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Abstract 
 
 

The mid-Cretaceous (~112-89 Ma) was the warmest period in the past 144 my.  

The relatively abundant terrestrial and marine geological records provide a great 

opportunity to explore the interactions among ocean, atmosphere, cryosphere and 

biosphere in a greenhouse climate. Previous climate models have not been successfully 

reproduced the mid-Cretaceous low meridional thermal gradient and extreme polar 

warmth as inferred by various proxies. In addition to this model-data discrepancy, the 

gradual warming through this interval and periodic glaciations as suggested by marine 

carbonate 18Oc are at odds with the coeval decreasing yet high atmospheric pCO2. This 

proxy-proxy inconsistence questions the driving role of atmospheric pCO2 on climate 

change. These paradoxes imply either our current understanding of greenhouse climate 

physics or our interpretations of proxy data are flawed. This dissertation integrates 

numerical climate models and geological proxy records to better constrain the mid-

Cretaceous climate change.  

Using state-of-the art general circulation models (GCMs), this dissertation 

investigates 1) mechanisms and consequences of mid-Cretaceous greenhouse climate; 

and 2) uncertainties of the marine carbonate 18Oc interpretation. More specifically, Part I 

of this dissertation explores the effects of vegetation and high atmospheric pCO2 on mid-

Cretaceous climate using a fully coupled ocean-atmosphere GCM with dynamic global 

vegetation (CCSM3) (Chapter II and III). Chapter II focuses on the final equilibrium
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 effects of vegetation and atmospheric pCO2. This chapter demonstrates that equilibrium 

mean temperatures, hydrological cycle, atmospheric and oceanic circulations are 

sensitive to the presence of vegetation and enhanced atmospheric pCO2. While both 

vegetation and high atmospheric pCO2 lead to a substantial warming and reduced 

meridional thermal gradient, they cannot sustain an Arctic climate as warm as the proxy 

estimates. Therefore, we suggest that other mechanisms in addition to high atmospheric 

pCO2 and vegetation are required to explain the mid-Cretaceous polar warmth. Chapter 

III analyzes variability of the simulated mid-Cretaceous climate with different pCO2 

levels. We find that Arctic climate variability also changes substantially with increasing 

atmospheric pCO2. The intrinsic Arctic variability with 10x pCO2 leads to an additional 

warming of ~1.5 °C in the Arctic zone and an intensification of the northern hemisphere 

meridional overturning circulation by ~50%. 

Part II of this dissertation employs a water isotope-enabled ocean-atmosphere 

GCM (GENMOM) to determine the responses of seawater 18Osw and marine carbonate 

18Oc to paleogeography, atmospheric pCO2, sea level and freshwater forcing (Chapter IV 

and V). In Chapter IV, we mainly explore how the distribution of mid-Cretaceous 

seawater 18Osw differs from modern. We find that mid-Cretaceous surface seawater 

18Osw is depleted by 1.3‰ SMOW at low-to-mid latitudes and up to 2.0‰ SMOW at 

high latitudes in comparison to modern values. Thus, oxygen isotopic paleothermometry 

using global mean seawater 18Osw or a modern latitudinal distribution might 

overestimate Cretaceous sea-surface temperatures, especially at mid-to-high latitudes. As 

a result, the mid-Cretaceous equator-to-pole marine thermal gradient was likely much 

higher than that reported in previous studies, reconciling the model-data discrepancy. 
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Based on the findings of Chapter IV, Chapter V examines whether the short- and long-

term changes in marine carbonate 18Oc through the mid-Cretaceous interval signal 

global events. Model results suggest that the variations of carbonate 18Oc preserved in 

the mid-Cretaceous marine record reflect regional oceanographic rather than global 

climate changes. We conclude that the mid-Cretaceous was neither a thermal maximum 

nor an ice age. 
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Chapter I 

Introduction 

 
The mid-Cretaceous (~112-89 Ma) was the warmest period in the past 144 my. 

Geological evidence suggests that mid-Cretaceous was about 6-14 °C warmer than 

modern (Barron, 1983) and the warming was mainly attributed to the high atmospheric 

pCO2 (Barron and Washington, 1985). Therefore, the mid-Cretaceous has long been 

considered as a good analogue to the future greenhouse climate induced by the 

anthropogenic emission of CO2. However, general circulation models (GCMs) have 

difficulty in reproducing key aspects of the proxy-inferred mid-Cretaceous climate. One 

problem directly relevant to future prediction is that GCMs are unable to simulate the 

mid-Cretaceous polar warmth and the corresponding low equator-to-pole temperature 

gradient as inferred by proxies. The implication of this model-proxy data discrepancy is 

threefold. 

 First, the discrepancy between the models and geological data may be due to 

flaws in climate models stemming from model parameterization. Following this 

possibility, the reliability of model prediction of future greenhouse climate is 

questionable. Second, the discrepancy may be caused by uncertainties in mid-Cretaceous 

boundary conditions (e.g., atmospheric pCO2, pCH4, paleogeography) that are required to 

model the past climate. Third, it is also possible that the interpretation of geological data
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 is biased by the underlying assumptions. For instance, oxygen isotope paleothermometry 

requires knowledge of the ambient seawater oxygen isotope concentration (18Osw). 

Because there are no independent proxies of 18Osw, this value is often assumed to be 

globally uniform or to have a distribution similar to modern. However, it is not clear that 

whether these assumptions are justified. In practice, 1‰ offset in seawater 18Osw could 

bias oxygen isotopic paleotemperature by ~4 °C. Recent studies also suggest that 

uncertainty in paleo-terrestrial temperatures derived from on modern correlations 

between leaf physiogonomic traits and temperatures may much larger than previously 

recognized (Little et al., 2010; Peppe et al., 2010, 2011). 

This thesis tests the latter two possibilities using state-of-the art coupled ocean-

atmosphere GCMs. Specifically, CCSM3 implemented with dynamic global vegetation 

model is employed to investigate the effects of boundary conditions. GENMOM with 

water isotope-tracking capability is used to explore the responses of marine seawater and 

carbonate 18O to global and regional forcing and thus provides constrains on the 

interpretation of marine oxygen isotopes. Both models successfully simulate modern 

surface temperatures (Fig. 1-1a) and precipitation rates beyond Intertropical Convergence 

Zone (Fig. 1-1b). 
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Figure 1-1. Zonal-average annual mean 2m air temperature (ºC) (a); and precipitation 
(mm day-1) (b) for the modern observation (black), CCSM3 modern experiment (green), 
and GENMOM modern experiment (red), respectively.  
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1.1. Mid-Cretaceous greenhouse climate inferred by proxies 

The mid-Cretaceous extreme warmth is supported by sedimentological evidence 

of ice-free polar regions, paleo-floral and faunal evidence of tropical species at high 

latitudes, leaf-margin analyses of fossil leaves, marine records of oxygen isotope 

paleothermometry, TEX86 and Ma/Ca ratio (Fig. 1-2, see below for references). To clarify, 

this dissertation is mainly interested in model-data comparison for paleotemperatures. 

Therefore, while there are proxies for other climatic fields (e.g. soil moisture, 

precipitation, pCO2 etc), these are not the focus of this dissertation, largely because these 

proxies are not as well understood and established. A model-data comparison of mid- 

Cretaceous terrestrial paleosol 18O was previously reported by Poulsen et al. (2007).  

1.1.1. Terrestrial evidence for mid-Cretaceous polar warmth 

The mid-Cretaceous high-latitude climate was suggested to be warm and balmy. 

The discovery of vertebrate assemblage from the Canadian Arctic during Turonian-

Coniacian suggests that the Arctic climates were much warmer than near freezing. Based 

on their living relatives (the crocodiles), it further indicates that the coldest monthly 

temperature was above 5 °C and mean annual temperature exceeded 14 °C (Tarduno et 

al., 1998). Fossil leaves and fruit of tropical breadfruit tree that survive between ~15-

38 °C from western Greenland Cenomanian sediments further support the view of a warm 

Arctic (Nathorst, 1890). Similarly, the occurrence of tropical flora Hausmannia in the 

Albian Alexander Island suggests that the Antarctic mean annual temperatures was in the 

range 13-27 °C (Cantrill, 1995). The more quantitative leaf-margin analysis of fossil 

leaves suggests a slightly cooler polar climate. This quantitative analysis indicates that 

mean annual temperatures in the Arctic and Antarctica regions were ~7-13 °C during 
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mid-Cretaceous (Herman and Spicer, 1996; Parrish and Spicer, 1988; Spicer and Parrish, 

1986; Spicer et al., 2002, 2008; Spicer and Corfield, 1992).  

1.1.2. Marine stable oxygen isotope evidence for mid-Cretaceous warmth 

The oxygen isotope composition of marine carbonate (18Oc) is the most direct 

and widely used proxy for mid-Cretaceous climate. The relatively abundant data provide 

a great opportunity to investigate the spatial and temporal variations of mid-Cretaceous 

climate. 

Consistent with terrestrial proxies, 18Oc of planktonic/benthic foraminifera and 

bulk carbonate suggest that the southern high latitudes (~60 °S) were warmer than 16 °C 

and up to 32 °C during Turonian (Bice et al., 2003; Clarke and Jenkyns, 1999; Huber et 

al., 1995). The subtropical North Atlantic estimates were comparable to modern tropical 

SSTs (Petrizzo et al., 2008; Voigt et al., 2003, 2004). The oxygen isotopic interpretations 

of tropical climate have changed substantially during the past 10 years. Prior to this 

century, the oxygen isotopic sea-surface paleotemperatures from the tropical Pacific and 

proto- North Atlantic were thought to be no greater than modern tropical SSTs (Huber et 

al., 1995; Price et al., 1998; Sellwood et al., 1994; Woo et al., 1992). Consequently, the 

low-to-high latitude temperature difference was suggested to be no more than 14 °C 

(Huber et al., 1995). However, the more recent studies with well-preserved "glassy" 

foraminifera demonstrate that the tropical North Atlantic were much warmer than modern 

(Bice et al., 2006; Bornemann et al., 2008; Norris et al., 2002; Wilson et al., 2002). This 

tropical warmth is also supported by the non-isotope proxies including TEX86 and Ma/Ca 

ratio (Bice et al., 2006; Forster et al., 2007; Schouten et al., 2003). As a result, the low-to-

high latitude sea-surface temperature difference increases by 50% (7 °C).  
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Figure 1-2. Proxy-inferred mid-Cretaceous surface temperatures. Grey shading denotes 
continent and light blue shading denotes ocean. Continental surface temperatures (black 
dots over gray shading) are estimated from paleo- faunal and floral evidence, and sea-
surface temperatures are inferred by marine carbonate oxygen isotope (black dots over 
light blue shading), TEX86

 (red dots) and Ma/Ca ratio (green dots). See text for 
references. 

 



7 
 

In addition to the overall warmth, the roughly simultaneous decreases in long-

term isotope record from the proto-North Atlantic, European shelf-sea, South Atlantic and 

Australia suggests that the mid-Cretaceous global warming commenced in the Albian and 

culminated during the latest Cenomanian-early Turonian (Bice et al., 2003, 2006; Clarke 

and Jenkyns, 1999; Jenkyns et al., 1994; Huber et al., 1995, 2002; Wilson et al., 2002). 

The most pronounced warming in the South Atlantic and bathyal subtropical North 

Atlantic was estimated to be more than 12 °C. 

1.1.3. Marine stable oxygen isotope as evidence for mid-Cretaceous short-term glaciation 

Despite the estimated extreme polar warmth, short-term (< 1 my) positive 

excursions in marine carbonate 18Oc and their plausible correlation with sequence 

boundaries have been considered evidence of glaciations during the mid-Cenomanian and 

mid-Turonian (Bornemann et al., 2008; Galeotti et al., 2009; Miller et al., 2003, 2005; 

Stoll and Schrag, 2000). Assuming 10 m sea-level fall equivalent to 0.075-0.11‰ 18Oc 

increase, the 0.3-0.7‰ increase in 18Oc suggests that the ice volume could be greater 

than 50% that of the modern Antarctica during the extremely warm mid-Turonian 

(Bornemann et al., 2008). 

 

1.2. Proposed mechanisms for mid-Cretaceous climate change 

1.2.1. The greenhouse climate with extreme polar warmth 

Proxy estimates and theoretical calculations suggest that atmospheric pCO2 was 

likely above 1000 ppmv and as high as ~5000 ppmv during mid-Cretaceous (Bice and 

Norris, 2002; Crowley and Berner, 2001). It is widely accepted that the general warmth 

of mid-Cretaceous was attributed to this high atmospheric pCO2 (Barron and Washington, 
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1985). However, simulations of Cretaceous climate using GCMs with high atmospheric 

CO2 predict polar temperatures that are too cool to be consistent with reasonable tropical 

temperatures (Barron et al., 1995; Poulsen et al., 1999, 2004; Spicer et al., 2008). Several 

possibilities have been proposed to reconcile this model-proxy data mismatch in polar 

warmth and the corresponding low meridional thermal gradient. 

Poulsen et al. (1999) suggest that the assumptions used to interpret oxygen 

isotopic paleothermometry contribute substantially to the model-data discrepancy. After 

taking into account the effects of paleo-habitat depth, the oxygen isotopic 

paleotemperatures are comparable to model simulated values at low latitude. In addition, 

using adjusted seawater 18Osw derived from modern salinity-seawater 18Osw relationship 

and the simulated mid-Cretaceous salinity, the equator-to-polar sea-surface temperature 

gradient decreases by ~5 °C. Nonetheless, the corrected oxygen isotopic 

paleotemperatures are still ~ 9 °C warmer than a model prediction with 4x pre-industrial 

atmospheric pCO2. 

Uncertainties in mid-Cretaceous boundary conditions have also been considered 

to contribute to the model-data mismatch. Donnadieu et al. (2006) show that the 

paleogeography evolution from the Early Cretaceous lowstand to mid-to-late Cretaceous 

highstand induces a warming of ~ 1 °C at low latitudes and > 5 °C at high latitudes in the 

absence of atmospheric pCO2 variation. However, the simulation with highstand 

paleogeography and 4x pre-industrial atmospheric pCO2 still cannot simulate enough 

polar warmth. Bice et al. (2006) suggest that high concentration of CH4 also promoted 

polar warming.  

Climate mechanisms including enhanced poleward heat transport via 
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strengthening of atmospheric or oceanic circulation (e.g. Covey and Barron, 1988; Farrel, 

1990; Korty et al., 2008), increased local radiative forcing through high-latitude cloud 

feedbacks (e.g. Abbot and Tziperman, 2008; Kump and Pollard, 2008; Sloan and Pollard, 

1998), and high-latitude forests (Deconto et al., 2000; Otto-Bliesner and Upchurch, 1997; 

Upchurch et al., 1998) have also largely reduce the discrepancy.  

However, most of these previous studies were conducted with conceptual models 

or uncoupled ocean/atmosphere GCMs, which neglected realistic ocean-atmosphere 

interactions. Furthermore, the effects of the atmospheric pCO2 at the estimated upper 

limit are less certain. 

1.2.2 The mid-Cretaceous thermal maximum and short-term glaciation 

Proxy estimates and theoretical calculations suggest that atmospheric pCO2 

decreased from the Aptian-Albian through the Turonian but remained above 1000 ppmv 

(Bice and Norris, 2002; Larson, 1991; Crowley and Berner, 2001). The high but declining 

pCO2 values are inconsistent with long-term warming and the presence of continental ice 

sheets.  

To reconcile the apparent decoupling between declining atmospheric pCO2 and 

proxy-inferred warming, a “hidden” pulse of Turonian CO2 outgassing has been proposed 

(Wilson et al., 2002). Alternatively, Poulsen et al. (2003) suggest that this discrepancy 

could be explained by a regional reorganization of the North Atlantic circulation during 

opening of the equatorial South Atlantic gateway, which led to seawater freshening and 

isotope lightening of the North Atlantic.  

The hypothesized mid-Cenomanian and Turonian continental glaciations have 

been attributed to the evolution of Earth orbital configuration (e.g. Miller et al., 2003). 
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Yet, modeling studies on ice ages report the growth of detectable continental ice sheets 

occurs only once pCO2 is lower than ~800 ppmv, regardless of the orbital configuration 

(DeConto and Pollard, 2003; Horton and Poulsen, 2009).  

Collectively, these studies suggest that a more comprehensive understanding of 

the mid-Cretaceous climate system is hampered by the inconsistencies between proxies 

and models. 

 

1.3. Outline of this dissertation 

Previous studies have demonstrated that the understanding of mid-Cretaceous 

greenhouse climate and marine oxygen isotope record has been enhanced by the 

evolution of general circulation models. This dissertation tackles the long-standing 

problems of the mid-Cretaceous stated above using state-of-the art coupled ocean-

atmosphere GCMs implemented with recently developed modules for dynamic 

vegetation and/or water isotope. This thesis attempts to resolve those issues by 

considering: 1) mechanisms and consequences of mid-Cretaceous climate change; and 2) 

the reliability of marine carbonate 18Oc interpretation. The integration of numerical 

climate modeling and geological proxy data in this dissertation provide a better constrain 

on the mid-Cretaceous climate change, proxy interpretation and climate model 

predictions. 

Chapter II explores the effects of atmospheric pCO2 and vegetation on mid-

Cretaceous climate using CCSM3 and focuses on following questions: 

1. Can high atmospheric pCO2 account for the mid-Cretaceous warmth?  
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2. Does CCSM3 incorporating dynamic vegetation ameliorate the problem of polar 

warmth?  

3. How did the mid-Cretaceous oceanic and atmospheric circulation response to 

vegetation and increased atmospheric pCO2? 

By increasing pCO2 to the upper end of the proxy-inferred range, this study 

simulates a much warmer climate in mid-Cretaceous than previous modeling studies and 

produces the maximum warmth that could be attributed to the enhanced atmospheric 

pCO2. The optional implemention of the dynamic global vegetation module in CCSM3 

provides an opportunity to explore a full range of vegetation-climate interaction (Zhou et 

al., 2011, in review).  

Due to the low resolution of mid-Cretaceous geological record, the climate 

variability on decadal-to-century time scale, an important component of the modern 

climate system, are unknown. Chapter III investigates how the Arctic variability responds 

to the atmospheric pCO2 by analyzing time series of several important climate variables 

for the CCSM3 mid-Cretaceous experiments. The findings of this chapter provide 

insights into how natural variability could influence the mid-Cretaceous and future 

climate system.  

As discussed in section 1.2, oxygen isotope paleotemperatures could be biased 

significantly by the assumptions of seawater oxygen isotope (18Osw). Chapter IV 

compares the distribution of mid-Cretaceous seawater 18Osw to that of modern using 

GENMOM with water isotope-tracking capabilities. This chapter is for the first to 

produce a relatively realistic distribution of mid-Cretaceous seawater 18Osw and 

addresses three questions: 
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1. What was the distribution of mid-Cretaceous seawater 18Osw? Was it 

substantially different than modern values?  

2. What processes controlled the distribution pattern of mid-Cretaceous seawater 

18Osw? 

3. Do model simulations support previous interpretations of the mid-Cretaceous 

marine carbonate 18Oc? Does the simulated seawater 18Osw help reconcile the 

discrepancy between the model simulated and proxy-inferred equator-to-pole 

temperature gradient? 

The temporal variations of mid-Cretaceous marine carbonate 18Oc have been 

interpreted as the result of global climate changes. Chapter V examines the response of 

marine carbonate 18Oc to changes in mid-Cretaceous atmospheric pCO2, sea level, 

paleogeography and proto-North Atlantic freshwater forcing using GENMOM. A 

comparison between the model simulated 18Oc variation and proxy record thereafter is 

used to assess whether the 18Oc variations truly reflect a global thermal maximum and 

glacial advances during the mid-Cretaceous (Zhou et al., 2008; Zhou and Poulsen, 2011, 

in review).  
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Chapter II 

Vegetation-climate interactions in the warm mid-Cretaceous 

 

Abstract 

Vegetation-climate interactions are thought to have amplified polar warmth during past 

warm periods. Here, we explore the vegetation-climate interactions in the mid-Cretaceous 

using a fully coupled ocean-atmosphere general circulation model with a dynamic 

vegetation component. We run simulations with 1x, 10x and 16x pre-industrial 

atmospheric pCO2. Results show that forests expand from mid-latitudes to high latitudes 

as CO2 increases from 1x to 10x and 16x, mainly due to the CO2-induced warming. This 

expansion of mid-to-high latitude forests are largely supported by the distribution of mid-

Cretaceous fossil woods and coal deposits. Globally, the presence of vegetation increases 

mean annual temperature and precipitation by 0.9 °C and 0.11 mm day-1 relative to bare 

ground. High-latitude warming induced by the presence of vegetation (~1.9 °C) is less 

than half of that reported in previous studies. The weaker warming here is mainly due to 

less pronounced albedo feedbacks, and to a less extent, reduced poleward heat transport 

via weakening of the meridional overturning circulation. These vegetation-induced 

climate changes largely resemble CO2-induced changes. However, model results show 

that high atmospheric pCO2 and vegetation cannot achieve the estimated polar warmth. 

We therefore conclude that other mechanisms in addition to high atmospheric pCO2 and 
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high-latitude vegetation are required to maintain the polar warmth. 

 

2.1. Introduction 

The mid-Cretaceous (~100 Ma) was a period of extreme polar warmth. 

Paleoclimate proxies indicate that mean annual temperature were as high as 20 ºC and 13 

ºC over polar ocean and land, respectively (Bice et al., 2003; Jenkyns et al., 2004; Spicer 

et al., 2002, 2008). The cause of global warmth is widely accepted to be caused by high 

atmospheric CO2 levels (Barron and Washington, 1985) resulting from volcanic 

outgassing. However, simulations of Cretaceous climate using general circulation models 

(GCMs) with high atmospheric CO2 predict polar temperatures that are too cool (Barron 

et al., 1995; Poulsen et al., 1999, 2004; Spicer et al., 2008), challenging our 

understanding of greenhouse climate.  

Several hypotheses have been proposed to reconcile this high-latitude model-data 

discrepancy including enhanced poleward heat transport via strengthening of atmospheric 

or oceanic circulation (e.g. Covey and Barron, 1988; Farrel, 1990; Korty et al., 2008), 

increased local radiative forcing through high-latitude cloud feedbacks (e.g. Abbot and 

Tziperman, 2008; Sloan and Pollard, 1998; Kump and Pollard, 2008), high atmospheric 

methane levels (Bice et al., 2006) and high-latitude forests (Deconto et al., 2000; Otto-

Bliesner and Upchurch, 1997; Upchurch et al., 1998). Of these mechanisms, only the 

existence of high-latitude forests is directly supported by observations in the geological 

records (e.g., Herman and Spicer, 1996; Falcon-Lang et al., 2001; Spicer and Parrish, 
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1986; Spicer et al., 1993).  

Previous studies have reported that the expansion of forests into polar regions in 

the Late Cretaceous may have warmed high-latitude regions by 4-7 ºC (Deconto et al., 

2000; Otto-Bliesner and Upchurch, 1997; Upchurch et al., 1998). The warming is mainly 

attributed to a reduction in surface albedo due to the masking of snow via forests and 

melting of sea ice via transfer of heat from vegetated land to ocean. The role of 

vegetation feedbacks on polar warming has not been examined for the mid-Cretaceous 

when CO2 levels were thought to have been higher. In addition, previous Late Cretaceous 

modeling studies coupled atmospheric general circulation models (AGCMs) to mixed-

layer ocean models that do not allow for dynamic ocean feedbacks. Paleoclimate 

modeling of Cenozoic intervals has demonstrated that vegetation-induced climate change 

can influence the strength of the ocean meridional overturning circulation (MOC) 

(Brovkin et al., 2002, 2009; Ganopolski et al, 1998; Lohmann et al., 2006). Of possible 

relevance to Cretaceous polar warmth, Lohmann et al. (2006) report that the prescribed 

present to warm late-Miocene vegetation changes strengthen the North Atlantic MOC by 

more than 3 times, leading to a warming over the mid-to-high latitude North Atlantic by 

up to 8 °C. Furthermore, previous studies investigated the Cretaceous vegetation-climate 

interactions using prescribed vegetation changes (Otto-Bliesner and Upchurch, 1997; 

Upchurch et al., 1998) or an equilibrium vegetation model (Deconto et al., 2000), which 

do not allow realistic transient climate-vegetation interactions as in dynamic global 

vegetation models (Peng, 2000).  
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In view of the limitations of these earlier studies, we re-examine the vegetation-

climate interactions in the Cretaceous under high atmospheric CO2 using a fully coupled 

ocean-atmosphere GCM with a dynamic vegetation component (CCSM3).  This study 

addresses three main questions: 1) Can CCSM3 simulate the mid-Cretaceous vegetation 

distribution, and if so, at what atmospheric CO2 levels? 2) How does the simulated 

vegetation affect mid-Cretaceous climate? 3) Can high atmospheric pCO2 and vegetation 

account for the extreme warmth during the mid-Cretaceous? We first examine the climate 

control on vegetation by comparing the vegetation pattern with low (1x) and high (10x 

and 16x) atmospheric CO2. We then investigate the impact of vegetation on climate by 

comparing a simulation with the maximum simulated vegetation mass to a simulation 

without vegetation. Similarly, the impact of atmospheric pCO2 is determined by 

comparing a simulation with 16x atmospheric pCO2 to a simulation with 10x atmospheric 

pCO2.  

2.2. Methods 

Cretaceous simulations were completed with NCAR’s Community Climate 

System Model version 3 (CCSM3), a fully coupled GCM with dynamic global vegetation 

(Collins et al., 2006; Levis et al., 2004). CCSM3 was run in a T31x3 configuration, with 

a T31 spectral truncation (3.75º x 3.75º), 26-level atmosphere component model 

(Community Atmospheric Model) coupled to a nominal 3º, 25-level ocean component 

model (Parallel Ocean Program).  The land surface model (Community Land Model) and 
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dynamic global vegetation model (CLM-DGVM) are set to the same horizontal 

resolution as atmosphere; the sea ice component model (Community Sea Ice Model) has 

the same horizontal resolution as the ocean. Vegetation distribution in CLM-DGVM is 

largely determined by solar radiation, air temperature, soil moisture and atmospheric CO2 

concentration (Bonan and Levis, 2006). For example, the survival and establishment of 

vegetation are constrained by bioclimatic parameters including monthly air temperature, 

growing degree days (GDD) and mean annual precipitation (Table 2-1). CLM-DGVM 

classifies vegetation as patches of plant function types (PFTs) (Levis et al., 2004). A PFT  

represents the average individual for a group of species that share similar physiological 

and morphological characteristics. All PFTs can coexist in a grid cell’s soil-covered 

portion when climate allows. CLM-DGVM calculates vegetation dynamics including 

allocation, biomass turnover, mortality, aboveground competition, fire and establishment 

yearly. Levis et al. (2004) provide a detailed description of vegetation dynamics. 

Vegetation biogeography and structure is also updated yearly. Canopy phenology is 

updated daily. The communication between CLM-DGVM and the atmosphere model is 

achieved through exchanges of energy, momentum, and moisture every 20 minutes (Levis 

et al., 2004). Our version of CLM-DGVM does not simulate transient changes in 

atmospheric CO2.  
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Table 2-1. Bioclimatic parameters for survival and establishment of plant functional type 
(PFT). Adapted from Table 1 in Bonan et al. (2003). 

PFT Tc,min 

(ºC) 

Tc,max 

(ºC) 

Ths 

(ºC)

GDD 

(ºC·day) 

P 

(mm yr-1)

Tropical broadleaf evergreen 15.5 NA NA NA 100 

Tropical broadleaf deciduous 15.5 NA NA NA 100 

Temperate needleleaf evergreen -2.0 22.0 NA 900 100 

Temperate broadleaf evergreen 3.0 18.8 NA 1200 100 

Temperate broadleaf deciduous -17.0 15.5 NA 1200 100 

Boreal needleleaf evergreen -32.5 -2.0 23 600 100 

Boreal deciduous NA -2.0 23 350 100 

C3 grasses -17.0 NA NA 0 100 

All values here are based on 20-yr running mean. Tc,min = coldest minimum monthly 
air temperature for survival, Tc, max = warmest minimum monthly air temperature for 
establishment, Ths = heat stress air temperature for survival, GDDmin = minimum 
annual growing degree-days above 5 ºC, which is the sum of all positive values of  
difference between average daily temperature and 5 ºC in one year, Pmin = minimum 
annual precipitation for establishment. The only difference between our defined PFTs 
and the ones in Bonan et al. (2003) is our treatement of Tc, max for C3 grasses, in order 
to allow C3 grasses to expand over the C4 grass range, we eliminate the maximum 
temperature threshold for C3 grasses. 
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Eight PFTs are defined in this study, with one herbaceous PFT (C3 grasses) and 

seven woody PFTs (trees) (Table 2-1). We exclude C4 grasses in this study because C4 

grasses did not become ecologically important until the Early-middle Miocene (Cerling et 

al., 1993; Jacobs et al., 1999). Though the origin of C3 grassland is no earlier than the 

Late Cretaceous (Jacobs et al., 1999), we include C3 grasses for two reasons: 1) CLM-

DGVM does not have a PFT representing shrubs, therefore, shrublands are often 

simulated as desert or grasslands (Bonan et al., 2003); and 2) the fossil record suggested a 

widespread distribution of herbaceous vegetation during the mid-Cretaceous (Spicer et 

al., 1993).  

To determine the equilibrium vegetation distribution corresponding to the mid-

Cretaceous warm climate, we conducted three simulations implementing CLM-DGVM, 

namely, 1xDGVM, 10xDGVM and 16xDGVM (Table 2-2). An additional experiment 

(10xBG) was run with land surface prescribed as bare ground. Atmospheric pCO2 

concentration was set to 1x, 10x or 16x pre-industrial levels, and physiological CO2 

concentration was set to 355 ppmv in the experiments with DGVM. 16x pre-industrial 

levels pCO2 likely falls in the upper limit of the estimated mid-Cretaceous atmospheric 

pCO2 (see summary in Bice and Norris, 2002). All experiments were run with a reduced 

solar constant (99% of modern) (Gough, 1981) and present day orbital parameters. The 

model geography and topography were based on mid-Cretaceous (100 Ma) 

reconstructions from PALEOMAP project (Scotese, 2001). Because sea level was at 

highstand, global land area is 18.6% less than present day in our model. 
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Table 2-2. Mid-Cretaceous CCSM3 experiments and global annual mean surface 
temperature (SAT) and precipitation. 
Experiment pCO2  

(ppmv) 

Vegetation Integration  

(year) 

SAT 

(ºC) 

Precipitation 

(mm day-1) 

1xDGVM 280 DGVM 2125 13.6 2.90 

10xBG 2800 Bare ground 1626 23.1 3.36 

10xDGVM 2800 DGVM 1637 24.0 3.47 

16xDGVM 4480 DGVM 1615 25.6 3.56 
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Following Poulsen et al. (2003), we applied an age-depth relationship to reconstruct 

bathymetry for the deep ocean regions with known magnetic lineations (Barron, 1987). 

Elsewhere, deep-ocean depths were set to 5300 m. River runoff is routed to the ocean via 

a river transport model (Branstetter, 2001). All experiments were initiated using zonal 

ocean temperatures and salinity from a warm Late Cretaceous simulation (Otto-Bliesner 

et al., 2002). Vegetation was initialized from a 300 year integration of a Cretaceous 

CAM3-DGVM simulation with 10x pre-industrial pCO2 levels. Levis et al. (2004) report 

that global vegetation distribution approaches equilibrium in a few hundred years in 

CLM-DGVM. Each of our Cretaceous experiments was run in excess of 1600 yrs (Table 

2-2). The linear trend for global vegetation cover is on the order of 10-3/century and is 

statistically insignificant. The drifts in simulated global mean ocean temperature over the 

last 200 years are also small (on the order of 0.1 °C/century) for all experiments.  

 

2.3. Results 

2.3.1. Response of vegetation to atmospheric pCO2  

2.3.1.1 Simulated surface temperature and precipitation 

The increase of atmospheric pCO2 leads to an increase in global annual mean 

surface temperature from 13.6 to 24.0 and 25.6 °C in the 1xDGVM, 10xDGVM and 

16xDGVM experiments, respectively (Table 2-2). Continental surface temperatures 

increase by up to ~10 °C higher at low latitudes and 29 °C at high latitudes as a result of 

increasing CO2 from 1 to 16x PAL (Fig. 2-1a). Consistent with the increase in surface 



22 
 

temperature, global annual mean precipitation increases from 2.90 mm day-1 in the 

1xDGVM experiment to 3.47 and 3.56 mm day-1 in the 10xDGVM and 16xDGVM 

experiments (Table 2-2). The increase in continental precipitation between 1xDGVM and 

16xDGVM experiments is up to 1.8 (~33%) and 1.9 (~150%) mm day-1 at low and mid-

to-high latitudes. In contrast, the continental precipitation decreases by ~0.3 mm day-1 

(~20%) in the southern subtropical latitudes (~20-30 °S) (Fig. 2-1b). 
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Figure 2-1. Zonal-average annual mean continental surface temperature (ºC) (a); and 
precipitation (mm day-1) (b) for the 1xDGVM (black dash-dot line), 10xBG ( black 
dashed line), 10xDGVM (black solid line) and 16xDGVM (black dotted line) 
experiments, respectively. 
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2.3.1.2 Simulated global vegetation distribution 

In the 1xDGVM experiment, the tropics, subtropics, mid-latitudes and high 

latitudes are dominated by evergreen trees, grasses, mixture of evergreen and deciduous 

trees and polar desert, respectively (Fig. 2-2 a-c). In the high CO2 experiments, trees 

(especially deciduous) and grasses advance into the northern high latitudes and Antarctica 

(Fig. 2-2d-i). In the northern high latitudes (60-90 °N), average fractional tree cover over 

the soil-covered land increases from 0.7% in the 1xDGVM experiment to 61% 

(10xDGVM) and 59% (16xDGVM). The change in tree cover at the southern high 

latitudes (60-90 °S) is slightly less than the northern high latitudes, increasing from 4% 

(1xDGVM) to 51% (10xDGVM) and 43% (16xDGVM). In contrast, tree cover at low 

latitudes (30 °S-30 °N) decreases from 60% (1xDGVM) to 54% (10xDGVM) and 50% 

(16xDGVM). As a result of the poleward expansion of trees and grasses, area-weighted 

global vegetation cover increases from 56% (1xDGVM) to 85% (10xDGVM and 

16xDGVM). Global net primary production (NPP), which is equal to the net gain of 

carbon through photosynthesis and respiration, is estimated to be 61.8 Pg C/yr in the 

1xDGVM experiment, comparable to observational estimates of present-day NPP 

(Schlesinger 1997). Due to the increase in global vegetation cover, NPP increases by 13.5 

PgC yr-1 (21.8%) in the 10xDGVM experiment and 10.9 PgC yr-1 (17.6%) in the 

16xDGVM experiment relative to the 1xDGVM experiment. 

The large-scale changes in vegetation distribution are linked to changes in surface 

temperatures and precipitation. The expansion of trees and grasses at mid- and high 
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Figure 2-2. Global distribution of evergreen trees (a), (d), (g), deciduous trees (b), (e), (h) 
and grasses (c), (f), (i) (%) for the 1xDGVM, 10xDGVM, and 16xDGVM experiments, 
respectively. Land area with <10% vegetation cover, which is defined as desert, is 
shaded. Note, hereafter, continental outlines delimit area with >50% land cover. 
Evergreen trees include tropical and temperate broadleaf evergreen, and temperate and 
boreal needleleaf evergreen. Deciduous trees include tropical and temperate broadleaf 
deciduous and boreal deciduous.  
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latitudes in the two high CO2 experiments is mainly due to CO2-induced warming (Fig. 2-

1a). In the 1xDGVM experiment, GDD (i.e. annual growing degree- days above 5 ºC), 

which measures the accumulation of growing season warmth in a year, is largely less than 

350 ºC·day at high latitudes inhibiting tree growth (Table 2-1) and the minimum monthly 

temperature is lower than -17 ºC prohibiting grass growth (Table 2-1). In contrast, in the 

high CO2 experiments, GDD is generally greater than 1200 ºC·day except in the cold 

Siberian interior due to the large increase in surface temperature (Fig. 2-1a), providing a 

sufficient growing season for all tree PFTs to thrive (Table 2-1). In addition, the 

minimum monthly temperature exceeds -17 ºC, allowing the establishment of temperate 

trees and grasses. The retreat of subtropical grasses in the Southern Hemisphere in the 

two high CO2 experiments is caused by a decrease in precipitation associated with 

enhanced subtropical subsidence. The decrease in low-latitude evergreen tree cover and 

increase in deciduous tree cover with higher CO2 are also associated with the decrease in 

precipitation (Fig. 2-1b). 

The poleward expansion of trees at mid-to-high latitudes under high atmospheric 

CO2 matches the fossil data reasonably well (Fig. 2-3). The simulated dominant woody  

PFTs at mid- and high-latitude North America, Greenland, coastal Eurasia, New Zealand, 

Australia and coastal Antarctica are supported by fossil woods and coal deposits 

(Beerling et al, 1999; Falcon-Lang et al., 2001; Herman and Spicer, 1996; and Price et al, 

1997). In contrast, the simulated predominant woody PFTs in the tropical South America 

and Africa appears inconsistent with the presence of fossil elaterate assemblages, a 
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Figure 2-3. Distribution of mid-Cretaceous vegetation inferred from fossil wood, pollen 
of Elaterate assemblages and coal deposits and comparison with simulated vegetation. 
Fossil wood (solid circle) and coal deposits (solid star) are indicators of high-productivity 
forests; fossil pollen of Elaterates assemblages (down triangle) indicates dry climate 
and/or mangrove swamps and savannah (Dino et al., 1999; Ziegler et al., 2003). 
Paleofloral data is adapted from Beerling et al. (1999), Dino et al. (1999), Falcon-Lang et 
al. (2001), Herman and Spicer (1996), and Price et al. (1997). The shading of symbols 
shows agreement between the simulated vegetation in the 10xDGVM experiment and 
paleofaunal data. Black indicates that the model simulates the observed faunal type; red 
indicates that it does not. The model-data comparison (not shown) is nearly identical for 
the 16xDGVM experiment.  
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unique palynoflora assemblage indicating arid climate (Dino et al., 1999). The dense 

tropical trees simulated in our model are similar to the simulated mid-Cretaceous 

vegetation pattern by the University of Sheffield dynamic global vegetation model or 

FOAM-LPJ (Beerling et al., 1999; Donnadieu et al., 2009). 

2.3.2 Impact of vegetation and atmospheric pCO2 on mid-Cretaceous climate 

2.3.2.1 Surface temperature 

The presence of vegetation in the 10xDGVM experiment increases mid-

Cretaceous global surface temperature by 0.9 ºC (Table 2-2). Changes in surface 

temperature show significant spatial (Fig. 2-4b) and seasonal variations (Fig. 2-5a, f & k). 

High-latitude forested areas experience annual warming of 2.3 ºC with early summer 

warming of up to 4.0 ºC (Fig. 2-4b & Fig. 2-5a). In contrast, low-latitude forested areas 

undergo year-round cooling (Fig. 2-4b & Fig. 2-5f). Mid-latitude Northern Hemisphere 

surface temperatures increase during the cold seasons and decrease during the warm 

seasons (Fig. 2-5k). Changes in surface temperatures over ocean are generally less than 1 

ºC at low latitudes and up to 3 ºC at high latitudes (Fig. 2-4b). The maximum increase in 

surface temperature (> 5 ºC) occurs in the mid-latitude North Pacific, and is caused by 

the poleward shift of western boundary currents (explained in section 2.3.2.3). 
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Figure 2-4. Mean annual surface temperature (ºC) for the 10xDGVM experiment (a); 
10xDGVM – 10xBG experiments (b); and 16xDGVM - 10xDGVM experiments (c). The 
differences exceed 95% confidence level are shaded. 
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Figure 2-5. Annual cycles of surface temperature (ºC), latent heat fluxes (W m-2), surface 
absorbed solar radiation (W m-2), surface reflected solar radiation (W/m2), surface 
shortwave cloud forcing (W m-2) over the high-latitude forests (a-e), low-latitude forests 
(f-j) and mid-latitude forests (k-o) for 10xDGVM – 10xBG experiments. Solid black 
lines denote changes in the Northern Hemisphere and grey lines denote changes in the 
Southern Hemisphere.  
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The changes in land surface temperature can be explained by the net effect of 

vegetation-induced changes in latent heat fluxes and surface absorbed solar radiation. The 

former results from changes in evapotranspiration (Fig. 2-6a); the latter is mainly due to 

changes in surface albedo (Fig. 2-6b) and low-cloud cover (Fig. 2-6c). As a result of 

canopy evapotranspiration, the total annual mean evapotranspiration over land increases 

by 0.38 mm day-1 (22.7%) in the 10xDGVM experiment relative to the 10xBG 

experiment (Fig. 2-6a). And the increase (> 1.0 mm day-1) is most significant over the 

low-to-mid latitude evergreen forests. In contrast, the annual mean land surface albedo 

decreases by 0.04 (~20%) in the 10xDGVM experiment (Fig. 2-6b and Table 2-3), due to 

the darkening of land surface via forests, and to a less extent via reduced snow cover. The 

reduction (up to 0.2) is most pronounced over mid-to-high latitude deciduous forests 

through snow-masking (Fig. 2-6b).  Seasonally, over high-latitude forests, the net surface 

radiation (i.e. the difference between surface absorbed solar radiation and net upward 

longwave radiation) increases by ~24 W m-2 due to the large gain in surface absorbed 

solar radiation (> 31 W m-2) during late spring and early summer (Fig. 2-5c), which 

greatly exceeds increases in latent heat fluxes (Fig. 2-5b), leading to significant warming 

(Fig. 2-5a). The increases in surface absorbed solar radiation are due to 1) decreases in 

surface reflected solar radiation associated with the reduction in surface albedo (Fig. 2-

5d), and 2) increases in incoming solar radiation associated with reduced low cloud cover 

(Fig. 2-6c). The decreases in low cloud cover are linked to the reduced boundary layer 

relative humidity with increased temperatures. In contrast, over low-latitude forests, 
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Figure 2-6. Annual mean a) total evapotranspiration over land (mm day-1); b) surface 
albedo (%); and c) low cloud cover (%) for the 10xDGVM – 10xBG experiments (%). 
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Table 2-3. Global and high-latitude annual mean climatic variables in the 10xBG and 
10xDGVM experiments 
Variable 10xDGV 10xDGVM 16xDGVM  

  -10xBG -10xDGVM 

SAT (land, 60 – 90 ºN, ºC) 6.3 1.9 2.3 

SAT (ocean, 60 – 90 ºN, ºC) 10.0 1.9 1.4 

SAT (land, 60 – 90 ºS, ºC) 6.4 1.7 2.7 

SAT (ocean, 60 – 90 ºS, ºC) 12.3 1.3 1.4 

Snow fraction (land, 60 – 90 ºN) 0.09 -0.03 -0.03 

Snow fraction (land, 60 – 90 ºS) 0.10 -0.04 -0.04 

Polar sea ice fraction 0.002 -0.003 -0.002 

Surface albedo (land) 0.173 -0.04 -0.002 

Surface albedo (land, , 60 – 90 ºN) 0.216 -0.057 -0.019 

Surface albedo (land, , 60 – 90 ºS) 0.242 -0.062 -0.011 

Surface LW↓ (ocean, W m-2) 404.0 7.3 15.8 

Latent heat fluxes↑ (W m-2) 100.5 3.4 2.7 

Latent heat fluxes↑ (land, W m-2) 59.9 11.1 2.4 

Precipitable water (kg m-2) 41.1 3.3 6.1 

Precipitation (land, mm day-1) 2.95 0.26 0.15 

Snow (land, mm day-1) 0.10 -0.02 -0.04 

Precipitation (ocean, mm day-1) 3.64 0.07 0.07 

Evapotranspiration (land, mm day-1) 2.07 0.38 0.06 

MOC (Northern Hemisphere, Sv) 16.9 -4.5 -7.7 

MOC (Southern Hemisphere, Sv) 8.3 -1.0 -3.5 

OHT (Northern Hemisphere, PW) 1.61 -0.23 -0.16 

OHT (Southern Hemisphere, PW) 1.09 -0.07 -0.10 
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increases in latent heat fluxes are up to 31 (26) W m-2greater than increases in surface 

absorbed solar radiation in the Northern (Southern) Hemisphere (Fig. 2-5 g&h) leading to 

significant cooling (Fig. 2-5f). The increases in absorbed solar radiation are significantly 

smaller than the surface albedo feedback (Fig. 2-5i), because low-latitude forest 

evapotranspiration leads to denser low cloud cover (Fig. 2-6c), and thus offsets the 

surface albedo feedback by reducing incoming solar radiation at the surface (Fig. 2-5j). 

Over the northern mid-latitude forests, the increases in latent heat fluxes are up to 35 W 

m-2greater than increases in absorbed solar radiation during summer (Fig. 2-5 l&m) 

leading to summer cooling (Fig. 2-5k). 

Unlike over land, changes in surface albedo are negligible over ocean except the 

northern Eurasian coastal area (Table 2-3 and Fig. 2-4c). The large-scale background 

warming over ocean results from the increase in downwelling longwave radiation (7.3 W 

m-2) (Table 2-3) associated with elevated atmospheric water vapor content (correlation > 

0.7). Warming over the southern South Atlantic and Tethys Ocean, the equatorial and 

northern mid-latitude Pacific Ocean, and the Western Interior Seaway is also enhanced by 

positive cloud radiative forcing due to reduced low cloud cover (Fig. 2-6c). In contrast, 

warming over the subtropical Pacific Ocean is suppressed by negative cloud radiative 

forcing due to increased low cloud cover.  

Increasing atmospheric pCO2 from 2800 to 4480 ppmv increases global 

temperature by 1.6 ºC (Table 2-2). Similar to vegetation effect, the more pronounced 

warming over the Antarctica and Siberian continental interiors (Fig. 2-4c) are due to 
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snow-albedo feedback (Fig. 2-7a). The large-scale background warming over ocean (~1.5 

ºC) is mainly attributed to the increase in downwelling longwave radiation (15.8 W m-2) 

(Table 2-3). The surprise cooling over the subpolar northern and southern Pacific Ocean 

is associated with the weakening of NMOC (Table 2-3). And the cooling is further 

intensified by low-cloud forcing (Fig. 2-7b). 
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Figure 2-7.  Difference between the 16xDGVM and 10xDGVM experiments for the 
annual mean surface albedo (%) (a); and low cloud cover (%) (b). 
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2.3.2.2 Precipitation  

From a global perspective, the presence of vegetation slightly intensifies the mid-

Cretaceous hydrological cycle (Table 2-3). As a result of the increases in the surface 

temperature and evapotranspiration, the global precipitable water (i.e. vertically 

integrated specific humidity) and precipitation increases by 3.3 kg m-2 (8.7%) and 0.11 

mm day-1 (3.3%), respectively. In contrast, snowfall decreases by 0.02 mm day-1 (17%) 

over land. The increases in precipitation are more pronounced over land (0.26 mm day-1, 

9.7%) than over ocean (0.07 mm day-1, 2.0%). Due to enhanced precipitation, the 

freshwater flux into the high-latitude North and South Pacific Ocean increases by 0.05 Sv 

(15.2%) and 0.03 Sv (11.5%), respectively. 

The presence of vegetation leads to significant regional changes in precipitation 

(Fig. 2-8b), though the large-scale precipitation pattern remains unchanged. The most 

significant regional changes (> 1.0 mm day-1) occur over the low-to-mid latitude forests, 

intertropical convergence zones (ITCZ) and mid-latitude Western Pacific. The increases 

in continental precipitation are mainly due to the enhanced recycling of water via canopy 

evapotranspiration, with a point-to-point correlation larger than 0.6 over most areas. In 

contrast, the changes in precipitation over ocean mainly reflect changes in large-scale 

atmospheric circulation, as shown by the changes in zonal-average annual mean 

meridional streamfunction (Fig. 2-9a). The Hadley cells weaken by 3.2 * 109 kg s-1 (3%) 

and 6.3 * 109 kg s-1 (7%) in the Northern and Southern Hemisphere, respectively, due to 

the reduced equator-to-pole temperature gradient. 
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Figure 2-8. Mean annual precipitation (mm day-1) for the 10xDGVM experiment (a); 
10xDGVM – 10xBG experiments (b); and 16xDGVM - 10xDGVM experiments (c). The 
differences exceed 95% confidence level are shaded. 
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Figure 2-9. Zonal-average annual mean meridional streamfunction (1010 kg s-1) at 400 mb 
(a); and wind stress (N m-2) over the Pacific Ocean (b) for the 10xDGVM  (black solid 
line) , 10xBG (grey dashed line)  and 10xDGVM – 10xBG experiments (black dashed 
line), respectively. 
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In addition, the ascending branches of the Hadley cells contract equatorward 

(from ~16.7 ºN/S to 13.0 ºN/S). The equatorward contraction in each hemisphere mainly 

occurs during winter and spring seasons when the Hadley cell expands to the other 

hemisphere (not shown). The weakening and contraction of Hadley cells cause 

anomalous ascending motion at equatorial latitudes (~5 ºS-5 ºN) and ~20-40 ºN/ºS and 

anomalous subsidence at ~10-20 ºN/ºS. As a result, precipitation increases at ~5 ºS-5 ºN 

and 20-40 ºN/ºS and decreases at ~ 10-20 ºN/ºS. The increase in precipitation at mid-

latitude North Pacific is associated with warming due to a poleward shift of the western 

boundary currents. 

The changes in precipitation induced by increasing atmospheric pCO2 largely 

resemble the vegetation-induced changes (Fig. 2-8 b-c), especially at low latitudes. In the 

absence of significant increase in evapotranspiration, the increase in continental 

precipitation resulted from increasing atmospheric pCO2 is less than that caused by the 

presence of vegetation, despite a more pronounced warming (Table 2-3). 

2.3.2.3 Ocean circulation response  

The reduction in the equator-to-pole temperature gradient in the 10xDGVM 

experiment leads to a decrease in zonal wind strength. As shown in Fig.2-9b, the 

maximum zonal-mean wind stress over the Pacific Ocean decreases by 0.02 N/m2
 (~13%) 

in the Southern Hemisphere and 0.03 N m-2
 (~20%) in the Northern Hemisphere. As a 

result, the maximum intensity of the subtropical gyres decreases by 7.9 Sv (10%) from 

77.1 Sv (10xBG) to 69.2 Sv (10xDGVM) in the Northern Hemisphere and by 14.0 Sv 
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(13.3%) from 105.4 Sv (10xBG) to 91.4 Sv (10xDGVM) in the Southern Hemisphere. In 

addition, the mean position of the maximum wind stress shifts poleward by a grid cell 

(3.75º) from 50.1 ºN to 53.8 ºN in the Northern Hemisphere. Consistent with this 

poleward shift in wind stress, the western boundary current shifts from ~43 ºN in the 

10xBG experiment to ~46 ºN in the 10xDGVM experiment in the western North Pacific. 

This poleward displacement of warm, saline subtropical water leads to the significant 

increase in temperature (> 5 ºC) (Fig. 3-4b) and salinity (>2 PSU) at ~45 ºN.  

The global MOC also decreases in the 10xDGVM experiment. As shown in Fig. 

2-10 a-b, the maximum magnitude of MOC decreases by 1.0 Sv (~11%) from 9.3 Sv in 

the 10xBG experiment to 8.3 Sv in the 10xDGVM experiment in the Southern 

hemisphere and decreases by 4.5 Sv (~21%) from 21.4 Sv in the 10xBG experiment to 

16.9 Sv in the 10xDGVM experiment in the Northern hemisphere. This decrease is 0.8 

Sv larger than CO2-induced decrease between the 10xDGVM and 1xDGVM (20.6 Sv) 

experiments. The slight weakening of MOC in the Southern Hemisphere is caused by 

warming (Fig. 2-4b) and freshening through enhanced precipitation (Fig. 2-8b) of the 

high-latitude South Pacific. In addition to the freshening via enhanced precipitation, the 

poleward migration of the low-salinity subpolar front associated with the poleward shift 

of the western boundary currents, also contributes to the decrease in seawater salinity at 

the high-latitude North Pacific. As a result, deep water formation along the Northeast 

coast of Asia vanishes and MOC slows down in the Northern Hemisphere.
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Figure 2-10. Annual mean Meridional overturning circulation (Sv) for a) 10xDGVM 
experiment; and b) 10xBG experiment. Positive (in yellow and red) means clockwise 
flow direction and negative means counterclockwise flow direction. 
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In response to the weakening of MOC, poleward oceanic heat transport decreases by 0.07 

PW (~6%) in the Southern Hemisphere and 0.23 PW (~13%) in the Northern Hemisphere 

(Table 2-3). This decrease in poleward heat transport diminishes the warming over the 

high-latitude Pacific Ocean (~ 70 ºS/ ºN) (Fig. 2-4b).   

Similarly, as atmospheric pCO2 increases from 2800 to 4480 ppmv, MOC 

decreases by 7.7 Sv (45.6%) in the Northern Hemisphere and 3.5 Sv (42.2%) in the 

Southern Hemisphere (Fig. 2-10). As a result, poleward oceanic heat transport decreases 

by 0.10 PW (~9%) in the Southern Hemisphere and 0.16 PW (~10%) in the Northern 

Hemisphere (Table 2-3). This decrease in poleward heat transport diminishes the 

warming over the high-latitude Pacific Ocean (~ 70 ºS/ ºN) (Fig. 2-4c).   

 

2.4. Discussion 

2.4.1 The role of vegetation feedbacks under high CO2  

Our results show that vegetation acts to warm high latitudes and cool low 

latitudes in a warm climate with high CO2, similar to the role of modern vegetation 

(Bonan, 2008). The simulated warming effect of high-latitude forests on polar regions is 

also consistent with previous Cretaceous studies (Deconto et al., 2000; Otto-Bliesner and 

Upchurch, 1997; Upchurch et al., 1998). However, our simulated reduction in high-

latitude surface albedo (~0.06) and the associated warming (< 2 ºC) are more than one-

half less than in these studies, mainly because we assess the impact of vegetation in a 

warm mean climate with little snow (< 0.15) and sea ice (< 0.01) (Table 2-3). In contrast, 
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using a atmospheric CO2 value of 580 ppmv, Upchurch et al. (1998) report that snow and 

sea ice fraction are up to 0.62 and 0.38, allowing a stronger vegetation-snow-sea ice 

albedo feedback. The weaker warming here is also linked to the decrease in poleward 

oceanic heat transport resulting from the weakening of MOC, which is not resolved in the 

earlier studies. The simulated mean annual temperatures over the Eurasian interior and 

Arctic Ocean only increase ~2 ºC by vegetation and are up to 10 ºC lower than those 

estimated by proxies such as leaf physiognomy (Spicer et al., 2002, 2008) and TEX86 

method (Jenkyns et al., 2004) (Fig. 2-11). Therefore, we conclude that high-latitude 

forests can only be considered a secondary mechanism for the mid-Cretaceous polar 

warmth. Other mechanisms in addition to high atmospheric CO2 and high-latitude 

vegetation are required to maintain the polar warmth. 

We find that ~20-40 % of the increase in surface absorbed solar radiation over 

high-latitude forests is due to cloud feedbacks. In fact, the increase in cloud radiative 

forcing surpasses the albedo feedback during late spring and early summer (Fig. 2-5 d, e). 

This positive cloud feedback contradicts a previous study (Betts, 1999), which reports 

that the presence of vegetation induced a high-latitude summer cooling of > 2 ºC mainly 

by reducing surface solar radiation via enhanced cloud cover. These contrasting results 

highlight the uncertainty of cloud feedbacks in determining the overall effect of high-

latitude forests.  
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Figure 2-11. Model-data comparison for mid-Cretaceous surface temperature. Red dots 
denote that model temperatures are higher than proxy estimates, black dots denote that 
model temperatures are comparable to proxy estimates, and blue dots denote that model 
temperatures are lower than proxy estimates. See Chapter I for proxy references.  
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2.4.2 Oceanic circulation 

Our simulations are consistent with modeling studies with a dynamic ocean 

component that vegetation can have an important impact on MOC, due to vegetation-

induced changes in hydrological cycle and sea surface temperature (Brovkin et al., 2002, 

2009; Ganopolski et al, 1998; Lohmann et al., 2006). Moreover, our simulations suggest 

that the response of MOC to vegetation could exceed that of a tenfold increase in 

atmospheric CO2 concentration. Proxy records and model studies demonstrate that global 

vegetation pattern is highly correlated with climate changes during the geological past 

and future (e.g., Spicer and Chapman, 1990; Alo and Wang, 2008; Cramer et al., 2001). 

Therefore, vegetation-climate interactions should be taken into account for simulating the 

MOC response to past and future climate change. 

  

2.5. Caveats 

In the absence of global paleovegetation reconstructions, most previous modeling 

studies of the mid-Cretaceous have assumed a uniform vegetation type on all continents 

(e.g. Donnadieu et al., 2006; Poulsen et al., 2007; Zhou et al., 2008). In this contribution, 

we use a dynamic vegetation model to overcome this limitation. We emphasize, though, 

that the simulation of pre-Quaternary vegetation is subject to uncertainty, mainly due to a 

paucity of evidence for the construction and physiology of past ecosystems. Due to our 

lack of understanding of past ecosystems, paleo-vegetation modeling relies on a modern 

understanding of PFTs and their bioclimatic, physiological, and dynamic relationships 
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that may not be entirely appropriate for past times. For example, grass, which is a 

dominant PFT at present, had not evolved yet in mid-Cretaceous. We keep grass in our 

simulation because it is the only available herbaceous PFT. Another substantial change 

between the modern and mid-Cretaceous is angiosperms. The modern angiosperm-

dominated tropical forests may not have appeared until the Paleocene (Burnham and 

Johnson, 2004). Yet our simulations show extensive tropical forests resembling the 

modern distribution, an overestimation that may be linked to the inclusion of PFTs that 

represent modern angiosperm trees. Consequently, CLM-DVGM may overestimate the 

impact of low-latitude vegetation on mid-Cretaceous climate, because angiosperms have 

a much larger impact on hydrology relative to other plants due to their high transpiration 

capacity (Boyce and Lee, 2010). To more accurately simulate the mid-Cretaceous 

vegetation and its feedbacks, more paleo-vegetation data is needed to appropriately 

parameterize the mid-Cretaceous dominant PFTs.  

 

2.6. Conclusions 

We investigate the vegetation-climate interaction using a coupled ocean-

atmosphere GCM (CCSM3) with a dynamic vegetation component. The model 

demonstrates a positive feedback between vegetation and polar climate – CO2-induced 

warming promotes expansion of high-latitude forests, which leads to additional polar 

warming via reducing surface albedo and low cloud cover. However, the warming effect 
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of vegetation at high latitudes is smaller than reported in previous studies, mainly due to 

the less pronounced surface albedo feedback in the absence of large snow and sea ice 

cover under the simulated warm mean climate. Over low latitude continents, the 

feedbacks between vegetation and climate are opposite; forest cover decreases with 

higher CO2, and the presence of forests leads to year-round cooling. The cooling is 

associated with enhanced evpotranspiration and low cloud cover.  

The simulation of mid-Cretaceous vegetation has unexpected effects on the ocean, 

and largely resembles CO2 effect. First, as a result of the enhanced atmospheric vapor 

content with vegetation, downwelling longwave radiation increases over ocean, leading 

to surface warming at sea surface. Second, vegetation alters wind fields, resulting in 

weakening of wind-driven subtropical and subpolar gyres and poleward displacement of 

the North Pacific western boundary current. Lastly, the intensified precipitation enhances 

the freshwater flux into the high-latitude Pacific. This freshening in conjunction with 

surface warming reduces the meridional overturning circulation in both hemispheres, 

which reduces meridional heat transport and damps high-latitude warming.  
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Chapter III 

Abrupt Arctic warming in a greenhouse climate 

 

Abstract 

Past abrupt climate change has previously been linked to external forcing in a glacial 

climate. Here we report on unforced abrupt warming in a simulation of the Cretaceous 

greenhouse using NCAR’s CCSM ocean-atmosphere model. After ~800 model years, the 

Arctic experiences a warming of 1.6 °C within ~30 years that persists for the duration of 

the simulation (>800 yrs), and initiates a gradual intensification by ~50% of the ocean 

meridional overturning circulation. This event is triggered by transport of saline 

subtropical water into the high latitudes, and sustained by an increase in local surface 

heat flux, atmospheric convection and cyclonic flow. Polar warming is mainly due to a 

breakdown of static stability in the Arctic troposphere, which reduces low-cloud amounts 

and increases cloud radiative forcing. Our results provide a new mechanism for polar 

temperature amplification and past thermohaline reorganization, and identify a climate 

hysteresis in a world with less sea ice that leads to abrupt and long lasting polar warming. 
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3.1. Introduction 

Abrupt climate change describes the transition of the climate system across a 

threshold to a new state at a rate faster than the cause (Alley et al., 2003), and usually 

refers to transitions that occur on timescales of human relevance (typically <~30 yrs). 

The paleoclimate record shows that large, abrupt cooling events have repeatedly occurred 

in the past. The Dangaard-Oeschger oscillations, Heinrich events, the Younger Dryas, and 

the 8.2 kyr event were triggered by massive meltwater discharge events associated with 

the wasting of continental ice sheets (Overpeck and Cole, 2006). Surprisingly, there are 

no unambiguous cases of abrupt climate change in warm climates. The most famous 

candidate, the Paleocene-Eocene thermal maximum, occurred on longer timescales (~105 

yrs) likely due to the destabilization of oceanic methane hydrate (Thomas et al., 2002).  

The mid-Cretaceous was one of the warmest periods in Earth history, and 

warmest in the last 100 Ma. Mid-Cretaceous (90-100 Ma) CO2 levels are estimated from 

fossil leaf stomatal indices, soil carbonate proxy records, and biomarker 13C to range 

between 2 and 16 times pre-industrial levels (<700 ppmv and >4000 ppmv) (Bice et al., 

2006; Haworth et al., 2005; Retallack, 2001). Consistent with high greenhouse gas 

concentrations, Cretaceous surface temperatures were considerably higher than modern. 

Low-latitude marine temperatures are estimated to have been ~33 (±3) °C (Norris et al., 

2002; Schouten et al., 2003; Wilson et al., 2002), approximately 6 °C warmer than 

present. High-latitude continents were warm with mean-annual temperatures above 0 °C 

and up to 10 °C (Parrish and Spicer, 1988; Spicer et al., 2008). Arctic surface waters are 
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estimated to have been ~15 °C and ice free during summer (Davies et al., 2009).   

Here we report on abrupt climate warming in a Cretaceous simulation completed 

using the fully coupled ocean-atmosphere GCM, Community Climate System Model 

Version 3 (CCSM3).  

 

3.2. Methods 

The Cretaceous simulations were developed using the NCAR Community 

Climate System Model version 3 (CCSM3), a fully coupled ocean-atmosphere-sea ice-

land surface with dynamic global vegetation global climate model (Collins et al., 2006). 

The atmospheric model, the NCAR Community Atmosphere Model (CAM3), is run with 

a T31 spectral resolution and 26 vertical levels. The land surface model, the Community 

Land Model (CLM3.0) (Dickinson et al., 2006), has the same horizontal resolution as 

CAM3 and is coupled to the Lund-Potsdam-Jena dynamic vegetation model (DGVM) 

(Levis et al., 2004). River drainage routes were based on surface topography such that 

flow runs downhill.   

The ocean model, the Parallel Ocean Model (POP) (Smith and Gent, 2002), has a 

nominal horizontal resolution of 3.0° and 25 vertical levels. Both experiments use the 

same vertical and horizontal mixing parameterizations and values. Vertical mixing is 

represented using the fully implicit kpp mixing parameterization with a background 

vertical diffusivity of 0.524 cm2s-1. Horizontal mixing of tracers uses the Gent-

McWilliam parameterization, which forces mixing to occur along isopycnals. Horizontal 
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mixing of momentum uses a parameterization that allows for anisotropic mixing. The 

sea-ice model, the Community Sea Ice Model (CSIM) (Briegleb et al.,2004), has the 

same resolution as POP and includes the elastic-viscous-plastic (EVP) scheme.  

We have completed two simulations (1xDGVM and 10xDGVM) with mid-

Cretaceous paleogeography and paleobathymetry (Scotese, 2001), and a reduced solar 

constant (99% of present) (Gough, 1981), and modern orbital parameters. The 

experiments differ only in their atmospheric CO2 levels, which are prescribed at pre-

industrial (1x; 280 ppmv) and ten times pre-industrial (10x; 2800 ppmv) levels.  

In our experience using coupled ocean-atmosphere models, the deep ocean 

reaches equilibrium faster when the ocean is cooling, mainly due to more vigorous 

convective mixing. Thus, to expedite the convergence to radiative equilibrium, both the 

1xDGVM and 10xDGVM experiments were branch runs initialized from a pre-existing 

10x Cretaceous experiment. The original 10xDGVM experiment did not include a 

dynamic vegetation model and was initialized with zonal atmospheric temperatures of 

32 °C at the equator and 16 °C at the poles and zonal mean ocean temperatures from a 

Late Cretaceous simulation (Otto-Bliesner et al., 2002). The 1xDGVM and 10xDGVM 

simulations were run for 2125 years and 1637 years, respectively. The longer integration 

time for the 1x experiment in comparison to the 10xDGVM experiment reflects the fact 

that it was initially furthest from radiative equilibrium. 

We assess equilibrium of the simulations by calculating the statistical p-value for 

the top-of-atmosphere (TOA) radiation and ocean MOC trends. The p-value tests the null 
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hypothesis that the trend is 0. A p-value >0.1 indicates that the trend is not distinguishable 

from 0 at the 90% confidence interval. In the 10xDGVM experiment, p-values for years 

540-804 are 0.42 and 0.23 for TOA radiation (-0.02 W m-2 century-1) and MOC (0.1 

Sv/century) rates of change, implying quasi-equilibrium. The mean TOA radiation fluxes 

are 0.08 Wm-2 and the MOC flux is 11.6 Sv. In the 1xDGVM experiment, the p-value for 

TOA radiation fluxes (0.002 W m-2 century-1) for years 1925-2125 is 0.958.  

  

3.3. Results 

3.3.1. Simulation of mean climate 

In the 1xDGVM case, the global surface temperature is 14.6 °C (Fig. 3-1a), 

~1.0 °C higher than the pre-industrial global surface temperature (Otto-blister et al., 

2005). Low-latitude surface temperatures are slightly lower (1-2 °C) than modern as a 

result of the reduced solar factor and pre-industrial pCO2. Antarctic surface temperatures 

are higher due to the absence of an Antarctic ice sheet. Perennial sea-ice covers the Arctic 

Ocean, the southward limb of the subpolar gyre in the Northern Pacific, and the Antarctic 

margin (Fig. 3-1a). Deepwaters are formed in both the northern North Pacific and South 

Pacific Oceans along the Antarctic coast with maximum meridional overturning rates of 

20.6 Sv (1 Sv = 106 m3 s-1) and 23.5 Sv respectively (Fig. 3-2a), comparable to present 

volume fluxes in the North Atlantic (15 ±2 Sv) and Southern Ocean (21 ±6 Sv) 

(Ganachaud and Wunsch, 2000). 

In comparison, the 10xDGVM simulation has a global surface temperature of 

23.6 °C. Mean-annual low-latitude sea-surface temperatures range between 28-36 °C, and 

are consistent with Cretaceous proxy temperatures (e.g. Norris et al., 2002; 
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Figure 3-1. Map view of mean annual a) surface temperature (color) and sea-ice fraction 
(dashed contour lines; 10, 40, and 90%) for the 1xDGVM experiment; b) surface 
temperature (color) and sea ice fraction (dashed contour lines; 10%) for the 10xDGVM 
experiment, averaged over years 700-750 (before the abrupt Arctic warming); c) surface 
temperature anomaly between years 900-950 (after the abrupt Arctic warming) and years 
700-750. Units for temperature and sea ice cover are °C and %, respectively. 
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Figure 3-2. Mean annual global MOC for a) the 1xDGVM experiment; b) the 10xDGVM 
experiment, averaged over years 700-750; c) the 10xDGVM experiment, averaged over 
years 1550-1600.  Unit for MOC is Sv (106 m3 s-1). 
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Schouten et al., 2003; Wilson et al., 2002). In the high latitudes, only northernmost 

Siberia has mean-annual surface temperatures below freezing (Fig. 3-1b). As a 

consequence of  CO2-induced warming, Northern Hemisphere (NH) sea ice is present 

only in the winter along the northern Siberian coast (>65 °N, 60-165 °E, Fig. 3-1b). Deep 

waters form mainly in the northern North Pacific and initially have a volume flux of 11.3 

Sv (Fig. 3-2b). 

3.3.2. Abrupt warming in the 10xDGVM experiment   

In year 805 of the 10xDGVM simulation, the Arctic warms abruptly. Surface 

temperatures increase for approximately 30 years at a rate of 0.53 °C/decade (P < 10-10) 

(Fig. 3-3a). Arctic summer sea-surface temperatures increase from 11.0 °C to 13.0 °C, 

while the Pacific sector of the Arctic warms more than 4 °C (Fig. 3-1c). Mid-latitude 

temperatures warm at a rate of 0.10 °C/decade (P = 0.001). The new warm-Arctic climate 

state persists for the remainder of the run (>800 yrs). 

The abrupt warming is triggered by anomalous transport of warm, saline 

subtropical water into the Arctic Ocean. The transport of warmer waters and the 

breakdown of polar ocean stratification through convective mixing increase the surface 

heat flux to the atmosphere by 4.8 Wm-2 in the Arctic region, and up to 60 Wm-2 in the 

convection zone. The enhanced surface heat flux intensifies the Northern Pacific surface 

low, and strengthens the polar easterlies and to a lesser extent the mid-latitude Westerlies. 

The upper-ocean geostrophic response intensifies transport of relatively warm, saline 

water from the subtropical North Pacific to the polar region through the Bering Strait 
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Figure 3-3. Time series for the 10x experiment of a) Arctic (70-90 °N) surface 
temperature (°C, red) and mid-latitude surface temperature (°C, blue); b) salinity of the 
North Pacific (psu, red), and oceanic heat transport at 70 °N (PW, blue); c) Arctic (70-
90 °N)  low-cloud fraction (red), and cloud radiative forcing (Wm-2, blue); d) maximum 
Northern Hemisphere MOC intensity below 500 m (Sv, red), and oceanic heat transport 
across 44 °N (PW, blue).  
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(Fig. 3-4a, b). This positive feedback between surface heating, cyclonic intensification, 

and subtropical water transport sustains the Arctic warming. Poleward oceanic heat 

transport (OHT) at 70 °N is significantly correlated with Arctic surface temperature with 

a lead of six years (r = 0.79), confirming the role of ocean heat transport in triggering the 

abrupt warming event. 

Although subtropical water transport into the northern North Pacific triggers the 

abrupt event, Arctic warming is mainly due to a decrease in low cloud cover (Fig. 3-3c). 

The increase in poleward OHT at 70 °N is compensated by a decrease in poleward 

atmospheric heat transport at the same latitude (r = -0.72 with a 1 yr lag). However, the 

increased upward sensible heat flux in the Arctic reduces static stability in the 

troposphere, destroying the inversion at which low-level stratus clouds form and 

enhancing atmospheric convection. As a result of the reduction in low clouds, Arctic 

cloud radiative forcing increases by up to 2.4 Wm-2 (Fig. 3-3c) and is positively 

correlated with Arctic surface temperature (r = 0.67 with no lag). 
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Figure 3-4. a) Mean annual barotropic stream function (Sv) in the 10x experiment a) 
averaged over model years 700-750; b) difference (Sv) between model years 900-950 and 
years 700-750. Positive (negative) values indicate anticyclonic (cyclonic) flow. Note that 
the contour interval is non-uniform in b. 
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The abrupt Arctic warming event drives a slow intensification of thermohaline 

circulation (Fig. 3-3d). After year 805, convective mixing in the upper ocean intensifies 

and migrates northward towards the Arctic Ocean (Fig. 3-5). Between years 805 and 

1600, NH MOC increases by 50% (5.6 Sv) and Southern Hemisphere MOC increases by 

57% (3.0 Sv) (Fig. 3-2c). The increase in MOC leads to a secondary mid- and high-

latitude warming, 0.3 °C between 45-60 °N and 0.5 °C poleward of 60 °S, and slight 

cooling over the low-latitude oceans. Importantly, MOC intensification is a response, 

rather than a driver of Arctic climate change (Fig. 3-3a). Arctic surface temperature and 

NH MOC are modestly correlated (r = 0.40) when Arctic surface temperature leads by 7 

years. 
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Figure 3-5. Mean annual North Pacific mixed-layer depth in the 10x experiment a) 
averaged over model years 700-750; b) averaged over model years 900-950. Mixed-layer 
depth is an indicator of convective mixing, greater depth implies stronger convection. 
During the abrupt climate event, the convective zone migrates northward and convective 
mixing reaches greater depths. 
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3.4. Discussion 

The simulation of warm Cretaceous high-latitude conditions is a longstanding 

problem that has led to the conclusion that climate models are missing or incorrectly 

representing high-latitude physics in a greenhouse world (Abbot and Tziperman, 2008; 

Korty et al., 2008; Kump and Pollard, 2008; Poulsen et al., 2007; Sloan and Pollard, 

1998). Our 10x experiment demonstrates a polar warming mechanism without any 

modifications to the existing model physics. A warm-Arctic state is maintained through 

large poleward OHT and vigorous atmospheric convection, which reduces polar 

atmospheric stratification and low-cloud coverage. The warm polar state is in better 

agreement with Cretaceous high-latitude paleo-temperatures; nonetheless, mean-annual 

surface temperatures (~4 ºC) in the Siberian continental interior remain lower than paleo-

temperatures (13.1 ±3.5 ºC) estimated by leaf-margin analyses (Davies et al., 2009). We 

note, however, that the representation of clouds and convective processes in models is a 

source of uncertainty and speculate that higher cloud sensitivity, or more vigorous 

atmospheric convection, might lead to additional polar warming.  

Cretaceous oceans experienced episodes of black shale deposition during which 

regions of the subsurface ocean were anoxic or suboxic (OAEs). To explain OAEs, it has 

been suspected that the Cretaceous oceans were stratified with low turnover rates during 

times of high atmospheric pCO2 (Bralower and Thierstein, 1984). Our model results 

indicate that multiple overturning states with relatively strong and weak overturning may 

exist under high atmospheric pCO2, and that transitions between states can be 
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geologically instantaneous. This result raises the intriguing possibility that the 

onset/demise of OAEs could have been triggered through unforced ocean-atmosphere 

variability.  

The Arctic warming event in the 10xDGVM experiment is not completely 

unprecedented. The two most pronounced warming events in the 20th century (1920s-

1940s and post-1979) are associated with intrinsic Arctic ocean-atmosphere-sea-ice 

variability (Bengtsson et al., 2004; Johannessen et al., 2004; Overland et al., 2008; 

Polyakov and Johnson, 2000). A reduction in sea ice played a crucial role in these events 

by facilitating oceanic inflow into the Barents Sea, enhancing surface heat fluxes, and 

reducing the ice-albedo feedback. Likewise, our 1x experiment, which has perennial and 

widespread sea-ice cover, exhibits Arctic climate variability and warming events. For 

instance, during model years 1610-1640, the Arctic warms by 1.6 °C in 13 yrs (Fig. 3-

6b). Throughout this multi-decadal event, sea-ice area leads increases in poleward OHT 

at 70 °N and surface heat fluxes by 1 year.  

The return to mean Arctic conditions in the 20th century and in our 1x experiment 

is linked to an expansion of NH subpolar sea ice (Fig. 3-6a), which acts to insulate the 

ocean and reduce surface heat fluxes to the atmosphere. In the absence of sea ice, this 

negative feedback is absent. As a result, in contrast to these decadal events, polar 

warming in the 10x experiment persists for at least centuries.  



64 
 

 
Figure 3-6. Detrended time series of 1xDGVM experiment a) Arctic (70-90 °N) surface 
temperature anomalies (red), and sea ice area anomalies (blue); b) Arctic surface 
temperature anomalies between years 1580 and 1660.  
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The similarity between Arctic climate variability in our 1xDGVM experiment and 

in the 20th century suggests that there is no a priori reason to think that high-latitude 

climate operated in a fundamentally different way due to differences in geography 

between the modern and Cretaceous. This leads us to conclude that the hysteresis 

between cool and warm Arctic states simulated in our 10xDGVM experiment is likely to 

exist in a future world with less sea ice. 
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Chapter IV 

Simulation of modern and middle Cretaceousmarine 18O with an 
ocean-atmosphere GCM 

 

Abstract 

We have developed a coupled ocean-atmosphere general circulation model, the 

GENESIS-MOM model, with the ability to transport and fractionate water isotopes in the 

ocean and atmosphere. The model is used to predict modern and Cretaceous precipitation 

and seawater 18O. The model reproduces the large-scale modern-day isotopic 

distribution. In the zonal mean, the difference between simulated and observed seawater 

18O is within 0.2‰ in the low- and mid-latitudes and within 1‰ at high latitudes. In 

comparison to modern, simulated Cretaceous surface seawater 18O is systematically 

depleted by 0.3‰ at low and middle latitudes. These differences are attributed to 

equilibrium fractionation during surface evaporation at low latitudes, enhanced low-to-

high latitude vapor transport, and an increased partitioning of 18O from the surface into 

the deep ocean at high latitudes in the Cretaceous. We also find that regional seawater 

18O is significantly influenced by the paleobathymetry and the resolution of oceanic 

gateways, boundary conditions that are not well known for the past. Our simulation of 

Cretaceous seawater 18O has implications for oxygen isotope paleothermometry. We 

conclude that conventional assumptions of past seawater 18O may lead to an 

overestimate of Cretaceous sea-surface temperatures, especially at middle and 
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high latitudes. 

 

4.1. Introduction 

The middle Cretaceous (Albian-Turonian) is considered one of the warmest 

periods in Earth history. This inference is supported by sedimentological evidence of ice-

free polar regions (Jenkyns et al., 2004; Moriya et al., 2007; Price, 1999) and paleo-floral 

and faunal evidence of tropical species at high latitudes (Huber, 1998; Nathorst, 1911; 

Spicer and Parrish, 1986; Tarduno et al., 1998), and leaf-margin analyses of fossil leaves 

(Parrish and Spicer, 1988; Herman and Spicer, 1996). The most direct evidence for warm 

conditions comes from oxygen isotope paleothermometry, which provides a quantitative 

estimate of past seawater temperatures. Recent estimates of past seawater temperatures 

using oxygen isotope paleothermometry are as high as 33-39°C at low latitudes to >14°C 

at high latitudes (Huber et al., 1995; Norris et al., 2002; Wilson et al., 2002; Bice et al., 

2006; Pucéat et al., 2007). However, the extreme polar warmth cannot be resolved by 

most atmosphere-ocean general circulation models with moderate tropical temperature 

(Bice et al.,2003; Sloan and Pollard, 1998). These oxygen isotope temperature estimates 

are dependent on assumptions about the mean isotopic composition of Cretaceous 

seawater. 

The oxygen isotope paleo-thermometer works because natural fractionation 

processes in seawater are temperature dependent. Due to an equilibrium effect, water 

molecules with 16O are preferentially evaporated from seawater to produce vapor. 

Importantly, the equilibriuim fractionation factor decreases with increasing seawater 

temperature, causing the seawater isotopic composition to become enriched in 16O and 
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depleted in 18O. The ambient isotopic composition of past seawater is ultimately sampled 

and preserved through precipitation of marine carbonates, e.g. shells of foraminifera or 

fish teeth. Though the isotopic composition of marine carbonates (18Oc) is often offset 

from seawater due to biotic effects during carbonate precipitation, laboratory and field 

experiments have established that the relative isotopic abundance in many species is 

preserved (e.g., Shackleton, 1974; Erez and Luz, 1983; Kolodny et al., 1983; Bemis et al., 

1998).  

In addition to 18Oc, the mean isotopic composition of seawater 18Ow must be 

known to calculate paleo-temperature.18Ow is known for the modern and Holocene and 

varies regionally (Zachos et al., 1994). The 18Ow of earlier periods is not known and is 

an important source of uncertainty in reconstructing paleotemperature. Cretaceous 

paleotemperatures have conventionally been estimated using a global mean 18Ow of -

1.0‰ (SMOW) reflecting the absence of continental ice sheets during this time 

(Shackleton and Kennett, 1975), even though it is highly improbable that 18Ow was 

uniform across the Cretaceous oceans. Using a uniform 18Owyields paleotemperature 

estimates that are lower at low latitudes and higher at high latitudes than estimates made 

using a latitudinally-varying 18Ow (Poulsen et al., 1999b). Because a uniform 18Ow was 

unlikely, Cretaceous paleotemperatures are frequently estimated using both global mean 

Cretaceous seawater and modern local Ow corrected by -1.0‰ (e.g., Norris et al., 

2002; Wilson et al., 2002; Pucéat et al., 2007). However, it is not clear that using modern 

corrected 18Ow is justified, or an improvement over global mean 18Ow. 
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To test these assumptions, we have recently developed a coupled ocean-

atmosphere general circulation model (GCM) with the capability to transport and 

fractionate water isotopes in the oceans and atmosphere. This model represents a 

significant advance over previous climate modeling studies of Cretaceous water isotopes 

(e.g. Roche et al., 2006; Poulsen et al., 2007b). Here, we describe and discuss our 

simulations of modern and Cretaceous seawater and precipitation O, and their 

comparison with modern measured 18O. Our results show that the distribution of 

Cretaceous surface 18Ow is largely similar to that of the modern. Significant differences 

occur in the low latitudes, where Cretaceous surface 18Ow is slightly lower, and the 

Arctic Ocean.  

 

4.2. Methods 

The experiments presented here were developed using the GENESIS version 3.0 

Earth system model coupled to the MOM2 oceanic GCM. GENESIS is comprised of an 

atmospheric GCM coupled to multilayer models of vegetation, soil and land ice, and 

snow (Thompson and Pollard, 1997). In comparison to GENESIS version 2.3, the solar 

and infrared radiation scheme has been replaced with that used in NCAR’s CCM3 (Kiehl 

et al., 1998). Our version of GENESIS also includes water isotopic transport and 

fractionation in the atmospheric physics (Mathieu et al., 2002). Building on previous 

isotopic GCM development by Jouzel et al. (1994) and Joussaume and Jouzel (1993), the 

O18O16and D/H ratios are predicted in atmospheric vapor, liquid, ice, and soil water 

reservoirs. Fractionation is modeled as a result of condensation and evaporation in the 

free atmosphere and from surface waters. Atmospheric ratios are transported using the 
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same Lagrangian transport as for bulk vapor and clouds. GENESIS-MOM does not 

currently include a river routing scheme, and continental river runoff is globally averaged 

and uniformly spread over the world ocean. Such an approximation is appropriate for the 

Cretaceous where major river drainage basins are not known in detail, and makes the 

modern simulations consistent with the Cretaceous regarding runoff.  

We have previously used GENESIS with isotope capabilities to predict water 

isotopes in atmospheric vapor (Poulsen et al., 2007a, 2007b). In this study, we add the 

ability to calculate isotope transport through the ocean by coupling GENESIS to MOM2, 

a 3-dimensional, z-coordinate ocean GCM with passive-tracer capabilities (Pacanowski, 

1995). MOM2 has a horizontal grid spacing of approximately 3.75°, and 20 vertical 

levels. To ensure conservation of energy and mass, the horizontal grid has been adjusted 

with a cosine-weighted distortion in order to match the T31 spectral grid used in 

GENESIS. In our implementation of MOM2, we use an isopycnal mixing scheme (Redi, 

1982). Coefficients of horizontal viscosity and diffusion are 2x109 cm2s-1 and 0.5x107 

cm2s-1; coefficients of vertical viscosity and diffusion are 1.0 cm2s-1 and 0.2 cm2s-1. 

MOM2 also includes a full convection scheme (Marotzke, J., 1991; Rahmstorf, S., 1993), 

which removes buoyancy instabilities within a water column. Water isotopes are 

advected, diffused and convectively mixed as passive tracers within the ocean.  

Sea-surface isotopic fluxes due to hydrological processes, including 

precipitation/evaporation, river runoff, and sea-ice formation/melt, are calculated in 

GENESIS and then passed to MOM2. As documented in Mathieu et al. (2002), sea ice is 

treated as a two-layer isotopic reservoir. In the lower layer, the isotopic content of sea ice 

is estimated from the isotopic composition of seawater with the appropriate isotopic 
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fractionation. The accumulation of snow on sea ice is tracked in the upper layer. Rain on 

sea ice is treated as runoff. Surface isotopic fluxes from continental runoff are implicitly 

estimated to maintain the all-ocean mean isotopic content; this treatment is fully 

consistent with the global runoff treatment described above. 

The GENESIS and MOM models can be fully coupled, exchanging heat, 

moisture, and momentum fluxes every six hours. However, in order to make long 

integrations (>5000yrs), we have developed an alternating synchronous-asynchronous 

coupling technique that works as follows: (i) Fully coupled synchronous segments of 35 

years are run, with atmospheric-ocean exchanges performed at each OGCM time step of 

6 hours. During the last 10 years of each segment, monthly mean near-surface 

meteorology (air temperature, humidity, winds, downward solar and infrared radiative 

fluxes, precipitation, and the isotopic fractionation of precipitation and evaporation) were 

stored as 10-year averages. (ii) Following each synchronous segment, the saved fluxes 

are then used to drive the OGCM alone through the next asynchronous segment of 500-

2000 years, with ocean surface fluxes calculated by the AGCM's (LSX) boundary layer 

routine using the previously saved atmospheric conditions and the current OGCM sea-

surface temperatures. (Sea ice is considered part of the AGCM, and where sea ice exists 

in the synchronous segments, all saved "surface meteorological" quantities are those at 

the sea-ice base.) (iii) A final 35 yr fully coupled synchronous segment is completed to 

produce data for analyses.  

Modern and Cretaceous simulations were integrated through at least 4 

asynchronous-asynchronous segments, representing integration durations of more than 

6000 years. After these long integrations, the ocean is very close to equilibrium. Global 
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average temperature trends are 0.015 °C/1000 yrs and -0.05 °C/1000 yrs for Cretaceous 

and modern experiments, respectively. In the upper ocean (top 25m), seawater 

temperature trends are 0.08 °C/1000 yrs and 0.01 °C/1000 yrs, respectively. In addition, 

18O is well conserved in all experiments. Global average ocean 18O is -1.0 and -0.0‰ 

(SMOW) for the Cretaceous and modern experiments, identical to the initial values of -

1.0 and -0.0‰ (SMOW).  

Four climate-isotope experiments were completed in this study (Table 4-1). Two 

modern experiments were completed with modern geography, ocean bathymetry and 

atmospheric pCO2. The modern experiments differ only in their resolution of the Bering 

Strait. On the T31 grid, the Bering Strait is too narrow to be fully resolved. As a result, in 

the first experiment (MOD), the Bering Strait is not represented; i.e., there is no ocean 

connection between the North Pacific and Arctic Oceans. To evaluate the influence of this 

ocean connection on high-latitude seawater 18O, a second experiment (MOD-Bering) 

was conducted in which the bathymetry has been modified to include a Bering Strait 

connecting the North Pacific and Arctic Oceans. Though the model representation of the 

strait is narrow (3 grid cells in width), it nonetheless exaggerates the width of the modern 

strait.    
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Table 4-1.  Model parameters and global average sea-surface temperature (ºC), 
precipitation (mm day-1), of surface seawater and precipitation (‰) (SMOW). 
Exp. 
 

Description 
                           

pCO2  
(ppm) 

SST 
 

Precip. 
 

Precip. 
 

Seawater 


MOD Modern geography and 
bathymetry but with no Bering 
Strait. 

355 18.4 3.0 -7.1 0.0 

MOD-
Bering 

Modern geography and 
bathymetry with Bering Strait 
resolved. 

355 18.2 3.0 -7.1 0.0 

K-Flat Cenomanian geography and 
topography; ocean bathymetry 
is uniformly 5600m 

2240 23.0 3.5 -6.1 -1.0 

K-Bathy Cenomanian geography and 
topography; ocean bathymetry 
is based on PALEOMAP 
project reconstruction* 

2240 23.0 3.5 -6.2 -1.0 

*Ocean bathymetry of K-Bathy experiment is based on reconstructions from the 
PALEOMAP project (http://www.scotese.com/) 
Note: of seawater is not corrected as stated in the methods part, to show the initial 
ocean  difference. 
  



74 
 

Two Cretaceous experiments were also completed with Cretaceous geography and 

topography representing Cenomanian lowstand conditions (as in Poulsen et al., 2007b). 

Middle Cretaceous atmospheric pCO2 likely ranged between 2 and 16x pr-industrial 

levels (Bice et al., 2006); in this study we used a median Cretaceous pCO2 value of 2240 

ppmv, 8x pre-industrial levels. In the first Cretaceous experiment (K-flat), the ocean 

bathymetry is uniformly 5600m. In the second Cretaceous experiment (K-bathy), we 

included Cretaceous paleo-bathymetry based on reconstructions from the PALEOMAP 

project (http://www.scotese.com/). Ocean 18Ow was initialized to 0.0‰ in the modern 

experiments and -1.0‰ (SMOW) in the Cretaceous experiments to reflect the absence of 

major ice sheets at that time (Shackleton and Kennett, 1975). However, unless otherwise 

noted, we refer to and show “corrected” 18O, which is the simulated Cretaceous 18O 

plus 1.0‰ (SMOW) to compensate for differences between modern and Cretaceous mean 

seawater 18O, to facilitate comparison with the modern experiments. All analyses were 

made with the last ten years of climate data from the final 35 yr coupled iteration.  

 

4.3. Results 

4.3.1. Simulation of modern 18O 

GENESIS has previously been shown to simulate the large-scale modern surface 

18O distribution including east-west gradients due to continental and altitudinal effects, 

seasonal variations, and the zonal profile except over Antarctica (Mathieu et al., 2002). 

Because our coupling of GENESIS 3.0 with MOM2 is a major revision, in this section 

we compare our simulated isotope composition of precipitation (18Op) and surface 

seawater (18Ow) with modern observational data sets from Rozanski et al. (1993) and 
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LeGrande and Schmidt (2006), which was based on the Schmidt et al. (1999) online 

database of 18O and salinity measurements. 

In the zonal mean, modeled precipitation 18O p agrees well with IAEA/WMO 

data (Rozanski et al., 1993) where data coverage is relatively dense. As shown in Fig. 4-

1, the 2uncertainty of zonally-averaged 18O p encloses nearly all the observed data. 

Since observational data is sparse or nonexistent in southern high latitudes, it is 

impossible to evaluate the model’s performance in this region. 
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Figure 4-1. Mean annual zonal average 18Op (SMOW) of precipitation predicted in our 
MOD experiment and from IAEA/WMO data (Rozanski et al., 1993). The shaded area is 
2confidence interval of simulated zonally-averaged 18Op.  
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The annual average surface seawater 18Ow captures most large-scale features in 

the LeGrande and Schmidt (2006) data set (compare Figs. 4-2a and 4-2b). The model 

predicts enriched surface seawater 18O in the subtropical oceans (especially in the 

Atlantic), and depleted surface seawater 18O in the Arctic and Southern Oceans. Surface 

seawater 18Ow differences between our MOD experiment and observation are generally 

within 0.5‰ except in the Arctic Ocean. In the zonal mean, the average surface seawater 

18Ow in MOD experimentis within 2 error range of the averaged 18Ow from LeGrande 

and Schmidt (2006) at low and middle latitudes (Fig. 4-3a) At high latitudes, simulated 

18Owis depleted by up to 1‰ in the Southern Ocean and 11‰ in the Arctic Ocean. 

These large differences in the Arctic are due to the absence of a Bering Strait and 

connections between western and eastern Arctic Ocean. Without these gateways, no 

mixing occurs between the Arctic and Pacific Oceans. Consequently, Arctic 18Ow is 

driven to low values approaching those of the high-latitude continental runoff. In the 

MOD-Bering experiment, in which the Bering Strait has been opened and widened, the 

18Ow difference between the model and observations in the Arctic is less than 2‰ (Fig. 

4-3a). In the Southern Ocean, the observed surface seawater 18Ow is derived from 

empirical 18O-salinity relationships. The coefficient of determination (R2) between 18O 

and salinity is 0.374, suggesting the Southern Ocean surface seawater 18Owis not well 

characterized (LeGrande and Schmidt, 2006). At this point, it is impossible to determine 

whether model errors or observational uncertainties are chiefly responsible for the 1‰ 

discrepancy.  
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Figure 4-2. Mean annual 18Ow (SMOW)spatial distribution of modern surface seawater 
predicted in our MOD experiment (a), and interpolated from global gridded empirical 
data (LeGrande and Schmidt, 2006) (b). Continental regions are shaded in grey. 
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Figure 4-3. Mean annual zonal average 18Ow (SMOW) of modern surface seawater (A); 
and modern deep water at 3000 m (B) predicted in our MOD (medium dashed line) and 
MOD-Bering (short dashed line) experiments and from LeGrande and Schmidt (2006) 
(solid line). The shaded area is the 2confidence interval of zonally-averaged 18Ow from 
LeGrande and Schmidt (2006) and represent spatial variability due to zonal heterogeneity 
in 18Ow. Note that the MOD experiment has Arctic seawater 18Ow of -12‰ (see 
discussion in text). This low value is outside of the range shown in the figure. 
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The simulation of deep-water 18O also compares well with observations. 

Seawater 18O at 3000m is within 2 of the LeGrande and Schmidt (2006) 18Ow except 

in the Arctic (Fig. 4-3b). As described above, the differences in the Arctic region are 

attributed to insufficient mixing between the Arctic Ocean and Atlantic and Pacific 

Oceans. In sum, GENESIS-MOM reproduces modern observed seawater 18Ow in most 

regions where a meaningful comparison is possible.  

4.3.2. Simulation of Cretaceous climate and precipitation 18Op   

As a result of higher CO2 in our Cretaceous experiments, simulated surface 

temperature and precipitation rate are higher than present, consistent with previous 

Cretaceous simulations (e.g. Barron et al., 1989; Donnadieu et al., 2006; Poulsen et al., 

1999a, 2003, 2007b). The global mean-annual Cretaceous sea-surface temperature is 23.0 

ºC, approximately 4.6 °C higher than that in the MOD simulation (Table 4-1 and Fig. 4-

4). The global precipitation rate is 3.5 mm day-1, about 0.5 mm day-1 higher than those 

simulated in the MOD experiment (Table 4-1).  
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Figure 4-4. Mean annual zonal average sea-surface temperature in MOD (solid line), K-
Flat (medium dashed line) and K-Bathy (short dashed line) experiments.  
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Cretaceous precipitation 18Op ranges from -3.5‰ in subtropical areas to -20.8‰ 

(K-flat) and -20.4‰ (K-Bathy) in the Antarctica regions (Fig. 4-5). Cretaceous 18Op in 

tropical and subtropical areas is practically identical to MOD. However, Cretaceous 18Op 

is up to 16‰ and 5‰ greater than MOD in the southern high latitudes and Arctic region, 

respectively. Several factors are responsible for the enrichment of Cretaceous high-

latitude precipitation including: (1) reduced equilibrium fractionation due to higher polar 

temperatures, (2) reduced altitudinal fractionation in the Southern Hemisphere due to the 

absence of a tall Antarctic ice sheet, and (to a smaller degree) (3) a source of relatively 

high 18O vapor from a seasonally ice-free Arctic Ocean.  

Precipitation 18Op is indistinguishable between the K-Flat and K-Bathy 

experiments except at northern high latitudes where the difference is ~1.4‰ (Fig. 4-5). 

Because surface temperature and precipitation rate are nearly identical in these 

experiments, northern high-latitude precipitation 18Op differences are likely due to 

differences in the isotopic concentration of the Arctic Ocean, which is seasonally ice-free 

and serves as an important regional vapor source. In the K-Flat experiment, Arctic 

seawater 18Ow is 4.4‰ greater than in the K-Bathy experiment due to enhanced seawater 

exchange between the Pacific and Arctic basins (see below), leading to greater 

precipitation 18Op.  
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Figure 4-5. Mean annual zonal average precipitation 18Op(SMOW) in MOD (solid line), 
K-Flat (medium dashed line) and K-Bathy (short dashed line) experiments. Note that 
“corrected” Cretaceous 18O is shown. As described in the Methodology (section 2), 
1.0‰ (SMOW) has been added to the simulated Cretaceous 18O to facilitate comparison 
with the modern simulation. 
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4.3.3. Simulation of Cretaceous surface seawater 18Ow 

The large-scale surface seawater 18Ow in the Cretaceous experiments is similar to 

the modern simulation. As in the MOD experiment, Cretaceous 18Ow is depleted in high 

latitudes and enriched in the subtropical oceans (Fig. 4-6a and 4-6b). In the zonal mean, 

the Cretaceous surface seawater 18Ow distribution pattern is similar to modern in most 

areas, ranging from 0.3‰ in the subtropical oceans to -4.2‰ (K-Flat) and -8.6‰ (K-

Bathy) in the Arctic (Fig. 4-7). Cretaceous surface seawater 18Ow is ~0.3‰ lighter than 

modern in tropical and subtropical regions. The 18Ow difference is even smaller at the 

southern mid-to-high latitudes, which is ~0.1‰. In the Arctic Ocean, however, 

Cretaceous 18Ow is up to 8.1‰ (K-Flat) and 4.2‰ (K-Bathy) greater than that in the 

MOD experiment, but as much as 2.6‰ (K-Flat) and 7.0‰ (K-Bathy) lower than that in 

the MOD-Bering experiment. As discussed in 4.3.1, these differences between 

Cretaceous and modern Arctic 18Ow are due primarily to ocean mixing rates between the 

Arctic and Pacific Oceans. Similarly, differences in Arctic 18Ow between the Cretaceous 

simulations are also attributed to differences in Arctic-Pacific mixing rates. In the K-Flat 

experiment, with a deep (5600m) paleo-Bering Strait and greater seawater exchange 

between the Pacific and Arctic, Arctic Ocean 18Ow is 4.4‰ higher than in the K-Bathy 

experiment with a shallow (144m) strait and reduced seawater exchange. 
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Figure 4-6. Mean annual 18Ow (SMOW) spatial distribution of Cretaceous surface 
seawater predicted for the K-Flat experiment (a), and K-Bathy experiment (b). 
Continental regions are shaded in grey. Note that “corrected” Cretaceous 18O is shown 
(see caption in Fig. 4-5). 
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Figure 4-7. Mean annual zonal average 18Ow (SMOW) of surface seawater in MOD 
(solid line), MOD-Bering (medium dashed line), K-Flat (short dashed line) and K-Bathy 
(dash-dot line) experiments. Note that “corrected” Cretaceous 18O is shown (see caption 
in Fig. 4-5). 
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4.3.4. Simulation of Cretaceous subsurface seawater 18Ow 

In the most general sense, simulated Cretaceous subsurface seawater 18Ow is 

similar to modern. In both modern and Cretaceous experiments, the upper ocean (~150-

1000 m) is more enriched in 18O than the lower ocean (>1000 m), reflecting the 

preference for intermediate and deep water formation at high latitude sites with relatively 

low 18Ow. Moreover, at depths greater than 500 m, mean Cretaceous subsurface 18Ow is 

within 0.1‰ of modern (Fig. 4-8). 

Though generally similar, there are meaningful differences between the modern 

and Cretaceous subsurface 18Ow. In comparison to the modern, Cretaceous subsurface 

18Ow is lower in the upper ocean and higher in the deep ocean (Fig. 4-8). These 

differences result from the sites of intermediate- and deep-water formation. In both 

Cretaceous experiments, subtropical waters from the Tethys and proto-South Atlantic 

regions contribute significantly to the overall intermediate and deep water volumes. In 

the upper ocean (Fig. 4-9a), saline, 18O-enriched seawater originates from the Tethys and 

flows through the equatorial Pacific Ocean. This watermass is constrained to ~1400 m. At 

greater depths (Fig. 4-9b), the North Pacific region provides the primary source of 18O-

enriched seawater. However, because North Pacific surface 18Ow is relatively depleted 

(Fig. 4-6a), it cannot be the sole source of this water. Rather, warm, saline, 18O-enriched 

seawater from Tethys flows into the North Pacific, mixes with colder North Pacific water, 

and sinks to form this water mass. Finally, at the greatest depths (Fig. 4-9c), the proto-

South Atlantic is a significant source of saline, 18O-enriched seawater. Above, we have 
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Figure 4-8. Vertical distribution of global mean seawater 18Ow (SMOW) in the modern 
and Cretaceous simulations. Cretaceous 18Ow is lesser above ~1000m and greater below 
~1000m than modern due to differences in the isotopic composition of intermediate and 
deep water sources. Note that “corrected” Cretaceous 18O is shown (see caption in Fig. 
4-5). 
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Figure 4-9. Mean annual 18Ow (SMOW) spatial distribution of Cretaceous seawater in 
K-Flat experiment at depth of 778 m (A); at depth of 2796 m (B); and at depth of 5268 m 
(C). Continental regions are shaded in grey. The mean annual 18Ow distribution for the 
K-Bathy experiment is similar. Note that “corrected” Cretaceous 18O is shown (see 
caption in Fig. 4-5). 
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focused on the sources of relatively 18O-enriched seawater. However, in both Cretaceous 

experiments, high latitude regions around Antarctica are also important sites of 

intermediate- and deep-water formation (Figs. 4-9 b,c). 

 

4.4. Discussion 

4.4.1. Simulation of Cretaceous surface seawater 18Ow  

To our knowledge, this study is the first to simulate Cretaceous seawater 18Ow 

using a coupled atmosphere-ocean GCM with isotopic capabilities. Poulsen et al. (2007b) 

used an atmosphere-only model to demonstrate that high atmospheric pCO2 causes a 

systematic, moderate (<3‰) increase in Cretaceous precipitation 18Op resulting from 

reduced equilibrium fractionation due to higher surface temperatures. Although 

precipitation 18Op can be strongly influenced locally by geography and topography, the 

large-scale 18Op distribution changes little because it is controlled by the large-scale 

atmospheric circulation (Poulsen et al., 2007b).  

Our results build on this previous study, and indicate that global ocean circulation 

has a small but important influence on the large-scale distribution of Cretaceous seawater 

18Ow. (The exception occurs in isolated basins, such as the Arctic Ocean and proto-South 

Atlantic Ocean, where the local precipitation flux can have a large influence on 18Ow.) In 

our simulations, Cretaceous surface seawater 18Ow is ~0.3‰ less than modern at the low 

and middle latitudes. This decrease in surface seawater 18Ow is mainly due to differences 

in the partitioning of 18O between the surface and the deep ocean. In the modern ocean, 

intermediate and deep water is formed primarily in high-latitude oceans, regions with 
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relatively depleted surface 18O (Frew et al., 1995). In the Cretaceous experiments, the 

subtropical Tethys and proto-South Atlantic Oceans, regions with relatively high surface 

seawater 18O, are important sources of intermediate and deep waters. The transport of 

these waters from the surface to depth lowers surface 18O and increases subsurface 18O. 

This process of 18O segregation in the ocean is the “compensation effect” described by 

Roche et al. (2006).  

Roche et al. (2006) report on changes in seawater 18Ow under warm climate 

conditions using CLIMBER-2, a coupled ocean-atmosphere model of intermediate 

complexity, and reach different conclusions from those presented here. Their model 

results predict an increase in low and mid-latitude surface 18Ow by up to 1‰. There are 

two major differences between our studies. First, Roche et al. (2006) use a modern 

geography. In contrast to the modern, the Cretaceous geography includes subtropical 

basins that are not well connected to the global ocean and consequently evolved distinct 

water mass properties (Poulsen et al., 2001) including relatively enriched 18Ow. Second, 

in Roche et al. (2006), water vapor isotopes are not tracked explicitly but are based on 

“simpler physical hypotheses”. Using this methodology, Roche et al. (2006) report 

increased transport of 18O-depleted humidity to high latitudes in a warmer world, 

leading to a decrease in high-latitude 18Ow. High-latitude deepwater formation and the 

“compensation effect” then cause the deep ocean to become relatively depleted in 18O and 

the surface ocean to become enriched. In contrast, with water isotope tracer capabilities, 

GENESIS predicts 18O-enriched vapor and precipitation at high latitudes as a result of a 

reduction in equilibrium fractionation in a warmer (high CO2) world (Poulsen et al., 

2007b).  
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4.4.2. Implications for oxygen isotope paleo-thermometry 

Oxygen isotope paleo-thermometry, arguably the most valuable tool in 

reconstructing past climate, requires knowledge of past seawater 18Ow. In the absence of 

this information, previous studies have assumed that past seawater 18Ow was constant or 

the same as modern. Our simulation of Cretaceous 18Ow allows us to assess these 

assumptions, and their influence on paleo-temperature estimates. Here, we calculate and 

compare paleo-temperature estimates using constant (-1.0‰ SMOW), present-day, and 

simulated seawater 18O. The present-day 18O distribution is based on a best fit to 

surface seawater 18O from southern hemisphere Atlantic and Pacific Oceans and 

describes 18O distribution as a function of latitude (Zachos et al., 1994). In comparison 

to the LeGrande and Schmidt (2006) data, the Zachos et al. (1994) present-day 18O 

distribution is systematically higher, ranging from an increase of 0.02‰ at ~30°N to as 

much as 2.2‰ in the Arctic region, and no more than 0.3‰ in the southern hemisphere.   

Following Roche et al. (2006), we use the temperature-18O equation from 

Shackleton (1974):  

T = 16.9 – 4.38(18Oc - 18Ow) + 0.1(18Oc - 18Ow) 2             (1) 

where 18Oc and 18Ow denote the oxygen isotopic content of foraminiferal calcite and 

seawater, respectively. To estimate the temperature bias (ΔT) due to the various 

assumptions about 18Ow (Δ(18Ow)), we derive the first-order Taylor expansion of (1), 

which is: 

ΔT ~ 4.18Δ(18Ow)                                        (2) 

Expression (2) indicates that 18Ow is a significant factor in calculating paleotemperature. 
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Similar results would be derived using other temperature-18Ow relationships (Bemis et 

al., 1998, Table 1). 

We use (2) to compare the influences of common 18Ow assumptions and our 

simulated 18Ow on paleo-temperature estimates. (Note that here we use “uncorrected” 

Cretaceous 18Ow from our simulation, and the values from Zachos et al (1994) minus   

1.0‰ to account for the absence of Cretaceous polar ice sheets). In comparison to 

paleotemperatures estimated using our simulated zonal-average Cretaceous 18Ow, 

paleotemperatures estimated using either a uniform 18Ow (-1.0‰) or the Zachos et al. 

(1994) present-day distribution of 18Ow generally overestimate paleotemperatures (Fig. 

4-10). At high latitudes, this temperature overestimate is substantial, ranging from 2 to 

17.6°C. Using the Zachos et al. (1994) present-day 18Ow also leads to substantially 

higher (~3°C) paleotemperature at low latitudes.  

The use of zonal-average 18Ow is another important source of uncertainty in 

calculating paleotemperature. Our model results indicate that local 18Ow can vary by 

more than 1.5‰ from zonal-average 18Ow at high latitudes (Fig. 4-11), leading to 

isotopic paleo-temperatures that differ up to 6°C according to (2). These large zonal 

differences in 18Ow occur in latitudinal zones with isolated or semi-isolated basins, 

including the Arctic, northern Tethys, and northern South Atlantic Oceans. In these 

regions where seawater exchange is limited by features of the paleogeography, the 

surface 18Ow is more strongly influenced by local precipitation 18Ow and deviates from 

open ocean 18Ow. 
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Figure 4-10. Comparison of temperature estimates using different assumptions about 
Cretaceous seawater 18Ow. T1 (Tuniform – TK-Flat) (solid line) denotes the temperature 
difference that results from assuming a uniform global mean surface seawater18Ow of -
1.0‰ (SMOW) rather thanthe 18Ow predicted in K-Flat. T2 (Tpresent – TK-Flat) (dashed 
line) denotes the temperature difference that results from using present latitudinal 18Ow 
distribution from Zachos et al (1994) rather than the 18Ow from K-Flat. As discussed in 
the text, we here use the “uncorrected” Cretaceous 18Ow from our simulation, and the 
Zachos et al (1994) 18Ow minus 1.0‰ (SMOW). 
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Figure 4-11. Mean-annual 18Ow (SMOW) difference between local and zonal average 
surface seawater. For each grid cell, the 18Ow difference is obtained by subtracting the 
zonal average 18Ow at that latitude from the local 18Ow. 
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The simulation of the Cretaceous equator-to-pole temperature gradient has been a 

long-standing problem (Barron, 1983; Poulsen et al., 1999b; Poulsen, 2004; Bice et al., 

2003). Proxy data, most notably 18O paleothermometry, has been used to infer that the 

equator-to-pole temperature gradient was small mainly as a result of very warm high-

latitude paleotemperatures (e.g. Huber et al., 1995). In contrast, climate models have 

traditionally simulated large Cretaceous equator-to-pole temperature gradients. This 

mismatch has typically been attributed to flaws in the climate models stemming from, for 

example, the treatment of heat transport and clouds (e.g. Barron, 1994; Sloan and Pollard, 

1998; Kump and Pollard, 2008). Here, we emphasize another source of potential model-

data mismatch, the interpretation of proxy data. Our calculation of Cretaceous seawater 

18O substantially ameliorates the model-data mismatch by reducing the temperature 

inferred from high-latitude calcite 18O. We do not claim to have solved this problem; 

other types of non-isotopic proxy data also suggest that the Cretaceous high-latitude 

temperatures were warm, and site specific model-data intercomparisons are still required 

to fully assess the significance of the 18Ow effect on isotopic paleotemperatures. 

However, we do view this as an important step forward, one that is critical to truly 

assessing the capability of models to simulate past warm worlds. 

4.4.3. Oceanic gateways, continental runoff, and seawater 18Ow 

Our modern and Cretaceous experiments indicate that the resolution of oceanic 

gateways can substantially influence regional seawater 18Ow (Fig. 4-7). In both modern 

and Cretaceous experiments, the Bering Strait is critical to ocean mixing and isotopic 

exchange between the Pacific and Arctic Oceans. With no or weak exchange, Arctic 

seawater 18O will tend to resemble the high-latitude precipitation that feeds it.
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The implications of these results are twofold. Firstly, paleogeography can be a first-order 

control on regional seawater 18O. Secondly, in the absence of detailed knowledge about 

paleogeographic evolution, oxygen isotopic records should be interpreted with caution. 

Paleogeographic or eustatic changes that alter regional circulation and seawater 18O 

could be misconstrued as climatic change. Isotopic proxies from semi-isolated ocean 

basins would be particularly susceptible to this influence. Similar caveats on the 

interpretation of marine water isotope records have been found in other isotopic GCM 

experiments for the Holocene (Schmidt et al., 2007). 

Continental runoff is also potentially an important influence on seawater 18O. In 

this study, we have uniformly distributed continental runoff over the surface of the ocean, 

and have not tracked runoff from specific drainage basins into the ocean. This treatment 

of runoff could influence the simulated isotopic content of seawater especially in semi-

isolated basins. A river routing scheme, in which runoff from specified drainage basins 

flows into the ocean at a point source, is likely to enhance regional isotopic differences in 

many basins. For example, the seawater 18O of the Cretaceous Arctic Ocean, which is 

relatively depleted in 18O due to net precipitation, is likely to become further reduced 

with inflow of high-latitude continental runoff. In addition to this direct effect on 

seawater 18O, continental runoff could also alter the distribution of 18O between the 

surface and deep ocean through its influence on deep-water formation. Bice et al. (1997) 

have shown that the specification of continental runoff in an ocean general circulation 

model can substantially change the location of deep-water formation.  
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4.5. Conclusions 

We have developed a coupled ocean-atmosphere general circulation model that 

successfully simulates many aspects of modern precipitation and seawater 18O 

distribution. When applied to the Cretaceous, the model predicts surface seawater 18O 

that is similar in many respects to modern. Differences from the modern include: 1) a 

small decrease in low- and middle-latitude surface seawater 18O due to a decrease in 

equilibrium fractionation, and a “compensation effect” caused by partitioning of the 

heavy isotope in the deep ocean due to intermediate and deep-water formation in 

subtropical basins, and 2) large changes in Arctic surface seawater 18O that are linked to 

differences in seawater exchange rates between the Pacific and Arctic Oceans. The 

similarity between modern and Cretaceous zonal-average surface seawater 18O 

highlights the fact that surface 18Ow is mainly constrained by large-scale atmospheric 

and oceanic circulation patterns, which change little between the modern and Cretaceous 

except in regions where paleogeography creates isolated or semi-isolated ocean basins. 

Our results have important implications for oxygen isotope paleothermometry, 

and indicate that conventionally used assumptions of surface seawater 18O likely 

overestimate Cretaceous mid- and high-latitude temperature. Compensating for these 

isotopic effects by using simulated 18Ow reduces the Cretaceous low equator-to-pole 

thermal gradient problem. 
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Chapter V 

No climate extremes in the mid-Cretaceous 

 

Abstract 

The Cretaceous thermal maximum at the Cenomanian/Turonian boundary represents the 

warmest interval in the last 144 my. Cretaceous tropical paleotemperatures derived from 

the oxygen isotopic concentration of planktonic foraminifera (18Oc) indicate that surface 

temperatures increased through the mid-Cretaceous and peaked at temperatures as high as 

36 °C, more than 6 °C warmer than modern. During this same interval, however, 

atmospheric pCO2 is estimated to have declined and rapid (~100 ky), positive excursions 

in marine 18Oc have been cited as evidence of continental glaciation. Here, we evaluate 

whether factors other than global climate change could explain the marine 18Oc record. 

Using a coupled ocean-atmosphere general circulation model with isotope-tracking 

capabilities, we explore the response of marine 18Oc to global climate change induced by 

atmospheric pCO2 and regional oceanographic changes initiated by prescribed alterations 

in regional paleogeography or freshwater forcing. Our results show that doubling 

atmospheric pCO2 leads to a nearly uniform depletion in marine 18Oc. In contrast, 

changes in regional oceanography produce excursions in marine 18Oc as large as those 

observed yet with little influence on global temperatures. Thus, we suspect that the 

apparent inconsistency between mid-Cretaceous climate proxy records is due to the fact 
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that they reflect regional oceanographic rather than global climate change. On the basis of 

our results, we propose that the mid-Cretaceous was neither a thermal maximum nor an 

ice age.  

5.1. Introduction 

The oxygen isotope composition of marine carbonate (18Oc) is the most widely 

employed proxy for both short- and long- term paleoclimate change. Oxygen isotope 

paleothermometry is based on the principle that oxygen isotope fractionation during 

carbonate precipitation is negatively correlated with ambient temperature such that low 

18Oc indicates high seawater temperature. In practice, oxygen isotope paleothermometry 

also requires knowledge of the ambient seawater oxygen isotope concentration (18Osw). 

However, because there are no independent proxies of 18Osw, this value is often assumed 

to be globally uniform or to have a distribution similar to modern. During times of 

glaciation, 18Oc preserves a signal of both seawater temperature and ice volume. The 

preferential storage of 16O in terrestrial ice sheets causes enrichment of 18O in seawater. 

As a result, rapid positive excursions in 18Oc are often interpreted as a sign of ice-sheet 

growth. 

The long-term depletion of marine carbonate 18Oc in the mid-Cretaceous to their 

lowest values in 144 my has been used to indicate global surface warming that 

culminated in the Cretaceous thermal maximum during the latest Cenomanian and early 

Turonian (Bice et al., 2003, 2006; Clarke and Jenkyns, 1999; Jenkyns et al., 1994; Huber 

et al., 1995, 2002; Wilson et al., 2002). Paradoxically, short-term (~100 ky) positive 

excursions in carbonate 18Oc during this same interval have been interpreted to reflect 

the growth of continental ice sheets on Antarctica (Bornemann et al., 2008; Galeotti et al., 
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2009; Miller et al., 2003, 2005; Stoll and Schrag, 2000). Both interpretations of mid-

Cretaceous carbonate 18Oc are at odds with proxy estimates and theoretical calculations 

of atmospheric pCO2, which suggest that values decreased from the Aptian-Albian 

through the Turonian but remained above 1000 ppmv (Bice and Norris, 2002; Larson, 

1991; Crowley and Berner, 2001). The high but declining pCO2 values are inconsistent 

with long-term warming and the presence of continental ice sheets. Modeling studies of 

Paleozoic and Cenozoic ice ages report the growth of continental ice sheets with a 

detectable isotopic signal (~0.2‰ enrichment in seawater 18Osw) occurs only once pCO2 

levels have exceeded ~800 ppmv, regardless of the orbital configuration (DeConto and 

Pollard, 2003; Horton and Poulsen, 2009).  

To reconcile the apparent decoupling between declining atmospheric pCO2 and 

proxy-inferred warming, a “hidden” pulse of Turonian CO2 outgassing has been proposed 

(Wilson et al., 2002). Alternatively, Poulsen et al. (2003) suggest that this discrepancy 

could be explained by a regional reorganization of the North Atlantic circulation during 

opening of the equatorial South Atlantic gateway, which led to seawater freshening and 

isotope lightening of the North Atlantic. 

Similarly, the short-term positive carbonate 18Oc excursions have been attributed 

to changes in the water mass balance in the North Atlantic (Ando et al., 2009; Friedrich et 

al., 2008; Voigt et al., 2004). Voigt et al. (2004) propose that regional cooling in the North 

Atlantic during sea-level lowstand led to enhanced oceanic ventilation and subsurface 

cooling, preserved as an increase in carbonate 18Oc. In contrast, Friedrich et al. (2008) 

postulate that the increases in carbonate 18Oc reflect enhanced formation and sinking of 

warm, saline intermediate waters through surface evaporation in the tropical North 
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Atlantic 

These studies highlight the need to investigate the influence of global climate 

change, eustatic sea level, paleogeography and freshwater budget on marine carbonate 

18Oc. In this study, we quantify these effects using a water isotope-enabled ocean-

atmosphere general circulation model (GCM) and compare them with the marine 

carbonate 18Oc from the North Atlantic. Our results show that doubling atmospheric 

pCO2 leads to a relatively uniform surface and subsurface depletion in carbonate 18Oc. 

Changes in sea level, regional paleogeography and freshwater forcing have a substantial 

influence on carbonate 18Oc that varies with latitude and depth. 

 

5.2. Methods 

We investigate the effects of CO2, sea level and regional paleogeography on 

marine carbonate 18Oc using GENMOM, a fully coupled ocean-atmosphere GCM with 

isotope-tracking capability. GENMOM has been shown to successfully simulate modern 

and paleo- meteroic and seawater oxygen isotope composition (Mathieu et al., 2002; 

Poulsen et al., 2007, 2010; Zhou et al., 2008). The atmospheric component, the GENESIS 

version 3.0 Earth System Model (GENESIS3), is composed of an atmospheric GCM 

coupled to multilayer land surface models of vegetation, soil, snow and sea ice 

(Thompson and Pollard, 1997). The oceanic component, the Modular Ocean Model 

version 2 (MOM2), is a 3-dimensionl, z-coordinate ocean GCM with passive-tracer 

capabilities (Pacanowski, 1995). A horizontal resolution of ~3.75° was implemented to 

GENESIS3 and MOM2. GENESIS3 and MOM2 have 18 and 20 vertical levels, 

respectively. Initial seawater temperatures and salinity for MOM2 were taken from 
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modern observations. In order to promote long equilibrium runs, we employed the 

synchronous-asynchronous coupling techniques as described in Zhou et al. (2008).  Each 

GENMOM experiment was integrated for several synchronous-asynchronous iterations 

until the rate of change of the global ocean temperature became negligible (~ 0.1 °C/ky).  

Following Zhou et al. (2008), our control experiment (8x) was implemented with 

a mid-Cretaceous lowstand paleogeography and topography (Barron, 1987) (Fig. 5-1) and 

8x pre-industrial levels atmospheric pCO2. In the absence of accurate reconstructions, 

open ocean bathymetry was set to 5600 m. Other boundary conditions remain the same in 

each experiment. Earth orbital parameters and concentrations of trace gases (methane, 

nitrous oxide) were set to their pre-industrial values. Solar luminosity was reduced to 

99% of the modern (Gough, 1981). Global seawater 18Osw was initialized at -1.0‰ 

(SMOW) to represent the absence of large continental ice sheet in mid-Cretaceous 

(Shackleton and Kennett, 1975). 
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Figure 5-1.  Paleogeography for the 8x experiment (a), and Paleogeography for the 
HiStand experiment (b). Continents are shaded in green and deep oceans (5600 m) are 
shaded in dark blue. The shading and hatching in these figures illustrates the 
paleogeography used in our sensitivity experiments. Black hatching in a marks the 
Western Interior Seaway (WIS) and the South Atlantic Ocean (SA), which were opened 
in the OpenWIS and OpenSA experiments, respectively. The black shading in a illustrates 
the restriction of North Atlantic Ocean in the SmallCS experiment, allowing only a 
narrow gateway between the Pacific and Atlantic (illustrated in orange). In the CloseCS 
experiment, the region shaded in orange was specified as land, closing the ocean gateway. 
In b, shallow seas (with a depth of 200 m) are shaded in light blue. A red line indicates 
the division between the northern North Atlantic (NNA) and tropical North Atlantic 
(TNA).  
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We have completed three series of sensitivity experiments that evaluate the 

response to (i) atmospheric pCO2, (ii) paleogeographic changes due to gateway 

opening/closing and eustacy, and (iii) fresh-water forcing (Table 5-1). To evaluate the role 

of atmospheric CO2, a simulation with 16x pre-industrial levels pCO2 was completed. 

Atmospheric pCO2 of 16x pre-industrial levels falls with the upper limit of the mid-

Cretaceous proxy estimates (Bice and Norris, 2002, figure 1). Five additional sensitivity 

experiments were conducted to represent the rise of eustatic sea-level (HiStand) (Haq et 

al., 1987), the opening of the South Atlantic gateway (OpenWIS) and Western Interior 

Seaway (OpenWIS) and the narrowing/closing of the Caribbean Seaway (Small CS/ 

CloseCS) (Iturralde-Vinent, 2003) during the mid-Cretaceous.  

To examine the effects of freshwater forcings, five MOM2 experiments were 

performed in which the freshwater fluxes in the northern or tropical North Atlantic were 

modified (Table 5-1 and Fig. 5-2). The modeling technique used in these experiments was 

slightly different than that in the other sensitivity experiments. Our freshwater forcing 

runs were started from the end of our equilibrium control experiment (8x). To mimic 

changes in freshwater forcing in the North Atlantic, we systematically altered the surface 

freshwater budget (i.e. precipitation-evaporation) passed from GENESIS to MOM. To 

mimic freshening (FreshNNA), the freshwater budget was increased by a factor of 3 in 

regions with a positive budget and decrease by 1/3 in regions with a negative budget. 

Similarly, to mimic enhanced evaporative conditions (SaltNNA, SaltTNA), the 

freshwater budget was decreased by 1/3 in regions with a positive budget and increased 

by a factor of 3 in regions with a positive budget (Table 5-1). 
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Table 5-1. List of experiments, simulated global-average seawater temperatures and 18O 
(Tgl, °C), North Atlantic Ocean seawater temperature and 18O (TNA, °C; NA, ‰), and 
mass flux of the North Atlantic meridional overturning circulation (NAMOC, Sv).  
Exp. Description 25 m 1059 m *NA 

MOC Tgl TNA NA Tgl 
*TNA

8x 2240 ppmv CO2 22.9 26.0 -0.83 9.4 11.2 10.4 
16x 4480 ppmv CO2 26.8 29.8 -0.79 13.1 14.6 8.9 
HiStand Highstand 23.0 26.4 -0.73 8.6 10.2 7.7 
OpenSA Open South Atlantic 22.8 26.5 -0.80 9.2 11.5 10.6 
OpenWIS Open WIS 22.8 25.6 -0.92 9.3 11.0 8.7 
SmallCS Narrow Caribbean Seaway 22.7 26.1 -0.79 10.2 13.6 12.1 
CloseCS Close Caribbean Seaway 22.7 26.2 -0.67 10.4 16.3 16.6 
+SaltNNA Reduce freshwater flux  

(FF) into the  northern NA 
(NNA) to 1/3 for 8x 

22.9 26.0 -0.86 9.6 12.7 14.0 

+FreshNNA Triple FF into the NNA  22.9 25.9 -0.77 9.2 10.2 6.7 
+SaltTNA Reduce FF into the tropical 

NA (TNA) to 1/3  
22.9 26.1 -0.84 9.9 12.8 12.2 

+SaltNCS Reduce FF into the NNA to 
1/3 for SmallCS 

22.7 26.0 -0.98 10.6 15.8 16.6 

+SaltTCS Reduce FF into the TNA to 
1/3 for SmallCS 

22.7 25.7 -1.07 9.3 17.2 17.8 

“ + ” experiment is completed with MOM2, otherwise, experiment is completed with 
GENMOM. 
 “*” Linear analysis demonstrates a positive correlation between NAMOC and bathyal    
       temperature over the North Atlantic with 8x atmospheric pCO2:  
      TNA (1059 m) = 0.64 * NAMOC + 5.2, r2 = 0.93. 
NA is ~-0.9- -1.0 ‰ at 1059 m except in the CloseCS experiment, in which bathyal 
seawater 18Osw is as enriched as surface seawater 18Osw in the North Atlantic.  



107 
 

Figure 5-2. The changes of salinity fluxes converted from freshwater forcing 
(precipitation + runoff - evaporation) into the North Atlantic in the SaltNNA – 8x 
experiments (a); SaltTNA – 8x experiments (b); SaltNCS – SmallCS experiments (c); and 
SaltTCS - SmallCS experiments (d). Grey shading represents continents, purple and blue 
shading marks the region with reduced freshwater fluxes (positive salinity forcing), and 
yellow and red shading marks the region with enhanced freshwater fluxes (negative 
salinity forcing).  
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To test whether the influences of freshwater forcings vary with paleogeographic 

conditions, additional experiments were completed using with a narrow Carribean 

gateway (Table 5-1, SaltNCS, SaltTCS). All other surface meteorological forcings 

(temperature, wind stress) for MOM2 were taken directly from the 8x or SmallCS 

experiment. Each MOM2 experiment was run for 1500 years. All model results shown in 

this study represent the average of the final twenty years. 

 

5.3. Results 

5.3.1 Response of seawater temperatures and 18Osw 

Increasing atmospheric pCO2 from 2240 to 4480 ppmv leads to an increase in  

global mean annual temperature by ~4.0 °C (Table 5-1). Due to the snow-sea ice-albedo 

feedbacks, the warming is ~2.0 °C greater at high latitudes (Fig. 5-3a). Surface warming 

leads to reduced equilibrium fractionation of water oxygen isotopes especially at high 

latitudes. Consequently, precipitation 18Op is enriched by ~1.0-2.0‰ at middle latitudes 

and up to 5.7‰ over the Arctic region (not shown). In contrast, the changes in seawater 

18Osw are largely negligible except at the northern high latitudes (Fig. 5-3b). This is 

because the patterns of global atmospheric and oceanic circulations, which control the 

large-scale distribution of seawater 18Osw (Zhou et al., 2008), change little with 

atmospheric pCO2 (Poulsen et al., 2001, 2007). Unlike the open oceans, however, 

seawater 18Osw in the semi-closed Arctic Ocean mimics high-latitude precipitation 18Op, 

due to its limited connection with the open oceans (Poulsen et al., 2007; Zhou et al., 

2008).  
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Figure 5-3. Mean-annual zonal average sea-surface temperature (SST) (°C) (a), surface 
seawater 18Osw (‰) (b), bathyal seawater temperatures (at 1059 m) (°C) (c) for the 8x, 
16x, HiStand, CloseCS and SmallCS GENMOM experiments, and bathyal seawater 
temperatures (at 1059 m) (°C) for the SaltNNA, FreshNNA, SaltTNA, SaltNCS and 
SaltTCS MOM2 experiments (d). The openings of WIS and SA as well as salinity forcing 
barely change mean-annual zonal surface seawater temperatures and seawater 18Osw 
except at the Arctic latitudes and thus are not shown. 
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Unlike atmosphere pCO2, changes in regional paleogeography and freshwater 

forcing alter global mean annual SSTs only slightly (≤ 0.2 °C) (Table 5-1). Nonetheless, 

changes in regional SSTs and subsurface seawater temperatures are remarkable. The 

flooding of the Western Interior Seaway, northwestern Europe, and European shelf in the 

HiStand experiment (Fig. 5-1b) enhance northward transport of the warm, 18Osw-

enriched subtropical North Atlantic water. As a result, mean-annual zonal SSTs increase 

at the northern mid-to-high latitudes (Fig. 5-3a, blue line). Moreover, the thermocline 

seawater (~75-400 m) in the subtropical North Atlantic and European shelf-seas warms 

by ~2.0 °C. The slight warming (~0.5 °C) over the North Atlantic in the HiStand and 

OpenSA experiments (Table 5-1) is due to the opening of tropical South Atlantic (Fig. 5-

1), which leads to a warming of ~2.0 °C in the tropical North Atlantic. While 

narrowing/closing the Caribbean Seaway (SmallCS/CloseCS) barely influences zonally 

averaged SSTs (Fig. 5-3a), it warms the tropical North Atlantic by ~1.5 °C and cools the 

subpolar northern Pacific by ~1.0 °C, corresponding to reduced westward flow from the 

tropical North Atlantic to the Pacific Ocean at shallow depth (not shown). The responses 

of bathyal seawater temperatures are more pronounced. Flooding (HiStand) and 

increasing the northern North Atlantic freshwater forcing (FreshNNA) both decrease 

bathyal (> 900 m) temperatures, whereas narrowing/closing the Caribbean Seaway 

(SmallCS/CloseCS) and reducing the North Atlantic freshwater forcing (SaltNNA, 

SaltTNA, SaltNCS and SaltTCS) increase zonal bathyal temperatures by up to 2.0 °C at 

low latitudes (Fig. 5-3 c,d).  The changes in zonal bathyal temperatures originate from the 

North Atlantic and are caused by the variations in the North Atlantic meridional 

overturning circulation (NAMOC). In general, weakening of the NAMOC leads to 
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bathyal cooling and strengthening of the NAMOC leads to bathyal warming, regardless 

of the causes of NAMOC variations (Table 5-1). For example, with respect to the 8x 

experiment, NAMOC in the FreshNNA experiment weakens by 3.7 Sv (35.6%) and 

bathyal temperatures decrease by 0.2 °C globally and 1.0 °C in the North Atlantic. In 

contrast, NAMOC in the CloseCS experiment strengthens by 6.2 Sv (59.6%) and bathyal 

temperatures increase by 1.0 °C globally and 5.1 °C in the North Atlantic. 

The degree of the North Atlantic restriction also substantially influences the 

distribution of surface seawater 18Osw (Fig. 5-3b). As a result of the intensified 

exchanges among ocean basins in the HiStand experiment, mean-annual zonal surface 

18Osw increases by ~0.2 ‰ at low-to-mid latitudes and up to 2.6 ‰ at the northern high 

latitudes. On the contrary, due to the reduced westward flow, narrowing/closing the 

Caribbean Seaway (SmallCS/CloseCS) decreases the surface seawater 18Osw by ~0.3 ‰ 

in the northern Pacific Ocean and up to ~1.0 ‰ in the Arctic Ocean, as manifested in the 

zonal mean-annual surface 18Osw. Variations in seawater 18Osw largely disappear below 

~1000 m except in the CloseCS experiment, in which an enrichment of ~0.3‰ penetrates 

to 2000 m over the North Atlantic (Table 5-1). 

5.3.2 Response of the Atlantic carbonate 18Oc 

As most reported mid-Cretaceous marine carbonate 18Oc are from the Atlantic 

and its adjacent ocean basins, in this section we focus on the response of the Atlantic 

carbonate 18Oc to the prescribed regional and global forcing.  

The response of the Atlantic 18Oc to atmospheric pCO2, regional paleogeography 

and freshwater forcing varies remarkably in both magnitude and pattern as summarized 

below: (i) Doubling atmospheric pCO2 (16x) leads to a relatively uniform depletion of 
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~0.8‰ in the North and South Atlantic carbonate 18Oc (Fig. 5-4a). (ii) The opening of 

the tropical South Atlantic (HiStand and OpenSA) facilitates exchanges between the 

warm, saline, 18O-enriched tropical South Atlantic water and its adjacent tropical North 

Atlantic and subtropical South Atlantic waters and affects carbonate 18Oc in multiple 

ways (Fig. 5-4 b-c): a) the reduced zonal shallow seawater 18Osw gradient at the low-to-

mid latitudes causes a slight decrease (~0.3‰) at low latitudes and enrichment (~0.4-

1.0‰) at middle latitudes in the South Atlantic; b) enhanced formation of tropical South 

Atlantic warm intermediate water leads to a decrease of up to 0.6 ‰ to a depth of  > 1000 

m; c) reduced formation of warm deepwater in the tropical South Atlantic leads to an 

increase of  > 0.6‰ at depth; and d) slight warming of the tropical North Atlantic leads to 

a decrease of ~0.4‰. (iii) In the HiStand experiment, the NAMOC-induced cooling 

enhances the North Atlantic benthic 18Oc by ~0.3‰ and the subtropical thermocline 

warming decreases 18Oc by ~0.6‰ (Fig. 5-4b). (iv) The enhanced downwelling of 

warm, saline water in the tropical North Atlantic due to the narrowing/closing of 

Caribbean Seaway (SmallCS/CloseCS) leads to reduction in the North Atlantic benthic 

18Oc comparable to CO2-induced depletion (comparing Fig. 5-4 d-e with Fig. 5-4a). In 

addition, the depth of the maximum decrease increases by > 800 m with the fully closed 

seaway. Nonetheless, the responses of shallow 18Oc are negligible beyond 10 ºN. (v) 

Enhanced formation of warm intermediate water encouraged by decreasing freshwater 

forcing over the tropical (SaltTNA, SaltTCS) or northern North Atlantic (SaltNNA, 

SaltNCS) decreases benthic 18Oc by up to 1.0-1.5‰ (Fig. 5-4 f-h).  In addition, while the 

patterns of 18Oc depletion induced by changes in the northern North Atlantic are similar, 

the depletion caused by changes in the tropical North Atlantic is more remarkable in both
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Figure 5-4. Mean-annual, zonal-average carbonate 18Oc (‰ in PDB) in North and South 
Atlantic Oceans for the 16x – 8x experiments (a), HiStand – 8x experiments (b), OpenSA 
– 8x experiments (c), SmallCS – 8x experiments (d), CloseCS – 8x experiments (e), 
SaltNNA – FreshNNA experiments (f), SaltTNA– 8x experiments (g), and SaltTCS – 
SmallCS experiments (h). Slashed white shading marks continents. Stippled regions show 
that > 50% variations in carbonate 18Oc are caused by changes in seawater 18Osw, and 
nonstippled regions show that > 50% variations in carbonate 18Oc are due to changes in 
seawater temperatures. 18Oc is calculated based on an equation for non-photosymbiotic 
planktic foraminiferal 18Oc (Bemis et al., 1998: T (°C) = 16.5 - 4.8018Oc - 18Osw)) at 
the upper 150 m and an equation for benthic foraminiferal 18Oc (Shackleton, 1974: T 
(°C) = 16.9 - 4.0(18Oc - 18Osw)) below 150 m, using modeled temperatures and seawater 
18Osw.  
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magnitude and extent as a result of a more restricted Caribbean Seaway (comparing Fig. 

5-3g with Fig. 5-3h).  

 

5.4. Discussion 

Our model results indicate that changes in regional oceanography could contribute 

substantially to the depletion in marine carbonate 18Oc between Turonian and Albian, 

consistent with Poulsen et al. (2003). While Poulsen et al. (2003) did not exclude the 

possibility of a modest rise in atmospheric pCO2, our model results do not support the 

hypothesis of CO2-induced Turonian thermal maximum for three reasons. 

First, model results show that increasing atmospheric pCO2 leads to a relatively 

uniform decrease in marine carbonate 18Oc (warming) that is not observed in the marine 

isotope record. Observed 18Oc varies substantially with sampling sites and depths (Table 

5-2). Furthermore, Thiede et al. (1981) report that the western Mid-Pacific Mountains 

moved equatorward from ~17 °S in Albian to ~11 °S in Turonian based on the rotation of 

the Pacific Plate. Similarly, Clarke and Jenkyns (1999) estimate that the Exmouth Plateau 

drifted from ~53 °S to 47 °S from Albian to Turonian. In addition, the Demerara Rise was 

located at ~15 °N in the Albian and ~5 °N in the Turonian (Smith et al., 1994; Suganuma 

and Ogg, 2005). After correcting for these latitudinally induced changes using model 

18Osw gradients, temporal changes in carbonate 18Oc becomes insignificant at the 

Exmouth Plateau and Mid-Pacific Mountains in the Southern Hemisphere and decrease 

by more than 50% at the tropical Demerara Rise.  

Second, our model results show that enhanced formation of warm, saline 

intermediate water caused by the narrowing/closing of Caribbean Seaway can explain the 
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Table 5-2. Variations in observed carbonate 18Oc (Obv.18Oc) and paleo-latitudes of the 
sampling locations between Albian and Turonian, and adjusted 18Oc after removing the 
changes induced by equatorward drift of the sampling sites (Lat-adjust 18Oc), and 
model-estimated 18Oc due to the closure of Caribbean Seaway (CloseCS 18Oc). 
Location 1Paleo- 

latitude 
Obv. 
18Oc  

2Lat-adjust  

18Oc   

3CloseCS 
18Oc   

Reference  

Demerara 
Rise, NA 

15 °N- 
5 °N 

- 0.85 -0.20 0.04 Suganuma and Ogg 
(2005), Smith et al. 
(1994), Wilson et al. 
(2002), Bice et al. (2006) 

Exmouth 
Plateau 

53 °S- 
47 °S  

-0.55 -0.07 -0.14 Clarke and Jenkyns 
(1999) 

Mid-Pacific 
Mountains 

17 °S- 
11 °S 

-0.30 -0.09 -0.08 Thiede et al. (1981), 
 Clarke (2001) 

Falkland 
Plateau, SA 

61 °S- 
59 °S 

-2.00 
-1.50b 

-1.87 
-1.25 

-0.21 
-0.20 

Huber et al. (1995), Bice 
et al. (2003) 

Southern 
England  

38 °N- 
38 °N 

-0.50 -0.50 -0.33 Jenkyns et al. (1994), 
Voigt et al. (2004) 

Blake Nose, 
NA 

25 °N- 
25 °N 

0.72 
-1.00b 

0.72 
-1.00 

0.20 
-1.09 

Ogg and Bardot (2001), 
Huber et al. (2002) 

“1” The estimated Albian paleo-latitude is shown in the upper rows and Turonian latitude 
is shown in the lower row at each site. “2” 18Oc due to paleo-latitudes changes is 
calculated using seawater temperatures and 18Osw from the 8x experiments. “3” 18Oc 

due to the closure of CS is the 18Oc difference between the CloseCS and 8x experiments. 
“b” marks benthic 18Oc, others are shallow 18Oc. 
Model-estimated carbonate 18Oc are derived by using modeled seawater temperature and 
18Osw and the equation given by Anderson and Arthur (1983), Bemis et al. (1998), for 
planktic and Shackleton (1974) for bulk carbonate, planktic and benthic foraminifera, 
respectively.  
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corrected 18Oc to a large extent (compare Lat-adjust 18Oc and CloseCS 18Oc in 

Table 5-2) in the absence of a global warming (Table 5-1). This enhanced formation of 

tropical North Atlantic intermediate water is supported by the low Nd isotope values 

(MacLeod et al., 2011). The opening of the South Atlantic and sea-level rise could also 

lead to a modest decrease in carbonate 18Oc at the Demerara Rise and European shelf-

seas (Fig. 5-4b, c). Furthermore, model results reinforce previous claims that the large 

depletion in planktonic and benthic 18Oc at the Falkland Plateau could have been 

generated by local/regional changes such as freshwater dilution, mixing between warm 

water masses and the Southern Ocean cold water masses (Bice et al., 2003; Huber et al., 

2002; Poulsen et al., 2003). Taken together, this model-data comparison suggests that the 

reported depletion in carbonate 18Oc from the Albian to the Turonian is likely due to 

regional changes rather than global warming.  

Finally, terrestrial proxy data do not support a Turonian thermal maximum. 

Global warming should be recorded in terrestrial, as well as marine, and proxy data 

should be amplified at high latitudes. However, paleotemperatures derived from fossil 

flora at northern high latitudes (Herman and Spicer, 1996; Parrish and Spicer, 1988; 

Spicer et al., 2002) do not show increases coeval with 18Oc. 

The positive excursion in the low-resolution benthic 18Oc from the subtropical 

North Atlantic and its plausible coincidence with sea level fall and Milankovitch forcing 

have been used to suggest an orbital-driven mid-Cenomanian glaciation (Miller et al., 

2003). However, this hypothesis has been challenged by the absence of coeval 
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enrichment in planktonic 18Oc (Moriya et al., 2007; Ando et al., 2009). Variability of the 

North Atlantic intermediate/deep water circulation has then been proposed as a potential 

cause for the benthic 18Oc enrichment (Ando et al., 2009; Friedrich et al., 2008; Voigt et 

al., 2004). Our model results provide quantitative support for this idea. Model results 

consistently demonstrate that benthic 18Oc is sensitive to the changes in NAMOC, 

though the response of shallow 18Oc is more variable (Table 5-1 and Fig. 5-4). 

Furthermore, model results show that the variations in benthic 18Oc mainly reflect 

changes in seawater temperatures rather than 18Osw. Thus, positive benthic 18Oc 

excursions on Milankovitch scale may manifest regional circulation-induced cooling 

rather than glaciation-induced enrichment in seawater 18Osw. 

The timescale (sub-million year) of benthic 18Oc changes is difficult to explain in 

the absence of orbitally forced glaciation. We propose a possible link between orbital 

forcing and positive benthic 18Oc during mid-Cretaceous via the hydrological response 

(freshwater forcing). During times when boreal summer insolation (e.g. perihelion boreal 

summer with high eccentricity) is maximized, freshwater forcing over the North Atlantic 

would increase. This freshening would in turn diminish NAMOC, inducing a bathyal 

cooling and enrichment in benthic 18Oc. The sea-level fall may facilitate/intensify this 

NAMOC response by further isolating the North Atlantic basin. Such freshwater-induced 

NAMOC variation has also been reported for the warm Eocene using a different climate 

model (Bice et al., 1997), indicating that the NAMOC response is not geography or 

model dependent. Therefore, the positive benthic 18Oc excursions from North 
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Atlantic/Europe during the mid-Cenomanian or mid-Turonian (Bornemann et al., 2008; 

Galeotti et al., 2009; Stoll and Schrag, 2000; Voigt et al., 2004) could be induced by 

reduction in regional MOC rather than glaciation. What caused the mid-Turonian positive 

excursion in planktonic 18Oc reported by Bornemann et al. (2008) in the absence of 

glaciation? Considering that the excursion is mainly recorded in the carbonate test of the 

opportunistic taxon Hedbergella delrioensis, whose habitat depth is suggested to change 

with upper ocean stratification (Ando et al., 2010), it seems plausible that this taxon 

shifted to a slightly deeper, cooler environment when freshwater forcing intensified over 

the North Atlantic.  

In addition, model results confirm our previous conclusion that the degree of 

oceanic seaway/gateway restrictions could considerably influence surface seawater 

18Osw (Zhou et al., 2008). Results display that mean-annual zonal average surface 

seawater 18Osw could vary by ~0.5 ‰ at low-to-middle latitude and >1.0‰ by changing 

sea level and the restriction of Caribbean Seaway (Fig. 5-3b). Additional, a fully closed 

Caribbean Seaway enriched the North Atlantic seawater 18Osw by ~0.3‰ up to 200 m. 

Therefore, neglecting the variations in paleogeography and sea level could cause 

misinterpretation of the oxygen isotopic paleotemperatures by several degrees. 

 

5.5. Conclusions 

In conclusion, our model results suggest that variations in mid-Cretaceous marine 

carbonate 18Oc likely represent regional oceanographic changes rather than global 
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warming or glaciation. As the variations in simulated carbonate 18Oc are mostly due to 

changes in seawater temperature, our results are also applicable to other marine climate 

proxies such as TEX86 and Mg/Ca ratios. Our interpretation of the marine 18Oc data 

reconciles conflicting reports of continental glaciation during extreme warmth and rising 

surface temperatures during a fall in pCO2. 
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Chapter VI  

Conclusions 

 

The nature of mid-Cretaceous climate has challenged our understanding of 

climate dynamics under extreme greenhouse conditions and questioned our prediction of 

future greenhouse climate. This thesis investigates several long-standing problems in 

mid-Cretaceous using state-of-the art coupled ocean-atmosphere GCMs. In summary, this 

study suggests that boundary conditions including paleogeography, sea level, and 

atmospheric pCO2 can lead to remarkable changes in mid-Cretaceous climate system and 

distribution of marine stable oxygen isotope composition. This chapter summarizes the 

main findings in light of the questions asked in Chapter I, discusses the major 

contributions and limitations, and concludes with possible future directions for the mid-

Cretaceous study based on this thesis.  

 

6.1. Results summary 

Chapter II: This chapter presents the first mid-Cretaceous simulations with fully 

dynamic interactions of ocean, atmosphere and vegetation. In review of the limitations of 

previous studies, we re-examine the mid-Cretaceous climate system under high 

atmospheric pCO2 using CCSM3 with an optional dynamic vegetation component. Model 

results demonstrate that inclusion of vegetation and increase in atmospheric pCO2 both 

lead to global warming, especially at high latitudes. With 16x pre-industrial levels 
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atmospheric pCO2, CCSM3 could sustain the polar vegetation and warmth as indicated 

by proxies except in the Arctic region. Therefore, other mechanisms in addition to 

vegetation and high atmospheric pCO2 are required to support the suggested polar 

warmth. Furthermore, inclusion of vegetation and increase in atmospheric pCO2 both 

weaken the atmospheric Hadley circulation and oceanic horizontal/meridional 

circulation. Consequently, poleward heat transport via the atmosphere and ocean 

decreases.  

Chapter III: Using the same model and experiments as in Chapter II, this chapter 

explores how transient climate variability varies with mean climate state. Time series 

analysis shows that unlike the modern experiment and mid-Cretaceous experiment with 

pre-industrial level atmospheric pCO2, mid-Cretaceous experiment with 10x pre-

industrial levels atmospheric pCO2 experiences an abrupt and persistent Arctic warming. 

This warming is initiated by the natural variability of poleward oceanic heat transport and 

thus provides a new polar warming mechanism without modification of the existing 

model physics. The unforced Arctic warming induces an intensification of the oceanic 

meridional overturning circulation, suggesting that there may be multiple states of 

overturning and the onset/demise of ocean anoxia events could be induced by natural 

variability in the ocean-atmosphere system. 

Chapter VI: In this chapter, we develop the first coupled ocean-atmosphere GCM 

(GENMOM) to simulate the mid-Cretaceous marine seawater δ18Osw. This model is able 

to capture the large-scale distribution of modern precipitation and seawater δ18Osw. A 

comparison between the modern simulation and the mid-Cretaceous simulation with 8x 

pCO2 reveals that mid-Cretaceous surface seawater δ18Osw is more depleted by ~1.3‰ at 
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low-to-mid latitudes and > 2.0‰ at the northern high latitudes than modern. The 

difference in latitudinal seawater δ18Osw distribution between the modern and mid-

Cretaceous are attributed to equilibrium fractionation during surface evaporation at 

lowThe unforced Arctic warming induces an intensification of the oceanic meridional 

overturning circulation, suggesting that there may be multiple states of overturning and 

the onset/demise of ocean anoxia events could be induced by natural variability in the 

ocean-atmosphere system. Chapter VI: In this chapter, we develop the first coupled 

ocean-atmosphere GCM (GENMOM) to simulate the mid-Cretaceous marine seawater 

δ18Osw. This model is able to capture the large-scale distribution of modern precipitation 

and seawater δ18Osw. A comparison between the modern simulation and the mid-

Cretaceous simulation with 8x pCO2 reveals that mid-Cretaceous surface seawater δ18Osw 

is more depleted by ~1.3‰ at low-to-mid latitudes and > 2.0‰ at the northern high 

latitudes than modern. The difference in latitudinal seawater δ18Osw distribution between 

the modern and mid-Cretaceous are attributed to equilibrium fractionation during surface 

evaporation at low latitudes, enhanced low-to-high latitude vapor transport, and an 

increased partitioning of 18O from the surface into the deep ocean at high latitudes in the 

Cretaceous. Moreover, we also find that regional seawater 18O is significantly 

influenced by the paleobathymetry and the resolution of oceanic gateways, boundary 

conditions that are not well known for the past. Therefore, oxygen isotope 

paleothermometry using conventional assumptions of global mean seawater δ18Osw or 

global mean corrected by modern latitudinal gradient overestimates the mid-Cretaceous 

sea-surface temperatures, especially at high latitudes. As a result, the application of 

simulated seawater δ18Osw could reduce the model-data mismatch especially at mid-to-
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high latitudes. 

Chapter V: Based on the findings of Chapter VI, this chapter carries out a suite of 

sensitivity experiments to quantify the effects of pCO2, eustatic sea level, regional 

paleogeography and freshwater forcing on marine seawater and carbonate 18O. Results 

show that the distribution of surface seawater δ18Osw is sensitive to the restriction degree 

of the proto- North Atlantic. While increasing pCO2 leads to a relatively uniform surface 

and subsurface depletion in carbonate 18Oc. Changes in sea level, regional 

paleogeography and freshwater forcing have a substantial influence on carbonate 18Oc 

that varies with latitude and depth. And the changes largely signal temperature variations. 

By comparing model results with reported marine 18Oc, we find that variations in mid-

Cretaceous marine carbonate 18Oc likely represent regional oceanographic changes 

rather than global warming or glaciation. 

 

6.2. Contribution and implication 

The new findings in this dissertation not only increase our understanding of the 

mid-Cretaceous greenhouse climate, but also have important implications for the 

geological paleoclimate reconstruction and paleoclimate modeling. First, by turning 

on/off dynamic vegetation model and varying atmospheric pCO2 in the fully coupled 

CCSM3, this dissertation reveals enhanced atmospheric pCO2 and vegetation cover are 

both leads to a global warming and a weakening of Hadley Circulation, oceanic 

baratropic streamfunction and meridional overturning circulation. The dynamic effects of 

vegetation discovered here have not been generally recognized before. Second, our time 

series analysis indicates that there could be high-latitude tipping points/thresholds in a 
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warm climate first. Third, our novel model with water isotope tracking capabilities 

demonstrates that the distribution of seawater δ18Osw in the distant past could vary 

significantly from that of modern. Therefore, using modern latitudinal seawater δ18Osw or 

global mean value could bias oxygen isotope paleotemperatures by several degrees. The 

widely accepted notion of "equable climate" with low equator-to-pole thermal gradient 

may be at least partially due to the inappropriate assumptions of seawater δ18Osw. Fourth, 

the extensive sensitivity experiments we have designed in this study reveal that 

local/regional oceanography changes could significantly depart from global climate 

changes. One should keep this in mind when attempting to link the limited geological 

proxy data to global climate changes. Fifth, the two GCMs used in this studies both 

perform best with the upper limit of the mid-Cretaceous pCO2 estimates (16x pre-

industrial levels), implying that either CO2 sensitivity in GCMs is much lower than the 

true value, or most of the previous studies underestimate the mid-Cretaceous atmospheric 

pCO2, or the concentrations of some other greenhouse gases (e.g. CH4) were also high 

during the mid-Cretaceous. 

 

 

6.3. Limitation 

Generally speaking, in addition to uncertainty inheriting from model 

parameterization (e.g. cloud), the simulation of pre-Quaternary climate is subject to 

uncertainties associated with limited knowledge on boundary conditions (e.g., pCO2, 

pCH4, orbital parameters, paleogeography/topography/bathymetry etc.) and initial 

conditions. For a similar reason, due to our lack of understanding of past ecosystems, 



125 
 

paleo-vegetation modeling relies on a modern understanding of PFTs and their 

bioclimatic, physiological, and dynamic relationships that may not be entirely appropriate 

for the mid-Cretaceous. Furthermore, climate models used in this dissertation are too 

coarse to realistically capture the effects of local/regional forcings in the semi-isolated 

Arctic Ocean and Tethys Sea. The different spatial resolutions between models and 

geological proxy also complicate the comparison between model results with proxy data. 

 

6.4. Recommendations for future research 

The implication and limitations of this thesis suggest a few possible future 

directions for the mid-Cretaceous climate research: 

1. Testing high-latitude climate stability with different models and climate 

conditions. In this dissertation, we find that there could be high-latitude thresholds in a 

warm climate for the first time. This high-latitude instability contributes significantly to 

changes in high latitude climate and global meridional overturning circulation, which has 

implications for the future. The robustness of this novel discovery needs to be test using 

different models under modern and past warm conditions.  

2. The effects of Earth orbital parameters on climate and ocean circulation. 

In this dissertation, we hypothesize that variation in orbital configuration may contribute 

substantially to the oceanic reorganization in the Tethys Sea via freshwater flux. 

Implementing transient orbital configurations to the fully coupled ocean-atmosphere 

model with water isotope tracking capability would provide a more comprehensive view 

of the mid-Cretaceous climate change and water isotope evolution on orbital scale. 

3. The effects of more realistic mid-Cretaceous vegetation on climate. In this 



126 
 

dissertation, we find that vegetation could not only change regional temperature and 

hydrological cycle, but also influence large-scale atmospheric and oceanic circulation. 

However, the vegetation model used here (DGVM) is based on modern understanding of 

dominant vegetation species and their bioclimatic, physiological and dynamic 

relationships. A good example would be the dominance of angiosperms. The modern 

angiosperm-dominated tropical forests may not have appeared until the Paleocene 

(Burnham and Johnson, 2004). Yet our simulations show extensive tropical forests 

resembling the modern distribution, an overestimation that may be linked to the inclusion 

of PFTs that represent modern angiosperm trees. Consequently, CLM-DVGM may 

overestimate the impact of low-latitude vegetation on mid-Cretaceous climate, because 

angiosperms have a much larger impact on hydrology relative to other plants due to their 

high transpiration capacity (Boyce and Lee, 2010; Boyce et al., 2010). Moreover, without 

an upper limit for CO2 physiological effects, we also exclude CO2 physiological effects 

as the model fails when with 10x physiological pCO2. Therefore, a more realistic 

representation for mid-Cretaceous vegetation is desirable to further assess the vegetation-

climate interaction during the warm mid-Cretaceous. 

4. Reduce uncertainties and improve precision for paleo-reconstruction. 

Integrating proxy data and climate model results is probably the most powerful and 

effective approach to improve understanding of the Earth system processes (in the warm 

mid-Cretaceous). However, the large inconsistencies and uncertainties in proxy 

reconstruction of paleoclimate and boundary conditions (e.g., paleogeography, pCO2) 

limit the implication of GCM results. More accurate reconstructions will benefit studies 

of both paleoclimate and climate modeling. 
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5. The effects of small-scale tectonic events on regional oceanography with 

high- resolution regional models. Sensitivity tests in this dissertation reveal that the 

opening/closing of some critical yet small seaways/gateways could contribute 

significantly to local/regional oceanographic changes. Due to the coarse resolutions of the 

GCMs used in this dissertation, we have to either neglect or exaggerate these 

seaways/gateways. Alternatively, high-resolution regional models taking boundary 

conditions from GCMs are capable to simulate a more realistic oceanic response to those 

small-scale tectonic changes. 

6. The correlation between mid-Cretaceous climate change, biogeochemistry 

and marine events. The periodic Oceanic Anoxia Events (OAEs) during the Cretaceous, 

characterized by the black carbon-rich sediments, are among the best targets to explore 

the interactions among the physical, chemical, biological processes and climate change. 

Results from coupled ocean-atmosphere GCMs in this thesis offer plausible qualitative 

links between the climate change and the OAEs. We find that climate becomes warmer 

and wetter and the ocean becomes more stratified with increasing atmospheric pCO2 and 

inclusion of vegetation. This warmer and wetter climate accelerates terrestrial 

weathering, which presumably enhances oceanic productivity by providing more 

nutrients into the ocean.  A stratified ocean leads to reduced oxygen fugacity in the ocean.  

The combination of these two processes suggests that the high atmospheric pCO2 and 

extensive vegetation cover during Cretaceous promotes oceanic anoxia events. This 

interpretation, however, is limited due to the absence of direct quantitative evidence in 

the general circulation models. Developing a biogeochemical module for the general 

circulation models is thus necessary to quantitatively understand the relationship between 
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climate change and marine biogeochemical events. 
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