11

σ
(α̂βγ)
C11

2 − dα̂S
(α̂βγ)
11




,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.70)

A
(αβγ)
22 =

2hG(αβγ)
C22

2
dε̂22

σ
(αγ)
22 σ

(αβγ)
C22

2
Nβ∑

β̂=1


2G(αβ̂γ)

C22

σ
(αβ̂γ)
C22

2 − hβ̂S
(αβ̂γ)
22


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,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.71)
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A
(αβγ)
33 =

2`G(αβγ)
C33

2
dε̂33

σ
(αβ)
33 σ

(αβγ)
C33

2
Nγ∑
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
2G(αβγ̂)

C33

σ
(αβγ̂)
C33
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(αβγ̂)
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
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α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.72)

A
(αβγ)
23 =

4h`G(αβγ)
C23

2
dε̄23

σ
(α)
23 σ

(αβγ)
C23

2
Nβ∑
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Nγ∑
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σ
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
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α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.73)

A
(αβγ)
32 =

(
σ

(αβγ)
C23

G(αβγ)
C32

σ
(αβγ)
C32

G(αβγ)
C23

)2

A
(αβγ)
23 ,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.74)
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2
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σ
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13 σ
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σ
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2 +
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σ
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


,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.75)

A
(αβγ)
31 =

(
σ

(αβγ)
C13

G(αβγ)
C31

σ
(αβγ)
C31

G(αβγ)
C13

)2

A
(αβγ)
13 ,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.76)
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
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α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.77)

A
(αβγ)
21 =

(
σ

(αβγ)
C12

G(αβγ)
C21

σ
(αβγ)
C21

G(αβγ)
C12

)2

A
(αβγ)
12 ,

α = 1, . . . , Nα

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.78)

where

dε̂11 = dε̄11 − 1

d̄

Nα∑
α=1

dα

(
S

(αβγ)
12 dσ

(αβγ)
22 + S

(αβγ)
13 dσ

(αβγ)
33

)
,

β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.79)

dε̂22 = dε̄22 − 1

h

Nβ∑

β=1

hβ

(
S

(αβγ)
12 dσ

(αβγ)
11 + S

(αβγ)
23 dσ

(αβγ)
33

)
,

α = 1, . . . , Nα

γ = 1, . . . , Nγ

(B.80)

dε̂33 = dε̄33 − 1

`

Nγ∑
γ=1

lγ

(
S

(αβγ)
13 dσ

(αβγ)
11 + S

(αβγ)
23 dσ

(αβγ)
22

)
,

α = 1, . . . , Nα

β = 1, . . . , Nβ

(B.81)

The conditions on RUC size to obtain physically realistic solutions for dR
(αβγ)
Ij are

given by:

Nα∑
α=1

dαS
(αβγ)
11 <<

Nα∑
α=1

2G(αβγ)
C11

σ
(αβγ)
C11

2 ,
β = 1, . . . , Nβ

γ = 1, . . . , Nγ

(B.82)
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Nβ∑

β=1

hβS
(αβγ)
22 <<

Nβ∑

β=1

2G(αβγ)
C22

σ
(αβγ)
C22

2 ,
α = 1, . . . , Nα

γ = 1, . . . , Nγ

(B.83)

Nγ∑
γ=1

lγS
(αβγ)
33 <<

Nγ∑
γ=1

2G(αβγ)
C33

σ
(αβγ)
C33

2 ,
α = 1, . . . , Nα

β = 1, . . . , Nβ

(B.84)

Nβ∑

β=1

Nγ∑
γ=1

hβlγS
(αβγ)
44 <<

Nβ∑
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Nγ∑
γ=1


2lγG(αβγ)

C23

σ
(αβγ)
C23

2 +
2hβG(αβγ)

C32

σ
(αβγ)
C32

2


, α = 1, . . . , Nα (B.85)

Nα∑
α=1

Nγ∑
γ=1

dαlγS
(αβγ)
55 <<

Nα∑
α=1

Nγ∑
γ=1


2lγG(αβγ)

C13

σ
(αβγ)
C13

2 +
2hβG(αβγ)

C31

σ
(αβγ)
C31

2


, β = 1, . . . , Nβ (B.86)

Nα∑
α=1

Nβ∑

β=1

dαhβS
(αβγ)
66 <<

Nα∑
α=1

Nβ∑

β=1


2hβG(αβγ)

C12

σ
(αβγ)
C12

2 +
2dαG(αβγ)

C21

σ
(αβγ)
C21

2


, γ = 1, . . . , Nγ (B.87)

Equations (B.70)-(B.78) only need to be solved upon debonding initiation, and/or

if there is a change in the global strain rate. If Equation (B.12) or (B.13) has not

been satisfied for interface I, in the j-direction, of subcell (αβγ), then A
(αβγ)
Ij = 0.

Moreover, σ
(αβγ)
CIj

and G(αβγ)
CIj

only contribute to Equations (B.70)-(B.78) and (B.82)-

(B.87) if the corresponding interface as debonded.

B.2 Effect of RUC Size on Interfacial Debonding

B.2.1 Example: 2 x 1 RUC with One Compliant Interface

Equations (B.82)-(B.87) indicate that there is a critical RUC size; above which,

the cohesive parameters A
(αβγ)
ij will result in non-physical behavior. To demonstrate

the effect of the RUC size as it approaches the critical RUC size on the debonding

behavior at the interfaces, a simple, 2-D, 2 subcells × 1 subcell RUC will be used.

The RUC is shown in Figure B.4. Each subcell is composed of the same isotropic
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material with Young’s Modulus E. Generalized plane strain is assumed in the x1-

direction. A tensile strain ε̄ is applied in the x2-direction, and the x3 boundaries are

left stress free. Only the interface between the two subcells, with unit normal in the

x2-direction, is allowed to debond with debonding strength σC and critical SERR GC .

The dimensions of the subcells are identical, and the length of the subcells in the

x2-direction are hβ, yielding a total RUC length in the x2-direction of h = 2hβ.

Using this example, Equation (B.83) can be solved, assuming equality between

the left and right-hand sides, for the critical RUC size in the x2-direction.

hC =
2EGC

σC
2

(B.88)

The RUC size was then varied with respect to hC , and the interfacial traction versus

separation behavior was observed. Assuming a triangular traction separation law,

the SERR should be equal to GC , and the interfacial traction should be zero, when

the separation [u] = δ, where

δ =
2GC

σC

(B.89)

The SERR when [u] = δ, Gδ, has been calculated for multiple RUC sizes. Figure

B.5 displays the error between Gδ and GC as a function of the percent difference

between the RUC size h and the critical RUC size hC . From this figure it can be

determined that an RUC that is 1% smaller than hC will only yield a 1% difference

in the SERR when [u] = δ. Therefore its is recommended that RUCs, which contain

debonding interfaces, are chosen such that the left-hand sides of Equations (B.82)-

(B.87) are at least less than 1% of the right-hand sides.
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(a) Mode I (b) Mode II (c) Mode III

Figure B.1: Illustrations of three fracture modes.

Figure B.2: Triangular traction-separation law used to relate the jump in displace-
ment across an interface to the traction at the interface.

(a) Cracked composite RUC. (b) Cracked homogenized composite or
monolithic RUC.

Figure B.3: Demonstrations of using cohesive zones within GMC to model crack
growth. The red lines represent initiated cracks.
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Figure B.4: Simple 2-D example used to demonstrate effect of RUC size, with re-
spect to critical RUC size, on the resulting, interfacial traction-separation cohesive
relationship. RUC containing two identical subcells, and one cohesive interface, is
loaded perpendicular to the interface.

Figure B.5: Effect of RUC size h, with respect to the critical RUC size hC on the
SERR Gδ when the interfacial displacement reaches δ. δ is the interfacial displacement
when the SERR has reach the critical fracture energy GC for a perfectly triangular
traction-separation cohesive law.
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Simulia Corp., Providence, RI.

Aboudi, J. (1987), Damage in composite–modeling of imperfect bonding, Compos.
Sci. Technol., 28, 103–128.

Aboudi, J. (1991), Mechanics of Composite Materials: A Unified Micromechanical
Approach, Elsevier Amsterdam.

Aboudi, J. (1995), Micormechanical analysis of thermo-inelastic multiphase short-
fiber composites, Compos. Eng., 5 (7), 839–850.

Aboudi, J., M.-J. Pindera, and S. M. Arnold (2001), Linear thermoelastic higher-order
theory for periodic multiphase materials, J. Appl. Mech., 68, 697–707.

Aboudi, J., M.-J. Pindera, and S. M. Arnold (2003), Higher-order theory for periodic
multiphase materials with inelastic phases, Int. J. Plast., 19, 805–847.

Aboudi, J., S. M. Arnold, and B. A. Bednarcyk (2012), Micromechanics of Composite
Materials: A Generalized Multiscale Analysis Approach, Elsevier, in press.

Achenbach, J. D., and H. Zhu (1989), Effect of interfacial zone on mechanical behavior
of failure of fiber-reinforced composites, J. Mech. Phys. Solids, 37, 381–393.

Allen, D. H., C. E. Harris, and S. E. Groves (1987a), A thermomechanical constitutive
theory for elastic composites with distributed damage - i. theoretical development,
Int. J. Solids Struct., 23 (9), 1301–1318.

Allen, D. H., C. E. Harris, and S. E. Groves (1987b), A thermomechanical constitutive
theory for elastic composites with distributed damage - ii. aplication to matrix
cracking in laminated composites, Int. J. Solids Struct., 23 (9), 1319–1338.

Aragonés, D. (2007), Fracture micromechanisms in c/epoxy composites under trans-
verse compression, Ph.D. thesis, Universidad Politécnica de Madrid, Madrid, Spain.
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