
Architecting Efficient Data Centers

by

David Max Meisner

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2012

Doctoral Committee:

Assistant Professor Thomas F. Wenisch, Chair
Professor Trevor N. Mudge
Associate Professor Kevin Pipe
Assistant Professor Prabal Dutta
Associate Professor Christoforos Kozyrakis, Stanford University

c© David Max Meisner 2012

All Rights Reserved

ACKNOWLEDGEMENTS

There are many people I would like to thank who have supported me and made this
work possible. First, a great thanks to my advisor, Tom, for his guidance. Clearly, this
work would not be possible without his support. I also owe a great deal of gratitude to my
coauthors: Luiz Barroso, Ricardo Bianchini, Qingyuan Deng, Brian Gold, Steven Pelley,
Luiz Ramos, Chris Sadler, Jack Underwood, James VanGilder, Wolf Weber, Junjie Wu, and
Pooya Zandevakili. Also, I wish to acknowledge Laura Faulk and DCO for helping obtain
the PowerNap traces. Thanks so much to my family – Dad, Mom, Mandy, Peter and Rachel
– for their support and patience throughout graduate school. And a great thank you to all
my friends for making graduate school tolerable. Finally, I would like to thank my thesis
committee for their involvement and feedback.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vii

LIST OF TABLES . x

ABSTRACT . xi

CHAPTER

1. Introduction . 1

1.1 Server underutilization and inefficiency 2
1.2 PowerNap and DreamWeaver . 2
1.3 Online Data-Intensive Services 3
1.4 Evaluation Methodology . 5
1.5 Efficient Cluster Provisioning . 6
1.6 Thesis Organization . 7

2. Background . 8

2.1 Data Center Efficiency Design Goals and Metrics 8
2.1.1 Computational Efficiency 9
2.1.2 Energy-Proportionality 9
2.1.3 Infrastructure Efficiency 10

2.2 Taxonomy of Low-Power Modes 10
2.2.1 Idle Low-Power Modes 10
2.2.2 Active Low-Power Modes 11

2.3 Power Management Challenges 11

3. Related Work . 13

3.1 Power Management . 13
3.1.1 Idle Low-Power Modes 13
3.1.2 Active Low-Power Modes 14

iii

3.1.3 Cluster-grain techniques 14
3.1.4 Scheduling for energy efficiency 14
3.1.5 Low-power Processors 15

3.2 Modeling and Simulation . 15
3.2.1 Power Modeling . 15
3.2.2 Data Center Simulation 16

3.3 Memory-resident key-value stores 16

4. Understanding Server Utilization and Idleness 18

4.1 Understanding Server Utilization 18
4.2 Quantifying and Analyzing Idleness 22

5. Evaluation Methodology . 28

5.1 Requirements of Data Center-level Evaluation 29
5.2 Shortcomings of Existing Methodologies 30
5.3 Stochastic Queuing Simulation 31

5.3.1 Overview . 32
5.3.2 SQS Methodology . 32
5.3.3 Workload Models . 33
5.3.4 Output Variables . 35
5.3.5 Simulation Sequence 37

5.4 Parallelization . 39
5.4.1 Distributed Simulation 39

5.5 Evaluation . 39
5.5.1 Case Study - Power Capping 39
5.5.2 Performance . 42
5.5.3 Parallel Simulation . 43

5.6 Peak-Power Modeling . 43
5.6.1 Data Center Power Provisioning 45
5.6.2 Understanding SMPSU Behavior 46
5.6.3 Server Peak Power Accounting 51

6. The PowerNap Server Architecture -
A Coordinated Idle Low-Power Mode 55

6.1 PowerNap . 56
6.1.1 PowerNap Performance and Power Model 56
6.1.2 Analysis . 59
6.1.3 Implementation Requirements 60

6.2 Emulating PowerNap Transition Performance Impact 62
6.2.1 Cache Effects . 62
6.2.2 Transition Latency . 62

6.3 PowerNap Mechanisms . 63

iv

6.3.1 Hardware Mechanisms 63
6.3.2 Software Mechanisms 65
6.3.3 Evidence of PowerNap Capabilities in the Wild 66

6.4 Shortcomings . 67
6.4.1 Multicore Servers . 67
6.4.2 Highly Utilized Services 68
6.4.3 Reliability . 68

7. DreamWeaver: Architectural Support for Deep Sleep 70

7.1 DreamWeaver . 73
7.1.1 Hardware mechanisms: the Dream Processor 74
7.1.2 Weave Scheduling . 75

7.2 Prototype Evaluation . 76
7.2.1 Methodology . 77
7.2.2 Results . 77

7.3 Power Savings Evaluation . 78
7.3.1 Methodology . 78
7.3.2 Results . 80
7.3.3 Discussion . 85

8. Redundant Array for Inexpensive Load Sharing (RAILS) 87

8.1 Power Supply Unit background 88
8.2 RAILS Design . 90
8.3 Evaluation . 91
8.4 Cost Analysis . 94

9. Online Data-Intensive Services - The Need for Coordinated Active
Low-Power Modes . 95

9.1 Online Data-Intensive Services 98
9.1.1 Understanding Online Data-Intensive Services 98

9.2 Cluster-scale Characterization . 100
9.2.1 Experimental Methodology 100
9.2.2 Activity Graphs: Compactly representing component-

level utilization . 101
9.2.3 Characterization Results 102
9.2.4 Analysis: Evaluating Available/Potential Power Modes . 104

9.3 Leaf Node Performance Model 105
9.3.1 Modeling LService . 106
9.3.2 Modeling LWait . 108
9.3.3 Validation . 110

9.4 Evaluating Latency-Power Tradeoffs 110

v

9.4.1 Active system power modes: Voltage and frequency
scaling . 111

9.4.2 Processor idle low-power modes 112
9.4.3 Full-system Power Modes: Query batching with Power-

Nap . 113
9.4.4 Comparing Power Modes 114

10. Architecting Cost-Effective Data Center Memcached Systems 116

10.1 Background . 119
10.1.1 Memcached Clusters 119

10.2 Methodology . 120
10.2.1 Understanding memcached as a workload 121
10.2.2 Load Testing Framework 123
10.2.3 Systems under tests . 123

10.3 Single-server Characterization . 124
10.3.1 Microarchitecural Inefficiency 125
10.3.2 Multicore non-scalability 128
10.3.3 I/O subsystem: Quality vs. quantity 129

10.4 Designing cost-optimal memcached clusters 131
10.4.1 Design Space Exploration 131
10.4.2 Understand memcached cluster economics 132
10.4.3 Implications of the optimal design space 134
10.4.4 The challenge of scaling a cluster 136

10.5 Summary . 137

11. Conclusion . 138

Bibliography . 138

vi

LIST OF FIGURES

Figure

2.1 Low-power mode taxonomy. 11
4.1 Server utilization histogram. 19
4.2 Enterprise data center utilization traces. 19
4.3 Server power breakdown. 20
4.4 Busy and idle period cumulative distributions. 21
4.5 Busy and idle period weighted cumulative distributions. 21
4.6 Fine-grain utilization traces. 21
4.7 Full-system idleness varies widely as a function of arrival and request

size patterns. 23
4.8 Gamma distribution. 25
4.9 Effect of Cv on system idleness. 25
4.10 Effect of Cv on median idle period length. 25
5.1 Overview of the SQS methodology. 31
5.2 SQS workload model. 34
5.3 The sequence of phases in a SQS simulation. 36
5.4 Parallel execution on a cluster. 38
5.5 Simulation time scaling. 40
5.6 Sensitivity to workload distribution variance. 40
5.7 Sensitivity to accuracy and target variables 42
5.8 Parallel simulation. 42
5.9 Example data center trace: Average utilization masks important spikes. 44
5.10 Example PDU circuit breaker curve. 45
5.11 Simplified switched-mode power supply design and instrumentation

to measure power. 47
5.12 Systems at idle. 48
5.13 Effect of modulation frequency. 50
5.14 Delay of a step function in utilization. 50
5.15 Frequency response. 52
5.16 Simplified server SMPSU model. 52
5.17 Predicted peak power closely follows measured value. 53
6.1 PowerNap. 56
6.2 PowerNap and DVFS analytic models. 57
6.3 PowerNap and DVFS power and response time scaling. 59

vii

6.4 Cache effect. 63
6.5 Emulating PowerNap. 63
6.6 M/M/k analysis of full-system idleness under weak scaling. 68
7.1 Voltage and frequency scaling. 71
7.2 Full-system idle low-power mode. 72
7.3 DreamWeaver. 73
7.4 Weave Scheduling example. 76
7.5 DreamWeaver prototype vs. simulation validation. 78
7.6 Comparison of power savings for 4-core system. 80
7.7 Comparison of power savings for 32-core system. 81
7.8 Sensitivity to transition time. 83
7.9 Sensitivity to number of cores. 84
7.10 Sensitivity to utilization. 85
8.1 Power supply efficiency. 88
8.2 RAILS PSU design. 90
8.3 Power supply pricing. 92
8.4 Power Delivery Solution Comparison. 93
9.1 Example diurnal pattern in queries per second (QPS) for a Web search

cluster. 96
9.2 Example leaf node query latency distribution at 65% of peak QPS. . . 99
9.3 Web search cluster topology. 99
9.4 Idealized low-power mode. 101
9.5 CPU activity graphs. 103
9.6 Memory activity graphs. 103
9.7 Disk activity graphs. 103
9.8 Power savings potential for available low-power modes. 105
9.9 Per-query slowdown regression. 107
9.10 Arrival process greatly influences quantile predictions. 109
9.11 Distribution of time between query arrivals. 109
9.12 Distribution of query service times. 110
9.13 Performance model validation. 110
9.14 System power vs. latency trade-off for processor and memory scaling. 112
9.15 System power savings for CPU idle low-power modes. 113
9.16 System power vs. latency trade-off for query batching with PowerNap.114
9.17 Power consumption at each qps level for a fixed 95th-percentile in-

crease. 115
10.1 Memcached performance decomposition. 117
10.2 Example cluster operations. 120
10.3 Workload characteristics. 121
10.4 Microarchitectural inefficiency with Memcached. 125
10.5 Caching behavior. 126
10.6 Virtual memory behavior. 127
10.7 Branch prediction. 128
10.8 Memached’s lack of scalability. 129
10.9 NIC features. 130

viii

10.10 Scaling a memcached cluster. 133
10.11 Understanding design space optimization decisions. 135
10.12 Memcached cluster design space exploration. 136

ix

LIST OF TABLES

Table

5.1 Power model assumptions. 41
5.2 Systems under test. 49
6.1 Per-workload energy savings and response time penalty. 61
6.2 Component power consumption. 64
7.1 Server power model. 79
8.1 Relative PSU density. 91
8.2 Power and cost comparison. 94
9.1 Low-power mode characteristics. 105
9.2 Typical server power breakdown. 112
9.3 Processor idle low-power modes. 113
10.1 System under test (SUT). 123
10.2 Server economics. 134

x

ABSTRACT

Architecting Efficient Data Centers
by

David Max Meisner

Chair: Thomas F. Wenisch

Data center power consumption has become a key constraint in continuing to scale
Internet services. As our society’s reliance on “the Cloud” continues to grow, companies
require an ever-increasing amount of computational capacity to support their customers.
Massive warehouse-scale data centers have emerged, requiring 30MW or more of total
power capacity. Over the lifetime of a typical high-scale data center, power-related costs
make up 50% of the total cost of ownership (TCO). Furthermore, the aggregate effect of
data center power consumption across the country cannot be ignored. In total, data center
energy usage has reached approximately 2% of aggregate consumption in the United States
and continues to grow.

This thesis addresses the need to increase computational efficiency to address this grow-
ing problem. It proposes a new classes of power management techniques: coordinated

full-system idle low-power modes to increase the energy proportionality of modern servers.
First, we introduce the PowerNap server architecture, a coordinated full-system idle low-
power mode which transitions in and out of an ultra-low power nap state to save power
during brief idle periods. While effective for uniprocessor systems, PowerNap relies on
full-system idleness and we show that such idleness disappears as the number of cores
per processor continues to increase. We expose this problem in a case study of Google
Web search in which we demonstrate that coordinated full-system active power modes are
necessary to reach energy proportionality and that PowerNap is ineffective because of a
lack of idleness. To recover full-system idleness, we introduce DreamWeaver, architectural
support for deep sleep. DreamWeaver allows a server to exchange latency for full-system

xi

idleness, allowing PowerNap-enabled servers to be effective and provides a better latency-
power savings tradeoff than existing approaches. Finally, this thesis investigates workloads
which achieve efficiency through methodical cluster provisioning techniques. Using the
popular memcached workload, this thesis provides examples of provisioning clusters for
cost-efficiency given latency, throughput, and data set size targets.

xii

CHAPTER 1

Introduction

Data center efficiency has quickly become a first-class design goal [33]. The emergence
of Warehouse-Scale Computers (WSC), stadium-sized buildings with tens to hundreds of
thousands of servers, has fundamentally shifted the economies of scale in running Internet-
scale services. Construction and operation of these facilities is extremely costly and effi-
cient design is essential to driving down these costs. Currently, energy and power related
costs make up half of a data center’s total cost of ownership [30]. Furthermore, energy and
power constraints are typically the limiting factor in adding more servers to a given facility
forcing the costly construction of new installations.

In aggregate, data center energy consumption is undergoing alarming growth. In 2012,
U.S. data centers are projected to consume 2% of electricity usage in the United States
[106]. Unfortunately, much of this energy is wasted by inefficient design. This waste is
costly to corporations in operational and capital expenditures and also creates an environ-
mental burden with an unnecessary carbon footprint.

This thesis proposes methods for efficient data center design based on the behavior of
modern workloads and the inherent characteristics of server hardware. There are three ma-
jor components of this thesis. First, it establishes the importance of coordinated full-system

low-power modes. We demonstrate that this new class of low-power modes is essential in
achieving energy-proportional behavior with acceptable latency for many workloads. Sec-
ond, to evaluate these power savings approaches, we create an evaluation methodology for
understanding data center workload behavior and the effect of low-power management on
the latency of these workloads. Finally, we will address efficient cluster-level design, using
the popular memcached workload.

1

1.1 Server underutilization and inefficiency

A major source of data center inefficiency is due to server idle power and non-energy-
proportional operation. At idle, current servers still draw about 60% of peak power [32,
73, 114]. In typical data centers, average utilization is only 20-30% [32, 45]. Low utiliza-
tion is endemic to data center operation: strict service-level agreements force operators to
provision for redundant operation under peak load. Idle-energy waste is compounded by
losses in the power delivery and cooling infrastructure, which increase power consumption
requirements by as much as 50-100% [133]. Concern over idle-energy waste has prompted
calls for a fundamental redesign of each computer system component to consume energy
in proportion to utilization [32].

Ideally, we would like to simply turn idle systems off. Unfortunately, a large fraction
of servers exhibit frequent but brief bursts of activity [34, 45]. User demand often varies
rapidly and/or unpredictably, making dynamic consolidation and system shutdown diffi-
cult. Furthermore, many Internet-scale services distribute their data set over a cluster of
machines [29, 123]; turning servers off will impact data availability [117].

1.2 PowerNap and DreamWeaver

This thesis proposes the PowerNap server architecture, a coordinated full-system idle

low-power mode, in Chapter 6. With PowerNap, we design the entire system to transition
rapidly between a high-performance active state and a minimal-power nap state in response
to instantaneous load. Rather than requiring components that provide fine-grain power-
performance trade-offs, PowerNap simplifies the system designer’s task to focus on two
optimization goals: (1) optimizing energy efficiency while napping, and (2) minimizing
transition time into and out of the low-power nap state.

Unfortunately, because current server software architectures leverage multicore hard-
ware using request-level parallelism, full-system idleness is growing scarce (even under
light utilization) as more cores and components are integrated in a single machine. Because
they are already written to process independent requests in parallel, many server applica-
tions can achieve good performance scalability by simply using additional cores to serve
more concurrent requests. This parallelism strategy is a form of weak scaling (i.e, solving
a larger problem size in a fixed amount of time, as opposed to strong scaling where a fixed
problem size is solved in a reduced amount of time)—scalability is achieved by increasing
request bandwidth rather than per-request speedup. However, increasing the number of
independent requests has the side-effect of undermining the applicability of high-leverage

2

idle low-power modes—busy and idle periods of individual cores do not align, precluding
full-system sleep.

To address the lack of idleness in multicore systems, in Chapter 7 we propose DreamWeaver,
architectural support for deep sleep. DreamWeaver is composed of a low-power Dream
Processor that intercepts requests sent to a server and uses Weave Scheduling to create
artificial idle periods in exchange for latency. Weaver Scheduling is based on two key con-
cepts: (1) stall execution and nap any time that any core is unoccupied, but (2) constrain
the maximum amount of time any request may be stalled. The key distinguishing feature of
Weave Scheduling that it will preempt execution to enter the nap state when even a single
core becomes idle (i.e., a request completes), provided that no active request has exhausted
its allowable stall time. Thus, DreamWeaver tries to operate a server only when all cores
are utilized—its most efficient operating point.

Whereas many mechanisms required by PowerNap can be adapted from mobile and
handheld devices, one critical subsystem of current blade chassis falls short of meeting
PowerNap’s energy-efficiency requirements: the power conversion system. PowerNap re-
duces total ensemble power consumption when all blades are napping to only 6% of the
peak when all are active. Power supplies are notoriously inefficient at low loads, typically
providing conversion efficiency below 70% under 20% load. These losses undermines
PowerNap’s energy efficiency.

Directly improving power supply efficiency implies a substantial cost premium. In-
stead, we introduce the Redundant Array for Inexpensive Load Sharing (RAILS) in Chap-
ter 8, a power provisioning approach where power draw is shared over an array of low-
capacity power supply units (PSUs) built with commodity components. The key innova-
tion of RAILS is to size individual power modules such that the power delivery solution
operates at high efficiency across the entire range of PowerNap’s power demands. In addi-
tion, RAILS provides N+1 redundancy, graceful compute capacity degradation in the face
of multiple power module failures, and reduced component costs relative to conventional
enterprise-class power systems.

1.3 Online Data-Intensive Services

Although PowerNap is highly effective for traditional workloads, in this thesis we ex-
amine, for the first time, power management for a class of data center workloads, which we
refer to as Online Data-Intensive (OLDI) in Chapter 9. This workload class would bene-
fit drastically from energy proportionality because it exhibits a wide dynamic load range.
OLDI workloads are driven by user queries/requests that must interact with massive data

3

sets, but require responsiveness in the sub-second time scale, in contrast to their offline
counterparts (such as MapReduce computations). Large search products, online advertis-
ing, and machine translation are examples of workloads in this class. Although the load on
OLDI services varies widely during the day, their energy consumption sees little variance
due to the lack of energy proportionality of the underlying machinery.

This thesis observes that energy-proportional operation can be achieved for lightly uti-
lized servers with full-system, coordinated idle low-power modes. Such a technique works
well for workloads with low average utilization and a narrow dynamic range, a common
characteristic of many server workloads. Other work observes that cluster-level power
management (e.g., using VM migration and selective power-down of servers) can enable
energy-proportionality at the cluster level even if individual systems are far from energy
proportional [165].

As we will show, full-system idle low-power modes fare poorly for OLDI services
because these systems have a large dynamic range and, though sometimes lightly loaded,
are rarely fully idle, even at fine time scales. Cluster-grain approaches that scale cluster
size in response to load variation are inapplicable to OLDI services because the number
of servers provisioned in a cluster is fixed. Cluster sizing is determined primarily based
on data set size instead of incoming request throughput. For a cluster to process an OLDI
data set for even a single query with acceptable latency, the data set must be partitioned
over thousands of nodes that act in parallel. Hence, the granularity at which systems can
be turned off is at cluster- rather than node-level.

Fundamentally, the architecture of OLDI services demands that power be conserved
on a per-server basis; each server must exhibit energy-proportionality for the cluster to
be energy-efficient, and the latency impact of any power management actions must be
limited. We find that systems supporting OLDI services require a new approach to power
management: accordingly we demonstrate the need for a coordinate full-system active low-

power mode in Chapter 9. We demonstrate that neither power management of a single
server component nor uncoordinated power management of multiple components provide
desirable power-latency tradeoffs.

We report the results of two major studies to better understand the power manage-
ment needs of OLDI services. First, we characterize a major OLDI workload, Google
Web Search, at thousand-server, cluster-wide scale in a production environment to expose
the opportunities (and non-opportunities) for active and idle low-power management. We
introduce a novel method of characterization, activity graphs, which enable compact repre-
sentation of the activity levels of server components. Activity graphs provide designers the
ability to identify the potential of per-component active and idle low-power modes at vari-

4

ous service load levels. Second, we perform a study of how latency constrains this potential,
making power management more difficult. We construct and validate a performance model
of the Web Search workload that predicts the 95th-percentile query latency under different
low-power modes. We demonstrate that our framework can predict 95th-percentile latency
within 10% error. Using this framework, we explore the power-performance tradeoffs for
available and future low-power modes.

1.4 Evaluation Methodology

In order to evaluate these power management approaches, we require a new evaluation
methodology. Until now, the systems community has enjoyed a large number of tools for
evaluating desktop and server architectures [13, 39, 48, 120, 169, 174]. However, these
tools often require hours to simulate only seconds of real time for a single machine; at-
tempting to simulate tens, let alone thousands, of machines quickly becomes prohibitive.

The lack of scalable simulation tools has limited past WSC research to either measure-
ment studies of existing deployments, or analysis via theoretical and statistical models.
Measurement studies, though valuable, can explore only existing architectures and require
access to multi-million dollar facilities. Even for the few academic and industrial research
teams with access to such facilities, experimentation is typically limited to non-intrusive
monitoring, since these facilities host the mission-critical operations of their owners. An-
alytic approaches typically require numerous simplifying assumptions and cannot capture
detailed interactions among the components of a WSC. Moreover, even well-understood
modeling approaches, for example queuing networks (on which our methodology is based),
rapidly become analytically intractable as the size and complexity of the model grows.

In Chapter 5 we introduce Stochastic Queuing Simulation (SQS) a scalable, data center-
level evaluation methodology. At its core, SQS is a methodology for system characteriza-
tion and discrete-event simulation to enable quantitative exploration of data center-level
challenges, such as performance optimization, power provisioning, power management,
distributed data placement, and fault-tolerant design. SQS incorporates a number of tech-
niques from stochastic modeling, queuing theory and statistical sampling to provide simu-
lations that are fast enough to handle multi-thousand server complexity and provide proba-
bilistic guarantees on its estimates. We use this methodology to evaluate a number of power
management techniques to improve data center power and energy efficiency.

5

1.5 Efficient Cluster Provisioning

Finally, we address workloads that require intelligent cluster-level provisioning for effi-
ciency. Recently, there has a been an explosive growth in the development and use of “Web
2.0” applications, where users tag, comment and share content with one another. Making
these applications fast is difficult because of the amount of dynamic content that must be
assembled in response to each user action. Though applications might retain user content
in sophisticated data stores (e.g., database management systems or DBMSs), to provide
programmability, durability, and consistency, these heavy-weight data stores often cannot
meet the latency or throughput requirements to assemble dynamic web content on the fly.
For example, generating a user’s Facebook wall or Twitter feed might involve over 100 sep-
arate queries for user data—accessing a DBMS this many times with a 50ms response time
could lead to an unacceptable wait time of 5 seconds for the user. Performance demands
become even more staggering when one considers the 250 million visits per day Facebook
receives, resulting in over 17 million requests per second.

To alleviate these performance demands, internet service architects are increasingly re-
lying on memcached, a distributed key-value store that enables fast random access to
small pieces of data. By aggregating the main-memory capacity of hundreds of commod-
ity servers, datasets reaching into the terabytes can be available at ultra-high performance
across a data center network. Individual memcached servers are each capable of ser-
vicing over 100,000 requests per second with latencies in the hundreds of microseconds.
Although memcached architectures are relatively new, they have quickly become a criti-
cal piece of infrastructure in the modern data center. A number of companies already have
sizable deployments (e.g., Facebook, Twitter, and Wikipedia) and the number and scale of
memcached instances continues to rise—Facebook reports clusters with over 20 TB of
DRAM across more than 800 servers, which service 150 million requests per second [71].
Furthermore, memcached clusters enable applications with no known data partitioning
scheme. Whereas workloads such as web search can “divide and conquer” by partition-
ing data processing across servers [29], the data access patterns in a social graph prohibit
simple data partitioning [163] and demand efficient communication.

While memcached has been successful in accelerating the speed and scalability of a
number of sites, modern server systems are a poor fit for this workload and suffer from
a number of inefficiencies. Despite its apparent simplicity—memcached’s source code
comprises only 8,500 lines—we discover an astounding diversity in memcached perfor-
mance across use cases and scale that leads to drastic differences in the most cost-effective
hardware design for a cluster.

6

In Chapter 10 we provide a study of efficient cluster provisioning for memcached.
We characterize the inefficiencies in individual servers and uncover the price-performance
tradeoffs of building large cluster. Our optimization framework demonstrates that the la-
tency, throughput, and data set size design space has many local optima and that no one
server deployment is best.

1.6 Thesis Organization

This rest of this thesis is organized as follows: In Chapter 2 we provide background on
data center workloads and power management. We address the related work in Chapter 3.
In Chapter 4, we explain how data centers are utilized and the nature of idleness in these
systems. We introduce our evaluation methodology used in the remainder of the thesis in
Chapter 5. Chapter 6 presents the initial PowerNap server architecture and in Chapter 7 we
introduce the DreamWeaver extension. The RAILS PSU system is discussed in Chapter
8. Chapter 9 contains the case study of Google web search. In Chapter 10, we investigate
efficient cluster provisioning using the memcached workload. Finally, in Chapter 11, we
conclude.

7

CHAPTER 2

Background

In this chapter, we review the fundamentals of efficient data centers and power manage-
ment of servers. First, we outline the goals of efficient data center design and the metrics
upon which we will evaluate these goals. Next, we create a taxonomy for understanding
low-power modes for server power management, which we will refer to for the rest of
this thesis. Finally, we discuss the challenges that make power management particularly
difficult for data center deployments.

2.1 Data Center Efficiency Design Goals and Metrics

Data center design is fundamentally driven by cost; both constructing and operating
large-scale data centers burdens companies with hundreds of millions of dollars in costs.
Accordingly, even small changes in efficiency (e.g., 1%) can lead to millions of dollars in
savings. Overall changes in cost are best captured by a data center’s total cost of ownership

(TCO). This metric establishes the aggregate cost to construct the building, provide power
infrastructure, build/buy servers and install them, cool and power the equipment, and re-
place equipment as it fails over the entire lifetime of the data center. A data center that
provides the same computational output as another at a lower TCO can be considered more
efficient. Because TCO incorporates so many factors, it is not trivial to reason about why
a particular data center has been built more efficiently than another. Furthermore, it does
not separate capital costs (i.e., building a facility or buying servers) from operational costs

(i.e., the cost of electricity or maintenance).
Another popular metric for a data centers is the power usage effectiveness (PUE). This

quantity helps understand how much power delivered to a data center is lost before it con-

8

sumed by servers. PUE is defined as:

PUE =
Power delivered to data center
Power consumed by servers

(2.1)

This metric has received continual scrutiny because it potentially can be misleading, yet is
still useful as a rough approximation [83].

Rather than reason about global data center efficiency metrics, it is useful to decompose
efficiency into multiple components. This decomposition allows a designer to reason about
the current sources of inefficiency in a given deployment and if a given technique will im-
prove them. We address the following metrics to understand the efficiency of data centers:
computational efficiency, energy proportionality, and infrastructure efficiency.

2.1.1 Computational Efficiency

For servers, the computational efficiency of a data center component (e.g., a server) is
the amount of computational work performed per unit energy. Hence, the efficiency of a
server is:

Computational Efficiency =
Throughput
E[Power]

=
Jobs
Joule

(2.2)

Traditionally, most servers are designed to maximize peak efficiency, which is the com-
putational efficiency of a server at peak load (e.g., 100% utilization). Similarly different
processor designs (e.g., big vs. small cores) are often benchmarked at peak load. Since
servers operate at non-peak load most of the time, computational efficiency will be deter-
mined by the interaction of peak efficiency and energy-proportionality of the system.

2.1.2 Energy-Proportionality

While peak efficiency measures the efficiency of a system at full load, most servers do
not operate even close to 100% utilization in the common case. Servers are typically most
efficient at peak load and their efficiency degrades as load is scaled down. It is common
for server to consume 60% of their peak power when completely idle. The concept of
energy-proportionality suggests how efficiently a systems scales down.

Computational energy proportionality is the concept that energy should be expended
in proportion to the amount of work done by the system [29]. Fundamentally, energy-
proportionality relies on removing fixed costs from a system or hiding them through amor-
tization. In other words, with a perfectly energy-proportional system one would “only pay
for what you use”.

9

2.1.3 Infrastructure Efficiency

The infrastructure required to house, power and cool tens of thousands of server is ex-
tremely costly, making up around 35% of a data centers TCO [30]. Accordingly, designers
will wish to maximize the number of servers that can be supported by a given infrastruc-
ture installation. Hence, infrastructure efficiency targets capital costs and refer to the ratio
of supported servers to the cost of the infrastructure supporting them. Techniques such as
power capping [73] and power routing [141] seek to increase infrastructure efficiency by
either increasing the number of server supported by a given installation or reducing the
amount of power infrastructure equipment needed, respectfully.

2.2 Taxonomy of Low-Power Modes

Component-level low power modes fall into two broad classes, idle low-power modes,
and active low-power modes. We briefly discuss each and introduce a generic model for
describing an idealized low-power mode that encompasses both classes. Figure 2.1 illus-
trates a wide variety of active and idle low-power modes and classifies each according to
both the spatial (fraction of the system) and temporal (activation time scale) granularity at
which each operates. Darker points are used for modes that provide greater relative power
savings. Coarser modes tend to save more power, but are more challenging to use because
opportunity to use them is more constrained.

2.2.1 Idle Low-Power Modes

Many devices offer idle low-power modes, which provide even greater power savings
than the most aggressive active low-power modes [78, 122]. One of the most attractive
properties of idle low-power modes is that they offer fixed latency penalties. These modes
are characterized by their transition time Ttr: the time to enter or leave the low-power mode.
When Ttr is small relative to the average service time, requests only experience a slight
delay [122]. Whereas active low-power modes can increase response time significantly,
small relative Ttr minimally alters it.

The deepest component energy savings can typically be extracted only when a com-
ponent is idle. Unfortunately, current per-core power modes (e.g. ACPI C-states or “core
parking”) save less than 1/Nth of the power in an N core processor because support cir-
cuitry (e.g., last-level caches, integrated memory controllers) remain powered to serve the
remaining active cores [97]. The Intel Nehalem processor provides a socket-grained idle
low-power mode through its “Package C6” power state, which disables some of this cir-

10

Spatial Granularity

Te
m

po
ra

l G
ra

nu
la

rit
y

PowerNap

Shutdown
Server

Consolidation

Disk Spin-Down

ns

μs

ms

s

min

hours

Core Component Server Cluster

DRAM Self-Refresh

Dual Speed Disk

Socket ParkingCore Parking
Clock Gating

Idle Mode
Active Mode

CPU DVFS

Least
Power Savings

Most

MemScale

Figure 2.1: Low-Power Mode Taxonomy. Modes with the greatest power savings must be
applied at coarse granularity. Modes that apply at fine granularity generally yield less power
savings.

cuitry, but the incremental power savings over the per-core sleep modes is small. Never-
theless, processors typically consume only 20-30% of a server’s power budget, while 70%
of power is dissipated in other devices (e.g., Memory, Disks, etc.) [122]. Hence idle-power
modes for other components such as power down or self-refresh for DRAM and spin-down
for disks are necessary.

2.2.2 Active Low-Power Modes

Active low-power modes throttle performance in exchange for power savings, which
potentially extends the time necessary to complete a given amount of work, but still al-
lows processing to continue. Examples include dynamic voltage and frequency scaling for
processors, MemScale [66] for the memory system and DRPM [81] for disk. Their power
savings potential is often limited by support circuitry that must remain powered regard-
less of load. Some components offer multiple active low-power modes with increasing
performance reduction and power savings (e.g., ACPI P-states).

2.3 Power Management Challenges

Power management for data center workloads is challenging because many of these
workloads are latency-sensitive. Moreover, it is growing more challenging with multi-
core scaling [90]. Servers must meet strict service level agreements (SLAs), which pre-

11

scribe per-request latency targets that must be met to prevent stringent penalties. SLAs are
typically based on the 99th-percentile (or similar high percentile) latency, not the mean.
Meeting this requirement is complicated by workloads with long-tailed and unpredictable
service times [85]. The majority of existing literature (particularly works that have focused
on power management) has concentrated on the average latency of server systems; we will
instead set targets for 95th- or 99th-percentile latency for much of our analysis.

Furthermore, data center workloads are often highly variable. For instance, for Web
serving, the difference between the mean and 99th-percentile latency is over a factor of
four. This constraint means designers must take care: a change that has a small impact on
mean response time may have a large effect on the 99th percentile.

12

CHAPTER 3

Related Work

We now review previous work related to efficient data center design. First, we sur-
vey previous techniques for power management of servers. Second, we discuss previous
methods for evaluating system designs. Finally, we summarize work related to key-value
stores.

3.1 Power Management

Previous literature has demonstrated that reducing power at low-utilization is critical to
increasing server efficiency [32, 122]. Numerous studies examine power management ap-
proaches for processors [70, 72, 147, 162], memory [64, 67, 72], and disk [49, 81, 143]. A
detailed survey of CPU power management techniques can be found in [102]. For servers,
power savings approaches fall into four broad classes: active low-power modes, idle low-
power modes, cluster-grain techniques and scheduling. Additionally, efficiency may be
increased through systems with higher peak efficiency.

3.1.1 Idle Low-Power Modes

Idle low-power modes have been explored in processors [117, 129], memory[67, 112],
network interfaces [22], and disk [49]. Several research proposals have sought to exploit
idle periods of individual memory banks to conserve memory power [64, 67, 91, 112].
During execution, if a particular bank is predicted/detected to be idle, it is transitioned to
a low-power mode and re-activated upon a subsequent access. These approaches conserve
memory energy during execution at a small penalty in performance, for example, one study
of desktop/engineering applications reports that using RDRAM’s nap mode cuts DRAM
energy 60% to 85% for a few percent performance loss [112]. However, a common con-
clusion across several studies is that the deepest-available low-power modes (power-down

13

in RDRAM and self-refresh in DDR DRAM) cannot be used effectively because of perfor-
mance overheads of frequent mode transitions that delay many memory accesses.

3.1.2 Active Low-Power Modes

Many hardware devices offer active low-power modes, which trade reduced perfor-
mance for power savings while a device continues to operate. Active low-power modes
(e.g., DVFS) improve energy efficiency if they provide superlinear power savings for linear
slowdown. DVFS is well-studied for reducing CPU power [88, 98, 104, 113, 157, 178].
Improving DVFS control algorithms remains an active research area [132, 175]. Active
low-power modes have also been proposed for memory [66] and disks [49, 81].

3.1.3 Cluster-grain techniques

The cause of poor efficiency in servers is rooted in their low utilization and lack of
energy-proportional components. Techniques such as dynamic cluster resizing and load
dispatching [23, 51, 55, 56, 87, 107, 144] or server consolidation and virtual machine mi-
gration [34, 165] seek to increase average server utilization, which improves efficiency on
non-energy-proportional hardware. By moving the work of multiple server onto a single
machine, fixed power and capital costs may be amortized. Though this approach is effective
for many workloads, there are several data center workload paradigms for which consoli-
dation/migration is inapplicable. For many workloads of increasing importance (e.g., Web
Search, MapReduce), large data sets are distributed over many servers and the servers must
remain powered to keep data accessible in main memory or on local disks [117, 123].

Furthermore, task migration typically operates over too coarse time scales (minutes) to
respond rapidly to unanticipated load. In latency-sensitive interactive workloads, compact-
ing multiple services onto the same machine may make service increasingly vulnerable
to the effects of variance (e.g., traffic spikes). Low utilization is common for this exact
reason; well-designed services are intentionally operated at 20-50% utilization to ensure
performance robustness despite variable load [32].

3.1.4 Scheduling for energy efficiency

Elnozahy et al investigated using request batching to leverage idle low-power modes in
uniprocessors [70]. Several other prior scheduling mechanisms seek to align or construct
batches of requests, for example, ecoDB [108] and cohort scheduling [110]. EcoDB intro-
duces two techniques: using DVFS and delaying requests to batch SQL requests with com-
mon operators that can be amortized. Cohort scheduling seeks to maximize performance

14

by scheduling similar stages of multiple requests together to increase the effectiveness of
data caching.

3.1.5 Low-power Processors

Recently, many studies have looked at using low-power, low-cost server components to
improve energy-efficiency for data center workloads [109, 119, 167]. These studies have
focused on improving the peak efficiency of server systems. We seek to also improve
server-level energy-proportionality [29] through low-power modes to save power during
non-peak periods.

3.2 Modeling and Simulation

Next, we address previous work on modeling of power consumption, and server and
data center evaluation techniques.

3.2.1 Power Modeling

There is a significant body of work investigating processor-level power modeling [47,
59]. In particular, [59] shows power consumption of a microprocessor can be predicted
accurately using various performance counters. However, for data center design, predicting
CPU power alone is insufficient as it only accounts for a fraction of server power (typically
20-30%). Instead, full-system power models that account for non-CPU components (e.g.,
memory, disk, etc.) are needed.

Multiple studies have demonstrated that full-system average power is approximately
linear with respect to CPU utilization [73, 151].

PTotal = PDyn · UAvg + PIdle (3.1)

Particularly when aggregated over a large number of servers, these averages are surprisingly
accurate. However, this model provides only average power estimates and do not predict
peaks.

Switched mode power supply design is well understood [145]: many models are avail-
able [168], including many that are based on signal processing [130]. However, the behav-
ior PSUs in running systems, particularly the relationship between CPU utilization and PSU
peak power, has not been characterized. We take a full system approach to server power
draw, predicting peak power from the logical view of an operating system in Chapter 5.

15

3.2.2 Data Center Simulation

To the best of our knowledge, this is the first work to provide a rigorous methodol-
ogy for data center-level simulation. Whereas we leverage numerous works in statistics,
stochastic modeling and queuing theory, we refer to these in-line.

Previous studies have attempted to parallelize discrete-event simulations by executing
different sections of the modeled system at the same time [76, 134]. Generally, such paral-
lelization is difficult because the system must have a consistent state and requires explicit
communication and/or locking of data structures. In contrast, our parallelization strategy,
which distributes generation of independent observations for sampled output metrics, does
not require synchronization, greatly reducing design complexity and communication over-
head.

Alternatively, studies have used hierarchical models to represent data center systems
[65]. Such models can be used in lieu of simulators or to compliment them.

Lastly, our work bears similarity to architectural simulators that use statistical simu-
lation [69, 154] and/or sampling techniques [159, 173, 174, 176]. These methods also
provide significant reduction in simulation time by either simulating with a statistical ab-
straction and/or by simulating only those events necessary for the desired level of statistical
confidence.

3.3 Memory-resident key-value stores

Our study identifies memcached performance bottlenecks and investigates the im-
pact of memcached server hardware architecture on performance and cost, particularly
as a cluster is scaled with respect to capacity and throughput demand. Prior work has
proposed using non-commodity networking hardware (e.g., infiniband) [101] to improve
memcached performance. We focus on commodity ethernet-based systems, as ethernet
currently leads to more cost-effective clusters. Alternatively, memcached has been studied
in the context of novel many-core processor architectures [37]. Although that study demon-
strates substantial performance gains, it does not enumerate the scalability bottlenecks in
memcached we identify (e.g., the NIC, TCP/IP stack, Kernel and userspace locking) nor
does it consider the economic implications of cluster design. Several studies have used
memcached as a benchmark in evaluating various software techniques [46, 142, 158], but
none of these studies focus on designing cost-effective memcached clusters.

Whereas memcached deployment is typically orthogonal to the backing store, it is
important to note that there are several related software systems that integrate in-memory
caching more directly with durable databases (e.g., Cassandra[28], Redis [180], Project

16

Voldemort[2], memcachedb[127], etc.). The RAMCloud project [135] takes the con-
verse approach, eschewing a disk-based backing store entirely, instead storing all data ex-
clusively in RAM. Although there are important implementation differences between these
systems, we focus on memcached because it is by far the most widely used. Many of our
insights can be extended to these other systems; for example, a RAMCloud cluster might
be thought of as a memcached system with a 100% hit rate.

Several studies have investigated key-value systems that are either more efficient [27]
or available [63]. However, these systems are permanent data stores that rely on file I/O
using disk or Flash technology. Other studies have investigated the difference in data center
workloads targeted to “wimpy” or “beefy” architectures [167]. While some of the lessons
learned from these studies apply, memcached behavior nevertheless differs markedly from
these systems because it makes no use of file I/O.

Others have looked at the scalability of TCP/IP stacks and NICs and ways to reduce
packet processing overheads. There is significant interest in designing ultra-low latency
networked systems, but most work has focused on removing software overheads [31, 152].
Studies considering hardware modification include TCP onloading[118, 150], Direct Cache
Access (an architectural optimization to deliver packets into the CPU cache) [92], and
tighter coupling between the NIC and CPU to provide “zero-copy” packet delivery [40, 41].
Any of these mechanisms might benefit memcached, but are not considered here because
they are not available in shipping hardware.

17

CHAPTER 4

Understanding Server Utilization and Idleness

In this chapter we discuss the typical behavior of server utilization and why endemic
low-utilization leads to inefficiency. We also investigate server idleness and its implications
on idle power management.

4.1 Understanding Server Utilization

It has been well-established in the research literature that the average server utilization
of data centers is low, often below 30% [34, 45, 73]. In facilities that provide interactive
services (e.g., transaction processing, file servers, Web 2.0), average utilization is often
even worse, sometimes as low as 10% [45]. Figure 4.1 depicts a histogram of utilization
for two production workloads from enterprise-scale commercial deployments. Table 4.2
describes the workloads running on these servers. We derive this data from utilization traces
collected over many days, aggregated over more than 120 severs (production utilization
traces were provided courtesy of HP Labs). The most striking feature of this data is that
the servers spend the vast majority of time under 10% utilization.

Low utilization creates an energy efficiency challenge because conventional servers
are notoriously inefficient at low loads. Although power-saving features like clock gating
and dynamic voltage and frequency scaling (DVFS) greatly reduce processor power con-
sumption in under-utilized systems, present-day servers still dissipate about 60% as much
power when idle as when fully loaded [51, 73, 114]. Processors often account for only a
quarter of system power; main memory and cooling fans contribute larger fractions [113].
Figure 4.3 reproduces typical server power breakdowns for the IBM p670 [113], Sun Ul-
traSparc T2000 [111], and a generic server specified by Google [73], respectively.

Given the poor efficiency of under-utilized servers, one obvious approach to improve
overall energy efficiency is to increase average server utilization. The recent trend towards

18

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Utilization (%)

Ti
m

e
(%

)

IT
Web 2.0

Figure 4.1: Server utilization histogram. Real data centers are under 20% utilized.
Figure 4.2: Enterprise data center utilization traces.

Workload Avg. Utilization Description

Web 2.0 7.4% “Web 2.0” application servers
IT 14.2% Enterprise IT Infrastructure apps

server consolidation [136] is partly motivated by this objective. By moving services to vir-
tual machines, several services can be time-multiplexed on a single physical server. Con-
solidation allows the total number of physical servers to be reduced, thereby reducing idle
inefficiency. With the availability of live migration, where virtual machines can be trans-
ferred among physical hosts during operation without service interruption, it has become
possible to operate clusters where servers are brought online and shut down automatically
in response to coarse-grain changes in load (e.g., diurnal patterns).

However, dynamic server consolidation cannot eliminate idle energy waste, for several
reasons. First, current dynamic consolidation solutions adapt cluster size over 10’s of min-
utes. However, load changes can be far more rapid, particularly when precipitated by an
external event (e.g., web server traffic at the end of a World Cup match). For interactive
services, peak loads often exceed the average by more than a factor of three [45]. Second,
concerns over performance isolation, service robustness, redundancy, hardware configura-
tion conflicts, and security often preclude consolidation of mission-critical services. Third,
the software architectures of some data center workloads preclude cluster resizing. For
example, both Web Search [29] and memcached [12] distribute their data sets over an en-
tire cluster, typically without replication, to allow user queries to be processed within tight
latency constraints. Under this architecture, there is no straight-forward way to resize a
cluster in response to load variation. Though industry trends suggest that consolidation

19

0%

20%

40%

60%

80%

100%

IBM Sun Google
%

 S
e
rv

e
r

P
o
w

e
r CPU

Fans

I/O & Disk

Memory

Other

Figure 4.3: Server power breakdown. No single component dominates total system power.

approaches can increase utilization from the 5% to 10% range that is not uncommon to-
day, it is unlikely that utilization above 30%-50% can be achieved for even highly-tuned
interactive services.
Frequent Brief Utilization. Clearly, eliminating server idle power waste is critical to
improving data center energy efficiency. Engineers have been successful in reducing idle
power in mobile platforms, such as cell phones and laptops. However, servers pose a
fundamentally different challenge than these platforms. The key observation underlying
our work is that, although servers have low utilization, their activity occurs in frequent,
brief bursts. As a result, they appear to be under a constant, light load.

To investigate the time scale of servers’ idle and busy periods, we have instrumented a
series of interactive and batch processing servers to collect utilization traces at 10ms gran-
ularity. To our knowledge, our study is the first to report server utilization data measured at
such fine granularity. We classify an interval as busy or idle based on how the OS scheduler
accounted the period in its utilization tracking. The traces were collected over a period of
a week from seven departmental IT servers and a scientific computing cluster comprising
over 600 servers. We present the mean idle and busy period lengths, percent full-system
idle time and a brief description of each trace in Table 4.6.

Figure 4.4 shows the cumulative distribution for the busy and idle period lengths in each
trace (i.e., the vertical axis reflects the fraction of the count of idle periods of a given length
or shorter). The key result of our traces is that the vast majority of idle periods are shorter
than 1s, with mean lengths in the 100’s of milliseconds. Busy periods are even shorter,
typically only 10’s of milliseconds.

DNS and Mail tend to exhibit the densest activity periods, as both of these frequently
handle batch-like tasks (e.g., DNS zone transfers). The Mail server also exhibits the high-
est utilization among the departmental servers. The Web workload experiences the most

20

101 102 103 104 1050

10

20

30

40

50

60

70

80

90

100

Busy Period (ms)

Pe
rc

en
t

Web
Mail
DNS
Shell
Backup
Cluster

101 102 103 104 1050

10

20

30

40

50

60

70

80

90

100

Idle Period (ms)

Pe
rc

en
t

Web
Mail
DNS
Shell
Backup
Cluster

Figure 4.4: Busy and idle period cumulative distributions.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0

10

20

30

40

50

60

70

80

90

100

Busy Period (ms)

P
er

ce
nt

Web
Mail
DNS
Shell
Backup
Cluster

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0

10

20

30

40

50

60

70

80

90

100

Idle Period (ms)

P
er

ce
nt

Web
Mail
DNS
Shell
Backup
Cluster

Figure 4.5: Busy and idle period weighted cumulative distributions.
Figure 4.6: Fine-grain utilization traces.

Workload Full System Idle
Avg. Interval

Description
Busy Idle

Cluster 36% 3.25 s 1.8 s 600-node scientific computing cluster
DNS 83% 194 ms 923 ms Department DNS and DHCP server
Mail 45% 115 ms 94 ms Department POP and SMTP servers
Shell 68% 51 ms 108 ms Interactive shell and IMAP support
Web 74% 38 ms 106 ms Department web server
Backup 78% 31 ms 108 ms Continuous incremental backup server

frequent transitions between busy and idle, as only minimal processing is required to serve
the frequent requests for static web pages. The Shell and Backup servers exhibit the largest
variation in busy periods. For Shell, this variation arises because users occasionally run

21

long, interactive jobs, whereas for Backup, the length of incremental backup tasks varies
with the size of recent file modifications.

At the opposite extreme, the scientific computing cluster exhibits comparatively high
utilization (in line with the results reported in [34, 73]) and an enormous variation in job
lengths, from sub-second activities to jobs that run for days. Though the queue of jobs
submitted to this cluster is rarely empty, because some machines in this pool are dedicated
for specific job classes and users, there are also many long idle periods.

The cumulative distribution of busy and idle periods provides insight into the frequency

of idle and busy events. However, it does not illustrate where the time is spent at each time
scale. Figure 4.5 provides the weighted CDFs of idle and busy periods; these graphs show
the cumulative fraction of idle time that occurs in intervals shorter than the horizontal axis
value (i.e., the vertical axis reflects the total time, rather than the count, as in Figure 4.4, of
idle periods). This representation demonstrates the presence of infrequent but long idle and
active periods. For example, the fact that the Cluster workload spends a significant amount
of time in infrequent, long jobs is immediately clear. More importantly, we can see that the
majority of idle time occurs in intervals of up to 100ms. Even though Figure 4.4 suggests
that most idle periods last 1-10ms, Figure 4.5 shows that the majority of time is spent in
slightly longer idle intervals.

Our fine-grain utilization traces do not exhaustively represent the space of data center
workloads. In particular, with the exception of the Cluster workload, we have specifically
focused on interactive services, which present substantial power management challenges
because of their latency constraints. The average utilization levels we observe for these
workloads qualitatively match the behavior seen in the customer-provided traces of Fig-
ure 4.1 and reports from other sources [34, 45, 73]. Data centers also often run batch-
oriented scientific and data intensive (e.g., MapReduce) tasks, which are more similar to
our Cluster workload. Such workloads typically have looser latency constraints and are
more amenable to consolidation and scheduling-based approaches, which increase average
utilization and coalesce idle periods.

4.2 Quantifying and Analyzing Idleness

Our empirical workloads offer insight into idleness behavior in actual systems, but do
not offer any tuning knobs to allow exploration of how the shape of the arrival and service
distributions of a workload affect idleness. Typically, closed-form queuing analyses assume
Poisson arrivals. Under this assumption, request arrivals are independent and interarrival
times are exponentially distributed, which matches the arrival pattern generated by a large

22

Time

Core 0

Core 1

Core 2

Core 3

Idle Idle

Time

Core 0

Core 1

Core 2

Core 3

Idle Idle

Time

Core 0

Core 1

Core 2

Core 3

Idle Idle

Time

Core 0

Core 1

Core 2

Core 3

Idle Idle

(a) Clustered Arrivals & Uniform Request Size (b) Clustered Arrivals & non-Uniform Request Size

(c) Non-Clustered Arrivals & Non-Uniform Request Size (d) Batch Scheduling for Idleness

50% Utilization 50% Idle 50% Utilization 25% Idle

50% Utilization 10% Idle 50% Utilization 30% Idle

Figure 4.7: Full-system idleness varies widely as a function of arrival and request size
patterns. A workload with clustered arrivals (high Cv) and uniform request sizes (low Cv)
maximizes idleness. Non-clustered request arrivals (low Cv) and Non-uniform request sizes
(high Cv) decrease the amount of idleness for a fixed utilization. Batching is a method that
increases request latency and creates artificial idle periods.

population of independent request sources. However, we are also interested in understand-
ing the impact of arrival processes that are more bursty (i.e., requests arrive in batches) or
more uniformly spaced (i.e., requests are throttled to some tempo), corresponding to the
scenarios illustrated in Figure 4.7.

Idleness depends heavily on the workload running on a server. The amount of idleness
observed at individual cores and over the system as a whole can differ drastically depending
on workload characteristics. We illustrate the factors affecting idleness in Figure 4.7 for
a four core system with a fixed utilization. If all requests arrive at the server at the same
time and are of equal length (Figure 4.7(a)), all core-level idle periods align. Only in
this degenerate case are core-level and system-level idleness equal. In Figure 4.7(b), the
timing of request arrivals remain the same, but the request lengths vary; the amount of
system-level idleness is reduced. Additionally varying request arrival timing, in Figure
4.7(c), further reduces system-level idleness. Finally, Figure 4.7(d) illustrates the effect of
batch scheduling; though it is not possible to change request sizes, it is possible to alter the

23

effective arrival pattern by delaying request.
The simplest measure of the degree of burstiness/uniformity of the arrival process is its

coefficient of variation (Cv), the ratio of the standard deviation and mean arrival time. Low
Cv yields more deterministic, uniform arrivals. Conversely, highCv indicates unpredictable
and bursty arrivals. The exponential distribution falls in the middle of this spectrum, and
has a Cv of 1.

To generate synthetic arrival processes where we can smoothly control Cv, we use the
gamma distribution [99]. This distribution is defined by its scale parameter θ and its shape
parameter k. Figure 4.8 illustrates how the gamma distribution parameters k and θ can be
altered to change the shape and Cv of the distribution without affecting its mean. These
parameters allow us to investigate how variability in arrival and service time distribution
affect idleness. With the gamma distribution one can “sweep” the parameter space from
deterministic (Cv < 1), to Poisson (Cv of 1), to uniformly distributed (Cv approaching∞)
arrival/service. Note that the gamma distribution reduces to an exponential distribution
when k = 1. The shape of the gamma distribution for a fixed mean interarrival time is
shown in Figure 4.8. Note that Cv < 1 produces a “peaked” distribution that converges
towards deterministic, whereas Cv > 1 produces a flattened distribution that tends towards
uniformity. The table in Figure 4.8 contrasts characteristics of the gamma distribution with
other commonly-used distributions.

An important property of M/G/k, and by extension G/G/k, queues is that the variance
of the distributions alone does not dictate their behavior [80]. Therefore, even though our
results for gamma distributions are instructive, it should be noted that higher order effects
may also influence idleness.

Given these stochastic tools, we now investigate low-power mode opportunities and
how they are affected by these distributions.

To gain more insight into why multicore scaling destroys full-system idleness, how
workload characteristics affect idleness, and why request batching improves usable idle-
ness, we analyze the nature of idleness using SQS. Quantifying idleness is difficult, because
simple measures of utilization and other classic metrics do not provide enough information
to predict the effectiveness of low power modes. For example a server with a utilization of
30% may have all its requests arrive at once and be of the same length, in which case 70%
of the time is available for power savings. Alternatively the same server may have requests
with wildly varying request arrival patterns and service times such that 0% of the time is
available.

We explore the relationship between the arrival and service time distributions and idle-
ness characteristics using our synthetic workload, which allows us to understand the con-

24

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

Time (s)

P
D

F

C

v
=10.0

C
v
=2.0

C
v
=1.0

C
v
=0.2

C
v
=0.1

Mean Variance Cv

Gamma kθ kθ2 1√
k

Deterministic 1/λ 0 0
Exponential 1

λ
1
λ2 1

Uniform ∞ ∞ ∞

Figure 4.8: Gamma distribution. Allows synthetic distributions with Cv of interest.

0 5 10 15 20
0

100

200
1 Cores , 0.2 Util

0 5 10 15 20
0

100

200
2 Cores , 0.2 Util

0 5 10 15 20
0

100

200
4 Cores , 0.2 Util

95
th

 P
er

ce
nt

ile
 R

es
po

ns
e

Ti
m

e

0 5 10 15 20
0

100

200
8 Cores , 0.2 Util

0 5 10 15 20
0

100

200
1 Cores , 0.3 Util

0 5 10 15 20
0

100

200
2 Cores , 0.3 Util

0 5 10 15 20
0

100

200
4 Cores , 0.3 Util

0 5 10 15 20
0

100

200
8 Cores , 0.3 Util

Service CV

0 5 10 15 20
0

100

200
1 Cores , 0.4 Util

λ CV = 1 λ CV = 2 λ CV = 5 λ CV = 10

0 5 10 15 20
0

100

200
2 Cores , 0.4 Util

0 5 10 15 20
0

100

200
4 Cores , 0.4 Util

0 5 10 15 20
0

100

200
8 Cores , 0.4 Util

F
ra

ct
io

n
 o

f
T

im
e

S
ys

te
m

 Id
le

0 5 10 15 20
0

0.25

0.5

0.75

1
16 Cores , 0.4 Util

0 5 10 15 20
0

0.25

0.5

0.75

1
2 Cores , 0.4 Util

0 5 10 15 20
0

0.25

0.5

0.75

1
16 Cores , 0.3 Util

Service CV

0 5 10 15 20
0

0.25

0.5

0.75

1
2 Cores , 0.3 Util

0 5 10 15 20
0

0.25

0.5

0.75

1
16 Cores , 0.2 Util

0 5 10 15 20
0

0.25

0.5

0.75

1
2 Cores , 0.2 Util

Figure 4.9: Effect of Cv on system idleness. Increasing service Cv reduces idleness, increas-
ing arrival Cv increases idleness. Dotted line shows ideal usable idleness (i.e., core-level
idleness).

0 5 10 15 20
0

100

200
1 Cores , 0.2 Util

0 5 10 15 20
0

100

200
2 Cores , 0.2 Util

0 5 10 15 20
0

100

200
4 Cores , 0.2 Util

95
th

 P
er

ce
nt

ile
 R

es
po

ns
e

Ti
m

e

0 5 10 15 20
0

100

200
8 Cores , 0.2 Util

0 5 10 15 20
0

100

200
1 Cores , 0.3 Util

0 5 10 15 20
0

100

200
2 Cores , 0.3 Util

0 5 10 15 20
0

100

200
4 Cores , 0.3 Util

0 5 10 15 20
0

100

200
8 Cores , 0.3 Util

Service CV

0 5 10 15 20
0

100

200
1 Cores , 0.4 Util

λ CV = 1 λ CV = 2 λ CV = 5 λ CV = 10

0 5 10 15 20
0

100

200
2 Cores , 0.4 Util

0 5 10 15 20
0

100

200
4 Cores , 0.4 Util

0 5 10 15 20
0

100

200
8 Cores , 0.4 Util

M
ed

ia
n

 Id
le

 L
en

g
th

 (
n

o
rm

al
iz

ed
 t

o
 1

/µ
)

0 5 10 15 20
0

50

100

150
16 Cores , 0.4 Util

0 5 10 15 20
0

50

100

150
2 Cores , 0.4 Util

0 5 10 15 20
0

50

100

150
16 Cores , 0.3 Util

Service CV

0 5 10 15 20
0

50

100

150
2 Cores , 0.3 Util

0 5 10 15 20
0

50

100

150
16 Cores , 0.2 Util

0 5 10 15 20
0

50

100

150
2 Cores , 0.2 Util

Figure 4.10: Effect of Cv on median idle period length. Increasing service Cv reduces idle
lengths, increasing arrival Cv increases idle lengths. For a given utilization and workload,
there is a stark reduction in the length of idle periods by integrating more cores.

25

nection between variability and idleness. Figure 4.9 shows the fraction of time the system
is idle, and represents an upper-bound on the idle opportunity for an idle-low power mode
with no transition time delay. Figure 4.10 shows the median length of an idle period. This
metric is important because an idle low-power mode’s usefulness is largely dependent on
how its transition time compares to the available idle periods. Each plot presents a matrix
of graphs showing increasing number of cores on one dimension (two and sixteen cores)
and average utilization on the other (20%, 30%, and 40% utilization). The horizontal axis
varies service Cv, whereas the lines vary arrival Cv. The dotted line in each sub-figure rep-
resents 1 − u, the upper bound for idleness in each configuration (if all the requests were
perfectly aligned). This upper bound decreases left to right as utilization increases.

An important initial observation is that for a uniprocessor server (one core), idleness is
always available in full. In other words, regardless of the arrival and service distributions,
the server always spends 1−u of it’s time completely idle. However, as we add more cores,
this idleness is no longer available.

Next, we observe that increasing the service Cv decreases idle opportunity, both in
terms of the amount and length of idle periods. As service Cv increases, request lengths
become more variable. The longest requests force the system to remain active longer and
more often. Conversely, high arrival Cv increases idleness opportunity. This trend is due to
the increased likelihood of requests arriving in clusters, resulting in longer periods where
no request arrives.

Note that an arrival Cv of 1 results in a fixed amount of idleness independent of service
Cv. This phenomenon arises because the gamma distribution reduces to a memoryless
exponential distribution when Cv=1. In this case, idle periods occur only as a function of
the arrival rate λ, and the expected idle length is given by the expected time until the next
arrival, or 1/λ (i.e., arrivals are independent and memoryless).

We can summarize the following trends with respect to full-system idleness:

• Increasing core density decreases the quantity and length of idleness: The trend
of integrating more cores into processors decreases the opportunity for full-system
idle power modes. These modes must work on finer time scales and have less total
opportunity.

• Increased utilization decreases idleness: Increasing utilization decreases the upper-
bound on exploitable idleness (if all the requests are aligned). However, depending
on arrival and service time distributions, idleness may be lost disproportionately.

• Increased service Cv degrades idleness: Increasing service Cv rapidly decreases
the length and quantity of idleness. This trend is particularly unfortunate because

26

many server workloads exhibit high service Cv.

• Increased arrival Cv improves idleness: a workload with a higher arrival Cv will
have an increased probability of “bursty” requests arrivals and accordingly processes
requests in batches, leaving longer periods where no requests arrive.

Our analysis leads to a critical conclusion: to increase usable idleness, we seek to
transform the request arrival process to increase the effective arrival Cv. That is, we wish
to make the arrival process appear more bursty by delaying arrivals to create batches.
The DreamWeaver technique described in Chapter 7 achieves precisely that; by delay-
ing requests, it transforms the actual arrival process into an apparent arrival process with
higher interarrival Cv, increasing usable idleness. We provide a direct comparison of
DreamWeaver to alternative power management approaches in Chapter 7.

27

CHAPTER 5

Evaluation Methodology

Recently, there has been an explosive growth in Cloud-based Internet services, greatly
influencing both software and hardware architectures. Small mobile devices connected
to large data centers are becoming increasingly important, quickly overtaking traditional
workstations. The design of data centers themselves has shifted from smaller collocation
centers to massive Warehouse-Scale Computers (WSC) [33], housing many thousands of
servers.

Unfortunately, the research community has yet to catch up with the blistering pace of
development in industry. While research in the mobile space has matured significantly, the
ability to quantitatively evaluate the design of large data centers lags significantly. Research
in this area has been hindered because, unlike mobile systems, researchers cannot simply
use or extend existing tools and apply them to data center problems.

Until now, the systems community has enjoyed a large number of tools for evaluating
desktop and server architectures [13, 39, 48, 120, 169, 174]. However, these tools often
require hours to simulate only seconds of real time for a single machine; attempting to
simulate tens, let alone thousands, of machines quickly becomes prohibitive.

The lack of scalable simulation tools has limited past WSC research to either measure-
ment studies of existing deployments, or analysis via theoretical and statistical models.
Measurement studies, though valuable, can explore only existing architectures and require
access to multi-million dollar facilities. Even for the few academic and industrial research
teams with access to such facilities, experimentation is typically limited to non-intrusive
monitoring, since these facilities host the mission-critical operations of their owners. An-
alytic approaches typically require numerous simplifying assumptions and cannot capture
detailed interactions among the components of a WSC. Moreover, even well-understood
modeling approaches, for example queuing networks (on which our methodology is based),
rapidly become analytically intractable as the size and complexity of the model grows.

28

This study presents our data center-level evaluation methodology, Stochastic Queuing

Simulation (SQS) [124, 125], targeted specifically to investigate issues of data center design
at scale. At its core, SQS is a methodology for system characterization and discrete-event
simulation to enable quantitative exploration of data center-level challenges, such as perfor-
mance optimization, power provisioning, power management, distributed data placement,
and fault-tolerant design. SQS incorporates a number of techniques from stochastic mod-
eling, queuing theory and statistical sampling to provide simulations that are fast enough
to handle multi-thousand server complexity and provide probabilistic guarantees on its es-
timates. SQS is implemented in the BigHouse software infrastructure [126].

Our methodology hinges on the observation that designers must raise the level of ab-

straction for data center-scale simulation. Rather than simulate workloads at the granu-
larity of an instruction, memory, or disk access as in conventional simulation tools [39,
48, 120, 169, 174], SQS is built on the theoretical framework of queuing theory, where
the fundamental unit of work is a task (a.k.a job). Tasks are characterized by a set of
statistical properties—random variables that describe their length, resource requirements,
arrival distribution, or other relevant properties—which are collected through observation
of real systems. SQS abstracts the data center as an interrelated network of queues and
power/performance models describing the relevant behaviors of software/hardware com-
ponents. The discrete event simulation uses a variety of statistical sampling techniques
to provide estimates of selected output variables (e.g., 95th-percentile response time) with
quantifiable measures of confidence, while enabling parallel simulation to provide strong
scaling to reduce turnaround time.

SQS is not a replacement for conventional simulators; whereas existing simulation tools
are still needed to refine the design for an individual server within a data center, SQS
provides a framework for investigating behaviors that emerge at scale with rapid turnaround
time.

5.1 Requirements of Data Center-level Evaluation

Data center research is challenging because many interesting properties emerge at

scale. Traditionally, system designers have investigated issues such as performance, power
and fault-tolerance within a single processor or server. Now, with the increasing importance
of data center computing, studies must consider these topics across clusters of machines,
often numbering into the tens of thousands. Numerous recent studies examine the behavior
of ensembles of servers [73, 86, 141, 146, 148, 170], SQS is designed to carry out these
types of studies.

29

One approach to investigate data center-level problems is to measure real facilities di-
rectly. However, while studies that measure tens of thousands of machines exist [73, 154],
they are rare. Moreover, even researchers with access to large-scale facilities are unable to
modify the observed system; reserving thousands of machines for every research study is
simply too costly.

To enable tractable simulation of large-scale systems, we argue that it is necessary
to simulate systems at coarser detail than conventional computer architecture simulation
tools. In particular, for many interesting design problems (e.g., network topology design,
reliability, power management), instruction-grain detail is unnecessary. An effective data
center-level evaluation methodology must: 1) handle multi-thousand server complexity, 2)
provide statistically rigorous results, and 3) have a reasonable turnaround time.

5.2 Shortcomings of Existing Methodologies

There is a wealth of mature evaluation techniques for computer systems. Nevertheless,
the unique challenges of data center-level design require features that current methodolo-
gies do not provide. We briefly address the most popular of these techniques and explain
why they are generally not appropriate as a data center-level methodology.

Analytic Modeling. When possible, analytic modeling is among the most powerful
tools available to system designers. Analytic results eliminate the time-cost of simulation
and have the unique advantage of providing mathematical insight. There is a rich literature
supporting models based on queuing models [99] and in some cases, these can be directly
applied to data center problems [77]. However, there is a large design space under which
analytic modeling becomes intractable.

Many workloads have bursty arrival patterns [36, 139] and/or service times with large
variances [85]. In such situations, typical queuing model assumptions, such as indepen-
dence and memoryless, exponential distributions, are broken. To model such systems, ap-
proximation techniques become necessary, quickly degrading the fidelity of a model [80].
Alternatively, hierarchical models have been used to represent I/O workloads [65]. Fur-
thermore, data center-level design requires the understanding of quantile estimates (e.g.,
the 95th-percentile response time). Typically, deriving the distribution of a variable such
as response time is significantly more difficult than simply the expectation (i.e., the av-
erage). Finally, deriving new results from analytical models for every problem can be
time-intensive and require specialized expertise. It is uncommon that an analytical model
generalizes to every problem; studies like design-space explorations may benefit from a
more accessible quantitative methodology.

30

System

Log

Workload Model
(e.g., arrival/service dists)Characterization Simulation

Power,
Response Time,

etc.

System Model
(e.g., power-performance)

Offline Benchmarking Iterate to
convergence

Online
Instrumentation

...

Figure 5.1: Overview of the SQS methodology. A system is a) instrumented to derive work-
load interarrival and service time distributions and b) characterized to create a model of sys-
tem behavior (e.g., power-performance settings). From these inputs, SQS simulations derive
estimates for new system designs and/or configurations.

Discrete-event Simulation. By far, discrete-event simulation is the most popular eval-
uation methodology for hardware system design [74]. There are a number of tools for
evaluating the design of processors (e.g., Flexus [174], GEMS [120], M5 [39]), memory
systems (e.g., DRAMSim[169]), disks (e.g., DiskSim [48]), and networks (e.g., NS2 [13]).

On its face, it is feasible to use these tools in conjunction to simulate each part of a
server in a data center. However, the main challenge in data center design is to understand
behavior at scale; the simulation time for thousands of nodes with current tools would be
infeasible. Studies of data center techniques such as power-capping ask questions such as,
“How often does cluster-level power exceed a threshold for various workloads?” [73, 170].
For such studies, low-level details such as processor microarchitecture are largely irrelevant
or can be captured with a less detailed model; simply put, currently available tools simulate
too much detail.

Another drawback of modern tools is that most are inherently limited to serial execu-
tion. Because of the magnitude of the systems we wish to simulate, we will need to extract
simulation performance proportional to the committed resources. For example, in scaling
from a simulation of 100 machines to 1000, we would like to be able to use ten times
the resources to achieve the same turnaround time. Few current tools scale across avail-
able cores or machines in a cluster; instead simulations must be run on machines with the
best-available single-threaded performance.

5.3 Stochastic Queuing Simulation

In this section, we present the SQS methodology, the procedure for deriving average
and quantile estimates from simulations, and how workloads are modeled.

31

5.3.1 Overview

At its heart, SQS uses the abstractions of queuing theory to create a stochastic model
describing the behavior of a data center. Rather than solve the resulting model analytically
(an intractable challenge), SQS derives estimates for output variables by exercising the
stochastic model with synthetic input tasks derived from empirical workload models. A
variety of sampling techniques are then used to extract statistically rigorous estimates of
output variables.

Throughout this description and our evaluation, we use the running example of study-
ing a scheme for enforcing power budgets (a.k.a power capping) over server ensembles
using dynamic frequency and voltage scaling (DVFS), a problem studied in several recent
publications [73, 115, 141, 148, 169].

In the SQS abstract model, the data center is represented as a queuing network with gen-
eralized parameters—that is, arrival and service distributions, queuing discipline, etc. need
not be limited to the commonly used queues that are analytically tractable (e.g., M/M/1)
since the model will be exercised via simulation. A task corresponds to the most natural
unit of work for the workload under study, such as a single request, transaction, query, and
so on.

The SQS queuing network captures the processing steps through which tasks must pro-
ceed at a level of detail appropriate to the question under study. Each server in the queuing
network is coupled to power/performance models that modulate the service rate and gener-
ate output variables of interest. For example, for our power-capping case study, each CPU
core corresponds to a server in the queuing network, and the service rate of the queue is
determined by the core’s DVFS setting. The core model outputs task response times and
the system power draw. The queue retains the backlog of tasks (e.g., web requests) at the
system.

More complex multi-tier services or client-server interactions can be modeled by tasks
that advance through a sequence of queues. These queue sequences can also model other
constrained resources (e.g., network links, I/O subsystems). For our demonstrative case
study, we model multi-core servers and their power distribution hierarchy, but examine
only single-tier workloads and do not model other data center subsystems.

5.3.2 SQS Methodology

Figure 5.1 provides an overview of the SQS methodology, which comprises two parts:
characterization and simulation.

32

Characterization. In the characterization step, we construct empirical models of work-
loads and systems that are used during the simulation step. A workload model comprises,
at a minimum, task interarrival and service distributions. The workload model may also in-
clude distributions for other critical task parameters (e.g., tasks’ network traffic if modeling
network links). The system model modulates service rates and relates tasks to output vari-
ables of the simulation (e.g., in our running example, it captures the power-performance
curve for DVFS states).

Characterization involves both an online and offline component. We construct empir-
ical models of workloads online, by instrumenting a live system. Typically, this process
involves instrumenting a binary such that the timing of task arrivals and their duration are
recorded. Later, these traces can be processed to derive the desired distributions. It is
necessary to capture these workload models online, under live traffic, because interarrival
processes depend greatly on the users of an internet service.

In the offline component of characterization, real systems are benchmarked to capture
their modes of operation and construct system models. For our power-capping example,
one would capture a server’s power-performance behavior under the available DVFS set-
tings. The model records the relative service rate and power consumption of the system as
a function of frequency setting. Typically, this part of characterization must be performed
offline because it would disrupt production systems.

Simulation. During simulation, SQS derives estimates for hypothetical data center
configurations. For our DVFS example, various frequency transition policies for a rack of
servers could be evaluated such that both latency constraints are met and rack-level power
stays within a budget.

The simulation itself is a discrete-event simulation of the queuing network representing
the data center. Typical events represent high-level phenomenon such as a task entering or
exiting a server, a power-performance state changing, and so on. The core functionality
of the SQS discrete event simulator does not differ substantially from other tools for sim-
ulating queuing networks. For a detailed survey of queuing models, we refer the reader
to [84]. SQS augments conventional queuing networks with system models, such as the
power-performance model used in our example.

5.3.3 Workload Models

Rather than requiring an executable binary, as in a traditional simulator, SQS work-
loads are defined statistically by empirical interarrival and service time distributions. This
approach allows workloads to be represented compactly—a typical distribution occupies
less than 1 MB, whereas event traces often require multi-gigabyte files. Furthermore, in

33

10ms 100ms 1s 10s 100s
0

10

20

30

40

50

60

70

80

90

100

Interarrival Period (s)

P
er

ce
nt

DNS
Mail
Shell
Web

(a) Interarrival Time Distribution

10ms 100ms 1s 10s 100s
0

10

20

30

40

50

60

70

80

90

100

Service Time (s)

P
er

ce
nt

DNS
Mail
Shell
Web

(b) Service Time Distribution

Workload Interarrival Service Description
Avg. σ Cv Avg. σ Cv

DNS 1.1s 1.2s 1.1 194ms 198ms 1.0 DNS and DHCP server
Mail 206ms 397ms 1.9 92ms 335ms 3.6 POP and SMTP servers
Shell 186ms 796ms 4.2 46ms 725ms 15 Interactive shell and IMAP support
Web 186ms 380ms 2.0 75ms 263ms 3.4 Web server

Figure 5.2: SQS workload model. Workloads are represented by their interarrival (time be-
tween subsequent requests) and service time distributions (time to complete a given request).
The example workloads have distinct properties; for example, Shell has little variance in in-
terarrival time and short service times (99% are below 200 ms). Alternatively, DNS has a
wide variance in both distributions, and a long service times (50% above 200 ms). These
properties affect both the behavior of the modeled system and simulation time.

contrast to binaries, which industry is often loathe to disseminate, public dissemination of
interarrival and service distributions is significantly easier, as they do not require releasing
proprietary software.

Under pen-and-paper analysis of queuing models, statistics like the moments of the
arrival and service distributions are used to calculate performance measures in closed form.
We, and others [80], have found that easily-analyzed queuing models (e.g., M/M/1) often
poorly represent internet services. More generic models, such as the G/G/1 or G/G/k queue
(generalized interarrival and service time distribution and either 1 or k servers), have no
known closed-form solution. Approximations can be used; however, it has been shown
their accuracy is often inadequate, especially when only using a few moments [80].

Under SQS, we synthesize events from the empirical distributions directly, retaining the
entire fidelity of the measured workload. Figure 5.2 presents four example workloads we
will use in this study: a dynamic name service (DNS), webmail hosting (Mail), interactive
login and processing (Shell), and web server (Web).

These workloads provide a diverse selection for evaluating SQS because the shape of

34

their distributions vary substantially. The Shell workload has a small variance in its interar-
rival distribution, implying uniformly timed arrivals of requests to the server. On the other
hand, DNS has a large variance, leading to long periods of idleness and bursts of work.
Mail and Web are in between these two extremes.

The service time distributions also differ greatly. Whereas Shell requests are low-
variance and generally short in duration (99% of requests are completed in less than 200ms),
DNS requests have a wide variance. The service time and variance for Mail and Web again
fall in between Shell and DNS.

Though it is possible to exercise the SQS discrete-event simulator by replaying traces
directly (which eliminates some sampling difficulties, such as sample auto-correlation), it
remains unclear how to replay traces and obtain statistically rigorous performance esti-
mates if the simulated system differs substantially from the one where traces are collected.
SQS’s sampling methods are build on the assumption that event sequences are generated
synthetically by random draw from the empirical distributions.

5.3.4 Output Variables

For a given simulation, in addition to the data center configuration (e.g., the number
of servers, workloads, etc.), the SQS user must specify a set of output variables. The
simulation’s output variables are derived from quantities generated by the system model
upon specific events, which are recorded, analyzed, and reported with statistical confidence
estimates. For example, when a task is completed, its response time can be recorded and
then aggregated into a mean or quantile output variable. Each output variable is specified
along with a desired accuracy and confidence level for quantile and mean estimates.

Accuracy and Confidence. An estimate of an output variable has an associated accu-

racy, ε, and confidence level, 1 − α, that together form a confidence interval. The value ε
defines the half-width of a confidence interval in the same units as the output variable (e.g.,
response time with ±50ms). We normalize this value by the mean estimate, X̄ , to enable
meaningful comparison across multiple output variables:

E = ε/X̄ (5.1)

With this definition, a givenE describes the desired accuracy as a percentage (e.g., response
time with ±5%). The confidence level of an estimate describes the expected percentage of
estimates that would fall within the confidence interval if the simulation were repeated a
large number of times. A confidence level of 95% is common, and we use this value for
the remainder of this paper.

35

Simulation
Completes

1) Warm-up 4) Convergence2) Calibration

l = 3 (i.e., keep every 3rd observation)Nw = 5 Nc = 7

3) Measurement

Recorded Observation Discarded Observation
Quantile Estimate

Generated

Figure 5.3: The sequence of phases in a SQS simulation. At first, all observations are
thrown-away during warm-up, avoiding cold-start bias. Next, during a brief calibration
phase, a small sample is collected to determine the appropriate lag spacing and histogram
configuration. The majority of the simulation is spent in the measurement phase, where
observations are taken with sufficient spacing to ensure independence. Finally, when the
desired statistical confidence is achieved, the simulation terminates, outputting quantile and
mean estimates.

Mean Estimates. To determine the confidence interval for mean estimates (e.g., mean
response time), we leverage standard techniques for large-sample analysis. According to
the central limit theorem, the sampling distribution of a mean value estimate tends towards
the normal distribution as sample size increases. Hence, we can determine the sample size
needed for a given confidence by:

Nm =
Z2

1−α/2 · σ2

ε2
(5.2)

Where Z1−α comes from the standard normal: it is the value of the standard normal distri-
bution at the (1− α/2)th quantile and is 1.96 for 95% confidence. σ is the sample standard
deviation and ε is the half-width of the desired confidence interval.

Quantiles. Confidence intervals for quantiles (e.g., the 95th-percentile latency) can
also be derived using the central limit theorem [53].

Nq =
Z2

1−α/2 · q(1− q)
ε2

(5.3)

The notation is the same as for mean estimates with the addition of q as the desired quantile.
To find an exact quantile, one would need to record and sort all observations in the sample.
The sample size required for even a single output variable can be quite large. Accordingly,
recording and sorting the entire sample sequence to determine quantiles imposes a large
burden. However, space-efficient approximations using online algorithms are described
in [52, 53]. We use the method presented in [53] to maintain a histogram representation
of an observed variable, drastically reducing memory overhead. This method requires the
histogram binning parameters to be determined in advance; we do so during the calibration
phase of the simulation sequence (see below).

36

Typically, it is useful to know both the mean and at least one quantile of a given
output variable. In this case, the required sample size for the desired confidence will be
N=max(Nm, Nq). Furthermore, if multiple quantiles are desired, the maximum Nq value
from Equation 5.3 should be used. If the entire distribution is desired, q=0.5 as this maxi-
mizes the quantity q · (1− q) in Equation 5.3.

5.3.5 Simulation Sequence

SQS simulations proceed by exercising the discrete-event queuing simulation, creating
task arrival events through random draws according to the distributions captured in the
workload model. We refer readers to the literature for details on implementing such a
simulator [74]. We focus our discussion on the sampling methods at work in SQS, detailing
the progression of a simulation from the perspective of an observed output variable (e.g.,
server response time or power consumption). The phases of an SQS instance, illustrated in
Figure 5.3, are:

1. Warm-Up - A simulation begins in an initial transient state, where observations are
biased by the initial simulation state (e.g., all queues are empty). To avoid this cold-start
effect, the simulation must undergo a warm-up phase and is exercised for Nw observations,
during which all observations are discarded. Unfortunately, a reliable method for deter-
mining Nw has been the subject of years of debate [138]. To date, no rigorous method for
automatically detecting steady-state is available and Nw must be explicitly specified. We
conservatively choose large values for Nw (much larger than any busy interval we have
observed in simulation).

2. Calibration - One of the key challenges that must be addressed when drawing
a sample from a discrete event simulation is ensuring independence among the sampled
observations. Using successive observations from a queuing-based simulation has been
shown to introduce bias into estimates because observations tend to be autocorrelated (i.e.,
nearby observations are not independent) [54]. However, it has also been demonstrated
that if observations are spaced sufficiently apart—by keeping only every lth sample—they
can be treated as independent [53]. Determining this minimum spacing, l, is accomplished
with the runs-up test detailed in [105]. The major consequence of this approach is that
steady-state simulation length is inflated by a factor of l. Though a sample size of N = n

observations may be sufficient to achieve a given confidence in an i.i.d. draw, since l − 1

observations are discarded for every 1 taken, a total of N = l · n events must be simulated
to achieve the target sample size. A small caveat is that this method often increases sample
variance [61], further increasing n.

During the calibration phase, we perform the runs-up test to determine the lag spacing,

37

1) Warm-up

Master
Slaves

Master

2) Calibration 3) Slave Warm-up 4) Slave Calibration 5) Measurement 6) Merge

Seed 2

Seed 3Seed 1
Seed 4

Seed 5

Figure 5.4: Parallel execution on a cluster. First, the simulation undergoes a warm-up and
calibration phase on the master. A histogram is generated from the calibration sample and
the bin scheme is sent to the slaves. Each slave then executes its own warmup and calibration
phase using a unique random seed to achieve steady-state and determine its own lag-spacing.
Samples are collected at each slave until their aggregate size is sufficient to achieve the de-
sired accuracy. Finally, in the merge phase, each slave sends its histogram to the master,
which aggregates the histograms and reports estimates.

l, between observations and the proper histogram binning parameters to enable quantile
estimates.

3. Measurement - Once the simulation enters steady-state, observations are collected
to populate the histogram representation of the output variable. The majority of simulation
runtime is spent in this phase; the other three phases impose insignificant runtime overhead
(in single-threaded simulations; however, their overheads can grow dominant in parallel
simulations. See Section 5.4.1).

4. Convergence - An output variable is considered converged once the observed sample
size is sufficient to achieve the desired confidence interval. If the sample has been generated
using distributed computation (Section 5.4.1), it is coalesced at this point. Finally, estimates
of quantiles and averages can be reported.

Observing Multiple Variables. Typically, multiple variables are observed in a sin-
gle simulation. For simplicity, we have explained a sequential procedure and illustrated
the sequence in Figure 5.3 in terms of a single output variable. However, it is important
to understand that there is an associated sequence for each output variable in the simula-
tion. There are two important constraints on the simulation progression when targeting
multiple variables. First, the simulation may not progress out of the warm-up phase un-
til Nw observations have been collected for all output variables. This constraint ensures
that measurement does not take place until the entirety of the model is warm. Second,
the simulation may not terminate until all variables have a sufficient sample size to reach
convergence. Again, the slowest variable will determine simulation runtime.

38

5.4 Parallelization

The complexity of data center systems can require complicated models, leading to long
simulation time. We now detail how SQS can overcome lengthy simulations by paralleliz-
ing across a cluster of machines.

5.4.1 Distributed Simulation

The procedure of a distributed SQS simulation is outlined in Figure 9.3. A simulation
cluster comprises a single master and many slave machines. First, the master executes just
the warmup and calibration phase of a serial SQS simulation. After calibration, the master
constructs the appropriate histogram bin structure, which is forwarded to the slaves.

Next, the master broadcasts the histogram setup and simulation configuration and each
slave begins their own SQS instance. Each slave must use a unique seed for their random
number generator. The SQS process at the slave is nearly identical to a single-machine
SQS simulation, requiring warmup, calibration and steady-state measurement, except that
the slave’s calibration phase does not determine the histogram setup. Also, slaves do not
determine when the simulation converges; the master monitors the slaves’ progress and
signals convergence when aggregate sample size is sufficient across the entire cluster.

Once the aggregate sample is large enough, the master collects all the histograms and
combines them to form a single estimate. In a number of ways, the master-slave relation-
ship resembles the MapReduce framework [62]—a single program is executed with high
fan-out across a number of slave machine (map) with different inputs (the random seed).
After completion, their results are then merged (reduce) to form a result.

5.5 Evaluation

In this section, we demonstrate the utility of SQS with a case study of cluster-level
power capping. We report on the ability of SQS to scale to simulate many servers, its
sensitivity to simulation inputs, and our ability to parallelize simulation.

5.5.1 Case Study - Power Capping

Power capping is technique that allows a data center to deploy more servers than its
provisioned power infrastructure can support at peak. It has been observed that—especially
in large installations—servers rarely draw peak power concurrently [73, 115, 148, 170].
Because a cluster’s aggregate power draw is typically significantly less than the potential

39

10 100 1000 10,000
Second

Minute

Hour

Day

Servers Simulated

S
im

ul
at

io
n

T
im

e
(s

)

DNS
Mail
Shell
Web

Figure 5.5: Simulation time scaling. Simu-
lation time required for convergence scales
roughly linearly with the number of servers
simulated. Scaling simulation size typ-
ically does not increase the variance of
the output variables, so the required sam-
ple size does not increase significantly.
Instead, the overhead of maintaining the
discrete-event-simulation state is the main
cause of increased runtime.

0 2000 4000 6000
0.05

0.1

0.15

0.2

E
=

ǫ/
X̄

Simulated Events

C

v
 = 5

C
v
 = 10

C
v
 = 20

Figure 5.6: Sensitivity to workload distri-
bution variance. Increasing service distri-
bution coeff. of variation (Cv) leads to in-
creased variance in the target variables, re-
quiring a disproportionate increase in sim-
ulation time.

sum of all its servers’ peak power, provisioning the number of servers based on peak power
is wasteful.

To amortize the high cost of power infrastructure, it is desirable to provision servers
based on their average power consumption. While such a scheme might work in the com-
mon case, rare power spikes across many machines do occur, which can exceed the provi-
sioned capacity of the power infrastructure, blowing a circuit breaker and taking the cluster
offline. Power capping solves this problem by assigning hard limits, or “caps”, to each
server’s power consumption. These limits are enforced by throttling a server’s performance
thereby reducing its power consumption.

To evaluate the scalability of SQS, we model power capping for a server cluster with
quad-core machines. Our case study uses a relatively simple power capping scheme; we
wish to demonstrate the utility of our methodology rather than explore sophisticated power
capping strategies. Servers are assigned a power budget, the maximum power they may
draw over a given interval. We use a fair, proportional budgeting mechanism such that
every server gets a budget in proportion to its current utilization at each budgeting interval.
Budgets are calculated every second. At each budgeting epoch, the capping level can be
observed and is defined as how much more power a server would draw, beyond its budget,

40

Table 5.1: Power model assumptions.

Power (% of Peak) CPU Memory Disk Other

Max 40% 35% 10% 15%
Idle 15% 25% 9% 10%

without a cap. We use idealized DVFS as the power-performance throttling mechanism.
Power-Performance Model. To simulate power capping, we require a baseline server

power model and a model for power savings and performance loss under DVFS. We use
the linear model validated by [73] and [151]:

PTotal = PDynamic · U + PIdle (5.4)

Where U is the average server utilization, PDynamic represents the dynamic range of the
server’s power, and PIdle the idle power. Our power model is based on typical server speci-
fication from industry [33] and is summarized in Table 5.1. For simplicity, we assume that
the CPU is the only component with a dynamic power range such that:

PCPU ∝
(

f

fMax

)3

(5.5)

Where f is the operating clock frequency of the CPU. We assume that this frequency can
be continuously scaled from f = 1.0 to f = 0.5, even though in practice these setting
are discrete. The exact scaling of DVFS with respect to frequency has been receiving
increasing scrutiny [42]; however, since our focus is on simulator performance rather than
power capping efficacy, we assume the classic cubic scaling.

Next, we require a performance model to understand the slowdown imposed by various
DVFS settings. The slowdown in service rate due to DVFS can be modeled as:

µ′ = µ · α ·
(

f

fMax

)
+ µ · (1− α) (5.6)

For some α, which represents how “CPU-bound” an application is. We assume an α of 0.9,
which would be typical of a CPU-intense application (e.g., LINPACK).

The power model given here is a simple example of the kind of model that can be used
with SQS; the particular details of this model are not critical to the simulation approach.

41

Response +Waiting +Capping
Second

Minute

Hour

E=.1
E=.05
E=.01

Figure 5.7: Sensitivity to accuracy and
target variables Runtime is affected by the
selected output variables and the desired
confidence intervals. Monitoring response
and waiting time (+Waiting) increase sim-
ulation time over monitoring response time
alone, because most requests do not ex-
perience queuing, which makes “waiting”
observations more rare. Additionally in-
cluding power capping as an output vari-
able (+Capping) further increases runtime
because capping epochs occur much less
frequently than request completions.

1 4 8 16

1

4

8

16

Slaves

S
pe

ed
up

SQS
Ideal

Figure 5.8: Parallel simulation. SQS
achieves speedup by parallelizing measure-
ment across multiple slaves. The primary
limiting factor to parallel scalability is the
calibration phase, which requires 5000 ob-
servations for the runs-up test on each
slave. Since this simulation requires a sam-
ple size just under 40,000, calibration im-
poses an Amdahl bottleneck.

5.5.2 Performance

Unless otherwise specified, all simulations are run to achieve 95% confidence of E=.05
for both the average value and a 95th-percentile quantile.

In Figure 5.5 we demonstrate how simulation time scales with the size of the simulated
cluster. Simulation of a ten-server system is trivial, taking no longer than a minute. As we
increase the number of servers, simulation time increases roughly linearly. While simula-
tion time across our workloads varies, the scaling relationship is the same. Even at three
orders of magnitude greater cluster size (10,000 servers), simulations take hours rather than
days.

It is important to note that the primary cause of increased simulation time is the over-
head of maintaining and updating the enlarged state of the discrete-event simulation. The
sample size required for convergence, however, depends only on the variance of the output
variables and may be reduced slightly due to averaging effects in larger clusters (as in the
case of power capping).

For a given system size, simulation time is strongly dependent on the workload model.

42

To understand this effect, we simulate a system where the workload’s service distribution is
adjusted to a desired coefficient of variation, Cv (the standard deviation normalized by the
mean). We use the response time as the sole output variable because it is most dependent
on the Cv parameter. Figure 5.6 shows how the accuracy of an output variable, E, reaches
a target value of .05 with the number of simulated events for three values of Cv. For
larger values of E, the difference in the number of simulated events across values of Cv is
small; however, at .05, the required number of simulated events becomes pronounced. This
phenomenon is a direct implication of Equations 5.2 and 5.3—simulation time increases
quadratically with increased accuracy and the standard deviation of the worst case across
output variables. In our example, the Cv of the service time strongly affects response time
variance; however, in more complex systems the relationship may not be as clear.

Finally, we evaluate how the selected output variables impact runtime. We use the same
power capping system as before, but vary the set of output variables and their desired accu-
racy. First, we monitor only response time (“Response”). Increasing the desired accuracy
drastically increases runtime, but simulations require at most a few minutes. Adding a wait
time (“+Waiting”) output variable greatly increases runtime. This increase occurs because
wait events are much less frequent than request completion events (i.e., queuing is rela-
tively infrequent). Finally, additionally monitoring power capping (“Capping”) results in a
further, slight increase in runtime (note that results are on a log scale).

5.5.3 Parallel Simulation

We demonstrate the ability for SQS to parallelize across multiple slaves using our power
capping example. We run the simulation with E = .01 so that it is sufficiently long to
gain benefit from parallel execution. Figure 5.8 demonstrates the speedup gained by using
an increasing number of slaves. We distribute the slaves across 4 machines such that each
machine has an equal number of slaves (e.g., with 8 total slaves, each machine has 2 slaves).

A system with perfect parallel scaling would achieve a speedup equal to the number
of slaves (“Ideal”). SQS demonstrates good scaling up to 8 slaves (“SQS”), but Amdahl
effects limit scalability beyond 16 slaves. Each slave must execute a 5000-observation cal-
ibration phase to complete the runs-up test. As this particular simulation problem requires
a sample size around 40,000, calibration overhead becomes dominant beyond 16 slaves.

5.6 Peak-Power Modeling

Power- and energy-related costs make up almost 50% of data center lifetime costs and
are increasing [33]. Whereas energy costs have received significant attention lately, the

43

5 10 15 20
0

10

20

30

40

50

60

Time (Hours)

U
til

iz
at

io
n

(%
)

Full Resolution
Moving Average

Figure 5.9: Example data center trace: Average utilization masks important spikes.

infrastructure investment required to power thousands of servers has received less atten-
tion and remains high [82]. Modeling these systems accurately is critical for large-scale
evaluation [124, 140]. Designing power infrastructure requires understanding the aggre-
gate peak power of multiple servers at the rack, cluster and data center level. Monitoring
the power consumption of individual servers can be costly, requiring power meters at each
server. Rack-level monitoring can provide more economic monitoring, but masks individ-
ual server behavior. As an alternative to direct measurement, prior work has shown that
CPU utilization can provide an accurate proxy for average power, as average utilization
is roughly proportional to average power [73, 151]. However, estimation approaches that
average utilization at a coarse-grain are not sufficient to predict peak power spikes.

Today, it is not unusual for data center operators to collect utilization traces with sam-
pling intervals of tens of minutes to hours; finer-grained sampling is prohibitive for tens of
thousands of servers due to storage and processing overheads. For example, for a 1000-
node cluster, sampling at the granularity of the OS scheduler (100Hz) would produce 225
GB of data per week.

Figure 5.9 shows the utilization of a production data center server running a web 2.0
service. The trace was collected at ten-second granularity (“Full Resolution”) and has a
wide dynamic range. Unfortunately, most utilization traces are not collected with such
fine detail. When a ten-minute average is used instead (“Moving Average”), significant
detail is lost. For example, though there appears to be little demand around hour ten when
examining the coarse average, the fine-grain trace shows there are still brief spikes that
exceed the maximum of the coarse trace.

We show that to determine a server’s peak power, it is critical to understand the behavior
of server switched-mode power supply units (SMPSUs). These devices are highly efficient,

44

Tripped

Not
Tripped

Undefined

M
ul

tip
le

 o
f R

at
ed

 C
ur

re
nt

Time
1x

10
x

10
0x

10
00

x

1s10ms 10s 100s 1000s100ms

Figure 5.10: Example PDU circuit breaker curve.

but rely on a switching and charge storage mechanism that introduces RC behavior into
the power draw. While SMPSUs are well understood, our contribution is to connect the
operating system view of a server to the peak power draw at the power outlet. We construct
an analytic model of a server’s power draw that can be understood using signal processing
techniques.

Finally, we introduce an easily-collected operating system-level metric that can be used
determine peak power draw over a time epoch. By leveraging our model, we are able to
incorporate the RC behavior of SMPSUs and track peak power with low overhead. This
mechanism can enable logging of peak power over time and will facilitate large-scale data
center power-provisioning research.

5.6.1 Data Center Power Provisioning

Provisioning power infrastructure for data centers is extremely costly; typical installa-
tions incur $10-$20 per provisioned watt [33]. A large fraction of this cost is associated
with installing power distribution units (PDUs), which provide power to groups of servers.
Often, total PDU capacity is overprovisioned [73, 114, 141]. Data center designers typ-
ically use conservative estimates for the maximum power draw of servers. However, in
aggregate, racks and clusters of servers rarely draw their peak power at the same time [73].
At the PDU level, this conservatism means that PDUs are rarely fully loaded; the provi-
sioned capacity at each PDU is well above its average load.

One method to reduce power infrastructure cost is to oversubscribe a data center’s
power infrastructure with more servers than it can support [73]. Oversubscribing power
infrastructure introduces the possibility of exceeding the maximum rated power for a PDU;
this scenario can throw a circuit breaker and take a section of the data center offline. Figure
5.10 depicts a simplified version of a typical PDU circuit breaker curve [60]. Tripping a
breaker is not an instantaneous event; the PDU can tolerate brief current overloads. How-

45

ever, since several servers might incur power spikes at the same time, to maintain avail-
ability, a design must guarantee that the total power draw at each server remain below a
predetermined limit.

Power capping is a data center-level technique to set hard limits on servers’ peak
power consumption (e.g., using a control loop) [73, 114]. Throttling server power (via
frequency/voltage scaling) is used as a safety mechanism to ensure maximum power levels
are not exceeded and circuit breakers are not tripped. With this mechanism in place, PDUs
and other power provisioning infrastructure can be oversubscribed, reducing the effective
capital cost. Since load/power spikes are rare, little performance is lost to throttling. Cap-
ital costs can be further reduced by using Power Routing [141], which allows load to be
shifted among PDUs during imbalances.

All of these techniques require software mechanisms to track and predict peak power,
to manage power budgets at each server, circuit, and PDU, while minimizing performance
throttling. Though peak power could be tracked with explicit metering and logging, assess-
ing peak power directly from operating system-level metrics can drastically reduce costs.
To infer and record peak power from OS level metrics, we must understand the operation
of server power supplies and its relationship to utilization.

5.6.2 Understanding SMPSU Behavior

In this section, we explore the behavior of SMPSU devices in servers and its connection
to OS-observed utilization. To ensure our observations generalize, we study two different
kinds of systems: a smaller system with a cheap, commodity PSU (“Commodity”) and a
larger system with an enterprise class PSU (“Server”). Since SMPSU designs vary, these
systems exhibit some differences in behavior; nevertheless, aspects relevant to predicting
peak power draw are similar. First, we briefly describe the operation of SMPSU devices; a
detailed description of such devices may be found in [145]. Next, we describe our experi-
mental methodology for characterizing these devices and measuring the important behav-
iors of SMPSUs. Finally, we develop a high-level signal processing model to predict peak
power.

5.6.2.1 Operation

Modern servers use some form of SMPSU to convert from 120/240V AC to 12V DC
power. SMPSUs are far more efficient than, for example, linear regulators, but are also
more complicated in their design. While the design and operation of these devices is well
understood, our contribution is to understand how the processor’s logical view of utilization

46

Post
Regulation

Vout

Current Probe

Vo
lta

ge
 P

ro
be

Figure 5.11: Simplified switched-mode power supply design and instrumentation to mea-
sure power.

maps to the physical power draw at an outlet. This connection is important because, as we
show, the design of typical SMPSU devices impacts the manner in which we should model
server power.

Figure 5.11 illustrates the topology of a typical SMPSU. In the first stage, line AC
voltage is rectified and passed to a storage element (i.e., a capacitor). The second stage
typically includes some form of regulation to maintain a DC voltage. As the demands of
the DC devices powered by the SMPSU change, the SMPSU controller adjusts the duty
cycle of its switching to transfer more or less charge.

Because of its design, a SMPSU does not draw power continuously. Instead, there are
spikes of current during each charging cycle. During these spikes, current is transferred
from the high-voltage supply to the SMPSU capacitor. Example measurements of power
draw in idle systems are shown in Figure 5.12. While the basic principle of operation is
the same, the Commodity PSU clearly transfers current in more pronounced spikes than
the Server. This difference is due to extra switching regulation in the first stage, common
in higher-end devices, used to produce a more continuous current draw.

Because of the capacitor used to store and transfer charge, this circuit exhibits RC be-
havior. We would like to know the effect a typical SMPSU has on the frequency response
and phase of power consumption with respect to processor utilization. Such an understand-
ing will allow us to better determine at what granularity we must track utilization.

5.6.2.2 Experimental Methodology

We measure the power consumed by a server at the wall outlet to observe its behavior
with respect to utilization. We accomplish this by simultaneously measuring the instanta-
neous voltage over and current entering the PSU as illustrated in Figure 5.11. A simple
power probe is not sufficient for this measurement because these devices typically report
average RMS power, masking the phenomenon we are attempting to observe. We record
detailed traces of the instantaneous signals from both these probes.

We measure the two machine configurations described earlier: a smaller, inexpensive

47

0

250

500

P
ow

er
 (

W
)

−3

0

3

C
ur

re
nt

 (
A

)

0 0.05 0.1 0.15
−160

0

160

Time (s)

V
ol

ta
ge

 (
V

)

(a) Commodity

0

250

500

P
ow

er
 (

W
)

−5

0

5

C
ur

re
nt

 (
A

)

0.05 0.1 0.15
−160

0

160

Time (s)

V
ol

ta
ge

 (
V

)

(b) Server

Figure 5.12: Systems at idle. Switch-mode power supplies draw power in discrete spikes.

system (“Commodity”) and an enterprise, dual socket system (“Server”). Comparing these
systems allow us to determine if the size or price class of the machines influences their
behavior. The measured idle and maximum power consumptions of these machines are
provided in Table 5.2.

To understand how utilization and the PSU interact, we wish to characterize two effects.
First, we investigate how the frequency at which utilization varies is reflected in the power
draw at the wall outlet. Intuitively, we expect that utilization variations that occur faster
than some cut-off frequency will be filtered by the PSU behavior and not be reflected at
the outlet; measuring utilization at a granularity finer than this cut-off is not necessary for
accurate peak power prediction. The precise cut-off frequency has not previously been
characterized. Second, we wish to determine the latency between utilization changes and
a corresponding change in the SMPSU power draw; in other words, how rapidly a step
function in utilization affects power draw at the PSU.

To observe the effect of the frequency of utilization variation, we use a synthetic work-
load we refer to as SQUARE. This workload produces a square wave in system utilization by
switching cores between a matrix multiplication kernel designed to maximize CPU power
draw and an idle mode where the processors enter a power-save mode. The duty cycle
of the workload is fixed at 50%, producing an average utilization of 50%. We vary the
frequency of the square wave and observe the response at the PSU.

To characterize the latency between a utilization change and the PSU response, we
idle the system and wait until the PSU behavior reaches steady state. We then trigger
execution of the matrix multiply kernel on all cores. We refer to this synthetic workload
as STEP. Because CPU utilization is not directly observable externally, we send a signal
(using general purpose I/O that is significantly faster than the expected SMPSU response)
immediately before the transition to initiate timing at our oscilloscope.

48

RMS Power (W) Dyn. Range (max/min)
Idle Max

Commodity 57 W 188 W 3.3
Server 212 W 355 W 1.7

Table 5.2: Systems under test.

5.6.2.3 Measured Behavior

We now present results for frequency and phase delay behavior.
Frequency Response. To understand the relationship between the frequency of uti-

lization and power, we ran the SQUARE benchmark on both test systems with varying fre-
quencies. Figure 5.13 shows the observed instantaneous power at each frequency on both
systems. We used 100 Hz as the maximum frequency we investigate because we found
that the Linux kernel could not reliably schedule faster than this frequency (in general this
will depend on the OS kernel configuration). The current draw and voltage of an idle sys-
tem are provided for reference. The dotted line (“Envelope”), connects the peaks of the
power waveform and functions as an envelope detector. The varying utilization modulates
the instantaneous power waveform of a system at idle; the envelope detector reveals the
modulated signal.

The results in Figure 5.13 show that the frequency of modulation has a strong influence
on the observed power waveform. As long as the utilization of the CPU is modulated
slowly, the envelope of power draw roughly resembles a square wave, matching the CPU
behavior. However as the frequency is increased, the power draw becomes more uniform.

We draw several conclusions from this result. First, the SMPSU effectively acts as
a low-pass filter with respect to utilization. We construct a model for this behavior in
Section 5.6.2.4. Second, to faithfully model the peak power of an SMPSU, it is neces-
sary to monitor utilization at fine granularity (near the kernel scheduling interval for many
systems). Averages that use coarser windows lose information. However, monitoring uti-
lization at a time-scale finer than 50 Hz is unnecessary: the variations in the 50 Hz (20 ms
period) and 100 Hz (10 ms period) waveforms are filtered.

To give a better sense of the filtering in the SMPSU system, we construct a Bode-style
plot of the systems in Figure 5.15. The figure illustrates the attenuation of the modulating
signals. We show the Commodity and Server frequency responses compared to a idealized
first-order RC low-pass filter (“Ideal”). We find that these systems are closely approximated
by a filter with a frequency cutoff of 30Hz.

Phase Delay. Next, we investigate the phase delay of SMPSU power load using the
STEP workload. The step function response of both test machines is provided in Figure

49

0

600

Period = 10ms

0

600

Period = 20ms

0

600

P
ow

er
 (

W
) Period = 50ms

0

600

Period = 100ms

0

600

Period = 500ms

−3

3

C
ur

re
nt

 (
A

)

0 0.25 0.5 0.75 1
−160

160

V
ol

ta
ge

 (
V

)

Time (s)

(a) Commodity

0

600

Period = 10ms

0

600

Period = 20ms

0

600

P
ow

er
 (

W
) Period = 50ms

0

600

Period = 100ms

0

600

Period = 500ms

−3

3

C
ur

re
nt

 (
A

)

0 0.25 0.5 0.75 1
−160

160
V

ol
ta

ge
 (

V
)

Time (s)

(b) Server

Figure 5.13: Effect of modulation frequency. All examples have the same average utiliza-
tion, but exhibit different peak power.

0

200

400

600

800

P
ow

er
(W

)

Measured
Filtered

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0

0.5

1

Time (s)

N
or
m
al
iz
ed

V
al
ue

Trigger
Utilization

(a) Commodity

0.2 0.3 0.4 0.5
0

200
400
600
800

P
ow

er
 (

W
)

Measured
Filtered

0.2 0.3 0.4 0.5
0

0.5

1

Time (s)

N
or

m
al

iz
ed

 V
al

ue

Trigger
Utilization

(b) Server

Figure 5.14: Delay of a step function in utilization.

50

5.14. There is a delay in the instantaneous power response, which rises as one would expect
of a step function with RC filtering. We report the I/O signal indicating the utilization
transition (“Trigger”), as well as the implied utilization waveform (“Utilization”). Finally,
we show a filtered (“Filtered”) step function that fits the observed rising waveform. This
signal is produced from a first order RC filter with a frequency cutoff of 30 Hz.

5.6.2.4 Model

The goal of our investigation has been to model the peak power draw of SMPSU for
server systems. Accordingly, we now construct an analytic model of the PSU behavior
using signal processing. We start with the observation that the PSU is effectively exhibiting
amplitude modulation (AM). An idle system demonstrates the carrier signal: the periodic
spikes in current consumption. This signal is then modulated by changes in utilization. The
block system diagram for our model is illustrated in Figure 5.16.

We can describe the observed power draw of an SMPSU as a signal:

pwall(t) = pdyn · c(t) · (h(t) ∗ x(t)) + pidle (5.7)

Where pwall(t) is the observed time varying power consumption, c(t) is the SMPSU current
carrier waveform, h(t) is the transfer function for a low-pass filter and x(t) is the instanta-

neous fractional utilization. Note that x(t) can only take on one of 2N values, where N is
the number of cores in the system. Finally, pdyn and pidle are constants that are the same as
in Equation 1 and are provided for our system in Table 1. While we use a relatively simple
power model, if more sophisticated models are needed (e.g., to model the use of low-power
modes), they can easily fit within this framework; we leave such extensions to future work.

We have observed that a first order low-pass filter is quite accurate; therefore, the trans-
fer function is:

h(t) =
1

τ
e−t/τ (5.8)

Where τ is the time constant and is approximately 33 ms for our system (alternatively, the
cutoff frequency is 30 Hz).

5.6.3 Server Peak Power Accounting

A key result of our measurement study is that utilization must be monitored at a granu-
larity below 30 Hz to predict peak power. However, finer-grained variation is filtered by the
RC behavior of the power supply and need not be monitored. With our new understanding
of the operation of SMPSUs and their relationship with server utilization, we construct a

51

10
0

10
1

10
2

−15

−10

−5

0

5

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

Commodity
Server
Ideal

Figure 5.15: Frequency response.

CPU

PSU

RC Filtering

AM
Idle

DC Offset Wall

x(t) h(t)*x(t)

c(t)

h(t)*x(t)+pidle Pwall(t)

Figure 5.16: Simplified Server SMPSU Model.

low-overhead method to infer peak power from utilization in the operating system kernel.
We then validate our model using real machines and show we can predict the peak power
trace with an error below 20%.

5.6.3.1 A Compact Metric for Peak Power

We propose a new operating system-level metric to track spikes in peak power. We
use the model presented in Section 5.6.2.4 to filter fine-grain utilization signals (idle/busy
transitions) collected in the OS scheduler to determine and record maximum power draw
over a time epoch T . To obtain accurate estimates of power draw spikes, we must know the
RC response of a particular PSU, which may vary among PSUs. (However, the fact that the
two PSUs we study, which differ drastically in their design, exhibit similar RC response
provides some evidence that other PSUs will have similar behavior). Over the course of
each epoch, we evaluate the estimated power at each sampling interval and retain the peak
value.

Most current releases of the Linux kernel are tickless [160]; that is, they operate without
a periodic timer interrupt, and can have a variable scheduling interval. Variations in the
length of idle/busy periods complicate construction of the input utilization signal to our
filter-based model; we must correct for these variations prior to calculation. Note that

52

0 2 4 6 8
0

200

400

600

800

P
ow

er
 (

W
)

Time (s)

Measured
Predicted

(a) Commodity

0 2 4 6 8
0

200

400

600

800

P
ow

er
 (

W
)

Time (s)

Measured
Predicted

(b) Server

Figure 5.17: Predicted peak power closely follows measured value.

these corrections do not lose information, as idle/busy transitions cannot occur without
invoking the scheduler. We detect scheduler transitions at each core and compute utilization
in sampling intervals of 4 ms each.

At the operating system level, the view of a processor is binary; in other words, it tracks
if in a given scheduling intervals, measured in jiffies, the processor was active or idle. In
fact, because floating point operations are not available in the Linux kernel, the number
of idle and active jiffies are collect and most averaging is performed by user-level tools
such as top. In order to determine the peak power, it may seem reasonable to collect the
peak utilization during a time interval or to count the longest series of consecutive active
jiffies. However, as shown earlier, because of the RC behavior of the system, these are not
sufficient. A brief spike of 100% utilization for a jiffy, will be filtered and well short of
100% of power draw. Similarly, a system that oscillates between 100% and 0% utilization
at a high frequency will be indistinguishable from one which is 50% utilized. Therefore, a
metric that helps us know peak power must take the RC behavior of the system into account

To construct an estimator for peak power, we transform the utilization signal using an
in-kernel finite impulse response (FIR) filter of the form:

y[n] =
N∑
i=0

bix[n− i] (5.9)

This processing allows us to model the RC behavior of the PSU. Since our tracking and
processing takes place in the scheduling subsystem of the OS kernel, it must be light-weight
and use fixed point arithmetic [179]. We have found that a 10th order FIR filter captures
the behavior well. This filter can compute our metric easily, it requires only the last 10
utilization observations and 10 multiply-accumulate operations per update.

53

5.6.3.2 Validation

We validate our models against the power consumption of the two server configurations
presented in Table 5.2. Two representative traces of measured power are presented in Figure
5.17. These traces were collected while the system executed a parallel compile of the Linux
kernel, a workload that produces a chaotic, bursty utilization pattern. The instantaneous
power (“Measured”) is measured the same way as described in Section 4.2.

We overlay our predicted power (“Predicted”), which tracks peak power well, but can
still overshoot occasionally. Fortunately, this model tends to be conservative, and overes-
timates power more than it underestimates. Hence, it will provide conservative estimates
in, for example, studies of power budgeting/capping. In this example, the Commodity and
Server machines exhibit a normalized root mean square deviation (NRMSD) of 14% and
19% respectively.

54

CHAPTER 6

The PowerNap Server Architecture -
A Coordinated Idle Low-Power Mode

In this chapter, we propose an energy-conservation approach, called PowerNap, that is
attuned to server utilization patterns. With PowerNap, we design the entire system to tran-
sition rapidly between a high-performance active state and a minimal-power nap state in
response to instantaneous load. Rather than requiring components that provide fine-grain
power-performance trade-offs, PowerNap simplifies the system designer’s task to focus on
two optimization goals: (1) optimizing energy efficiency while napping, and (2) minimiz-
ing transition time into and out of the low-power nap state.

Based on the PowerNap concept, we develop requirements and outline mechanisms to
eliminate idle power waste in a high-density blade server system. Through modeling and
analysis of actual data center workload traces, we demonstrate:

• Energy efficiency and response time bounds. Through queuing analysis, we es-
tablish bounds on PowerNap’s energy efficiency and response time impact. Using
our models, we determine that PowerNap is effective if state transition time is small
compared to the average request service time. For the workloads we evaluate, transi-
tion time should be below 10ms, and incurs no overheads below 1ms. Furthermore,
we show that PowerNap provides greater energy efficiency and lower response time
than solutions based on DVFS.

• Experimental validation of response time impact. By instrumenting a kernel to
emulate PowerNap’s transition delays, we validate the response time predictions of
our analytic model, confirming that neither CPU caching effects, nor 1ms transitions
significantly impact workload response time.

55

SSD

Fans

NIC

DRAM CPUs

Service

SSD

Fans

NIC

DRAM CPUs

Service

Packet

SSD

Fans

NIC

DRAM CPUs

Service

!
zzz

zzz

zzz

System components nap
while server is idle

The NIC detects the
arrival of work

Server returns to full performance to
nish work as quickly as possible

SSD

Fans

NIC

DRAM CPUs

Service

Server operates at full performance
to nish existing work

PowerNap
Transition

Work
Arrival

Wake
Transition

Figure 6.1: PowerNap.

6.1 PowerNap

Although servers spend most of their time idle, conventional energy-conservation tech-
niques are unable to exploit these brief idle periods. Hence, we propose an approach to
power management that enables the entire system to transition rapidly into and out of a
low-power state where all activity is suspended until new work arrives. We call our ap-
proach PowerNap.

Figure 6.1 illustrates the PowerNap concept. Each time the server exhausts all pending
work, it transitions to the nap state. In this state, nearly all system components enter sleep
modes, which are already available in many components (see Section 6.3). While in the
nap state, power consumption is low, but no processing can occur. System components that
signal the arrival of new work, expiration of a software timer, or environmental changes,
remain partially powered. When new work arrives, the system wakes and transitions back
to the active state. When the work is complete, the system returns to the nap state.

PowerNap is simpler than many other energy conservation schemes because it requires
system components to support only two operating modes: an active mode that provides
maximum performance and a nap mode that minimizes power draw. For many devices, pro-
viding a low-power nap mode is far easier than providing multiple active modes that trade
performance for power savings. Any level of activity often implies fixed power overheads
(e.g., bus clock switching, power distribution losses, leakage power, mechanical compo-
nents, etc.) We outline mechanisms required to implement PowerNap in Section 6.3.

6.1.1 PowerNap Performance and Power Model

To assess PowerNap’s potential, we develop a queuing model that relates its key per-
formance measures—power consumption and response time penalty—to workload param-
eters and PowerNap implementation characteristics. We contrast PowerNap with a model
of the upper-bound energy-savings possible with DVFS. The goal of our model is three-
fold: (1) to gain insight into PowerNap behavior, (2) to derive requirements for PowerNap

56

Work in

Queue

Time
Arrival Arrival Arrival

Wake

Active

Suspend

Arrival

Work in

Queue

Time
Arrival Arrival

(a) PowerNap (b) DVFS

Figure 6.2: PowerNap and DVFS analytic models.

implementations, and (3) to contrast PowerNap and DVFS.
We model both PowerNap and DVFS under the assumption that each seeks to mini-

mize the energy required to serve the offered load. Hence, both schemes provide identical
throughput (matching the offered load) but differ in response time and energy consumption.

PowerNap Model. We model PowerNap as an M/G/1 queuing system with arrival rate
λ, and a generalized service time distribution with known first and second moments E[S]

and E[S2]. Figure 6.2(a) shows the work in the queue for three job arrivals. Note that, in
this context, work also includes time spent in the wake and suspend states. Average server
utilization is given by ρ = λE[S]. To model the effects of PowerNap suspend and wake
transitions, we extend the conventional M/G/1 model with an exceptional first service time
[172]. We assume PowerNap transitions are symmetric with latency Tt. Service of the first
job in each busy period is delayed by an initial setup time I . The setup time includes the
wake transition and may include the remaining portion of a suspend transition as shown for
the rightmost arrival in Figure 6.2(a). Hence, for an arrival x time units from the start of
the preceding idle period, the initial setup time is given by:

I =

{
2Tt − x if 0 ≤ x < Tt

Tt if x ≥ Tt

The first and second moments E[I] and E[I2] are:

E[I] =

∫ ∞
0

Iλe−λxdx = 2Tt +
1

λ
e−λTt − 1

λ

E[I2] =

∫ ∞
0

I2λe−λxdx

= 4T 2
t − 2T 2

t e
−λTt −

(
4Tt
λ

+
2

λ2

)[
1− (1 + λTt)e

−λTt
]

We compute average power as

57

Pavg = Pnap · Pr(nap) + Pmax(1− Pr(nap))

where the fraction of time spent napping Pr(nap) is given by the ratio of the expected
length of each nap period E[N] to the expected busy-idle cycle length E[C]:

Pr(nap) =

∫ Tt
0

(0)λe−λtdt+
∫∞
Tt

(t− Tt)λe−λtdt
E[S]+E[I]
1−λE[S]

+ 1
λ

=
e−λTt (1− λE[S])

1 + λE[I]

The response time for an M/G/1 server with exceptional first service is due to Welch
[172]:

E[R] = λE[S2]
2(1−λE[S])

+ 2E[I]+λE[I2]
2(1+λE[I])

+ E[S]

Note that the first term of E[R] is the Pollaczek-Khinchin formula for the expected
queuing delay in a standard M/G/1 queue, the second term is additional residual delay
caused by the initial setup time I , and the final term is the expected service time E[S]. The
second term vanishes when Tt = 0.

DVFS model. Rather than model a real DVFS frequency control algorithm, we instead
model the upper bound of energy savings possible with DVFS. For each job arrival, we
scale instantaneous frequency f to stretch the job to fill any idle time until the next job
arrival, as illustrated in Figure 6.2(b), which gives E[f] = fmaxρ. This scheme maximizes
power savings, but cannot be implemented in practice because it requires knowledge of
future arrival times. We base power savings estimates on the theoretical formulation of
processor dynamic power consumption PCPU = 1

2
CV 2Af . We assume C and A are fixed,

and choose the optimal f for each job within the range fmin < f < fmax. We impose
a lower bound fmin = fmax/2.4 to prevent response time from growing asymptotically
when utilization is low. We chose a factor of 2.4 between fmin and fmax based on the
frequency range provided by a 2.4 GHz AMD Athlon. We assume voltage scales linearly
with frequency (i.e., V = Vmax(f/fmax)), which is optimistic with respect to current DVFS
implementations. Finally, as DVFS only reduces the CPU’s contribution to system power,
we include a parameter FCPU to control the fraction of total system power affected by
DVFS. Under these assumptions, average power Pavg is given by:

Pavg = Pmax(1− FCPU(E[f]
fmax

)3)

58

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

% utilization

A
v
g

.
P

o
w

e
r

(%
 m

a
x

 p
o

w
e

r)

DVFS = 100% PowerNap = 100 ms

DVFS = 40% PowerNap = 10 ms

DVFS = 20% PowerNap = 1 ms

FCPU
FCPU
FCPU

Tt
Tt
Tt

(a) Power Scaling

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0% 20% 40% 60% 80% 100%

% utilization

R
e
la

ti
v
e
 r

e
s
p

o
n

s
e
 t

im
e

DVFS

PowerNap = 100 ms

PowerNap = 10 ms

PowerNap = 1 ms

Tt

Tt

Tt

(b) Response Time Scaling

Figure 6.3: PowerNap and DVFS power and response time scaling.

Response time is given by:

E[R] = E
[
Rbase

f

]
where Rbase is the response time without DVFS.

6.1.2 Analysis

Power Savings. Figure 6.3(a) shows the average power (as a fraction of peak) required
under PowerNap and DVFS as a function of utilization. For DVFS, we show power sav-
ings for three values of FCPU . FCPU = 100% represents the upper bound if DVFS were
applicable to all system power. 20% < FCPU < 40% bound the typical range in current
servers. For PowerNap, we construct the graphs with E[s] = 38ms and E[s2] = 3.7E[s],
which are both estimated from the observed busy period distribution in our Web trace. We
assume Pnap is 5% of Pmax. We vary λ to adjust utilization, and present results for three
values of Tt: 1ms, 10ms, and 100ms. We expect 10ms to be a conservative estimate for
achievable PowerNap transition time. For transition times below 1ms, transition time be-
comes negligible and the power savings from PowerNap varies linearly with utilization for
all workloads. We discuss transition times further in Section 6.3.

When FCPU is high, DVFS clearly outperforms PowerNap, as it provides cubic power
savings while PowerNap’s savings are at best linear in utilization. However, for realistic
values of FCPU and transition times in our expected range (Tt ≤ 10ms), PowerNap’s sav-
ings rapidly overtake DVFS. As transition time increases, the break-even point between
DVFS and PowerNap shifts towards lower utilization. Even for a transition time of 100 ms,

59

PowerNap can provide substantial energy savings when utilization is below 20%.

Response time. In Figure 6.3(b), we compare the response time impact of DVFS and
PowerNap. The vertical axis shows response time normalized to a system without power
management (i.e., that always operates at fmax). For DVFS, response time grows rapidly
when the gap between job arrivals is large, and reaches the fmin floor below 40% utiliza-
tion. DVFS response time penalty is independent of FCPU , and is bounded at 2.4 by the
ratio of fmax/fmin. For PowerNap, the response time penalty is negligible if Tt is small
relative to average service time E[S], which we expect to be the common case (i.e., most
jobs last longer than 10ms). However, if Tt is significant relative to E[S], the PowerNap
response time penalty grows as utilization shrinks. When utilization is high, the server is
rarely idle and few jobs are delayed by transitions. As utilization drops, the additional de-
lay seen by each job converges to Tt (i.e., every job must wait for wake-up).

Per-Workload Energy Savings. Finally, we report the energy savings under simulated
PowerNap and DVFS schemes for our workload traces. Because these traces only contain
busy and idle periods, and not individual job arrivals, we cannot estimate response time
impact. For each workload, we perform a trace-based simulation that assumes busy peri-
ods will start at the same time, independent of the current PowerNap state (i.e., new work
still arrives during wake or suspend transitions). We assume a PowerNap transition time of
10ms and nap power at 5% of active power, which we believe to be conservative estimates
(see Section 6.3). For DVFS, we assume FCPU = 25%. Table 6.1 shows the results of
these simulations. All workloads except Mail and Cluster hit the DVFS frequency floor,
and, hence, achieve a 23% energy savings. In all cases, PowerNap achieves greater energy
savings. Additionally, we extracted the average arrival rate (assuming a Poisson arrival
process) and compared the results in Table 6.1 with the M/G/1 model of Pr(nap) derived
above. We found that for these traces, the analytic model was within 2% of our simulated
results in all cases. When arrivals are more deterministic (e.g., Backup) than the expo-
nential we assume, the model slightly overestimates PowerNap savings. For more variable
arrival processes (e.g., Shell), the model underestimates the energy savings.

6.1.3 Implementation Requirements

Based on the results of our analytic model, we identify two key PowerNap implemen-
tation requirements:

60

Table 6.1: Per-workload energy savings and response time penalty.

Workload PowerNap DVFS

Energy Savings ∆ Latency Energy Savings ∆ Latency

Cluster 34% 0.2% 18% 156%
DNS 77% 5.1% 23% 240%
Mail 35% 11% 21% 181%
Shell 55% 13% 23% 240%
Web 59% 13% 23% 240%
Backup 61% 7.6% 23% 240%

Fast transitions. Our model demonstrates that transition speed is the dominant factor
in determining both the power savings potential and response time impact of PowerNap.
Our results show that transition time must be less than one tenth of average busy period
length. Although a 10ms transition speed is sufficient to obtain significant savings, 1ms
transitions are necessary for PowerNap’s overheads to become negligible. To achieve these
transition periods, a PowerNap implementation must preserve volatile system state (e.g.,
memory) while napping—mass storage devices transfer rates are insufficient to transfer
multiple GB of memory state in milliseconds.

Minimizing power draw in nap state. Given the low utilization in most enterprise
deployments, servers will spend a majority of time in the nap state, making PowerNap’s
power requirements the key factor affecting average system power. Hence, it is critical
to minimize the power draw of napping system components. As a result of eliminating
idle power, PowerNap drastically increases the range between the minimum and maxi-
mum power demands on a blade chassis. Existing blade-chassis power-conversion systems
are inefficient in the common case, where all blades are napping. Hence, to maximize
PowerNap potential, we must re-architect the blade chassis power subsystem to increase its
efficiency at low loads.

Although PowerNap requires system-wide modifications, it demands only two states
from each subsystem: active and nap states. Hence, implementing PowerNap is substan-
tially simpler than developing energy-proportional components. Because no computation
occurs while napping, many fixed power draws, such as clocks and leakage power, can be
conserved.

61

6.2 Emulating PowerNap Transition Performance Impact

The PowerNap architecture can impact application response time in two ways: transi-
tions in and out of the nap state delay responses and some processors may flush on-chip
caches when transitioning. To investigate these effects in greater detail, we have instru-
mented a Linux kernel to insert transition delays and flush CPU caches when exiting from
idle, emulating PowerNap’s performance impact. Using this emulation, we have examined
PowerNap’s impact on the response time of a web serving benchmark.

6.2.1 Cache Effects

The static power of processor caches consumes a large and potentially growing fraction
of overall CPU power budget, particularly when idle. Accordingly, sleep modes available
in some CPUs may turn off caches, flushing their contents. The ACPI standard leaves it
unspecified whether cache contents are preserved during ACPI sleep states, and implemen-
tations vary across vendors and processor generations. We wish to characterize the perfor-
mance impact of discarding cache contents during PowerNap transitions, to determine if it
is important for PowerNap to use only cache-state-preserving sleep modes.

To produce the effect of flushing the cache, we instrument the kernel to issue the x86
WBINVD instruction (which writes back and then invalidates the entire contents of CPU
caches [6]) when emulating a PowerNap transition. We have tested our modified kernel
using a microbenchmark that strides over L1 and L2-sized data structures to confirm that
the WBINVD instruction discards the contents of both the L1 and L2 caches. We test the
effect of flushing the cache each time the server becomes idle (i.e., upon entry to the OS idle
loop) for the SPECweb and SPECpower benchmarks [16, 17]. Figure 6.4 show’s that the
average response time for these benchmarks does not change appreciably as the cold-start
cache effect is small relative to the average response time.

6.2.2 Transition Latency

We further investigate the impact of PowerNap transition time to understand how var-
ious values of Tt affect a workload. To emulate a wide spectrum of delays, we instrument
the Linux kernel to artificially insert delays when exiting the idle loop. The instrumentation
tracks the time since the end of the last job such that the delay is I as described in the model
in Section 3 (i.e., it accounts for both sleep and wake transitions, falling between Tt and
2Tt).

Figure 6.5 reports the average response time of SPECweb and SPECpower for a Tt of
1, 10 and 100ms including cache flush effects. Our measurements confirm the model pre-

62

Figure 6.4: Cache effect.

Benchmark Relative Response Time

SPECweb 1.01
SPECpower 1.00

1 10 100
1

1.5

2

2.5

3

3.5

T
t
 (ms)

R
el

at
iv

e
R

es
po

ns
e

T
im

e

SPECweb
SPECpower

Figure 6.5: Emulating PowerNap.

dictions, showing that a 100ms transition time has a considerable response time impact.
However, a Tt of 10ms results in tolerable delay and 1ms incurs a negligible performance
impact. Furthermore, we see that SPECpower is more sensitive to transition latency be-
cause of it’s shorter average service time.

6.3 PowerNap Mechanisms

We outline the design of a PowerNap-enabled blade server system and enumerate required
implementation mechanisms. PowerNap requires nap support in all hardware subsystems
that have non-negligible idle power draws, and software/firmware support to identify and
maximize idle periods and manage state transitions.

6.3.1 Hardware Mechanisms

At the component level, the sleep states required by PowerNap are already available
in many products, particularly those targeted to mobile devices. However, few of these
mechanisms are exploited in existing servers, and some are omitted in current-generation
server-class components. Moreover, the operating system APIs that control sleep/wake
transitions in current desktops and laptops introduce enormous overheads that dominate
the transition latency, making them inapplicable for PowerNap.

For each hardware subsystem, we identify existing mechanisms or outline requirements
for new mechanisms necessary to implement PowerNap. Furthermore, we provide esti-
mates of power dissipation while napping and transition speed. We summarize these esti-
mates, along with our sources, in Table 6.2. Our estimates for a ”Typical Blade” are based
on HP’s c-series half-height blade designs; our PowerNap power estimate assumes a two-

63

Table 6.2: Component power consumption.

Component Power Transition Sources
Active Idle Nap

CPU chip 80-150W 12-20W 3.4W 30 µs [95] [94]
DRAM DIMM 3.5-5W 1.8-2.5W 0.2W < 1µs [128] [93]

NIC 0.7W 0.3W 0.3W no trans. [161]
SSD 1W 0.4W 0.4W no trans. [153]
Fan 10-15W 1-3W - independent [116]
PSU 50-60W 25-35W 0.5W 300 µs [156]

Typical Blade 450W 270W 10.4W 300 µs

CPU system with eight DRAM DIMMs.

Processor: ACPI S3 “Sleep” state. The ACPI standard defines the S3 “Sleep” state for
processors that is intended to allow low-latency transitions. Although the ACPI standard
does not specify power or performance requirements, some implementations of S3 are ideal
for PowerNap. For example, in Intel’s mobile processor line, S3 preserves last-level cache
state and consumes only 3.4W [95]. These processors require approximately 30 µs for PLL
stabilization to transition from sleep back to active execution [94].

If S3 is unavailable, clock gating can provide substantial energy savings. For example,
Intel’s Xeon 5400-series power requirements drop from 80W to 16W upon executing a halt
instruction [96]. From this state, resuming execution requires only nanosecond-scale de-
lays.

DRAM: Self-refresh. DRAM is typically the second-most power-hungry system com-
ponent when active. However, several recent DRAM specifications feature an operating
mode, called self-refresh, where the DRAM is isolated from the memory controller and
autonomously refreshes DRAM content. In this mode, the memory bus clock and PLLs
are disabled, as are most of the DRAM interface circuitry. Self-refresh saves more than
an order of magnitude of power. For example, a 2GB SODIMM (designed for laptops)
with a peak power draw above 5W uses only 202mW of power during self- refresh[128].
Transitions into and out of self- refresh can be completed in less than a microsecond [93].

Mass Storage: Solid State Disks. Solid state disks draw negligible power when idle,
and, hence, do not need to transition to a sleep state for PowerNap. A recent 64GB Sam-
sung SSD consumes only 0.32W while idle [153].

64

Network Interface: Wake-on-LAN. The key responsibility PowerNap demands of the
network interface card (NIC) is to wake the system upon arrival of a packet. Existing NICs
already provide support for Wake-on-LAN to perform this function. Current implementa-
tions of Wake-on-LAN provide a mode to wake on any physical activity. This mode forms a
basis for PowerNap support. Current NICs consume only 400mW while in this mode [161].

Environmental Monitoring & Service Processors: PowerNap transition manage-
ment. Servers typically include additional circuitry for environmental monitoring, remote
management (e.g., remote power on), power capping, power regulation, and other func-
tionality. These components typically manage ACPI state transitions and would coordinate
PowerNap transitions. A typical service processor draws less than 10mW when idle.

Fans: Variable Speed Operation. Fans are a dominant power consumer in many
recent servers. Modern servers employ variable-speed fans where cooling capacity is con-
stantly tuned based on observed temperature or power draw. Fan power requirements typ-
ically grow cubically with average power. Thus, PowerNap’s average power savings yield
massive reductions in fan power requirements. In most blade designs, cooling systems are
centralized in the blade chassis, amortizing their energy cost over many blades. Because
thermal conduction progresses at drastically different timescales than PowerNap’s transi-
tion frequency, chassis-level fan control is independent of PowerNap state (i.e., fans may
continue operating during nap and may spin down during active operation depending on
temperature conditions).

Power Provisioning: RAILS. PowerNap fundamentally alters the range of currents
over which a blade chassis must efficiently supply power. In Chapter 8, we explain why
conventional power delivery schemes are unable to provide efficient AC to DC conversion
over this range, and present RAILS, our power conversion solution.

6.3.2 Software Mechanisms

Existing software support for sleep modes in desktop and laptop (e.g., ACPI) fails to
meet the needs of PowerNap in several ways. First, system-wide sleep transitions are ex-
ceedingly slow (often requiring seconds) because individual devices are transitioned among
modes sequentially through elaborate driver interfaces. To achieve acceptable transition la-
tencies, devices must transition in parallel without complex operating system interactions.
Second, existing APIs contain complexity and features (e.g., support for multiple power

65

modes and per-device state management) that are not needed for PowerNap and introduce
unnecessary overheads. Third, current state transitions are not software-transparent—most
operating systems notify applications prior to a state change and have numerous visible
side-effects (e.g., closing active network connections). Finally, these APIs do not provide
adequate mechanisms to schedule the system to wake from sleep at a specific time in the
future.

For schemes like PowerNap, the periodic timer interrupt used by legacy OS kernels
to track the passage of time and implement software timers poses a challenge. As the
timer interrupt is triggered every 1ms, conventional OS time keeping precludes the use
of PowerNap. The periodic clock tick also poses a challenge for idle-power conservation
on laptops and for virtualization platforms that consolidate hundreds of OS images on a
single hardware platform. Hence, the Linux kernel has recently been enhanced to support
“tickless” operation, where the periodic timer interrupt is eschewed in favor of hardware
timers for scheduling and time keeping [160]. PowerNap depends on a kernel that provides
tickless operation.

PowerNap’s effectiveness increases with longer idle periods and less frequent state tran-
sitions. Some existing hardware devices (e.g., legacy keyboard controllers) require polling
to detect input events. Current operating systems often perform maintenance tasks (e.g.,
flushing disk buffers, zeroing memory) when the OS detects significant idle periods. These
maintenance tasks may interact poorly with PowerNap and can induce additional state tran-
sitions. However, efforts are already underway (e.g., as described in [160]) to redesign
device drivers and improve background task scheduling.

6.3.3 Evidence of PowerNap Capabilities in the Wild

Our analysis of PowerNap is based upon the best estimates we can obtain for transition
time and power consumption of system components as reported by data sheets. Even if
there is some uncertainty in the exact values of these quantities, we believe the insights
from our study hold and there is evidence “in the wild” that the PowerNap concept works.
In particular, the Si0x power states recently developed by Intel [57, 75] demonstrate a
PowerNap-like feature in smartphones that one can translate into the server space. These
systems can enter the Si01 state in 600 µs and exit in 1.2ms, consuming only 8mW while
in this low-power state. Our analysis shows that such transition times are acceptable for
most server workloads.

66

6.4 Shortcomings

PowerNap is able to provide near energy-proportional operation for workloads with
characteristics similar to those we have studied (i.e., average service times near 100ms).
Though PowerNap is well suited for under-utilized services, there are a few potential short-
comings we enumerate in this section.

6.4.1 Multicore Servers

Current trends indicate that more and more cores will be integrated into a CPU. The
workloads we analyzed were run on servers with only a few cores (i.e., 1-4). The model
presented in Section 3 assumes a uniprocessor system; our queuing model predicts the per-
formance for a single server (M/G/1) system. This queuing system is not appropriate for
many-core servers, for which an M/G/k queue would be more appropriate. Unfortunately,
it is not clear how to extend our model to an M/G/k system as Welch’s derivation for ex-
ceptional first service [172] does not apply; to date, the M/G/k variant remains analytically
intractable.

However, even straight-forward analysis of multicore scaling suggests that PowerNap,
or similar techniques that rely on full-system idleness, will grow increasingly difficult to
apply if server software architectures do not change. Data center designers already find idle
periods difficult to exploit with current multicore hardware [171]. Current server workloads
leverage multicore scaling through weak scaling, that is, they exploit additional cores by
servicing additional, independent user requests. For example, if the number of cores dou-
bles, roughly twice as much traffic can be directed to a single server, doubling throughput
without increasing utilization. Unfortunately, because these requests are independent and
their arrivals/completions are staggered, idle periods fail to align across cores, and Power-
Nap cannot be employed. Figure 7.2 illustrates this effect using a simple M/M/k analysis
of a multicore server as the number of cores per socket is scaled. Even under only 10%
utilization (u=0.1), all cores in a 16-core system are concurrently idle less than 20% of the
time.

To continue to gain the high-leverage power savings of PowerNap, we must either
schedule jobs in an attempt to align idle periods, or rearchitect server software to lever-
age strong scaling. Prior work has proposed scheduling, using simple timeouts to control
performance impact, to reduce the overhead of transitioning to/from idle low-power modes
in single/dual-core CPUs [25, 70] and memory DIMMS [137]. However, to recover a sub-
stantial fraction of idleness, these scheduling approaches require large delays which come
at a steep response time penalty. Strong scaling, where multiple cores cooperate to reduce

67

1 2 4 8 16 32
0

20

40

60

80

100

Cores per Socket

P
er

ce
nt

 o
f T

im
e

S
ys

te
m

 Id
le

10% Util.
20% Util.
30% Util.

Figure 6.6: M/M/k analysis of full-system idleness under weak scaling. Because idle pe-
riods do not align across cores, full system idleness rapidly vanishes. Smarter scheduling
or new models of parallelism that enable strong scaling are needed to continue to exploit
idleness.

the latency of a single request, has the side-effect of aligning core busy and idle periods
(if the parallelism is well-balanced), extending the applicability of PowerNap. However,
rearchitecting services to leverage intra-request parallelism is challenging. We provide a
solution to this challenge in Chapter 7, where we introduce DreamWeaver.

6.4.2 Highly Utilized Services

The PowerNap architecture provides excellent power savings with minimal latency
penalty for lightly utilized servers. However, there are a few service that are highly uti-
lized. Web search, rendering farms and batch processing, for example, have higher aver-
age utilization than the workloads we explore. Figure 6.3 shows that at high utilization
PowerNap loses its advantage over throttling techniques such as DVFS. This change oc-
curs because, as utilization approaches 100%, idle periods (and hence time spent in the
nap state) become rare. Furthermore, at higher utilization DVFS will incur a significantly
smaller latency penalty whereas PowerNap still incurs the same transition time. Therefore,
we believe active low-power modes may be more appropriate for highly utilized services.
For typical services where utilization is low, however, PowerNap remains a superior power
management option.

6.4.3 Reliability

It is important to consider that PowerNap may affect the reliability of server compo-
nents. Because the system quickly transitions between power extremes, PowerNap may

68

increase component wear. However, two insights suggest the increased stress may be lim-
ited. First, PowerNap does not rapidly modulate the operation of mechanical components.
Fans and disks are both likely to suffer reduced lifetimes from frequent spin-up and spin-
down; hence, PowerNap uses SSDs instead of disks and modulates fan speed independent
of wake/nap transitions (in response to temperature instead). Second, the transition time
we demand of most components is far longer than their designed capabilities. For instance,
CPUs incur substantial power transitions (due to clock gating or HLT instructions) on the
nano- and microsecond scale. PowerNap requires only millisecond-scale transitions. A
rigorous study of the component-level reliability implications of PowerNap is left to future
work.

69

CHAPTER 7

DreamWeaver: Architectural Support for Deep Sleep

Modern data centers suffer from low energy efficiency due to endemic under-utilization
[32]. The gap between average and peak load, performance isolation concerns, and redun-
dancy all lead to low average utilization even in carefully designed data centers; conserva-
tive over-provisioning and improper sizing frequently result in even lower utilization. Low
utilization leads to poor energy efficiency because current servers lack energy proportion-

ality—that is, their power requirements do not scale down proportionally with utilization.
Architects are seeking to improve server energy proportionality through low-power modes
that conserve energy without compromising response time when load is low.

Unfortunately, the confluence of technology and software scaling trends is undermining
the continued effectiveness of these low-power modes, particularly for interactive data cen-
ter applications. On the one hand, device scaling trends are compromising the effectiveness
of voltage and frequency scaling (VFS) [88, 98, 104, 178] due to the shrinking gap between
nominal and threshold voltages [68], limiting both the range and leverage of voltage scal-
ing. Recent research shows that, beyond the 45nm node, circuit delay grows disproportion-
ately as voltage is scaled [58]. Figure 7.1 illustrates how the power-performance trade-off
of VFS grows worse each generation. On the other hand, the prevalence of request-level
parallelism in server software combined with the trend towards increasing cores per die
is blunting the effectiveness of idle low-power modes, which place components in sleep
states during periods of inactivity [22, 64, 70, 109, 112, 121, 122, 137]. In uniprocessors,
the deep sleep possible with full-system idle low-power modes (e.g., PowerNap [121, 122])
can achieve energy-proportionality if mode transitions are sufficiently fast. However, for a
request-parallel server application, full-system idleness rapidly vanishes as the number of
cores grows—the busy and idle periods of individual cores (each serving independent re-
quests) hardly ever align, precluding full-system sleep. Figure 7.2 illustrates the poor scal-
ability of PowerNap for a Web serving workload when CPU utilization is fixed at 30% (i.e.,

70

1 1.5 2 2.5
0

20

40

60

80

100

Relative Frequency Slowdown

R
el

at
iv

e
P

ow
er

 (
P

er
ce

nt
)

65 nm/4 Cores
45 nm/8 Cores
32 nm/16 Cores
22 nm/32 Cores
16 nm/64 Cores

Figure 7.1: Voltage and frequency scaling. Future technology nodes require a disproportion-
ate reduction in clock frequency for a given voltage reduction, breaking the classic assump-
tion that dynamic power scales down cubically with frequency. Hence, VFS is becoming
less effective: a 16nm processor requires a 2x slowdown for 50% power savings compared
to 1.25x at 65nm. Data from [58].

load is scaled with the number of cores to maintain constant utilization; see Section 7.3.1
for methodology details).

In this paper, we propose DreamWeaver, architectural support to facilitate deep sleep
for request-parallel applications on multicore servers. DreamWeaver comprises two ele-
ments: the Dream Processor, a light-weight co-processor that monitors incoming network
traffic and suspended work during sleep to determine when the system must wake; and
Weave Scheduling, a scheduling policy to coalesce idle and busy periods across cores to
create opportunities for system-wide deep sleep while bounding the maximum latency in-
crease observed by any request.

Like prior work on scheduling for sleep, DreamWeaver rests on the fundamental ob-
servation that system-wide idle periods will not arise naturally in request-parallel systems;
rather, per-core idle periods must be coalesced by selectively delaying and aligning re-
quests. Prior work has proposed batching requests, using simple timeouts to control per-
formance impact, to reduce the overhead of transitioning to/from sleep modes [25, 70, 137].
However, the fundamental flaw of timeout-based batching approaches is that they only align
the start of a batch of requests. Since requests tend to have highly-variable long-tailed ser-
vice times [85], there is nearly always a straggling request that persists past the rest of
the batch, destroying the opportunity to sleep. A recent case study of request batching for
Google’s Web Search reveals an unappealing power-performance trade-off—even allowing
a 5x increase in 95th-percentile Web search response time provides only∼15% power sav-
ings for a 16-core system [123]. Naı̈ve batching is not effective because it either (1) incurs

71

1 2 4 8 16 32
0

20

40

60

80

100

Cores

P
ow

er
 S

av
in

gs
 (

P
er

ce
nt

)

Figure 7.2: Full-system idle low-power mode. Power savings for a Web server at 30% utiliza-
tion using a full-system idle low-power mode (e.g., PowerNap [122]). System-level idleness
disappears with multicore integration, rendering coarse-grain power savings techniques inef-
fective.

too large an impact on response time if the batching timeout is too large, or (2) fails to align
idle and busy times if the timeout is too small.

The central innovation that allows Weave Scheduling to solve the problems of batching
is preemptive sleep; that is, DreamWeaver will interrupt and suspend in-progress work to
enter deep sleep. Weave Scheduling is based on two simple policies: (1) stall execution
and sleep any time that any core is unoccupied, but (2) constrain the maximum amount of
time any request may be stalled. DreamWeaver will preempt execution to sleep when even
a single core becomes idle (i.e., a request completes), provided that no active request has
exhausted its allowable stall time. Thus, DreamWeaver tries to operate a server only when
all cores are utilized—its most efficient operating point.

The Dream Processor is a simple microcontroller that tracks accumulated stall time for
suspended requests and receives, enqueues, and counts incoming network packets during
sleep. When enough packets arrive to occupy all idle cores, or when the allowable stall time
for any request is exhausted, the Dream Processor wakes the system to resume execution.
The Dream Processor bears similarities to the hardware support for Barely-alive Servers
[26] and Somniloquy [22], but is simpler because it need not run a full TCP/IP stack.

We present a two-part evaluation of DreamWeaver. First, we analyze the performance
impact of Weave Scheduling using a software prototype that emulates the Dream Processor
on the system’s primary CPU. Through a case study of the popular open-source Solr Web
search system, we show that Weave Scheduling allows an 8-core system to sleep 40% of
the time when allowed a 1.5x slack on 99th-percentile response time. We also use our

72

SSD
Fans

NIC

DRAM Main CPUs

zzz

zzz

Main Server

Dream Server
Dream CPU

Request

SSD
Fans

NIC

DRAM Main CPUs

Dream CPU

Wake
Transition

Nap
Transition

Response

SSD
Fans

NIC

DRAM Main CPUs

zzz

zzz

Dream CPU

Dream CPU queues up requests
until num. requests == num. cores

Requests are forwarded to and
processed by main CPUs

If not 100% utilized, main server is
pre-empted to sleep

Wake
Transition SSD

Fans

NIC

DRAM Main CPUs

Dream CPU

Dream CPUs wakes main server
when per-request timers expire

!

Main Server

Dream Server

Main Server

Dream Server

Main Server

Dream Server

Figure 7.3: DreamWeaver. The DreamWeaver system is composed of a main server with
PowerNap capabilities [122] and Dream Processor that implements Weave Scheduling. The
Dream Processor is a modest microcontroller that is isolated from the power state of the
rest of a server. It is responsible for modulating the power state of the main system, buffering
incoming requests from the network, and tracking any delay of requests while in the nap state.
The nap processor resembles hardware such as in Barely-alive Servers [26] or Somniloquy
[22], but requires far less processing power because it does not directly process or respond to
packets.

prototype to validate the performance predictions of our simulation model. Second, we
evaluate the power savings potential of DreamWeaver, examine its scalability, and contrast
it with other power management approaches using Stochastic Queuing Simulation (SQS)

[126], a validated methodology for rapidly simulating the power-performance behavior of
data center workloads. Our simulation study demonstrates that DreamWeaver dominates
the power-performance trade-offs available from either VFS or batch scheduling on systems
with up to 32 cores on four data center workloads, including Google Web search.

7.1 DreamWeaver

DreamWeaver increases usable idleness by batching requests to maximize server uti-
lization whenever it is active while ensuring that each request incurs at most a bounded
delay. Our approach builds on PowerNap [121, 122], which allows a server to transition
rapidly in and out of an ultra-low power nap state. PowerNap places an entire system (in-
cluding memory, motherboard components, and peripherals) in an application-software–
transparent deep sleep state during idle periods. PowerNap reduces power consumption by
up to 95% while sleeping. Though PowerNap already approaches energy-proportionality
(energy consumption proportional to utilization) in uniprocessor servers, it requires full-
system idleness. As shown in Figure 7.2, there is little, if any, opportunity for PowerNap
in lightly- to moderately-utilized large-scale multicore servers.

73

7.1.1 Hardware mechanisms: the Dream Processor

The baseline PowerNap design requires a sever (and, hence, all of its components)
to transition between active and idle states in millisecond timeframes. Furthermore, it
requires an operating system without a periodic timer tick, and software/hardware support
to schedule wake-up in response to software timer expiration. The original PowerNap study
[122] outlines these software and hardware requirements in greater detail, we focus here
on new requirements.

DreamWeaver presents several additional implementation challenges. The largest chal-
lenge lies in handling the expiration of request timeouts and arrival of new work while the
system is napping. Under PowerNap, handling the arrival of new work is simple—the sys-
tem wakes up. Under DreamWeaver, however, the system must keep track of the number
of idle cores and be able to defer arriving requests (while tracking their accumulated delay)
without waking. A second challenge lies in preempting in-process execution to enter the
nap state.

DreamWeaver addresses these requirements through the addition of a dedicated Dream

Processor that coordinates with the operating system on the main processor(s) to manage
sleep and wake transitions. The functionality of the Dream Processor is summarized in
Figure 7.3. During operation, the primary OS uses the Dream Processor to track the as-
signment of requests to cores and the accumulated delay of each request. The primary OS
notifies the Dream Processor each time a new request is created (e.g., because an incom-
ing packet is processed), assigned one or more cores for execution, or completes. When
a core becomes idle, the primary OS is responsible for preempting work on all cores and
triggering a sleep transition. Upon transition, the primary OS passes the Dream Processor
a list of active requests, the accumulated delay for each and the number of idle cores. Then,
it hands control to the Dream Processor, which tracks the passage of time and continues
to operate the network interface, while tracking the accumulated delay for each request.
Using its own hardware timers, the Dream Processor wakes the system when any request’s
accumulated delay reaches the threshold.

Network packets that arrive during nap are received and queued by the Dream Proces-
sor. When the system wakes, the Dream Processor returns the accumulated delay of each
request to the primary OS and then replays the delivery of queued packets through the net-
work interface. Each arriving packet is assumed to create a new single-core request, and the
Dream Processor wakes the system when the number of queued packets equals the number
of idle cores. Hence, the number of queued packets is bounded by the number of cores and
never grows large. While the Dream Processor could operate a complete TCP/IP stack, this
is not necessary; only a layer-2 interface is needed to receive and log arriving packets. A

74

more sophisticated Dream Processor may be able to identify packets that require minimal
processing or can be deferred (e.g., TCP ack packets).

Since the Dream Processor operates continuously (including in the nap state), it is es-
sential that its power requirements are low. Hence, it operates using its own dedicated
memory and does not access any system peripherals except the network interface. The
Dream and main processors communicate through programmed I/O (i.e., no shared mem-
ory). As the Dream Processor performs relatively simple tasks, it can be implemented with
a low-power microcontroller. Several recent studies have evaluated auxiliary processors
and network interfaces with similar capabilities, for example, Barely-alive Servers [26]
and Somniloquy [22]. Our Dream Processor also is similar, albeit with considerably sim-
pler requirements, to the service processors in existing IBM and HP server systems. These
service processors perform a variety of environmental, temperature, and performance mon-
itoring, maintenance, failure logging, and system management functions. They usually
operate a complete TCP/IP stack to provide integrated lights-out functionality in contrast
to the simple layer-2 and programmed I/O interfaces of the Dream Processor.

7.1.2 Weave Scheduling

Weave Scheduling improves energy efficiency by aligning service and idle times as
much as possible, such that all cores are simultaneously active or idle. Our key intuition
is to stall service any time that any cores are unoccupied, even if that means preempting
requests that are in progress to go to sleep. During stalls, we invoke PowerNap to save
energy. By allowing execution only when all cores are busy, DreamWeaver maximizes
energy efficiency—the power required to operate the system is amortized over the maxi-
mum amount of concurrent work. If strictly implemented, this policy guarantees that all
core-grain idleness is exploited at the system level.

Of course, such an approach could result in massive (potentially unbounded) increases
in response time. To limit the impact on response time, we constrain the maximum amount

of time any request may be stalled. Hence, if not all cores are occupied, but at least one
request in the system has accrued its maximum allowable stall time, we resume service
and allow all cores to execute until that request completes. When service proceeds due
to exhausting a request’s allowable stall time, some core-grain idleness is lost (cannot be
used to conserve energy). However, the maximum stall threshold bounds the response time
increase from Weave Scheduling; we simply choose this bound based on the amount of
slack available between the current 99th-percentile response time and that required by the
SLA.

We illustrate the operation of Weave Scheduling in a 4-core system in Figure 7.4. On

75

Time

Core 0

Core 1

Core 2

Core 3

Timeout

Time

Core 0

Core 1

Core 2

Core 3

All cores assigned requests Timeout Request complete

Nap Nap NapNap

Figure 7.4: Weave Scheduling example. Weave Scheduling is an algorithm for intelligently
delaying, preempting, and executing requests to maximize the fraction of time a multicore
CPU is fully utilized while providing an upper-bound on per-request latency increase. The
example on the left demonstrates an individual request exceeding its maximum delay. Al-
though the system is underutilized, the system transitions out of the nap state because Core
0’s request experienced a timeout. On the right, we demonstrate an example of preemption.
At first, requests are delayed until all cores can be occupied and then the system transitions
out of the nap state. The system remains active until Core 3’s request finishes and then the
system preempts the unfinished requests. Finally, Core 1’s request experiences a timeout and
the system resumes to meet the maximum delay constraint.

the left, we demonstrate the stall threshold mechanism. Service is initially stalled and
the system is napping. Then, the request at Core 0 reaches its maximum allowable delay
(timeout). Request processing then resumes and all current requests are released (even
though Core 3 is idle) until the request at Core 0 finishes. Subsequently, the system will
again stall and nap. On the right, we demonstrate the behavior when all cores become
occupied. The system is initially stalled and napping. Then a request arrives at Core 3,
occupying all cores and starting service. As soon as the first request completes (at Core
3), the system again stalls and returns to nap. Shortly after, the request at Core 1 reaches
timeout. Hence, service resumes and continues until the request at Core 1 is finished.

7.2 Prototype Evaluation

We evaluate DreamWeaver in two steps. In this section, we investigate its performance
impact with a proof-of-concept prototype. We use these results to validate the perfor-
mance predictions of our simulation approach. In Section 7.3, we use simulation to explore
DreamWeaver’s impact on power consumption.

76

7.2.1 Methodology

To assess the performance impact of DreamWeaver, we have constructed a software
prototype that implements Weave Scheduling. Our prototype models the functionality of
the Dream Processor with a software proxy that executes on the main CPU. Because servers
with PowerNap capabilities are not currently commercially available, we cannot directly
measure power savings from DreamWeaver; we defer this investigation to our simulation-
based studies.

We study the impact of DreamWeaver on a Web Search system modeled after that
studied in [123] using the Solr Web Search platform. Solr is a full-featured Web indexing
and search system used in production by many enterprises to add local search capability to
their Web sites. Our system serves a Web index of the Wikipedia site [7], which we query
using the AOL query set [3]. We believe this is the best approximation of a commercial Web
search system that can be achieved using open source tools without access to proprietary
binaries and data.

We emulate the behavior of the Dream Processor through a software proxy. Instead of
sending queries directly to the Solr system, queries are sent to the proxy, which controls
their admission to Solr. The software logic in the proxy mirrors that of the Dream Processor,
however, the code runs on a core of the main CPU rather than a dedicated Dream Processor.
The proxy tracks the number of active queries in the system and the accumulated delay of
each query. When the system is awake, queries are passed immediately from the proxy to
Solr via TCP/IP. We have confirmed that the addition of the proxy has negligible impact
on the response time or throughput of Solr. When the system emulates nap, the proxy
buffers incoming packets and uses timers to monitor accumulated delay. We implement the
preemptive sleep called for by Weave Scheduling using Linux’s existing process suspend
capabilities; whenever the system enters the nap state, a suspend signal is sent to all Solr
processes. The proxy assumes that all incoming TCP/IP packets correspond to a new query
for the purposes of determining when to awake from nap. A Resume signal is sent to Solr
upon a wake transition. Transition delays are emulated through busy waits in the proxy.

7.2.2 Results

We now present the results of our prototype system and compare it to our simulation
infrastructure used in Section 7.3. Specifically we compare the sleep-latency tradeoff of the
two evaluation methodologies. In Figure 7.5 we provide the time spent in sleep as a func-
tion of 99th-percentile latency as provided by our prototype (“Implementation”) and our
simulation infrastructure (“SQS”). When allowed a 1.5x slack on 99th-percentile response

77

1.0 1.2 1.4 1.6 1.8 2.0
99th-Percentile Latency (Normalized to nominal)

0

20

40

60

80

100

Fr
a
ct

io
n
 o

f
T
im

e
 i
n
 N

a
p

Prototype

Simulation (SQS)

Figure 7.5: DreamWeaver prototype vs. simulation validation. This figure illustrates the
accuracy of our simulation environment to predict the fraction of time a DreamWeaver server
spends in the nap state. As we increase the predefined maximum delay a request can expe-
rience, the available full-system idleness increases as a function of 99th-percentile latency.
One can see that the simulation (“Simulation”) makes reasonable estimates of our prototype
system (“Prototype”).

time, DreamWeaver allows the prototype system to sleep 40% of the time. In contrast, the
opportunity to sleep with PowerNap alone is negligible. Furthermore, the figure clearly
demonstrates that the performance predictions of our simulation model agree well with the
actual behavior of the prototype DreamWeaver system.

7.3 Power Savings Evaluation

While our prototype allows us to validate the performance impacts of DreamWeaver,
the lack of PowerNap support in existing servers precludes measuring power savings. In
this section, we use simulation to investigate DreamWeaver’s power-performance impact
on a variety of workloads over several multicore server generations.

7.3.1 Methodology

We evaluate the power savings potential of DreamWeaver and contrast it with other
power management approaches using the SQS simulation methodology established in Ch-
pater 5. SQS is a framework for stochastic discrete-time simulation of a generalized system
of queuing models driven by empirical profiles of a target workload. In SQS, empirical in-
terarrival and service distributions are collected from measurements of real systems at fine
time-granularity. Using these distributions, synthetic arrival/service traces are generated

78

Table 7.1: Server power model. Based on data from Google [33] and HP [166].

Power (% of Peak) CPU Memory Disk Other

Max 40% 35% 10% 15%
Idle 15% 25% 9% 10%

and fed to a discrete-event simulation of a G/G/k queuing system that models server active
and idle low-power modes through state-dependent service rates. SQS allows real server
workloads to be characterized on one physical system, but then studied in a different con-
text, for example on a system with vastly more cores (by varying k), or at different levels of
load (by scaling the interarrival distribution). Furthermore, SQS enables analysis of queu-
ing systems that are analytically intractable. Performance measures (e.g., 99th-percentile
response time) are obtained by sampling the output of the simulation until each reaches a
normalized half-width 95% confidence interval of 5%. Further details of the design and
statistical methods used in SQS can be found in Chapter 5. SQS has been previously used
to model Google’s Web search application [123], and its latency and throughput predictions
have been validated against a production Web search cluster.

SQS does not model the details of what active system components are doing (e.g.,
which instructions are executing, what memory locations are accessed). However, these
are not relevant to understanding idle periods and scheduling effects, hence, more detailed
simulation models (e.g., instruction or cycle-accurate simulators) are unnecessary.

Low-Power Modes. Our power model assumptions for the system (Table 9.2) are based
on the breakdowns from Google [33] and HP [166] and published characteristics of Intel
Nehalem [97]. We model idle low-power modes through exceptional first service; that is,
when a system is napping, the service rate of the corresponding server in the queuing model
is set to zero and a latency penalty is incurred when the first request is serviced after idle.

As a point of comparison, we also model voltage and frequency scaling (VFS), by vary-
ing the service rate. We map core count to a corresponding technology node and power-
performance scaling curve as shown in Figure 7.1, using data from [58]. We explore a
range of power-performance settings by exhaustively sweeping static frequency and corre-
sponding voltage settings. It is important to note that we optimistically allow the system to
pick any arbitrary voltage/frequency setting although most processors only provide a few
discrete points. Our VFS results should be viewed as an estimate of the potential of volt-
age and frequency scaling, they do not model any particular policy for selecting voltages.
It is possible that a scheme that dynamically tunes frequency could improve slightly over
our VFS estimates, though we expect such gains to be minimal because our experiments
operate a server at a steady utilization.

79

1.0 1.5 2.0 2.5 3.0
99th-Percentile Latency (Normalized)

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Core Parking

Socket Parking

PowerNap

VFS

Batch

DreamWeaver

(a) Apache

1.0 1.5 2.0 2.5 3.0
99th-Percentile Latency (Normalized)

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Core Parking

Socket Parking

PowerNap

VFS

Batch

DreamWeaver

(b) DNS

1.0 1.5 2.0 2.5 3.0
99th-Percentile Latency (Normalized)

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Core Parking

Socket Parking

PowerNap

VFS

Batch

DreamWeaver

(c) Mail

1.0 1.5 2.0 2.5 3.0
99th-Percentile Latency (Normalized)

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Core Parking

Socket Parking

PowerNap

VFS

Batch

DreamWeaver

(d) Search

Figure 7.6: Comparison of power savings for 4-core system. This figure demonstrates the
power savings of low-power modes as a function of 99th-percentile latency for a 4 core server.
Per-core power gating (“Core Parking”) can save a modest amount of power for a small
latency increase because its transition latency is low, however it cannot reduce power in non-
core components (e.g., last-level caches or the memory system). Attempting to put an entire
socket into a low-power sleep mode (“Socket Parking”) provides roughly the same benefit
as per-core power gating; less idleness is available at socket granularity but this reduction
is offset by the increase in power savings. Using a full-system low-power mode such as
PowerNap (“PowerNap”) exploits as much idle time as socket parking, but saves significantly
more power. Processor voltage and frequency scaling (“VFS”) provides significant savings
for the CPU, but does not alter non-processor power (e.g., the memory system, I/O buses
etc.). Greater power savings can be achieved by using a full-system idle low-power mode.
Creating idleness by batching (“Batch”), provides even more power savings than PowerNap
in exchange for increased latency due to delaying requests. An even better power-latency
tradeoff is achieved by DreamWeaver (“DreamWeaver”), because of its hardware support to
track requests and intelligent scheduling.

7.3.2 Results

Power-latency tradeoff compared to other techniques. We first contrast DreamWeaver

80

1.0 1.5 2.0 2.5 3.0
99th-Percentile Latency (Normalized)

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Core Parking

Socket Parking

PowerNap

VFS

Batch

DreamWeaver

(a) Apache

1.0 1.5 2.0 2.5 3.0
99th-Percentile Latency (Normalized)

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Core Parking

Socket Parking

PowerNap

VFS

Batch

DreamWeaver

(b) DNS

1.0 1.5 2.0 2.5 3.0
99th-Percentile Latency (Normalized)

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Core Parking

Socket Parking

PowerNap

VFS

Batch

DreamWeaver

(c) Mail

1.0 1.5 2.0 2.5 3.0
99th-Percentile Latency (Normalized)

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Core Parking

Socket Parking

PowerNap

VFS

Batch

DreamWeaver

(d) Search

Figure 7.7: Comparison of power savings for 32-core system. Most low-power modes are
less effective when moving to future systems (smaller transistor feature size and higher core
count) because voltage scaling requires greater frequency reductions and coarse-grain idle-
ness is more difficult to capture (See Figures 1 and 2). Per-core power gating (“Core Park-
ing”) does not rely on coarse-grain idleness and is just as effective as for a 4 core system (see
Figure 6). However, both Socket Parking (“Socket Parking”) and PowerNap (“PowerNap”)
require that all cores are simultaneously idle. At 32 cores, the system is almost never en-
tirely idle and there is no opportunity to use these low-power modes. Voltage and frequency
scaling (“VFS”) saves less power because it requires a larger slowdown for a given voltage
reduction. Batching (“Batch”) at 32 cores is quite ineffective requiring inordinate latency
increases to save appreciable power. DreamWeaver’s effectiveness is reduced at 32 cores
(“DreamWeaver”), but generally provides the greatest power savings for all but the tightest
latency constraints.

81

with alternative power management approaches. We consider systems assuming a fixed
throughput and evaluate the latency-power tradeoffs. It is important to note that nearly
any power savings techniques will undoubtedly increase latency. If latency-at-any-cost is
paramount, the best system design may discard power management. Instead, the question
we pose is: Given an allowable threshold to increase 99th-percentile response time, what
is the best way to save energy and how much can we save?

We contrast our mechanism (“DreamWeaver”) with four other power management
approaches. First, we compare against PowerNap as proposed in [122] (“PowerNap”).
We initially assume an aggressive transition latency of 100 µs for both PowerNap and
DreamWeaver because the goal of this work is to evaluate the ability of these techniques
to exploit multicore idleness, not to mitigate transition latencies. We examine sensitivity to
longer transition latencies below. Second, we compare it against Core Parking (“Core Park-
ing”). We optimistically assume that cores can be parked during all core-grain idle time,
ignoring transition penalties. Under this assumption, Core Parking subsumes approaches
that consolidate tasks onto fewer cores to reshape core-grain idle periods (e.g., to lengthen
them). Furthermore, we compare against a timeout-based batching mechanism (“Batch”)
based on the approach of Elnozahy et al [70]. Finally, we compare to voltage/frequency
scaling (“VFS”), as described in Section 7.3.1.

4-Core Server. We first show the results for a server with four cores. The relative
power savings of each of the considered power savings techniques is shown in Figure 7.6.
Core Parking, Socket Parking, and PowerNap each yield only a single latency-performance
point per system configuration and workload. In contrast, DreamWeaver, Batch, and VFS
each produce a range of latency-power options. We present each of the four workloads with
load scaled such that the server operates at 30% average utilization. The horizontal axis on
each graph shows 99th-percentile latency normalized to the nominal latency (i.e., no power
management). As discussed in Section 10.1, we focus our evaluation on 99th-percentile
latencies as these are the more difficult constraints to meet; DreamWeaver’s impact on
mean latency follows the same trends. The vertical axis shows power savings relative to a
nominal system without any of these power management features (but with clock gating on
HLT instructions as in Nehalem); higher values indicate greater power savings.

Over the range from nominal to a 2x increase in 99th-percentile latency, DreamWeaver
strictly dominates the other power management techniques. When the user configures
DreamWeaver to allow no additional performance degradation on the 99th-percentile la-
tency (i.e., a timeout of zero), DreamWeaver converges to PowerNap as expected; with
a 2x increase in latency, DreamWeaver can offer roughly 25% better power savings than
PowerNap and nearly 30% more than VFS. Also important, Batching can provide substan-

82

1s100ms10ms1ms100us10us
Transition Time

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

M
a
il

A
p
a
ch

e

D
N

S

S
e
a
rc

h

Apache

Mail

DNS

Search

Figure 7.8: Sensitivity to transition time. DreamWeaver is less effective as the transition time
in and out of PowerNap increases. Dotted vertical lines denote the average service time of
each workload. The majority of power savings is realized by providing a transition time of
about one order of magnitude less than the average service time of the workload.

tial power savings, and provides a roughly linear trade-off of 99th-percentile latency vs.
power. However, its range of latency-power settings, while also better than VFS, is strictly
inferior to DreamWeaver.

32-Core Server. Next, we consider a server with 32 cores. The results are presented in
Figure 7.7 and parallel the previous study. First, as expected, we highlight that PowerNap
is ineffective. Because there is no naturally occurring full-system idleness, there is no
opportunity for PowerNap and it saves no power (nor incurs any latency). Next, we observe
that Core Parking is still effective, but as before only provides power savings of less than
20%. A striking difference is that, unlike our four core study, Batch has become largely
ineffective. The latency-power tradeoff for this technique is unattractive; it saves far less
power than Core Parking, while incurring much greater delays. As with the 4-core system,
DreamWeaver dominates the alternative approaches.

Sensitivity to transition time. To understand the utility of DreamWeaver for various
server scenarios, we provide three sensitivity studies. First, we characterize the effective-
ness of DreamWeaver for varying sleep transition times. Figure 7.8 illustrates how power
savings diminishes for increasing transition time. We present results for a 16-core system
at 30% utilization, with a performance constraint of 1.5x increase in 99th-percentile latency
relative to nominal. We annotate the average service time of each workload along the time
axis. As with PowerNap, when transition time becomes large relative to average service
time, less power is saved. Ideally, transition time should be roughly an order of magnitude

83

4 8 16 32 64
Cores

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Apache

Mail

DNS

Search

Figure 7.9: Sensitivity to number of cores. Solid bars represent DreamWeaver savings and
hatched bars represent VFS savings. DreamWeaver is less effective as the number of cores
increase, but always provides greater savings than VFS.

smaller than the average service time. Consistent with PowerNap [122], we find that the
slowest transition time that is useful across all workloads is 1ms and designers should target
the 100 µs to 1ms range.

Sensitivity to core count. In the next two sensitivity studies, we directly compare
DreamWeaver to a system using VFS to save power. Figure 7.9 contrasts the power sav-
ings of DreamWeaver (solid bars) and VFS (hashed subset within each bar) when both are
allowed a 1.5x slack on 99th-percentile latency. We vary the number of cores and the cor-
responding assumption for technology generation (65nm down to 16nm). Even for 64-core
systems, DreamWeaver still provides power savings over 20%. DreamWeaver provides
greater savings than VFS at all core counts, though its advantage shrinks as the number of
cores grows.

Sensitivity to utilization. DreamWeaver is designed for low utilization, which is the
common-case operating mode of servers [29]. Accordingly, DreamWeaver provides greater
power savings at lower utilization. In Figure 7.10 we again contrast DreamWeaver (solid)
and VFS (hashed) for a 16-core system as a function of utilization, under a 1.5x 99th-
percentile response time slack. DreamWeaver still saves roughly 25% of power at utiliza-
tion as high as 50%. Across the utilization spectrum, DreamWeaver saves more power than
VFS, though its advantage is small for some workloads.

84

10 30 50
Utilization (%)

0

20

40

60

80

100

P
o
w

e
r

S
a
v
in

g
s

(P
e
rc

e
n
t)

Apache

Mail

DNS

Search

Figure 7.10: Sensitivity to utilization. Solid bars represent DreamWeaver savings and
hatched bars represent VFS savings. DreamWeaver provides more savings in all cases.

7.3.3 Discussion

Power Management in the 1000-Core Era. DreamWeaver is an effective means to enable
full-system idle low-power modes for core counts that we foresee in the next three process
generations (to 16nm). However, recent research has proposed 1000-core systems [103]
and if transistor scaling beyond the 16nm node continues to double core counts, eventually,
massively multicore architectures may become mainstream. The power management chal-
lenges we have identified will reach near-asymptotic limits in such a scenario. As we have
observed, VFS effectiveness is shrinking at each technology node due to transistor scaling.
Similarly, if servers continue to leverage weak scaling, full-system idleness will clearly
disappear altogether with 1000 concurrent requests. The hardware and software models for
1000-core systems remain unclear; however, if we continue under current server software
paradigms, we conclude that these power management techniques may become ineffective.

The Potential of Strong Scaling. Existing data center workloads rely on request-level
parallelism to achieve performance scalability on multicore hardware. This parallelism
strategy is a form of weak scaling (i.e, solving a larger problem size in a fixed amount of
time, as opposed to strong scaling where a fixed problem size is solved in a reduced amount
of time)—scalability is achieved by increasing request bandwidth rather than per-request
speedup. A potential solution to the inefficacy of power management in a 1000-core sys-
tem is for server software architectures to adopt strong scaling. Whereas in current systems
each incoming request is assigned to a single core, under strong scaling multiple cores work
together to service a single request faster. The aggregate throughput under strong scaling

85

stays the same, but per-request latency is reduced; the downside is that the software en-
gineering overhead for such architectures is likely to be significantly higher, as engineers
must identify intra-request parallelism. Strong scaling makes power management easier
because the number of concurrent independent requests is reduced—idle and busy periods
naturally align across cooperating cores. As a result, the trends observed in Figure 7.2 will
be reversed. In the limit, if all cores are used to service a single job, the system will behave
(with respect to idleness) as if it were a uniprocessor. However, it is likely that Amdahl
bottlenecks will preclude using 1000 cores for one request; instead clusters of cores might
cooperate. Under this scenario, there will be a moderate number of clusters, and the ef-
fectiveness of DreamWeaver will resemble a weak-scaling system with the corresponding
moderate number of cores. Unfortunately, the effectiveness of VFS does not change with
better parallel software and its effectiveness will continue to decline unless better circuit
techniques are developed.

As technology continues to scale and core counts increase, effective power manage-
ment is becoming increasingly difficult. The effectiveness of voltage and frequency scal-
ing is diminishing due to fundamental scaling trends. Because current-generation server
software relies on weak scaling to use additional cores, full-system idleness is becoming
increasingly scarce. DreamWeaver offers one mechanism to trade latency for power sav-
ings from idle low-power modes despite the challenges posed by multicore scaling. We
show that DreamWeaver outperforms alternatives such as VFS, Core and Socket Parking,
and past batching approaches while providing a smooth trade-off of 99th-percentile la-
tency for power savings. Furthermore, should the community succeed in rearchitecting
server systems to leverage strong scaling through intra-request parallelism, the advantages
of DreamWeaver over other power management schemes grow even larger. We hope that
our work serves as a warning that past approaches to power management are under threat
given present scaling trends, and as a call to arms to redesign server software for strong
scaling.

86

CHAPTER 8

Redundant Array for Inexpensive Load Sharing (RAILS)

Whereas many mechanisms required by PowerNap are available in existing server com-
ponents, one critical subsystem of current blade chassis falls short of meeting PowerNap’s
energy-efficiency requirements: the power conversion system. PowerNap reduces total en-
semble power consumption when all blades are napping to only 6% of the peak when all
are active. Power supplies are notoriously inefficient at low loads, typically providing con-
version efficiency below 70% under 20% load [1]. These losses undermine PowerNap’s
energy efficiency.

Directly improving power supply efficiency implies a substantial cost premium. In-
stead, in this chapter, we introduce the Redundant Array for Inexpensive Load Sharing

(RAILS), a power provisioning approach where power draw is shared over an array of
low-capacity power supply units (PSUs) built with commodity components. The key inno-
vation of RAILS is to size individual power modules such that the power delivery solution
operates at high efficiency across the entire range of PowerNap’s power demands. In addi-
tion, RAILS provides N+1 redundancy, graceful compute capacity degradation in the face
of multiple power module failures, and reduced component costs relative to conventional
enterprise-class power systems.

AC to DC conversion losses in computer systems have recently become a major con-
cern, leading to a variety of research proposals [89, 116], product announcements (e.g.,
HP’s Blade System c7000), and standardization efforts [1] to improve power supply ef-
ficiency. The concern is particularly acute in data centers, where each watt wasted in
the power delivery infrastructure implies even more loss in cooling. Because PowerNap’s
power draw is substantially lower than the idle power in conventional servers, PowerNap
demands conversion efficiency over a wide power range, from as few as 300W to as much
as 7.2kW in a fully-populated enclosure.

In this section, we discuss why existing power solutions are inadequate for Power-
Nap and present RAILS, our power solution. RAILS provides high conversion efficiency

87

100%80%60%40%20%

50%

60%

70%

80%

90%

Load (%)
Ef
c

ie
nc

y
(%

)

RED YELLOW GREEN

100%

Figure 8.1: Power supply efficiency.

across PowerNap’s power demand spectrum, provides N+1 redundancy, allows for graceful
degradation of compute capacity when PSUs fail, and minimizes costs by using commodity
PSUs in an efficient arrangement.

8.1 Power Supply Unit background

Poor Efficiency at Low Loads. Although manufacturers often report only a single ef-
ficiency value, most PSUs do not have a constant efficiency across electrical load. A recent
survey of server and desktop PSUs reported their efficiency across loads [1]. Figure 8.1
reproduces the range of efficiencies reported in that study. Though PSUs are often over
90% efficient at their optimal operating point (usually near 75% load), efficiency drops off
rapidly below 40% load, sometimes dipping below 50% (i.e., >2W in for 1W out). We
divide the operating efficiency of power supplies into three zones based on electrical load.
Above 40% load, the PSUs operate in the “green” zone, where their efficiency is at or above
80%. In the 20-40% “yellow” zone, PSU efficiency begins to drop, but typically exceeds
70%. However, in the “red” zone below 20%, efficiency drops off precipitously.

Two factors cause servers to frequently operate in the “yellow” or “red” efficiency
zones. First, servers are highly configurable, which leads to a large range of power re-
quirements. The same server model might be sold with only one or as many as 20 disks
installed, and the amount of installed DRAM might vary by a factor of 10. Furthermore,
peripherals may be added after the system is assembled. To simplify ordering, upgrades,
testing, and safety certification, manufacturers typically install a power supply rated to
exceed the power requirements of the most extreme configuration. Second, servers are of-
ten configured with 2N redundant power supplies (i.e., twice as many as are required for
a worst-case configuration). The redundant supplies typically share the electrical load to

88

minimize PSU temperature and to ensure current flow remains uninterrupted if a PSU fails.
However, the EPRI study [1] concluded that this load-sharing arrangement often shifts
PSUs from “yellow”-zone to “red”-zone operation.

Recent Efficiency Improvements. A variety of recent initiatives seek to improve
server power efficiency:

• 80+ certification. The EPA Energy Star program has defined the “80+” certification
standard [4] to incentivize PSU manufacturers to improve efficiency at low loads.
The 80+ incentive program is primarily targeted at the low-peak-power desktop PSU
market. 80+ supplies require considerably higher design complexity than conven-
tional PSUs, which may pose a barrier to widespread adoption in the reliability-
conscious server PSU market. Added circuit components and tighter tolerances add
to the cost of the PSU. Furthermore, despite their name, the 80+ specification does
not require energy efficiency above 80% across all loads, rather, only within the typ-
ical operating range of conventional systems. This specified efficiency range is not
wide enough for PowerNap.

• Single voltage supplies. Unlike desktop machines, which require five different DC
output voltages to support legacy components, server PSUs typically provide only a
single DC output voltage, simplifying their design and improving reliability and ef-
ficiency [89]. Although PowerNap benefits from this feature, a single output voltage
does not directly address inefficiency at low loads.

• DC distribution. Recent research [89] has called for distributing DC power among
data center racks, eliminating AC-to-DC conversion efficiency concerns at the blade
enclosure level. However, the efficiency advantages of DC distribution are unclear
[149] and deploying DC power will require multi-industry coordination.

• Dynamic load-sharing. Blade enclosures create a further opportunity to improve
efficiency through dynamic load-sharing. HP’s Dynamic Power Saver [116] feature
in the HP Blade Center c7000 employs up to six high-efficiency 2.2kW PSUs in
a single enclosure, and dynamically varies the number of PSUs that are engaged,
ensuring that all active supplies operate in their “green” zone while maintaining re-
dundancy. Although HP’s solution is ideal for the idle and peak power range of the

89

IC

...

PSU 1 PSU 2 PSU 3 PSU N+1...

I1 Iin

Iout

I2

Load1 Load2 Load3 LoadN

I3=0

Figure 8.2: RAILS PSU design.

c-class blades, it requires expensive PSUs and provides insufficient granularity for
PowerNap.

While all these solutions improve efficiency for their target markets, none achieve all
our goals of efficiency for PowerNap, redundancy, and low cost.

8.2 RAILS Design

We introduce a new power delivery solution tuned for PowerNap: the Redundant Array
for Inexpensive Load Sharing (RAILS). The central idea of our scheme is to load- share
over multiple inexpensive, small PSUs to provide the efficiency and reliability of larger,
more expensive units. Through intelligent sizing and load-sharing, we ensure that active
PSUs operate in their efficiency sweet spots. Our scheme provides 80+ efficiency and
enterprise-class redundancy with commodity components.

RAILS targets three key objectives: (1) efficiency across the entire PowerNap dynamic
power range; (2) N+1 reliability and graceful degradation of compute capacity under mul-
tiple PSU failure; and (3) minimal cost.

Figure 8.2 illustrates RAILS. As in conventional blade enclosures, power is provided
by multiple PSUs connected in parallel. A conventional load-sharing control circuit con-
tinuously monitors and controls the PSUs to ensure load is divided evenly among them.
As in Dynamic Smart Power [116], RAILS disables and electrically isolates PSUs that are
not necessary to supply the load. However, our key departure from prior designs is in the
granularity of the individual PSUs. We select PSUs from the economic sweet spot of the
high-sales-volume market for low-wattage commodity supplies.

90

Table 8.1: Relative PSU density.

microATX ATX Custom Blade
Density (Normalized W/vol.) 675.5 1000 1187

We choose a power supply granularity to satisfy two criteria: (1) A single supply must
be operating in its “green” zone when all blades are napping. This criterion establishes
an upper bound on the PSU capacity based on the minimum chassis power draw when all
blades are napping. (2) Subject to this bound, we size PSUs to match the incremental power
draw of activating a blade. Thus, as each blade awakens, one additional PSU is brought
on line. Because of intelligent sizing, each of these PSUs will operate in their optimal
efficiency region. Whereas current blade servers use multi-kilowatt PSUs, a typical RAILS
PSU might supply 500W.

RAILS meets its cost goals by incorporating high-volume commodity components. Al-
though the form-factor of commodity PSUs may prove awkward for rack-mount blade en-
closures, precluding the use of off-the-shelf PSUs, the power density of high-sales-volume
PSUs differs little from high-end server supplies. Hence, with appropriate mechanical
modifications, it is possible to pack RAILS PSUs in roughly the same physical volume as
conventional blade enclosure power systems.

RAILS meets its reliability goals by providing fine-grain degradation of the system’s
peak power capacity as PSUs fail. In any N+1 design, the first PSU failure does not affect
compute capacity. However, in conventional blade enclosures, a subsequent failure may
force shutdown of several (possibly all) blades. Multiple-failure tolerance typically requires
2N redundancy, which is expensive. In contrast, in RAILS, where PSU capacity is matched
to the active power draw of a single blade, the second and subsequent failures each require
the shutdown of only one blade.

8.3 Evaluation

We evaluate the power efficiency and cost of PowerNap with four power supply designs,
commodity supplies (“Commodity”), high-efficiency 80+ supplies (“80+”), dynamic load
sharing (“Dynamic”), and RAILS (“RAILS”). We evaluate all four designs in the context
of a PowerNap-enabled blade system similar to HP’s Blade Center c7000. We assume a
fully populated chassis with 16 half-height blades. Each blade consumes 450W at peak,
270W at idle without PowerNap, and 10.4W in PowerNap (see Table 6.2). We assume the
blade enclosure draws 270W (we neglect any variation in chassis power as a function of

91

0 500 1000 1500 2000 2500
0

10

20

30

40

Maximum Output (W)
$/

W
at

t

Commodity
80+
Blade

Figure 8.3: Power supply pricing.

the number of active blades). The non-RAILS systems employ 4 2250W PSUs (sufficient
to provide N+1 redundancy). The RAILS design uses 17 500W PSUs. We assume the
average efficiency characteristic from Figure 8.1 for commodity PSUs.

Cost. Server components are sold in relatively low volumes compared to desktop or em-
bedded products, and thus, command premium prices. Some Internet companies (e.g.,
Google), have eschewed enterprise servers and instead assemble systems from commodity
components to avoid these premiums. PSUs present another opportunity to capitalize on
low-cost commodity components. Because desktop ATX PSUs are sold in massive vol-
umes, their constituent components are cheap. A moderately-sized supply can be obtained
at extremely low cost. Figure 8.3 shows a survey of PSU prices in Watts per dollar for a
wide range of PSUs across market segments. Price per Watt increases rapidly with power
delivery capacity. This rise can be attributed to the proportional increase in required size
for power components such as inductors and capacitors. Also, the price of discrete power
components grows with size and maximum current rating. Presently, the market sweet spot
is around 500W supplies. Both 80+ and blade server PSUs are substantially more expen-
sive than commodity parts. Because RAILS uses commodity PSUs with small maximum
outputs, it takes advantage of PSU market economics, making RAILS far cheaper than pro-
prietary blade PSUs.

Power Density. In data centers, rack space is at a premium, and, hence, the physical
volume occupied by a blade enclosure is a key concern. AILS drastically increases the
number of distinct PSUs in the enclosure, but each PSU is individually smaller. To confirm
the feasibility of RAILS, we have compared the highest power density available in com-
modity PSUs, which conform to one of several standard form-factors, with that of PSUs

92

0 20 40 60 80 100
60

65

70

75

80

85

90

Utilization
%

 E
ffi

ci
en

cy

Commodity
80+
Dynamic
RAILS

Figure 8.4: Power Delivery Solution Comparison.

designed for blade centers, which may have arbitrary dimensions. Table 8.1 compares
the power density of two commodity form factors with the power density of HP’s c7000
PSUs. We report density in terms of Watts per unit volume normalized to the volume of one
ATX power supply. The highly-compact microATX form factor exhibits the worst power
density—these units have been optimized for small dimensions but are employed in small
form-factor devices that do not require high peak power. Though they are not designed
for density, commodity ATX supplies are only 16% less dense than enterprise-class sup-
plies. Furthermore, as RAILS requires only a single output voltage, eliminating the need
for many of a standard ATX PSU’s components, we conclude that RAILS PSUs fit within
blade enclosure volumetric constraints.

Power Savings and Energy Efficiency. To evaluate each power system, we calculate ex-
pected power draw and conversion efficiency across blade ensemble utilizations. As noted
in Section 4.1, low average utilization manifests as brief bursts of activity where a subset of
blades draw near-peak power. The efficiency of each power delivery solution depends on
how long blades are active and how many are simultaneously active. For each utilization,
we construct a probability mass function for the number of simultaneously active blades,
assuming utilization across blades is uncorrelated. Hence, the number of active blades
follows a binomial distribution. From the distribution of active blades, we compute an ex-
pected power draw and determine conversion losses from the power supply’s efficiency-
versus-load curve. We obtain efficiency curves from the Energy Star Bronze 80+ specifica-
tion [4] for 80+ PSUs and [1] for commodity PSUs.

Figure 8.4 compares the relative efficiency of PowerNap under each power delivery
solution. Using commodity (“Commodity”) or high efficiency (“80+”) PSUs results in the
lowest efficiency, as PowerNap’s low power draw will operate these power supplies in the

93

Table 8.2: Power and cost comparison.

Web 2.0 Enterprise

Power Efficiency Power costs Power Efficiency Power costs

Blade 6.4 kW 87% $29k 6.6 kW 87% $30k
PowerNap 1.9 kW 67% $10k 2.6 kW 70% $13k
PowerNap with RAILS 1.4 kW 86% $6k 2.0 kW 86% $9k

“Red” zone. RAILS (“RAILS”) and Dynamic Load-Sharing (“Dynamic”) both improve
PSU performance because they increase average PSU load. RAILS outperforms all of the
other options because its fine-grain sizing best matches PowerNap’s requirements.

8.4 Cost Analysis

We presented PowerNap, a method for eliminating idle power in servers by quickly
transitioning in and out of an ultra-low power state. We have constructed an analytic model
to demonstrate that, for typical server workloads, PowerNap far exceeds DVFS’s power
savings potential with better response time. Because of PowerNap’s unique power require-
ments, we introduced RAILS, a novel power delivery system that improves power con-
version efficiency, provides graceful degradation in the event of PSU failures, and reduces
costs.

To conclude, we present a projection of the effectiveness of PowerNap with RAILS in
real commercial deployments. We construct our projections using the commercial high-
density server utilization traces described in Table 4.2. Table 8.2 presents the power re-
quirements, energy-conversion efficiency and total power costs for three server configu-
rations: an unmodified, modern blade center such as the HP c7000; a PowerNap-enabled
system with large, conventional PSUs (“PowerNap”); and PowerNap with RAILS. The
power costs include the estimated purchase price of the power delivery system (conven-
tional high-wattage PSUs or RAILS), 3-year power costs assuming California’s commer-
cial rate of 11.15 cents/kWh [5], and a cooling burden of 0.5W per 1W of IT equipment
[133].

PowerNap yields a striking reduction in average power relative to Blade of nearly 70%
for Web 2.0 servers. Improving the power system with RAILS shaves another 26%. Our to-
tal power cost estimates demonstrate the true value of PowerNap with RAILS: our solution
provides power cost reductions of nearly 80% for Web 2.0 servers and 70% for Enterprise
IT.

94

CHAPTER 9

Online Data-Intensive Services - The Need for
Coordinated Active Low-Power Modes

In this chapter we examine, for the first time, power management for a class of data
center workloads, which we refer to as Online Data-Intensive (OLDI), that would benefit
drastically from energy proportionality because it has a wide dynamic load range. OLDI
workloads are driven by user queries/requests that must interact with massive data sets, but
require responsiveness in the sub-second time scale, in contrast to their offline counterparts
(such as MapReduce computations). Large search products, online advertising, and ma-
chine translation are examples of workloads in this class. As shown in Figure 9.1, although
the load on OLDI services vary widely during the day, their energy consumption sees little
variance due to the lack of energy proportionality of the underlying machinery.

Previous research has observed that energy-proportional operation can be achieved for
lightly utilized servers with full-system, coordinated idle low-power modes [122]. Such a
technique works well for workloads with low average utilization and a narrow dynamic
range, a common characteristic of many server workloads. Other work observes that
cluster-level power management (e.g., using VM migration and selective power-down of
servers) can enable energy-proportionality at the cluster level even if individual systems are
far from energy proportional [165].

As we will show, full-system idle low power modes fare poorly for OLDI services
because these systems have a large dynamic range and, though sometimes lightly loaded,
rarely are fully idle, even at fine time scales. Cluster-grain approaches that scale cluster
size in response to load variation are inapplicable to OLDI services because the number of
servers provisioned in a cluster is fixed. Cluster sizing is determined primarily based on
the data set size instead of the throughput of incoming requests. For a cluster to process
an OLDI data set for even a single query with acceptable latency, the data set must be
partitioned over thousands of nodes that act in parallel. Hence, the granularity at which

95

0 12 24 36 48
0

20

40

60

80

100

Hour of the day
P

er
ce

nt
 o

f M
ax

 C
ap

ac
ity

QPS
Server Power

Figure 9.1: Example diurnal pattern in queries per second (QPS) for a Web search clus-
ter. Non-peak periods provide significant opportunity for energy-proportional servers. For a
perfectly energy proportional server, the percentage of peak power consumed and peak QPS
would be the same. Server power is estimated for systems with 45% idle power.

systems can be turned off is at cluster- rather than node-level.
Fundamentally, the architecture of OLDI services demands that power be conserved

on a per-server basis; each server must exhibit energy-proportionality for the cluster to be
energy-efficient, and the latency impact of any power management actions must be lim-
ited. We find that systems supporting OLDI services require a new approach to power
management: coordination of active low-power modes across the entire utilization spec-
trum. We demonstrate that neither power management of a single server component nor
uncoordinated power management of multiple components provide desirable power-latency
tradeoffs.

We report the results of two major studies to better understand the power manage-
ment needs of OLDI services. First, we characterize a major OLDI workload, Google
Web Search, at thousand-server, cluster-wide scale in a production environment to expose
the opportunities (and non-opportunities) for active and idle low-power management. We
introduce a novel method of characterization, activity graphs, which enable compact rep-
resentation of the activity levels of server components. Activity graphs provide designers
the ability to identify the potential of per-component active and idle low-power modes at
various service load levels. Second, we perform a study of how latency constrains this
potential, making power management more difficult. We construct and validate a perfor-
mance model of the Web Search workload that predicts the 95th-percentile query latency
under different low-power modes. We demonstrate that our modeling framework can pre-
dict 95th-percentile latency within 10% error. Using this framework, we explore the power-
performance tradeoffs for available and future low-power modes.

We draw the following conclusions about power management for major server compo-
nents:

1. CPU active low-power modes provide the best single power-performance mech-

96

anism, but are not sufficient for energy-proportionality. Voltage and frequency
scaling (VFS) provides substantial power savings for small changes in voltage and
frequency in exchange for moderate performance loss (see Figure 9.14). Looking
forward, industry trends indicate that VFS power savings will be reduced in future
technology generations as the gap between circuits’ nominal supply and threshold
voltages shrink [43], suggesting that power savings may not be realized from VFS
alone. Furthermore, we find that deep scaling yields poor power-performance trade-
offs.

2. CPU idle low-power modes are sufficient at the core level, but better manage-
ment is needed for shared caches and on-chip memory controllers. We find that
modern CPU cores have aggressive clock gating modes (e.g., C1E) that conserve en-
ergy substantially; power gating modes (e.g., core C6) are usable, but provide little
marginal benefit at the system level (see Figure 9.15). However, we observe that non-
core components such as shared caches and memory controllers must remain active
as long as any core in the system is active. Thus, we find opportunity for full socket
idle management (e.g, socket C6) is minimal.

3. There is great opportunity to save power in the memory system with active low-
power modes during ample periods of underutilization. We observe that the mem-
ory bus is often highly underutilized for periods of several seconds. There is a great
opportunity to develop an active low-power mode for memory and we demonstrate
that it would provide the greatest marginal addition to a server’s low-power modes.
Because the memory system is so tightly coupled to CPU activity, it is extremely
rare for DRAM idle periods to last long enough to take advantage of existing idle
low-power modes (e.g., self-refresh) (see Figure 9.6).

4. Unlike many other data center workloads, full-system idle power management
(e.g., PowerNap) is ineffective for OLDI services. Previous research has demon-
strated that energy-proportionality can be approached by rapidly transitioning be-
tween a full-system high-performance active and low-power inactive state to save
power during periods of brief idleness [122]. Whereas such a technique works well
for many workloads, we demonstrate that it is inappropriate for the ODLI workload
class. Because periods of full-system idleness are scarce in an OLDI workloads,
we evaluate batching queries to coalesce idleness, but find that the latency-power
tradeoffs are not enticing.

5. The only way to achieve energy-proportional operation with acceptable query

97

latency is coordination of full-system active low-power modes. Rather than re-
quiring deep power savings out of any one component, we observe that systems must
be able to leverage moderate power savings in all their major components. Since
full-system idleness is scarce, power savings must be achieved with active low-power
modes. Furthermore, system-wide coordination of power-performance states is nec-
essary to maintain system balance and achieve acceptable per-query latency.

The rest of this paper is organized as follows. In Section 2, we discuss the unique as-
pects of OLDI services, how these impact power management, and prior work. To identify
opportunities for power management, we present our cluster-scale Web Search characteri-
zation in Section 3. In Section 4, we develop and validate a Web Search performance model
to determine which of these opportunities are viable from a latency perspective, and draw
conclusions from this model in Section 5. Finally, in Section 6, we conclude.

9.1 Online Data-Intensive Services

Online data-intensive services are a relatively new workload class and have not under-
gone an extensive characterization study in the systems community. Perhaps the defining
feature of these workloads is that latency is of the utmost importance. A user’s experience
is highly dependent on perceived speed; even delays of less than 400ms in page rendering
time have a measurable impact on web search queries per user and ad revenue [155]. Rather
than focusing on the mean, search operators often express performance objectives over a
quantile of queries, for example, a constraint on 95th-percentile latency ensuring users ex-
perience low latency 95% of the time. Because queries can exhibit drastically varying pro-
cessing requirements and a wide variance in latency, achieving these targets can be quite
difficult. It is particularly important to consider the tail of the latency distribution when
considering power management schemes, as many power management approaches impact
tail latencies more than they affect the mean. Figure 9.2 shows a cumulative distribution of
query latency (normalized to the mean latency) for a web search cluster operating at 65%
of its peak capacity. There is a 2.4x gap between mean and 95th-percentile latency.

9.1.1 Understanding Online Data-Intensive Services

Cluster Processing in Web Search. The sheer size of the Web index and the com-
plexity of the scoring system requires thousands of servers working in parallel in order to
meet latency requirements. Figure 9.3 depicts the distributed, multi-tier topology of a Web
search cluster [29]. Queries arrive at a Web server front-end, which forwards them to a

98

0 1 2 3 4
0

20

40

60

80

100

2.4x

Mean 95th−Percentile

Latency (Normalized to 1/µ)

P
er

ce
nt

ag
e

of
 Q

ue
rie

s

Figure 9.2: Example leaf node query
latency distribution at 65% of peak
QPS.

Leaf

Front End

Leaf Leaf

Back End

Web Server

Majority of Nodes

...

... ...

Figure 9.3: Web search cluster topol-
ogy.

large collection of leaf nodes using a distribution tree of intermediary servers. The index is
sharded (i.e., distributed) among all the leaf nodes, so that each performs the search on its
fragment of the index. Most of the index is not replicated across leaves, hence, each search
query must be processed at each leaf to maximize result relevance. The query distribution
tree aggregates all results and returns the highest-scoring ones back to the front-end server.

Leaf nodes are the most numerous in a search cluster. Because of the high fan-out of the
distribution tree, leaf nodes account for both the majority of query processing and cluster
power consumption. Hence, we restrict our study to power savings for these servers. Note,
however that the importance of the 95% latency becomes even more relevant when studying
performance at the leaf-node level, since the entire service latency can be dominated by the
latency of a single slow leaf. Although the effect of slow leaf nodes can be limited using
latency cutoffs, in practice these tend to be conservative—prematurely terminating a search
can compromise query result relevance.

Though other data-intensive workloads share similarities with OLDI services, there are
some critical differences that make OLDI a particularly challenging target for power and
energy optimizations. For example, personalized services such as Web mail and social
networking also manipulate massive amounts of data and have strict latency requirements
for user interaction. A key difference between these workloads and OLDI services is the
fraction of data and computing resources that are used by every single user request. For a
Web search cluster, a query typically touches all of the machines in the cluster. By contrast,
a Web mail request will access primarily the users’ active mailbox and a small fraction of
the machines in the serving cluster. MapReduce-style computations can touch all of the
machines and data in a cluster, but their focus on throughput makes them more latency

99

tolerant, and therefore an easier target for energy optimizations, which tend to increase
latency.
Diurnal Patterns. The demands of an OLDI service can vary drastically throughout the
day. The cluster illustrated in Figure 9.1 is subject to load variations of over a factor of
four. To simplify our discussion, we will focus on three traffic levels based on percentage
of peak achievable traffic: low (20%), medium (50%) and high (75%). We choose 75% of
peak as our high traffic point because, although clusters can operate near 100% capacity
when needed, it is common for operators to set normal maximum operating points that are
safely below those peaks to ensure service stability.

9.2 Cluster-scale Characterization

In this section we characterize the Web Search workload at 1000-node cluster scale.
Opportunities for power savings often occur at very fine time-scales, so it is important
to understand the magnitude and time-scale at which components are utilized [122]. We
present the results of our characterization, and analyze its implications on opportunity for
power management, using a new representation, which we call activity graphs. Our char-
acterization allows us to narrow the design space of power management solutions to those
that are applicable to OLDI services. In Section 5 and 6, we further analyze promising
approaches from a latency perspective.

9.2.1 Experimental Methodology

We collected fine-grained activity traces of ten machines from a Web search test-cluster
with over a thousand servers searching a production index database. The test workload exe-
cutes a set of anonymized web search queries, with the query injection rate tuned to produce
each of the QPS loads of interest (low, medium, and high). The behavior of the test runs
was validated against live production measurements, however the latency and QPS levels
reported here do not correspond exactly to any particular Google search product—there are
multiple production search systems at Google and their exact behavior is a result of com-
plex trade-offs between index size, results quality, query complexity and caching behavior.
We are confident that the parameters we chose for our test setup faithfully represents the
behavior and energy-performance trade-offs of this class of workloads.

We collect raw utilization metrics for CPU, memory bandwidth, and disk I/O bandwidth
with in-house kernel and performance counter-based tracing tools that have a negligible
overhead and do not have a measurable impact on application performance. CPU utilization
is aggregated across all the processors in the system. Our memory and disk instrumentation

100

Time
L

Ttr Ttr

Power

Figure 9.4: Idealized low-power mode. L is the length of the idle period and Ttr is the time
required to transition in and out of the low power state.

computes utilization as the fraction of peak bandwidth consumed over a given window; our
resolution is limited to 100 ms windows.

9.2.2 Activity Graphs: Compactly representing component-level utilization

Activity graphs compactly describe the opportunity for power savings at a range of
utilizations and time-scales of interest. Figures 9.5-9.7 show the activity graphs for a Web
search workload at multiple traffic levels (denoted by queries-per-second or QPS). These
activity graphs depict a functionA(L,U) that gives the fraction of time a component spends
at or below a given utilization U for a time period of L or greater:

A(L,U) = Pr(l ≥ L, u ≤ U) (9.1)

This formulation allows us to determine the fraction of time where any particular power
mode might be useful. Perhaps as importantly, it lets us quickly rule out low-power modes
that will not be applicable. We assume that an oracle guides transitions in and out of the
mode at the start and end of each period L. Most modes do not save power during this
transition and may halt processing during transitions; accordingly, for our study we assume
that Ttr must be an order of magnitude less than L for a low-power mode to be effective.
Example: Reading Figure 9.5(a). We now demonstrate how to interpret the results of
an activity graph, using Figure 9.5(a) as an example. Suppose we wish to evaluate a CPU
active low-power mode that incurs roughly a 25% slowdown (i.e., it can only be used below
1/1.25 = 80% utilization) and has a transition time of 1 ms (i.e., it is only useful for L of
about 10ms or greater). We can see that at 20% QPS, this mode is applicable nearly 80%
of the time. Conversely, if transitions latency limited this mode to periods of 1 second or
greater, there would be almost no opportunity for the mode.
Abstract Power Mode Model. Figure 9.4 illustrates the abstract model we use to deter-

101

mine upper bounds on power savings. A power mode can be activated for a period L in
which utilization is less than or equal to a threshold U . For idle low-power modes, U is
zero. For active low-power modes, U is bounded by the slowdown incurred when oper-
ating under the low power mode. For example, a low power mode that incurs a factor of
two slowdown may not be used when U > 50% as the offered load would then exceed the
processing capacity under the mode. To save power, a component must transition in and
out of a mode with latency Ttr.

9.2.3 Characterization Results

We now discuss the implications of the activity graphs shown in Figures 9.5, 9.6, and
9.7, for CPU, memory and disk respectively. Each figure has a separate result for low,
medium and high QPS.
CPU. Figure 9.5 show activity graphs for CPU. There is almost no opportunity for CPU
power management at a time-scale greater than one second even at low loads; instead power
modes must be able to act well into the sub-second granularity to be effective. Perhaps most
interestingly, the 1 ms time scale captures nearly all the savings opportunity regardless
of the utilization threshold, suggesting that it is unnecessary to design modes that act on
granularities finer than 50-100µs. Additionally, while increased QPS reduces the overall
opportunity for power management at each utilization level, it does not change the time-
scale trends.
Memory. Figure 9.6 presents the activity for memory. Two features are prominent. First,
we observe that the memory bus is greatly underutilized, with many long periods during
which utilization is below 30%. Hence, active low power modes that trade memory band-
width for lower power are applicable even if they have relatively large transition times.
Second, the memory bus is never idle for 100ms or longer. Unfortunately, our instru-
mentation cannot examine sub-100ms granularities. However, by estimating finer-grained
memory idleness from our CPU traces (by assuming the memory system is idle when all
CPUs are idle), we find that idle periods longer than 10µs are scarce even at low QPS val-
ues. We conclude that DRAM idle low-power modes require sub-µs transitions times to be
effective for these workloads, which is an order of magnitude faster than currently available
DRAM modes.
Disk. Finally, Figure 9.7 shows the activity graphs for disk. The activity trends for disk
differ from CPU and memory because varying QPS shifts the time-scales over which uti-
lization levels are observed. Whereas the majority of time spent at or below 30% utilization
is captured in 10 second intervals at 20% QPS, this opportunity shifts to an order of magni-
tude finer time-scale when load increases to 75% QPS. As with memory, disk bandwidth is

102

100 us 1 ms 10 ms 100 ms 1 s 10 s
0

0.2

0.4

0.6

0.8

1

L (Time Interval)

F
ra

ct
io

n
of

 T
im

e
≥
 L

 a
nd

 ≤
 U

U=80%
U=50%
U=30%
U=10%
Idle

(a) 20% QPS

100 us 1 ms 10 ms 100 ms 1 s 10 s
0

0.2

0.4

0.6

0.8

1

L (Time Interval)

F
ra

ct
io

n
of

 T
im

e
≥
 L

 a
nd

 ≤
 U

U=80%
U=50%
U=30%
U=10%
Idle

(b) 50% QPS

100 us 1 ms 10 ms 100 ms 1 s 10 s
0

0.2

0.4

0.6

0.8

1

L (Time Interval)

F
ra

ct
io

n
of

 T
im

e
≥
 L

 a
nd

 ≤
 U

U=80%
U=50%
U=30%
U=10%
Idle

(c) 75% QPS

Figure 9.5: CPU activity graphs. Opportunities for CPU power savings exist only below 100
ms regardless of load.

100 ms 1 s 10 s 100 s 1000 s
0

0.2

0.4

0.6

0.8

1

L (Time Interval)

F
ra

ct
io

n
of

 T
im

e
≥
 L

 a
nd

 ≤
 U

U=80%
U=50%
U=30%
U=10%
Idle

(a) 20% QPS

100 ms 1 s 10 s 100 s 1000 s
0

0.2

0.4

0.6

0.8

1

L (Time Interval)

F
ra

ct
io

n
of

 T
im

e
≥
 L

 a
nd

 ≤
 U

U=80%
U=50%
U=30%
U=10%
Idle

(b) 50% QPS

100 ms 1 s 10 s 100 s 1000 s
0

0.2

0.4

0.6

0.8

1

L (Time Interval)

F
ra

ct
io

n
of

 T
im

e
≥
 L

 a
nd

 ≤
 U

U=80%
U=50%
U=30%
U=10%
Idle

(c) 75% QPS

Figure 9.6: Memory activity graphs. Memory bandwidth is undersubscribed, but the sub-
system is never idle.

100 ms 1 s 10 s 100 s 1000 s
0

0.2

0.4

0.6

0.8

1

L (Time Interval)

F
ra

ct
io

n
of

 T
im

e
≥
 L

 a
nd

 ≤
 U

U=80%
U=50%
U=30%
U=10%
Idle

(a) 20% QPS

100 ms 1 s 10 s 100 s 1000 s
0

0.2

0.4

0.6

0.8

1

L (Time Interval)

F
ra

ct
io

n
of

 T
im

e
≥
 L

 a
nd

 ≤
 U

U=80%
U=50%
U=30%
U=10%
Idle

(b) 50% QPS

100 ms 1 s 10 s 100 s 1000 s
0

0.2

0.4

0.6

0.8

1

L (Time Interval)

F
ra

ct
io

n
of

 T
im

e
≥
 L

 a
nd

 ≤
 U

U=80%
U=50%
U=30%
U=10%
Idle

(c) 75% QPS

Figure 9.7: Disk activity graphs. Periods of up to tens of seconds with moderate utilization
are common for disks.

103

not heavily utilized even at high QPS; the majority of time is spent below 50% utilization
even at a 1 second granularity. Unlike memory, disk exhibits periods of idleness at 100ms
to 1s time-scales, especially for low QPS.

A particularly interesting property of disk activity patterns is that disks rarely see peak
utilization—moderate utilization levels persist for long periods. This observation suggests
that active low-power modes that provide less than 2-3x performance degradation (i.e.,
that can be used in periods of 30-50% utilization) at time scales of a few seconds may
be quite useful. Unfortunately, most available or proposed power modes for disks act on
time scales substantially greater than one second [81, 143]. Accordingly, this data suggests
that the main challenge in saving disk power lies in reducing power mode transition time.
Alternatively, a non-volatile storage solution that could trade bandwidth for power would
be useful.

9.2.4 Analysis: Evaluating Available/Potential Power Modes

Using the activity graphs, we now examine power-savings effectiveness, that is, the
product of applicability and power reduction, for existing and proposed power modes. Ta-
ble 9.1 lists the idle and active power modes we consider for CPU, memory, and disk, as
well as our assumptions for transition time (Ttr), utilization threshold (uThreshold), and nor-
malized power savings, while using a power mode (∆PMode

PNominal
). We use these parameters to

derive an estimate of the potential per-component power savings at each QPS level. Here
PNominal is the power consumed under normal operation and PMode the power when the mode

is active. For the ideal Vdd scaling modes, we assume that PMode
PNominal

=
(

f
fMax

)3

, which is an
optimistic upper bound on the potential of frequency and voltage scaling. Note that, to our
knowledge, no current memory device can scale supply voltage during operation; however,
we include it as a proxy for other potential memory active low-power modes. Disk active
mode savings are taken from [143]. The quantity PMode

PNominal
for idle power modes is simply

the ratio of the idle mode power to the power at idle without the mode. We calculate the
normalized per-component power savings using the following model:

PSaving

PNominal
=
PNominal − (1− A(L,U)) · PNominal + A(L,U)) · PMode

PNominal

= 1− ((1− A) + A · PMode

PNominal
) = A · ∆PMode

PNominal

(9.2)

Figure 9.8 reports the power savings opportunity for each low-power mode at each QPS
level. The ACPI C3 state provides minimal opportunity because it does not lower CPU
power much below the savings already achieved by C1E, which current processors auto-

104

Table 9.1: Low-power mode characteris-
tics.

Power Mode Ttr uthreshold
∆PMode
PNominal

Ref.

C1E→ ACPI C3 10 µs Idle 2% [?]
C1E→ ACPI C6 100 µs Idle 44% [?]
Ideal CPU Vdd Scaling 10 µs 50% 88% [?]
Ideal Memory Vdd Scaling 10 µs 50% 88% [?]
Dual-Speed Disk 1 sec 50% 59% [?]
Disk Spin-Down 10 sec Idle 77% [?]

0

20

40

60

80

100

C
om

po
ne

nt
 P

ow
er

 S
av

in
gs

 (
P

er
ce

nt
)

ACPI C
3

ACPI C
6

Proce
sso

r S
ca

ling

Memory
Sca

ling

Dual−Speed Disk

Disk
 Spin−Down

20% QPS
50% QPS
75% QPS

Figure 9.8: Power savings potential
for available low-power modes.

matically enter upon becoming idle [97] On the other hand, ACPI C6 (also referred to as
power-gating or core-parking for the Nehalem architecture) can provide moderate savings,
especially at low-utilization. Using scaling for processor and memory provide substantial
opportunity for benefit. Though the opportunity for CPU scaling decreases with increasing
load, the opportunity for memory scaling remains large. Disk spin-down is inapplicable to
this workload due to its prohibitive transition latency. However, a dual-speed disk has mod-
erate power savings potential, especially at low QPS. Improving transition latency could
further increase the opportunity for dual-speed disks, but we leave this study for future
work.

9.3 Leaf Node Performance Model

The activity graphs reveal the potential of low-power modes with respect to throughput
constraints, but do not consider whether their impact on service latency will be acceptable.
As noted in Section 9.1, OLDI services place tight constraints on 95th-percentile latency.
To predict impacts on query latency, in this section, we develop a performance model that
relates per-component slowdowns to the overall query latency distribution. Our valida-
tion against hardware measurements shows that our model estimates 95% query latency
to within 9.2% error. In Section 9.4, we will apply this model to estimate the power-
performance pareto frontiers of a variety of current and hypothetical CPU and memory low
power modes for various service level agreement (SLA) targets on 95th-percentile query
latency. We elected not to explore disk power/performance trade-offs based on the results
in Section 9.2.3.

105

Query latency is composed of time a query spends in service and the time it must wait
to receive service:

LQuery = LService + LWait (9.3)

We first construct a model to predict the impact of reduced component performance on
Lservice, the expected time to execute a single query without queuing. We then incorporate
the service model into a queuing model to estimate Lwait and determine the total latency,
LQuery as a function of low-power mode settings and contention.

9.3.1 Modeling LService

Rather than model specific low power modes, we instead capture directly the relation-
ship between per-component performance and query service time; our model can then be
applied to existing/hypothetical per-component low power modes by measuring/assuming
a specific power-latency tradeoff for the mode. We develop the query service time model
empirically by measuring the impact of per-component slowdowns in a controlled test en-
vironment. We then perform a linear regression on the measured performance results to
derive the overall service time relationship.

We replicate the behavior of a production leaf node on a 16-core x86 server with 32GB
of memory. Our test harness reproduces an arrival process, query set, and web index com-
parable to production environments. Our test server allows us to vary the CPU and memory
performance and measure their impact on average query execution time. We vary proces-
sor performance using frequency scaling; we scale all cores together at the same clock
frequency.

The most effective method to vary memory latency in our test environment is to de-
crease the interconnect speed between the processor and DRAM. Varying interconnect
speed has the potential to introduce both latency and bandwidth effects. To construct a
platform agnostic model, we wish to exclude bandwidth effects (which are specific to the
memory system implementation of our test harness) and capture only latency effects in our
model; the latency model can be augmented with bandwidth constraints as appropriate.
Bandwidth effects are generally small at low utilization [164]. However, for this work-
load and test system, we have determined that memory bandwidth becomes a constraint at
the slowest available interconnect speeds. Hence, we have chosen to exclude these settings
from our regression, but report the measured values in our figures for interested readers. We
also include measurements from one of the excluded settings in our validation to expose
these bandwidth-related queuing effects.

Given component slowdowns SCPU and SMem (the relative per-query latency increase in

106

1 1.2 1.4 1.6 1.8 2

1

1.25

1.5

1.75

2

S
CPU

 (CPU Slowdown)

S
T

ot
al
 (

P
er

−
Q

ue
ry

 S
lo

w
do

w
n)

S

Mem
=1.00

S
Mem

=1.05

S
Mem

=1.16

(a) Avg. query slowdown as a function of CPU
slowdown (holding memory slowdown constant).

1 1.2 1.4 1.6 1.8 2

1

1.25

1.5

1.75

2

S
Mem

 (Memory Slowdown)

S
T

ot
al
 (

P
er

−
Q

ue
ry

 S
lo

w
do

w
n)

S
CPU

=1.0

S
CPU

=1.1

S
CPU

=1.3

S
CPU

=1.6

S
CPU

=2.0

(b) Avg. query slowdown as a function of memory
slowdown (holding CPU slowdown constant). Data
points at Smem = 1.3 exhibit test-harness-specific
memory bandwidth effects and are excluded from
the regression.

Figure 9.9: Per-query slowdown regression. Dots represent measured values and lines rep-
resent values predicted by the regression model.

the processor and memory) we would like to determine the function STotal = f(SCPU, SMem) =
LSCPU,SMem
LNominal

where STotal is the overall per-query slowdown.
First, we measured the latency of queries delivered to the leaf node one at a time (hence

eliminating all contention effects). This experiment confirmed our intuition that the rela-
tionship between CPU and memory slowdown and per-query slowdown is linear, providing
a sanity check on our use of a linear regression model.

Next we measured the STotal, SCPU, SMem triple for each available processor and memory
setting while loading the leaf node to capacity, but only issuing new queries once outstand-
ing queries complete. This experiment captures the interference effects (e.g., in on-chip
caches) of concurrent queries while isolating service latency from queuing latency. Because
of the previously-discussed bandwidth effects, we can use only three memory-link-speed
settings to approximate the slope of the SMem relationship. Whereas the absolute accuracy
of STotal estimates will degrade as we extrapolate SMem beyond our measured results, we
nevertheless expect that general trends will hold.

We empirically fit the measured data using a linear regression on an equation with the
form:

STotal = Sβ, S = [1, SCPU, SMem, SCPU · SMem] β = [β0, β1, β2, β3]T (9.4)

107

Using a least-squares regression, we find that the β vector has the values:

β = [−0.70, 0.84, 1.17, −0.32]T (9.5)

This formulation predicts STotal with an average error of 1% and a maximum error of 1.2%.
The values of the β parameters yield intuition into the workload’s responds to compo-

nent slowdown. The β1 and β2 values show a strong linear relationship between application
slowdown and CPU and memory slowdown. Interestingly, the negative value of β3 indi-
cates that slowing CPU and memory together may be beneficial.

Figures 9.9(a) and 9.9(b) provide two views of how CPU and memory slowdown affect
average query latency. They further illustrates how our regression predictions (represented
by solid lines) compare to measured values (represented by points).

9.3.2 Modeling LWait

To capture query traffic and contention effects, we augment our per-query service time
model with a queuing model describing the overall behavior of a leaf node. We model
the leaf node as a G/G/k queue—a system with an arbitrary interarrival and service time
distribution, average throughput λ (in QPS), average service rate µ (in QPS), k servers,
average load ρ = λ

µ·k and a unified queue. Whereas this model does not yield a closed-form
analytic expression for latency, it is well-defined and straight-forward to simulate. We use
the approach of Chapter 5 to simulate the leaf-node queuing system.
Interarrival Distribution. We have found that the distribution of query arrival times at
the leaf node can greatly influence 95th-percentile latencies. Naı̈ve loadtesting clients tend
to send queries at regular intervals, resulting in fewer arrival bursts and fewer, longer idle
intervals than what is seen with actual user traffic. Figure 9.10 shows how different as-
sumptions for interarrival distribution influence predictions for 95th-percentile latency; the
difference is most pronounced at moderate QPS. We have found that actual user traffic
tends to show higher coefficient of variation (Cv = 1.45) than an exponential distribution
and considerably higher than a naı̈ve (Low Cv) arrivals. We have modified our loadtesting
client to replay the exact distribution seen by live traffic and were able to validate these ef-
fects. Our validation demonstrates the perils of using naı̈ve loadtesting clients, and suggests
that in absence of real user traces, exponential distributions could be used with reasonably
small errors.

Figure 9.11 depicts the production system arrival distribution at a leaf node. The inter-
arrival distribution has distinguishing notches at .007(1/µ) and .01(1/µ). This shape is an
artifact of the multi-tier server topology shown in Figure 9.3. We have also observed that

108

65 70 75 80
0

1

2

3

4

5

6

7

8

QPS (%)

95
th

−
P

er
ce

nt
ile

 L
at

en
cy

(N
or

m
al

iz
ed

 to
 1

/µ
)

Low C

v

Exponential
Empirical

Figure 9.10: Arrival process greatly
influences quantile predictions.

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

C
D

F

Time (µs)

0

0.01

P
D

F

CDF
PDF

Figure 9.11: Distribution of time be-
tween query arrivals.

the shape of the interarrival distribution does not change significantly with varying QPS,
only its scale. This property allows us to use the distribution measured at a single QPS and
scale it to achieve an arbitrary throughput for our model.
Service Distribution. The service time distribution describes the amount of time spent
executing each query. It is parameterized by µ, the average service rate (in QPS); 1/µ,
the average query execution time, is given by the LService model described in Section 9.3.1.
Since multiple queries are serviced concurrently, the aggregate service rate is k · µ. In our
case, k is 16.

The service time distribution measured is shown in Figure 9.12. Though the variance of
this distribution is not particularly high (Cv=1.12), the 95th-percentile of the distribution is
nearly 3 times greater than the mean. This variability is largely intrinsic to the computing
requirements of each individual query.

The service distribution shape, as with the interarrival distribution, does not change sig-
nificantly with average query latency changes, allowing us to model power modes’ effects
as a service rate modulation, µ′ = µ/STotal.
Autocorrelation. Our simulation approach detailed in Chapter 5 generates interarrival
and service times randomly according to the scaled empirical distributions, which assumes
that the arrival/service sequences are not autocorrelated (i.e., consecutive arrivals/services
are independent and identically-distributed). We have validated this assumption in traced
arrival and service time sequences (there is less than 5% autocorrelation on average).
This independence is important to establish, as it allows us to generate synthetic inter-
arrival/service sequences rather than replaying recorded time traces.

109

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

C
D

F

Time (ms)

0

0.01

0.02

0.03

P
D

F

CDF
PDF

Figure 9.12: Distribution of query
service times.

20 30 40 50 60 70

10

15

20

25

30

QPS (%)

95
th

−
P

er
ce

nt
ile

 L
at

en
cy

 (
m

s)

S

CPU
=1.0

S
CPU

=1.1

S
CPU

=1.3

S
CPU

=1.6

S
CPU

=2.0

Figure 9.13: Performance model vali-
dation. Dots represent values mea-
sured on the test node and lines rep-
resent modeled values.

9.3.3 Validation

To validate our performance model, we measured the performance of the web search
workload at the three QPS levels of interest and all applicable performance settings. Figure
9.13 compares 95th-percentile latency predicted by our model (lines) against measured
values on our test node (points). At low QPS, the predicted latency is primarily a function
of the LService performance model, as queuing rarely occurs. As QPS reaches the maximum
level, queuing effects and our model for LWait increase in importance; our overall model
predicts 95th-percentile latency accurately in both regions, achieving an average error of
9.2%.

9.4 Evaluating Latency-Power Tradeoffs

Our performance model allows us to quantify the trade-offs between power and latency
for both proposed and currently available power modes for our OLDI workload. In this
section, our analysis will draw the following conclusions: (1) Full-system, coordinated
low-power modes provide a far better latency-power tradeoff than individual, uncoordi-
nated modes. (2) Idle low-power modes do not provide significant marginal power savings
over C1E. (3) There is a need to develop full-system, coordinated active low-power modes,
because full-system idleness is difficult to find.

We assume similar server power breakdown and power scaling as in [33]; these as-
sumptions are summarized in Table 9.2. In this analysis, we consider processor and mem-
ory voltage and frequency scaling, processor idle low-power modes, and batching queries

110

to create and exploit full-system power modes (i.e., PowerNap [122]).

9.4.1 Active system power modes: Voltage and frequency scaling

First, we investigate the applicability of active low-power modes for CPU and mem-
ory; in particular, we assess the power savings of frequency and voltage scaling. In an
ideal CMOS processor, voltage scales proportionally to frequency. Accordingly, power
consumption is reduced cubically with respect to processor frequency (P ∝ f 3). In reality,
however, reducing processor frequency does not allow an equivalent reduction in proces-
sor voltage [44, 162]. Divergence from the ideal model is due to the inability to scale
voltage with the required ideal linear relationship to frequency, and the increasingly large
static power consumed by modern processors. This divergence is much more pronounced
in high-end server processors than low-end processors, because by definition they are opti-
mized for performance (low threshold voltage and high supply voltage) rather than power
(high threshold voltage and low supply voltage).

In addition, limited voltage scaling and automated idle power modes (e.g., C1E) lead to
essentially constant idle power, no matter what voltage/frequency mode is selected. To pro-
vide an optimistic scenario, we evaluate the expected power savings assuming (P ∝ f 2.4),
which was derived from an embedded processor [44] and matches theoretical predictions
of practical scaling limits [177]. For this case, we also optimistically assume that the ra-
tio of static power to active power remains constant. Data from today’s high end servers
[8] suggests much more modest power savings associated with DVFS, with energy savings
approaching zero for some DVFS modes.

Although full-featured voltage and frequency control (e.g., DVFS) is not currently
available for modern memory systems, the power consumption of these devices follow
similar relationships with respect to voltage and frequency [100]. We therefore hypothe-
size a memory power mode that resembles the optimistic processor frequency and voltage
scaling scenario.

Figure 9.14 shows total server power as a function of 95th-percentile latency for each
QPS level. Three scenarios are considered: CPU scaling alone (“CPU”), memory scaling
alone (“Memory”) and a combination of CPU and memory scaling (“Optimal Mix”). Since
there are many permutations of CPU and memory settings, we show only the pareto-optimal
results (the best power savings for a given latency).

In isolation, the latency-power tradeoff for CPU scaling dominates memory scaling.
Memory slowdown impacts overall performance more and uses less power at higher QPS.
However, at 20% one can see that memory scaling may do better at times. Different server
configurations may shift this balance; in particular, recent trends indicate that the fraction

111

10 12 14 16 18 20
0

25

50

75

100

A B

95th−Percentile Latency (ms)

P
ow

er
 (

P
er

ce
nt

 o
f P

ea
k)

CPU
Memory
Optimal Mix
Proportional

(a) 20% QPS.

10 12 14 16 18 20
0

25

50

75

100

A B

95th−Percentile Latency (ms)

P
ow

er
 (

P
er

ce
nt

 o
f P

ea
k)

CPU
Memory
Optimal Mix
Proportional

(b) 50% QPS.

10 12 14 16 18 20
0

25

50

75

100

95th−Percentile Latency (ms)

P
ow

er
 (

P
er

ce
nt

 o
f P

ea
k)

CPU
Memory
Optimal Mix
Proportional

(c) 75% QPS.

Figure 9.14: System power vs. latency trade-off for processor and memory scaling (P ∝
f2.4). The point ”A” represents SCPU=1.5 and ”B” represents SMem = 1.5. “A” and “B” do
not appear in the 75% QPS graph because the latency exceeds 20 ms.

Table 9.2: Typical server power break-
down.

Power (% of Peak) CPU Memory Disk Other

Max 40% 35% 10% 15%
Idle 15% 25% 9% 10%

of power due to memory will increase. Our results show that coordinated scaling of both
CPU and memory yields significantly greater power reductions at all target latencies than
scaling either independently. This observation underscores the need for coordinated active
low-power modes: components must scale together to maintain system balance. With our
optimistic scaling assumption, we can achieve better than energy-proportional operation at
50% and 75% QPS. At 20% QPS, power consumption becomes dominated by other server
components with large idle power (e.g., disk, regulators, chipsets, etc.).

9.4.2 Processor idle low-power modes

Next, we explore idle CPU power modes, where the CPU enters a low-power state
but other components remain active. Modern CPUs already use the ACPI C1 or C1E state
whenever the HLT instruction is executed. We would like to understand the benefit of using
deeper idle low-power modes. For comparison, we evaluate using ACPI C6, which can be
applied either at the core or socket level. At the core level, ACPI C6 or “Core Parking”
uses power gating to eliminate power consumption for that core. It has a transition time of
less than 100 µs [?]. At the socket level (“Socket Parking”), we assume that an integrated
memory controller must remain active but all caches may be powered down yielding a
50% reduction in non-core power consumption. This mode requires socket-level idleness
and incurs a 500 µs transition time. For both modes, we assume that the mode is invoked

112

Table 9.3: Processor idle low-power modes.

Power (% of Peak)

Active Idle (HLT) Parking

Core Socket

Per-Core (x4) 20% 4% 0% 0%
Uncore 20% 20% 20% 0%

20% QPS 50% QPS 75% QPS
0

20

40

60

80

100

S
ys

te
m

 P
ow

er
 (

P
er

ce
nt

 o
f P

ea
k)

Core + Socket Parking
Core Parking
Socket Parking
No Management

Figure 9.15: System power savings for CPU idle low-power modes. Core Parking only
yields marginal gains over C1E. Power savings from socket parking is limited by lack of
per-socket idleness.

immediately upon idleness and that transition to active will occur immediately upon a query
requiring the resource. The power consumption of a socket in each state is summarized in
Table 9.3.

Figure 9.15 depicts the power savings opportunity for processor idle low-power modes.
The transition time of these modes is sufficiently low that the 95th-percentile is not affected
significantly. We observe that ACPI C6 applied at the core level (“Core Parking”), socket
level (“Socket Parking”) or in combination (“Core + Socket Parking”) does not provide
a significant power reduction. Since modern processors enter C1E at idle (i.e., the HLT
instruction), the idle power of the processor is not very high. Therefore, compared to
a baseline scenario (“No Management”), using core or socket parking does not provide
much benefit. Larger power savings are likely possible if work is rescheduled amongst
cores to coalesce and thus extend the length of the idle periods, enabling the use of deeper
idle power modes.

9.4.3 Full-system Power Modes: Query batching with PowerNap

Finally, we investigate using a full-system idle low power mode to recover power con-
sumed by all server components. We evaluate PowerNap, which provides a coordinated,
full-system low-power mode with a rapid transition time to take advantage of idle periods

113

20 40 60 80 100
0

25

50

75

100

95th−Percentile Latency (ms)

S
ys

te
m

 P
ow

er
 (

P
er

ce
nt

 o
f P

ea
k)

A

A

T
t
 = 0.10(1/µ)

T
t
 = 1.00(1/µ)

Proportional

(a) 20% QPS.

20 40 60 80 100
0

25

50

75

100

95th−Percentile Latency (ms)

S
ys

te
m

 P
ow

er
 (

P
er

ce
nt

 o
f P

ea
k)

A
A

T
t
 = 0.10(1/µ)

T
t
 = 1.00(1/µ)

Proportional

(b) 50% QPS.

20 40 60 80 100
0

25

50

75

100

95th−Percentile Latency (ms)

S
ys

te
m

 P
ow

er
 (

P
er

ce
nt

 o
f P

ea
k)

AA

T
t
 = 0.10(1/µ)

T
t
 = 1.00(1/µ)

Proportional

(c) 75% QPS.

Figure 9.16: System power vs. latency trade-off for query batching with PowerNap. “A”
represents a batching policy that holds jobs for periods equal to 10x the average query
service time.

and has shown great promise for non-OLDI server applications [122]. We assume that
while in PowerNap mode, the server consumes 5% of peak but cannot process queries.

It is extremely rare for full-system idleness to occur naturally for our workload, even
at low QPS values. Instead, we coalesce idle periods by batching queries to the leaf node.
Queries are accumulated at a higher level node in the search tree and released after a given
timeout to the leaf node. Increasing the timeout allows for longer periods in the PowerNap
mode. Our approach is similar to the technique described in [70].

Figure 9.16 shows the power-latency tradeoff given a transition time, Tt, of both one
tenth and equal to the average query processing time (1/µ). (Note the larger scale of the
horizontal axis in this figure relative to Figure 9.14). We find that in order to save an ap-
preciable amount of power, PowerNap requires relatively long batching intervals incurring
large latency penalties. The point (“A”) represents a batching policy with a timeout period
equal to 10x the average query service time. Even with a relatively short transition time,
the latency-power trade-off is not enticing across all the QPS levels.

Clearly, using a simple batching method to artificially create idleness is unattractive
from a latency perspective. A more intelligent architecture is required, and we have pro-
posed such a system, DreamWeaver, in Chapter 7. We direct the reader to Chapter 7 for an
evaluation of DreamWeaver with respect to the Web search workload.

9.4.4 Comparing Power Modes

Out of the power modes explored thus far, we would like to identify the best mode
given an SLA latency bound. For this evaluation, we define our initial SLA to be the 95th-
percentile latency at 75% QPS. Figure 9.17 compares the power saving potential of system
active low-power modes (“Scaling”) from Section 5.1, processor idle low-power modes

114

0

20

40

60

80

100

Nom
ina

l

Sca
lin

g
Cor

e

Pow
er

Nap

Nom
ina

l

Sca
lin

g
Cor

e

Pow
er

Nap

Nom
ina

l

Sca
lin

g
Cor

e

Pow
er

Nap

Nom
ina

l

Sca
lin

g
Cor

e

Pow
er

Nap

S
ys

te
m

 p
ow

er
 (

P
er

ce
nt

 o
f P

ea
k)

20% QPS 50% QPS 75% QPS Diurnal

1x SLA
2x SLA
5x SLA

Figure 9.17: Power consumption at each qps level for a fixed 95th-percentile increase. The
dotted line at each QPS level represents the power consumption of an energy proportional
system.“Diurnal” represents the time-weighted daily average from Figure 9.1. An energy-
proportional server would use 49% of its peak power on average over the day.

(“Core”) from Section 5.2, and system idle low-power modes (“PowerNap”) from Section
5.3 given a latency bound of 1x, 2x, and 5x of this initial SLA. At 20% QPS, none of the
power management schemes can achieve energy-proportionality (a power consumption of
20% of peak) even at a 5x latency increase, although scaling falls just short. For 50% and
75% QPS, coordinated scaling can achieve slightly better than energy proportional power
consumption for a 2x latency increase, but other techniques cannot regardless of SLA.

To understand the overall daily potential for power savings, we show the time-weighted
average power consumption (“Diurnal”) using the QPS variations shown in Figure 9.1.
Once again, only scaling is able to achieve a power consumption at or better than energy
proportional operation for a 2x or greater latency increase. This result supports our claim
that OLDI services can achieve energy-proportionality only with coordinated, full-system
scaling active low-power modes; other power management techniques simply do not pro-
vide a suitable power-latency tradeoff for the operating regions of this workload class.

115

CHAPTER 10

Architecting Cost-Effective Data Center Memcached
Systems

In this chapter, we examine the architecture of both an individual memcached server
and an entire cluster to determine how to design the most cost-effective cluster as a function
of the cluster’s workload and scale. In doing so, we discover stark inefficiencies in modern
systems that hamper memcached performance. We develop a load-testing methodology
and infrastructure to allow us to reproduce precisely-controlled object size, popularity, and
load distributions to mimic the traffic a memcached server receives from a large client
cluster. Furthermore, we develop a memcached benchmark suite that captures a range
of use cases modeled after popular sites using data sets captured off the web. We then
carry out an extensive measurement study using performance counters and profiling tools to
investigate the microarchitectural and system-level behavior of each memcached use case
across two system and three network interface designs to shed light on system bottlenecks.
In most cases, a memcached server is unable to saturate available network bandwidth due
to a range of software and hardware inefficiencies.

We categorize these inefficiencies in Figure 10.1, which we use to structure the first
part of our study. This figure demonstrates memcached’s throughput scaling with respect
to core count for fixed-size objects. If this server could saturate its network bandwidth ca-
pacity, it would be able to service just over one million requests per second (“Theoretical
1GbE”). However, our measurements of a high-performance Xeon server (“Base System”)
fall short of this throughput by nearly an order of magnitude. There are two causes of this
performance gap: (1) memcached does not scale well with core count on current systems
and (2) modern processor microarchitectures perform poorly on memcached, primarily
(and perhaps surprisingly) due to poor front-end performance. We identify and quantify
the three components of non-scalability: a lack of load-balancing hardware support in the
network interface controller (NIC) (“NIC Scalability”), lock contention in the memcached

116

1 2 3 4 5 6
Cores

200k

400k

600k

800k

1M

Th
ro

ug
hp

ut
(R

eq
ue

st
s

pe
rs

ec
on

d)

Base System

NIC Scalability

Memcached Scalability

Kernel Scalability

Architecture Inefficiency

Theoretical 1GbE

Figure 10.1: Memcached performance decomposition. A Xeon-class server (“Base Sys-
tem”) can only achieve 15% of the throughput potential of a 1GbE NIC and does not make
good use of additional cores. This figure enumerates the factors preventing memcached
from saturating a 1GbE link when caching 128-byte objects. Advanced NIC features (dis-
cussed in Section 10.3.3) double achievable throughput (“NIC Scalability”). Resolving
userspace contention (e.g., locks within memcached) improves throughput another 75%.
Improving kernel scalability could enable another 75% gain. The remaining gap between
linear scaling (w.r.t. core count) and the theoretical 1GbE bandwidth arises from the inef-
ficiency of modern server CPU architectures when executing TCP/IP-intensive workloads,
which we explore in Section 10.3.1. Note that, with all scalability bottlenecks removed, a
modest 6-core system falls just short of saturating a 1GbE link. Looking forward to 10GbE
NICs, saturating available network bandwidth would require nearly 64 Xeon-class cores or
vast improvements to TCP/IP processing efficiency.

application (“Memcached Scalability”), and bottlenecks in the Linux Kernel (“Kernel Scal-
ability”). A perfectly scalable system would be able to reach nearly 80% of theoretical
throughput, but still falls short due to microarchitectural inefficiencies (e.g., caching stalls,
VM translation overheads and unpredictable branches). This shortfall should be concerning
to architects—Xeon cores are quite capable, yet six of them cannot even saturate a 1GbE
link. Looking forward to the adoption of 10GbE, it would take 64 Xeon cores to saturate
available network bandwidth.

In a designing a memcached cluster, we find these deficiencies greatly influence how
architects should select server hardware to economically meet performance goals. The
second part of our study investigates the design and scaling of cost-optimal memcached
clusters. Based on our extensive characterization data, we create a design space optimiza-
tion framework and perform an exhaustive search over a large design space of cluster ar-
chitectures to reveal trends in how the cost-optimal server and cluster design varies across
workloads, latency targets and scale. Our study exposes an important challenge in pro-

117

visioning clusters—there are many locally optimal server configurations among the three
primary scaling dimensions (data set size, throughput and latency) precluding prescribing
a single server configuration for all clusters.

From our single-server characterization and cluster-level study, we highlight our central
observations:

Modern processor microarchitectures perform poorly for memcached and suffer
from numerous frontend stalls. We find that processor cycles per instruction (CPI) can
be as poor as 8 for Atom and 2 for Xeon cores. Frequent trips into the TCP/IP stack,
kernel, and library code are characterized by poor instruction supply due to ICache misses,
virtual memory (VM) translation overheads and branch unpredictability. ICache and ITLB
performance is often an order of magnitude worse relative to benchmarks commonly used
for processor design. Furthermore, large last-level caches seem to provide little benefit
except to bolster instruction supply.

High performance high-core-count systems are not cost effective because of memcached’s
non-scalability. Due to bottlenecks in the memcached application, the Linux kernel and
networking hardware itself, additional cores provide marginal gains in throughput. While
many workloads benefit from amortizing server costs with multiple cores, our study sug-
gests higher-core-count server models often do not pay for themselves. Instead, configura-
tions with a modest number of cores tend to be favored. Contrary to intuition, using these
system with less RAM per server allows higher performance operation.

Networking hardware features are as important for memcached as raw band-
width and their performance benefits often justify their cost premium. As demon-
strated in Figure 10.1, memcached servers often cannot even saturate a 1GbE NIC. How-
ever, a number of premium features such as Receive-side Scaling, more commonly found
in premium and 10GbE NICs, provide a significant performance gain. We find that this
benefit is significant enough to justify their steep price premium in a number of scenarios.

Cluster-level performance objective (size, throughput and latency) impose con-
straints that shift the economically optimal server design. While there are clear trends
(e.g., memcached favors low core counts), there is no dominant server configuration for
all performance goals. Tighter latency constraints in particular necessitate premium com-
ponents such as Xeon-class processors and enterprise-grade NICs. These shifts make pro-
visioning an optimal cluster difficult as these objectives can grow unpredictably and in
different proportions.

118

10.1 Background

We first briefly describe the operation of memcached clusters and discuss related
work.

10.1.1 Memcached Clusters

A memcached cluster is a high-performance distributed key-value store, implemented
through a distributed hash table. Typically, memcached is used as a caching layer to
reduce response time for a slower backing store (e.g., an SQL DBMS) that provides more
robust availability and durability guarantees. The strength of the memcached architecture
lies in its simplicity—individual servers are independent and do not communicate with one
another or the backing store; rather, the cache is managed entirely by library software on
the clients. Simplicity enables the scalability of memcached clusters to high aggregate
capacity and throughput, and allows clusters to achieve impressive response times below
500 µs.

Memcached servers manage key-value pairs (a.k.a. objects). Under normal usage,
each memcached server is a best-effort store, and will discard objects under an LRU
replacement scheme as main memory capacity is exhausted. Keys may be at most 250 bytes
in length, while the stored values must be 1 MB or smaller. Because typical object sizes
are small, servers can cache many objects; for example given 4 KB values, a server with
16 GB of DRAM could cache nearly 4 million objects.

Clients access data stored in the memcached cluster over the network, maintaining
an independent connection to each server. Though memcached provides both TCP and
UDP interfaces, anecdotal evidence suggests that most large-scale installations use TCP.
The memcached interface comprises a small number of simple key-value operations, the
most important of which are described below.

Figure 10.2 (a) shows a typical client-server data store without memcached. A client
asks the backing store for the value corresponding to a key (e.g., the friend list for a given
user-id). Using robust, yet heavyweight systems such as a SQL DBMS, such requests may
take hundreds of milliseconds to complete.
Get. Figure 10.2 (b) illustrates how memcached improves data access performance in the
case of a cache hit. The client hashes a key to identify the (single) memcached server
responsible for that key, and sends it a “get” request. Typically, clients use consistent

hashing (similar to the method in [63]), providing a key-to-node hash that load-balances
and can adapt to node insertions and deletions while ensuring that each key maps to only
a single server at any time. If available, the server returns the corresponding value within

119

App Key: A

Latency: ~10-100 ms

Client Backend
(e.g., SQL Server)

App

Key: A

Latency: ~200-500 us

Client

Backend
(e.g., SQL Server)

Memcached

Keys:
A,D,G

Keys:
B,E,H

Keys:
C,F,I

Hash
App

Key: A

Latency:
 ~200-500 us

Client
Backend

(e.g., SQL Server)

Hash

a) Traditional Topology b) Memcached Get Request (hit) c) Memcached Get Request (miss)

Keys:
A,B,C
D,E,F
G,H,I
J,L,K

Miss

Keys:
A,B,C
D,E,F
G,H,I
J,L,K

Keys:
A,B,C
D,E,F
G,H,I
J,L,K

Hit

Latency: 10-100ms

(1)

(2)

Key: A

Server 1

Server 2

Server 3

Memcached

Keys:
A,D,G

Keys:
B,E,H

Keys:
C,F,I

Server 1

Server 2

Server 3

Figure 10.2: Example cluster operations. (a) illustrates data access without memcached.
Requests often take tens to hundreds of milliseconds. (b) illustrates a memcached hit. The
client hashes the key to determine which memcached server to contact, and sends it the
requested key. The server responds within hundreds of microseconds. (c) illustrates a cache
miss. Once the memcached server reports a miss, the client must fall back to accessing the
backend.

hundreds of microseconds. Figure 10.2 (c) illustrates a cache miss. The server will quickly
indicate that the object was not found and the client must then access the backing store.
Note that the hash function ensures that it is unnecessary to consult any other memcached
servers.
Set. A client may add an object to the cache via a “set” request. The key is hashed to
identify the correct server, and the object is stored in DRAM. If no space is available at the
server, another key is evicted to make room via LRU replacement.
Multiget. Often, applications wish to access numerous objects at once (e.g., retrieving the
status of all a user’s friends in a social networking application). To minimize the network
overheads of requesting many objects and simplify the memcached library interface, the
client software may pass the memcached client library a list of keys to retrieve. The
library then hashes each key, sorts them according to their destination server, and sends
each server a single “multiget” request for the objects it might hold. These multigets are
then processed in parallel (both within and across servers). Returned values (and miss
notifications) are provided in a single response packet per server and the aggregate list is
returned to the client software after the last response is received.

10.2 Methodology

We next describe our methodology for stress-testing memcached performance and our
efforts to develop workloads that approximate real-world memcached deployments. Pre-
vious studies of memcached have used simple load testing tools, such as memblaster or
memslap. As our results will demonstrate, the manner in which memcached is loaded
drastically alters its behavior and hardware requirements. In particular, we find that the
typical object size has a large impact on system behavior. Existing load testing tools use

120

32B 1KB 32KB 1MB
Object Size

0%

20%

40%

60%

80%

100%

C
D

F

FixedSize

ImgPreview

MicroBlog/FriendFeed

Wiki

100 101 102 103 104

Object Rank

10-6

10-5

10-4

10-3

10-2

10-1

100

P
D

F

ImgPreview

MicroBlog

Wiki

Name Single/Multi-get % Writes Object Size Type
Avg. Std. Dev. Min Max

FixedSize Single-get 0% 128 B 0 B 128 B 128 B Plain Text

MicroBlog Single-get 20% 1 KB 0.26 KB 0.56 KB 2.7 KB Plain Text

Wiki Single-get 1% 2.8 KB 10.4 KB 0.30 KB 1017 KB HTML

ImgPreview Single-get 0% 25 KB 12.4 KB 4 KB 908 KB JPEG Images

FriendFeed Multi-get 5% 1 KB 0.26 KB 0.56 KB 2.7 KB Plain Text

Figure 10.3: Workload characteristics. We construct a set of workloads to expose the broad
range of memcached behavior. The object size distributions of the workloads differ sub-
stantially. Our measurements show that popularity for most web objects follows a zipf-like
distribution, although the exact slope may vary.

either a fixed or uniform object size distribution and a uniform popularity distribution. Our
measurements using real objects and popularity statistics (captured from public web sites
known to use memcached) suggest simple synthetic load generators can yield misleading
conclusions.

10.2.1 Understanding memcached as a workload

Though its interface is quite simple, memcached behavior can vary considerably based
on the size and access frequency of the objects it stores (the actual values are opaque byte
strings and do not affect behavior). Hence, we have designed a suite of five memcached
workloads, each based on usage scenarios from Web 2.0 and social networking applica-
tions, that capture a wide range of behavior. We emphasize that our goal is not to replicate
the precise workloads of existing web sites, but rather to create a set of easy-to-understand
yet realistic micro-benchmarks that expose memcached performance sensitivity.

A workload is defined by an object size distribution, popularity distribution, fraction
of set requests, and whether or not multi-get requests are used. Summary statistics for
each of our workloads are provided in Figure 10.3. The measured popularity distributions
are shown in Figure 10.3 (probability as a function of rank). The zipf-like distribution is
consistent with a previous study by Cha et al [50].

121

FixedSize. The “FixedSize” workload is the simplest, using a fixed object size of 128 B
and uniform popularity distribution. We include this workload because small objects place
the greatest stress on memcached performance; anecdotal evidence suggests production
clusters frequently cache numerous small objects.
MicroBlog. Our “MicroBlog” workload represents a number of social networking sites that
distribute brief user status updates. We base the object size and popularity distribution on a
sample of “tweets” (brief messages shared between Twitter users) collected from Twitter.
The text of a tweet is restricted to 140 characters, however, associated meta-data brings the
average object size to 1KB with little variance. Even the largest tweet objects are under
2.5KB in size. As we will show, the small, tight object size distribution leads this workload
to favor architectures with lower total network bandwidth but higher packet processing
rates than other workloads.
Wiki. Our “Wiki” workload caches articles from Wikipedia.org [14]. We use the entire
Wikipedia database, which has over 10 million entries. Each object represents an individual
article in HTML format. Articles are relatively small, 2.8 KB on average, but have a notable
variance because some articles have significantly more text. This workload exhibits the
highest normalized object size variance (relative to the mean) of any of our workloads.
Object popularity is derived from the page view count for each article.
ImgPreview. The “ImgPreview” workload represents photo objects used in photo-sharing
sites. We collect a sample of 873 thousand photos and associated view counts from Flickr
[9]. In particular, Flickr provides a set of “interesting” photos every day; we collect these
photos because they are likely to be accessed frequently. Photo sharing sites often offer
the same images in multiple resolutions. In a typical web interaction, a user will view
many low-resolution thumbnails before accessing a high-resolution image. We collect a
sample of these thumbnails, which are 25 KB, on average, in size. We focus on thumbnails
because larger files (e.g., hi-resolution images) are typically served from data stores other
than memcached (e.g., Facebook’s Haystack system [35]).
FriendFeed. We construct the “FriendFeed” workload to understand the implications of
heavy use of multi-get requests. Facebook has disclosed that multi-gets play a central role
in its use of memcached [71]. This workload seeks to emulate the requests required to
construct a user’s Facebook Wall, a list of a user’s friends’ most recent posts and activity.
Because Facebook prohibits crawling their network, we reuse the distributions from our
MicroBlog workload, as we believe Facebook status updates and tweets have similar size
and popularity characteristics. We assume a typical Facebook user has 100 friends, each
with numerous recent posts and activity. Hence, our workload issues multi-get requests of
O(100) keys.

122

Xeon Atom

System Dell R610 Supermicro 5015A-EHF
Processor 1x 2.25 GHz 6-core Xeon (Westmere L5640) 1.6 Ghz Atom D510 Dual-core 2x SMT

12 MB L3 Cache 1 MB L2 Cache

DRAM 3x 4GB DDR3-1066 2x 2GB DDR2-800 SDRAM

Commodity Realtek RTL8111D Gigabit –

Enterprise Broadcom NetXtreme II Gigabit Intel 82574L Gigabit

10GbE Intel X520-T2 10GbE NIC Intel X520-T2 10GbE NIC

Table 10.1: System under test (SUT).

10.2.2 Load Testing Framework

We next describe the load-testing infrastructure we developed to investigate the perfor-
mance of a memcached server under load from a large client cluster. Because memcached
servers do not interact, we can characterize the performance of only a single server and use
this data to derive cluster scaling effects. To be able to fully saturate the target server, we
employ several load generator clients that each emulate 100 memcached clients via sep-
arate TCP/IP connections. Throughout our experiments, we explore the tradeoff between
server throughput and response time by varying the request injection rate on our load gen-
erator clients.

The load-testing infrastructure first populates and then accesses the memcached server
according to the specific workload’s object size and popularity distributions described in
Section 10.2.1. Our implementation leverages the same ultra-fast, asynchronous libevent
framework [10] as memcached. To maximize efficiency, we use memcached’s binary
network protocol [11]. Furthermore, we disable Nagle’s algorithm, which causes packet
buffering, to minimize network latency [131].

The primary objective of our investigation is to determine which aspects of system
architecture impact memcached performance. Accordingly, we intentionally decouple our
study from network switch saturation, since many other studies have investigated efficient
techniques to avoid switch over-subscription in data center networks [21, 24, 79]. All
experiments use dedicated switches or cross-over links between the load generators and
test servers.

10.2.3 Systems under tests

As a key focus of our work is to determine what kind of server is most cost-effective
when building a memcached cluster of a given scale (in terms of total capacity and desired
throughput). Hence, we study two drastically different server systems, a high-end Xeon-
based server and a low-cost Atom-based server, and three different classes of network inter-

123

face cards (NIC), spanning low-cost consumer-grade, manufacturer-installed, and high-end
10GbE NICs. The details of each system are shown in Table 10.1. By exchanging NICs
and selectively disabling cores, we evaluate a total of 21 different system configurations.

The Xeon-class system, from Dell, is typical of the memcached servers described in
media reports. Though our test system includes only 12GB of RAM (lower than is typically
reported), we have confirmed that memory capacity has no direct effect on memcached
latency or throughput. (Note that, as we explore in detail later, memory capacity per node
indirectly affects performance because the share of a cluster’s overall load directed to a
particular server is proportional to the server’s share of the overall cluster memory capac-
ity). The Atom system represents a low-cost alternative; we include it because several
recent studies have suggested the use of “wimpy” cores for data center workloads [167].
We study several NICs to demonstrate that the feature set of the NIC and driver, rather
than the theoretical peak network bandwidth, primarily affect memcached performance,
particularly for small object sizes.

All systems run Ubuntu 11.04 (2.6.38 kernel) with memcached 1.4.5. We gather uti-
lization, response time, bandwidth, and microarchitectural statistics using our load genera-
tors, sysstat [18], and perf [15].

10.3 Single-server Characterization

In this section, we characterize the microarchitectural behavior of a single memcached
server to show how the bottlenecks identified in Figure 10.1 prevent it from saturating the
network link. Our single-server study demonstrates that:

• Modern processors perform poorly for memcached, primarily due to poor front-
end performance. We find that memcached exhibits exceedingly poor CPIs on
modern cores, as seen in Figure 10.4. The most critical bottlenecks lie in the proces-
sor front-end, though address translation misses also play a role. Larger L2 and L3
caches do not provide much benefit, nor would additional memory bandwidth. We
explore microarchitectural bottlenecks in Section 10.3.1.

• There are significant scalability bottlenecks in memcached, the Linux kernel
and NIC hardware that prevent effective multicore scaling. Adding additional
cores to a server provides little additional throughput, even when network bandwidth
is underutilized. We explore multicore scalability in greater detail in Section 10.3.2.

• Selecting the correct NIC hardware can be as important as selecting the right
CPU—networking quality (i.e., NIC hardware features) is often more important

124

Xeon Atom0

2

4

6

8

10

12

14

C
yc

le
s

pe
rI

ns
tr

uc
tio

n
(C

P
I) FixedSize

MicroBlog
Wiki
ImgPreview
FriendFeed

Figure 10.4: Microarchitectural inefficiency with Memcached. Modern processors exhibit
unusually high CPI for Xeon and Atom-based servers. Xeon-class systems operate at less
than one eighth of their theoretical instruction throughput. Atom-class systems fare even
worse, providing as little as 1/16th of the theoretical instruction throughput. Compared to
other workloads (e.g., SPEC CPU), these CPIs are quite high and demonstrate that current
microarchitectures are a poor match for memcached. We identify specific microarchitec-
tural hurdles in 10.3.1.

than quantity (i.e., network bandwidth). Our measurements demonstrate that NIC
hardware plays an important role in increasing efficiency and scalability. NICs with
the same theoretical bandwidth exhibit drastically differing performance. Often pay-
ing a premium for a better NIC pays for itself in increased performance due to more
efficient packet processing. We identify critical NIC features in Section 10.3.3.

10.3.1 Microarchitecural Inefficiency

We first investigate what microarchitectural bottlenecks cause the poor CPI we observe
in memcached. We gather performance counter data for a variety of microarchitectural
structures on both Atom and Xeon cores. We report results for each workload averaged
across load levels, with error bars indicating one standard deviation from the mean.

Broadly, our results suggest that modern processors (whether Xeon-class or Atom-
class) are ill-suited for memcached: Xeons achieve only one eighth and Atoms only
one sixteenth of their theoretical peak instruction throughput. Prior to undertaking this
microarchitectural study, our expectation was that memcached might be memory band-
width bound, with performance limited primarily by the speed of copying data to outgoing
network packets. In fact, measuring bandwidth to main memory, we find it is massively
underutilized, always falling under 15% of max throughput and often much less (e.g., 5%
for MicroBlog).

Surprisingly, the most significant bottlenecks lie in the processor front-end, with poor
instruction cache and branch predictor performance. Neither increased memory bandwidth,

125

Xeon
(32KB)

Atom
(32KB)

0

20

40

60

80

100

120

140

160

M
is

se
s

pe
rK

ilo
-In

st
ru

ct
io

ns
(m

pk
i)

FixedSize
MicroBlog
Wiki
ImgPreview
FriendFeed

(a) L1 ICache MPKI

Xeon
(32KB)

Atom
(24KB)

0

20

40

60

80

100

120

140

160

M
is

se
s

pe
r1

00
0

In
st

ru
ct

io
ns

FixedSize
MicroBlog
Wiki
ImgPreview
FriendFeed

(b) L1 DCache MPKI

Xeon
(256KB)

Atom
(1MB)

0

20

40

60

80

100

120

140

160

M
is

se
s

pe
rK

ilo
-In

st
ru

ct
io

ns
(m

pk
i)

FixedSize
MicroBlog
Wiki
ImgPreview
FriendFeed

(c) L2 MPKI

Xeon
(32KB)

Atom
(32KB)

0

20

40

60

80

100

M
is

se
s

ra
te

(%
)

FixedSize
MicroBlog
Wiki
ImgPreview
FriendFeed

(d) L1 ICache miss rate

Xeon
(32KB)

Atom
(24KB)

0

20

40

60

80

100

M
is

se
s

ra
te

(%
)

FixedSize
MicroBlog
Wiki
ImgPreview
FriendFeed

(e) L1 DCache miss rate

Xeon
(256KB)

Atom
(1MB)

0

20

40

60

80

100

M
is

se
s

ra
te

(%
)

FixedSize
MicroBlog
Wiki
ImgPreview
FriendFeed

(f) L2 miss rate

Figure 10.5: Caching behavior. Memcached performance suffers from an inordinate number
of ICache misses (over an order of magnitude worse than SPEC benchmarks). L1 data
caching performs significantly better. L2 caching performs moderately well, although many
of the hits are to service instructions. The Xeon also has a 12MB L3 (data not shown), but
it provides little benefit, exhibiting miss rates as high as 95%.

nor larger data caches are likely to improve performance. Future architectures will need to
address these bottlenecks to achieve near-wire-speed processing rates. We address caching,
address translation, and branch prediction behavior in greater detail.

Caching bottlenecks. Figure 10.5 presents cache performance metrics. Our most surpris-
ing finding is that the instruction cache performance of memcached is drastically worse
than typical workloads. A typical SPEC CPU 2006 integer benchmark incurs at most ten
misses per thousand instructions. In contrast, Figure 10.5(a) reveals rates up to 15x worse.
Our result is surprising because memcached itself comprises little code, fewer than 10,000
source lines. The poor instruction behavior is due to the massive footprint of the Linux
kernel—specifically the TCP/IP stack.

L1 data cache behavior is more typical of other workload classes (e.g., SPEC). There are
numerous compact but hot data structures accessed as a packet traverses the TCP/IP stack
that can be effectively cached in L1. L2 caches are moderately effective, missing between
15-25% of the time as seen in Figure 10.5(f). However, the majority of L2 accesses are

126

Xeon
(128 Entries)

Atom
(16 Entries)

0

5

10

15

20

25

30

35

40

45

M
is

se
s

pe
rK

ilo
-In

st
ru

ct
io

ns
(m

pk
i)

FixedSize
MicroBlog
Wiki
ImgPreview
FriendFeed

(a) Instruction TLB MPKI

Xeon
(128 Entries)

Atom
(16 Entries)

0

10

20

30

40

50

60

70

M
is

se
s

pe
rK

ilo
-In

st
ru

ct
io

ns
(m

pk
i)

FixedSize
MicroBlog
Wiki
ImgPreview
FriendFeed

(b) Data TLB MPKI

Figure 10.6: Virtual memory behavior. The Atom microarchitecture suffer from numerous
translation misses due to its ITLB mere 16 entries. DTLB misses fall within a nominal
range for both processor classes.

for instructions that do not fit in the L1 instruction cache; if these are removed, the L2 data
cache miss rates are substantially higher, in excess of 50%. Unlike the Atom, the Xeon
processor also has a large L3 cache. We find the L3 to be highly inefficient, with miss rates
from 60% to nearly 95% (we omit graphs due to space constraints), a finding that suggests
that increasing data cache sizes will yield little gain.

We observe roughly twice as many instruction cache misses in Xeon than Atom, despite
similar instruction cache organizations. This disparity arises because the Atom CPU is
slower relative to the NIC than the Xeon, which, for a given packet arrival rate, results
in more packet batching at the NIC before delivery to the kernel. Processing packets in
batches improves kernel code locality.

Overall, our analysis suggests that memcached requires far more instruction cache
capacity than cores currently provide (primarily to hold the OS networking stack), but will
not gain from larger data caches.

Virtual memory translation bottlenecks. In most applications, TLB misses are rare
events and the overhead of virtual memory is hidden. A recent characterization of the
Parsec Benchmark suite [38] finds that ITLB miss rates typically occur at a rate of 3x10−4

MKPI to 1 MPKI. DTLB miss rates fall generally in the range of 1x10−2 to 10 MPKI, but
can be as high as 140 MKPI. In Figure 10.6(a) and Figure 10.6(b), we see we see compa-
rable TLB behavior for Xeon, but find that Atom provides an insufficient ITLB (16 entries
vs. 128 for Xeon), which contributes significantly to its instruction fetch stalls. DTLB
pressure is not a problem for either class of core.

Branch prediction bottlenecks. Figure 10.7 demonstrates the front-end bottlenecks seen

127

Xeon Atom0

2

4

6

8

10

12

14

M
is

pr
ed

ic
tio

n
R

at
e

(%
)

FixedSize
MicroBlog
Wiki
ImgPreview
FriendFeed

Function %Time Misprediction Rate

tcp sendmsg (k) 2.12% 10.74%
copy user generic string (k) 1.81% 10.97%
pthread mutex lock 1.04% 37.56%
event handler 0.82% 13.68%
memcached main 0.77% 18.68%
tcp clean rtx queue (k) 0.77% 15.23%
kmem cache alloc node (k) 0.72% 11.43%
dev queue xmit (k) 0.71% 12.19%
e1000 clean rx irq (k) 0.71% 18.27%
sys sendmsg (k) 0.63% 12.96%

Figure 10.7: Branch prediction. The tables list the top ten functions with misprediction >
10% out of fifty that consume the most execution time for the Microblog workload running
on the Atom system.

in the instruction caches also extend to the branch predictor. Despite numerous bulk mem-
ory copies with tight, predictable loops, branch misprediction rates are significant, particu-
larly on the Atom, which has a considerably less capable branch predictor than Xeon. As
seen for cache locality, the batching effect of multiget requests in FriendFeed also leads to
better branch predictability.

The table in Figure 10.7 lists the top functions by execution time that also have mispre-
diction rate of > 10%. Many of the memory copies that dominate the total execution time
are not present in the list. While they have many branches, they’re highly predictable with
mispredict rates of < 1%.

The entire networking stack is well represented in the table from the entry into the ker-
nel from userspace sys sendmsg, through the tcp stack tcp *, the device layer dev *,
and finally the NIC driver e1000 *. The networking stack has significant control flow
because of error and stateful protocol requirements that must be met. In addition the ker-
nel memory management functions are mainly utilized in this system to allocate and free
buffers for network packets.

Usercode also contains some highly unpredictable branches. Several synchronization
functions such as pthread mutex lock figure prominently in the time breakdown, and
have poor branch predictability because branch outcomes depend on synchronization races
for contended locks. Other memcached functions contain case statements that change the
behavior based on the current connection state or request which are difficult to predict.

10.3.2 Multicore non-scalability

We next examine the scalability of memcached with the number of cores, shown in
Figure 10.8. For each workload and core type, we show relative throughput normalized to

128

1 2 4 6 1 2 4 6 1 2 4 6 1 2 4 6 1 2 4 6

Cores
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
el

at
iv

e
Th

ro
ug

hp
ut

FixedSize
MicroBlog
Wiki
ImgPreview
FriendFeed

(a) Xeon Scaling

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

Cores
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
el

at
iv

e
Th

ro
ug

hp
ut

FixedSize
MicroBlog
Wiki
ImgPreview
FriendFeed

(b) Atom Scaling

Figure 10.8: Memached’s lack of scalability.

the single-core case. In each experiment, we tune the offered load until the 95th-percentile
response time is 5ms so that all configurations can meet the target, and then report the
normalized throughput.

Our central observation is that memcached performance scalability on multiple cores
is far from linear. In general, adding a second core helps. However, additional cores
provide rapidly diminishing returns (or even slowdowns in some cases). These results are
surprising because none of these configurations saturate the 10GbE network interface, and
hence are not I/O bound in the conventional sense. Rather, the scalability limit arises due
to synchronization stalls and load imbalance in both memcached and the kernel. The NIC
also contributes to load imbalance among cores, as it may not always balance interrupt
delivery.

Memcached uses nine different classes of lock which guard access to the connection
queue, cache operations, statistics, and others. We use SystemTap [19] to inspect these
locks and found that only the cache operations lock, which guards access and updates to
the hash table, is highly contended and that contention increases with the square of the
request rate. For 150,000 requests-per-second, the lock is contended about 55,000 times
per second for an average time of 11µs. While difficult to do, some type of finer grained
locking would greatly improve the scalability of memcached.

While there has been some recent work to improve Linux scalability [46], widely used
distributions still suffer from scalability bottlenecks. Improving the core-scaling behavior
of memcachedwill require effort at the application, kernel, and even NIC hardware layers.

10.3.3 I/O subsystem: Quality vs. quantity

While it may seem obvious that memcached performance depends on networking
performance, it is somewhat surprising that the quality of a NIC (i.e., its efficiency on a

129

C
om

m
od

ity
En

te
rp

ris
e

+M
ul

tiQ
ue

ue
10

G
bE

+M
ul

ti-
Q

ue
ue

C
om

m
od

ity
En

te
rp

ris
e

+M
ul

tiQ
ue

ue
10

G
bE

+M
ul

ti-
Q

ue
ue

C
om

m
od

ity
En

te
rp

ris
e

+M
ul

tiQ
ue

ue
10

G
bE

+M
ul

ti-
Q

ue
ue

C
om

m
od

ity
En

te
rp

ris
e

+M
ul

tiQ
ue

ue
10

G
bE

+M
ul

ti-
Q

ue
ue

C
om

m
od

ity
En

te
rp

ris
e

+M
ul

tiQ
ue

ue
10

G
bE

+M
ul

ti-
Q

ue
ue

NIC Configuration

0
1
2
3
4
5
6
7
8
9

N
or

m
al

iz
ed

Th
ro

ug
hp

ut
(R

eq
ue

st
s

pe
rs

ec
on

d)

18x18x 19x22x

FixedSize
MicroBlog
Wiki
ImgPreview
FriendFeed

Commodity Enterprise 10GbE

Approximate Price $10 $145 $850

Segment Offload1 X X X
Multi-Queuea X X X
Software Batch X X X
Hardware Batch X X X

Figure 10.9: NIC features. NICs have a number of key features that distinguish their perfor-
mance beyond pure bandwidth. The data presented is the maximum achievable throughput
with the various NICs and a latency constraint of 5ms with all 6-cores of the Xeon enabled.
We demonstrate the performance of each of two classes of 1GbE NIC (Commodity and En-
terprise) and a 10GbE model. We also selectively disable and enable multiple-queues(MQ).
Note that adding these features can be expensive as is apparent with the switch between
commodity and enterprise. However, these features can be quite powerful, for example
with FixedSize Enterprise and MQ provide over a 2.5x performance boost. Wiki and Img-
Preview suffer from being network bandwidth bound and get inordinate gains from the
switch to 10GbE alone.

per-packet basis) is more important than raw bandwidth. We find that the choice of NIC is
critical—not all NICs are created equal. We now explain the features that differentiate NIC
performance and quantify their benefit.

There are a variety of features that advanced NICs can support, listed in Figure 10.9.
Segment offloading allows the driver to provide the NIC a payload that is larger than can be
sent on the wire. The NIC will partition and transmit the payload across multiple pack-
ets, saving the CPU time of generating additional packet headers. Software batching,
also called Generic Receive Offload (GRO), batches multiple smaller requests between
the driver and the TCP stack, which ultimately reduces TCP stack invocations, reducing
processing time. These features coupled with the more optimized interface between the
driver and device (many fewer programmed I/O requests (PIO)) in the Enterprise NIC re-
sult in a 70% - 110% performance increase in all workloads except Wikipedia as can be
seen in Figure 10.9.

130

Multiple-queue(MQ) support allows the NIC to communicate with a driver running
on more than one core. The receive portion of this, Receiver-Side-Scaling (RSS), hashes
packet header fields in the NIC to choose among the available receive queues, each as-
signed to a different core. The hashing ensures that a single core processes all packets
received on a particular flow, improving locality. Transmit scaling allows multiple CPUs to
enqueue packets for transmission simultaneously without the need for locks. For the Fixed-
Size workload, an impressive performance improvement of 47% is achieved with multiple
queues. The gains are so pronounced in this workload because its average packet size is the
smallest. Most of the other workloads see little gain at 1Gb/s line speeds because a single
CPU core is able to keep up with the resulting request rate, because of the larger average
packet size.

The 10GbE and 10GbE +MultQueue bars in each cluster show the effectiveness of us-
ing a 10Gb/s NIC (with and without multiple-queues, respectively). The impact of greater
network bandwidth, 10GbE bar, varies drastically. For workloads with large average object
size (Wiki and ImgPreview), gains are up to 22x2. Unlike the Enterprise NIC, the 10GbE
NIC supports hardware batching, or Receiver Side Coalescing, which performs similar
similar batching in hardware. Enabling multi-queue support further increases these gains.
Microblog and FriendFeed workloads are able to utilize 1.4Gbps, 2.2Gbps respectively,
only a small fraction of the bandwidth available.

10.4 Designing cost-optimal memcached clusters

In this section we explore how internet service architects should best design memcached
clusters to achieve the lowest cost for given performance objectives. We find that memcached’s
unique set of microarchitectural deficiencies and scalability bottlenecks make the space of
cost-optimal designs complex with multiple local optima. To navigate this space, we con-
struct a design space optimization framework and then discuss the insights we have gained
from the decisions made by the optimization. This study exposes a number of surprising
trends including that high-performance high-core-count systems are economically ineffec-
tive and that it is sometimes necessary to reduce RAM per server to scale performance.

10.4.1 Design Space Exploration

Using the empirically measured performance data from Section 10.3, we perform an
exhaustive design space exploration to find the optimally cost-efficient cluster design given

2Both ports of the 10GbE NIC are utilized for testing and thus the maximum bandwidth from the 10Gb
NIC is actually 20Gb

131

a set of design constraints. An architect must consider three primary factors in designing
a memcached cluster: the target request latency, the aggregate cluster bandwidth and the
required memcache hit rate. The desired cache hit rate determines the required DRAM
capacity of the cluster based on the size of the data set and the shape of the key popu-
larity distribution. We express a desired latency constraint in terms of the 95th-percentile
response latency across all servers. Whereas the latency requirements of memcached de-
ployments likely fall within a fixed, narrow range (e.g., 200µs to 5ms), as a service grows,
the required data set size and throughput will increase in a non-trivial manner depending
on user activity.

Figure 10.10 illustrates how the optimal server configuration changes as the cluster re-
quirements vary. Initially, the needs of a memcached cluster may be small enough to be
satisfied by a single machine with a simple Atom-like processor. If data set size is scaled
(while holding throughput targets fixed), DRAM can simply be added to this server (cur-
rent Atom-like machines cannot support large DRAM capacities; we remove this limitation
for the sake of the study). At some point, the per-server DRAM capacity will cease to in-
crease because it is more economical to purchase a cluster of machines (DRAM density
costs increase non-linearly). Alternatively, if the throughput target is increased (holding
data set size fixed), one may first scale-up the capabilities of a single machine by using a
more powerful processor (e.g., a Xeon) or adding more advanced NIC hardware. However,
since the increased cost of better hardware will quickly overtake the increased throughput,
a cluster-based solution will again prevail. Realistically, the data set size and through-
put requirements will scale together in a non-trivial manner necessitating an optimization
framework.

10.4.2 Understand memcached cluster economics

Our design exploration considers a number of server designs over a large range of
processor performance, memory capacity, I/O performance and price. Server prices are
determined by current market prices3; the cheapest configuration is less than $200 (a two-
core Atom with 6GB RAM and 1GbE NIC) and the most expensive is over $4000 (a six-
core Xeon with 48GB RAM and 10GbE NIC). We summarize our economic assumptions
in Table 10.2. Although the exact pricing of these components will likely change over
time, we believe that the insights we garner from this study transcend current pricing; the
reasons for changing architectures will remain the same even if the absolute performance
points shift.

3We estimated server prices from popular online vendors at the time of the study.

132

Cluster Throughput

C
lu

st
er

 D
R

A
M

 C
ap

ac
ity

Scale-up processor to
meet increased

throughput

Processing requirement
exceeds capability of a

single machine

Cost-performance optimization required

Scale-up DRAM capacity

DRAM capacity
exceeds

capability of a
single machine

100K 300K 1M

32GB

128GB

1TB

DRAM-bound Designs

Throughput-bound Designs

Latency

Figure 10.10: Scaling a memcached cluster. As a service grows, the data set size and
throughput requirements of memcached will also grow. Reasoning about each scaling
dimension in isolation is straight-forward. As data set size grows (while throughput tar-
gets remain fixed), the cost-optimal system will use an inexpensive processor with as much
RAM per system as is economical. Conversely, when scaling throughput in isolation,
servers will first leverage more capable processors (and possibly NICs) before expanding
the cluster. However, an actual internet service will grow along both axes in a manner
unique to each service. We create an optimization framework to explore the optimal sys-
tem configuration for various points in this deign space and find that cost-optimal designs
tend to bifurcate into clusters provisioned for capacity (“DRAM-bound”) and for perfor-
mance (“Throughput-bound”).

We find that the cost-optimal design space is complex and it is helfpul to explain a
few aspects of why certain designs are favored. In Figure 10.11 (a) and (b) we show
how cost efficiency, expressed in throughput per dollar, changes as a function of 95th-
percentile latency target. For web services that are latency tolerant, Atom systems provide
the most cost-efficient solution. Above 1ms latency, these systems are nearly twice as cost
effective. However, many web services demand memcached latency in the range of 200µs
to 1ms. This space is not clearly dominated by one design, but generally favors 2-core Xeon
configurations. For the FriendFeed workload, we find that the premium 10GbE NIC pays
for itself. Most importantly, as the latency constraint of the system changes, the optimal
system configuration passes through many designs. The cost premium of reducing latency
is steep and non-linear.

Compared to a DBMS system, memcached costs are quite low. A highly-optimized
TPC-C deployment delivers less than 0.001 transactions per second per dollar [20]. Memcached
clusters are four orders of magnitude more cost efficient, which explains their popularity.

We demonstrate how a cluster scales up with respect to desired aggregate throughput in
Figure 10.11 (c). The number of required servers is the greater of (1) the number needed to

133

1GbE 10GbE

Base Machine 6GB 12GB 24GB 48GB 6GB 12GB 24GB 48GB

4-Core Atom
$199
$33.2/GB

$236
$19.7/GB

$410
$17.1/GB

$710
$14.8/GB

$1249
$208.2/GB

$1286
$107.2/GB

$1460
$60.8/GB

$1760
$36.7/GB

2-Core Xeon
$1418
$236.3/GB

$1455
$121.2/GB

$1629
$67.9/GB

$1929
$40.2/GB

$2468
$411.3/GB

$2505
$208.8/GB

$2679
$111.6/GB

$2979
$62.1/GB

4-Core Xeon
$1889
$314.8/GB

$1926
$160.5/GB

$2100
$87.5/GB

$2400
$50.0/GB

$2939
$489.8/GB

$2976
$248.0/GB

$3150
$131.2/GB

$3450
$71.9/GB

6-Core Xeon
$2489
$414.8/GB

$2526
$210.5/GB

$2700
$112.5/GB

$3000
$62.5/GB

$3539
$589.8/GB

$3576
$298.0/GB

$3750
$156.2/GB

$4050
$84.4/GB

Table 10.2: Server economics. We estimate server cost by first selecting a base system from
the desired kind and number of processor cores. Next, RAM and NIC are added to this
base system. The 10GbE NIC cost captures both the NIC itself and the increased cost of the
top-of-the-rack switch.

provision sufficient DRAM or (2) the number needed to achieve a given aggregate through-
put. We demarcate the regions in which a particular server configuration is optimal as the
target throughput scales. As throughput requirements grow, it generally becomes more
cost-effective to increase the number of servers and provision less DRAM in each, thus
reducing the fraction of cluster load each server must support.

10.4.3 Implications of the optimal design space

We highlight a number of interesting observations regarding optimal cluster configura-
tions. We do not have space to report every facet of our study, so we highlight the most
important insights we have gained.

Figure 10.12 illustrates the results of our study for each of our five workloads. Each
subfigure reports the optimal server configuration for a given latency and throughput target.
All results are for a cluster with an aggregate of 512GB of DRAM. We indicate which
server configuration tends to dominate in various regions of the optimization space. System
configurations are represented by color and DRAM configuration is annotated in regions of
dominance. We find that the regions favoring high-performance NICs are easily divisible
and are demarcated by a dotted line.

High-performance, high-core-count systems are economically unappealing because
of the poor scaling demonstrated in Section 4. Often, integrating more cores into a server
system is economically advantageous because workloads can scale throughput with core
counts and the non-processor components can be amortized. We find that the cost premium
of adding Xeons cores frequently does not pay for itself. In Figure 10.12 we find that the
6-core Xeon system is never preferred. Furthermore, the 4-core Atom and 2-core Xeon

134

125us 250us 500us 1ms 10ms
95th-percentile Latency Cutoff

0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
pe

rD
ol

la
r

2-Core Xeon
6-Core Xeon
2-Core Xeon w/ 10Gb
Atom

(a) MicroBlog throughput per dollar

125us 250us 500us 1ms 10ms
95th-percentile Latency Cutoff

0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
pe

rD
ol

la
r

2-Core Xeon
6-Core Xeon
2-Core Xeon w/ 10Gb
Atom

(b) FriendFeed throughput per dollar

125K 250K 500K 1M 2M
Total Throughput

0

50

100

150

200

#
S

er
ve

r

1-core Atom
24GB
1GbE

1-core Atom
12GB
1GbE

1-core Atom
6GB

1GbE

Provisioned for RAM
Provisioned for Throughput

(c) Effect of throughput scaling

Figure 10.11: Understanding design space optimization decisions. Subfigures (a) and (b)
demonstrate how the throughput achieved per dollar varies as a function of 95th-percentile
latency for various machine configurations. For MicroBlog, low-latency designs are dom-
inated by 2-core Xeons whereas great price-efficiency can be gained under loose latency
constraints (our observation here mirrors those for Web search in [167]. High core counts
and expensive networking equipment do not pay for themselves. For FriendFeed, we see
that a 10GbE NIC is useful across a large latency space. In Subfigure (c), we demonstrate
how cluster sizing is determined as a function of aggregate cluster throughput. The number
of required servers is the greater of (1) the number needed to provision sufficient DRAM
or (2) the number needed to achieve a given aggregate throughput. We annotate the regions
in which certain designs are optimal. Whether DRAM or throughput is the limiting factor
alternates multiple times as the throughput is increased. This scaling also illustrates our
observation that less DRAM per machine can lead to better performance. As the through-
put requirements increase, it is cost-optimal to decrease the DRAM per server (from 24GB
to 12GB to 6GB) and spread load over additional servers.

system dominate the majority of design points.
Less RAM per server leads to higher performance. A particularly counter-intuitive

behavior of memcached is that adding more RAM to a server actually makes latency
worse. The reason for this peculiarity is that more objects are stored in a server with
more RAM and, therefore, a larger fraction of a cluster’s requests will map to that server,
increasing its load. Because of this behavior, we find scenarios where the cost-optimal
design provisions more lower-performance hardware with less RAM per server to improve
latency. We see this behavior often; we previously demonstrated this in Figure 10.11 (c).
We also see this behavior in Figure 10.12. Higher-performance constraints (lower-right
region of each space) tend to favor much lower DRAM capacities than high-latency, low-
throughput regions (upper-left).

The cost-premium of 10GbE is sometimes justified, even in deployments that do
not saturate network bandwidth. Currently, adding 10GbE hardware to servers comes
at a steep price premium. Since cost efficiency is paramount in high-scale data centers, it

135

1GbE

24GB 6GB12GB

10GbE1GbE

6GB24GB

12GB
6GB

24GB

Cluster Throughput

La
te

nc
y

10ms

1ms

600us

300us

100K 250K 1M 2.5M

6GB

6GB

(e) FriendFeed

Cluster Throughput

La
te

nc
y

10ms

1ms

600us

300us

100K 250K 1M 2.5M

(b) MicroBlog

Cluster Throughput

La
te

nc
y

10ms

1ms

600us

300us

100K 250K 1M 2.5M

(c) ImgPreview

Cluster Throughput

La
te

nc
y

10ms

1ms

600us

300us

100K 250K 1M 2.5M

(d) Wiki

6GB

Cluster Throughput
La

te
nc

y

10ms

1ms

600us

300us

100K 250K 1M 2.5M

(a) FixedSize

10GbE

1GbE

1GbE

10GbE1GbE

6GB

24GB

24GB 6GB

24GB

6GB

12GB

4-core Xeon

2-core Xeon

4-core Atom

24GB
24GB

12GB

12GB 6GB

12GB

6GB

Figure 10.12: Memcached cluster design space exploration. Our optimization framework
finds the cost optimal server configuration for a range of latency and throughput goals.
Designs are clustered by base system. RAM capacity and networking are annotated within
these clusters.

is not surprising that 10GbE networking is not pervasive—in many scenarios, commodity
1GbE links are preferred. Nevertheless, we find that certain cluster design points do jus-
tify the use of high-performance I/O. For example, the high-performance regions of the
ImgPreview, Wiki and FriendFeed workload in Figure 10.12 call for 10GbE Ethernet even
though there are other feasible alternatives.

Decreasing latency comes at a much higher cost-premium than increasing through-
put. As we have seen from Figure 10.11, decreasing latency disproportionately decreases
the cost-efficiency of servers. One of the main benefits of memcached is its ultra-fast
response time. We find that low latency comes at a cost premium and that the costs rise
much faster than scaling data set size or throughput.

10.4.4 The challenge of scaling a cluster

Although we have provided a set of guidelines, these rules of thumb may not be suffi-
cient if a designer wishes to maximize cost effectiveness. As a service’s requirements grow,
the cost optimal cluster design will shift. Accordingly, simply finding the best design at a
service’s current operating point and buying more of the same server will lead to a subopti-
mal cluster in the future. Take the Wikipedia workload as an example. At 100,000 RPS and
48GB data set size requirements, the optimal system is 2 4-core Xeons with 24GB of RAM

136

and a 10GB NIC ($3150/server). If the throughput is scaled in isolation to 10 million RPS,
and the data set size stays the same, the optimal cluster has 183 4-core xeons with 6GB of
RAM and a 10GB NIC ($2939/server). Using the original server design in this case would
lead to a cluster that is 7% more expensive than optimal. Alterantively, if the data set size
is scaled in isolation to 512GB, the optimal configuration is 21 Atom-based systems with
24GB of RAM and a 10GB NIC ($410/server). This scenario would lead to a cluster that is
2.09 times more expensive than the optimal. These two examples demonstrate that scaling
a cluster may range from either a modest to quite large waste in capital.

10.5 Summary

Memcached has rapidly become one of the central tools in the design of scalable
web services. On its face, memcached might appear to be a simple workload, however
we find that its common use cases have drastically different hardware requirements. We
have characterized the microarchitectural deficiencies that lead to instruction throughputs
as low as 1/16 of peak, and scalability bottlenecks that yield as little as 2x the throughput
for 6x the cores. These trends have a fundamental impact on the construction of cost-
optimal memcached clusters. Through design space exploration, our study demonstrates
that there is no single server configuration which dominates the space and that different
uses of memcached demand different configurations to be cost optimal.

137

CHAPTER 11

Conclusion

As the Internet continues to grow, so too does the importance of the data centers which
support it. These systems are extremely costly and the fraction of this cost due to energy
and power provisioning continue to rise in large-scale data centers. This thesis proposes a
new approach towards improving the energy proportionality of servers: coordinated full-
system low power modes. We propose the PowerNap server architecture, a coordinated
full-system idle low-power mode which takes advantage of natural idle periods to save
power. For uniprocessor systems, PowerNap approaches energy proportional operation.

However, modern servers use multicore processors with a high degree of concurrency
due to the request-parallel nature of the software they run. As we expose in a study of
Google Web search, trying to create full-system idle periods with simple batching mech-
anism yields a poor latency-power tradeoff. For this class of workload, there is a large
opportunity for coordinated full-system active low-power modes. By combining voltage
and frequency scaling for the processor and memory system in a coordinated fashion, a
more appealing latency-power tradeoff can be achieved.

Unfortunately, current projections show that voltage and frequency scaling will de-
crease in efficacy with successive technology generations. Coarse-grain idle low-power
modes do not decrease in their power savings, but we have shown they are more difficult
to use with many concurrent, independent requests. To remedy the lack of idleness, we
propose DreamWeaver, architectural support for creating artificial full-system idle periods.
We demonstrate that DreamWeaver provides a more appealing latency-power tradeoff than
existing power modes.

Finally, we have investigated increasing the price efficiency of memcached, a work-
load which is rapidly rising in popularity. We expose the many inefficiencies in modern
processor microarchitecture and software stack. Our study demonstrates that this class of
workload must be reasoned about as a cluster and that provisioning an efficient memcached
cluster requires a design space optimization framework to achieve the best cost efficiency.

138

Bibliography

[1] Efficient power supplies for data center.

[2] Project Voldemort. A distributed key-value storage system.

[3] AOL Query Log, 2006.

[4] Energy Star computer specification v. 4.0, 2007.

[5] Average retail price of electricity to ultimate customers by end-use sector, by stat,
2008.

[6] Intel 64 and ia-32 architectures software developers manual volume 3b: System
programming guide, 2009.

[7] A Solr index of Wikipedia on EC2/EBS. 2010.

[8] AMD Family 10h Server and Workstation Processor Power and Thermal Data Sheet
Rev 3.15, 2010.

[9] Flickr - Photo Sharing, 2010.

[10] libevent - an event notification library, 2010.

[11] Memcache Binary Protocol, 2010.

[12] memcached - a distributed memory object caching system, 2010.

[13] The Network Simulator - ns-2, 2010.

[14] Wikipedia, 2010.

[15] Linux Perf, 2011.

[16] SPEC power ssj2008, 2011.

[17] SPECweb2005, 2011.

139

[18] Sysstat, 2011.

[19] Systemtap, 2011.

[20] TPC-C - Top Ten Price/Performance Results, 2011.

[21] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu. Energy proportional
datacenter networks. ISCA ’10: International Symposium on Computer Architecture,
2010.

[22] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and R. Gupta. Somniloquy:
augmenting network interfaces to reduce PC energy usage. NSDI ’09: Networked

Systems Design and Implementation, 2009.

[23] F. Ahmad and T. Vijaykumar. Joint optimization of idle and cooling power in data
centers while maintaining response time. ASPLOS ’10: Architectural Support for

Programming Languages and Operating Systems, 2010.

[24] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera :
Dynamic Flow Scheduling for Data Center Networks. NSDI ’10: Networked Systems

Design and Implementation, 2010.

[25] H. Amur, R. Nathuji, M. Ghosh, K. Schwan, and H. Lee. IdlePower: Application-
aware management of processor idle states. MMCS 08: Workshop on Managed

Many-Core Systems, 2008.

[26] V. Anagnostopoulou, S. Biswas, A. Savage, R. Bianchini, T. Yang, and F. Chong. En-
ergy Conservation in Datacenters through Cluster Memory Management and Barely-
Alive Memory Servers. WEED ’09: Workshop on Energy-Efficient Design, 2009.

[27] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V. Vasude-
van. FAWN: a fast array of wimpy nodes. SOSP ’09: Symposium on Operating

Systems Principles, 2009.

[28] Apache. The Apache Cassandra Project. 2010.

[29] L. Barroso, J. Dean, and U. Hoezle. Web Search for A Planet: The Architecture of
the Google Cluster. IEEE Micro, 2003.

[30] L. A. Barroso. Warehouse-scale Computing. Keynote address at SIGMOD, 2010.

[31] L. A. Barroso. Warehouse-scale computing: Entering the teenage decade. Federated
Computing Research Conference Plenary Speaker, 2011.

140

[32] L. A. Barroso and U. Hölzle. The Case for Energy-Proportional Computing. IEEE

Computer, (December):33–37, 2007.

[33] L. A. Barroso and U. Hölzle. The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines. Synthesis Lectures on Computer Architec-

ture, Jan. 2009.

[34] C. Bash and G. Forman. Cool job allocation: Measuring the power savings of placing
jobs at cooling-efficient locations in the data center. USENIX Annual Technical

Conference, 2007.

[35] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a needle in haystack:
facebook’s photo storage. OSDI ’10: Operating systems design and implementation,
2010.

[36] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding data center traffic
characteristics. WREN ’09: workshop on research on enterprise networking, 2009.

[37] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele. Many-core key-value
store. IGCC ’11: International Green Computing Conference, 2011.

[38] A. Bhattacharjee and M. Martonosi. Characterizing the TLB behavior of emerging
parallel workloads on chip multiprocessors. PACT ’09: International Conference on

Parallel Architectures and Compilation Techniques, 2009.

[39] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. G. Saidi, and S. K. Reinhardt. The M5
simulator: Modeling networked systems. IEEE Micro, 2006.

[40] N. L. Binkert, L. R. Hsu, A. G. Saidi, R. G. Dreslinski, A. L. Schultz, and S. K.
Reinhardt. Performance analysis of system overheads in tcp/ip workloads. PACT
’05, pages 218–230, 2005.

[41] N. L. Binkert, A. G. Saidi, and S. K. Reinhardt. Integrated network interfaces for
high-bandwidth TCP/IP. ASPLOS ’06: Architectural support for programming lan-

guages and operating systems, 2006.

[42] D. Blaauw, S. Das, and Y. Lee. Managing variations through adaptive design tech-
niques, 2009.

[43] D. Blaauw, S. Das, and Y. Lee. Managing variations through adaptive design tech-
niques. ISSCC Tutorial, 2010.

141

[44] D. Blaauw, S. Das, and Y. Lee. Managing variations through adaptive design tech-
niques, 2010.

[45] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. Mcdowell, and R. Ra-
jamony. The Case for Power Management in Web Servers. Power Aware Computing,
2002.

[46] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek, R. Mor-
ris, and N. Zeldovich. An analysis of linux scalability to many cores. OSDI ’10:

Conference on operating systems design and implementation, 2010.

[47] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations. ISCA ’00: International Symposium on

Computer Architecture, 2000.

[48] J. S. Bucy and G. R. Ganger. The DiskSim Simulation Environment Version 3.0
Reference Manual, 2003.

[49] E. V. Carrera, E. Pinheiro, and R. Bianchini. Conserving disk energy in network
servers. Proceedings of the 17th annual international conference on Supercomputing

- ICS ’03, page 86, 2003.

[50] M. Cha, A. Mislove, and K. P. Gummadi. A measurement-driven analysis of infor-
mation propagation in the flickr social network. WWW, 2009.

[51] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle. Man-
aging Energy and Server Resources in Hosting Centers. SOSP ’01: Symposium on

Operating Systems Principles, Dec. 2001.

[52] E. J. Chen and W. D. Kelton. Simulation-Based Estimation of Quantiles. Winter

Simulation Conference, 1999.

[53] E. J. Chen and W. D. Kelton. Quantile and histogram estimation. Winter Simulation

Conference, 2001.

[54] E. J. Chen and W. D. Kelton. Determining simulation run length with the runs test.
Simulation Modelling Practice and Theory, 11(3-4), 2003.

[55] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao. Energy-aware server
provisioning and load dispatching for connection-intensive internet services. NSDI

’08: Networked Systems Design and Implementation, 2008.

142

[56] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam. Managing
server energy and operational costs in hosting centers. SIGMETRICS ’05: Interna-

tional Conference on Measurement and Modeling of Computer Systems, 2005.

[57] A. A. Chien. Digital transformation. Talk at Intel Developer Forum, 2008.

[58] M. Cho, N. Sathe, M. Gupta, S. Kumar, S. Yalamanchilli, and S. Mukhopad-
hyay. Proactive power migration to reduce maximum value and spatiotemporal
non-uniformity of on-chip temperature distribution in homogeneous many-core pro-
cessors. Semiconductor Thermal Measurement and Management Symposium, 2010.

[59] G. Contreras and M. Martonosi. Power prediction for intel XScale processors using
performance monitoring unit events. ISLPED ’05: International Symposium on Low

Power Electronics and Design, 2005.

[60] T. T. Control. Typical circuit breaker trip curve.

[61] R. Conway. Some Tactical Problems in Digital Simulation. Management Science,
10(1), 1963.

[62] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.
OSDI ’04: Operating System Design and Implementation,, 2004.

[63] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo : Amazons Highly Avail-
able Key-value Store. SOSP ’07: Symposium on Operating Systems Principles,
2007.

[64] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. Irwin.
DRAM energy management using software and hardware directed power mode con-
trol. HPCA ’01: High-Performance Computer Architecture, 2001.

[65] C. Delimitrou, S. Sankar, K. Vaid, and C. Kozyrakis. Decoupling datacenter studies
from access to large-scale applications: A modeling approach for storage workloads.
IISWC ’11: IEEE International Symposium on Workload Characterization, 2011.

[66] Q. Deng, D. Meisner, T. F. Wenisch, and R. Bianchini. MemScale : Active Low-
Power Modes for Main Memory. ASPLOS ’11: Architectural Support for Program-

ming Languages and Operating Systems, 2011.

143

[67] B. Diniz, D. Guedes, W. M. Jr, and R. Bianchini. Limiting the Power Consumption
of Main Memory. ISCA ’07: International Symposium on Computer Architecture,
2007.

[68] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge. Near-
threshold computing: Reclaiming moore’s law through energy efficient integrated
circuits. Proceedings of the IEEE, 98(2), feb. 2010.

[69] L. Eeckhout, S. Nussbaum, J. Smith, and K. De. Statistical simulation: Adding
efficiency to the computer designer’s toolbox. IEEE Micro, pages 26–38, 2003.

[70] M. Elnozahy, M. Kistler, and R. Rajamony. Energy conservation policies for web
servers. USENIX Symposium on Internet Technologies and Systems-Volume 4, 2003.

[71] Facebook. Memcached Tech Talk with Mark Zuckerberg, 2010.

[72] X. Fan, C. S. Ellis, and A. R. Lebeck. The Synergy between Power-aware Mem-
ory Systems and Processor Voltage Scaling. Workshop on Power-Aware Computing

Systems, 2002.

[73] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a warehouse-sized
computer. ISCA ’07: International Symposium on Computer Architecture, 2007.

[74] G. S. Fishman. Discrete-event simulation. Springer-Verlag, 2001.

[75] B. Flemming. Squeezing a ia computer in a smartphone. 2010 Asia Academic
Forum, 2011.

[76] R. Fujimoto. Parallel Discrete Event Simulation. Winter Simulation Conference,
1989.

[77] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal power allocation in
server farms. SIGMETRICS, 2009.

[78] A. Gandhi, C. Lefurgy, and J. O. Kephart. Power Capping Via Forced Idleness.
Analysis, 2009.

[79] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,
P. Patel, and S. Sengupta. VL2 : A Scalable and Flexible Data Center Network.
SIGCOMM, 2009.

144

[80] V. Gupta, M. Harchol-Balter, J. G. Dai, and B. Zwart. On the inapproximability
of M/G/K: why two moments of job size distribution are not enough. Queueing

Systems: Theory and Applications, 64(1):5–48, Aug. 2009.

[81] S. Gurumurthi, A. Sivasubramaniam, and M. Kandemir. DRPM: dynamic speed
control for power management in server class disks. ISCA ’03: International Sym-

posium on Computer ArchitectureA, 2003.

[82] J. Hamilton. Internet-Scale Service Infrastructure Efficiency, 2009.

[83] J. Hamilton. PUE is Still Broken and I still use it, 2010.

[84] M. Harchol-balter. Theory of Performance Modeling, 2005.

[85] M. Harchol-Balter and A. B. Downey. Exploiting process lifetime distributions for
dynamic load balancing. ACM Transactions on Computer Systems, 15(3), Aug.
1997.

[86] T. Heath, A. Centeno, P. George, L. Ramos, Y. Jaluria, and R. Bianchini. Mercury
and freon: temperature emulation and management for server systems. ASPLOS ’06:

Architectural Support for Programming Languages and Operating Systems, 2006.

[87] T. Heath, B. Diniz, and E. Carrera. Energy conservation in heterogeneous server
clusters. PPoPP ’05: Principles and Practice of Parallel Programming, 2005.

[88] S. Herbert and D. Marculescu. Analysis of Dynamic Voltage/Frequency Scaling
in Chip-Multiprocessors. ISLPED ’07: International Symposium on Low Power

Electronics and Design, 2007.

[89] U. Hoelzle and B. Weihl. High-efficiency power supplies for home computers and
servers, 2006.

[90] U. Hölzle. Brawny cores still beat wimpy cores , most of the time. IEEE Micro,
30(4), 2010.

[91] H. Huang, K. Shin, C. Lefurgy, and T. Keller. Improving energy efficiency by mak-
ing DRAM less randomly accessed. ISLPED ’05: International Symposium on Low

Power Electronics and Design, 2005.

[92] R. Huggahalli, R. Iyer, and S. Tetrick. Direct Cache Access for High Bandwidth Net-
work I/O. In Proceedings of the 32nd annual international symposium on Computer

145

Architecture, ISCA ’05, pages 50–59, Washington, DC, USA, 2005. IEEE Computer
Society.

[93] Hynix. Hynix-DDR2-1Gb. 2008.

[94] Intel. Intel Pentium M processor with 2-MB L2 cache and 533-MHz front side bus,
2005.

[95] Intel. Intel Pentium dual-core mobile processorIntel Pentium dual-core mobile pro-
cessor, 2007.

[96] Intel. Quad-core Intel Xeon processor 5400 series, 2008.

[97] Intel. Intel Xeon Processor 5600 Series. Datasheet, Volume 1. 2010.

[98] C. Isci, A. Buyuktosunoglu, C.-y. Cher, P. Bose, and M. Martonosi. An Analysis of
Efficient Multi-Core Global Power Management Policies: Maximizing Performance
for a Given Power Budget. Micro ’06: International Symposium on Microarchitec-

ture, 2006.

[99] R. Jain. The Art of Computer Systems Performance Analysis: Techniques for Exper-

imental Design, Measurement, Simulation, and Modeling. Wiley, 1991.

[100] J. Janzen. Calculating Memory System Power for DDR SDRAM. Designline,
10(2):1–12, 2001.

[101] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. W. ur Rahman, N. S. Is-
lam, X. Ouyang, H. Wang, S. Sur, and D. K. Panda. Memcached design on high
performance rdma capable interconnects. International Conference on Parallel Pro-

cessing, 2011.

[102] S. Kaxiras and M. Martonosi. Computer Architecture Techniques for Power-
Efficiency. Synthesis Lectures on Computer Architecture, 3(1):1–207, 2008.

[103] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy, A. Mahesri, S. S.
Lumetta, M. I. Frank, and S. J. Patel. Rigel : An Architecture and Scalable Program-
ming Interface for a 1000-core Accelerator. ISCA ’09: International Symposium on

Computer Architecture, 2009.

[104] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks. System level analysis of fast,
per-core DVFS using on-chip switching regulators. HPCA ’08: High Performance

Computer Architecture, 2008.

146

[105] D. Knuth. The Art of Computer Programming - Voll II. Addison-Wesley, 1981.

[106] J. Koomey. Growth in data center electricity use 2005 to 2010. A report by Analytics
Press, completed at the request of The New York Times, 2011.

[107] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and R. Katz. NapSAC : De-
sign and Implementation of a Power-Proportional Web Cluster. Green Networking,
2010.

[108] W. Lang and J. Patel. Towards eco-friendly database management systems. CIDR

’09: Conference on Innovative Data Systems Reasearch, 2009.

[109] W. Lang and J. M. Patel. Energy Management for MapReduce Clusters. VLDB,
2010.

[110] J. Larus and M. Parkes. Using Cohort Scheduling to Enhance Server Performance.
In ACM SIGPLAN Notices, volume 36, 2001.

[111] J. Laudon. UltraSPARC T1: A 32-threaded CMP for servers, 2006.

[112] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power Aware Page Allocation. ASPLOS

’00: Architectural Support for Programming Languages and Operating Systems,
2000.

[113] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. Keller. Energy
management for commercial servers. Computer, 36(12):39–48, Dec. 2003.

[114] C. Lefurgy, X. Wang, and M. Ware. Server-level power control. ICAC’07: Interna-

tional Conference on Autonomic Computing, June 2007.

[115] C. Lefurgy, X. Wang, and M. Ware. Power capping: a prelude to power shifting.
Cluster Computing, 11(2):183–195, Nov. 2008.

[116] K. Leigh and P. Ranganathan. Blades as a general-purpose infrastructure for future
system architectures: Challenges and solutions, 2007.

[117] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis. Power
Management of Datacenter Workloads Using Per-Core Power Gating. IEEE Com-

puter Architecture Letters, 8(2):48–51, Feb. 2009.

[118] G. Liao and L. Bhuyan. Performance measurement of an integrated nic architecture
with 10gbe. In Proceedings of the 2009 17th IEEE Symposium on High Performance

Interconnects, Washington, DC, USA, 2009. IEEE Computer Society.

147

[119] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Reinhardt. Un-
derstanding and Designing New Server Architectures for Emerging Warehouse-
Computing Environments. ISCA ’08: International Symposium on Computer Ar-

chitecture, 2008.

[120] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s general
execution-driven multiprocessor simulator (GEMS) toolset. ACM SIGARCH Com-

puter Architecture News, 33(4):92, Nov. 2005.

[121] D. Meisner, B. Gold, and T. Wenisch. The powernap server architecture. ACM

Transactions on Computer Systems (TOCS), 29(1), 2011.

[122] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap: Eliminating Server Idle
Power. ASPLOS ’09: Architectural Support for Programming Languages and Op-

erating Systems, Feb. 2009.

[123] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch. Power
Management of Online Data-Intensive Services. ISCA ’11: International Sympo-

sium on Computer Architecture, 2011.

[124] D. Meisner and T. F. Wenisch. Stochastic Queuing Simulation for Data Center Work-
loads. EXERT ’10: Exascale Evaluation and Research Techniques, 2010.

[125] D. Meisner, J. Wu, and T. F. Wenisch. Towards a Scalable Data Center-level Evalua-
tion Methodology. ISPASS ’11: International Symposium on Performance Analysis

of Systems and Software, 2011.

[126] D. Meisner, J. Wu, and T. F. Wenisch. BigHouse: A simulation infrastructure for
data center systems. ISPASS ’12: International Symposium on Performance Analysis

of Systems and Software, 2012.

[127] Memcachedb. MemcacheDB: A distributed key-value storage system designed for
persistent.

[128] Micron. DDR2 SDRAM SODIMM. 2004.

[129] Microsoft. Improved data center power consumption and streamlining management.
2010.

[130] R. Middlebrook and S. Cuk. A general unified approach to modelling switching-
converter power stages. Power Electronics Specialists Conference, 1976.

148

[131] G. Minshall, Y. Saito, J. C. Mogul, and B. Verghese. Application performance pit-
falls and TCP’s Nagle algorithm. SIGMETRICS Performance Evaluation Review,
27(4):36–44, 2000.

[132] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony, and R. Rajkumar. Critical
Power Slope : Understanding the Runtime Effects of Frequency Scaling. ICS ’02:

International Conference on Supercomputing, 2002.

[133] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making scheduling cool:
Temperature-aware workload placement in data centers. In USENIX Annual Techni-

cal Conference. USENIX Association, 2005.

[134] D. M. Nicol. Parallel Simulation Of FCFS Stochastic Queueing Networks. PPoPP

’88: Principles and Practice of Parallel Programming, 1988.

[135] J. Ousterhout, M. Rosenblum, S. M. Rumble, E. Stratmann, R. Stutsman, P. Agrawal,
D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières, S. Mitra, A. Narayanan, and
G. Parulkar. The case for RAMClouds. ACM SIGOPS Operating Systems Review,
43(4):92, Jan. 2010.

[136] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. Shin. Performance evaluation of
virtualization technologies for server consolidation. HP Labs Tec. Report, 2007.

[137] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini. DMA-Aware Memory Energy
Management. HPCA ’06: High-Performance Computer Architecture, 2006.

[138] K. Pawlikowski. Steady-state simulation of queueing processes: survey of problems
and solutions. ACM Computing Surveys (CSUR), 22(2), 1990.

[139] V. Paxson and S. Floyd. Wide area traffic: the failure of Poisson modeling.
IEEE/ACM Transactions on Networking, 3(3), June 1995.

[140] S. Pelley, D. Meisner, T. F. Wenisch, and J. W. VanGilder. Understanding and ab-
stracting total data center power. WEED ’09: Workshop on Energy-Efficient Design,
2009.

[141] S. Pelley, D. Meisner, P. Zandevakili, T. F. Wenisch, and J. Underwood. Power Rout-
ing : Dynamic Power Provisioning in the Data Center. ASPLOS ’10: Architectural

Support for Programming Languages and Operating Systems, 2010.

149

[142] A. Pesterev, N. Zeldovich, and R. T. Morris. Locating cache performance bottle-
necks using data profiling. Proceedings of the 5th European conference on Computer

systems - EuroSys ’10, page 335, 2010.

[143] E. Pinheiro and R. Bianchini. Energy conservation techniques for disk array-based
servers. ICS ’04: International Conference on Supercomputing, 2004.

[144] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. Load Balancing and Unbalanc-
ing for Power and Performance in Cluster-Based Systems. Workshop on Compilers

and Operating Systems for Low Power, 2001.

[145] A. Pressman. Switching Power Supply Design. 1998.

[146] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu. No Power Strug-
gles : Coordinated Multi-level Power Management for the Data Center. ASPLOS

’08: Architectural Support for Programming Languages and Operating Systems,
2008.

[147] K. Rajamani, C. Lefurgy, S. Ghiasi, and J. Rubio. Power management for computer
systems and datacenters. Tutorial at ISLPED ’08: International Symposium on Low-

Power Electronic Desig, 2008.

[148] P. Ranganathan, P. Leech, D. Irwin, and J. Chase. Ensemble-level Power Manage-
ment for Dense Blade Servers. ISCA ’06: International Symposium on Computer

Architecture, 34(2):66–77, May 2006.

[149] N. Rasmussen. AC vs. DC power distribution for data centers, 2007.

[150] G. Regnier, S. Makineni, I. Illikkal, R. Iyer, D. Minturn, R. Huggahalli, D. Newell,
L. Cline, and A. Foong. Tcp onloading for data center servers. Computer, 37(11):48
– 58, nov. 2004.

[151] S. Rivoire, P. Ranganathan, and C. Kozyrakis. A comparison of high-level full-
system power models. HotPower, 2008.

[152] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and J. K. Ousterhout. It’s
time for low latency. HotOS ’11: Hot topics in operating systems, 2011.

[153] Samsung. SSD SATA 3.0Gbps 2.5 data sheet. 2008.

[154] B. Schroeder, E. Pinheiro, and W. Weber. DRAM errors in the wild: a large-scale
field study. In SIGMETRICS, 2009.

150

[155] E. Schurman and J. Brutlag. The user and business impact of server delays, addi-
tional bytes, and http chunking in web search. Velocity, 2009.

[156] N. Semiconductor. Introduction to power supplies, 2002.

[157] J. Sharkey, A. Buyuktosunoglu, and P. Bose. Evaluating design tradeoffs in on-chip
power management for CMPs. ISLPED 07: International symposium on Low power

electronics and design, 2007.

[158] N. Sharma, S. Barker, D. Irwin, and P. Shenoy. Blink: managing server clusters on
intermittent power. ASPLOS ’11: Architectural support for programming languages

and operating systems, 2011.

[159] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing
large scale program behavior. ASPLOS ’002: Architectural Support for Program-

ming Languages and Operating Systems, 2002.

[160] S. Siddha, V. Pallipadi, and A. Ven. Getting maximum mileage out of tickless.
Proceedings of the Linux Symposium. Intel Open Source Technology Center, 2007.

[161] SMSC. LAN9420/LAN9420i single-chip ethernet controller with HP Auto-MDIX
support and PCI interface, 2008.

[162] D. Snowdon, S. Ruocco, and G. Heiser. Power management and dynamic voltage
scaling: Myths and facts. Workshop on Power Aware Real-time Computing, 12,
2005.

[163] J. Sobel. Building Facebook: Performance at Massive Scale, 2010.

[164] S. Srinivasan, L. Zhao, B. Ganesh, B. Jacob, M. Espig, and R. Iyer. CMP Memory
Modeling: How much does accuracy matter? MoBS ’09: Workshop on Modeling,

Benchmarking and Simulation, 2009.

[165] N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathan, and X. Zhu. Deliver-
ing Energy Proportionality with Non Energy-Proportional Systems Optimizing the
Ensemble. HotPower ’08: Workshop on Power-Aware Computing Systems, 2008.

[166] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Analyzing the energy efficiency
of a database server. SIGMOD, 2010.

[167] VJ Reddi, Benjamin Lee, Trishul Chilimbi, and Kushagra Vaid. Web Search Using
Mobile Cores: Quantifying and Mitigating the Price of Efficiency. 2010.

151

[168] V. Vorperian. Simplified analysis of PWM converters using model of PWM switch.
II. Discontinuous conduction mode. Aerospace and Electronic Systems, IEEE Trans-

actions on, 26(3):497–505, 1990.

[169] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and B. Jacob. DRAM-
sim: a memory system simulator. ACM SIGARCH Computer Architecture News,
33(4):107, 2005.

[170] X. Wang, M. Chen, C. Lefurgy, and T. W. Keller. SHIP: Scalable Hierarchical Power
Control for Large-Scale Data Centers. In PACT ’09: Parallel Architectures and

Compilation Techniques. Ieee, Sept. 2009.

[171] W.-D. Weber. Energy-saving approaches for warehouse-scale computing, 2010.

[172] P. Welch. On a Generalized M/G/1 Queuing Process in Which the First Customer of
Each Busy Period. Operations Research, 12(5):736–752, 1964.

[173] T. F. Wenisch, R. E. Wunderlich, B. Falsafi, and J. C. Hoe. Simulation sampling
with live-points. ISPASS ’06: International Symposium on Performance Analysis of

Systems and Software, 2006.

[174] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J. C.
Hoe. SimFlex: Statistical Sampling of Computer System Simulation. IEEE Micro,
26(4), 2006.

[175] Q. Wu, P. Juang, M. Martonosi, L. Peh, and D. Clark. Formal control techniques for
power-performance management. Micro, IEEE, 2005.

[176] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS: accelerating
microarchitecture simulation via rigorous statistical sampling. ISCA ’03: Interna-

tional Symposium on Computer Architecture, 2003.

[177] F. Xie, M. Martonosi, and S. Malik. Intraprogram dynamic voltage scaling: Bound-
ing opportunities with analytic modeling. ACM Transactions on Architecture and

Code Optimization (TACO), 1(3):323–367, 2004.

[178] F. Xie, M. Martonosi, and S. Malik. Bounds on power savings using runtime dy-
namic voltage scaling:an exact algorithm and a linear-time heuristic approximation.
International Symposium on Low Power Electronics and Design, page 287, 2005.

[179] R. Yates. Practical Considerations in Fixed-Point FIR Filter Implementations. Dig-

ital Signal Labs, Technical Reference, 2007.

152

[180] J. Zawodny. Redis: Lightweight key/value Store That Goes the Extra Mile, 2010.

153

