
 

 

 

 

 

 

 

 

Chaperone-dependent Ubiquitination of Neuronal Nitric Oxide Synthase 

 

 

by 

 

 

Kelly M. Clapp 

 

 

 

 

A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

(Pharmacology) 

in The University of Michigan 

2012 

 

 

 

 

 

 

 

 

 

 

 

 

 

Doctoral Committee: 

 

 Professor Yoichi Osawa, Chair 

 Professor Paul F. Hollenberg 

 Professor William B. Pratt 

 Professor Yi Sun 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Kelly M. Clapp 

 
2012 



 ii 

 

 

Table of Contents 

 

 

List of Figures…………………………………………………………………………...iv 

Abstract…………………………………………………………………………………vii 

 

 

Chapter 

 

1.   Introduction………...……………………………………………………………1 

 

  Nitric Oxide……………………………………………………...………..1 

  Nitric Oxide Formation…………………………………………………....2 

  Structure of Nitric Oxide Synthase………………………………………..3 

  NOS Isoforms……………………………………………………………..4 

  Physiological Roles of NO………………………………………………..5 

  Pathophysiology of NO…………………………………………………...6 

  NOS as a Therapeutic Target……………………………………………...7 

  Post-Translational Regulation of NOS……………………………………8 

  Ubiquitination and Degradation of NOS………………………………...10 

  Thesis Rationale………………………………………………………….12 

  References………………………………………………………………..15 

 

2.   Opposing Actions of Hsp90 and Hsp70 on the Ubiquitination of Neuronal 

Nitric Oxide Synthase…………………………………………………………..28 

 

   Summary…………………………………………………………………28 

   Introduction………………………………………………………………29 

   Experimental Procedures………………………………………………...34 

   Results……………………………………………………………………36 

   Discussion………………………………………………………………..42 

   References………………………………………………………………..48 

 

3.   The C331A Mutant of Neuronal Nitric-Oxide Synthase is Labilized for 

Hsp70/CHIP (C-terminus of Hsc70-interacting protein)-dependent 

Ubiquitination…………………………………………………………………..56 

 

   Summary…………………………………………………………………56 

   Introduction………………………………………………………………57 

   Experimental Procedures………………………………………………...60 

   Results……………………………………………………………………64 

   Discussion………………………………………………………………..77 

   References………………………………………………………………..83 

 



 iii 

4.   Identification of the Sites on Neuronal Nitric Oxide Synthase Targeted for 

CHIP-dependent Ubiquitination………………………………………………90 

 

  

Summary…………………………………………………………………90 

   Introduction………………………………………………………………91 

   Experimental Procedures………………………………………………...94 

   Results……………………………………………………………………99 

   Discussion………………………………………………………………112 

   References………………………………………………………………118 

 



 iv 

List of Figures 

 

 

Chapter 1 

1.1 Reaction catalyzed by NOS……………………………………………………3 

1.2 NOS domains and structure…………………………………………………….4 

1.3 Ubiquitin-proteasome system…………………………………………………11 

 

Chapter 2 

 2.1 Calmodulin inhibition of nNOS ubiquitination by the DE52-retained fraction of 

rabbit reticulocyte lysate……………………………………………………..37 

 2.2 Calmodulin does not inhibit and Hsp90 does inhibit nNOS ubiquitination by 

Fraction A of reticulocyte lysate……………………………………………..40 

 2.3 Methylene blue inhibits nNOS ubiquitination by the DE52-retained fraction of 

reticulocyte lysate in an Hsp70-dependent manner…………………………..41 

 2.4 CHIP is the major E3 ligase for nNOS ubiquitination by the DE52-retained 

fraction of rabbit reticulocyte lysate………………………………………….43 

 2.5 Proposed model for triage of nNOS by the Hsp90/Hsp70-based chaperone 

machinery after mechanism-based inactivation………………………………47 

 

Chapter 3 

 3.1 C331A nNOS mutant is preferentially ubiquitinated in Fraction II by a process 

that is attenuated by N
G
-nitro-L-arginine, but not N

G
-nitro-D-arginine……...66 



 v 

 3.2 Omission of tetrahydrobiopterin enhances the ubiquitination of wild type 

nNOS to the level seen for the C331A mutant of nNOS……………………...67 

 3.3 Hsp70 and CHIP dependence of the ubiquitination of C331A nNOS catalyzed 

by Fraction II………………………………………………………………….69 

 3.4 C331A nNOS is preferentially ubiquitinated in an in vitro system containing 

purified Hsp70/Hsp40, E1, E2, and CHIP…………………………………….71 

 3.5 C331A nNOS is destabilized and becomes a substrate for 

ubiquitination……………………………………………………………….…73 

 3.6 Hsp90 blocks ubiquitination, but does not stabilize activity, of C331A 

nNOS………………………………………………………………………….75 

 3.7 C331A nNOS is preferentially ubiquitinated in HEK293T cells……………..76 

 

Chapter 4 

 4.1 Ubiquitination of nNOS in a purified system is CHIP- and time-

dependent……………………………………………………………………101 

 4.2 N
G
-nitro-L-arginine stereospecifically decreases both mono- and poly-

ubiquitination of nNOS……………………………………………………...103 

 4.3 Effect of ubiquitination of K0R ubiquitin on ubiquitination of nNOS or C331A 

nNOS………………………………………………………………………...104 

 4.4 Poly-ubiquitination of nNOS occurs through several different lysine-linked 

chains on ubiquitin…………………………………………………………..107 

 4.5 MS/MS spectra for validated ubiquitinated residues, K739 and K743……...110 



 vi 

 4.6 Decreased poly-ubiquitination (A) and proteasomal degradation (B) of a 

mutant of nNOS (nNOS 7R) that lacks lysine residues in the calmodulin 

binding site…………………………………………………………………..111 

 4.7 Schematic of the ubiquitination sites on the structure of nNOS…………….114 



 vii 

ABSTRACT 

 

Nitric oxide synthase (NOS), a cytochrome P450-like hemoprotein enzyme, 

catalyzes the synthesis of nitric oxide, a critical signaling molecule in a variety of 

physiological processes.  Our lab has found that certain drugs, such as guanabenz, 

inactivate neuronal NOS (nNOS) and lead to the ubiquitination of the nNOS.  To better 

understand the molecular trigger for nNOS ubiquitination, we characterized the proteins 

that are involved in nNOS ubiquitination, examined a mutant nNOS that can serve as a 

model for inactivated nNOS, and identified the sites of ubiquitin attachment to nNOS.  

Using an in vitro model for ubiquitination containing Fraction II, the DE52-retained 

fraction of reticulocyte lysates that contains all ubiquitinating enzymes and the 

proteasome, we found that CHIP (C-terminus of Hsp70-interacting protein) and Hsp70 

play a major role in promoting the ubiquitination of nNOS, whereas Hsp90, in concert 

with calmodulin, protects nNOS from ubiquitination.  We found a C331A nNOS mutant 

that is highly susceptible to CHIP-dependent ubiquitination in cells and in vitro systems.  

Substrates and other ligands stabilize the C331A nNOS against ubiquitination, suggesting 

that subtle alterations to the active site cleft are sufficient for triggering the 

ubiquitination. The C331A nNOS is ubiquitinated in an Hsp70/CHIP-dependent manner, 

similar to the wildtype enzyme.  With the use of an in vitro system containing purified 

proteins, including E1 ubiquitin-activating enzyme, E2 ubiquitin conjugating enzyme, 

and E3 ubiquitin ligase CHIP, we recapitulated the ubiquitination of nNOS seen in cells.  

We identified the sites of ubiquitination on nNOS through LC-MS/MS analysis of the 

ubiquitinated nNOS obtained from the in vitro purified system.  Of the twelve sites that 
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were identified, nine are located in the oxygenase domain, two in the calmodulin-binding 

region, and one in the reductase domain of the enzyme.  These data are consistent with 

studies showing that the oxygenase domain and the calmodulin-binding domain play a 

major role in regulating the ubiquitination of nNOS.  Thus, alterations to the heme active 

site structure, whether by drug-mediated inactivation or the destabilizing C331A 

mutation, leads to ubiquitination by Hsp70 and CHIP in the calmodulin-binding region 

and/or the oxygenase domain of nNOS. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Nitric Oxide 

 

 Nitric oxide (NO) is a small radical that readily diffuses along concentration 

gradients across cell membranes and between cells.  As a result, NO is both an 

intracellular and an intercellular signaling molecule.  The biological effects of NO were 

first described in 1980 by Furchgott and Zawadzki (1), who demonstrated its role in 

endothelial relaxation.  Since then, a role for NO in a wide variety of physiological 

effects has been described, including regulation of blood pressure, blood clotting, 

immune response, and neurotransmission.  Pure NO is a gas under standard temperature 

and pressure, but it exists as a dissolved nonelectrolyte under most biological conditions.  

Due to its radical nature, NO is highly reactive, and thus has a short half-life of 5-10 

seconds in vitro (2). 

 As NO contains one unpaired electron, its most common chemical interactions 

include stabilization of the unpaired electron (2).  This can occur through reactions 

between NO and other paramagnetic species such as oxygen, superoxide, and peroxy 

radicals, or by forming an NO-metal complex.  Two molecules of NO can react with 

oxygen to form two molecules of the paramagnetic radical nitrogen dioxide.  Nitrogen 



 2 

dioxide can then react further to produce dinitrogen tetroxide or dinitrogen trioxide, both 

of which are highly reactive.  One molecule of NO will react extremely rapidly with 

superoxide to produce the reactive species peroxynitrite.  Peroxynitrite is a potent 

oxidant, capable of oxidizing thiols (3)  and DNA bases (4), and it can initiate metal-

independent lipid peroxidation (5).  Additionally, NO is structurally similar to dioxygen, 

so proteins that bind dioxygen as part of their normal function, such as hemoglobin, 

myoglobin, nitric oxide synthase (NOS), and the cytochrome P450s, are susceptible to 

inhibition by NO (2).  Conversely, NO binds the heme iron in soluble guanylate cyclase, 

thus activating the enzyme by causing a conformational change in the protein that 

increases the rate of cyclic GMP formation (6). 

 

Nitric Oxide Formation 

 Nitric oxide is synthesized from the amino acid L-arginine by the enzyme nitric 

oxide synthase.  This enzyme catalyzes the five-electron oxidation of the guanidine 

nitrogen of L-arginine in the presence of molecular oxygen to form NO and L-citrulline 

(Figure 1.1).  The reaction also depends on the availability of several required cofactors, 

including (6R)-5,6,7,8-tetrahydrobiopterin (BH4), flavin adenine dinucleotide (FAD), 

flavin mononucleotide (FMN), calmodulin (CaM), and iron protoporphorin IX (heme), as 

well as nicotinamide adenine dinucleotide phosphate (NADPH) as an electron source (7).  

The electrons from NADPH are transferred through the flavins, FAD and FMN, to the 

heme active site, where O2 is activated and L-arginine is oxidized.  Bound calmodulin 

facilitates the flow of electrons from the flavins to the heme (8).  N-hydroxy-arginine is 

an intermediate in the formation of NO (9). 
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Figure 1.1 Reaction catalyzed by NOS 

 

Structure of Nitric Oxide Synthase 

 NOS is a multi-domain enzyme that is catalytically active only as a homodimer.  

Each monomer consists of two domains, an N-terminal oxygenase domain, and a C-

terminal reductase domain (Figure 1.2).  The domains are linked by a calmodulin binding 

region consisting of 30 amino acids (7, 8).  The reductase domain contains binding sites 

for NADPH and the flavins, FAD and FMN, and it is able to function as a monomer (10).  

Additionally, the reductase domain shares strong sequence similarity with cytochrome 

P450 reductase (10).  The oxygenase domain contains binding sites for the heme, BH4, 

and the substrate, L-arginine, all of which are required for activity of the enzyme (11).  

The heme group is coordinated to the oxygenase domain through a cysteine thiolate, as in 

cytochrome P450 enzymes, and it has a reduced CO difference spectrum with a Soret 

band at approximately 450 nm (7, 12).  NOS produces NO only as a dimer.  Dimerization 
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can occur with the oxygenase domains alone, as the reductase domain does not contain 

any of the essential  determinants for dimerization.  The dimerization of iNOS is 

promoted by heme incorporation, BH4, and L-arginine (7), whereas eNOS and nNOS 

dimer assembly requires heme incorporation (13), but may not require BH4, although 

BH4 is able to stabilize the nNOS dimer once it is formed (14).  Crystal structures of 

iNOS and eNOS isoforms have revealed that the monomers align in a head-to-head 

manner (15-17) and a 55 amino acid sequence in the oxygenase domain has been 

identified in iNOS as critical for dimerization (18).  The flow of electrons during the 

catalytic cycle of NOS occurs from the reductase of one monomer subunit to the 

oxygenase domain of the other monomer (19), which highlights the importance of 

dimerization in NOS function. 

 

 

Figure 1.2  NOS domains and structure 

 

NOS Isoforms 

 Three main isoforms of NOS have been identified:  isoform I (neuronal NOS, 

nNOS), which is constitutively expressed in a variety of neuronal cells; isoform II 

(inducible NOS, iNOS), which is usually not constitutively expressed but can be induced 
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in macrophages and other cells; and isoform III (endothelials NOS, eNOS), which is 

expressed in endothelial cells (20).  The isoforms share approximately 60% amino acid 

identity and have highly similar structures.  The three isoforms have regions of high 

homology, however there are some significant differences between them.  For example, 

iNOS expression can be induced by various inflammatory stimuli such as cytokines or 

bacterial lipopolysaccharides (21, 22).  In contrast, eNOS and nNOS are not primarily 

regulated at the transcriptional level.  Rather, they are regulated by changes in the level of 

intracellular calcium, with both isoforms requiring a bound Ca
+2

/CaM complex for 

activation.  Both isoforms are inactive at 100 nmol/L Ca
+2

 and fully active at 500 nmol/L, 

which are concentrations of Ca
+2

 typically seen before and after receptor stimulation of 

excitatory cells (23, 24).  In contrast, iNOS also requires bound Ca
+2

/CaM, but its affinity 

for CaM is so great that it is always bound and is therefore not influenced by levels of 

intracellular Ca
+2

 (25).  There is also a size variation between the isoforms, with iNOS 

and eNOS having masses of 130 kDa and 134 kDa, respectively, while nNOS is 

somewhat larger at 160 kDa, due to an extra 250 amino acid sequence containing a PDZ 

domain at its amino terminus, which is involved in the cellular targeting of this isoform 

(26, 27).  eNOS contains N-terminal myristoylation and palmitoylation sites that regulate 

its localization to plasmalemmal caveolae (28). 

 

Physiological Roles of NO 

 NO is involved in many important physiological functions.  NO formed by nNOS 

in neurons acts as a neurotransmitter in the central and peripheral nervous systems.  In the 

central nervous system, NO can be involved in processes such as pain perception, 
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neuronal plasticity, memory formation, and weight and appetite control (26, 29).  In the 

peripheral nervous system, NO acts as an inhibitor of non-adrenergic, non-cholinergic 

nerves that relax smooth muscles in the gastrointestinal, respiratory, vascular, and 

urogenital systems (29).  Alternate splice variants of nNOS are also found in penile tissue 

and skeletal muscle (30).  NO released by endothelial cells acts as a regulator for the 

vascular system, causing vascular smooth muscle relaxation through its interaction with 

soluble guanylate cyclase (2).  Endothelium-derived NO can also regulate platelet 

aggregation and cardiac load (31).  iNOS is expressed primarily in cells of the immune 

system, such as macrophages, but can also be found in astrocytes, chondrocytes, 

hepatocytes, and myocytes (32).  NO produced by iNOS is involved in host-defense 

mechanisms to eliminate invading parasites and microbes, as well as playing a role in 

wound healing by promoting collagen synthesis and angiogenesis (33, 34). 

 

Pathophysiology of NO 

 Although NO plays a role in many important physiological processes, changes in 

the amount of NO produced can result in pathology.  Overproduction of NO or the 

superoxide ion as a result of nNOS dysfunction is associated with several 

neurodegenerative disorders, including Huntington’s disease, ischemia, stroke, 

Alzheimer’s disease, migraines, schizophrenia, Parkinsons’s disease, and multiple 

sclerosis (26, 35-37).  Excessive production of NO by iNOS is involved in cerebral 

ischemia and stroke, as well as septic shock (38, 39).  Chronic overexpression of iNOS 

may be involved in autoimmune disorders such as rheumatoid arthritis, inflammatory 

bowel disease, diabetes, psoriasis, and myocardial dysfunction (34, 40, 41). 



 7 

 Underproduction of NO has been implicated in the etiology of several diseases as 

well.  Deficiency of NO plays an important role in models for hypertension and 

atherosclerosis (33, 42).  Patients with diabetes and the elderly are known to have an 

increased incidence of impotence that is paralleled with a loss of penile NOS activity (43, 

44).  Impotence is a common side effect in patients taking guanabenz.  When 

administered to rats, guanabenz was shown to inactivate nNOS and cause the loss of 

nNOS protein in penile tissue (45-47).  Cigarette smoke has been shown to be an 

inhibitor of nNOS, which accounts for the high prevalence of impotence, hypertension 

and cardiovascular disease seen in smokers (48, 49).  

 

NOS as a Therapeutic Target 

 Since disruptions in the normal production of NO have been implicated in many 

disease states, NOS is a potential therapeutic target for controlling NO production.  

Impaired NOS function seen in smokers and patients with Type II diabetes has been 

ameliorated by treatment with the NOS cofactor BH4 (50, 51).  Similarly, administration 

of the NOS substrate, L-arginine, has been used to treat decreased NO production seen in 

conditions such as pulmonary hypertension and ischemia-reperfusion injury (52, 53). 

 NOS inhibitors may be useful for conditions where excessive NO production is 

causing a specific pathology.  Most inhibitors are analogues of the substrate L-arginine, 

and are able to bind to the catalytic site of NOS.  Of these analogues, there are two types 

of inhibitors: reversible inhibitors and irreversible inactivators.  Reversible inhibitors 

simply compete with the substrate for binding in the active site of NOS to cause loss of 

activity.  Examples of this type of inhibitor include N
G
-methyl-L-arginine and the slowly 
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reversible inhibitors N
G
-nitro-L-arginine and N

G
-nitro-L-arginine methyl ester (2).  

Irreversible (metabolism-based) inactivators are for the most part similar in structure to 

the substrate, and they are metabolized by the enzyme to a highly reactive intermediate 

that can then covalently modify and ultimately inactivate the enzyme (54).  The covalent 

modification seen with these compounds is irreversible, giving this class of compounds 

the nickname of suicide inactivators, since the enzyme catalyzes its own demise.  This 

type of compound has also been studied extensively with the cytochrome P450 enzymes 

(55).  Compounds such as aminoguanidine, N
G
-methyl-L-arginine, and guanabenz are 

examples of suicide inactivators of NOS (56).  Another group of NOS inhibitors are those 

that compete for binding at both the substrate and BH4 binding site (57).  These 

compounds are often similar in structure to BH4, and include compounds such as 7-

nitroindazole (57). 

 

Post-Translational Regulation of NOS 

 NO cannot be stored, released, or inactivated like classical neurotransmitters (58), 

and because of its potent chemical reactivity and high diffusibility, the regulation of NOS 

is extremely important for regulating levels of NO.  There are many post-translational 

mechanisms for regulating NOS, including lipid modifications, phosphorylation, and 

interactions with various proteins (59).  eNOS cellular localization can be regulated by 

myristoylation, palmitoylation, farnesylation, and acetylation within the oxygenase 

domain (60).  eNOS and nNOS are both phosphorylated in their oxygenase domains (61, 

62).  A variety of proteins have been shown to interact with NOS enzymes, such as PIN 

(protein inhibitor of nNOS) which interacts with the PIN binding domain of nNOS and is 
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believed to be involved in destabilizing the dimer (63), CAPON (carboxy-terminal PDZ 

ligand of nNOS), which interacts with the PDZ domain of nNOS and can restrict NO 

generation (64), calmodulin (65), caveolin-1 and caveolin-3, which affects localization of 

eNOS within caveolae (66). 

The NOS enzymes are also regulated by protein chaperones.  Hsp90 (heat-shock 

protein 90) enhances the activity of all three NOS isoforms, as was shown in intact cells 

(67-70) and by activation assays with purified proteins (71-73).  NOS activity is 

Ca
2+

/CaM-dependent, and several signaling pathways initiate nNOS and eNOS activity 

by raising intracellular Ca
2+

 concentrations.  Studies with purified proteins show that 

CaM and Hsp90 increase the binding of each other to both eNOS and nNOS (71-74).  

Hsp90 also protects nNOS from proteasomal degradation.  In the presence of the Hsp90 

inhibitor geldanamycin, which blocks hsp90 function, nNOS protein levels decreased by 

50% in HEK293 cells, due to enhanced turnover of NOS (68).   Additionally, the NOS 

activity in these cells was reduced by 50% (68), implying that hsp90 is important for both 

nNOS stability and function in the intact cell. 

In contrast to the stabilizing action of Hsp90, Hsp70 (heat-shock protein 70), and 

its cochaperone Hsp40 (heat-shock protein 40) are involved in the ubiquitination of many 

proteins, including nNOS (75-77).  There is considerable evidence that Hsp70 promotes 

degradation of proteins, including nNOS, by promoting ubiquitination mediated by 

chaperone-dependent E3 ubiquitin ligases (78). 
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Ubiqutination and Degradation of NOS 

 The ubiquitin-proteasome system is the major degradation pathway for short-

lived, regulatory proteins such as NOS.  In this pathway, a dysfunctional or altered 

protein is selectively recognized for ubiquitination, a process whereby an ubiquitin 

molecule is conjugated to a lysine residue by three ubiquitinating enzymes — E1 

ubiquitin-activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase 

(Figure 1.3) (79).  This process repeats, leading to the formation of a polyubiquitin chain, 

which then targets the protein for proteolysis by the 26S proteasome, where it is 

hydrolyzed to small peptides and the ubiquitin is recycled (79, 80).  There is one known 

E1 enzyme, whereas there are several E2 enzymes and a large number of E3 enzymes 

(81).  The E3 ligases can be separated into three main groups based on their mechanisms 

of action: a covalent mechanism (Homologous to E5AP C-Terminus (HECT)-domain 

E3s), a non-covalent mechanism (Really Interesting New Gene (RING) finger E3s), and a 

chaperone dependent mechanism (U-box E3s) (81). An example of the latter is CHIP (C-

terminus of hsp70-interacting protein), which is an E3 ligase for nNOS that interacts 

through a tetratricopeptide repeat (TPR) domain with both hsp70 and hsp90 (82, 83).  

Although I will show in Chapter II that CHIP is the major E3 ligase for nNOS in a 

physiological system, Parkin is another Hsp70-dependent E3 ligase that has been shown 

to ubiquitinate nNOS in CHIP knockout cells (78). 
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Figure 1.3  Ubiquitin-proteasome system 

 

Recognition of substrates for ubiquitination is a highly selective process that 

depends on the availability of an ubiquitinatable lysine residue as well as the appropriate 

E3 ligase (84).  Specific protein motifs that are known to trigger ubiquitination include 

the N-end rule, in which specific N-terminal residues stimulate rapid polyubiquitination 

and degradation in vivo (85); a conserved carboxy-terminal domain in the yeast protein 

Rpb1 (RNA polymerase II) which contains a heptapeptide repeat sequence SPTSPSY 

that is recognized by the E3 ligase Rsp5 (86); and a proline-rich motif in the human 

epithelial sodium channel that, when mutated, impairs its degradation in the heritable 

disorder Liddle’s syndrome (87).  Other examples of triggers for ubiquitination include 

phosphorylation of the N-terminal regulatory domain of NF-kB (84) and exposure of 

hydrophobic protein surfaces seen with the yeast transcription factors MAT1 and 

MAT2 (84).   

In the case of nNOS, exposure of hydrophobic residues in the heme active site 

cleft is proposed as a possible trigger for the ubiquitination and degradation of the 

enzyme (75).  The recognition of hydrophobic regions by molecular chaperones may be 

used for protein quality control of misfolded or abnormal proteins.  It has been shown, for 
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example, that suicide inactivation of nNOS enhances its degradation (47), and that 

overexpression of CHIP enhances ubiquitination of nNOS in HEK293 cells (75).  CHIP 

has also been shown to ubiquitinate iNOS (88).  As an alternative role in protein quality 

control, CHIP has been shown to play a role in the cellular localization of eNOS, by 

redistributing eNOS to inactive detergent-insoluble pools, when Hsp90 is inhibited (89).   

Another known trigger for nNOS ubiquitination is destabilization of the dimer.  

The inactive, monomeric form of nNOS is preferentially ubiquitinated and degraded over 

the enzymatically active homodimer (90, 91).  Moreover, the slowly reversible inhbitor 

N
G
-nitro-L-arginine can stabilize and protect nNOS from degradation (91).  

Tetrahydrobiopterin depletion is another method by which nNOS ubiquitination and 

degradation is enhanced.  An inhibitor of the de novo synthesis of BH4, 2,4-diamino-6-

hydroxypyrimidine, decreased the total amount of nNOS dimer and enhanced 

ubiquitination (92).  Additionally, supplementing in vitro ubiquitination and degradation 

of nNOS with BH4 protects it from both ubiquitination and degradation (92).  Moreover, 

guanabenz-induced depletion of BH4 and enhanced degradation can be prevented with 

supplementation of BH4 (93). 

 

Thesis Rationale 

 In addition to enhancing ubiquitination of nNOS in HEK293 cells, CHIP has been 

found in heterocomplexes with Hsp70 coimmunoabsorbed with nNOS from HEK cytosol 

(75).  Also, in a purified system containing nNOS, E1, E2, and CHIP, directed 

ubiquitination of nNOS occurred in a manner that was enhanced by Hsp70 (75).  

However, it is unknown what role Hsp70 and CHIP play in the ubiquitination of nNOS in 
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more physiologically relevant models of ubiquitination.  Because CHIP also interacts 

with Hsp90 by binding to the TPR acceptor site with the TPR domain of CHIP (82, 83), it 

is possible Hsp90 may also play a role in the ubiquitination of nNOS.  Thus, Chapter II 

focuses on determining the effects of Hsp90 and Hsp70 on nNOS ubiquitination by a 

physiological ubiquitination system. 

A possible trigger for ubiquitination after suicide inactivation of nNOS was 

proposed to be the exposure of hydrophobic surfaces in the active site cleft (75).  It is not 

known whether the covalent modifications within the cleft lead to a more global 

unfolding of the enzyme, or if subtle alterations to the active site cleft are sufficient for 

triggering the ubiquitination of nNOS.  In Chapter III, I studied the ubiquitination of a 

mutant form of the enzyme that serves as a tool for understanding the labilization of 

nNOS.  This mutant, the C331A nNOS mutant, has decreased substrate binding, but is 

otherwise intact and is enzymatically active (94).  However, as I show in this chapter, it 

undergoes more rapid proteasomal degradation than wild-type nNOS. 

Identification of the site(s) of ubiquitination is an important step in determining 

the process by which a protein becomes recognized by chaperones and then targeted to 

the ubiquitin-proteasome system for degradation.  Studies have indicated the ability of 

Hsp90 and calmodulin to block the ubiquitination of nNOS in vitro (95), however it is 

unknown where the exact site(s) of ubiquitination of nNOS occurs.  Chapter III 

investigates the site(s) of ubiquitination of nNOS.  As I show in this chapter, the 

oxygenase and calmodulin-binding domains play important roles in regulating nNOS 

turnover. 
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The Specific Aims of my thesis are: 

I. To determine the role of Hsp90 and Hsp70 on nNOS ubiquitination by 

a physiological ubiquitination system. 

II. To examine the ubiquitination of a C331A mutant of nNOS as a 

model for suicide-inactivated nNOS. 

III. To determine the site(s) of ubiquitination of nNOS. 

 

These studies will address how nNOS becomes a substrate for ubiquitination and 

proteasomal degradation, and investigate the proteins that are involved in the targeting of 

nNOS for this process.  Understanding the process by which dysfunctional proteins are 

selectively culled for ubiquitination is important for determining the ultimate 

physiological effects of drugs and other xenobiotics that can produce dysfunctional 

proteins and help predict potential drug toxicities. 
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CHAPTER 2 

 

OPPOSING ACTIONS OF HSP90 AND HSP70 ON THE UBIQUITINATION OF 

NEURONAL NITRIC OXIDE SYNTHASE 

 

 

Summary 

 

 NO production by neuronal nitric oxide synthase (nNOS) requires calmodulin and 

is enhanced by the chaperone Hsp90, which cycles dynamically with the enzyme.  The 

proteasomal degradation of nNOS is enhanced by suicide inactivation and by treatment 

with Hsp90 inhibitors, the latter suggesting that dynamic cycling with Hsp90 stabilizes 

nNOS.  Here, I use the classic ubiquitinating system, prepared by DE52 chromatography 

of reticulocyte lysate, to show that Hsp90 inhibits nNOS ubiquitination.  Like the 

established Hsp90 enhancement of NO synthesis, Hsp90 inhibition of nNOS 

ubiquitination is Ca
2+

/calmodulin-dependent, suggesting that the same interaction of 

Hsp90 with the enzyme is responsible for both enhancement of nNOS activity and 

inhibition of ubiquitination.  I also show that methylene blue, an inhibitor of Hsp70 

ATPase activity, inhibits nNOS ubiquitination by the DE52-retained fraction of 

reticulocyte lysate, and the block in ubiquitination is overcome by addition of purified 

Hsp70.  Additionally, nNOS ubiquitination is inhibited by anti-CHIP serum.  This 

suggests that Hsp70-directed CHIP E3 ligase activity is responsible for nNOS 

ubiquitination in this system.  Thus, the two chaperones in the Hsp90/Hsp70-based 
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chaperone machinery, have opposing actions on nNOS ubiquitination, with Hsp70 

stimulating and Hsp90 inhibiting.  We envision that as nNOS undergoes toxic damage, 

the heme/substrate binding cleft opens, exposing hydrophobic residues as the initial step 

in unfolding.  As long as Hsp90 can form even transient complexes with the opening 

cleft, ubiquitination by Hsp70-dependent E3 ligases, like CHIP, is inhibited.  When 

unfolding of the cleft progresses to a state that cannot cycle with Hsp90, Hsp70-

dependent ubiquitination is unopposed.  In this way, the Hsp70/Hsp90 machinery makes 

the quality control decision for stabilization versus degradation of nNOS. 

 

Introduction 

Both the function and turnover of a wide variety of signaling proteins, such as 

steroid receptors and protein kinases, are regulated by Hsp90 (reviewed in Ref. 1). These 

Hsp90 ‘client’ proteins are assembled into complexes with the chaperone by a 

multichaperone machinery in which Hsp90 and Hsp70 function together as essential 

components (1). Formation of heterocomplexes with Hsp90 stabilizes client proteins, and 

treatment with an Hsp90 inhibitor such as geldanamycin uniformly triggers their 

degradation (2). Degradation of the Hsp90-regulated signaling proteins occurs via the 

ubiquitin-proteasome pathway, which in this case is initiated by Hsp70-dependent E3 

ubiquitin ligases, such as CHIP (3) and parkin (4).  

 The interaction with Hsp90 modulates the ligand binding clefts in client signaling 

proteins to increase the efficiency of binding of ligands, such as steroids or ATP 

(reviewed in Refs. 5 and 6), and the proteins constantly undergo cycles of Hsp90 

heterocomplex assembly and disassembly in the cytoplasm and nucleoplasm (1). Two 
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types of cycling with Hsp90 have been recognized. The classical client signaling proteins 

form Hsp90 heterocomplexes that are stable enough to be isolated and analyzed 

biochemically. For lack of a better term, we call this ‘stable cycling’ with Hsp90, and 

these proteins are stringently regulated by the chaperone (6). In contrast, other signaling 

proteins form Hsp90 heterocomplexes that rapidly disassemble such that no (or only trace 

amounts of) Hsp90 heterocomplexes are recovered from cell lysates. We call this 

‘dynamic cycling’, and the activity and turnover of these proteins are not as affected by 

Hsp90 inhibitors as the classical client proteins (5,6). 

 The nitric oxide synthases (NOSs), including endothelial NOS (eNOS), neuronal 

NOS (nNOS) and inducible NOS (iNOS), are signaling proteins whose activity is 

enhanced by Hsp90, as shown both by studies in intact cells (7–10) and by direct 

activation assays with purified proteins (7,10–14). NOS activity is Ca
2+

/calmodulin 

(CaM)-dependent, and several signaling pathways initiate nNOS and eNOS activity by 

raising intracellular Ca
2+

 concentration. Studies with purified proteins show that CaM and 

Hsp90 increase the binding of each other to both eNOS and nNOS (11,12,14,15). Both 

direct binding of purified Hsp90 to purified eNOS and nNOS and activation of their 

activities have been demonstrated in the absence of ATP and Hsp70 (7,14,15). This 

stands in contrast to the assembly of stable Hsp90 complexes with steroid receptors, for 

example, where both receptor-bound Hsp70 and Hsp90 must pass through at least one 

complete ATPase cycle (1). Thus, the observations made with Hsp90 regulation of eNOS 

and nNOS differ from the classic client signaling proteins, yet, there are similarities 

between them. 
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 For example, formation of Hsp90 heterocomplexes with the glucocorticoid 

receptor (GR), the most studied client protein, promotes high affinity ligand binding, thus 

facilitating response at low concentrations of steroid (1). Similarly, in Sf9 insect cells, 

which have a low level of endogenous heme, Hsp90 promotes heme binding by apo-

nNOS, with concomitant conversion to the enzymatically active holo-nNOS dimer 

(8,16,17). Also, like the classic client signaling proteins, such as the GR (18), treatment 

of cells with geldanamycin leads to nNOS degradation via the ubiquitin-proteasome 

pathway (8,19). In that Hsp90 regulation of client signaling protein function reflects the 

ability of the chaperone to modulate ligand binding clefts (5,6), it is reasonable to predict 

that Hsp90 stabilization of client proteins ensues from the same cleft interaction, yet there 

is no evidence for this. 

 nNOS is a particularly useful model for exploring a relationship between Hsp90 

stabilization of the protein and its interaction with the ligand binding cleft. Certain 

mechanism-based inactivators, such as N
G
-amino-L-arginine (NAA) and the 

antihypertensive drug guanabenz, cause accelerated nNOS degradation (19). Guanabenz 

is an antihypertensive drug that produces impotence and inhibits nNOS activity, with 

accompanying loss of immunodetectible enzyme (20). In cultured cells, guanabenz has 

been shown to enhance the proteasomal degradation of nNOS (19). Guanabenz treatment 

leads to the oxidation of tetrahydrobiopterin and formation of a pterin-depleted nNOS 

that is catalytically inactive (21). The loss of tetrahydrobiopterin from its binding site 

within the heme/substrate binding cleft destabilizes the nNOS dimer and enhances nNOS 

ubiquitination (22). Many of the other inactivators cross-link heme to the enzyme 

(23,24), a modification that was shown in a myoglobin model to cause opening of the 
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heme binding cleft (25) to yield a more unfolded state of the protein (26). The reaction of 

the inactivator in the heme/substrate binding cleft triggers nNOS ubiquitination and 

proteasomal degradation (19,27). 

 In contrast to the stabilizing action of Hsp90, Hsp70 and its cochaperone Hsp40 

are required for the degradation of many proteins (28, 29).  There is considerable 

evidence that Hsp70 promotes degradation of proteins by promoting ubiquitination 

mediated by chaperone-dependent E3 ubiquitin ligases.  The most studied of these is 

CHIP (carboxy terminus of Hsc70-interacting protein), a 35 kDa U-box E3 ubiquitin 

ligase (30).  CHIP binds to Hsc/Hsp70 through its amino-terminal tetraticopeptide (TPR) 

domain (31, 32), and it binds to the UBCH5 family of E2 ubiquitin conjugating enzymes 

through a carboxy-terminal U-box (33).  Parkin is another E3 ligase (34) that is targeted 

to substrate by Hsp70 (35), and for some proteins CHIP and parkin are functionally 

redundant in promoting degradation (4).  For example, overexpression of either CHIP or 

parkin increases degradation of nNOS (4, 36).  CHIP promotes ubiquitination of purified 

nNOS when it is present as the E3 ligase component in a purified ubiquitinating system, 

and this ubiquitination is promoted by purified Hsp70/Hsp40 (36, 37). 

 Most of what is known about the roles of Hsp70 and CHIP in the degradation of 

proteins comes from Hsp70 or CHIP overexpression experiments.  To enhance 

mechanistic understanding of Hsp70-dependent processes in general, it would be useful 

to have a small molecule inhibitor of Hsp70, much as geldanamycin has been so useful in 

probing Hsp90-dependent effects.  To this end, the Gestwicki laboratory employed a 

high-throughput chemical screen to identify compounds that inhibit Hsp70 ATPase 

activity.  An inhibitor identified in the compound library was methylene blue, which was 
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shown to interact with purified Hsp70 by NMR spectroscopy (38).  Yoshi Morishima also 

showed (submitted manuscript) that methylene blue inhibits the generation of steroid 

biding activity of the glucocorticoid receptor (GR), an established physiological action of 

Hsp70 (1).  Activation of GR steroid binding activity by reticulocyte lysate requires 

Hsp70 (39), and it was shown that the methylene blue inhibition of activation is specific 

for the Hsp70 component of the Hsp90/Hsp70-based, multiprotein chaperone machinery. 

 The goal of this Chapter is to determine the effects of Hsp90 and Hsp70 on nNOS 

ubiquitination by a physiological ubiquitination system.  The system is the DE52-retained 

fraction of rabbit reticulocyte lysate.  This is the classic system that was originally used to 

resolve the components of the ubiquitin-protein ligase pathway (40).  We first show that 

calmodulin inhibits nNOS ubiquitination in this system.  However, calmodulin produces 

no inhibition of nNOS ubiquitination by a DE52 pool of reticulocyte lysate proteins 

eluted prior Hsp90.  Addition of Hsp90 to this pool inhibits ubiquitination, showing it is 

the chaperone protein and not Ca
2+

/calmodulin that is the direct inhibitor.  We then use 

methylene blue to probe the role of Hsp70 in nNOS ubiquitination by the DE52-retained 

fraction of reticulocyte lysate.  Methylene blue inhibits nNOS ubiquitination, and the 

block in ubiquitination is overcome by addition of purified Hsp70.  Additionally, we 

show that nNOS ubiquitination is inhibited by anti-CHIP serum.  This suggests that 

Hsp70-directed CHIP E3 ligase activity is responsible for nNOS ubiquitination in this 

system.  Taken together, the data presented show that the two principal components of 

the Hsp90/Hsp70-based chaperone machinery have opposing actions on nNOS 

ubiquitination by a physiological system, with Hsp70 stimulating and Hsp90 inhibiting. 
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Experimental Procedures 

 Materials.  Untreated rabbit reticulocyte lysate was from Green Hectares (Oregon, 

WI).  Protein A-Sepharose, rabbit polyclonal anti-nNOS, and purified bovine calmodulin 

were purchased from Sigma.  GST-tagged ubiquitin and ubiquitin aldehyde were from 

Boston Biochem (Cambridge, MA).   

 Expression and Purification of nNOS, Hsp90, and Hsp70. Rat nNOS was 

expressed in Sf9 insect cells using a recombinant baculovirus and purified by 2’,5’-ADP 

Sepharose and gel-filtration chromatography as described previously (8). Heme was 

added as an albumin conjugate during the expression to convert all of the nNOS to the 

holo-nNOS dimer (8). Hsp90 and Hsp70 were purified from rabbit reticulocyte lysate by 

sequential chromatography on DE52, hydroxylapatite, and ATP-agarose as described 

previously (41).  

 In Vitro Ubiquitination of nNOS by DE52-retained Fraction of Reticulocyte 

Lysate. The DE52-retained fraction of rabbit reticulocyte lysate was prepared as 

described previously (40). For the experiments in Fig. 2.1, purified nNOS (2 µM) was 

prebound with calmodulin at the indicated concentrations in the presence of 200 µM 

CaCl2 in a total volume of 100 µl of HKD buffer (10 mM Hepes, pH 7.4, 100 mM KCl, 

and 5 mM DTT). An aliquot (5 µl) of this mixture was incubated for 1 h at 37 ºC with 4.5 

µl of DE52-retained fraction (final concentration 7 mg protein/ml), 0.3 mg/ml bovine 

serum albumin, 8.3 µM GST-tagged ubiquitin, 1 mM dithiothreitol, 10 mM ATP/Mg
2+

, 1 

µl of Complete Mini protease inhibitor cocktail, 0.6 mM N-Acetyl-Leu-Leu-Nle-CHO, 

and 0.8 µM ubiquitin aldehyde (deubiquitination inhibitor), adjusted to a final volume of 

20 µl with 1 mM Tris, pH 7.5.  For the experiments in Fig. 2.3, methylene blue was 
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added to incubations without Ca
2+

/calmodulin preincubation to yield the indicated final 

concentrations, with all samples containing a final concentration of 0.1% ethanol vehicle.  

Incubations were terminated by boiling with an equal volume of SDS-sample buffer 

containing 8 M urea and 2 M thiourea. 

 In Vitro Ubiquitination of nNOS by DE52 Fraction A. Prior to ubiquitination, 2 

µM purified nNOS was preincubated for 15 min at 30 ºC with 4.4 µM Hsp90 and/or 30 

µM of calmodulin with 0.5 mM CaCl2 in a total volume of 20 µl of HKD buffer. The 

reaction mixture was placed on ice and diluted 2-fold with HKD buffer. An aliquot (5 µl) 

of this reaction mixture was added to reticulocyte lysate DE52 Fraction A (41) at a final 

concentration of 5.5 mg/ml, 0.3 mg/ml BSA, 0.8 µM ubiquitin-aldehyde, 0.66 mM N-

Acetyl-Leu-Leu-Nle-CHO, 8.3 µM GST-tagged ubiquitin, 1 mM DTT, and 10 mM ATP. 

The mixtures were incubated for 1 h at 30 ºC in a total volume of 20 µl of 50 mM Tris-

HCl, pH 7.5. After incubation, 20 µl of sample buffer was added and an aliquot (20 µl) 

was loaded for Western blotting. 

 Gel Electrophoresis and Western Blotting. Aliquots (10 µl) from the 

ubiquitination reactions were boiled in SDS sample buffer (3.75% SDS, 15% glycerol, 6 

mg/ml DTT, and 0.02% bromophenol blue in 125 mM Tris-HCl, pH 6.8), resolved on 5% 

SDS-polyacrylamide gels, transferred to nitrocellulose membranes, and probed with anti-

nNOS (1:8000). Immunoreactive bands were visualized with the use of enhanced 

chemiluminescence reagent (Super Signal, Pierce) and X-Omat film (Eastman Kodak 

Co.).  The monoubiquitinated nNOS bands were scanned and the relative densities were 

determined with ImageJ software (http://rsb.info.nih.gov/ij/). Relative densities for 3 

experiments are presented in bar graphs as percent of control or percent of the condition 
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with the greatest ubiquitination ± S.E. Significance of difference was determined by one-

way ANOVA (Tukey’s Multiple Comparison Test). Statistical probability is expressed as 

*p<0.05, **p<0.01, ***p<0.001. 

 

Results 

 Calmodulin Inhibits nNOS Ubiquitination by the DE52-retained Fraction of 

Reticulocyte Lysate. We have previously reported that nNOS is ubiquitinated in vivo and 

that the predominant nNOS-ubiquitin conjugate detected in human embryonic kidney 

cells and in rat brain cytosol is the monoubiquitinated form (27). This ubiquitination was 

mimicked in vitro by incubating purified nNOS with an extract of rabbit reticulocyte 

lysate, ubiquitin and ATP (27). The extract of reticulocyte lysate consists of all of the 

lysate material that is retained by a DE52 column, and the DE52-retained fraction is the 

same as the lysate ‘fraction II’ that has been extensively used to study protein 

ubiquitination (40). The DE52-retained fraction contains Hsp90, Hsp70 and Hsp40, as 

well as the ubiquitinating enzymes, with all the components being present in the same 

ratios as exist in reticulocyte lysate (8,27). 

 Because of the mutual interaction between calmodulin and Hsp90 reported for the 

NOS enzymes (11,12,14,15), we asked whether CaM would affect nNOS ubiquitination 

by the DE52-retained fraction of reticulocyte lysate. As shown in Fig. 2.1, incubation of 

purified nNOS with the DE52-retained fraction and GST-ubiquitin yields a slower 

migrating band (lane 2) that has been previously demonstrated to be the major  
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Figure 2.1.  Calmodulin inhibition of nNOS ubiquitination by the DE52-

retained fraction of rabbit reticulocyte lysate.  nNOS monoubiquitin 

conjugates (nNOS-Ub) were detected by Western blot.  nNOS was incubated for 

1 h at 37 °C with a DE52-reatined fraction of rabbit reticulocyte lysate, ATP, 

GST-ubiquitin and the indicated concentrations of calmodulin as described under 

Methods.  Samples were Western blotted by probing with anti-nNOS.  Lane 1, 

incubation time 0; lanes 2-6, incubation time 1 h.  For bar graph, the relative 

amounts of nNOS-Ub in replicate experiments was determined by scanning and 

expressed as % of the 1 h control without calmodulin.  The values are the mean ± 

S.E. (n=3).  ** denotes significantly (p<0.01) lower than nNOS-Ub conjugates 

relative to the 1 h control without CaM. 
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monoubiquitinated nNOS product (27). Addition of calmodulin inhibits nNOS 

ubiquitination (lanes 3, 4, and 5) in a calcium-dependent manner, as indicated by the 

increased ubiquitination seen in the presence of EGTA (lane 6). The amount of 

ubiquitinated product relative to the control without added calmodulin is presented for 

several experiments in the bar graph of Fig. 2.1. It should be noted that because only a 

small fraction of nNOS is ubiquitinated, the assay contains a lot of the purified enzyme to 

serve as substrate, as is indicated by the broad bands of unmodified nNOS in Fig. 2.1. 

Given the large amount of nNOS, we have tested the effect of CaM over a range of 

concentrations that reflect a reasonable stoichiometry with the enzyme. To give a point of 

reference, the ratio of CaM to nNOS in our enzyme activity assay is 11:1 and the highest 

concentration of CaM (30 µM) in the ubiquitination mixture yields a ratio of 15:1.  

 Calmodulin Acts by Potentiating Inhibition of Ubiquitination by Hsp90.  The 

calmodulin inhibition of ubiquitination by Hsp90 shown in Fig. 2.1 could be due to 

calmodulin itself or to calmodulin potentiation of ubiquitination inhibition produced by 

Hsp90.  To examine this, Hwei-Ming Peng added calmodulin, purified Hsp90 or both to 

incubations containing purified nNOS and purified E1, E2, and E3 ubiquitinating 

enzymes.  Because CHIP was used as the E3 ubiquitin ligase, nNOS was preincubated 

with purified Hsp70/Hsp40 and ATP prior to ubiquitination.  In this purified system, 

calmodulin alone did not inhibit ubiquitination, Hsp90 alone inhibited ubiquitination, and 

calmodulin potentiated inhibition by Hsp90 (37). 

 These results with the purified ubiquitination system suggest that the inhibition of 

nNOS ubiquitination observed when calmodulin is added to the DE52 fraction of 

reticulocyte lysate in Fig. 2.1 is caused by Hsp90.  To demonstrate this, we prepared an 
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Hsp90-free pool of reticulocyte lysate fractions eluted from DE52 with a gradient of KCl, 

as was described in Dittmar et al. (41).  The pooled fractions that elute before Hsp90 

contain Hsp70, Hsp40, and nNOS ubiquitinating activity.  We have called this Hsp90-

free pool Fraction A (41).  As shown in Fig. 2.2, addition of calmodulin to Fraction A 

increases nNOS ubiquitination (cf. lanes 2 and 3) (probably because nNOS activation and 

formation of reactive oxygen species), whereas addition of Hsp90 inhibits ubiquitination 

(lanes 4 and 5). 

 Use of Methylene Blue as a Tool to Determine Hsp70 Dependence of nNOS 

Ubiquitination.  Because a good Hsp70 inhibitor has not been available, it has been 

difficult to establish whether or not ubiquitination events are Hsp70-dependent.  It is 

known, for example, that the reaction of certain inactivators in the heme/substrate binding 

cleft of nNOS triggers its ubiquitination and degradation (19, 27) and that overexpression 

of either CHIP or parkin promotes nNOS degradation (4, 36).  These data suggest that 

Hsp70 may be involved.  Ubiquitination of purified nNOS by a purified system using 

CHIP as the E3 ligase is promoted by purified Hsp70 (36, 37), but it is not known if 

nNOS ubiquitination by a physiological ubiquitinating system is Hsp70-dependent.  

Thus, we used the DE52-retained fraction of reticulocyte lysate to test the effectiveness 

of methylene blue in detecting the Hsp70 dependence of nNOS ubiquitination.   

 To determine if ubiquitination by this system requires Hsp70, nNOS was 

incubated with the DE52-retained fraction in the presence of increasing concentrations of 

methylene blue.  As shown in Fig. 2.3, methylene blue inhibits nNOS ubiquitination.  

The concentration of Hsp70 in this ubiquitinating system is ~5% of Hsp70 in whole  
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Figure 2.2.  Calmodulin does not inhibit and Hsp90 does inhibit nNOS 

ubiquitination by Fraction A of reticulocyte lysate.  nNOS was preincubated 

with 30 M CaM and/or Hsp90 as indicated and then incubated with Hsp90-free 

Fraction A of reticulocyte lysate.  The samples were Western blotted by probing 

with anti-nNOS. 
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Figure 2.3.  Methylene blue inhibits nNOS ubiquitination by the DE52-

retained fraction of reticulocyte lysate in an Hsp70-dependent manner.  

Purified nNOS was incubated 1 h at 37 °C with the DE52-retained fraction of 

reticulocyte lysate, ATP, GST-ubiquitin, and the indicated concentrations of 

methylene blue.  In addition 8 M purified Hsp70 was added to a sample of the 

DE52-retained fraction containing 1 M methylene blue.  Samples were 

Western blotted by probing with anti-nNOS.  Lane 1, incubation time 0; lanes 2-

7, incubation time 1 h.  For bar graph, the relative amount of monoubiquitinated 

nNOS (nNOS-Ub) in replicate experiments was determined by scanning and 

expressed as % of the one hour control without methylene blue.  The values are 

the mean ± S.E. (n=3).  Asterisks over the columns denote significantly different 

from control and asterisks over the line denote that condition 7 is significantly 

different from condition 5. 
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 reticulocyte lysate and much lower concentrations of methylene blue are effective in 

inhibiting ubiquitination.  Importantly, the inhibition produced by 1 M methylene blue 

is largely overcome when purified Hsp70 is added to the incubation mix (Fig. 2.3, lane 

7).  This shows that nNOS ubiquitination in a physiological system is Hsp70-dependent.  

This also suggests that methylene blue may be a useful reagent to detect Hsp70-

dependent effects, much as geldanamycin has been useful to probe for Hsp90-dependent 

effects. 

 nNOS Ubiquitination by the DE52-retained Fraction is CHIP-dependent.  

Although overexpression of CHIP promotes nNOS degradation (36) and CHIP directs 

nNOS ubiquitination in a purified ubiquitination system (36, 37), it is not known if CHIP 

is the dominant E3 ligase for nNOS ubiquitination by a physiological ubiquitination 

system.  To assess this, purified nNOS was incubated with the DE52-retained fraction of 

reticulocyte lysate in the presence of anti-CHIP antibody.  As shown in Fig. 2.4, nNOS 

ubiquitination is markedly reduced in the presence of anti-CHIP serum (lane 4) compared 

to nonimmune serum (lane 3).  Taken together, the data of Figs. 2.3 and 2.4 suggest that 

nNOS ubiquitination by this model physiological ubiquitinating system is both Hsp70-

dependent and CHIP-dependent, with the ubiquitinating activity being inhibited by 

methylene blue. 

 

Discussion 

 It is clear from Fig. 2.1 that nNOS ubiquitination by the reticulocyte lysate system 

is inhibited by Ca
2+

/calmodulin.  However, addition of CaM alone to a purified CHIP-

dependent ubiquitination system did not yield inhibition of ubiquitination, whereas  
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Figure 2.4.  CHIP is the major E3 ligase for nNOS ubiquitination by the 

DE52-retained fraction of rabbit reticulocyte lysate.  Purified nNOS was 

incubated with the DE52-retained fraction of reticulocyte lysate as above, but in 

the presence of 1% nonimmune serum or 1% anti-CHIP serum.  Lane 1, 

incubation time 0; lanes 2-4, incubation time 1 h. 
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Hsp90 inhibited ubiquitination by the purified system when added alone and the 

simultaneous presence of CaM increased this inhibition (37).  This suggests that the 

inhibition of nNOS ubiquitination observed in the reticulocyte lysate system when CaM 

is added could be due to Hsp90.  When nNOS is ubiquitinated by an Hsp90-free fraction 

of reticulocyte lysate, addition of CaM does not inhibit nNOS ubiquitination but addition 

of purified Hsp90 does inhibit (Fig. 2.2).  The fact that CaM interaction with nNOS 

enhances both Hsp90 stimulation of nNOS activity (14, 15) and Hsp90 inhibition of 

nNOS ubiquitination is consistent with a model in which the two effects of Hsp90 are 

caused by the same interaction of the chaperone with the enzyme. 

 It is established that Hsp90 binds to the oxygenase domain of eNOS (42).  This 

domain contains the heme/substrate binding cleft, and it is likely the site of Hsp90 

interaction with nNOS as well.  Inasmuch as CaM enhances electron flux from flavin 

bound to the reductase domain to the heme bound within the cleft (43), CaM binding is 

likely to affect the state of the cleft.  Although it is unclear exactly how CaM affects cleft 

structure/mobility, it is clear that CaM and Hsp90 affect both eNOS and nNOS in such a 

manner as to increase the binding of the other (11, 12, 14, 15).  It has been proposed that 

Hsp90 interacts directly with the heme/substrate binding cleft when it inhibits 

ubiquitination (6, 37).  It is this ability to inhibit ubiquitination that likely accounts for 

Hsp90 stabilization of a wide variety of proteins to proteasomal degradation.  Pratt et al. 

(5, 6) have previously proposed that Hsp90 acts to stabilize an open state of the ligand 

binding cleft, an effect that both facilitates substrate access to increase enzyme activity 

and prevents further cleft unfolding that triggers Hsp70-dependent ubiquitination. 
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 Several laboratories have been interested in developing small molecule inhibitors 

of Hsp70 for potential use in the treatment of cancers as well as neurodegenerative 

diseases characterized by the accumulation of aberrant proteins (44-49).  Methylene blue 

was identified in a screen for compounds that inhibit Hsp70 ATPase activity (38).  Unlike 

geldanamycin, which binds in the unique nucleotide binding pocket of Hsp90 and 

produces effects that are quite specific for inhibition of Hsp90 family proteins in 

eukaryotes (1), methylene blue has multiple cellular and molecular targets, including 

multiple neurotransmitter systems, ion channels and enzymes (reviewed in Ref. 50).  

Although modulation of cGMP signaling is often considered its most significant effect, 

the redox properties of methylene blue are utilized in the treatment of 

methemoglobinemias and ifosfamide-induced encephalopathy, and probably account for 

its use as an antimicrobial agent (50).  Given its multiple molecular targets, methylene 

blue would seem a priori to be an imprecise research tool for probing Hsp70-dependent 

effects.  Yet, we indicate here that this readily available compound can be used for this 

purpose. 

 Overexpression of CHIP has been shown to promote proteasomal degradation of a 

wide variety of normal and aberrant proteins.  Although overexpression of CHIP 

promotes the proteasomal degradation of nNOS (36), there is clear redundancy in E3 

ligase action on nNOS (4), and overexpression of one E3 ligase could favor a normally 

minor pathway of ubiquitination.  Thus, it was not previously established that Hsp70-

dependent CHIP activity is the principle physiologic pathway for nNOS ubiquitination.  

Methylene blue causes virtually complete inhibition of nNOS ubiquitination by the 

DE52-retained fraction of reticulocyte lysate (Fig. 2.3).  This finding suggests that all of 
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the nNOS ubiquitination by the reticulocyte system may be Hsp70-dependent.  Similarly, 

inhibition by anti-CHIP antibody (Fig. 2.4) suggests that CHIP is a major E3 ligase for 

nNOS in reticulocytes.  Even though methylene blue affects a variety of biochemical 

processes, including a well established inhibition of the NOS enzymes (51, 52), these 

data demonstrate that it can be used as a research tool to identify Hsp70-mediated 

processes in cell-free systems. 

 It has not been known how proteins that have undergone oxidative or toxic 

damage are recognized and shunted to the ubiquitin-proteasome pathway of degradation.  

A model of nNOS triage is presented in Fig. 2.5.  The effects of guanabenz and NAA 

serve as examples of such toxic damage that is targeted to the ligand binding cleft and 

triggers ubquitination of nNOS.  Other examples of mechanism-based protein damage 

triggering ubiquitination and proteasomal degradation have been discussed in a review 

(5).  It is reasonable to propose that, as proteins undergo such toxic damage, ligand 

binding clefts open, exposing hydrophobic residues as the initial step in unfolding.  As 

long as Hsp90 can form even transient complexes with the opening cleft, ubiquitination 

by Hsp70-dependent ubiquitin E3 ligases, like CHIP, is inhibited.  But a point is reached 

where unfolding of the cleft progresses to a state that cannot cycle with Hsp90, and 

ubiquitination directed by Hsp70-dependent E3 ligases is unopposed.  In this way, the 

Hsp70/Hsp90 chaperone machinery may be the major mechanism by which the quality 

control decision is made for degradation of damaged proteins via the ubiquitin-

proteasome pathway. 
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Figure 2.5.  Proposed model for triage of nNOS by the Hsp90/Hsp70-based 

chaperone machinery after mechanism-based inactivation.  Mechanism-based 

inactivation of nNOS by certain substrates leads to unfolding of the heme/substrate 

binding cleft to a degree that Hsp90 cannot cycle with the enzyme to inhibit 

ubiquitination by Hsp70-dependent E3 ligases, such as CHIP.  The solid crescent 

represents the CHIP TPR domain.  
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CHAPTER 3 

 
THE C331A MUTANT OF NEURONAL NITRIC-OXIDE SYNTHASE IS LABILIZED 

FOR HSP70/CHIP (C-TERMINUS OF HSC70-INTERACTING PROTEIN)-DEPENDENT 

UBIQUITINATION 
 

Summary 

 

It is established that suicide inactivation of neuronal nitric oxide synthase (nNOS) 

by drugs and other xenobiotics leads to ubiquitination and proteasomal degradation of the 

enzyme.  The exact mechanism is not known, although it is widely thought that the 

covalent alteration of the active site during inactivation triggers the degradation.  A 

mechanism that involves recognition of the altered nNOS by Hsp70 and its cochaperone 

CHIP, an E3-ubiquitin ligase, has been proposed.  To further address how alterations of 

the active site trigger ubiquitination of nNOS, we examined a C331A nNOS mutant, 

which was reported to have impaired ability to bind L-arginine and tetrahydrobiopterin.  

We show here that C331A nNOS is highly susceptible to ubiquitination by a purified 

system containing ubiquitinating enzymes and chaperones, by the endogenous 

ubiquitinating system in recticulocyte lysate fraction II, and by intact HEK293 cells.  The 

involvement of the altered heme cleft in regulating ubiquitination is confirmed by the 

finding that the slowly reversible inhibitor of nNOS, N
G
-nitro-L-arginine, but not its 

inactive D-isomer, protects the C331A nNOS from ubiquitination in all these 

experimental systems.  We also show that both Hsp70 and CHIP play a major role in the 
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ubiquitination of C331A nNOS, whereas Hsp90 protects from ubiquitination.  Thus, these 

studies further strengthen the link between the mobility of the substrate binding cleft and 

chaperone-dependent ubiquitination of nNOS.  These results support a general model of 

chaperone-mediated protein quality control and lead to a novel mechanism for substrate 

stabilization based on nNOS interaction with the chaperone machinery. 

 

Introduction 

Nitric oxide synthases (NOS) are cytochrome P450-like hemoprotein enzymes 

that catalyze the conversion of L-arginine to nitric oxide and citrulline by a process that 

requires NADPH and molecular oxygen (1).  There are three major mammalian isoforms: 

neuronal NOS (nNOS), endothelial NOS, and inducible NOS.  NOS is bidomain in 

structure with an oxygenase domain, which contains the binding site for the heme, L-

arginine, and tetrahydrobiopterin, and a reductase domain, which contains the binding 

sites for FMN, FAD, and NADPH (2).  NOS is a highly regulated enzyme requiring 

homodimerization and bound calmodulin for efficient electron transfer from the flavins to 

the heme moiety to enable synthesis of NO.  Another mechanism of regulation is the 

ubiquitination and proteasomal degradation of NOS (3).  Of particular pharmacological 

interest is the finding that certain drugs cause the suicide inactivation, covalent alteration, 

ubiquitination, and proteasomal degradation of nNOS (3-8).   This phenomenon is not 

unique to nNOS as it is well documented that the suicide inactivation of other P450 

cytochromes leads to covalent alteration, enhanced ubiquitination, and proteasomal 

turnover of the enzymes (9).  CHIP (carboxyl terminus of the Hsc70-interacting protein) 

has been shown to be an E3 ligase that ubiquitinates cytochromes P450 3A4 and 2E1 as 



 58 

well as nNOS (10-12).   The ubiquitination of nNOS by CHIP is enhanced in the 

presence of Hsp70 (8,10).  Moreover, suicide-inactivated nNOS was found to be 

selectively ubiquitinated by this Hsp70/CHIP system (8).  Other E3 ligases, such as gp78 

for CYP3A4 (12) and Parkin for nNOS (13),  have been identified and point to a 

redundancy in ubiquitin ligases for P450 cytochromes.  Nonetheless, the Hsp70/CHIP-

mediated ubiquitination of inactivated nNOS is a valuable model for the study of the 

cellular machinery that culls altered P450 enzymes.  

The mechanism of how these inactivated P450 enzymes, including inactivated 

nNOS, are culled for ubiquitination and degradation is not known, although it is widely 

thought that the covalent alteration of the active site during suicide inactivation of the 

enzyme somehow triggers the ubiquitination.  The covalent alterations that have been 

characterized include modification of the heme prosthetic group, modification of amino 

acid residues near the active site, as well as crosslinking of the heme to the protein 

(9,14,15).   In the case of nNOS, we have found that covalent alteration of the enzyme-

bound tetrahydrobiopterin also plays a role in labilizing the enzyme for ubiquitination 

and degradation (4,16).  At present, we do not know whether a slight opening of the 

active site cleft is a sufficient trigger for nNOS ubiquitination or if a more global 

unfolding of the enzyme must occur.   Suicide inactivators covalently alter specific active 

site moieties and this argues for a slight alteration of the heme/substrate binding cleft as 

the trigger, however, global unfolding cannot be ruled out.  This is especially true in 

cases where the heme prosthetic group is destroyed and the apoprotein is formed (15). 

 In the course of studies on the ubiquitination of nNOS, we have recently found 

that a C331A mutant of nNOS is highly susceptible to ubiquitination.  This particular 
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residue is one of two cysteine residues in a CXXXXC motif that provide the thiolate 

ligation for a tetradentate zinc binding site (17).    The zinc is a structural and not a 

catalytic feature of nNOS.  The C331A nNOS mutant was first described by Dr. Masters’ 

group and found to affect tetrahydrobiopterin and L-arginine binding (18).  As first 

isolated, this mutant was found to be inactive and unable to bind tetrahydrobiopterin, 

although the heme prosthetic moiety was intact.  Interestingly, prolonged incubation of 

C331A nNOS with high concentrations of L-arginine restores the ability to bind 

tetrahydrobiopterin and synthesize NO (18).  In this study we characterize the 

ubiquitination of this active form of C331A nNOS as a genetic model for a labilized form 

of nNOS.  We show that C331A nNOS is labilized for ubiquitination by a purified system 

of ubiquitinating enzymes and chaperones, by the endogenous ubiquitinating system in 

reticulocyte lysate fraction II, and by intact HEK293 cells.  Moreover, the C331A nNOS 

is stabilized by N
G
-nitro-L-arginine, a slowly reversible inhibitor that is known to 

stabilize wild type nNOS from ubiquitination and degradation.  The D-isomer had no 

effect, indicating that the effects of N
G
-nitro-L-arginine are specific for the heme active 

site cleft of C331A nNOS.  Thus, certain ligands are able to stabilize a conformation of 

C331A nNOS that is resistant to ubiquitination.  We have also verified that C331A nNOS 

is ubiquitinated in an Hsp70/CHIP-dependent manner and that Hsp90 opposes the 

ubiquitination, as was previously described for wild type nNOS (8,10).  Thus, the 

pathways for ubiquitination are the same for wild type and mutant enzymes.  These 

studies indicate the importance of conformational changes involving the heme active site 

cleft in determining nNOS interaction with Hsp70 that triggers ubiquitination of the 

enzyme. 
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Experimental Procedures 

Materials. Untreated rabbit reticulocyte lysate was from Green Hectares (Oregon, 

WI).  (6R)-5,6,7,8-Tetrahydro-L-biopterin (BH4) was purchased from Dr. Schirck’s 

Laboratory (Jona, Switzerland).  Protein A-Sepharose, ubiquitin, ATP, creatine 

phosphokinase, L-arginine, N
G
-nitro-L-arginine, N

G
-nitro-D-arginine, A23187, and rabbit 

polyclonal anti-nNOS were purchased from Sigma (St. Louis, MO).  HRP-tagged goat 

anti-rabbit secondary antibody was from Chemicon (Temecula, CA).  Rabbit polyclonal 

anti-CHIP antibody and N-Acetyl-Leu-Leu-Nle-CHO was from Calbiochem (Gibbstown, 

NJ).  MG132 was purchased from BIOMOL (Plymouth Meeting, PA).   GST-tagged 

ubiquitin, ubiquitin aldehyde, and ubiquitin activating enzyme (E1) were from Boston 

Biochem (Cambridge, MA).  Creatine phosphate was from Fluka (St. Louis, MO).  

Complete Mini protease inhibitor cocktail was from Roche Diagnostics (Indianapolis, 

IN).  Nickel-nitrilotriacetic acid (Ni-NTA)-agarose was from QIAGEN Inc (Valencia, 

CA).  The cDNA for rat neuronal NOS was kindly provided by Dr. Solomon Snyder 

(Johns Hopkins Medical School, Baltimore, MD).  The cDNA for His-HA-tagged 

ubiquitin was from Dr. Yi Sun (Univ. of Michigan).  The cDNA for expressing the 

UbcH5a−GST fusion protein was kindly provided by C. M. Pickart (Johns Hopkins 

Medical School, Baltimore, MD).  pET30aCHIP plasmid for expressing His-CHIP was 

kindly provided by C. Patterson (University of North Carolina, Chapel Hill, NC).  

Expression and Purification of nNOS, C331A nNOS, Hsp70, Hsp40, GST-tagged 

UbcH5a, and CHIP . The C331A construct in pCW was made using the site-specific 

mutagenesis approach described by Martasek et al.  (18).  The C331A-nNOS and wild 
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type nNOS pCW plasmid was transfected as described (19), except that BL21 E. coli 

cells were used.  The bacterially overexpressed wild type and mutant nNOS was purified 

by 2'5'-ADP Sepharose and mono Q ion exchange chromatography as described (20), 

except that 10 µM BH4 was present in the buffers used during purification.  The enzyme 

as isolated was active and further incubation with L-arginine did not increase the activity.    

His-CHIP was bacterially expressed and purified by Ni-NTA affinity chromatography as 

previously described (21).  Hsp90 and Hsp70 were purified from rabbit reticulocyte 

lysate by sequential chromatography on DE52, hydroxylapatite, and ATP-agarose as 

described previously (22).  YDJ-1, the yeast ortholog of Hsp40, was expressed in bacteria 

and purified by sequential chromatography on DE52 and hydroxylapatite as described 

previously (22).  GST-tagged UbcH5a (E2, ubiquitin carrier protein) was bacterially 

expressed and purified by GSH-Sepharose affinity chromatography as described (23). 

Assay for NOS activity. NO synthesis activity was determined by measuring the 

conversion of oxyhemoglobin to methemoglobin.  Aliquots (5.3 μl) of the reconstitution 

mixtures were added to an assay mixture containing 100 μM CaCl2, 100 μM L-arginine, 

100 μM BH4, 100 units/ml catalase, 10 μg/ml calmodulin, 25 μM oxyhemoglobin, and an 

NADPH regenerating system consisting of 400 mM NADP+, 10 mM glucose-6-

phosphate, and 1 unit/ml glucose-6-phosphate dehydrogenase, expressed as final 

concentrations, in a total volume of 180 μl of 50 mM potassium phosphate, pH 7.4.  The 

mixture was incubated at 37°C and the rate of oxidation of oxyhemoglobin was 

monitored by measuring the absorbance at λ401-411 nm with a microtiter plate reader. 

 In Vitro Ubiquitination of nNOS by DE52-retained Fraction of Reticulocyte 

Lysate. The nNOS was pretreated with Hsp70 and Hsp40 and then ubiquitinated.  In these 
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experiments, 5.0 µM Hsp70 and 0.5 µM Hsp40 were incubated for 20 min at 30 oC with 

1.5 µM nNOS, 10 µM BH4, and 2.5 µl of an ATP-regenerating system (50 mM ATP, 

250 mM creatine phosphate, 20 mM magnesium acetate, and 100 units/ml creatine 

phosphokinase) in a total volume of 25 µl of 50 mM Hepes, pH 7.5.   The reaction 

mixture was placed on ice and diluted 2-fold with 10 mM Hepes buffer, pH 7.4, 

containing 100 mM KCl, and 5 mM DTT.  To conjugate Ub to nNOS, an aliquot (5 µl) of 

this reaction mixture was incubated with a purified system containing an E1 ubiquitin 

activating enzyme (0.1 µM), an E2 GST-tagged UbcH5a (1.5 µM), His-tagged CHIP (4.0 

µM), GST-tagged ubiquitin (8.3 µM), 1 mM DTT, 10 mM MgCl2 and 10 mM ATP, 

expressed as final concentrations, for 1 h at 30 oC in a total volume of 20 µl of 50 mM 

Tris-Cl, pH 7.5.  After incubation, 20 µl of sample buffer was added and an aliquot (22 

µl) was loaded for Western blotting.   

In Vitro Ubiquitination of nNOS by Purified Ubiquitinating System. The nNOS was 

pretreated with Hsp70 and Hsp40 and then ubiquitinated.  In these experiments, 5.0 µM 

Hsp70 and 0.5 µM Hsp40 were incubated for 20 min at 30 oC with 1.5 µM nNOS, 10 

µM BH4, and 2.5 µl of an ATP-regenerating system (50 mM ATP, 250 mM creatine 

phosphate, 20 mM magnesium acetate, and 100 units/ml creatine phosphokinase) in a 

total volume of 25 µl of 50 mM Hepes, pH 7.5.   The reaction mixture was placed on ice 

and diluted 2-fold with 10 mM Hepes buffer, pH 7.4, containing 100 mM KCl, and 5 mM 

DTT.  To conjugate Ub to nNOS, an aliquot (5 µl) of this reaction mixture was incubated 

with a purified system containing an E1 ubiquitin activating enzyme (0.1 µM), an E2 

GST-tagged UbcH5a (1.5 µM), His-tagged CHIP (4.0 µM), GST-tagged ubiquitin (8.3 

µM), 1 mM DTT, 10 mM MgCl2 and 10 mM ATP, expressed as final concentrations, for 
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1 h at 30 oC in a total volume of 20 µl of 50 mM Tris-Cl, pH 7.5.  After incubation, 20 µl 

of sample buffer was added and an aliquot (22 µl) was loaded for Western blotting.   

Cell Culture and Transient Transfection. Human embryonic kidney (HEK) 293T cells 

were cultured in Dulbecco’s Minimum Essential medium supplemented with 10% (v/v) 

bovine calf serum.  Transient transfections of HEK293T cells were carried out with the 

use of a standard calcium phosphate method as previously described (26) in 10-cm plates.  

The wild type and C331A mutant of rat nNOS cDNA was subcloned from PVL1393 (27) 

into the EcoRI and NotI sites of pcDNA3.1+ .  His-HA-Ub cDNA in pcDNA3 was 

obtained from Dr. Yi Sun (Univ. of Michigan).  His-HA-Ub cDNA (4 µg) and nNOS 

cDNA (3.5 µg) were transfected into 70-80% confluent cells such that the total amount of 

cDNA was kept constant with vector plasmid.  Cells were transfected for 48 h and, where 

indicated, were treated with MG132 (10 µM) for the indicated times prior to harvesting.   

SDS-Polyacrylamide Gel Electrophoresis, Western blotting, and 

Immunoprecipitation. Cells from two 10-cm plates were harvested at 48 h after 

transfection and combined, washed with ice-cold phosphate-buffered saline (PBS), and 

sonicated in 0.4 ml of HS buffer (10 mM HEPES, pH 7.4, 0.32 M sucrose, 2 mM EDTA, 

6 mM PMSF, 10 mg/ml leupeptin, 2 mg/ml aprotinin, 10 mg/ml trypsin inhibitor, 10 mM 

sodium vanadate, 1% (w/v) NP-40, and 5 mM N-ethylmaleimide).  Homogenates were 

centrifuged for 30 min at 14,000 x g, and the supernatant was taken for 

immunoprecipitation of nNOS.    The nNOS was immunoadsorbed from ~3 mg of 

HEK293 cytosol with 15 μl of anti-nNOS IgG and 70 μl of protein A Sepharose (20%, 

w/v slurry) in a total volume of 400 μl of HS buffer for 2 h at 4 oC.  Immune pellets were 

added to 40 µl of sample buffer containing 5% (w/v) SDS, 20% (v/v) glycerol, 6 mg/ml 



 64 

DTT, and 0.02% (w/v) bromophenol blue in 125 mM Tris-HCl, pH 6.8.  After boiling, 40 

µl of the samples were resolved on 6% (w/v) SDS-polyacrylamide gels and transferred to 

nitrocellulose membranes for 2 h at 100 volts.  The blot was probed with anti-nNOS 

(0.01%, w/v) and then an HRP-tagged goat anti-rabbit secondary antibody (0.0025%, 

w/v) and the immunoreactive bands were visualized with the use of enhanced 

chemiluminescence reagent (Super Signal, Pierce) and X-Omat film (Eastman Kodak 

Co.).  The film was scanned and the nNOS-Ub was quantified by the use of ImageJ 

software (NIH). 

Nitrite and nitrate assay. HEK293T cells cultured in 10-cm plates were treated with 

A23187 (10 µM) for 2 h in 10 ml of medium.  Aliquots of medium (200 µl) were taken 

for assay of nitrite and nitrate as described (28).  In this procedure, nitrate reductase 

(Boehringer Mannheim) was used to convert the nitrate to nitrite, which was quantified 

by the use of the Griess regent.  Sodium nitrate in culture medium was used as a standard. 

 

Results 

C331A nNOS is Preferentially Ubiquitinated by Fraction II. With the use of a DE52-

retained fraction of reticulocyte lysate (fraction II), we compared the ubiquitination of the 

purified C331A mutant of nNOS to that of the wild type enzyme.   We have previously 

used the fraction II system, which has been extensively used to study protein 

ubiquitination (24), to characterize the ubiquitination of wild type nNOS (8).  In this 

system, the predominant ubiquitin conjugate detected is the mono-ubiquitinated form, 

although polyubiquitin conjugates also form.  The monoubiquitin conjugate is the 

predominant species in human embryonic kidney cells and rat brain cytosol (6).  We used 
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GST-tagged ubiquitin so that the conjugates could be more easily detected by Western 

blotting with anti-nNOS IgG.  As shown in Fig. 3.1A, the major ubiquitin conjugate of 

the C331A nNOS is also the monoubiquinated form (lane 2, left panel) although 

polyubiquitin conjugates, which can be visualized with extended exposure time, also 

form (lane 2, right panel).  As will be shown later, the changes in monoubiquitin levels 

parallel those of the polyubiquitin levels.  For simplicity, we chose to focus on 

quantification of the monoubiquitin conjugate in our studies.  Moreover, quantification of 

the monoubiquitin conjugate of the wild type nNOS has already shown that both 

functional inactivation of nNOS with suicide inactivators and inactivation of Hsp90 

enhance nNOS ubiquitination (8).  This is similar to observations made in intact cells and 

in vivo (7,27).  As shown in Fig. 3.1B, the time-dependent increase in the ubiquitination 

of C331A nNOS (triangles) is much greater than that of the wild type enzyme (squares).  

The ubiquitination is sensitive to ligands of nNOS.  As shown in Fig. 3.1C, the L-, but 

not D-, isomer of N
G
-nitroarginine decreases the ubiquitination of C331A nNOS.   

As shown in Fig. 3.2A, the omission of tetrahydrobiopterin from the incubation 

mixture has no effect on the ubiquitination of the C331A nNOS (open bars, cf. condition 

1 with condition 2) but greatly increases the ubiquitination of the wild type nNOS (solid 

bars, cf. condition 3 with 4).  The labilized wild type nNOS is protected from 

ubiquitination by L-, but not D-, N
G
-nitroarginine (solid bar, cf. condition 5 with 

condition 6).  In Fig. 3.2B, the concentration dependence of N
G
-nitro-L-arginine for 

protection against ubiquitination is presented for both the wild type (squares) and the 

C331A mutant of nNOS (triangles).  The N
G
-nitro-L-arginine protects the wild type 

nNOS and the C331A nNOS with an IC50 of 0.2 ± 0.3 µM and 8.7 ± 0.3 µM,  
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Fig. 3.1. C331A nNOS mutant is preferentially ubiquitinated in Fraction II by a 

process that is attenuated by N
G

-nitro-L-arginine, but not N
G

-nitro-D-arginine.  The 

ubiquitination of purified wild type and C331A mutant of nNOS by Fraction II was 

performed as described in Experimental Procedures.  A, nNOS-ubiquitin conjugates 

produced by fraction II without (lane 1) and with (lane 2) GST-ubiquitin.  The blot 

depicted in the right panel is the same blot as the left panel except that the blot was 

exposed to film for longer time to obtain the signals corresponding to the polyubiquitin 

bands.  B,  time-dependant formation of a higher molecular mass band that corresponds to 

the mono-ubiquitinated nNOS (nNOS-Ub).  A representative blot is shown in the upper 

panel.  The nNOS-Ub was quantified by the use of ImageJ software (NIH) and plotted in 

the lower panel.  Triangles, C331A nNOS ubiquitin conjugates; squares, wild type nNOS 

ubiquitin conjugates.  The values are the mean ± S.E. (n=3).  C, the effect of N
G
-nitro-L-

arginine (L-NNA) or N
G
-nitro-D-arginine (D-NNA) on the ubiquitination of C331A 

mutant of nNOS (C331A).  The N
G
-nitro-arginine compound was added to the 

ubiquitination mixture to give a final concentration of 25 µM and the amount of nNOS-Ub 

formed after 60 min of incubation was determined.  The ubiquitinated nNOS was 

measured as in B and the values are the mean ± S.E. (n=3).  Statistical probability is 

expressed as ***p<0.001. 
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Fig. 3.2.  Omission of tetrahydrobiopterin enhances the ubiquitination of wild type 

nNOS to the level seen for the C331A mutant of nNOS.   The ubiquitination of nNOS 

catalyzed by Fraction II was performed as described in Experimental Procedures.  A, the 

amount of ubiquitin conjugated to C331A mutant of nNOS (open bars) or to that of the 

wild type nNOS (solid bars) was measured after incubation for 1h at 37 C.  As indicated, 

tetrahydrobiopterin (BH4) was omitted in certain samples and N
G
-nitro-L-arginine (L-

NNA) or N
G
-nitro-D-arginine (D-NNA) were added in certain samples to give a final 

concentration of 2.5 µM.  B, the dependence on the concentration of N
G
-nitro-L-arginine 

(L-NNA) on the ubiquitination of wild type (squares) and C331A mutant (triangles) of 

nNOS.  Tetrahydrobiopterin was omitted from the incubation mixtures.  The values in 

both panels represent the mean ± S.E. (n=3).  Statistical probability is expressed as 

**p<0.01. 
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respectively.  The greater than 40-fold difference in IC50 values for N
G
-nitro-L-arginine 

likely reflects the greater conformational flexibility of the heme/substrate cleft inherent in 

C331A nNOS over that of the pterin-deficient wild type nNOS.   

The role of Hsp70 and CHIP in the Ubiquitination of C331A nNOS by Fraction II. 

CHIP, an Hsp70 cochaperone, has been shown to be an E3 ligase for nNOS by 

overexpression studies in HEK293T cells and in in vitro studies with purified CHIP and 

Hsp70 (10).  We examined the role of Hsp70 and CHIP in fraction II on the 

ubiquitination of C331A nNOS.  Methylene blue has been shown to inhibit the ATPase 

activity of Hsp70 (29) and to be a useful reagent for defining Hsp70-dependent 

ubiquitination (30).  As shown in Fig. 3.3A, methylene blue decreases the fraction II-

mediated ubiquitination of C331A nNOS in a concentration-dependant manner (lanes 2-

6).  Approximately 85% inhibition of ubiquitination is observed at 1 µM methylene blue 

(lane 5) and this inhibition is substantially blunted by the addition of purified Hsp70 (lane 

7).  Thus, C331A nNOS ubiquitination is dependent on Hsp70.  As indicated earlier, the 

changes measured in the monoubiquitin conjugate reflect the changes seen in the 

polyubiquitin conjugates.  As shown in Fig. 3.3B, both the monoubiquitin and 

polyubiquitin conjugates of C331A nNOS were quantified in samples from studies in Fig. 

3A and plotted.   There is a linear correlation (r2= 0.84) between the mono and 

polyubiquitin conjugates formed.  As shown in Fig 3.3C, the addition of 1% anti-CHIP 

antibody to the fraction II ubiquitination mixture decreases the ubiquitination of C331A 

nNOS by 40% (lane 4).  At a concentration of 2% anti-CHIP serum nearly complete 

inhibition of ubiquitination by reticulocyte lysate fraction II is observed (lane 5).  This 

suggests that CHIP is the major ubiquitin ligase for C331A nNOS in fraction II.  As a  
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Fig. 3.3. Hsp70 and CHIP dependence of the ubiquitination of C331A nNOS 

catalyzed by Fraction II.   The ubiquitination of C331A nNOS catalyzed by Fraction II 

was performed as described in Experimental Procedures, except that the indicated 

concentrations of methylene blue (MB) were added.  Samples were Western blotted by 

probing with anti-nNOS and an HRP-tagged goat anti-rabbit secondary antibody.  A, the 

relative amounts of nNOS-Ub from replicate experiments was determined by scanning 

and expressed as relative density and plotted.  Lane 1, time 0; lanes 2-7, time 60.  The 

values are the mean ± S.E. (n=3).  B, the amount of mono-ubiquitin conjugate in each 

sample in A was plotted against the amount of poly-ubiquitin conjugates.  The relative 

amount of polyubiquitin conjugate was determined by scanning the area depicted in Fig. 

3.1A.  A line was fit to the data with an r
2
 of 0.84.  C, CHIP is the major ubiquitin ligase 

for C331A nNOS ubiquitination.  The C331A nNOS was incubated with fraction II as 

above except that 2% nonimmune serum or 1% or 2% anti-CHIP serum was added as 

indicated.  Lane 1, incubation time 0; lanes 2-4, incubation time 1 h.  Statistical 

probability is expressed as **p<0.01, ***p<0.001. 
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control, we found that 2% non-immune serum has no significant effect on the 

ubiquitination (lane 3). 

Ubiquitination of C331A nNOS in an In Vitro System Containing Purified Ub-ligases. 

The ubiquitin ligase activity of CHIP has been observed in an in vitro system containing 

other required components of a ligase system, including purified ubiquitin activating 

enzyme (E1) and an ubiquitin conjugating enzyme (E2) (31-33).  CHIP was shown to be 

an ubiquitin ligase for nNOS with the use of an in vitro system containing purified nNOS, 

E1, E2, Hsp70, Hsp40 and CHIP (10).  We have used the same system to determine if 

CHIP acts as an ubiquitin ligase for C331A nNOS.  As shown in Fig. 3.4A, the purified 

ubiquitinating system in the presence of GST-tagged ubiquitin gives rise to 

predominantly polyubiquitin adducts of C331A nNOS consistent with that previously 

described for wild type nNOS (10).  Under the current conditions of excess 

tetrahydrobiopterin, there was greater ubiquitination of C331A nNOS over that for the 

wild type nNOS.  The polyubiquitin conjugates that were detected in the area indicated 

by the bracket were quantified and plotted in Fig. 3.4B.   The C331A nNOS is 

ubiquitinated to a greater degree than the wild type enzyme (cf. condition 1 with 

condition 2).  Moreover, the L-, but not D-, N
G
-nitroarginine protects C331A nNOS from 

ubiquitination by the purified protein system (cf. condition 3 with condition 4).  Thus, the 

findings with purified proteins are highly similar to those obtained with fraction II.  As 

shown in Fig. 3.4B, the omission of CHIP (condition 6) decreases the ubiquitination of 

C331A nNOS to the level seen in the absence of GST-ubiquitin (condition 5).  Thus, 

CHIP functions as an ubiquitin ligase for C331A nNOS.  The omission of added Hsp70 

(condition 7) decreased ubiquitination by approximately 40%, consistent with previous  
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Fig. 3.4. C331A nNOS is preferentially ubiquitinated in an in vitro system 

containing purified Hsp70/Hsp40, E1, E2, and CHIP.  The ubiquitination of nNOS 

catalyzed by the purified ubiquitination system was performed as described in 

Experimental Procedures.  A, immunoblot showing the ubiquitin conjugate of wild type 

nNOS (WT) or C331A mutant of nNOS (C331A).  B, the ubiquitin conjugate of wild 

type nNOS (lane 1) or C331A mutant of nNOS (lane 2) was quantified and plotted.  The 

effects of N
G
-nitro-L-arginine (L-NNA) or N

G
-nitro-D-arginine (D-NNA) on the 

ubiquitination of C331A mutant of nNOS are also shown (lane 3 and lane 4).  The effect 

of omission of GST-tagged ubiquitin (GST-Ub, lane 5), CHIP (lane 6), or Hsp70 (lane 

7) are also shown.  Statistical probability is expressed as **p<0.01, ***p<0.001. 
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reports showing that the purified preparations of nNOS have Hsp70 as a contaminant 

(10). 

Stability of C331A nNOS and Wild Type nNOS and the Effect of Arginine on the 

Stability and Ubiquitination of C331A nNOS In Vitro. We wished to further define the 

nature of the C331A nNOS that is targeted for ubiquitination.  The purified C331A had a 

Km and Vmax of 11.1 ± 1.8 µM and 443 ± 74 nmol/min/mg protein, respectively, 

whereas the wild type enzyme purified in the same manner gave a Km and Vmax of 8.8 ± 

1.6 µM and 424 ± 46 nmol/min/mg protein, respectively.  Thus, the active form of 

C331A nNOS was similar to that of the wild type enzyme.  The C331A nNOS is known 

to be unstable in the absence of L-arginine (18) and we wondered if this inactive form is 

the actual substrate for ubiquitination.  Thus, we wished to compare the stability of the 

C331A nNOS to that of the wild type nNOS and the effect of L-arginine on stability and 

ubiquitination.  As shown in Fig. 3.5A, the C331A nNOS (solid squares) is completely 

inactivated over a period of 90 min, which is the duration of time for the ubiquitination 

assay above.   Over the same time, the wild type nNOS (open squares) maintains 

approximately half of its activity.  When 100 µM L-arginine is present, C331A nNOS is 

stabilized to the level of wild type enzyme (solid circles).   D-arginine at the same 

concentration does not stabilize the C331A nNOS (solid triangles).  As shown in Fig. 

3.5B, the ubiquitination of C331A nNOS is reduced to approximately one-half in the 

presence of L-arginine.  The ubiquitination of C331A nNOS with L-arginine is 

approximately the level of ubiquitination found for the wild type nNOS in Fig. 3.4B.   

The D-arginine did not affect the ubiquitination of C331A nNOS (Fig. 3.5B).  Thus, the  
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Fig. 3.5. C331A nNOS is destabilized and becomes a substrate for ubiquitination.    

A, the catalytic stability of wild type nNOS and C331A nNOS was examined.  Purified 

C331A nNOS (2 μM) was incubated at 30 °C with 10 μM BH4 in a total volume of 30 

μl of 250 mM Tris, pH 7.5.  In some cases, 100 μM L-arginine or D-arginine was 

added to incubation mixtures containing C331A nNOS.  At the indicated times, an 

aliquot (5.3 μl) was taken to assess nNOS activity by the oxyhemoglobin method 

described in Experimental Procedures.  Open squares, wild type nNOS; solid squares, 

C331A nNOS; solid circles, C331A nNOS with 100 μM L-arginine; solid triangles, 

C331A nNOS with 100 μM D-arginine.  B, the effect of L-arginine (L-arg) and D-

arginine (D-arg) on the ubiquitination of C331A nNOS in the in vitro system 

containing purified E1, E2, and CHIP, as in Fig. 3.4.  Statistical probability is 

expressed as *p<0.05, ***p<0.001. 
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inactive form of C331A nNOS, which was initially described by Dr. Masters’ lab (18), 

appears to be the substrate for ubiquitination. 

Effect of Hsp90 on the Ubiquitination of C331A nNOS.   We recently reported that 

Hsp90 opposes CHIP-mediated ubiquitination of wild type nNOS in vitro (8).  We 

wished to determine if Hsp90 similarly inhibits the ubiquitination of C331A nNOS.  To 

examine this, we prepared an Hsp90-free pool consisting of reticulocyte lysate proteins 

eluting from DE52 prior to Hsp90, as described (25).  The fraction pool that elutes before 

Hsp90 contains Hsp70, Hsp40 and nNOS ubiquitinating activity and we call it fraction A 

(25). As shown in Fig. 3.6A, fraction A ubiquitinates C331A nNOS and the addition of 

purified Hsp90 decreases C331A nNOS ubiquitination in a concentration-dependent 

manner.  It is noteworthy that the amount of Hsp90 in reticulocyte lysate (or fraction II) 

has been determined to be 4 to 5 µM (34).  The inhibition of ubiquitination of C331A 

nNOS by Hsp90 was similar to that found for the wild type nNOS, with nearly complete 

inhibition at 13.2 µM.  As described earlier, the C331A nNOS is unstable and the enzyme 

activity decreases over time.  As shown in Fig. 3.6B, the addition of Hsp90 to C331A 

nNOS at a concentration that nearly completely blocks ubiquitination does not protect 

against the activity loss even over a 15 min time period.  Thus, we see protection against 

C331A nNOS ubiquitination but not against the loss of activity. 

Ubiquitination of C331A nNOS in HEK293T Cells and the Effect of N
G
-nitroarginine. 

We wished to compare the ubiquitination of wild type nNOS to that of C331A nNOS in 

intact cells.  As shown in Fig. 3.7A, transient transfection of wild type nNOS or C331A 

nNOS and subsequent immunopurification of the overexpressed enzyme after treatment 

with MG132, a proteasome inhibitor, gave one major product that was previously  
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Figure 3.6.  Hsp90 blocks ubiquitination, but does not stabilize activity, of C331A 

nNOS.  A, the ubiquitination of C331A nNOS catalyzed by Fraction A was performed 

as described in Experimental Procedures, except that the indicated concentrations of 

purified Hsp90 were added.  Samples were Western blotted by probing with anti-nNOS 

and an HRP-tagged goat anti-rabbit secondary antibody.  The relative amounts of 

nNOS-Ub from replicate experiments were determined by scanning and expressed as 

relative density and plotted.  The values are the mean  S.E. (n=3).  B, Purifed C331A 

nNOS (2 M) was incubated at 30 C with 10 M BH4, 500 M CaCl2, 30 M 

calmodulin, 2 l of  an ATP-generating system (50 mM ATP, 250 mM creatine 

phosphate, 20 mM magnesium acetate, and 100 units/ml creatine phosphokinase), in a 

total volume of  20 l Tris, pH 7.5.  Where indicated, 13.2 M Hsp90 was included in 

the incubation.  At time 0 and 15, an aliquot (5.3 l) was added to an oxyhemoglobin 

solution to measure nNOS activity. Statistical probability is expressed as *p<0.05, 

**p<0.01, ***p<0.001. 
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Fig. 3.7. C331A nNOS is preferentially ubiquitinated in HEK293T cells.  The 

ubiquitination of nNOS in HEK293T cells was determined after transient co-transfection 

with ubiquitin and immunoprecipitation as described in Experimental Procedures.  A, 

immunoblot showing the ubiquitin conjugate of wild type nNOS (WT) or C331A 

mutant of nNOS.  The time indicates the duration of time the cells were treated with 

MG132.  B, the ubiquitin conjugate of wild type (square) or C331A mutant (triangle) of 

nNOS that was formed in the HEK293T cells was quantified and plotted.  C, the effect 

of the treatment of cells with N
G
-nitro-L-arginine (L-NNA) or N

G
-nitro-D-arginine (D-

NNA) on the ubiquitination of wild type (solid bars) or the C331A mutant of nNOS 

(open bars).  Cells were pretreated for 1h with 0.4 mM N
G
-nitro-arginine and then 

treated with MG132 for 2h.  D, the nitrite and nitrate produced from wild type 

expressing cells (solid bars) and C331A nNOS expressing cells (open bars).  Cells were 

treated for 1h with 4 μM calcium ionophore (A23187) alone or with 0.4 mM N
G
-nitro-

L-arginine (L-NNA).  The amount of nitrate and nitrite released into the medium was 

assayed by the Greiss method as described in Experimental Procedures.  The amounts 

of wild type and C331A nNOS in the HEK293T cells were comparable, as determined 

by western blotting.  The values given in all panels are the mean ± S.E. (n=3).   

Statistical probability is expressed as *p<0.05, ***p<0.001. 
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ascribed as the monoubiquitin conjugate (10).  This major ubiquitin adduct was 

quantified and plotted in Fig. 3.7B.  The C331A nNOS is more readily ubiquitinated in 

cells (triangles) over that of the wild type nNOS (squares), consistent with observations 

from in vitro studies.  As shown in Fig. 3.7C, the L-isomer of N
G
-nitroarginine protects 

both the wild type (solid bars) and the C331A nNOS (open bars).  Again, the D-isomer is 

not effective at protecting either NOS enzyme, confirming that the active site cleft is 

important in regulating nNOS ubiquitination.  To determine if we have produced 

functional NOS, we measured the nitrite and nitrate, which are the stable oxidation 

products of NO, released from the transfected cells after activation with a calcium 

ionophore.  The released nitrite and nitrate is an indirect measure of the activity of the 

transfected nNOS.  The calcium ionophore-mediated production of nitrite and nitrate 

were similar in the wild type (solid bars) and C331A nNOS (open bars) containing cells 

(Fig. 3.7D).  This is consistent with the comparable specific activities of the purified wild 

type and C331A nNOS and indicates that we produced functionally active enzyme in the 

cells.  Furthermore, inhibition of the nNOS by N
G
-nitro-L-arginine completely blocked 

the formation of nitrite and nitrate.  Although active enzyme is produced, the C331A 

nNOS must nonetheless become destabilized for ubiquitination. 

 

Discussion 

We have previously shown that suicide inactivation of wild type nNOS leads to 

enhanced ubiquitination and proteasomal degradation of the enzyme by a process that 

involves CHIP and Hsp70 (6-8,27).  CHIP is an E3 ubiquitin ligase that binds through its 

TPR domain to a TPR acceptor site on Hsp70 and mediates the ubiquitination of a variety 
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of Hsp90-chaperoned proteins (21,35), including that of nNOS (8).   Although we now 

know that CHIP binds to nNOS-bound Hsp70 to direct ubiquitination of the nNOS, we 

do not yet understand how the suicide-inactivated nNOS is selected for ubiquitination.  

Suicide inactivators covalently alter important active site moieties and lead to irreversible 

inactivation of the enzyme.  We envision that these covalent modifications lead to 

opening of the nNOS substrate binding cleft as the initial stage of unfolding that is 

recognized by Hsp70, thus facilitating CHIP-directed ubiquitination of the altered nNOS 

(36).   Although much has been learned by the use of suicide inactivators in labilization 

of wild type nNOS, the complexity of the alterations and the instability of the adducts are 

major limitations in the study of these processes. 

Studies by Dr. Masters’ laboratory showed that a mutation of cysteine residue 331 of 

nNOS to an alanine perturbs the L-arginine and tetrahydrobiopterin binding cleft of 

nNOS (18), and we wondered if such a conformational change would be sufficient for 

triggering ubiquitination.  In this study, we have shown that the C331A mutation 

destabilizes nNOS and renders the protein more susceptible to ubiquitination in in vitro 

systems containing endogenous or purified ubiquitinating enzymes and chaperones, as 

well as in an intact HEK293T cell model.  We also show in the in vitro systems that 

ubiquitination of C331A nNOS is Hsp70- and CHIP-dependent.  Thus, we suggest here 

that the C331A mutant of nNOS functions as a model for the ‘labilized’ state of nNOS, a 

state similar to that achieved by suicide inactivation of the wild type enzyme.  The 

cysteine residue at position 331 serves as a binding site for zinc at the nNOS dimer 

interface, and at first glance, its mutation would appear not to have an effect on the active 

site cleft but rather play a critical role in dimer stability.  The C331A nNOS can exist in 
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an inactive form, which does not bind tetrahydrobiopterin or L-arginine very well (18).  

This inactive form of C331A nNOS can be reversibly activated upon incubation in the 

presence of high concentrations of L-arginine (18).  We have found that the presence of 

tetrahydrobiopterin during the isolation process maintains the C331A nNOS in the active 

state and this is the preparation of enzyme that we used in the current study.  This active 

form of C331A nNOS had similar Km and Vmax values for L-arginine to that of the wild 

type nNOS.  The expression of C331A nNOS in HEK293T cells catalyzes NO formation 

after treatment with calcium ionophore to a level near that found for the wild type 

enzyme.  Thus, the C331A nNOS appears to have a fully functional active site in cells.  

In the absence of high concentrations of L-arginine or tetrahydrobiopterin the C331A 

nNOS is unstable and this inactive form is likely the form that is ubiquitinated.  This is 

apparent from our stability studies in vitro where we correlated the stability of C331A 

nNOS to the ubiquitination.  In particular, L-arginine, but not D-arginine, stabilized the 

C331A nNOS and protected the enzyme from ubiquitination.  Thus, stability of the nNOS 

is regulated by the state of the active site heme cleft. 

The importance of the substrate binding cleft in regulating ubiquitination is also 

apparent from studies with N-nitroarginine.  We show here that N
G
-nitro-L-arginine, 

which is a slowly reversible inhibitor of nNOS that binds at the heme active site, protects 

the tetrahydrobiopterin-deficient wild type nNOS and C331A nNOS from ubiquitination.  

Previously, it has been established that the loss of tetrahydrobiopterin labilizes the wild 

type nNOS for ubiquitination in vitro, in intact cells, and in vivo (4,5,16).  The inhibition 

must occur through interaction at the active site, as the biologically inactive stereoisomer 

N
G
-nitro-D-arginine does not show any protection of either wild type nNOS or C331A 
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nNOS.  Thus, the substrate binding cleft controls the ubiquitination of C331A nNOS, 

consistent with the notion that suicide inactivation and alteration of the binding cleft 

triggers ubiquitination and degradation.  

We speculate that perturbation of the heme cleft through mutation or covalent 

modification by suicide inactivators leads to a more flexible or dynamic state of nNOS 

heme cleft that is more open and progresses to a partially unfolded state of the enzyme 

(36).  This conformational change allows Hsp70 to interact with hydrophobic elements of 

the cleft interior as they are exposed during the opening/unfolding process.   Although it 

is clear from our studies that heme cleft perturbations play a role in the labilization of 

nNOS, we do not understand precisely what stage of the cleft opening process is 

recognized by Hsp70.  Since dimer stability appears to be intimately related to substrate 

cleft conformation, we cannot be certain if the actual recognition site is on the cleft, at the 

dimer interface, or at another site (5,37-39).  The importance of the cleft in regulating 

ubiquitination is also consistent with the enhanced ubiquitination seen for guanabenz-

inactivated nNOS, which is tetrahydrobiopterin-deficient due to the oxidative destruction 

of the pterin during suicide inactivation (4).  In this case, the suicide inactivation appears 

highly specific for tetrahydrobiopterin as no heme or protein adducts are detected (4).  

Consistent with the critical role of tetrahydrobiopterin in regulating turnover, it has been 

shown that a decrease in tetrahydrobiopterin level (without suicide inactivation) is itself 

sufficient to enhance the ubiquitination and proteasomal degradation of nNOS (5,16).  

Tetrahydrobiopterin binds in the active site in intimate association with the heme and 

participates in catalysis.  In that exogenous tetrahydrobiopterin can readily replenish 

pterin-deficient nNOS and protect it from ubiquitination, it appears that only a slight 



 81 

perturbation of the active site conformation is sufficient to trigger Hsp70/CHIP-

dependent ubiquitination and degradation of nNOS (4,5,16).   

One potential model for the more flexible or dynamic state of the heme cleft is the 

slight opening of the heme cleft of myoglobin found after suicide inactivation by 

bromotrichloromethane (40), where a reactive intermediate covalently modifies the heme 

prosthetic group to a protein bound product (41).  Crosslinking of heme to protein has 

been shown to be an important signal for cytochrome P450 hemoprotein degradation 

(15,42).  The structure of the heme-myoglobin adduct was determined by 2D-NMR and 

subsequent molecular dynamics simulation of the altered myoglobin showed that the 

heme active site was more open allowing the access of solvent water molecules to the 

heme (40,41).  The enhanced oxidase activity found associated with the altered 

myoglobin is consistent with the increased flexibility of the heme cleft and the access of 

water molecules (40).  Thus, we suggest that perturbations like that found with the heme 

cleft of myoglobin may be the actual trigger for ubiquitination and degradation. 

We have recently proposed a model of nNOS triage that involves opposing actions of 

Hsp90 and Hsp70, with Hsp90 inhibiting and Hsp70 promoting CHIP-mediated 

ubiquitination (8,36).  nNOS exists in native complexes with Hsp90, and Hsp90 

inhibitors enhance the ubiquitination and turnover of nNOS (3,6,27).  Hsp90 regulates 

signaling proteins by modulating ligand binding clefts (43), and we have suggested that 

Hsp90 stabilizes a more open state of the nNOS heme/substrate-binding cleft to enhance 

enzyme activity (36).  As we have noted (43), the extent to which a ligand binding cleft is 

open determines ligand access and thus protein function, but clefts are inherent sites of 

conformational instability.  When the cleft is opened, whether by chemical alteration or 
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genetic mutation, to such an extent that Hsp90 cannot stabilize the cleft, then Hsp70-

dependent ubiquitination can proceed.  Indeed we have shown with the use of purified 

proteins that Hsp90 opposes the action of Hsp70/CHIP on suicide-inactivated nNOS 

(8,36) and as we have shown here, purified Hsp90 protects against ubiquitination of 

C331A nNOS by reticulocyte lysate proteins.  

Hydrophobic clefts are important structural elements in all proteins and are often 

responsible for the biological activity of the protein.  A chaperone-mediated surveillance 

of cleft perturbations is likely an important process in maintaining cellular protein 

quality.  We are impressed by the profound stabilization of C331A nNOS activity that is 

provided by the substrate L-arginine and the accompanying decrease in CHIP-dependent 

ubiquitination illustrated in Fig. 5.  This manifestation of the classic phenomenon of 

substrate stabilization may reflect the ability of the substrate to promote a more closed 

state of the heme/substrate binding cleft that is less amenable to interaction with Hsp70 

and accordingly CHIP.  The notion that substrate stabilization of nNOS may reflect an 

interaction of the substrate binding cleft with the chaperones involved in protein quality 

control may be applicable to substrate stabilization of enzymes in general.  This indeed 

would be a novel mechanistic explanation for a phenomenon that has been known to 

occur in intact cells for decades. 
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CHAPTER 4 

IDENTIFICATION OF THE SITES ON NEURONAL NITRIC OXIDE          

SYNTHASE TARGETED FOR CHIP-DEPENDENT UBIQUITINATION 

 

Summary 

 Nitric oxide synthase (NOS), a cytochrome P450-like hemoprotein enzyme, 

catalyzes the synthesis of nitric oxide, a critical signaling molecule in a variety of 

physiological processes.  Our lab has discovered that certain drugs suicide-inactivate 

neuronal NOS (nNOS) and lead to the preferential ubiquitination of the inactivated nNOS 

by an Hsp70- and CHIP (C-terminus of Hsp70-interacting protein)-dependent process.  

Conversely, calmodulin and certain reversible inhibitors stabilize the nNOS.  We wish to 

understand the process by which altered nNOS is recognized and ubiquitinated.  We 

developed an in vitro ubiquitination system that contains purified E1, E2 (UbcH5a), and 

CHIP that recapitulates the cells’ ability to selectively recognize and ubiquitinate the 

altered forms of nNOS.  For example, the slowly reversible inhibitor, N
G
-nitro-L-

arginine, but not the D-isomer, protects nNOS from ubiquitination.  We identified 12 

ubiquitination sites through LC-MS/MS analysis of the tryptic peptides obtained from the 

ubiquitinated nNOS.  Nine sites are located in the oxygenase domain, two in the 

calmodulin-binding domain, and one in the reductase domain.  Mutation of the lysines in 

the calmodulin-binding domain greatly decreases the poly-ubiquitination and degradation 
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of nNOS, indicating that this region plays an important role in regulating nNOS turnover. 

Understanding the exact site of ubiquitination is an important step in determining the 

process by which a protein becomes recognized and degraded by the ubiquitin-

proteasome system. 

 

Introduction 

Nitric oxide synthase (NOS) is a cytochrome P450-like hemoprotein enzyme that 

catalyzes the conversion of L-arginine to L-citrulline and nitric oxide, which is an 

important cellular signaling molecule (1).  There are three major NOS isoforms: neuronal 

NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS).  NOS is active as a 

homodimer, and activity requires the presence of bound heme, tetrahydrobiopterin, and 

L-arginine in the oxygenase domain, as well as FMN, FAD, and NADPH, which bind in 

the reductase domain (2).  Ca
2+

 and calmodulin are also required for activity, and this is 

one of the many methods by which this enzyme is regulated.  Another type of regulation 

of NOS occurs through the ubiquitination and proteasomal degradation of the enzyme 

(3).   

Ubiquitination is carried out by three ubiquitinating enzymes: E1 ubiquitin-activating 

enzyme, E2 ubiquitin-conjugating enzyme, and E3 ubiquitin ligase.  CHIP (C-terminus of 

Hsc70-interacting protein) is a specific E3 ligase that has been characterized as a major 

protein involved in the ubiquitination of all NOS isoforms (4-6), as well as cytochromes 

P450 3A4 and 2E1 (7, 8).  There is some redundancy in E3 ligases that ubiquitinate 

nNOS, as indicated by the equivalent ability of CHIP-/- and CHIP +/+ mouse embryonic 
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fibroblasts to ubiquitinate nNOS (9), however, CHIP has been shown to be the primary 

E3 ligase for nNOS in the in vitro ubiquitination system of reticulocyte lysate (10, 11).   

Certain drugs have been shown to cause the suicide inactivation, covalent alteration 

in the heme/substrate-binding cleft, ubiquitination, and proteasomal degradation of nNOS 

(12-15).  Thus, the heme/substrate-binding cleft appears to control the ubiquitination of 

nNOS (3, 16).  A C331A mutant of nNOS, which has an altered active site and is 

unstable, is preferentially ubiquitinated compared to the wildtype enzyme, and serves as a 

model for a suicide-inactivated nNOS (10).  N
G
-nitro-L-arginine, a slowly reversible 

inhibitor, protects both the wildtype and C331A mutant from ubiquitination (10).  This 

process is specific for the heme active site, since the D-isomer had no effect on 

ubiquitination, thus showing that certain ligands can stabilize a conformation of C331A 

nNOS that is resistant to ubiquitination (10).  It is clear that the ligand-binding cleft plays 

an important role in nNOS triage; however, it is unknown what regions of the unstable 

C331A nNOS are recognized to be targeted for ubiquitination and degradation. 

CHIP binds through an amino-terminal tetratricopeptide repeat (TPR) domain to both 

Hsp70 and Hsp90 (17, 18).  The C331A mutant nNOS, as well as suicide-inactivated 

nNOS are both ubiquitinated by an Hsp70/CHIP-mediated process, and Hsp90 opposes 

this ubiquitination (4, 10, 15).  Moreover, the addition of Ca
2+

/calmodulin and Hsp90 to 

an in vitro ubiquitination system protects nNOS from ubiquitination (15).  In HEK293 

cells stably expressing individual nNOS domains (oxygenase domain, oxygenase-

calmodulin binding domain, and reductase domain), Hsp90 and Hsp70 were both found 

in heterocomplexes with fragments containing the oxygenase domain, which contains the 
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ligand-binding cleft (19).  Moreover, the stabilizing ligand N
G
-nitro-L-arginine decreased 

the chaperone association with the nNOS fragments (19). 

The role of chaperones in nNOS ubiquitination has been extensively studied, yet it is 

still unknown what region on nNOS is recognized for ubiquitination.  Wang et al. 

recently found that ubiquitination of CYP 2E1 occurs in regions containing 

phosphorylated Ser/Thr residues, as well as surface clusters of Asp/Glu (20).  

Destabilization of the nNOS dimer has been shown to enhance the ubiquitination of 

nNOS (13), and it has been suggested that destabilization of the dimer could lead to 

exposure of hydrophobic residues normally hidden in the active form of the protein (13).  

Characterization of the site of ubiquitination of nNOS may aid in deciphering the trigger 

that selectively culls dysfunctional nNOS for ubiquitination. 

Previous in vitro studies successfully show the ubiquitination of nNOS (4, 10, 15).  

Here we maximize the conversion of nNOS to the ubiquitinated form, by altering the 

ratio of nNOS to the ubiquitination proteins, in order to purify ubiquitinated nNOS for 

further analysis.  Through tryptic digestion and analysis by LC-MS/MS, we found 12 

sites of nNOS ubiquitination.  Nine of these sites are located in the oxygenase domain of 

nNOS, two are located in the calmodulin-binding region, and one is located in the 

reductase domain.  Furthermore, we confirmed the role of the calmodulin-binding region 

in nNOS ubiquitination by creating a mutant nNOS (7R) that has all lysines in the 

calmodulin-binding region mutated to arginines.  The polyubiquitination of this nNOS 7R 

mutant was significantly decreased compared to the wildtype enzyme.  Moreover, 

degradation of the nNOS 7R mutant was attenuated compared to the wildtype enzyme.  
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Thus, ubiquitination in the calmodulin-binding region is one of the signals for selective 

degradation by the proteasome. 

 

Experimental Procedures 

Materials. (6R)-5,6,7,8-Tetrahydro-L-biopterin (BH4) was purchased from Dr. 

Schirck’s Laboratory (Jona, Switzerland).  Protein A-Sepharose, ubiquitin, ATP, creatine 

phosphokinase, L-arginine, N
G
-nitro-L-arginine, N

G
-nitro-D-arginine, and rabbit 

polyclonal anti-nNOS were purchased from Sigma (St. Louis, MO).  Goat anti-rabbit 

IRDye was purchased from Licor Biosciences (Lincoln, NE).  His-tagged ubiquitin 

activating enzyme (E1), K0R ubiquitin, K6R ubiquitin, K11R ubiquitin, K27R ubiquitin, 

K29R ubiquitin, K33R ubiquitin, K48R ubiquitin, and K63R ubiquitin were from R&D 

Systems (Minneapolis, MN).  Creatine phosphate was from Fluka (St. Louis, MO).  

Complete Mini protease inhibitor cocktail was from Roche Diagnostics (Indianapolis, 

IN).  Nickel-nitrilotriacetic acid (Ni-NTA)-agarose was from QIAGEN Inc (Valencia, 

CA).  The cDNA for rat neuronal NOS was kindly provided by Dr. Solomon Snyder 

(Johns Hopkins Medical School, Baltimore, MD).  The cDNA for His-HA-tagged 

ubiquitin was from Dr. Yi Sun (Univ. of Michigan).  The cDNA for expressing the 

UbcH5a−GST fusion protein was kindly provided by C. M. Pickart (Johns Hopkins 

Medical School, Baltimore, MD).  pET30a CHIP plasmid for expressing His-CHIP was 

kindly provided by C. Patterson (University of North Carolina, Chapel Hill, NC).   Nickel 

magnetic beads and Amicon Ultra centrifugal spin filters were from Millipore (Billerica, 

MA).  Untreated rabbit reticulocyte lysate was from Green Hectares (Oregon, WI). 
125

I-
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Labeled antibody against rabbit IgG was purchased from PerkinElmer Life and 

Analytical Sciences (Boston, MA). DE52 was purchased from Whatman (Clifton, NJ).   

Expression and Purification of nNOS, C331A nNOS, 7R nNOS, Hsp70, Hsp40, GST-

tagged UbcH5a, His-tagged ubiquitin, and CHIP . The C331A construct in pCW was 

made using the site-specific mutagenesis approach described by Martasek et al.  (21).  

The C331A-nNOS and wild type nNOS pCW plasmid was transfected as described (22), 

except that BL21 E. coli cells were used.  The bacterially expressed wild type and C331A 

nNOS were purified by 2'5'-ADP Sepharose and mono Q ion exchange chromatography 

as described (23), except that 10 µM BH4 was present in the buffers used during 

purification.  The enzyme as isolated was active (Vmax  of 443 nmol/min/mg protein) and 

further incubation with L-arginine did not increase the activity.  To make the 7R mutant 

nNOS, we mutated all 7 lysine residues present in the calmodulin binding region of 

nNOS (residues 725, 732, 733, 739, 743, 751, and 754) to arginine residues using 

QuikChange Multi Site-Directed Mutagenesis Kits (Stratagene, La Jolla, CA).  The three 

5’- phosphorylated primers used were 5’-

CCCCCACGAGGCGGCGAGCTATCGGCTTTAGGAGATTGGCAGA-3’, 5’-

GGCCGTCAGGTTCTCAGCCAGGCTAATGGGACAG-3’, and 5’-

GCCATGGCCAGGAGGGTCAGGGCGACCATTCTCTAC-3’ (codons for arginine are 

underlined).  The template was pCWnNOS.  The plasmid with the desired mutation was 

confirmed by sequencing and digested with PflM1 to liberate the 1863 bp fragment, then 

subcloned into PflM1 sites of the wt-pCWnNOS vector.  The resultant construct was 

designated as pCW7R. The nNOS mutants (including a wild type as control) were 

bacterially expressed using the pCW vector and BL21 (DE3) competent cells 
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(Stratagene), according to the manufacturer’s recommendations.  Cells from 1L-cultures 

were harvested 48 h after induction with IPTG, and ruptured by french press at 1500 PSI.  

The lysates were processed and purified as above for the Sf9 cells, except that a PD-10 

gel filtration column (GE Healthcare) was used instead of the Sephacryl S-300 HR gel 

filtration column.  The samples were concentrated with the use of a Centriplus YM-100 

concentrator and stored at –80 
o
C.  The 7R nNOS mutant was found to be active (Vmax 

7R nNOS: 195 nmol/min/mg protein). 

His-CHIP, his-tagged human Hsp70, and his-ubiquitin were bacterially expressed and 

purified by Ni-NTA affinity chromatography as previously described (17).  YDJ-1, the 

yeast ortholog of Hsp40, was expressed in bacteria and purified by sequential 

chromatography on DE52 and hydroxylapatite as described previously (24).  GST-tagged 

UbcH5a (E2, ubiquitin carrier protein) was bacterially expressed and purified by GSH-

Sepharose affinity chromatography as described (25). 

In Vitro Ubiquitination of nNOS by Purified Ubiquitinating System. The nNOS was 

pretreated with Hsp70 and Hsp40 and then ubiquitinated.  In these experiments, 60 µM 

Hsp70 and 3 µM Hsp40 were incubated for 30 min at 30 
o
C with 4 µM nNOS in a total 

volume of 20 µl of 50 mM Hepes, pH 7.4, containing 100 mM KCl, and 5 mM DTT.  To 

conjugate ubiquitin to nNOS, an aliquot (1 µl) of this reaction mixture was incubated 

with a purified system containing an E1 ubiquitin activating enzyme (0.1 µM), an E2 

GST-tagged UbcH5a (10 µM), his-tagged CHIP (3 µM), his-tagged ubiquitin (500 µM), 

1 mM DTT, 5mM ATP in an ATP-regenerating system (50 mM ATP, 250 mM creatine 

phosphate, 20 mM magnesium acetate, and 100 units/ml creatine phosphokinase), 

expressed as final concentrations, for 1 h at 30 
o
C in a total volume of 40 µl of 50 mM 
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Hepes, pH 7.4, containing 100 mM KCl, and 5 mM DTT.  After incubation, 80 µl of 

sample buffer containing 5% (w/v) SDS, 20% (v/v) glycerol, 6 mg/ml DTT, and 0.02% 

(w/v) bromophenol blue in 125 mM Tris-HCl, pH 6.8 was added and an aliquot (14 µl) 

was loaded for Western blotting.  

SDS-Polyacrylamide Gel Electrophoresis and Western blotting.  After boiling, 

samples were resolved on 5% (w/v) SDS-polyacrylamide gels and transferred to 

Immobilon FL membranes (Millipore, Billerica, MA) for 2 h at 100 volts.  The blot was 

probed with anti-nNOS (0.01%, w/v) and then an infrared goat anti-rabbit secondary 

antibody (0.0067%, w/v) and the immunoreactive bands were visualized with the use of 

the Licor Odyssey Imaging System, and the bands were quantified using Image Studio 

software (Licor).  The linearity of the system was verified measuring the signal of various 

concentrations of nNOS. 

Purification of nNOS-Ubiquitin Conjugates using Nickel Magnetic Beads.  For large-

scale preparation and purification of nNOS-ubiquitin conjugates, incubations were the 

same as above except that the concentration of nNOS was increased five-fold to 20 M.  

The large scale preparation consisted of a total volume of 800ul of the ubiquitination 

reaction mixture.  After the 1 h incubation at 30 
o
C, the sample was concentrated to 40 µl 

in 100K spin filters to remove unconjugated ubiquitin and other smaller proteins.  This 

sample was then resuspended with 1 mL of Equilibration buffer (50 mM sodium 

phosphate, 300 mM sodium chloride, 5 mM imidazole, pH 8) and then added to 400 µl of 

nickel magnetic beads equilibrated with the same Equilibration buffer.  The sample was 

rotated with the beads for 30 min at 4 
o
C.  The supernatant was then removed, and the 

sample was washed three times with 1 mL Wash buffer (50 mM sodium phosphate, 300 
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mM sodium chloride, 10 mM imidazole, pH 8).  After removal of the final wash, 70 µl of 

SDS-sample buffer was added to the beads.  The sample was then boiled and 65 µl were 

then loaded onto 5% SDS-polyacrylamide gels and then stained with Coomassie Blue 

dye.  The appropriate nNOS-ubiquitin conjugate band (molecular mass range of 165 – 

175 kDa) was excised from the gel and sent to MSBioworks (Ann Arbor, MI) for 

analysis. 

Identification of nNOS Ubiquitination Sites.  Gel samples were washed with 25 mM 

ammonium bicarbonate followed by acetonitrile.  Samples were then reduced with 10 

mM dithiothreitol at 60 
o
C followed by alkylation with 50 mM iodoacetamide at room 

temperature.  Samples were then digested with trypsin (Promega) at 37 
o
C for 4 hours.  

Following digestion, samples were quenched with formic acid and the supernatant was 

analyzed directly by nano LC/MS/MS with a Waters NanoAcquity HPLC system 

interfaced to a ThermoFisher Orbitrap Velos Pro.  Peptides were loaded on a trapping 

column and eluted over a 75 m analytical column at 350 nL/min; both columns were 

packed with Jupiter Proteo resin (Phenomenex).  The mass spectrometer was operated in 

data-dependent mode, with MS performed in the Orbitrap at 60,000 FWHM resolution 

and MS/MS performed in the LTQ.  The fifteen most abundant ions were selected for 

MS/MS.  The MS/MS data were searched against the SwissProt database using Mascot 

search engine (Matrix Science, London, UK; version Mascot).  Mascot was set up to 

search the ipi.RAT.v3.75.decoy database assuming the digestion enzyme trypsin.  S-

carbamoylmethylcysteine cyclization (N-terminus) of the n-terminus, deamidation of 

asparagine and glutamine, oxidation of methionine, acetylation of the n-terminus, and 

ubiquitination residue of lysine were specified in Mascot as variable modifications. 
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Peptides that were observed in at least two independent scans, with a probability greater 

than 95% were selected as putative nNOS ubiquitination sites.  Of these, the sites were 

confirmed by manual inspection of the raw MS/MS spectra. 

In vitro degradation of nNOS by Fraction II - Fraction II was prepared from rabbit 

reticulocyte lysate as previously described (11).  In studies where nNOS degradation was 

measured, purified nNOS (2 g) was incubated at 37C in a total volume of 120 l of 50 

mM Tris-HCl, pH 7.4, containing 2 mM dithiothreitol, 50 M ubiquitin, an ATP-

regenerating system (2 mM ATP, 10 mM creatine phosphate, 5 mM MgCl2, and 10 

units/ml creatine phosphokinase), and 2 mg/ml of fraction II.  At indicated times, a 25 µl 

aliquot of each sample was taken and quenched with 25 µl of sample buffer containing 

5% SDS, 20% glycerol, 100 mM dithiothreitol, and 0.02% bromphenol blue in 125 mM 

Tris-HCl, pH 6.8.  The samples were boiled for 3 min and an aliquot (25 l) was 

submitted to 6% SDS-PAGE (10 x 8 cm).  Proteins were then transferred to nitrocellulose 

membranes (0.2 m, BioRad) and probed with 0.1% anti-nNOS IgG.  The immunoblots 

were then incubated a second time with 125I-conjugated goat anti-rabbit IgGs to 

visualize the immunoreactive bands.  The membranes were dried and exposed to a 

phosphor imaging screen for 4 hours, digitized using a Typhoon™ imaging system.  

Individual nNOS bands were selected, baseline corrected, and quantified using 

ImageQuant™ software.   

 

Results 

Ubiquitination of nNOS by a Purified System Containing CHIP.  As shown in Fig. 

1A, incubation of Hsp70-pretreated nNOS with a purified ubiquitination system 
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containing E1, E2, and CHIP gives the time-dependent formation of higher molecular 

mass nNOS-bands, which we have previously described as nNOS-ubiquitin conjugates 

(14).  Similar bands have been visualized by anti-ubiquitin after immunoprecipitation 

with anti-nNOS, or with the use of 
125

I-ubiquitin (14).  Based on the estimated molecular 

mass calculated from the migration of the bands against the standards, we have labeled 

the first major band (170 ± 2.3 kDa) above the native nNOS band (161 ± 2.3 kDa) as the 

mono-ubiquitinated form of nNOS (mono-Ub).  The higher mass bands, which appear 

after longer incubation time, are poly-ubiquitinated products (poly-Ub).   As shown in 

Fig. 1B, the loss of nNOS and the formation of either mono-Ub (gray bars) or poly-Ub 

(open bars) are dependent on ubiquitin (-Ub).  The deletion of CHIP also completely 

prevents the formation of nNOS-ubiquitin conjugates (-CHIP).  As shown in Fig. 1C, the 

time-dependent decrease in the nNOS band (closed circles) coincides with the time-

dependent increase in the mono-Ub (closed squares) and poly-Ub (closed triangles) 

products.  The sum of the nNOS and nNOS-ubiquitin bands at each timepoint (open 

squares) remain the same, suggesting that the majority of the nNOS protein is accounted 

for in each lane.  It is important to note that unlike our previous studies where only a few 

percent of the total nNOS was ubiquitinated (4, 10, 15), the current system gives a much 

higher yield (~50%) of ubiquitinated nNOS. 

Validation of Regulated Ubiquitination of nNOS by Purified CHIP.  Although it was 

important to achieve a high yield of nNOS-ubiquitin conjugates for the mapping studies 

described below, it was equally important to assess whether the current ubiquitin 

conjugation system maintained the biological fidelity found in cells.  The nNOS is 

protected from ubiquitination by the L- but not the D-isomer of N
G
-nitro-arginine (NNA),  
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Figure 4.1. Ubiquitination of nNOS in a purified system is CHIP- and time-

dependent.  The ubiquitination of nNOS by a purified ubiquitination system and 

Western blots for ubiquitinated nNOS is described under “Experimental Procedures.”  

A, Time-dependent formation of nNOS-ubiquitin conjugates.  nNOS, mono-

ubiquitinated nNOS (mono-Ub), and poly-ubiquitinated nNOS (poly-Ub) are indicated.  

B, Ubiquitin and CHIP are required for nNOS ubiquitination.  The addition of his-

ubiquitin (Ub) or the subtraction of CHIP on nNOS (black bars), mono-Ub (gray bars), 

and poly-Ub (white bars) levels after a 60 min incubation in the purified ubiquitination 

system.  The values are the mean ± S.E. (n = 4).  C, quantification of nNOS and 

ubiquitinated nNOS from the blot shown in A.  nNOS (closed circles), mono-

ubiquitinated nNOS (closed squares) and poly-ubiquitinated nNOS (closed triangles) 

were quantified.  The sum of all bands is also shown (open squares).  The values are the 

mean ± S.E. (n = 4).  
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in intact cells and in in vitro studies with cell lysates (10, 13).  Thus, the ubiquitination 

machinery can discern conformational changes about the active site (16).  As shown in 

Fig. 2A, the pretreatment of nNOS with L-NNA, but not D-NNA, diminishes the nNOS 

ubiquitin conjugates.  The quantification of the nNOS bands clearly shows that L-NNA 

protects the native nNOS from ubiquitination (Fig. 2B, nNOS, cf. lane 2 with 3), whereas 

the D-NNA has no significant effect (cf. lane 2 with 4).  Consistent with the effects on 

nNOS, there is a significant decrease in the amount of both mono (mono-Ub)- and poly 

(poly-Ub)- ubiquitinated nNOS when L-NNA, but not D-NNA, is present.  Thus, the 

stereospecific protection by the slowly reversible inhibitor, L-NNA, on nNOS 

ubiquitination in cells has been faithfully recapitulated by the purified ubiquitination 

system described here. 

To further validate the identity of the nNOS mono-ubiquitin and poly-ubiquitin bands 

identified above, we used a form of ubiquitin that has all seven lysines mutated to 

arginines (K0R).  This mutant ubiquitin is unable to form ubiquitin-ubiquitin polymers 

(poly-Ub).  As shown in Fig. 4.3A, nNOS poly-ubiquitin conjugates are not apparent with 

the K0R ubiquitin (cf. lanes 5-7 with lanes 1-4).  The K0R ubiquitin does support the 

formation of two nNOS-ubiquitin bands above the nNOS that we have labeled as mono-

ubiquitinated nNOS (mono-Ub) and di-ubiquitinated nNOS (di-Ub).  The indicated bands 

were quantified and plotted in Fig. 4.3B.  As seen by the disappearance of the starting 

nNOS band, the ubiquitination of nNOS is much slower in the presence of the K0R 

ubiquitin (nNOS, cf. gray bars with open bars).  The mono-ubiquitin form accumulates to 

the same extent with the wildtype and K0R ubiquitin (mono-Ub, cf. gray bars with open 

bars).  However, there is no poly-ubiquitin formed with the K0R ubiquitin (poly-Ub, cf.  
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Figure 4.2.  N
G

-nitro-L-arginine stereospecifically decreases both mono- and poly-

ubiquitination of nNOS.  Ubiquitination of nNOS was performed as described under 

“Experimental Procedures.”  nNOS was treated with N
G
-nitro-L-arginine (L-NNA) or 

the stereoisomer N
G
-nitro-D-arginine (D-NNA) for 60 min, and the effects on 

ubiquitination were measured.  A, a representative blot is shown.  B, quantification of 

ubiquitination corresponding to the blot shown in A. Closed bars, ubiquitin was omitted; 

gray bar, ubiquitin included; open bars, L-NNA was added; hashed bars, D-NNA was 

added.  The values are the mean ± S.E. (n = 4).  Statistical probability is expressed as 

follows: **, p<0.01; ***, p<0.001. 
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Figure 4.3.  Effect of Ubiquitin or K0R Ubiquitin on Ubiquitination of nNOS or 

C331A nNOS.  The ubiquitination of nNOS and C331A mutant nNOS by a purified 

ubiquitination system was performed as described under “Experimental Procedures.” 

nNOS, mono-ubiquitinated nNOS (mono-Ub), di-ubiquitinated nNOS (di-Ub) and poly-

ubiquitinated nNOS (poly-Ub) are indicated.  A, nNOS ubiquitination was produced at 

the indicated timepoints in the presence of WT ubiquitin (WT Ub) or lysineless mutant 

ubiquitin (K0R), which cannot form poly-ubiquitin chains. B, quantification of nNOS 

ubiquitination corresponding to the blot shown in A. Closed bars, 0 min timepoint; gray 

bars, WT ubiquitin; open bars, K0R ubiquitin.  The values are the mean ± S.E. (n = 4).  

C, C331A nNOS ubiquitination was produced at various timepoints in the presence of 

WT ubiquitin (WT Ub) or lysineless mutant ubiquitin (K0R).  D, quantification of 

C331A nNOS corresponding to the blot shown in C. Closed bars, 0 min timepoint; gray 

bars, WT ubiquitin; open bars, K0R ubiquitin.  The values are the mean ± S.E. (n = 4). 
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gray bars with open bars).  Interestingly, the di-ubiquitin band does increase in the K0R 

samples, suggesting that it likely contains nNOS that was successively mono-

ubiquitinated twice.  We wondered if the lack of formation of poly-ubiquitinated nNOS 

was due to a very slow ubiquitination reaction in the presence of K0R ubiquitin, even 

though we extended the reaction time in this study. To further attempt to address this, we 

substituted nNOS for a C331A mutant of nNOS, which we have previously shown to be 

more susceptible to ubiquitination in cells and in in vitro systems (10).  As shown in Fig. 

3C, the C331A appeared to be ubiquitinated in a similar manner to that of nNOS with 

wildtype (Ub) and K0R ubiquitin.  The C331A nNOS is ubiquitinated at a faster and 

greater extent than nNOS, with nearly 75% converted after the first hour of incubation 

(Fig. 3D, C331A nNOS, gray bars).  However, ubiquitination of C331A nNOS was also 

very slow in the presence of K0R ubiquitin (C331A nNOS, open bars).  Although the 

mono-ubiquitin band (mono-Ub) was formed under all conditions, again no poly-

ubiquitin bands could be found with K0R (poly-Ub, cf. gray bars with open bars).  The 

di-ubiquitin band of C331A nNOS in the K0R-ubiquitin sample increased over time but 

never reached the level seen in samples containing the wildtype ubiquitin (di-Ub, cf. gray 

bars with open bars), suggesting that it likely is a mixture of mono- and poly-

ubiquitinated forms.  For simplicity, the di-Ub band was not included in further 

quantification.   

Nature of the Ubiquitin Linkages in nNOS Poly-Ubiquitin Conjugates.  As seen 

above, when all seven lysine residues on ubiquitin are mutated to arginine (K0R mutant), 

the poly-ubiquitin chains do not form.  In order to further examine the types of ubiquitin 

linkages that contribute to poly-ubiquitination of nNOS, we used various single residue 
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mutants of the seven lysine residues of ubiquitin (K6R, K11R, K27R, K29R, K33R, 

K48R, K63R).  As shown in Fig. 4.4A, these single residue mutants were compared to 

the K0R mutant and wildtype ubiquitin (WT).  As expected, all of the mutant ubiquitins 

could support the formation of the mono-ubiquitinated nNOS (mono-Ub), but not the 

poly-ubiquitinated nNOS (poly-Ub).  As shown in Fig. 4.4B, the poly-ubiquitinated 

nNOS was quantified and plotted.  The K6R, K33R, and K63R mutant ubiquitins 

decreased the poly-ubiquitination of nNOS to the level seen for K0R.  The K27R, K29R, 

and K48R ubiquitins also greatly decreased the level of poly-ubiquitination, whereas the 

K11R ubiquitin only decreased the poly-ubiquitination by 30%.  Thus, it appears that the 

poly-ubiquitination of nNOS can occur with any lysine residue, but predominantly all 

lysines except K11. 

Identification of nNOS Ubiquitination Site(s) by LC-MS/MS Analyses.  The 

ubiquitination system described above was scaled up by a factor of 40 to generate enough 

of the ubiquitinated nNOS conjugates for analysis by LC-MS/MS.  The reaction mixture 

was initially filtered through a 100 kDa molecular sieve, purified by magnetic Ni-beads, 

and submitted to SDS-PAGE.  The band corresponding to the mono-ubiquitinated nNOS 

was excised and subjected to in-gel tryptic digestion.  The tryptic peptides were analyzed 

by LC-MS/MS for the signature ubiquitin remnant (GG) attached to the nNOS peptide 

(26).  nNOS was identified with 81% sequence coverage.  Several ubiquitination sites on 

nNOS were identified by this approach, as shown in Table 1.  Nine of these sites are 

located in the oxygenase domain of nNOS (residues 1-724), two are located in the 

calmodulin-binding region (725-757), and one is located in the reductase domain 

(residues 758-1433). 
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Figure 4.4.  Poly-ubiquitination of nNOS occurs through several different lysine-

linked chains on ubiquitin.  Ubiquitination of nNOS was performed for 5 hours using 

various mutant ubiquitins, each with a different lysine mutated to an arginine (K6R, 

K11R, K27R, K29R, K33R, K48R, K63R), as well as a lysine-less ubiquitin (K0R) and 

wild-type ubiquitin (WT).  A representative blot is shown in A.  B, quantification of 

poly-ubiquitination under the conditions in A. The values are the mean ± S.E. (n = 3).  

Statistical probability is expressed as follows: **, p<0.01; ***, p<0.001. 

 



 108 

 

 

 

Table 4.1. nNOS ubiquitination sites.  Large-scale ubiquitination of nNOS and subsequent 

purification of the mono-ubiquitinated nNOS is as described in “Experimental Procedures.”  

Tryptic peptides obtained from the sample were analyzed by nano LC/MS/MS.  The fifteen 

most abundant ions from each scan were selected for MS/MS.   The sequences were then 

searched against the SwissProt database using the Mascot search engine.  Peptides that were 

observed in at least two independent scans, with a probability greater than 95% were selected 

as putative nNOS ubiquitination sites.  Of these, the sites were confirmed by manual 

inspection of the raw MS/MS spectra.  The abbreviations used are as follows: ox, oxidation.  
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Of the identified ubiquitination sites, lysine 739 had the highest mascot score (67.37).  

This residue and lysine 743 (mascot score 52.83) are located in the calmodulin-binding 

domain of nNOS.  Previous studies have indicated the ability of calmodulin binding to 

block the ubiquitination of nNOS (15).  Due to this fact, the MS/MS spectra were more 

closely analyzed for the residues that are located in the calmodulin-binding region.  As 

shown in Fig. 5A, the spectrum for lysine 739 identifies an addition of 114 Da to the 

peptide between the high intensity ions y4 and y5, which correspond to the addition of the 

signature ubiquitin remnant (GG) to the peptide.  The 114 Da addition can also be seen in 

the spectrum for lysine 743 (Fig. 5B) between the ions y8 and y9.   

Role of Calmodulin-Binding Region in Ubiquitination of nNOS.  Since we found two 

sites of ubiquitination located in the calmodulin-binding region of nNOS, we decided to 

construct a mutant nNOS (7R) that replaced the seven lysines found within the 

calmodulin-binding region with arginine residues.  All seven lysine residues were 

mutated to investigate the role of this region in ubiquitination.  As shown in Fig. 6A, the 

poly-ubiquitination (poly-Ub) of nNOS 7R mutant is significantly decreased compared to 

the wildtype nNOS (poly-Ub, cf. black bars with open bars).  We then tested the 

degradation of the wildtype nNOS and nNOS 7R mutant in a more physiologically 

relevant system containing Fraction II, which is the DE52-retained fraction of 

reticulocyte lysate that contains all ubiquitinating enzymes and the proteasome.  As 

shown in Fig. 6B, the nNOS 7R mutant (7R) degradation is greatly attenuated compared 

to the wildtype (WT) enzyme which can be seen in the Western blot measuring the loss of 

nNOS protein (cf. 7R with WT) and the quantification below (cf. squares with circles). 
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Figure 4.5.  MS/MS spectra for validated ubiquitinated residues, K739 and K743.  

Samples were analyzed as described in “Experimental Procedures.” The ubiquitinated 

peptides were confirmed by manual inspection of the raw MS/MS spectra.  The spectra 

were analyzed for the diagnostic loss of GG as annotated.  The y and b ions are labeled 

that precisely define the site of ubiquitination.  A, MS/MS spectrum for residue K739, 

with a Mascot score of 67.4.  B, MS/MS spectrum for residue K743, with a Mascot 

score of 52.8. 
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Figure 4.6.  Decreased polyubiquitination (A) and proteasomal degradation (B) of a 

mutant of nNOS (nNOS 7R) that lacks lysine residues in the calmodulin binding 

site.  A, Ubiquitination of nNOS and nNOS 7R was carried out as described in 

“Experimental Methods.”  Samples were ubiquitinated for one hour and analyzed by 

Western blotting techniques.  nNOS, closed bars; nNOS 7R, open bars.  The values are 

the mean ± S.E. (n = 3).  B, Degradation of nNOS and nNOS 7R  in fraction II was 

examined as described in “Experimental Procedures.”  Samples were collected at the 

indicated timepoints and analyzed by Western blot.  Quantification is shown below the 

blots.  nNOS, circles; nNOS 7R, squares.  The values are the mean ± S.E. (n = 3). 

Statistical probability is expressed as follows: *, p<0.05. 

 



 112 

These data indicate that the decreased poly-ubiquitination of the nNOS 7R mutant 

translates to decreased degradation.  Thus, ubiquitination in the calmodulin-binding 

region must be a signal for selective degradation by the proteasome. 

 

Discussion 

 The heme- and ligand-binding cleft in the oxygenase domain is an important 

regulator of nNOS ubiquitination (16).  We have previously shown that suicide 

inactivation of nNOS leads to covalent alteration of the cleft and promotes ubiquitination 

of nNOS (12, 15).  A mutation of cysteine residue 331 of nNOS to an alanine perturbs the 

L-arginine and tetrahydrobiopterin-binding cleft of nNOS, which destabilizes the enzyme 

and causes it to be more susceptible to ubiquitination in in vitro and cellular studies (10, 

21).  This C331A mutant of nNOS, as well as the wildtype nNOS, are stabilized by the 

slowly reversible inhibitor, N
G
-nitro-L-arginine (10).  Furthermore, we found that Hsp70 

and Hsp90 bind the oxygenase domain of nNOS, and this chaperone association 

decreases in the presence of N
G
-nitro-L-arginine (unpublished data).  While it is clear that 

the active site cleft is playing a role in regulation and stability of nNOS, it is unknown 

where ubiquitination occurs on nNOS, and therefore what structural features of nNOS are 

available for recognition and subsequent targeting of nNOS.  We developed an in vitro 

ubiquitination assay containing purified E1, E2, and CHIP, that recapitulates the cleft-

regulated formation of ubiquitinated nNOS.  We utilized this system to generate large 

quantities of ubiquitinated nNOS for LC-MS/MS analysis of tryptic nNOS peptides.  We 

established that ubiquitination of nNOS occurs primarily in the oxygenase domain of the 

enzyme.  Of 12 identified ubiquitination sites, nine are located in the oxygenase domain, 
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two are located in the calmodulin-binding region, and one is located in the reductase 

domain.  The identification of the ubiquitination sites in the oxygenase domain confirms 

the notion that this domain plays a major role in nNOS protein quality control. 

 As shown in Fig. 7A, the location of the ubiquitination sites were mapped onto a 

crystal structure of the nNOS oxygenase domain (27), using Pymol (DeLano Scientific).    

The crystal structure contains a dimer of two oxygenase domain monomers, one shown in 

blue and one in gray.  The heme is shown in the active site cleft in red.  Two of the lysine 

residues that were identified as ubiquitination sites, for one monomer, are shown in 

yellow (K370 and K386).  These residues on the other monomer are on the back of the 

structure.  The ubiquitination sites prior to residue 297 (K24, K33, K143, K188, K225, 

K229, K245) are not included on the crystal structure, however, the N-terminus of the 

oxygenase domain is notated to depict where these sites would likely be located (N1).  

The C-terminus is also indicated (C2), which is where the calmodulin-binding domain 

would begin. The N- and C-termini for the opposing monomers are located on the back of 

the structure. 

 To more fully appreciate the location of the ubiquitination sites, a full-length 

structure is needed.  There is no full-length structure of nNOS, but Garcin et al. (28) have 

utilized known biochemical data and studies on the flow of electrons through the enzyme 

to assemble the structures of its components, to depict the full structure with the 

reductase (Red) domain binding below the oxygenase (Oxy) domain, as we have adapted 

in Fig. 7B.  The calmodulin-binding region is also not included in the crystal structure, 

but it is believed to be located in the space between the oxygenase and reductase domains 

as indicated in Fig. 7B (CaM), based on the location of the C-terminus (C) of the 
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Figure 4.7.  Schematic of the ubiquitination sites on the structure of nNOS.  A, nNOS 

ubiquitination sites depicted on the crystal structure of the oxygenase domain.  The nNOS 

oxygenase domain (residues 297 through 716) is shown, with one monomer in blue and one in 

gray.  Only two of the 12 ubiquitination sites are included in this structure as indicated (K370, 

K386) and the lysine residues are shown in yellow.  Seven of the ubiquitination sites are on 

the N-terminal residues, which are not present in the crystal structure.  Two of the 

ubiquitination sites are in the calmodulin binding domain, which is also not present in the 

crystal structure.  The N-terminus (N1) of one monomer and the C-terminus (C2) of the other 

monomer are shown in orange where indicated.  The opposing N- and C-termini are located 

on the back of the structure.  B, schematic drawing of full-length nNOS, adapted from Garcin 

et al. (28).  The full-length structure is not known, but based on known biochemical data as 

well as studies of the flow of electrons through the enzyme, Garcin et al. depicted the 

oxygenase domain above the reductase domain, with the calmodulin binding domain in the 

middle.  One monomer is shown in blue and one in gray.  The oxygenase (Oxy) and reductase 

(Red) domains are indicated.  The calmodulin-binding domain (CaM) is indicated and shown 

connected to the nNOS oxygenase and reductase domains by a dotted line.  All 12 

ubiquitination sites are indicated.  The N-termini (N) and C-termini (C) of the oxygenase 

domains are indicated.  Statistical probability is expressed as follows: *, p<0.05. 
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oxygenase domain and the N-terminus of the reductase domain and the limited flexibility 

of this region (28).  The lysine residues corresponding to the identified ubiquitination 

sites are indicated where they would be located on the structure.  According to this 

schematic drawing, it appears that the ubiquitination sites are primarily located at the 

interface between the oxygenase domain and where the reductase and the calmodulin-

binding domains are believed to bind (28).  It is of interest that these ubiquitination sites 

are located near and in the calmodulin-binding domain.  Previous studies have 

demonstrated the ability of calmodulin, in the presence of Hsp90, to block nNOS 

ubiquitination (15).   

 As an initial attempt to determine the functional significance of the ubiquitination 

sites, we created a mutant (nNOS 7R) that has all seven lysines that occur in the 

calmodulin-binding domain of nNOS mutated to arginines, which cannot be conjugated 

to ubiquitin.  Arginine was chosen because it will maintain the charge of the residue, and 

it should not significantly alter the structure or folding of the enzyme, and the nNOS 7R 

mutant found it to be active.  The in vitro mono-ubiquitination of the nNOS 7R mutant 

was similar to the wildtype enzyme, which indicates that the other ubiquitination sites 

could be accounting for the majority of the mono-ubiquitination of nNOS.  The in vitro 

poly-ubiquitination as well as the degradation of the nNOS 7R mutant are significantly 

decreased, indicating that this region greatly influences the protein quality control of 

nNOS.  Studies have shown that Hsp90 and calmodulin enhance the binding of each 

other to both nNOS and endothelial NOS (29, 30).  Additionally, it has been proposed 

that Hsp90 acts to stabilize an open state of the ligand-binding cleft, in order to facilitate 

substrate access or to prevent further cleft unfolding that triggers Hsp70-dependent 
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ubiqtuitination (15, 31).  Moreover, inhibition of Hsp90 has been shown to disrupt the 

binding of Hsp90 with its client proteins, such as GR (glucocorticoid receptor) and a 

mutant p53 that is more stable than wildtype p53, allowing for ubiquitination by CHIP 

and subsequent degradation of these proteins (18, 32).  Disruption of Hsp90 binding 

could decrease the ability of calmodulin to bind, thus making the calmodulin-binding 

region available for ubiquitination.  Thus, in a situation in which calmodulin and Hsp90 

are not present, Hsp70/CHIP-mediated ubiquitination can occur in the oxygenase and 

calmodulin-binding domains. 

 Different types of poly-ubiquitin chains have been shown to play a role in 

degradation as well as signaling processes.  K48-linked chains are widely accepted as a 

target for proteasomal degradation (33), whereas non-canonical K63-linked chains play a 

role in DNA repair and signal transduction (34).  Recent studies, however, reveal that all 

poly-ubiquitin chains may target proteins for degradation (35, 36).  We found that poly-

ubiquitination of nNOS can occur through any of the lysines on ubiquitin.  These data are 

consistent with previous reports that when CHIP is paired with the E2 UbcH5a, it can 

form poly-ubiquitin chains with any of the individual ubiquitin lysine mutants (37).  

Thus, the poly-ubiquitination of nNOS can occur through any of the ubiquitin lysines, 

and any of these chains could lead to the proteasomal degradation or molecular signaling 

of nNOS.  In contrast, pairing CHIP with the E2 UbcH13/Uev1a leads poly-

ubiquitination of Troponin I with K63 chains exclusively (38).  Thus, it is possible that 

other E2 enzymes may confer selectivity to nNOS ubiquitination by CHIP. 

 Given the fact that NO is a very short-lived molecule that cannot be stored or 

released from vesicles, the steady state levels of NO are due primarily to the levels of 
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active NOS.  Thus, it is important to understand the molecular mechanisms by which 

nNOS is regulated.  It is of particular interest due to the fact that drugs and other 

xenobiotics can significantly impact the stability of nNOS, whether it is by suicide-

inactivation leading to destabilization, or by N
G
-nitro-L-arginine binding leading to 

stabilization.  Here we show the first evidence of the sites of ubiquitination of nNOS, 

which will aid in ultimately understanding where chaperones bind nNOS for 

ubiquitination and targeting for degradation. 
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