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Abstract 

This dissertation focuses on the development and implementation of several novel 

mathematical models of light transport in biological tissue for use as quantitative 

diagnostic tools to assess tissue viability and detect diseased tissue. This work includes 

semi-empirical models of reflectance and fluorescence for pancreatic cancer diagnostics, 

computational models of inelastic (Raman) scattering in layered tissues for non-invasive 

bone tissue assessment and breast tumor margin detection during surgery, and 

computational models of light propagation for tissues with irregular geometries.  

 

A novel photon-tissue interaction (PTI) model of reflectance and fluorescence was 

developed and employed to extract biophysically-relevant tissue parameters (mean size of 

cell nuclei, percentage contribution of collagen to fluorescence) from measured optical 

spectra of freshly-excised human pancreatic tissues. The mean cellular nuclear size was 

statistically significant for distinguishing adenocarcinoma sites from non-cancerous 

(pancreatitis and normal) sites. The percentage contribution of collagen was statistically 

significant for distinguishing between all three tissue types included in the study 

(adenocarcinoma, pancreatitis, normal). When these parameters were included in a 

statistically-rigorous tissue classification algorithm that accounted for intra-patient 

correlations in the data, adenocarcinoma was distinguished from the non-cancerous 

tissues with an area of 0.906 under the receiver operating characteristic (ROC) curve and 
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a sensitivity, specificity, positive predictive value, and negative predictive value of 

87.5%, 89.0%, 77.8%, and 94.2%, respectively.   

 

 A novel Monte Carlo (MC) model of inelastic (Raman) scattering in layered tissues was 

developed and employed to characterize the effects of tissue and fiber-probe properties 

on the detected Raman signal. This MC model was employed to assist with two 

biomedical applications: bone tissue diagnostics and breast tumor margin assessment. For 

the tumor margin assessment application, it was predicted that the smallest detectable 

tumor thickness using spatially-offset Raman spectroscopy would be 100 microns under a 

0.5 mm margin or 1 mm under a 2 mm margin.  

 

The models described in this dissertation provide accurate, versatile, and quantitative 

analysis of the effects of fiber-optic probe design and biophysical tissue properties on the 

detected optical signal and can be employed in a wide range of tissue diagnostic 

applications.  



 

1 

 

Chapter 1 

Introduction 

 

1.1 Optical spectroscopy of biological tissues 

Methods involving the use of visible light to probe the structure and function of human 

tissue have become increasingly prevalent over the past two decades [1, 2]. One main 

application area for these optical techniques is cancer diagnostics, where reflectance and 

fluorescence spectroscopies have shown potential to assist with the detection of cancer in 

human tissue [3-27]. 

 

In a typical tissue reflectance spectroscopy measurement, white light is delivered to tissue 

via an optical fiber, the light undergoes a series of elastic scattering events [16], and the 

backscattered or diffusely scattered light is detected with one or more fibers and sent to a 

spectrometer or spectrograph to produce a wavelength-resolved reflectance spectrum [28, 

29]. Reflectance measurements typically yield information about the sources of 

absorption and scattering in the tissue [5, 10]. The principal absorbers of visible light in 

human tissue are oxygenated and deoxygenated hemoglobin [5, 30], beta-carotene [9], 

and melanin (in skin) [31]. Scattering of visible light by human tissue is largely attributed 

to collagen fibers and sub-cellular organelles [32, 33].  
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For fluorescence spectroscopy, light of a specific wavelength is delivered to tissue and 

when this light is absorbed, it may excite endogenous molecules known as fluorophores, 

which then re-emit the light as fluorescence at a longer wavelength [34]. The re-emitted 

light that returns to the tissue surface is detected by one or more optical fibers and sent to 

a spectrometer or spectrograph to produce a wavelength-resolved fluorescence spectrum 

[9, 28, 35]. The remitted fluorescence can also be time-resolved [36, 37], or measured as 

a combination of wavelength- and time-resolved data [38]. Fluorescence measurements 

provide information about the relative concentrations of endogenous tissue fluorophores 

such as collagen, keratin, elastin, retinol, NADH, and FAD [7-10]. 

 

Raman spectroscopy detects photons that have been inelastically scattered. Inelastic, or 

Raman, scattering refers to the process in which the scattered photons are shifted in 

energy and wavelength from the incident photons. The difference in energy corresponds 

to a molecular vibration of a component of the specimen [39].  The observed change in 

photon energy (i.e. optical frequency) and wavelength is specific to the molecular 

vibration from which the photon was Raman-scattered [39]. 

 

1.2 Mathematical models assist with disease diagnostics 

When disease is present in tissue, the absorption, scattering, fluorescence, and Raman 

scattering properties often undergo significant changes due to alterations in tissue 

composition, vasculature, morphology, and metabolic function. Accurate mathematical 

models of optical spectroscopy processes can be highly useful for disease diagnostics in 

human tissue, because they provide a means of extracting quantitative values of 
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biologically-relevant parameters from noninvasive optical spectroscopy measurements 

[5-10]. 

 

Over the past two decades, a variety of mathematical methods have been employed to 

model human tissue reflectance and fluorescence spectra in terms of biologically 

significant parameters [5, 8-10]. These methods include the diffusion approximation 

(DA) [5], Monte Carlo (MC) simulations [8], semi-empirical models [10], photon 

migration models [9], and look-up table algorithms [40]. This dissertation will primarily 

focus on the application of a semi-empirical model for pancreatic cancer diagnosis and 

Monte Carlo models of fluorescence and Raman scattering for disease diagnostics in 

bone tissue, breast tissue, and tissue-engineered constructs. The DA will be discussed in 

this introduction for completeness. 

 

A number of studies have used DA or MC models of reflectance from human tissues to 

extract optical parameters relevant to cancer diagnostics [5, 23, 25, 41-46]. In these 

studies, the tissue is often approximated as a homogeneous slab of infinite extent in the x- 

and y- directions (with thickness d in the z-direction and uniform optical absorption and 

scattering coefficients (μa, μs) throughout the medium (Figure 1.1)), or as a stack of 

homogeneous slabs. Photons that undergo many scattering events (solid line) can be 

treated as diffuse, but photons that only undergo a few scattering events (dashed line) 

cannot be treated as diffuse [47, 48]. The thickness d is usually assumed to be much 

larger than the penetration depth of the light into the tissue, thereby neglecting 
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transmittance. In this case, the reflectance model will typically be a function of μa, μs, 

and the source-detector separation ρ of the fiber-optic probe. 

 

ρ

μa, μs

d
Diffuse photon path

Non-diffuse
photon path

Source fiber
Detector fiber

z

y
x

 

Figure 1.1 Typical homogeneous tissue model used in biomedical optics [3]. The tissue 
is represented as a slab with absorption and scattering coefficients μa and μs. Photons are 
launched into the tissue via the source fiber, and they are collected by the detector fiber at 
a distance ρ from the source. Photons that undergo many scattering events can be treated 
as diffuse (solid line), but photons that only undergo a few scattering events (dashed line) 
cannot be treated as diffuse.  Here, the diffuse photon path (solid line) is detected and the 
non-diffuse photon path (dashed line) is not detected. 

 

When the model is fit to a measured reflectance spectrum R(λ) acquired with a fiber-optic 

probe with source-detector separation ρ, the absorption and scattering coefficients μa and 

μs of the tissue can be determined. From the absorption coefficient, the concentrations of 

the principal absorbers in the tissue (such as oxy-hemoglobin, deoxy-hemoglobin, beta-

carotene, and retinol) can be determined. The blood-oxygen saturation of the tissue can 

be determined by dividing the oxy-hemoglobin concentration by the total hemoglobin 

concentration [5]. The scattering coefficient, the concentration and mean size of the 

scatterers in the tissue can be determined from Mie theory [49], either by a power-law 

approximation of the form μs(λ) = Aλ-b [9, 50], or by the Van de Hulst approximation 
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[32, 51]. In the power-law approximation, the parameter A is related to the concentration 

of the scatterers [9], and the parameter b is related to the scatterer size [52]. Both 

equations are based on the assumption that the scattering particles in the tissue are 

spherical; to model scattering from collagen fibers, a term for cylindrical scatterers can be 

added [33]. Recent work has also been done to model scattering from spheroidal cell 

nuclei [53]. The absorption and scattering parameters extracted from a reflectance model 

can subsequently be put into a classification algorithm to distinguish between different 

tissue types [9]. 

 

DA and MC models of fluorescence have also been employed for cancer diagnostics in 

human tissues [7, 54-58]. The main goal of the fluorescence models is to extract the 

relative concentrations of intracellular and extracellular tissue components that provide 

information about tissue morphology and metabolism. For excitation in the near-UV and 

visible regions of the electromagnetic spectrum, the predominant tissue components that 

fluoresce are collagen, elastin, keratin, NADH, FAD, tryptophan, porphyrins, and retinol 

[7-9, 32]. Measured fluorescence spectra F(λ) of human tissues are often modeled as a 

linear combinations of the spectra of the individual fluorophores in the tissue [32, 50]. 

The best fit of the model to the measured fluorescence spectrum extracts the relative 

contribution of each tissue fluorophores to the tissue fluorescence. The spectra of the 

individual fluorophores can be measured in advance, so that they are known when the 

model is fit to the measured tissue fluorescence spectrum. However, since the 

measurements of individual fluorophores are typically performed on samples that are not 

within the same biochemical environment as human tissue, the spectra may have to be 
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shifted or corrected [9]. Furthermore, the measured tissue fluorescence spectrum contains 

artifacts from absorption and scattering; these artifacts are typically removed to produce 

an “intrinsic” fluorescence spectrum [32], or a fluorescence model that corrects for them 

is developed [59]. 

 

The diffusion approximation (DA) [48, 60-65] provides an analytical solution to the 

radiative transfer equation for simple geometries in the limits that the absorption of the 

tissue is negligible compared to the scattering and that the delivery and detection of light 

occur far enough apart (in space and in time) that the photon trajectories can be treated as 

diffuse (see Figure 1.1). Higher-order versions of the DA (such as the P3 and PN 

approximations [66, 67] offer increased accuracy for short source-detector separations; 

however, the mathematical expressions are more complicated. In the forward DA model, 

the measured reflectance, as a function of wavelength λ and distance ρ between the 

source and detector fibers, can be modeled with the equation [5, 61]: 
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In Eq. (1), zo = (μa + μs’)
-1, μ = [3μa(μa + μs’)]

1/2, r1 = (zo
2 + ρ2)1/2, and r2 = [zo

2(1 + 

(4A/3) )2 + ρ2]1/2. The parameter A is a function of the tissue refractive index n; for 

biological tissue, n is typically approximated to be 1.4, which gives a value of around 3.2 

for A [5]. By fitting Eq. (1) to a measured reflectance spectrum R(λ) acquired with a 

fiber-optic probe with source-detector separation ρ, the absorption and reduced scattering 

coefficients μa and μs’ of the tissue can be extracted. In order to obtain the scattering 
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coefficient μs, the reduced scattering coefficient μs’ must be divided by (1 - g), where g is 

the anisotropy (a quantity related to the directionality of the scattering) and is often 

approximated as 0.9 for biological tissue [37]. 

 

A number of studies have employed inverse DA models of reflectance in the 

aforementioned manner to extract biologically-relevant parameters for classification of 

benign and malignant human tissues in vivo. Zonios et al. [5] conducted a study of this 

type on colon tissue in vivo for patients undergoing colonoscopy. In this study, 

reflectance spectra were acquired from adenomatous (pre-cancerous) colon polyps and 

normal colon tissue from 13 patients. A homogeneous-slab DA model was fit to the 

measured reflectance spectra, and the total hemoglobin concentration, blood-oxygen 

saturation, scatterer concentration, and scatterer size were extracted from the best fits. 

Georgakoudi et al. [23] performed a similar study for esophageal tissue, in which 

reflectance spectra were acquired in vivo from patients just prior to biopsy. All of the 16 

patients in the study had a condition known as Barrett’s esophagus; many cases of lower 

esophageal adenocarcinoma originate in patients with this condition. The measured 

reflectance spectra were fit to a homogeneous-slab DA model to extract the tissue 

absorption and scattering coefficients. At a wavelength of 400 nm, the mean reduced 

scattering coefficient was found to be 28% lower in high-grade dysplasia than in low-

grade dysplasia, and the mean reduced scattering coefficient of low-grade dysplasia was 

found to be 40% lower than that of non-dysplastic Barrett’s esophagus. Inverse diffusion 

models of reflectance have also been employed to extract reduced scattering coefficients 
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in vivo from human cervical tissues [25] and to extract hemoglobin concentration and 

blood-oxygen saturation values in vivo from human colon tissues [30].  

 

Although DA models are commonly employed for analysis of reflectance spectra, they 

are inaccurate in situations where the photon paths cannot be approximated as diffuse. 

This can occur when the distance ρ between the source and detector fibers is less than 

1/μs’ [68] and when the tissue absorption is non-negligible compared to the scattering 

[69]. In these cases, a modified equation for the reflectance must be used in order to 

maintain the accuracy of the model. Several groups have developed such expressions and 

applied them to cancer diagnostics in human tissues. Garofalakis et al. [70] used an 

improved homogeneous-slab diffusion equation that was applicable to small tissue 

geometries, and employed the inverse model in an ex vivo study to distinguish between 

normal and cancerous breast tissues. Fawzy et al. [71] used a bi-layered diffusion model 

to describe the reflectance from photons that spent a significant amount of time in a 

superficial tissue layer, and applied the inverse model to distinguish malignant from 

benign lung tissue in an in vivo study. These results suggest that modified diffusion 

models have the potential to accurately describe tissue reflectance spectra with analytical 

equations in situations where the commonly-used DA models are inaccurate. 

 

Inverse DA models of fluorescence have been employed for cancer diagnostics of human 

tissues. Nair et al. [55] used an inverse DA model of spatially-resolved fluorescence in a 

homogeneous medium to distinguish between normal breast tissue, benign breast tumors, 

and malignant breast tumors in an ex vivo human study. Chang et al. [7, 35, 54] employed 
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a two-layered inverse fluorescence model in which the DA was used to model 

fluorescence in the bottom layer, for distinguishing between normal tissue and pre-cancer 

in vivo in the human cervix. In [7], normal and dysplastic cervical tissues from 292 

patients were interrogated in vivo to obtain a total of 493 fluorescence spectra. Best fits of 

the model developed in [54] provided information about relative concentrations of 

keratin, NADH, FAD, enzymatically activated collagen crosslinks, and glycosylation-

activated collagen crosslinks in the tissues. 

 

Monte Carlo (MC) simulations are frequently used in biomedical optics because they are 

considered to be the “gold standard” for accurately modeling photon propagation in 

biological tissues with a wide range of tissue optical properties and fiber-probe 

geometries [37, 72-82]. The accuracy of MC simulations is due to the fact that the MC 

method treats the path of each individual photon in the tissue independently and then 

combines the results at the end of the simulation to obtain expressions for the total 

detected reflectance or fluorescence as a function of space and/or time. The drawback to 

this technique is that it requires large numbers of photons (roughly 107 to 108) to be 

simulated, and therefore can often require high computation times. The computation time 

becomes an especially significant drawback for simulations involving tissues with high 

scattering and low absorption coefficients. Recently, advances in computing technology, 

such as the use of graphics processing units (GPUs), have shown great potential for 

significantly decreasing the computation time required for MC simulations [83-85]. 

Semi-analytical “scaling” methods [86-89] have also been employed to reduce 
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computation time. Thus, MC simulations have the potential to provide rapid and accurate 

quantitative models of photon propagation in biological tissues.  

 

In forward MC simulations (Figure 1.2) tissues are typically modeled as stacks of 

homogeneous slabs, with each slab having a different absorption coefficient, scattering 

coefficient, and anisotropy [37, 75-77]. For each step of a given photon path, a 

probability distribution function involving the scattering coefficient is sampled to obtain 

the distance that the photon travels on that particular step [37, 75-77]. A probability 

distribution function involving the anisotropy and tissue phase function is sampled to 

obtain the angle at which the photon will scatter during that step [37, 75-77]. To model 

absorption, all photons typically enter the tissue with a “weight” of 1, which is then 

attenuated at each step according to the Beer-Lambert Law [37, 75-77]. For fluorescence 

simulations, the absorption of a photon by a fluorophore is determined by sampling 

another probability distribution involving the fluorophore absorption coefficient μafx in 

the tissue layer in which the photon is located [37, 76, 77]. Since the absorption 

coefficient, scattering coefficient, and anisotropy are wavelength-dependent, MC 

reflectance simulations are usually run for one specific wavelength at a time. MC 

fluorescence simulations are typically run for a discrete set of wavelengths including only 

the wavelength of the incident laser light and the peak emission wavelength of each 

fluorophore. However, recent work has been done to use the MC technique to simulate 

entire spectra at once [90]. 
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Inverse MC simulations involving both homogeneous and layered tissues have been 

employed to model reflectance for cancer diagnostic applications in human tissues. 

Palmer et al. [43] and Zhu et al. [91] employed a MC model of reflectance from a 

homogeneous slab to extract optical properties for distinguishing between malignant and 

benign human breast tissues ex vivo. Reflectance measurements from 85 tissue samples 

(50 benign, 35 malignant) were analyzed with the MC model to extract beta-carotene 

concentration, hemoglobin concentration, blood-oxygen saturation, and mean reduced 

scattering coefficient. The beta-carotene concentration, hemoglobin concentration, and 

mean reduced scattering coefficient were all statistically significant (p < 0.05) for 

distinguishing between malignant and benign tissues.  The sensitivity and specificity of 

the MC-based classification algorithm were comparable to those of a partial least-squares 

technique [91]. Chang et al. [44] employed a MC reflectance model with homogeneous 

slab geometry for diagnosing pre-cancers in vivo in the human cervix. Salomatina et al. 

[45] used a homogeneous MC reflectance model for skin cancer diagnostics in an ex vivo 

study. Arifler et al. [46] employed MC simulations of reflectance in a bi-layered tissue 

model to analyze the reflectance from the epithelium and stroma of the human cervix for 

an in vivo study to distinguish severe dysplasia and carcinoma (47 sites, 42 patients) from 

normal tissue (129 sites, 115 patients). 

 

Inverse MC simulations of fluorescence have also been used for cancer diagnostics in 

human tissues. Drezek et al. [56] employed a MC model of fluorescence in layered slab 

geometry to distinguish between squamous epithelial lesions and normal tissue in an in 

vivo study in the cervix. Pavlova et al. [57, 58] used layered MC models to distinguish 
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between pre-cancerous, neoplastic, and normal oral tissue in vivo. Vishwanath and 

Mycek [37] developed layered MC simulations to characterize the effect of tissue and 

probe properties on the time-resolved fluorescence measured in vivo from normal and 

pre-cancerous human colon tissues . As these studies demonstrate, MC simulations are a 

powerful tool for modeling fluorescence in layered tissues because they enable 

quantitative description of light transport in complex media with multiple layers and 

different principal fluorophores in each layer. 

 

DA and MC models are also frequently employed to correct fluorescence spectra for 

artifacts related to tissue absorption and scattering. As mentioned previously, the main 

goal of fluorescence modeling is to extract the relative concentrations of each tissue 

fluorophore, but the presence of absorption and scattering artifacts in the measured 

fluorescence spectra complicates this process. Therefore, it is common to take the 

extracted tissue absorption and scattering coefficients from a reflectance model and use 

those properties in a model that either directly “corrects” the fluorescence spectra (such 

as a semi-empirical model) or implicitly accounts for attenuation (such as a MC model). 

DA models of fluorescence can incorporate the absorption coefficient, scattering 

coefficient, and anisotropy of the tissue into the fluorescence equations to explicitly 

account for attenuation. In MC models, the tissue absorption and scattering properties are 

used as inputs to the code, so that the fluorescence detected in the code has already been 

corrected for attenuation. For semi-empirical models, a Beer-Lambert factor of the form 

exp(-(μa+μs
’)<L>), where <L> is the average total path length of a fluorescence photon 

in the tissue, can be employed to correct the measured fluorescence for attenuation.  
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In an ex vivo study of human breast tissues (17 patients, 104 sites, 202 spectra), 

Volynskaya et al. [9] used a homogeneous-slab DA model of reflectance to extract tissue 

scattering parameters (A and b from the equation μs’ = Aλ-b) and relative contributions of 

oxy-hemoglobin and beta-carotene to the tissue absorption. These parameters were then 

employed to correct the measured fluorescence for attenuation. The resulting intrinsic 

fluorescence spectra were modeled to extract relative contributions of NADH and a 

“collagen-like” fluorophore. All of the extracted reflectance and fluorescence parameters 

except for b were statistically significant for distinguishing between tissue types. Zhu et 

al. [8, 92] employed homogeneous-slab MC models of both reflectance and fluorescence 

in an ex vivo study to distinguish malignant from non-malignant breast tissue. The inverse 

MC reflectance model was employed to extract absorption and scattering properties of 

the tissue, and these parameters were then input into the MC fluorescence model to 

account for attenuation artifacts in the measured fluorescence spectra. The parameters 

extracted from the inverse reflectance and fluorescence MC models were then employed 

for tissue classification. Redden Weber et al. [59] used MC and diffusion models for 

analysis of 748 in vivo reflectance and fluorescence measurements of human cervical 

tissue. A bi-layered MC model was employed to determine that the detected reflectance 

was primarily from the stromal layer, so a homogeneous P3-hybrid diffusion model 

(developed in [66]) was used for analysis of reflectance data. The stromal absorption and 

scattering coefficients extracted from the reflectance model were then input into an 

analytical fluorescence model to determine the fluorophore concentrations and epithelial 

scattering coefficient. The extracted parameters were employed to distinguish between 
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several types of normal cervical tissue, grade 2 cervical intraepithelial neoplasia, and 

grade 3 cervical intraepithelial neoplasia and cancer.  

ρ
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Figure 1.2 Monte Carlo (MC) model of photon propagation in tissue [3]. The tissue is 
typically modeled as a stack of homogeneous slabs, with each slab having its own optical 
properties (μa, μs, g) and thickness (d). The photon’s path is modeled as a series of 
scattering steps with step size and scattering angle sampled from probability distributions.  

 

In addition, several groups have recently developed semi-empirical models to extract 

absorption and scattering parameters from reflectance measurements on human tissue. 

These models typically have two main characteristics: they are simple analytical 

functions of the tissue absorption and scattering coefficients, and they implicitly account 

for the geometry of the fiber-optic probe. The combination of these two features makes 

semi-empirical models useful, because they can be more accurate than DA models while 

avoiding the long runtimes associated with MC simulations.  

Reif et al. [93] developed a forward semi-empirical model of reflectance from a 

homogeneous tissue slab, for use with small source-detector separations, and used the 

inverse model to study the effect of probe pressure on reflectance measurements acquired 
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in vivo from the thigh muscles of mice [52]. The forward model was based on three 

assumptions: (i) the reflectance is proportional to the reduced scattering coefficient, (ii) 

the attenuation of the reflectance can be described by a Beer-Lambert factor (exp(-

μa<L>), where <L> is the mean total path length of a photon in the tissue) and (iii) the 

mean total path length <L> of a photon in the tissue is inversely proportional to both the 

absorption coefficient and the reduced scattering coefficient. The resulting semi-

empirical reflectance equation is: 

                          '
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In Eq. (2), the factor Ccorr accounts for the confinement of blood into cylindrical blood 

vessels. The values of a, b, and c are related to the properties of the fiber-optic probe and 

can be determined from MC simulations or reflectance measurements on tissue 

phantoms.  

Zonios and Dimou [69] developed a forward semi-empirical model of reflectance from a 

homogeneous tissue and used the inverse model to extract absorption and scattering 

properties of normal skin and melanocytic nevi from in vivo reflectance measurements. 

Marchesini et al. [94] employed an inverse semi-empirical, homogeneous-slab model to 

assess the melanin content of skin lesions (including 288 melanomas and 424 dysplastic 

nevi) from multispectral images acquired in vivo.  

Inverse semi-empirical models of reflectance and fluorescence have been developed for 

cancer detection in human pancreatic tissues [10, 32]. In order to study the reflectance 
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and fluorescence spectra of human pancreatic tissues, a photon-tissue interaction (PTI) 

algorithm was developed by Wilson et al. [10, 32]. The PTI algorithm, which will be 

described in detail in Chapter 2, mathematically modeled the measured reflectance and 

fluorescence spectra to extract biophysically-relevant parameters related to tissue 

morphology and biochemistry from normal pancreatic tissue, chronic pancreatitis, and 

adenocarcinoma. 

Since each of the models described in this dissertation is based on a different set of 

assumptions, it is important to consider the limits of validity of the model being used. 

Figure 1.3 shows a comparison between DA and MC models of spatially-resolved 

reflectance for two different scattering coefficients within a range expected [37, 69] for 

human tissue. In these simulations, the absorption coefficient was 0.1 cm-1, the anisotropy 

was 0.9, the photons were launched perpendicular to the tissue surface, and all photons 

within a numerical aperture of 1.0 that reached the surface at a distance of less than or 

equal to 3.05 cm from the source were detected. The photons were binned in detector 

annuli of 1 mm thickness, except for the first detector, which was a circle of radius 0.5 

mm. When the scattering coefficient of the tissue is 280 cm-1, the DA and MC models 

agree well (mean error < 4%, maximum error < 15%) for all source-detector separations 

(Figures 1.3(a) and 1.3(c)). When the scattering coefficient of the tissue is significantly 

lower (75 cm-1), the two models agree well (mean error < 3%, maximum error < 13%) for 

source-detector separations of 3mm and greater, but there is significant discrepancy 

(mean error > 38%) between the two models for source-detector separations of less than 3 

mm (Figures 1.3(b) and 1.3(d)). This difference in agreement arises from the fact that 

when the tissue scattering coefficient is higher, the photon undergoes more scattering 
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events over a given distance, thereby causing the paths of the photons to become diffuse 

over a relatively short length scale. When the scattering coefficient is lower, the photon 

undergoes fewer scattering events over that same distance, so it is only valid to employ 

the DA if the length scale is increased to the point where the photon paths can once again 

be approximated as diffuse. Therefore, it is important to carefully consider the validity of 

the DA for the specific probe geometry employed in a given study, especially when using 

a DA model to extract quantitative values of tissue parameters. In general, the DA is 

valid when the source-detector separation of the fiber-probe is greater than 1/μs
’ [68]. By 

contrast, MC simulations are valid for any set of tissue and probe properties (although 

they are limited by large computation times). Semi-empirical models are valid as long as 

they have been appropriately calibrated (using either MC simulations or measurements 

on tissue-simulating phantoms) for the tissue and probe properties of interest [93]. 
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Figure 1.3 Reflectance as a function of probe source-detector separation [3], modeled 
with the diffusion approximation (black circles) and Monte Carlo simulations (white 
circles) for tissues with scattering coefficients of (a,c) μs = 280 cm-1 and (b,d) μs = 75  
cm-1. Panels (c) and (d) are magnified versions of (a) and (b) for short source-detector 
separations. For the tissue scattering coefficient of 75 cm-1, there is notable disagreement 
between the two models at source-detector separations of less than 3 mm (d). 
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1.3 Dissertation objectives 

Now that the different types of commonly-used mathematical models in biomedical 

optics have been introduced, the remainder of this dissertation will focus on the 

development of novel versions of two of these types of models (semi-empirical and 

Monte Carlo) for specific tissue diagnostic applications in human pancreatic, bone, and 

breast tissues.  

Specific Aim 1:  To develop novel, closed-form, semi-empirical models of pancreatic 

tissue reflectance and fluorescence to quantitatively analyze measured optical data 

from normal and diseased human pancreatic tissues. The first-ever photon-tissue 

interaction (PTI) models of reflectance and fluorescence from human pancreatic tissue 

will be developed and fit to measured reflectance and fluorescence spectra from normal 

pancreatic tissue, pancreatitis, and adenocarcinoma to extract optical absorption and 

scattering parameters from the measured data. 

Specific Aim 2:  To assess the diagnostic significance of parameters extracted from 

the semi-empirical models of pancreatic tissue reflectance and fluorescence and 

employ these parameters for tissue classification. The diagnostic utility of the tissue 

parameters extracted from the PTI model described in Specific Aim 1 will be assessed in 

two ways: (1) Comparison of the changes in these parameters between the different tissue 

types with the changes observed in these tissue types via histopathology; (2) Statistical 

tests to determine the degree of statistical significance of each parameter for 

distinguishing between the different tissue types. Subsequently, the parameters from the 

PTI model will be included in a statistically-rigorous tissue classification algorithm that 
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employs multinomial logistic analysis with Generalized Estimating Equations to account 

for correlations in the data. From the tissue classification algorithm, the sensitivity, 

specificity, positive predictive value, and negative predictive value of the optical 

parameters for distinguishing pancreatic adenocarcinoma will be calculated. 

Specific Aim 3:  To develop a novel Monte Carlo model of inelastic (Raman) 

scattering in layered tissues, for application to bone and breast tissue disease 

diagnostics. A novel Monte Carlo model of Raman scattering in bone tissue will be 

developed to quantitatively assess the effect of absorption and scattering from overlying 

tissue layers (skin, muscle, tendon) and fiber-probe properties on the Raman signal from 

bone that is detected non-invasively by a fiber-optic probe placed on the surface of the 

skin. A novel Monte Carlo model of Raman scattering in breast tissue will be developed, 

validated, and employed to predict the effect of tissue and probe properties on the 

detected Raman signal from a buried tumor layer, for characterization of a spatially-offset 

Raman spectroscopy method for breast tumor margin assessment during surgery. 

Specific Aim 4:  To develop a novel, user-friendly, versatile Monte Carlo model of 

light propagation in complex biological tissues with irregular geometries. A novel 

MATLAB-based Monte Carlo fluorescence model will be developed with the use of 

surface meshes to describe photon transport in tissues with a wide range of biologically-

relevant geometries. The temporally- and spatially-resolved fluorescence predictions of 

the code will be verified by comparison with a pre-existing, previously-validated code for 

bi-layered slab-mesh models. 
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1.4 Dissertation overview 

Chapter 2 describes the development of the first-ever semi-empirical models of 

reflectance and fluorescence from human pancreatic tissues, and the application of these 

models to pancreatic cancer diagnostics. 

Chapter 3 describes the development of novel Monte Carlo models of Raman scattering 

in layered biological tissues (bone tissue and breast tissue), and the use of these models 

for predicting the effect of tissue and probe properties on the detected Raman signal for 

bone tissue assessment and breast tumor margin detection during surgery. 

Chapter 4 describes the development of a novel, user-friendly, mesh-based Monte Carlo 

model for simulation of light propagation in tissues with complex geometries.  

Chapter 5 provides the conclusions of the dissertation, an overview of the key 

contributions described in the dissertation, and a summary of the next steps associated 

with the research mentioned in the dissertation. 
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Chapter 2  

Pancreatic disease detection with reflectance and fluorescence 

 

2.1. Development of Photon-Tissue Interaction (PTI) model 

Pancreatic cancer has a five-year survival rate of only 6% [95], largely because there is 

currently no reliable method to diagnose the disease in its early stages. If a cancerous 

pancreatic tumor is accurately located and resected, and the patient then undergoes 

adjuvant therapy, the five-year survival rate only increases to about 20% [96]. 

Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) is currently considered 

the diagnostic standard for pancreatic cancer diagnosis, but it has a sensitivity of only 

54% when the patient also has chronic pancreatitis (pancreatic inflammation), which is 

frequently the case [97]. For diagnosing cancer in solid lesions of the pancreas, the 

negative predictive value (true negatives/all negatives) of EUS-FNA has a mean value of 

72% and ranges from 16% to 92%, according to a recent meta-analysis of 28 clinical 

studies [96]. In [96], the authors reported that one of the most common “diagnostic 

dilemmas” is that of distinguishing malignant masses from inflammatory ones and 

concluded that EUS-FNA “preoperative biopsy of potentially resectable pancreatic 

tumours is not generally advisable, as malignancy cannot be ruled out with adequate 

reliability.” Patients who are diagnosed with pancreatic cancer may undergo an arduous 

surgical procedure known as a Whipple resection; one study found that fully 9% of
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 Whipple patients were classified as “false positives” – that cancer was not present after 

the resected tissue was examined [98]. As a result, there is an unmet clinical need for a 

method that can accurately and reliably detect pancreatic cancer at early stages of 

development and distinguish it from chronic pancreatitis. 

 

Reflectance and fluorescence spectroscopies have shown potential for clinical cancer 

detection in tissues including the breast [9], colon [5], cervix [7], and esophagus [6]. 

However, few studies have used optical methods to detect disease in the human pancreas. 

Optical interrogation of human pancreatic tissue has been demonstrated with optical 

coherence tomography [99, 100] and near infrared spectroscopy [101]. Partial-wave 

microscopic spectroscopy has shown promise for detecting cancer-related changes in the 

nanoarchitecture of human pancreatic cells obtained from archival cytology specimens 

[102]. Recently, an optical study of murine tumors consisting of human pancreatic cancer 

cells was conducted to quantitatively distinguish different tumor regions [103]. However, 

to our knowledge, there has been no comparable work involving mathematical models of 

experimentally obtained reflectance and fluorescence data from normal and diseased 

human pancreatic tissues. Toward this end, prototype instrumentation [28, 104] was 

developed at the University of Michigan to obtain reflectance and fluorescence spectra 

[28, 104, 105] from freshly excised human pancreatic tissues. In the study reported here 

[32], mathematical modeling of experimentally measured data was used to quantitatively 

describe differences in the reflectance and fluorescence spectra of normal pancreatic 

tissue, pancreatic adenocarcinoma, and pancreatitis. In particular, we sought to correlate 

the results of bimodal tissue optical spectroscopy with those of microscopic histological 
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examination of tissue (Figure 2.1), which is the current “gold standard” for cancer 

diagnostics. 

 

BPC

Stroma
Stroma

WBC

Benign pancreas AdenocarcinomaPancreatitis

Stroma

ACBPC

 

Figure 2.1 Representative histology images [32, 104] (used with permission) of normal 
pancreatic tissue (BPC = benign pancreatic cells), pancreatitis (WBC = white blood 
cells), and pancreatic adenocarcinoma (AC = adenocarcinoma cells with enlarged nuclei). 
The nuclei and stroma have been stained purple (hematoxylin stain) and pink (eosin 
stain), respectively. 
 

As shown in Figure 2.1, pancreatic adenocarcinoma has larger nuclei than benign 

pancreatic tissue, and both adenocarcinoma and chronic pancreatitis have more 

collagenous stroma than normal pancreatic tissue. The mathematical model of reflectance 

quantitatively linked increased nuclear size in adenocarcinoma to changes in the 

measured reflectance spectra from 455-525 nm. The fluorescence model quantitatively 

linked increased collagen content in pancreatitis and adenocarcinoma to changes in the 

composition of the measured fluorescence spectra. Fitting the reflectance model to the 

experimental data also enabled what is, to the best of our knowledge, the first-ever 

extraction of values for the optical absorption and reduced scattering coefficients of 

human pancreatic tissues.  
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The mathematical model provided a quantitative link between optical spectroscopy and 

tissue histology (Table 2.1), suggesting a potential clinical application of optical 

spectroscopy and modeling to minimally invasive early cancer diagnostics in the 

pancreas. Although this paper focuses exclusively on pancreatic tissues, the methods 

described are potentially useful for optical diagnostic applications in other biological 

tissues. 

Table 2.1 Key histological features of pancreatic tissues detected by  
optical spectroscopy [32]. 

Pancreatic tissue Key histological features  
(relative to normal pancreatic 

tissue) 

Optical signature found in 

Adenocarcinoma Increased nuclear size 
Greater stromal collagen content 

Reflectance spectra 
Fluorescence spectra 

Pancreatitis Greater stromal collagen content Fluorescence spectra 

 

A prototype clinically-compatible Reflectance and Fluorescence Lifetime Spectrometer 

(RFLS; Figure 2.2), developed at the University of Michigan and described previously in 

the literature [28, 104, 106], was employed to obtain reflectance and fluorescence 

measurements of human pancreatic tissue within 15 minutes of removal via Whipple 

resection at the University of Michigan Medical Center. Briefly, the RFLS consisted of 

two light sources: a tungsten halogen lamp (HL 2000FHSA, Ocean Optics, Dunedin, FL) 

for CW reflectance, and a 355 nm pulsed laser with a 1 KHz repetition rate and a 500 ps 

pulse width (PNV001525-140, JDS Uniphase, San Jose, CA) for fluorescence excitation. 

Light from these two sources was directed onto the tissue via two separate optical fibers 

with core diameter of 600 μm. A third identical fiber was used to detect both the 
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reflectance and fluorescence photons that returned to the surface. These three fibers were 

incorporated into a custom-made fiber optic probe (Ocean Optics), in which they were 

arranged in a triangular geometry at the probe’s distal end [27]. 

 

 

 

 

 

 

 

Figure 2.2 Schematic of prototype clinically-compatible Reflectance and Fluorescence 
Lifetime Spectrometer (RFLS) [10]. ND = neutral density filter, L = lens, LP = long pass 
filter, APD = avalanche photodiode, ICCD = intensified charge coupled device. 
 

A portion of the collected signal was directed to time resolved fluorescence 

measurements (not described here). For wavelength resolved measurements of 

reflectance and fluorescence, the rest of the detected photons were sent to a spectrograph 

(MS 125, Oriel Instruments, Stratford, CT) coupled intensified charge coupled device 

(ICCD) camera (ICCD 2063, Andor Technology, Belfast, Northern Ireland). At each 

tissue site, fluorescence and reflectance measurements were made in sequence by using 

shutters to block the other light source. Each fluorescence (reflectance) measurement had 

an associated acquisition time of 2 seconds (2.5 seconds).  
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All measured reflectance and fluorescence spectra were background-corrected [125]. 

Corrected reflectance spectra R/Ro were obtained by background subtraction and then 

dividing by the reflectance spectrum Ro of the lamp [105]. The lamp spectrum Ro was 

measured by placing a reflectance standard (SRS-50-010, Labsphere, North Sutton, NH) 

or a neutral density filter (optical density 0.05) at the distal end of the probe and 

collecting the lamp light that was reflected from the surface of the reflectance standard. 

Each wavelength-resolved spectrum was normalized to peak intensity.   

 

Measurements were taken at five sites on each tissue specimen. One pancreatectomy 

specimen was evaluated from each of two different patients. Each measured site was 

biopsied under the supervision of a clinical pathologist, and the biopsied samples were 

evaluated histologically. For the first patient, two of the sites were histologically normal 

and three were pancreatitis, while for the second patient, all five sites sampled were 

adenocarcinoma [28, 104, 105]. There were noticeable differences in both the reflectance 

and fluorescence spectra of the three tissue types, most notably around 500 nm for the 

reflectance spectra and near 400 nm for the fluorescence spectra [28, 104, 105]. The 

study was approved by the Institutional Review Board of the University of Michigan 

Medical Center and written consent was obtained from the patients.     

      

The lineshapes of reflectance spectra from biological tissues are known to be primarily 

dependent on the absorption and scattering coefficients of the media. Absorbers such as 

blood will attenuate the light, while scatterers such as cell nuclei and collagen fibers will 

change the paths of the photons, eventually leading some of them back to the tissue 
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surface. Mie theory [33, 49, 51, 107] was used to describe the scattering coefficient μs, as 

a function of wavelength, in terms of the size and density of the scatterers in the tissue. 

Two Mie theory terms were used: one for spherical scatterers (cell nuclei) [49, 51, 107] 

and another for cylindrical scatterers (collagen fibers) [33, 49]. For the spherical Mie 

scattering term, the Van de Hulst approximation was used [51, 107]:  

                 
( )

( )
( )

( )

2

2

2sin sin1
( ) 1 ; ( )

2s s o o s mN L L n n
δ δ

λ λμ λ π δ π
δ δ

λ λ

  
  = − + = −      

.               (3) 

In Eq. (3), Lo is the scatterer diameter, Ns is the number of scatterers per unit volume, and 

ns (nm) is the index of refraction of the scatterer (surrounding medium). The wavelength λ 

is defined as λ vac/nm, where λ vac is the wavelength of the incident light in vacuum. For all 

pancreatic tissue types in this study, nm was assumed to be 1.33 (for water), while ns was 

set as a free parameter and varied over a range previously measured for cell nuclei in 

freshly excised colon tissues [108]. For normal pancreatic tissue, the values of Lo and Ns 

were estimated from histology to be 9 μm and 7x107 cm-3, respectively. The parameter Ns 

was kept constant for all tissue types. For both pancreatitis and adenocarcinoma, a 

enlargement factor Ld/Lo was applied to the nuclear diameter. It was expected that Ld/Lo 

would be equal to 1.0 for pancreatitis but greater than 1.0 for adenocarcinoma because 

cancer cells are known to exhibit enlarged nuclei [109-111]. 

 

The cylindrical scattering term was modeled by a combination of Bessel functions, in 

which the diameter, refractive index, and anisotropy of the collagen fibers were set to 3 

μm, 1.35, and 0.975, respectively [33]. Both pancreatitis and adenocarcinoma were 
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modeled to have three times the concentration of collagen fibers as normal pancreatic 

tissue, as previously determined quantitatively for human pancreatic tissues using the 

Blumenkrantz and Asboe-Hansen method to assess hydroxyproline content [112]. Since 

the spherical and cylindrical Mie scattering terms are explicit functions of scatterer size 

and concentration, they were chosen over the commonly used approximation μs
′ = Aλ-b 

[9] (where μs
′ is the reduced scattering coefficient, equal to μs(1-g) in a tissue with 

anisotropy g).  

 

The absorption coefficient μa was modeled as a linear combination of the extinction 

coefficients of oxy- and deoxy-hemoglobin [113], weighted according to their 

concentrations in the tissue [5]: 

                                           
22( ) [ ] [ ]a Hb HbOHb HbOμ λ ε ε= + .                                             (4) 

Using Eq. (4), μa was represented as a function of the total tissue hemoglobin 

concentration [Hb]tot = [Hb] + [HbO2] and the blood oxygen saturation SO2 = 

[HbO2]/[Hb]tot.  

 

The key diagnostic feature of the measured reflectance was increased amplitude between 

455 nm and 525 nm in the adenocarcinoma spectra, relative to normal pancreatic tissue 

spectra. An empirical model (Eq. (2), re-written here as Eq. (5) for clarity), previously 

shown to be accurate in the case of small source-detector separations [52, 93], was used 

to model this feature by describing the reflectance spectra REMP
i(λ) as functions of tissue 

absorption and scattering: 
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.                           (5) 

Since Eq. (3) gives the scattering coefficient μs(λ) and Eq. (5) is a function of the reduced 

scattering coefficient μs
′( λ), it was necessary to estimate a value for the tissue anisotropy, 

so g was set to 0.9 at all λ for each tissue type [93]. The factor Ccorr(λ) describes the 

confinement of oxy- and deoxy-hemoglobin to cylindrical blood vessels [114]. The value 

of Ccorr was modeled to be dependent on the mean radius of the blood vessels (set to 7 

μm for all tissue types [115]) and the absorption coefficient of blood (given by Eq. (4) for 

each tissue type) [114].  

 

The parameters a, b, and c are related to probe design; their respective values were 

estimated [52, 93] to be 0.11, 0.22, and 0.2. These values do not vary significantly when 

the tissue-probe refractive index mismatch is changed [93]. The value of b is somewhat 

dependent on probe source-detector separation [93], but changing b by as much as 50% 

was found to have very little effect on modeled pancreatic tissue spectra. Therefore, it 

was considered reasonable to approximate a, b, and c as noted. For the remainder of the 

text, the subscript i in Eq. (5) will be denoted as N for normal pancreatic tissue, P for 

pancreatitis, or A for pancreatic adenocarcinoma.  

 

To model the reflectance spectra of diseased pancreatic tissue, Eq. (5) was used to 

generate a wavelength-resolved scaling factor to transform the experimentally measured 

reflectance spectrum RMEAS
N(λ) of normal pancreatic tissue into an accurate model for the 
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adenocarcinoma reflectance spectrum RMODEL
A(λ) and the pancreatitis reflectance 

spectrum RMODEL
P(λ), according to the equations: 

                               ( )( ) ( ) ( ) ( )MODEL MEAS EMP EMP
A N A NR R R Rλ λ λ λ= ;                                      (6) 

                               ( )( ) ( ) ( ) ( )MODEL MEAS EMP EMP
P N P NR R R Rλ λ λ λ= .                                      (7) 

Optimal fits of Eqs. (6) and (7) to the respective measured adenocarcinoma and 

pancreatitis reflectance spectra were determined via minimization of a cost function CR, 

which was equal to the average magnitude of the difference between the reflectance 

model and measured reflectance spectrum over the 400-700 nm wavelength range. For 

each tissue type, every individual measured spectrum was first normalized to peak 

intensity, then these spectra were averaged and the result was normalized to peak 

intensity again. All of the modeled reflectance spectra were also normalized to peak 

intensity.  

 

In the fitting procedure described above, the nuclear enlargement factor Ld/Lo for 

diseased pancreatic tissue (adenocarcinoma and pancreatitis) was varied from 1.0 to 1.9 

in steps of 0.1, and the nuclear refractive index nsd of diseased pancreatic tissue was 

varied from 1.370 to 1.400, in steps of 0.005. The total hemoglobin concentration [Hb]tot 

was varied from 15 μM to 25 μM for normal pancreatic tissue and 2.5 μM to 25 μM for 

diseased tissue (in steps of 2.5 μM for all tissue types). The blood oxygen saturation SO2 

was varied from 0.1 to 0.9 (in steps of 0.2) for all tissue types.  
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The fitting procedure described above was performed for each of three different values of 

the nuclear refractive index nsn of normal pancreatic tissue: 1.370, 1.375, and 1.380. This 

range and these values were identified in part because of the results of studies conducted 

on freshly excised diseased and normal human tissues [108], and in part because we 

observed that the algorithm extracted physically reasonable values of both Ld/Lo and nsd 

that did not vary much as nsn was changed. The set of free parameter values that 

minimized CR was extracted from each fit, as reported below. The fitting method 

described here was compared with a nonlinear least-squares method, and t-tests 

demonstrated that there were no statistically significant differences (p > 0.25) between 

the tissue parameters extracted from the two fitting methods. 

 

Optimal fits of the mathematical model to experimentally measured reflectance data for 

adenocarcinoma and pancreatitis are shown in Figure 2.3. The error bars on the modeled 

reflectance spectra represent the standard deviation associated with varying nsn over the 

range described previously. In the diagnostically important wavelength range between 

455 and 525 nm, where the adenocarcinoma reflectance spectra differed significantly 

from both the normal and pancreatitis spectra, the mean error in fit of the 

adenocarcinoma model to the average measured spectrum was less than 6%. 

 

The optimal fits between the predicted and measured adenocarcinoma reflectance spectra 

extracted a (mean ± standard deviation) value of Ld/Lo = 1.33 ± 0.06 for the nuclear 

enlargement factor and a value of nsd = 1.375 for the nuclear refractive index. The 

optimal fits between the predicted and measured pancreatitis reflectance spectra extracted 
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a (mean ± standard deviation) value of Ld/Lo = 1.03 ± 0.06 for the nuclear enlargement 

factor and nsd = 1.372 ± 0.003 for the nuclear refractive index. The model revealed that 

differences in the reflectance spectra of normal pancreatic tissue, pancreatitis, and 

adenocarcinoma could be quantitatively linked to an increase in nuclear size for 

adenocarcinoma relative to pancreatitis and normal tissue, a result that is supported by 

histology [109-111]. 

 

The reflectance fits extracted (mean ± standard deviation) [Hb]tot values of 18.8 ± 4.1 μM 

for normal pancreatic tissue, 7.5 ± 2.5 μM for pancreatitis, and 20.0 ± 5.0 μM for 

adenocarcinoma. The fits extracted (mean ± standard deviation) SO2 values of 0.13 ± 

0.08 for normal pancreatic tissue, 0.57 ± 0.23 for pancreatitis, and 0.9 for 

adenocarcinoma. T-tests demonstrated that there were no statistically significant 

differences (p > 0.25) between either the [Hb]tot or SO2 values of normal pancreatic tissue 

that were extracted from the fits to the measured adenocarcinoma spectra and those 

extracted from the pancreatitis spectra. 

 

Since spectra were obtained ex vivo, it is possible that these values reflect the amount of 

blood that drained from the tissue and the time the tissue was exposed to air prior to 

measurements. However, these results signify a promising step toward the eventual 

extraction of hemoglobin concentration and blood oxygen saturation values from in vivo 

measurements of the human pancreas. 
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Figure 2.3 Optimal fit of mathematical model (dotted red lines) versus average measured 
result for reflectance spectra (solid green lines) of pancreatic adenocarcinoma (left) and 
pancreatitis (right), with residuals (gray) [32]. The experimentally obtained reflectance 
spectrum for normal pancreatic tissue (dashed blue lines) is shown on both plots for 
comparison. Relative to normal pancreatic tissue, adenocarcinoma was modeled to 
exhibit a 1.33x increase in the diameter of cell nuclei, and a 3x increase in collagen 
concentration; the pancreatitis was modeled to also have a 3x increase in collagen 
concentration, but no significant change in the size of cell nuclei.  

 

The spectra from Figure 2.3 were also compared with a previously published reflectance 

spectrum taken in vivo from a pancreatic adenocarcinoma xenograft created by injecting 

human pancreatic cancer cells into the pancreas of a Non-Obese Diabetic/Severe 

Combined Immunodeficiency (NOD/SCID) mouse [28]. Due to the suppressed immune 

response in SCID mice, the xenograft had a very low amount of collagen relative to cells. 

In spite of this difference, the reflectance spectrum of the xenograft was similar to that of 

freshly excised human adenocarcinoma from 400-525 nm, a result attributed to the 

increased size of the cell nuclei in both the xenograft and the ex vivo human 

adenocarcinoma tissue samples. 
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Model fits to experimental data were employed to estimate wavelength-resolved 

absorption and reduced scattering coefficients for each tissue type via Eqs. (3) and (4) 

and the formula for Mie scattering from cylinders [49]. The results shown in Figure 2.4 

represent the first extraction (to our knowledge) of absorption and reduced scattering 

coefficients of human pancreatic tissues. The error bars represent the standard error over 

a set of fits for different values of the nuclear refractive index nsn of normal pancreatic 

tissue. The values of the coefficients in Figure 2.4 are in the range expected for 

gastrointestinal tissue [37]. However, it is important to note that these values are specific 

to the pancreatic tissue samples measured in this particular study. 

 

This study was primarily concerned with the lineshapes of the absorption and reduced 

scattering spectra, because differences in these lineshapes were indicative of differences 

in the measured reflectance spectra. For instance, the reduced scattering coefficient of 

adenocarcinoma was highest from 400-525 nm, whereas the reduced scattering 

coefficients of normal pancreatic tissue and pancreatitis were lowest. In this range there is 

also a prominent increase in the amplitude of the adenocarcinoma reflectance spectrum 

relative to that of normal pancreatic tissue and pancreatitis. 

 

The differences in the mean extracted absorption coefficients for normal pancreatic 

tissue, pancreatitis, and adenocarcinoma could be attributed to the ex vivo nature of the 

measurements, in which tissue hemoglobin concentration and blood oxygen saturation 

were likely affected by the amount of blood that drained from the tissue and the time the 

tissue was exposed to air prior to measurements. 
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Figure 2.4 Wavelength-resolved reduced scattering (left) and absorption (right) 
coefficients [32] of normal pancreatic tissue (solid blue lines), pancreatitis (dotted green 
lines), and pancreatic adenocarcinoma (dashed red lines), extracted from the reflectance 
model employed in this study. The error bars represent standard error. 
 

Once the fits of the reflectance model to the adenocarcinoma and pancreatitis data were 

obtained, the extracted scattering parameters were used in an algorithm to remove 

artifacts of scattering and absorption from the measured fluorescence spectra of normal 

pancreatic tissue, pancreatitis and adenocarcinoma. To perform this task, a separate Beer-

Lambert attenuation factor was constructed for each tissue type by using μa(λ) and μs
′( λ) 

values specific to that tissue type. The intrinsic fluorescence spectrum FINTRINSIC(λ) was 

then extracted according to the equation: 

                                 ( )'( ) ( )exp ( ) ( )INTRINSIC MEAS a sF F zλ λ μ λ μ λ = +  .                             (8) 

The variable z represented the length of the average path of travel to the surface for 

photons that had been absorbed and re-emitted by a fluorophore within the tissue. The 

average value of z over the wavelength range of 400-638 nm was estimated to be 0.064 

cm for all tissue types. This value was calculated from time-resolved Monte Carlo 
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simulations of photon propagation in pancreatic tissue models [77]. Separate simulations 

were run for normal pancreatic tissue, pancreatitis, and adenocarcinoma. For each of 

these simulations, the absorption and reduced scattering coefficients were obtained by 

averaging the absorption and reduced scattering spectra (Figure 2.4) of the tissue type 

being modeled. The anisotropy g was approximated to be 0.9 for all tissue types. The 

average path length of emission photon travel was determined by finding the time at 

which the greatest number of simulated photons exited the tissue, multiplying that by the 

speed of light in the medium, and dividing by two to account for only the fluorescence 

photons’ travel back to the surface (under the approximation that on average, a photon 

would be absorbed by a fluorophore at its point of greatest depth in the tissue). 

Calculation of the same z value for all tissue types likely resulted from the coarseness of 

the time resolution (1 ps) used in the simulations, as well as the use of average absorption 

and reduced scattering coefficients as inputs. 

     

We note that Eq. (8) does not include the absorption coefficient at the excitation 

wavelength. This omission affects only the amplitudes and not the lineshapes of the 

intrinsic fluorescence spectra; thus it will not cause errors in the relative contributions of 

fluorophores extracted from these spectra.   

 

Once the intrinsic fluorescence spectra were obtained for each tissue type (solid green 

lines in Figure 2.5), their lineshapes could be decomposed into the component spectra of 

collagen, NADH, and FAD, three principal contributors to tissue autofluorescence in the 

400-700 nm wavelength range. For each tissue type, the intrinsic fluorescence spectrum 
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was fit to a linear combination (BasisFit(λ)) of experimentally measured basis spectra of 

collagen, NADH, and FAD: 

             ( ) ( ) ( ) ( )COLLAGEN COLLAGEN NADH NADH FAD FADBasisFit C F C F C Fλ λ λ λ= + + .              (9) 

The basis spectra FCOLLAGEN(λ) and FFAD(λ) were measured at 355 nm excitation on a 

spectrofluorometer (SPEX® FL3-22 Fluorolog-3, Jobin-Yvon Horiba, Japan) while the 

FNADH(λ) was measured on the RFLS. Solutions of 0.005 mg/ml of NADH (N-8129, 

Sigma Aldrich, St. Louis, Missouri) in water, 0.7 mg/ml of FAD (F6625, Sigma Aldrich) 

in water, and 1 mg/ml of collagen (C5483, Sigma Aldrich) in acetic acid were used for 

the measurements.  

 

 
To fit the intrinsic fluorescence spectra to Eq. (9), the values of CCOLLAGEN, CNADH, and 

CFAD were treated as free parameters whose values were varied between 0 and 0.9 (in 

steps of 0.1) until a minimal value of a cost function CF was obtained. The cost function 

CF was defined to be the average magnitude of the difference between BasisFit(λ) and 

FINTRINSIC(λ) over the wavelength range of 400 nm to 638 nm. For each tissue type, every 

individual fluorescence spectrum was normalized to the area under the curve from 400-

638 nm; these spectra were then averaged and this average spectrum was corrected for 

attenuation to produce FINTRINSIC(λ). For all tissue types, BasisFit(λ) and FINTRINSIC(λ) 

were both normalized to the peak intensity. Each of the basis spectra (FCOLLAGEN(λ), 

FNADH(λ), and FFAD(λ)) was blue shifted by about 12 nm, which accounted for the fact 

that the component spectra were measured in various chemical solvents and not within a 

biological tissue environment [9]. 
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In the algorithm to minimize CF, the values of Ld/Lo and nsd were taken to be those 

extracted from the reflectance fits and the value of nsn was fixed at 1.375 (the midpoint of 

the range over which this parameter was varied in the reflectance fits). To minimize the 

presence of artifacts from under-correction or over-correction of the measured 

fluorescence spectra, the values of [Hb]tot and SO2 were once again treated as free 

parameters. This procedure was considered reasonable because Ld/Lo and ns were not 

expected to change much from site to site over the time period that ex vivo measurements 

were taken, but [Hb]tot and SO2 were expected to be much more variable. For all tissue 

types, [Hb]tot was varied from 15 to 25 μM (in steps of 2.5 μM) and SO2 was varied from 

0.1 to 0.9 (in steps of 0.2). These ranges were considered reasonable given the means and 

standard deviations of the [Hb]tot and SO2 values reported previously, in addition to the 

fact that measurements were performed ex vivo. 

 

Optimal fits of BasisFit(λ) to FINTRINSIC(λ) for normal pancreatic tissue, pancreatitis, and 

pancreatic adenocarcinoma are shown in Figure 2.5. The values of CCOLL, CNADH, and 

CFAD extracted from these fits are displayed in Table 2.2. The deviation of the basis fits to 

the intrinsic fluorescence spectra of normal pancreatic tissue and pancreatitis around 600 

nm may be attributed to the fact that the model does not include porphyrin fluorescence, 

which is known to peak around 635 nm when excited with 380-440 nm light [116].  

 

The data in Figure 2.5 were also compared to the intrinsic fluorescence extracted from a 

fluorescence spectrum obtained in vivo from a pancreatic adenocarcinoma xenograft in a 
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NOD/SCID mouse [28]. Mathematical modeling showed that the xenograft fluorescence 

could be mostly attributed to intracellular components, a conclusion that made sense 

given that the xenograft tumor was predominantly comprised of cells. 
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Figure 2.5 Intrinsic fluorescence spectra (solid green lines) of normal pancreatic tissue 
(left), pancreatitis (middle), and pancreatic adenocarcinoma (right), each shown with an 
optimal fit to a linear combination (dotted red lines, residuals in gray) of measured and 
blue-shifted collagen,  NADH, and FAD basis spectra [32].  
 

In Figure 2.5, the intrinsic fluorescence between 500 and 600 nm (where intracellular 

NADH and FAD emit prominently) was observed to decrease in pancreatitis and 

adenocarcinoma, relative to normal pancreatic tissue. Since the spectra in Figure 2.5 were 

normalized to their peak values, these differences are consistent with the known higher 

concentrations of collagen in both pancreatitis and adenocarcinoma, relative to normal 

pancreatic tissue [112]. This trend was also revealed by the increase in the percentage 

contribution of collagen (determined via the collagen fit coefficient CCOLL) to the intrinsic 

fluorescence of pancreatitis and adenocarcinoma, relative to normal pancreatic tissue, as 

illustrated in Table 2.2.  
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Table 2.2 Fit coefficients Ci (percentage contributions) for collagen, NADH, and FAD 
basis spectra to intrinsic fluorescence spectra of normal pancreatic tissue, pancreatitis, 

and pancreatic adenocarcinoma [32]. 

 Normal Pancreatitis Adenocarcinoma

CCOLLAGEN 0.6 (35%) 0.9 (56%) 0.9 (82%) 

CNADH 0.8 (47%) 0.3 (19%) 0.1 (9%) 

CFAD 0.3 (18%) 0.4 (25%) 0.1 (9%) 

 

The trend shown in Table 2.2 was further confirmed by qualitative examination of Figure 

2.1, which shows representative histology slides of tissue samples from the patients 

involved in the study. In these slides, the amount of collagen incursion observed amidst 

the cells in the tissue samples clearly increases in pancreatitis and adenocarcinoma, 

relative to normal pancreatic tissue. In the diagnostically relevant region between 500 and 

550 nm, the mean error in fit between Eq. (9) and the intrinsic fluorescence was less than 

4% for normal pancreatic tissue and pancreatitis, and less than 8% for adenocarcinoma. 

 

In this study, mathematical models of reflectance and intrinsic fluorescence were 

developed and employed to quantitatively describe the effects of key histologically 

observed tissue parameters on the measured optical spectra of pancreatitis and pancreatic 

adenocarcinoma (relative to normal pancreatic tissue). An empirical mathematical model 

of reflectance was able to fit the prominent feature in the average adenocarcinoma 

spectrum (increased amplitude from 455-525 nm, relative to normal pancreatic tissue) 

with less than 6% error. Fitting the reflectance model to the measured optical spectra 

enabled the first-ever (to our knowledge) extraction of wavelength-resolved absorption 
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and reduced scattering coefficients of human pancreatic tissues. Obtaining values for the 

optical coefficients is an important result, because knowledge of these coefficients is 

essential for accurate computational studies of photon migration in pancreatic tissue 

models. One such computational method is Monte Carlo simulation [75, 77], which is 

accurate throughout optical parameter space for modeling photon transport in biological 

tissue.  

 

We note that in this study, Eq. (5) is not employed to model the reflectance spectrum of 

normal pancreatic tissue. The “normal” data shown in Figure 2.3 is averaged, 

experimentally measured data from normal pancreatic tissue. This “canonical normal” 

data is RMEAS
N(λ) in Eqs. (6) and (7). In principle, it could be useful to employ a normal 

spectrum from each individual patient, but this scenario would not always be possible in 

a clinical diagnostic application, so here we employ a “canonical normal” spectrum as 

our general approach.  

 

In theory, it is also possible to obtain the absorption and scattering parameters by fitting 

the measured reflectance spectra directly with Eq. (5), but we did not use this approach 

here. Our approach focuses on modeling key differences between the reflectance spectra 

of normal and diseased pancreatic tissues. One potential advantage of this approach is 

that many of the characteristics of pancreatic tissue (such as size distributions for 

scatterers, fluctuations in refractive index, and packaging of hemoglobin into red blood 

cells [117]) are implicitly contained (at least approximately) in the measured “canonical 

normal” reflectance spectrum.  
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The scattering parameters extracted from the reflectance fits were used in an algorithm 

that corrected the measured fluorescence spectra for attenuation artifacts and fit the 

resulting “intrinsic” endogenous fluorescence spectra to a linear combination of basis 

spectra from native tissue fluorophores (collagen, NADH, FAD). This procedure 

determined the relative contributions from both extracellular (collagen, 400-450 nm 

emission peak) and intracellular (NADH and FAD, 500-600 nm emission peak) 

autofluorescence for each tissue type. The relative contribution of collagen was found to 

be greater in the intrinsic fluorescence spectra of pancreatitis and adenocarcinoma. Since 

the spectra were normalized to the peak, the intrinsic fluorescence of pancreatitis and 

adenocarcinoma spectra exhibited a decrease in amplitude in the 500-600 nm range, 

where NADH and FAD emission are prominent. These results were consistent with the 

increased collagen fibrosis [112, 118] seen in histology of pancreatitis and 

adenocarcinoma. 

 

As seen in Figure 2.3, Figure 2.5, and Table 2.3, empirical models of reflectance and 

intrinsic fluorescence were able to quantitatively describe the major differences between 

normal pancreatic tissue, adenocarcinoma, and pancreatitis in terms of histologically 

observed changes in biologically meaningful parameters.  

 

The reflectance spectra of cancerous tissue differed most noticeably from normal 

pancreatic tissue at around 500 nm (Figure 2.3), a change that could be quantitatively 

linked, via spherical Mie scattering, to larger cell nuclei in pancreatic adenocarcinoma. 
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Subtle differences throughout the reflectance spectra of both pancreatitis and 

adenocarcinoma were found, via modeling of cylindrical Mie scattering, to correlate with 

the increased number of collagen fibers in both pancreatitis and cancer. These results 

agree with histology in that both pancreatitis and pancreatic adenocarcinoma are marked 

by greater collagen content than normal pancreatic tissue, but only adenocarcinoma is 

characterized by larger cell nuclei [112, 118-120].  
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Table 2.3 Prominent disease-related changes in histology features and measured optical 
spectra of pancreatic tissues, along with corresponding changes made to mathematical 

models of reflectance and fluorescence [32]. 

Pancreatic tissue Adenocarcinoma Pancreatitis 

Key histological features  
(relative to normal  
pancreatic tissue) 

Increased nuclear size 
Greater stromal collagen 

content 

Greater stromal collagen 
content 

Optical signature 
(relative to normal  
pancreatic tissue) 

Increased amplitude of 
reflectance spectrum from 

455-525 nm 
 

Spectral lineshape change in 
intrinsic fluorescence 

spectrum  
from 500-550 nm 

Spectral lineshape change in 
intrinsic fluorescence 

spectrum from 500-550 nm 

Mathematically modeled by Multiplying spherical 
scatterer diameter Lo by 1.33 

for reflectance model 
 

Increasing percentage 
contribution of collagen 

basis spectrum  
from 35% to 82%  
in fit to intrinsic 

fluorescence 

 
Increasing percentage 

contribution of collagen 
basis spectrum  

from 35% to 56%  
in fit to intrinsic 

fluorescence 

Mean error in fit of model to 
experimentally measured data 

in diagnostically relevant region 

Less than 6% from 455-525 
nm for adenocarcinoma 

reflectance model  
 

Less than 8%  
from 500-550 nm  

for all intrinsic fluorescence 
models  

 
Less than 4%  

from 500-550 nm  
for all intrinsic fluorescence 

models  
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The intrinsic fluorescence model (Figure 2.5, Table 2.2) showed that for both pancreatitis 

and adenocarcinoma, there was an increased contribution from the collagen in the stroma, 

relative to normal pancreatic tissues. This result is consistent with the histological 

observation that the change from normal pancreatic tissue to both pancreatitis and 

adenocarcinoma is characterized by increased collagen amidst the cells [112, 118]. 

However, the intrinsic fluorescence spectra of pancreatitis and cancer were also shown to 

be different from each other. Whereas the reflectance model was most useful for 

discriminating pancreatic adenocarcinoma from pancreatitis, the intrinsic fluorescence 

model was more effective at distinguishing between all three tissue types. The results of 

this study lend credence to the idea that combining reflectance and fluorescence 

spectroscopies has a diagnostic advantage over using just one of these modalities to 

detect pancreatic cancer.  

 

The empirical reflectance model was compared with the diffusion approximation, which 

is often employed to extract tissue absorption and scattering properties from 

experimentally measured tissue reflectance spectra [5, 9, 68]. When the reflectance fitting 

procedure was employed with a subset of the [Hb]tot and SO2 ranges described 

previously, the diffusion approximation model was noticeably less effective than the 

empirical model for fitting the adenocarcinoma reflectance spectrum. In the 

diagnostically-relevant wavelength range of 455-525 nm, the error in fit to the measured 

adenocarcinoma spectrum was less than 6% for the empirical model, but it rose to as high 

as 13% with the diffusion approximation model. These results were not surprising 

because the fiber-optic probe in this study had a source-detector separation of only about 



 

47 

 

660 μm. Using the reduced scattering coefficients μs
′ from Figure 2.4, it can be shown 

that the source-detector separation of the probe was often smaller than 1/μs
′. This 

condition causes the diffusion approximation to break down [68], but the empirical model 

is accurate in this regime [93].  

 

Although the reflectance and fluorescence models employed in this paper are useful for 

extracting physical information from experimental measurements of pancreatic tissue, the 

models do have several key limitations. The empirical reflectance model approximated 

tissue scattering as originating from only two sources: sub-cellular nuclei and 

extracellular collagen fibers. As a first approximation, this model is reasonable, because 

cell nuclei are known to be important contributors to forward scattering [121, 122] and 

collagen fibers have been shown to be a significant source of extracellular scattering [33]. 

In addition, the experimentally measured “canonical normal” tissue spectrum used in the 

reflectance model contains some level of information about the optical scattering and 

absorption from other intracellular and extracellular sources. Cell components such as 

mitochondria, cytoplasm, and plasma membrane also contribute to tissue scattering [121, 

122] and are reflected here in the “canonical normal” tissue spectrum for normal, but not 

diseased, pancreatic tissues.  

 

The model fixed the diameter and concentration of normal cell nuclei in pancreatic tissue 

at constant values even though there was uncertainty in the estimation of these 

parameters. The model also approximated the anisotropy to be constant for all tissue 

types, when that parameter would likely be different for normal pancreatic tissue, 
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pancreatitis, and adenocarcinoma because each of these tissue types is associated with a 

different distribution of scatterer sizes and shapes. Furthermore, the fluorescence model 

approximated the average emission photon path to have the same length for normal 

pancreatic tissue, pancreatitis, and adenocarcinoma. Future work to improve the model 

will include an investigation into the effect of including additional scattering terms for 

other cellular and extracellular components, as well as variations between the anisotropy 

values for the different tissue types. An expanded study will include an investigation into 

the effect of incorporating a term into the reflectance model to explicitly correct for the 

packaging of hemoglobin into erythrocytes [117], as well as further consideration of 

changes in the distribution of blood vessel sizes for the different tissue types. Preliminary 

studies showed that when the mean blood vessel radius for adenocarcinoma was doubled 

(to 14 μm) or halved (to 3.5 μm), relative to that of normal tissue (7 μm), there was no 

change in the tissue parameters extracted from the reflectance model. However, more 

sophisticated models of pancreatic tissue vasculature could be incorporated in the future. 

In addition, a more rigorous calculation of the average emission photon path length as a 

function of wavelength for each different tissue type will be explored. 

 

Current methods to detect pancreatic adenocarcinoma are highly invasive and fail to find 

the disease early or to distinguish it from inflammation (pancreatitis). Hence, there is 

great biomedical need for an endoscopic screening procedure for early detection of 

pancreatic adenocarcinoma. Bimodal reflectance and fluorescence spectroscopy is a 

potential inroad into addressing this unmet clinical need. In this study, mathematical 

models of measured reflectance and fluorescence spectra were employed to quantitatively 
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describe differences between normal pancreatic tissue, pancreatic adenocarcinoma, and 

pancreatitis. By using biomedically relevant parameters, the model provided a link 

between the results of optical spectroscopy and histology. Features in the reflectance 

spectra were quantitatively linked to larger cell nuclei in cancer and increased collagen 

content in both cancer and pancreatitis. The intrinsic fluorescence spectra were fit to a 

linear combination of collagen, NADH, and FAD basis spectra to show quantitative 

differences in the contribution of collagen to the measured fluorescence from normal 

pancreatic tissue, pancreatic adenocarcinoma, and pancreatitis. 

 

Translation to an in vivo setting is feasible because the model can extract the optical 

absorption coefficient from increased blood content in the tissues. We believe that the 

reflectance model should be effective even if the blood content is higher, especially 

because we were able to model the reflectance obtained in vivo from a xenograft in a 

mouse with an average error in fit of less than 12% in the diagnostically relevant 

wavelength range of 455 nm to 525 nm. Challenges associated with obtaining an accurate 

reflectance fit near 425 and 550 nm (where hemoglobin absorption is noticeable) can 

potentially be resolved by fitting each individual reflectance spectrum to an empirical 

equation [52, 93], a photon migration model [123, 124], or the P3 approximation [125]. 

Another test of the model could involve comparing the intrinsic fluorescence extracted 

via a Beer-Lambert factor (Eq. (8)) with that obtained with a more detailed photon 

migration model [123, 124]. An in vivo human study has been approved and in vivo data 

collection has begun. 
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Overall, the mathematical models of reflectance and fluorescence developed in this paper 

are potentially useful tools for pancreatic cancer diagnostics because of their ability to 

quantitatively link the experimental results of optical spectroscopy with those of 

histopathology. Figures 2.1 and 2.3 show that the mathematical model of reflectance 

presented in this paper was able to quantitatively describe the reflectance spectra of 

normal pancreatic tissue, pancreatitis, and pancreatic adenocarcinoma in terms of 

biomedically relevant parameters. The algorithm to model the reflectance was rapid, 

taking less than 7 minutes to execute on a desktop computer. Furthermore, the concept of 

scaling an average measured normal pancreatic tissue reflectance spectrum to obtain the 

pancreatitis and adenocarcinoma spectra was found to be helpful with data interpretation 

due to its intuitive nature. Figure 2.4 shows the capability of the reflectance model to 

extract, for the first time (to our knowledge), absorption and reduced scattering 

coefficients of the aforementioned human pancreatic tissue types. When the measured 

fluorescence spectra were corrected for attenuation artifacts (Figure 2.5), the resulting 

intrinsic fluorescence spectra revealed differences in collagen content that correlated with 

histology (Table 2.2). The, rapid, intuitive, and biomedically relevant nature of these 

methods suggests that the approach outlined in this work may be of potential use not only 

for pancreatic cancer detection, but also for other optical diagnostic applications 

involving a wider range of biological tissues.  
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2.2. PTI model extracts statistically-significant tissue parameters 

Here [10], the PTI model was employed to analyze 96 pairs of reflectance and 

fluorescence spectra from freshly excised human pancreatic tissues. For each pair of 

spectra, the PTI model extracted a cellular nuclear size parameter from the measured 

reflectance, and the relative contributions of extracellular and intracellular fluorophores 

to the intrinsic fluorescence. The results indicated a statistically significant increase in the 

nuclear size of adenocarcinoma (relative to both normal pancreatic tissue and chronic 

pancreatitis) and a statistically significant increase in the extracellular collagen 

contribution to fluorescence in both adenocarcinoma and chronic pancreatitis (relative to 

normal pancreatic tissue). This suggests that reflectance and fluorescence spectroscopies 

have the potential to quantitatively distinguish among pancreatic tissue types, including 

normal pancreatic tissue, chronic pancreatitis, and pancreatic adenocarcinoma, via 

biophysical tissue properties extracted from the spectra. 

 

At the University of Michigan (U of M), a prototype clinically-compatible Reflectance 

and Fluorescence Lifetime Spectrometer (RFLS; Figure 2.2), described previously [28, 

106], was developed and employed to measure reflectance and fluorescence from human 

pancreatic tissue samples. Reflectance and fluorescence spectra were measured from 

human pancreatic tissue samples obtained at the U of M Medical Center within 30 

minutes of excision, during operative procedures (Whipple procedure or distal 

pancreatectomy) performed on 9 patients (average age 62 ± 11 years; 7 female, 2 male). 

The study received approval from the Institutional Review Board of the U of M Medical 

School. Prior to data acquisition, written consent was obtained from each patient.  
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Spectra were measured from 50 pancreatic tissue sites. Immediately following optical 

measurement, a tissue biopsy was taken from each of these sites and used for 

histopathologic analysis. Of the 50 sites, 11 were diagnosed by pathology as 

histologically normal, 22 were diagnosed as chronic pancreatitis (inflammation), and 17 

were diagnosed as adenocarcinoma. All pancreatic adenocarcinoma spectra in this study 

were from patients who had concurrent histologic evidence of chronic pancreatitis in 

addition to pancreatic adenocarcinoma. Two wavelength-resolved reflectance spectra and 

two wavelength-resolved fluorescence spectra were taken from each tissue site, except 

for one adenocarcinoma site, from which only one set of these three measurements was 

taken.  

 

Two pairs of chronic pancreatitis spectra were excluded because the fluorescence spectra 

had a signal-to-noise ratio (SNR) of less than 25, where SNR was defined to be the mean 

signal at peak fluorescence divided by the standard deviation of the noise in the measured 

spectrum. Another pair of chronic pancreatitis spectra was excluded because the intensity 

of the reflectance signal at 550 nm was less than 1/10 of that at 650 nm. The remaining 

96 pairs of reflectance and fluorescence spectra (22 pairs of normal spectra, 41 pairs of 

chronic pancreatitis spectra, 33 pairs of adenocarcinoma spectra) were individually fit 

using the PTI model.  

 

The PTI model was described in detail previously [32]. Briefly, an empirical model [52] 

of reflectance REMP(μs, μa; λ) as a function of the tissue scattering coefficient μs (related 
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to the nuclear diameter L and nuclear refractive index ns) and absorption coefficient μa 

(related to the total hemoglobin concentration [Hb]tot and blood oxygen saturation SO2) 

was employed to construct a wavelength-resolved scaling factor to transform an average 

measured “canonical normal” pancreatic tissue reflectance spectrum RMEASURED
NORMAL(μa, 

μs; λ) into the PTI model spectrum RPTI
UNKNOWN(μa, μs; λ) for each of the 96 individual 

measured reflectance spectra:  

                ( ), ;
( , ; )

( ) ( , ; )
( , ; )a s

EMP
PTI MEASURED UNKNOWN a s

UNKNOWN NORMAL a s EMP
NORMAL a s

R
R R

R

μ μ λμ μ λ μ μ λ
μ μ λ

 
=  

 
.              (10) 

The PTI-modeled spectra are denoted “unknown” because the model was blinded to 

pancreatic tissue type. Each model spectrum RPTI
UNKNOWN(μa, μs; λ) resulting from Eq. 

(10) was individually fit to the corresponding measured reflectance spectrum 

RMEASURED(μa, μs; λ) by varying the nuclear diameter L, total hemoglobin concentration 

[Hb]tot, and blood-oxygen saturation SO2 over biologically reasonable ranges (Table 2.4) 

and minimizing the cost function |RPTI
UNKNOWN – RMEASURED| over the wavelength range of 

400 nm to 700 nm [32]. 

 

The fitting procedure in this study was identical to that developed in [32], except for four 

changes: (1) The measured “canonical normal” spectrum was taken to be an average of 

all 22 measured normal spectra. (Each normal reflectance spectrum was first normalized 

to its peak value in the 400-700 nm wavelength range, then all 22 of these spectra were 

averaged, and, finally, the resulting spectrum was normalized to the peak again to create 

the “canonical normal” spectrum.). (2) The concentration of collagen fibers (cylindrical 

scatterers) for all unknown reflectance spectra was set to three times that of the canonical 
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normal (motivated by previous work demonstrating that the mean collagen content of 

both pancreatic cancer and tumor-associated chronic pancreatitis was roughly three times 

as high as that of normal pancreatic tissue [112]). This approximation was not expected 

to have a significant effect on the fitting procedure, because the key disease-related 

changes in the reflectance spectra were expected to be captured by changes in the 

variable L [32]. (3) The refractive index of cell nuclei for all tissue types was set to a 

constant value of 1.375, which was in good agreement with the previous results [32]. (4) 

The nuclear diameter L was varied from 9 μm to 13.5 μm, which contains the anticipated 

range for the pancreatic tissue types examined in this study [126, 127]. 

Table 2.4 Ranges and step sizes for tissue parameters in the PTI model [10]. 

Tissue parameter Minimum value Maximum value Step size 

L 9 μm 13.5 μm 0.9 μm 

[Hb]tot 2.5 μM 25 μM 2.5 μM 

SO2 0.1 0.9 0.2 

 

In this way, the parameters extracted from the best fit of each “unknown” reflectance 

spectrum to the PTI model were the mean diameter L of the cell nuclei, as well as the 

total hemoglobin concentration and blood-oxygen saturation. The value of L from each 

“unknown” reflectance spectrum was compared to the value Lo (set to 9 μm) that had 

been input into the PTI model for the mean cellular nuclear diameter of the “canonical 

normal” tissue [32]. The ratio of L/Lo, termed the nuclear enlargement factor, was 

calculated for each “unknown” reflectance spectrum. The tissue scattering properties 
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extracted from the PTI model were then employed to correct the corresponding 

fluorescence spectra for attenuation artifacts. 

 

Once the model described above was fit to an individual measured reflectance spectrum, 

the corresponding measured fluorescence spectrum FMEASURED(λ) was corrected for 

scattering and absorption attenuation artifacts with a Beer-Lambert factor [32], where the 

scattering coefficient was obtained from fitting the reflectance spectrum. The resulting 

“intrinsic” fluorescence spectrum FINTRINSIC(λ) was fit to a linear combination of the basis 

spectra from three endogenous tissue fluorophores: extracellular collagen, intracellular 

NADH, and intracellular FAD, as described previously [32]. The extracted fit coefficients 

CCOLL, CNADH, and CFAD were then normalized via division by their sum, in order to obtain 

the percentage contributions %COLL, %NADH, and %FAD from the constituent 

endogenous tissue fluorophores [32]. These percentages summed to 100% for each 

measured fluorescence spectrum.  

 

Figure 2.6 shows representative reflectance and fluorescence spectra measured from 

normal pancreatic tissue, chronic pancreatitis, and pancreatic adenocarcinoma. As 

reported previously [28, 32, 128], there are noticeable differences between the spectra of 

the different tissue types. From 450 nm to 530 nm, there is a significant increase in the 

amplitude of the adenocarcinoma reflectance spectrum (relative to normal and chronic 

pancreatitis), attributed to the increased size of cell nuclei in adenocarcinoma [126, 127]. 

Near 400 nm, there are notable increases in the amplitude of the adenocarcinoma and 
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chronic pancreatitis fluorescence spectra (relative to normal), attributed to the increased 

extracellular collagen content in adenocarcinoma and chronic pancreatitis [112]. 

 

Wavelength (nm)

400 500 600 700F
lu

or
e

sc
en

ce
, 

no
rm

al
iz

ed
 t

o
 p

ea
k 

in
te

n
si

ty

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Normal pancreatic tissue
Chronic Pancreatitis
Adenocarcinoma

Wavelength (nm)

400 500 600 700R
ef

le
ct

a
nc

e,
 n

or
m

al
iz

ed
 t

o 
pe

ak
 in

te
ns

ity

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Normal pancreatic tissue
Chronic Pancreatitis
Adenocarcinoma

(a) (b)

 

Figure 2.6 Representative (a) reflectance and (b) fluorescence spectra of normal 
pancreatic tissue, chronic pancreatitis, and pancreatic adenocarcinoma [10]. 
 

Figure 2.7 shows best fits of the PTI model to reflectance and fluorescence spectra from 

chronic pancreatitis and pancreatic adenocarcinoma. The average error in fit of the PTI 

reflectance model to the 96 measured spectra was less than 15% in the wavelength range 

450-530 nm. This spectral range is where significant differences in spectral amplitude 

were reported for adenocarcinoma, relative to normal pancreatic tissue and pancreatitis 

[28, 32, 128], as can be seen in Figure 2.6(a). The average error in fit of the PTI 

fluorescence model to the 96 “intrinsic” fluorescence spectra was less than 6% in the 

wavelength range of 500-550 nm, in which key differences in spectral amplitude were 

reported [28, 32, 128] for the different pancreatic tissue types (see Figure 2.6(b)). When 

the 11 (out of 96) reflectance spectra with the highest cost functions were discarded, the 

average error in fit of the PTI reflectance model to the remaining 85 reflectance spectra 

fell below 10% in the 450-530 nm wavelength range, the average error in fit of the PTI 

fluorescence model to the 85 corresponding fluorescence spectra in the 500-550 nm 
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wavelength range was nearly unchanged (remaining at less than 6%), and there was no 

significant change to the mean or standard error for the extracted parameters. 

 

Figure 2.8 shows the cellular nuclear enlargement factor L/Lo extracted from the PTI 

model for each pancreatic tissue type. The mean ± standard error values of L/Lo extracted 

for normal pancreatic tissue, chronic pancreatitis, and pancreatic adenocarcinoma were 

1.03 ± 0.01, 1.05 ± 0.02, and 1.26 ± 0.02, respectively. The extracted parameter L/Lo can 

distinguish between adenocarcinoma and normal pancreatic tissue, as well as between 

adenocarcinoma and chronic pancreatitis (p < 0.001 from Wilcoxon rank-sum tests). This 

result is consistent with the larger average cellular nuclear diameters found in 

histopathological analysis of pancreatic adenocarcinoma relative to normal pancreatic 

tissue and chronic pancreatitis [111, 126, 127].        
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Figure 2.7 Best fits of the PTI model to measured reflectance spectra (top row) and 
intrinsic fluorescence spectra (bottom row) for chronic pancreatitis (left column) and 
adenocarcinoma spectra (right column) [10]. Over all measured spectra, the average error 
in fit of the PTI reflectance model was less than 15% in the wavelength range 450-530 
nm, and the average error in fit of the PTI fluorescence model was less than 6% in the 
wavelength range of 500-550 nm. 
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Figure 2.8 Extracted nuclear enlargement factor L/Lo for normal pancreatic tissue (N = 
22 spectra), chronic pancreatitis (N = 41 spectra), and pancreatic adenocarcinoma (N = 
33 spectra) [10]. Differences were statistically significant (*, p < 0.001 from Wilcoxon 
rank-sum tests) for distinguishing adenocarcinoma from normal pancreatic tissue as well 
as distinguishing adenocarcinoma from chronic pancreatitis. 
 

Figure 2.9 shows the percentage contribution of extracellular collagen to the intrinsic 

fluorescence of normal pancreatic tissue, chronic pancreatitis, and pancreatic 

adenocarcinoma. The mean ± standard error values of the percent contributions of 

extracellular collagen fluorescence to the spectra of normal pancreatic tissue, pancreatitis, 

and adenocarcinoma were 15.5 ± 3.5, 28.7 ± 3.8, and 60.9 ± 4.8, respectively. The results 

shown in Figure 2.9 suggest that the percentage contribution of extracellular collagen to 

the intrinsic fluorescence is potentially useful (*, p < 0.001 from Wilcoxon rank-sum 

tests) for distinguishing adenocarcinoma from normal pancreatic tissue, as well as 

distinguishing adenocarcinoma from chronic pancreatitis. Figure 2.9 also shows that the 

percentage contribution of extracellular collagen to the intrinsic fluorescence is 
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potentially useful (**, p < 0.05 from Wilcoxon rank-sum test) for distinguishing chronic 

pancreatitis from normal pancreatic tissue. These results agree with qualitative 

histopathological observation [32, 129] and hydroxyproline content analysis [112], both 

of which have revealed increases in the amount of collagen found in chronic pancreatitis 

and pancreatic adenocarcinoma, relative to normal pancreatic tissue.  

 

The results shown in Figures 2.8 and 2.9 suggest that reflectance and fluorescence 

spectroscopies have the potential to distinguish among pancreatic tissue types, including 

normal pancreatic tissues, chronic pancreatitis, and pancreatic adenocarcinoma, using 

biophysical tissue parameters extracted from the data via the PTI model of light 

propagation. The relevant biophysical parameters for distinguishing the different 

pancreatic tissue types were the nuclear enlargement factor L/Lo and the percentage 

contribution of extracellular collagen to the intrinsic fluorescence. 
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Figure 2.9 Extracted percentage contributions of extracellular collagen to intrinsic 
fluorescence spectra of normal pancreatic tissue (N = 22 spectra), chronic pancreatitis (N 
= 41 spectra), and pancreatic adenocarcinoma (N = 33 spectra) [10]. Differences were 
statistically significant for distinguishing adenocarcinoma from normal pancreatic tissue 
as well as distinguishing adenocarcinoma from chronic pancreatitis (*, p < 0.001 from 
Wilcoxon rank-sum tests). Differences were also statistically significant for 
distinguishing chronic pancreatitis from normal pancreatic tissue (**, p < 0.05 from 
Wilcoxon rank-sum test).  
 

The observed increase in the nuclear enlargement factor L/Lo for adenocarcinoma, 

relative to normal pancreatic tissue and chronic pancreatitis, is in agreement with the 

findings of histopathology that the mean cellular nuclear diameter is larger in pancreatic 

adenocarcinoma than in normal pancreatic tissue [126] and chronic pancreatitis [127]. 

The increased percentage contributions of extracellular collagen to the intrinsic 

fluorescence for adenocarcinoma and chronic pancreatitis (relative to normal pancreatic 

tissue) are in agreement with studies demonstrating that there is increased collagen 

content in both pancreatic adenocarcinoma and tumor-associated chronic pancreatitis, 

relative to normal pancreatic tissue [112].  
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We note that since different source fibers were used for reflectance and fluorescence 

measurements, the light paths of the detected reflectance and fluorescence photons likely 

interrogated slightly different regions of each tissue site. However, since the reflectance 

and fluorescence photons were both collected by the same detector fiber, and all three 

fibers were positioned adjacent to each other in a triangular geometry, we used Monte 

Carlo simulations [37, 76, 77] to estimate that the majority of reflectance and 

fluorescence photons collected at a given tissue site visited roughly the same (~1 mm3) 

region of tissue.  

 

The PTI model reported here does not make use of the hemoglobin concentration and 

blood-oxygen saturation parameters extracted from the reflectance fits. Since the 

measurements used for training the PTI model in this study were all obtained ex vivo, 

much of the hemoglobin absorption information obtained from these measurements is 

likely most directly related to the amount of blood that drained from each tissue sample 

and the time that each sample was exposed to air prior to measurement. We note that the 

blood absorption features present in the measured reflectance spectra were likely similar 

for measurements made on patients who underwent either type of pancreatic surgery 

(Whipple procedure or distal pancreatectomy). This is a reasonable assumption because 

in the distal pancreatectomy procedure, the splenic artery was divided early, producing a 

level of ischemia that was likely similar to that associated with the Whipple surgery.  
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In an in vivo setting, we expect to see changes in the measured reflectance spectra that 

can be linked to differences in the vasculature and blood oxygenation (and hence, the 

hemoglobin absorption) of pancreatic adenocarcinoma, chronic pancreatitis, and normal 

pancreatic tissue [130, 131]. We also expect the PTI model to be capable of describing 

these changes in terms of the total hemoglobin concentration, blood-oxygen saturation, 

and mean blood vessel radius, as well as the possible addition of a variable to represent 

the packaging of hemoglobin into erythrocytes [117]. In preparation for future in vivo 

studies, we are working to further refine the PTI model and examine in greater detail the 

effect of the hemoglobin absorption parameters on the modeled reflectance. We do not 

anticipate that the accuracy of the PTI model will be significantly affected by the 

transition to an in vivo setting, since the model can account for increased levels of 

absorption due to blood. Thus, the results reported in this study illustrate the potential of 

the PTI model to address the clinical need for accurate detection of pancreatic 

adenocarcinoma in the setting of chronic pancreatitis. An optical sensing technique 

involving the PTI model could potentially be employed in a clinical setting to guide EUS-

FNA biopsy. 

 

In this study, we demonstrate the first-ever use of a photon-tissue interaction (PTI) model 

to fit individual reflectance and fluorescence spectra from human pancreatic tissues. The 

best fits of the PTI model to the optical spectra extracted diagnostically-relevant 

biophysical parameters. The nuclear enlargement factor was extracted from the PTI 

reflectance model, and the percent contribution of extracellular collagen to the intrinsic 

fluorescence was extracted from the PTI fluorescence model. Both of these parameters 



 

64 

 

were statistically significant for distinguishing pancreatic adenocarcinoma from normal 

pancreatic tissue, as well as for distinguishing adenocarcinoma from chronic pancreatitis. 

Furthermore, the percent contribution of extracellular collagen to the intrinsic 

fluorescence was also statistically significant for distinguishing chronic pancreatitis from 

normal pancreatic tissue. These results indicate that optical spectroscopy involving a 

photon-tissue interaction model has the potential to quantitatively distinguish between 

different pancreatic tissue types and to provide an inroad toward addressing the clinical 

need for accurate detection of early-stage pancreatic cancer.     
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2.3. Systematic verification of PTI model 

As described previously in this dissertation, optical spectroscopic methods have the 

potential to provide quantitative, minimally invasive tissue assessment for applications 

such as cancer detection [3-6, 9, 10, 35, 128]. Reflectance spectroscopy can provide 

quantitative information about tissue scatterers (including size and concentration) and 

absorbers (including hemoglobin concentration and blood-oxygen saturation) [5, 9]. 

These parameters can be extracted by photon-tissue interaction (PTI) models based on 

diffusion theory [5, 9], Monte Carlo simulations [43], or semi-empirical equations [10, 

32, 52]. Previously, we showed that a PTI model of reflectance has the potential to 

extract diagnostically-relevant parameters related to tissue morphology and biochemistry 

in the human pancreas [10, 32].  

 

Figure 2.10 is a conceptual illustration (to scale) of the distribution of photons of 400 nm 

and 700 nm wavelength that have been launched from a fiber-optic probe into a 

pancreatic adenocarcinoma tissue site. The tissue model has been generated from a 

histology image of an adenocarcinoma site [32], where the cell nuclei have been stained 

purple and the extracellular collagen has been stained pink. Figure 2.10 shows the 

structural characteristics of the tissue (such as cell nuclei and extracellular collagen 

fibers) that are responsible for wavelength-dependent scattering of the incident light. 

Since these morphological features are expected to remain constant over the time period 

in which the measurements are taken, it is anticipated that optical spectroscopy can 

provide the ability to extract consistent values of tissue scattering properties even when 

the tissue absorption is changing due to variations in blood content.  
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Figure 2.10 Conceptual illustration (to scale) of the distribution of 400 nm photons (left) 
and 700 nm photons (right) launched into a pancreatic adenocarcinoma tissue site with 
the fiber-optic probe configuration used in clinical studies. The distribution of photons 
within the tissue (orange and yellow glowball) is related to scattering from morphological 
tissue features (shown here as purple-stained cell nuclei and pink-stained extracellular 
collagen fibers). The probe appears tilted in this image so that the reader can see the 
bottom face of the fibers, but the probe was placed perpendicular to the tissue surface for 
all measurements reported in this study. The histology images are from [104] (used with 
permission).  
 

Assessing optical spectroscopic methods for tissue diagnostics typically involves 

analyzing extracted tissue parameters to calculate their predictive accuracy for diagnostic 

classification [5, 6, 9, 10, 35, 43, 128]. Reported studies have analyzed a single 

measurement for each tissue site [5, 35], averaged repeated measurements [132], or 

considered multiple measurements acquired from the same site to be independent  [9, 

128]. We anticipate that the tissue scattering properties will remain the same between 
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repeated measurements, because the scattering properties are related to morphological 

quantities (such as the mean cellular nuclear diameter and the concentrations of cell 

nuclei and collagen fibers) that are not expected to vary significantly over a short time 

period. Quantifying the precision of optical spectroscopy in this manner is important for 

in vivo studies of any human tissue (where blood is dynamically flowing through the 

tissue, and measurements may be impacted by fiber-probe pressure or the puncture of a 

needle-based probe), as well as for ex vivo studies (where blood is draining from the 

tissue and becoming more oxygenated over time). Variations in blood content that occur 

in vivo can be linked to hypoxia and tissue vasculature [130, 131], so precisely assessing 

the effect of these variations is important for in vivo clinical studies. 

 

Here we report the results of a more in-depth analysis of the PTI model. We begin with a 

systematic study of how individual absorption and scattering parameters affect the semi-

empirical reflectance equations used in the PTI model. Then, we analyze how the PTI 

model is employed to mathematically transform an average measured “canonical normal” 

pancreatic tissue reflectance spectrum into an accurate model for pancreatitis (by 

increasing the collagen concentration) and adenocarcinoma (by increasing the collagen 

concentration and the mean size of the cell nuclei). The PTI model predictions are 

compared with average measured data from pancreatitis and adenocarcinoma to illustrate 

the effectiveness of the PTI model at linking changes in specific biophysically-relevant 

tissue parameters to specific changes in distinct regions of the reflectance spectrum. 

These systematic tests of the PTI model serve to separate the effects of the individual 

absorption and scattering parameters on the modeled reflectance. Once the effects of the 
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individual parameters have been characterized in this way, the effect of changing blood 

content on the extracted tissue parameters is investigated. We show that since the 

absorption and scattering parameters in the PTI model affect distinct regions of the 

modeled reflectance spectrum, the extracted scattering parameters remain consistent even 

for tissue sites at which the two measured spectra appear very different due to blood 

draining from the tissue over the course of measurement.  

 

Prototype clinically-compatible instrumentation [28, 106] was developed, as described 

previously [28, 128], to acquire reflectance spectra from human pancreatic tissues within 

30 minutes of resection during pancreatic surgery at the University of Michigan (U-M) 

Medical Center. The study received approval from the Institutional Review Board of the 

U-M Medical School, and written consent was obtained from all patients before 

measurement. Briefly, a tungsten-halogen lamp (Ocean Optics) was employed as the 

reflectance source and light from the lamp was directed onto the tissue surface with an 

optical fiber of 600 μm core diameter. Reflectance photons were colletced by a separate 

600 μm diameter detector fiber placed adjacent to the source fiber. Light from the 

detector fiber was directed toward a spectrograph-coupled ICCD camera for spectral 

detection.  

 

Optical data was acquired from nine patients within 30 minutes of excision of the 

pancreatic tissue. Prior to measurement, excess blood was wiped off of the tissue with 

gauze. The on-site pathologist then identified sites of interest on the excised tissue and 

the optical probe was placed on those tissue sites for data acquisition. Some of these sites 
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were beneath the surface of the tissue; in these cases the tissue was cut in order to provide 

access to the fiber-probe. At each site, the probe was held in position by hand and its 

position was monitored by the pathologist and the person taking the measurement. Two 

sets of measurements of steady-state reflectance, steady-state fluorescence, and time-

resolved fluorescence decay were made at each site without removing the probe. Each set 

of measurements took approximately 40 seconds to obtain. After completion of the 

measurements at a given site, the probe was removed and the pathologist immediately 

excised a portion of the tissue from that site for histopathologic analysis, which was 

considered the “gold-standard” for this study. In this manner, optical measurements were 

obtained at 5 to 10 sites from each patient, depending on the size of the resected tissue 

sample. Non-usable measurements (for which the fluorescence signal-to-noise ratio was 

less than 25, or for which the reflectance intensity at 550 nm was below 10% of the 

intensity at 650 nm due to hemoglobin absorption dominating the detected signal) were 

discarded. The analysis presented in this paper was performed on the subset of the data 

for which two usable measurements were taken from each site. This subset contained 47 

sites (11 normal, 20 chronic pancreatitis, 16 adenocarcinoma), and since two reflectance 

measurements were taken at each site, there were a total of 94 measured reflectance 

spectra.  

 

It is important to note that in this study, the variations in tissue blood content were not 

experimentally-controlled. Absorption-related variations were observed in the two 

reflectance spectra acquired at each site, and it was presumed that this variability was 

caused by changes in the concentration and oxygenation of blood in the freshly-excised 
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tissues. This hypothesis makes sense because variations in tissue blood content are 

known to occur post-resection and these variations have been shown to impact the 

measured optical spectra [28, 133].  

 

A PTI model using semi-empirical reflectance equations [52, 93] (as described previously 

[10, 32]) was employed to extract absorption- and scattering-related tissue parameters 

(Table 2.5) from the measured reflectance spectra. 

 

Table 2.5 Tissue parameters that can be extracted by PTI reflectance model.  

 Scattering   Absorption  

Mean diameter of cell nuclei, <L> Total hemoglobin concentration, 
[Hb]tot 

Refractive index of cell nuclei, ns Blood-oxygen saturation, SO2 

Concentration of collagen fibers, ρc Mean blood vessel radius, rbl 

 

Figure 2.11 illustrates the components of the PTI model. The starting point of the PTI 

model is an average measured “canonical normal” reflectance spectrum, Nmeasured(λ), 

obtained by averaging all reflectance measurements from normal tissue sites in the data 

set. This “canonical normal” spectrum is then mathematically transformed to produce a 

PTI model spectrum RPTI(λ) that is fit to an individual reflectance measurement of 

“unknown” tissue type. This mathematical transformation takes the form: 

                                          
( )

( ) ( )
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empirical
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empirical
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λ
λ λ
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= .                                       (11) 
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In Eq. (11), Rempirical(λ) and Nempirical(λ) are semi-empirical equations describing the 

“unknown” reflectance measurement and the “canonical normal” reflectance, 

respectively. Both of these semi-empirical equations take the following general form R(λ) 

[52, 93]: 

                            '

'

( )
( ) ( )exp

( ) ( ) ( )

corr a
s c

corr a s

C b
R

C

μ λλ μ λ
λ μ λ μ λ

 
 = −
    

.                                   (12) 

In Eq. (12), μa(λ) is the tissue absorption coefficient and μs’(λ) is the reduced scattering 

coefficient, defined as μs’(λ) = μs(λ)(1-g), where g is the anisotropy (set equal to 0.9 

here) [32]. The variables b and c are related to tissue and fiber-probe properties [93]. 

Tissue scattering was attributed to cell nuclei (modeled as spheres [5, 107] with mean 

diameter <L> and refractive index ns) and collagen fibers (modeled as cylinders [33] 

with concentration ρc). Tissue absorption was attributed to oxy- and deoxy-hemoglobin 

[5, 52, 125], with a correction factor Ccorr(λ) that accounted for the confinement of blood 

to cylindrical blood vessels [114] with mean radius rbl. From each reflectance 

measurement, a cellular nuclear enlargement factor L/Lo and the total hemoglobin 

concentration [Hb]tot were extracted [10, 32]. The nuclear enlargement factor was a ratio 

between the mean (ensemble average) diameter <L> of cell nuclei at a given site and the 

mean size Lo of normal pancreatic cell nuclei [32]. The value of L/Lo was previously 

shown to be larger for adenocarcinoma than for normal pancreatic tissue or pancreatitis, a 

result that agreed with histopathological observation [10, 32]. 
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Figure 2.11 Conceptual illustration of photon-tissue interaction (PTI) model employed to 
extract pancreatic tissue properties from measured reflectance spectra. The best fit PTI 
model is from [10] and the canonical normal is from [128] (used with permission). 
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To systematically examine the effect of the different tissue properties on the semi-

empirical reflectance equation Rempirical(λ), the total hemoglobin concentration, blood-

oxygen saturation, mean nuclear diameter, and nuclear refractive index were varied 

individually while all of the remaining parameters were kept constant. Figure 2.12 shows 

the effect of each of these variations.  
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Figure 2.12 Systematic examination of changes in the semi-empirical reflectance 
Rempirical(λ) when four different tissue parameters are individually varied: (a) Varying 
only the total hemoglobin concentration [Hb]tot; (b) Varying only the blood-oxygen 
saturation SO2; (c) Varying only the mean nuclear diameter <L>; (d) Varying only the 
nuclear refractive index ns. It can be seen from (a) and (b) that changes in the absorption 
parameters primarily affect the spectra from 400-450 nm and 525-600 nm while (c) and 
(d) show that changing the scattering parameters also has a significant effect on the 
spectra from 450-525 nm. 
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From Figures 2.12(a) and 2.12(b), it can be seen that changing the hemoglobin 

concentration and blood oxygenation primarily affects the amplitude of the reflectance 

from 400-450 nm and from 525-600 nm. Figure 2.12(c) shows that changing the mean 

nuclear diameter has a significant effect on the amplitude of the modeled reflectance in 

the 450-525 nm range. This result is consistent with the experimentally-observed trend 

that reflectance spectra from pancreatic adenocarcinoma (which is expected to exhibit 

enlarged cell nuclei) typically have higher amplitude in the 450-525 nm range than the 

spectra of normal pancreas or pancreatitis [10, 128]. Figures 2.12(c) and 2.12(d) both 

illustrate that changing the tissue scattering properties can affect the slope of the 

reflectance spectrum between 600 nm and 700 nm.  

 

The results in Figure 2.12 are consistent with the experimentally-observed trends that 

reflectance spectra of adenocarcinoma, pancreatitis, and normal pancreatic tissue have 

different amplitudes in the 450-525 nm wavelength range and different slopes in the 600-

700 nm wavelength range [10, 128]. These findings suggest that the semi-empirical 

reflectance equation (Eq. (12)) is sensible to incorporate into the PTI model because it 

has the potential to link specific biophysically-relevant tissue parameters to specific 

trends in the measured reflectance spectra that are related to the progression of pancreatic 

disease. 

 

Figure 2.13 illustrates how Eqs. (11) and (12) can be employed to mathematically 

transform an average measured “canonical normal” spectrum (obtained here by averaging 

22 reflectance measurements from normal pancreatic tissues [128]) into a PTI reflectance 



 

75 

 

model RPTI(λ) for pancreatic tissues with different scattering properties. In Figure 2.13(a), 

the concentration ρc of the collagen fibers is varied, and in Figure 2.13(b), the mean size 

<L> of the cell nuclei is varied. In both cases, the region of the spectrum from 450-525 

nm is most prominently affected.  
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Figure 2.13 Effect of changes in two different scattering parameters on PTI reflectance 
model RPTI(λ): (a) varying values of the collagen concentration ρc and (b) varying values 
of the mean nuclear size <L>. Changing the collagen concentration has a subtle effect on 
the reflectance lineshape from 450-525 nm, while changing the mean nuclear size has a 
much more notable effect on the reflectance in this region. The canonical normal 
spectrum is from [128] (used with permission). 
 

Using Figure 2.13 as a guideline, Figure 2.14 shows how some key features of the 

reflectance spectra from the PTI model (Figure 2.14(a)) match up with those of average 

measured reflectance data from pancreatitis and adenocarcinoma (Figure 2.14(b), [128]). 

First, the mean nuclear size is kept constant but the collagen concentration is multiplied 

by a factor of three, which has been shown in the medical literature to be indicative of 

both pancreatitis and adenocarcinoma [112]. In this case, the PTI reflectance model (dot-

dashed green line in Figure 2.14(a)) looks similar to the average measured reflectance 

from pancreatitis (dot-dashed green line in Figure 2.14(b)). This result is consistent with 
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the observation at histopathology that pancreatitis is characterized by increased 

extracellular collagen but no significant increase in the mean size of cell nuclei (relative 

to normal tissue) [32]. Next, the concentration of collagen is kept at three times that of 

normal tissue, but the mean nuclear size <L> is increased from its initial value of Lo to a 

value of 1.25Lo. For this larger value of <L>, one can see the similarity between the PTI 

reflectance model (dashed red line in Figure 2.14(a)) and the average measured 

reflectance from adenocarcinoma (dashed red line in Figure 2.14(b)). This result agrees 

with the observation at histopathology that adenocarcinoma is characterized by increased 

extracellular collagen and enlarged cell nuclei [32].    
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Figure 2.14 Demonstration of PTI reflectance models RPTI(λ) for various combinations 
of tissue scattering parameters (a), shown alongside average measured data from human 
pancreatic tissues (b) [128] (used with permission). When the concentration of collagen is 
increased to three times that of normal pancreatic tissue but the mean size of the cell 
nuclei is left unchanged (dot-dashed green line in (a)), there is a clear similarity between 
the PTI model and the measured data from pancreatitis (dot-dashed green line in (b)), 
relative to normal (blue lines in (a) and (b)). As the mean diameter of the cell nuclei is 
increased and the concentration of collagen is kept at three times that of normal tissue, 
the PTI model (dashed red line in (a)) looks similar to the average measured reflectance 
from adenocarcinoma (dashed red line in (b)), relative to normal. In particular, the 
increase in collagen concentration provides a subtle change in the reflectance from 450-
525 nm (as shown in Figure 2.13(a)), while the increase in nuclear size is responsible for 
the more pronounced change in the reflectance in this region (as shown in Figure 
2.13(b)). The error bars in (b) represent the standard error. The canonical normal 
spectrum is from [128] (used with permission). 
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The PTI model was fit to each of the two reflectance spectra acquired from all 47 sites. In 

the fitting procedure [10], the value of the nuclear enlargement factor L/Lo was varied 

from 1.0 to 1.5 (in steps of 0.1), and the value of the total hemoglobin concentration 

[Hb]tot was varied from 1.1 μM to 11 μM (in steps of 1.1 μM). For each measurement, 

the best fit of the PTI model to the data was defined to be the fit that minimized the cost 

function CR = Σ|Rmeasured(λ) – RPTI(λ)|, where Rmeasured(λ) was the measured reflectance 

spectrum, RPTI(λ) was the PTI reflectance model, and Σ represented a sum over all 

wavelengths from 400-700 nm. For each site, the values of L/Lo and [Hb]tot extracted 

from the best fits were compared for the two measurements. The PTI model fits were 

examined in the 430-500 nm range (where changes in scattering have been shown to 

distinguish the adenocarcinoma spectra from the normal and pancreatitis spectra [32]).  

 

Sites at which there was a significant degree of difference between the two reflectance 

measurements R1(λ) and R2(λ) were identified by using the manually-selected criterion 

Σ(R2(λ)-R1(λ))2 > 1.8. Here, Σ denotes a sum over all wavelengths between 400 nm and 

700 nm (the same range over which the PTI model was fit to each reflectance spectrum). 

Using this criterion, it was found that 18 of the 47 sites exhibited significant variation 

between the two measured reflectance spectra. For the remaining 29 sites, the two 

reflectance measurements were very similar, thereby illustrating the capability of the 

instrumentation and experimental protocol to provide consistent measurements. 

 

Figure 2.15(a) shows two measured reflectance spectra (solid lines) from a single 

adenocarcinoma site, along with the corresponding fits of the PTI model (dashed lines) to 
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each spectrum. According to the criterion described previously, the two measurements 

shown in Figure 2.15(a) were not considered to be significantly different. As expected, 

the extracted values of the nuclear enlargement factor L/Lo and the mean reduced 

scattering coefficient <μs
’> were identical for the two measurements.  

 

Figure 2.15(b) shows two measured reflectance spectra (solid lines) from a second 

adenocarcinoma site, along with the corresponding fits of the PTI model (dashed lines) to 

each spectrum. Here, according to the criterion described previously, the two 

measurements were considered to be significantly different. However, the extracted 

values of the nuclear enlargement factor L/Lo and the mean reduced scattering coefficient 

<μs
’> were still identical for the two measurements. These results demonstrate the ability 

of the PTI model to extract consistent values of the tissue scattering properties even when 

there are noticeable variations in the amount of blood at a given site. 
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Figure 2.15 Pairs of reflectance measurements (solid blue curves, solid green curves) 
acquired from two different adenocarcinoma sites, shown with the corresponding fits of 
the PTI model (red dashed curves, orange dashed curves) to the measured spectra from 
430-500 nm. For the site shown in (a), the two measured spectra were very similar, and 
the values of the nuclear enlargement factor L/Lo and mean reduced scattering coefficient 
<μs

’> extracted from the two spectra were identical. For the site shown in (b), the two 
measured spectra looked significantly different (likely due to changes in the absorption 
caused by the draining of blood from the freshly excised tissue), and the [Hb]tot values 
extracted from the two spectra differed by 22.5 μM, but the values of the nuclear 
enlargement factor L/Lo and mean reduced scattering coefficient <μs

’> extracted from the 
two spectra were still identical. This result illustrates the ability of the PTI model to 
extract consistent values of tissue scattering parameters even when the blood content of 
the tissue was changing over time.  
 

Figure 2.16(a) shows a histogram of the differences between the total hemoglobin 

concentration values [Hb]tot acquired at the sites (N = 29) for which there was no 

significant difference between the two measured spectra (including the site shown in 

Figure 2.15(a)) according to the criterion described previously. Figure 2.16(b) shows the 

corresponding histogram of the differences between the L/Lo values extracted from the 

two reflectance spectra from each of these sites. The differences Δ[Hb]tot and ΔL/Lo were 

defined as [Hb]tot2-[Hb]tot1 and (L/Lo)2-(L/Lo)1, respectively, where the subscripts 1 and 2 

denoted the first and second measurements taken from a given site. For 23 of these 29 

sites (79%), the [Hb]tot values extracted from the two measurements differed by less than 
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10 μM. Furthermore, for this set of 29 sites, the average difference between the L/Lo 

values extracted from the two measurements was less than 2% and the average difference 

between the <μs’> values extracted from the two measurements was less than 1%. These 

results demonstrate the robustness of the data collection method and the stability of the 

PTI model. 

  

Figure 2.16(c) shows a histogram of the differences between the [Hb]tot values extracted 

from the two reflectance spectra acquired at the sites (N = 18) for which there were 

significant differences between the two measured spectra (including the site shown in 

Figure 2.15(b)) according to the criterion described previously. Figure 2.16(d) shows the 

corresponding histogram of the differences between the L/Lo values extracted from each 

of these sites. For 8 of the 18 sites (44%), the [Hb]tot values from the two measurements 

differed by at least 10 μM. However, the average difference between the L/Lo values 

extracted from the two measurements was less than 6%. Figure 2.16(d) shows that for 16 

of the 18 sites (89%), the magnitude of ΔL/Lo was no greater than 0.1 (the step size for 

L/Lo in the PTI fitting procedure described previously). In addition, the average 

difference between the <μs’> values extracted from the two measurements was less than 

2%. Overall, larger variations in hemoglobin concentration did not have a notable effect 

on the precision with which the PTI model extracted the nuclear enlargement factor and 

mean reduced scattering coefficient. These results indicate that the PTI model extracted 

consistent values of the tissue scattering properties even when the tissue blood content 

was varying. 
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For each tissue type, the five sites for which the two reflectance measurements were the 

most different from each other were determined by maximizing the function 

Diff(R1(λ),R2(λ)) = Σ(R2(λ)-R1(λ))2, where R1(λ) and R2(λ) were the two reflectance 

spectra measured from each site and Σ represented a sum over the wavelengths from 400-

700 nm. For this reduced data set, the mean L/Lo value for adenocarcinoma was still 20% 

larger than that of normal pancreatic tissue and 15% larger than that of pancreatitis. 

Using Wilcoxon rank-sum tests, the p-value for using L/Lo to distinguish adenocarcinoma 

from non-malignant tissue (normal and pancreatitis) was still statistically significant (p < 

0.001) for this reduced data set. These results suggest that the PTI algorithm has the 

potential to distinguish between different pancreatic tissue types even when the measured 

spectra from a single site were significantly different. 
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Figure 2.16 Histograms of differences in extracted values of the total hemoglobin 
concentration (Δ[Hb]tot) and nuclear enlargement parameter (ΔL/Lo) for (a, b) the 29 
pancreatic tissue sites at which the two measured reflectance spectra were not 
significantly different from each other, and (c, d) the 18 pancreatic tissue sites at which 
the two measured reflectance spectra were significantly different from each other. When 
the two reflectance measurements were not significantly different, the magnitude of 
Δ[Hb]tot (a) was less than 10 μM for 23 of 29 sites (79%), and the average difference 
between the two extracted L/Lo values (b) was less than 2%. When the two reflectance 
measurements were significantly different, the magnitude of Δ[Hb]tot (c) was less than 10 
μM for only 10 of the 18 sites (56%), but the average difference between the two 
extracted L/Lo values (d) was still less than 6%.    
 

Here we have reported the development of a photon-tissue interaction (PTI) model for 

extracting biophysically-relevant tissue absorption and scattering parameters from 

measured reflectance spectra. The model uses semi-empirical equations to scale an 

average measured “canonical normal” reflectance spectrum such that disease-related 

changes in the reflectance spectra are quantitatively linked to parameters related to tissue 
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structure (such as mean size of cell nuclei and concentration of collagen fibers). The 

effect of the different tissue properties on the semi-empirical reflectance equations was 

systematically examined. In addition, we have demonstrated the potential of optical 

spectroscopy to provide consistent values of tissue scattering parameters at a given tissue 

site, even when the measured spectra at that site are varying noticeably in time due to 

changes in absorption from blood. Future work will investigate the extension of this study 

to tissue fluorescence, as well as to tissue optical spectra acquired in vivo. These results 

illustrate the feasibility of employing optical spectroscopy for consistent characterization 

of disease-related changes in human pancreatic tissues, and these findings should also be 

applicable to a wide range of other tissue types.  
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2.4. Tissue classification 

As mentioned previously, pancreatic cancer is the fourth-leading cause of cancer death in 

the United States, with a five-year survival rate of only 6% [95]. This statistic is largely 

due to the fact that currently-used diagnostic methods cannot reliably detect the disease in 

its early stages [96]. Therefore, it is necessary to find a more accurate method for 

pancreatic cancer diagnostics. Here, we develop and employ clinically-compatible optical 

spectroscopy technology for accurate classification of pancreatic cancer, reliably 

distinguishing the disease from non-cancerous pancreatic tissues (normal and 

pancreatitis). The tissue optical data were analyzed with mathematical models and a 

statistically rigorous tissue classification algorithm, and the results were compared with 

those of biopsy and histopathology, which is the diagnostic gold standard. The optical 

method accurately classified pancreatic cancer sites, with a sensitivity, specificity, 

positive predictive value, and negative predictive value of 87.5%, 89.0%, 77.8%, and 

94.2%, respectively. These results suggest that optical spectroscopy has the potential to 

distinguish pancreatic cancer from non-malignant pancreatic tissues. 

 

Clinically-compatible instrumentation [28, 106, 128] was employed to acquire 

reflectance and fluorescence spectra from freshly-excised human pancreatic tissues from 

an expanded data set of 18 patients. Measurements were taken at multiple sites from each 

patient; 39 normal sites, 34 pancreatitis sites, and 32 adenocarcinoma sites were used in 

the analysis. Visually noticeable differences among the tissue types were observed in 

both the reflectance and the fluorescence spectra. To analyze these differences, two 
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mathematical models were employed: a Principal Component Analysis (PCA) model 

[134], and a Photon-Tissue Interaction (PTI) model [10, 32]. 

 

Prior to data analysis, outlier spectra were removed from the data set. Reflectance spectra 

for which the detected signal at 550 nm was less than 1/5 of that at 650 nm were removed 

because these spectra were dominated by absorption from blood. Fluorescence spectra 

with a signal-to-noise ratio of less than 30 were also removed, because these spectra were 

considered too noisy to properly analyze.  

 

In addition, a residual-based method was employed to detect sites where the two 

measured fluorescence or reflectance spectra were extremely different from each other. 

This was done through a series of linear mixed models where the spectrum measurements 

at specific wavelengths were regressed on the tissue diagnosis with a random intercept to 

account for correlation among sites which originated from the same patient. Ten 

regressions were performed on the fluorescence spectra at wavelengths of 375.18, 

417.19, 423.38, 427.52, 444.04, 452.99, 466.08, 479.16, 502.57, and 511.52 nm, and ten 

regressions were also performed on the reflectance spectra at wavelengths of 426.827, 

440.598, 461.255, 481.913, 490.175, 541.130, 544.573, 612.053, 625.135, and 755.964 

nm. Transformations were necessary to ensure that the spectra measurements had a 

Gaussian shape necessary for the linear regressions. For each of the regressions the 

difference between the residuals of the two duplicate measurements at each site were 

calculated and ranked in order of magnitude. The ranks for the ten regressions were then 

averaged to give an overall fluorescence or reflectance average rank for each site. Sites 
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whose overall mean rank exceeded the 85th percentile of the total number of sites were 

flagged as potential outliers. Through this method five sites were identified as having a 

pair of very different reflectance spectra, and four sites were identified as having a pair of 

very different fluorescence spectra.  Sites with extremely different measurements were 

removed from the analysis, and for the remaining sites, the two measured spectra were 

averaged. Of the 117 sites from which measurements were acquired, 12 sites were 

flagged as outliers and removed from the data set. 

 

The PCA model extracted the principal components from each measured reflectance and 

fluorescence spectrum (Figure 2.17). The PCA code was written in MATLAB using 

functions that were built into the MATLAB programming language. The values of the 

principal components and their statistical significance for distinguishing between the 

tissue types are displayed in Table 2.6. The first reflectance principal component (p < 

1x10-4) and the first fluorescence principal component (p < 1x10-4) were the most 

statistically-significant PCA variables for distinguishing adenocarcinoma from normal 

pancreatic tissue. The first reflectance principal component (p < 9x10-3) and the first 

fluorescence principal component (p < 3x10-3) were also the most statistically significant 

PCA variables for distinguishing adenocarcinoma from pancreatitis. 

 

As described previously, the PTI model algorithm [10, 32] fit mathematical models of 

reflectance and fluorescence to the measured optical data to extract parameters related to 

tissue structure and biochemical composition. The PTI model was written in MATLAB 

employing a combination of previously-used equations [5, 33, 49, 51, 52, 93, 114, 125] to 
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model the measured reflectance and fluorescence as functions of tissue properties related 

to absorption, scattering, and concentration of endogenous tissue fluorophores. These 

parameters included the nuclear enlargement factor L/Lo and the total hemoglobin 

concentration [Hb]tot, from the reflectance and the percentage contributions of 

extracellular collagen and intracellular NADH and FAD to the fluorescence. The 

extracted values of the PTI model parameters and their statistical significance for 

distinguishing between the tissue types are displayed in Table 2.6. The nuclear 

enlargement factor (p < 1x10-4) and the percentage contribution of collagen (p < 1x10-4) 

were the most statistically significant PTI variables (p < 2x10-2) for distinguishing 

adenocarcinoma from normal pancreatic tissue. The nuclear enlargement factor (p < 

2x10-2) and the percentage contribution of collagen (p < 3x10-2) were also the most 

statistically significant PTI variables for distinguishing adenocarcinoma from 

pancreatitis. 
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Figure 2.17 (a) First three principal components of the reflectance data set. These three 
principal components explained 95% of the variation in the measured reflectance spectra. 
(b) First three principal components of the fluorescence data set. These three components 
explained 95% of the variation in the measured fluorescence. 
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Table 2.6 Mean, standard error, and significance of PCA and PTI model parameters. 

Variable Mean ± 
Standard Error 

for N 

Mean ±  
Standard Error 

for P 

Mean ± 
Standard Error 

for A 

p-value 
for  

A vs. N 

p-value 
for  

A vs. P 

RPC1 -2.35 ± 0.25 -0.01 ± 0.30 2.87 ± 0.35 <0.001 0.0089 

RPC2 -0.07 ± 0.10 0.37 ± 0.16 -0.30 ± 0.10 0.2905 0.0200 

RPC3 0.20 ± 0.05 -0.22 ± 0.07 -0.01 ± 0.13 0.5708 0.2086 

FPC1 -1.69 ± 0.19 -0.33 ± 0.27 2.40 ± 0.37 <0.001 0.0026 

FPC2 -0.40 ± 0.18 0.56 ± 0.25 -0.11 ± 0.21 0.2066 0.1112 

FPC3 -0.09 ± 0.10 0.11 ± 0.08 0.00 ± 0.14 0.8195 0.4014 

L/Lo 1.06 ± 0.01 1.12 ± 0.03 1.34 ± 0.03 <0.001 0.0119 

[Hb]tot 19.6 ± 1.4 μM 13.7 ± 1.9 μM 9.9 ± 1.7 μM 0.0055 0.6606 

SO2 0.53 ± 0.05 0.76 ± 0.05 0.73 ± 0.06 0.0212 0.7555 

%Collagen 6.6 ± 1.9 24.4 ± 3.4 47.9 ± 4.6 <0.001 0.0212 

%NADH 69.0 ± 2.3 53.2 ± 3.7 44.7 ± 4.3 0.0011 0.2194 

%FAD 24.4 ± 1.6 22.5 ± 2.4 7.4 ± 1.6 0.0091 0.0756 

 

 

 

 

 

 

 



 

89 

 

Variables from the PCA and PTI models were input into a hybrid tissue classification 

algorithm (Figures 2.18 and 2.19) to distinguish adenocarcinoma from pancreatitis and 

normal pancreatic tissue.  
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Figure 2.18 Flow chart of tissue classification algorithm. First, optical spectra are 
removed from the data set if the signal is too low or too noisy for analysis. Next, sites for 
which the two measured spectra are significantly different from each other are removed. 
Then, the resulting data set (39 normal sites, 34 pancreatitis sites, 32 adenocarcinoma 
sites) is split into a training set (16 patients) and a testing set (2 patients). The optical 
spectra from each training set are modeled with the PCA and PTI models to obtain 
diagnostically-relevant tissue parameters. These parameters are then input into a 
multinomial logistic regression that uses Generalized Estimating Equations (GEE) to 
account for the fact that multiple sites were measured from each patient. The multinomial 
logistic regression provides fit coefficients that are combined with the tissue parameters 
extracted from the testing set to obtain the diagnosis probabilities that each tissue site in 
the testing set is normal, pancreatitis, or adenocarcinoma. Thresholds are applied to these 
probabilities to determine the diagnosis for each site. These optical diagnostic results are 
then compared with those of histopathology. The process is repeated nine times, so that 
each patient is included in exactly one testing set. The boxes outlined in purple 
correspond to the portion of the algorithm shown in Figure 2.19. 
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Figure 2.19 Flow chart of data analysis and tissue classification procedures employed to 
analyze optical spectra from human pancreatic tissues. First, the measured reflectance 
and fluorescence spectra are analyzed with principal component analysis (PCA) and a 
photon-tissue interaction (PTI) model to extract tissue parameters that describe disease-
related changes in the spectra. Then, Generalized Estimating Equations (GEE), which 
corrects for intra-patient correlations in the data set, is employed to determine which 
parameters will be put into the multinomial logistic analysis tissue classification 
algorithm. The outputs of the multinomial logistic analysis algorithm are the diagnosis 
probabilities P(N), P(P), and P(A) that a given tissue site is normal, pancreatitis, or 
adenocarcinoma, respectively. 
 

Selection of the variables used in the tissue classification algorithm was determined 

through multinomial logistic regression using Generalized Estimating Equations (GEE) 

[135-137] to statistically account for the fact that the data set included multiple sites from 

each patient and employed the complete data set. GEE has been previously employed in 
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medical physics studies to correct for intra-patient correlations [138-141]; for instance, in 

ophthalmology, in which there are correlations between data taken from the two eyes of a 

single patient [138]. 

 

For each variable extracted by the PCA and PTI models, a GEE model with an 

exchangeable correlation structure was employed to contrast the differences between the 

mean values of that variable for each pair of tissue types.  For each contrast a Wald test 

statistic using the robust covariance matrix was calculated to account for the repeatedly 

measured observations from the same patients. Results from this analysis, including the 

p-values mentioned previously, can be found in Table 2.6.  

 

Following the identification of significant predictor variables, correlations between the 

selected variables were calculated and highly correlated variables were removed to 

minimize the multicollinearity. The final set of variables that were used included the 

nuclear enlargement factor, percent collagen contribution, and total hemoglobin 

concentration from the PTI model algorithm, as well as the first three principal 

components of the reflectance and the third principal component of the fluorescence. The 

first two principal components of fluorescence were dropped due to their extreme 

correlation with other variables.  The Pearson correlation between the first principal 

component of fluorescence and the percent collagen contribution was -0.92, and the 

Pearson correlation between the second principal component of fluorescence and the 

second principal component of reflectance was 0.76. The third fluorescence principal 

component FPC3 was used in the classification algorithm despite its lack of statistical 
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significance because the cost associated with the multinomial logistic regression model 

was minimized when FPC3 was included. 

 

For tissue classification (Figure 2.18), a “leave-two-patients-out” cross-validation method 

was employed. The classification algorithm was run nine times, and each time, the data 

set was split into a training set of 16 patients and a testing set of two patients. The 

algorithm was executed nine times because there were 18 patients overall and each 

patient was put in the testing set exactly once. For each pair of training and test data sets 

a standard multinomial logistic regression was fit to the training dataset and was then 

employed to generate predicted probabilities of adenocarcinoma, pancreatitis, and normal 

tissue types for the observations in the test data set 

 

The outputs of the classification algorithm were the diagnosis probabilities P(N), P(P), 

and P(A) of each site being normal, pancreatitis, or adenocarcinoma. Ternary plots of 

these probabilities for all sites in the data set are shown in Figure 2.20 for the hybrid 

algorithm (including PCA and PTI variables) and in Figure 2.21 for the algorithm using 

only PCA variables (Figure 2.21(a)) and the algorithm using only PTI variables (Figure 

2.21(b)). 

 

A threshold was then applied to P(A) to determine whether each individual site should be 

classified as “cancer” or “not cancer.” The sensitivity and specificity calculated for 

different thresholds were employed to generate ROC curves (Figure 2.22) for 

distinguishing adenocarcinoma from non-cancerous tissue. The area under the ROC 
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curve was 0.906 for the hybrid algorithm, 0.881 for the algorithm using only PCA 

variables, and 0.847 for the algorithm using only PTI variables (Figure 2.22). In order to 

determine the sensitivity, specificity, positive predictive value (PPV), and negative 

predictive value (NPV) of the optical method for detecting pancreatic adenocarcinoma, 

the threshold for a diagnosis of cancer was set at P(A) > 0.28. The resulting sensitivity, 

specificity, PPV, and NPV were 87.5%, 89.0%, 77.8%, and 94.2% for distinguishing 

adenocarcinoma from non-cancerous tissue (Figure 2.20). 

  

The aforementioned thresholding method was compared with a cost-function-based 

technique for calculating the optimal thresholds for determining a diagnosis of normal, 

pancreatitis, or adenocarcinoma from the predicted probabilities. In this technique, costs 

were assigned to each of the potential errors that could occur with prediction. Incorrectly 

predicting a site as either pancreatitis or normal tissue when it was actually 

adenocarcinoma was considered the worst possible error and assigned a high cost of 12. 

Predicting cancer for either normal or pancreatitis sites resulted in a cost of 6. Finally, 

incorrectly predicting pancreatitis as normal or vice versa was assigned a cost of 1. The 

optimal thresholds were those that minimized the total cost for the given model and were 

found through a grid search. The cost-based thresholding method distinguished 

adenocarcinoma from non-cancerous tissue with the same sensitivity, specificity, PPV, 

and NPV as the thresholding method in which sites with P(A) > 0.28 were diagnosed as 

cancer (87.5%, 89.0%, 77.8%, and 94.2%, respectively).  
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Figure 2.20 Ternary plot of diagnosis probabilities (probability P(N) that a tissue site is 
normal; probability P(P) that the site is pancreatitis; probability P(A) that the site is 
adenocarcinoma), as determined by optical spectroscopy with the hybrid data analysis 
method (which included parameters from both the PCA and the PTI models). Shown 
alongside the ternary plot are the sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV) for distinguishing malignant (adenocarcinoma) 
tissue sites from non-malignant (normal and pancreatitis) tissue sites. Parameters from 
reflectance (first three principal component scores, nuclear enlargement factor L/Lo, and 
total hemoglobin concentration [Hb]tot) and fluorescence (third principal component 
score and percentage contribution of collagen) were used in the hybrid method, and only 
one threshold (P(A) > 0.28; red line) was required to achieve the user-defined optimal 
classification accuracy. 



 

96 

 

 

PCA PTI

Sensitivity 90.6%

Specificity 84.9%

PPV 72.5%

NPV 95.4%

Sensitivity 84.4%

Specificity 86.3%

PPV 73.0%

NPV 92.6%

(a) (b)

P(P) P(P)

Histopathology diagnosis

Normal
Pancreatitis
Adenocarcinoma

(N = 39 sites)
(N = 34 sites)
(N = 32 sites)

Malignant vs. Non-malignant Malignant vs. Non-malignant

 

Figure 2.21 Ternary plots of diagnosis probabilities (probability P(N) that a site is 
normal; probability P(P) that the site is pancreatitis; probability P(A) that the site is 
adenocarcinoma), as determined by optical spectroscopy with the PCA (a) and PTI (b) 
models. The tissue sites are color-coded according to histopathological diagnosis. 
Optimal probability thresholds for distinguishing malignant tissue sites (adenocarcinoma) 
from non-malignant tissue sites (normal and pancreatitis) are shown in both (a) and (b). 
Red lines indicate thresholds on P(A), and blue lines denote thresholds on either P(N) (a) 
or P(P) (b). The sensitivity, specificity, positive predictive value (PPV), and negative 
predictive value (NPV) for distinguishing adenocarcinoma are shown beneath the plots. 
Both models distinguished malignant from non-malignant tissues with a sensitivity and 
specificity of greater than 84%, and a NPV of over 92%. 
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Figure 2.22 Receiver operating characteristic (ROC) curves for distinguishing malignant 
(adenocarcinoma) tissue sites from non-malignant (normal and pancreatitis) tissue sites 
using the PCA model, the PTI model, and the hybrid method combining PCA and PTI 
parameters, with the area under the curve (AUC) for each method displayed as an inset. 
The ROC curves were generated by applying a set of different thresholds to the predictive 
probability of adenocarcinoma. Overall, the hybrid method provided the best diagnostic 
accuracy for detecting adenocarcinoma, as evidenced by the fact that the hybrid had the 
highest AUC.   
 

The optical spectroscopy-based classification method has several potential advantages 

over currently employed methods to detect pancreatic cancer. The method is potentially 

compatible with minimally invasive endoscopic procedures, including endoscopic 

ultrasound-guided fine-needle aspiration (EUS-FNA), which currently suffers from 

limited diagnostic accuracy. The method also provides real-time feedback, does not 

require exogenous contrast, is cost-effective, and can potentially be employed for 

diagnosis of other tissue types, such as pre-cancers and pancreatitis. These results suggest 

that the optical spectroscopy method described in this dissertation has the potential to 

assist with detection of pancreatic cancer in a clinical setting. 
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Chapter 3 

Bone and breast tissue characterization with Raman spectroscopy 

 

3.1. Monte Carlo modeling of Raman scattering in bone tissue 

Elastic light-scattering spectroscopy is frequently used in biomedical optics to provide 

information about the morphological and biochemical composition of tissues [5, 6, 9, 57, 

59, 92, 142, 143]. The resulting data has been incorporated into sophisticated tissue 

diagnostic methods for early disease detection and other types of tissue viability 

assessment throughout the body: for instance, in the breast [9, 92], colon [5], cervix [59], 

esophagus [6], and oral mucosa [57, 142, 143]. Recently, there has been interest in 

developing such an algorithm for early detection of osteoporosis, a condition that causes 

bone strength to decrease over time and ultimately leads to fracture in about 35% of 

women over 50 as well as 1 in every 8 men [144]. Osteoporosis is often difficult to 

diagnose until the first fracture occurs, and current screening methods rely heavily on 

bone density measurements that fail to provide much information about the bone’s 

molecular composition [145].  

 

Raman spectroscopy can potentially be used to develop a noninvasive screening method 

that can detect the biochemical changes associated with the progression of osteoporosis 

and other bone diseases, because it provides biochemical information about bone 
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composition [146]. For bone tissue, information about both the mineral and matrix 

components can be obtained. Bone mineral is similar to hydroxyapatite, 

Ca10(PO4)6(OH)2, but with extensive carbonate substitution into the apatitic lattice, as 

well as substitution of other ions, especially sodium and magnesium [146]. The mineral is 

embedded within the matrix, which is about 90% type I collagen. Both the phosphate 

(~960 cm-1) and carbonate (~1070 cm-1) symmetric stretches are prominent mineral bands 

in bone spectra. The amide III (~1250 cm-1), CH2 scissoring (~1450 cm-1), and amide I 

(~1650 cm-1) regions are representative of the collagen matrix [146-148]. 

 

One Raman metric that is often used to characterize the quality of bone tissue is the 

carbonate/phosphate (C/P) ratio, given by the height or area ratio of the carbonate and 

phosphate symmetric stretching bands [147]. This ratio is a measure of the amount of 

carbonate substitution in the apatitic lattice and has been shown to correlate with bone 

stiffness [146]. Raman spectroscopy of tissue is performed with near-infrared lasers, 

usually with wavelengths of 785 nm or 830 nm. Near-infrared light has a high tissue 

penetration depth (on the order of centimeters) and is essentially harmless to humans, 

thereby allowing bone measurements to be made through overlying tissues via a fiber-

optic probe placed directly on the skin [39]. Recently, a fiber-optic probe was even used 

to collect Raman data from a canine tibia, and combined with spatial priors from a CT 

scan, a tomographic image of a portion of the limb was reconstructed [148]. Therefore, 

Raman spectroscopy using fiber-optic probes is of great potential use for the noninvasive 

and information-rich measurements of bone tissue quality.  
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However, there are also several major challenges associated with using Raman 

spectroscopy as a tissue diagnostic modality. For one, detected Raman signal is usually 

several orders of magnitude lower than fluorescence, so it is important to design the 

fiber-optic probe in a manner that optimizes the collection of Raman signal [149]. Also, if 

the probe is going to send light into the tissue through the skin, there are multiple layers 

of tissue between the skin and the bone, and each of these layers has its own set of 

absorption and elastic scattering properties that can attenuate the detected bone Raman 

signal [149]. Therefore, it is crucial to develop a mathematical model of Raman 

scattering that is able to pinpoint the optimal source-detector configuration for 

maximizing the ratio of bone Raman signal to background, as well as correct the detected 

Raman signal for artifacts related to tissue absorption and elastic scattering. Monte Carlo 

simulations are known to be effective at accomplishing both of these objectives for 

reflectance and fluorescence studies throughout optical parameter space and for a variety 

of fiber-probe configurations [75-77, 150]. Recently, Monte Carlo and other 

mathematical models of Raman scattering [151-153] have been applied to several types 

of turbid media, including biological tissue, but to our knowledge, these codes have not 

incorporated a multi-layered geometry overlying bone tissue. This study [154] shows 

preliminary results of a Monte Carlo model of Raman scattering in bone that is buried 

within a tri-layered soft tissue structure consisting of dermis, subdermis, and muscle. The 

code is utilized to locate an optimal source-detector separation for maximum detected 

bone Raman signal, as well as to demonstrate how the carbonate/phosphate ratio can be 

distorted by elastic scattering effects from the overlying tissue layers. 
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As mentioned previously, the tissue model used in this study included overlying layers of 

dermis, subdermis, and muscle, but this preliminary version neglected intermediate layers 

such as fascia, tendon, and periosteum. In order to determine whether these layers would 

have a significant effect on the detected Raman signal, an experiment was performed in 

which a number of these layers were dissected from a rat leg, and their optical properties 

were measured with an integrating sphere. A digital photograph of some of these tissue 

layers is shown in Figure 3.1 to demonstrate the amount of variability between the size, 

geometry, and blood content of the various tissues.  

 

Using a 6” diameter integrating sphere (Labsphere, RT-060-SF) with Spectraflect coating 

(reflectivity ~ 0.96) on the inside wall, reflectance and transmittance measurements were 

taken from a variety of tissue types in a dissected rat leg. The measurements used a 

broadband light source from a lamp that was sent directly into a Kohler illuminator 

(Labsphere, KI-120) to collimate the light. The light source was powered by an LPS 

preset power supply (Labsphere, LPS-150-0660). The lamp emitted primarily in the 

visible range, but it will most likely be replaced with an IR source in future studies so that 

the interrogated spectral region will match up with that used in the experimental Raman 

spectral measurements. For reflectance measurements, the light beam was sent through 

an open port on one side of the sphere, and it propagated through the sphere until it 

reached the sample port on the other side. Some of the light was then diffusely reflected 

by the tissue sample and this light re-entered the sphere, where it bounced off of the 

sphere walls until it was angled in such a way that it reached the detector port and 

traveled out of the sphere, through a fiber optic cable, and into a spectrometer (HR2000+, 
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Ocean Optics, 200-1100 nm range) that was linked to a computer via a USB port. The 

data was then displayed on-screen and saved using the Ocean Optics SpectraSuite 

software. For transmittance measurements, a similar procedure was used, except that the 

sample was moved to the side of the sphere nearest the light source, and the port on the 

opposite side was covered.   

 

When performing integrating sphere measurements of biological tissue, it is important 

that the measured sample is relatively homogeneous and has a diameter greater than the 

diameter of the light beam [155]. These two stipulations were often difficult to follow for 

rat tissues of the types shown in Figure 3.1 because of their small size and tendency to 

self-adhere in irregular ways (e.g. fascia in Figure 3.1). For several tissue types, such as 

periosteum, tendon, and bone, the diameter of the sample was essentially equal to the 

diameter of the incident light beam; future experiments will attempt to address this issue 

in order to minimize light losses. The sample diameter should also be greater than the 

sample port diameter, in order to prevent light losses from the uncovered portion of the 

sample port; this precaution was neglected in the initial experiment, but port reducers 

(Labsphere, Spectraflect coating, 1.0” to 0.25” and 1.0” to 0.125”) have been purchased 

and can be employed to make the reflectance and transmittance measurements more 

accurate. 

 

In order to account for the spectral response of the lamp, the reflectance and 

transmittance were measured with respect to standards. For reflectance, a Spectralon® 

reflectance standard (Labsphere, SRS-99-010, 99% reflectance, 1.25” diameter) was 
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placed in the sample port, and for transmittance, the sample port was left empty. In order 

to measure the background signal, dark spectra were also taken. The diffuse reflectance 

and transmittance spectra were then obtained by the formulae R(λ) = rstd (Rmeas(λ)-

Rdark(λ))/(Rstd(λ)-Rdark(λ)) and T(λ) = (Tmeas(λ)-Tdark(λ))/(T0(λ)-Tdark(λ)), where Rmeas(λ) 

and Tmeas(λ) were the uncorrected reflectance and transmittance of the sample, Rstd(λ) was 

the measured reflectance spectrum of the Spectralon® standard, rstd was the reflectance of 

the standard (equal to 0.99) and T0(λ) was the measured transmittance spectrum with an 

empty sample port [156]. If the reduced elastic scattering coefficient is to be separated 

into the elastic scattering coefficient μs(λ) and the anisotropy g(λ), a collimated 

transmittance measurement must also be performed [155, 157].  

 

Muscle and 
tendon

MCL Patellar 
tendon

Fat padFasciaPeriosteum

 

Figure 3.1 Various types of tissue dissected from the leg of a rat [154], demonstrating a 
high degree of variation in the geometrical and optical properties.  
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The MC model used in this study has been described previously [76, 77]. Briefly, 

photons are launched into a layered tissue model approximated by a stack of turbid slabs 

with various thicknesses, absorption and elastic scattering coefficients, and anisotropies 

[150]. Each elastic scattering event is modeled by sampling the step size and scattering 

angle from probability distribution functions [150]. The Henyey-Greenstein function is 

used to model the distribution of scattering angles in a manner that incorporates the 

anisotropy of the tissue [150]. Photons are given an initial weight of unity, and this 

weight is subsequently attenuated according to Beer’s Law at each scattering step [76]. If 

the weight of a photon falls below a pre-defined threshold, the photon is sent to a Russian 

roulette routine and if it does not survive, it is said to be absorbed by the tissue [76]. The 

MC code has previously been modified to accommodate absorption and re-emission from 

multiple fluorophores with distinct quantum yields, mean lifetimes, and locations in any 

of the tissue layers [77]. Previous studies had validated the code against experimental 

phantom studies and theoretical photon transport expressions [76, 77].  

 
To model Raman scattering within the framework of the MC code, a Raman event was 

treated as a fluorescence event with a mean lifetime of zero, which was believed to be a 

good approximation because Raman scattering takes several orders of magnitude less 

time than fluorescence. Another approximation in the preliminary version of the code 

was that Raman scattering was isotropic; it will be necessary to perform subsequent 

research to determine if this assumption needs to be modified.  The bone tissue was 

modeled as having two Raman scatterers, carbonate and phosphate, and Raman scattering 

from all other tissue layers was neglected. The relative concentrations and Raman cross 
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sections of the carbonate and phosphate were modeled with the pre-existing variables for 

the fluorophore absorption coefficient and fluorescence quantum yield. Since the 

preliminary study was focused on simulating carbonate/phosphate ratios, it was not 

necessary to input the correct magnitudes of the concentrations and cross-sections as long 

as their ratio was consistent with literature [147, 158]. A schematic of the tissue model 

used for the MC simulations (Figure 3.2) included overlying layers of dermis, subdermis, 

and muscle atop the bone; values for the absorption coefficients, elastic scattering 

coefficients, and thicknesses of these layers were estimated from literature [147, 159]. 

The anisotropy and refractive index for all layers and wavelengths were set to 0.9 and 

1.4, respectively [77, 160]. The combined thickness of all tissue layers atop the bone 

[147] was held constant at 2 mm. Studies to measure the absorption and elastic scattering 

coefficients of several other intermediate tissue layers (fascia, tendon, and periosteum) 

and incorporate these layers into the tissue model are currently underway. The fiber-optic 

probe used in the MC code was similar to the “ring-disk” configuration published in 

previous literature [147]. All of the fibers were modeled to have diameters of 200 μm and 

numerical apertures equal to 0.22. Table 3.1 provides the tissue absorption and elastic 

scattering coefficients [159] used for each layer of the model. The elastic scattering 

coefficients in each tissue layer at 857 nm were set equal to those at 849 nm in the first 

set of simulations, and then reduced by 5 cm-1 for the next set of simulations. 
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Table 3.1 Tissue properties used in Raman scattering simulations [154]. 

 
Wavelength 

 
785 nm          

(excitation) 

849 nm        
(Raman 

scattering     
from 

phosphate) 

 
857 nm             

(Raman scattering   
from carbonate) 

Optical 
coefficient 

μa  
(cm-1) 

μs  
(cm-1) 

μa 
(cm-1) 

μs 
(cm-1) 

μa 
(cm-1) 

μs  
(cm-1) 

Dermis  0.15 200 0.125 185 0.125 185, 180 
Subdermis  0.08 125 0.08 115 0.08 115, 110 

Muscle  0.4 70 0.4 65 0.4 65, 60 
Bone  0.07 140 0.08 135 0.08 135, 130 
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“Ring-disk” fiber-probe

ρ1

ρ2

 

Raman scattering event

Incident 
light at λ1

ρ2
ρ1

Dermis

Muscle

Bone

Detected 
light at λ2

Subdermis

 

Figure 3.2 Schematic of four-layered tissue model and ring-disk probe configuration 
used in Raman MC simulations [154]. 
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The MC code was utilized with the tissue model shown in Figure 3.2 in order to predict 

the source-detector separation that would produce the highest number of detected Raman 

photons (Figure 3.3). In these simulations, the elastic scattering coefficients in each tissue 

layer at 857 nm were set equal to those at 849 nm.  
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Figure 3.3 Plot of number of detected Raman photons as a function of source-detector 
separation [154], for the tissue model shown in Figure 3.2. The boxed region (centered at 
a separation distance of about 2.5 mm) represents the optimal predicted source-detector 
distance for detecting a maximum number of Raman photons from the tissue model. 
 

Figure 3.3 predicts that a source-detector separation of around 2.5 mm will obtain the 

highest Raman photon counts. However, the current MC model neglects background 

from fluorescence, so further studies must be done to determine the optimal source-

detector distance for obtaining a high ratio of Raman signal to fluorescence background.  

 

The MC model of Raman scattering from bone was also used to predict how the 

calculated carbonate/phosphate (C/P) ratio might is affected by the thicknesses of the 

overlying tissue layers. First, a tissue model of exposed bone was used in a “control” MC 

simulation. The code was run four times, the results were averaged, and the mean C/P 
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ratio was determined. Next, the code was re-run for the four-layered tissue model shown 

in Figure 3.2; however, the absorption and elastic scattering coefficients of each layer 

were approximated to be the same for the Raman scattering wavelengths of carbonate 

(857 nm) and phosphate (849 nm). In this case, it was observed that there was more 

variation in the detected C/P ratios, so the code was run eight times in order to attempt to 

improve the statistics. The result was a mean C/P ratio that was almost identical to the 

one simulated with the exposed bone model; however, the standard deviation was larger. 

This result may be of importance when attempting to mathematically model the 

experimental results because a greater noise in the system limits the smallest detectable 

changes in the C/P ratio. It is potentially useful to obtain a quantitative description of how 

the standard deviation of the C/P ratio varies as a function of various changes to the tissue 

model. 

 

For the next set of simulations, each layer of the tissue model was changed so that its 

elastic scattering coefficient at the Raman scattering wavelength of carbonate was 5 cm-1 

less than that for the Raman scattering wavelength of phosphate (as shown in Table 3.1). 

It was hypothesized that this discrepancy in the elastic scattering coefficients would 

affect the mean calculated C/P ratio, because the photons that were Raman-scattered from 

carbonate would propagate differently than the photons that were Raman-scattered from 

phosphate. The absorption coefficient was assumed to be negligible in this region of the 

spectrum. A set of eight identical simulations was run for tissue models of various 

thicknesses in the different layers, in an attempt to estimate variations that might be 

found from region to region of the biological tissue being measured. The results of this 
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study are shown in Figure 3.4, where the thickness of the dermal and subdermal layers 

were each defined to be half  of the total “skin” thickness, and the bone layer was 

regarded as semi-infinite. 

 

 

0.4 mm skin

0.8 mm skin

1.2 mm skin

1.6 mm muscle

1.2 mm muscle

0.8 mm muscle

0.215 0.22 0.225 0.23 0.235 0.24

CO3/PO4 ratio  

Figure 3.4 Change in carbonate/phosphate ratio for Raman tissue model with various 
thicknesses of skin and muscle [154], where the elastic scattering coefficients at the 
Raman scattering wavelengths of carbonate and phosphate were separated by 5 cm-1.   
 

The data shown in Figures 3.3 and 3.4 demonstrates that the MC model of Raman 

scattering has the potential to provide useful information about optimal source-detector 

separation for the fiber-optic probe, as well as a quantitative description of the effects of 

tissue thickness and elastic light scattering properties on the calculated 

carbonate/phosphate ratio. Work has also been done to generalize the photon detection 

scheme in the MC model, so that a high-resolution spatial map of photon exit coordinates 

can be generated from each simulation. This revision will allow for the testing of a wider 

range of potential probe configurations, and such a procedure is likely to be important for 

optimizing the detected ratio of bone Raman signal to background fluorescence. Studies 
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are also underway to characterize the optical properties of all tissue layers (including 

fascia, tendon, and periosteum) that Raman-scattered photons are likely to enter on their 

way back to the detector from the bone layer. The optical coefficients extracted from the 

integrating sphere measurements can be incorporated into a more detailed version of the 

MC model described here, and systematic studies can be conducted to determine which 

tissue layers have a significant effect on the detected bone Raman signal and which of 

these layers can be disregarded. Work is also currently in progress to convert the MC 

code to MATLAB as part of a revised algorithm that will be able to define tissue 

interfaces as mesh surfaces via externally-obtained data from modalities such as CT 

scans. These and other additions to the MC code will likely provide an even more 

realistic description of how the paths of Raman-scattered photons can be altered by the 

properties of the bone and the overlying tissue layers.     
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3.2. Monte Carlo modeling of Raman scattering in breast tissue 

Spatially offset Raman spectroscopy (SORS) has been shown to be an effective tool in 

recovering Raman spectra from up to several millimeters beneath the surface of turbid 

media [39, 147, 149, 161-168]. The enhanced depth information obtained from SORS, 

compared to standard Raman techniques, results from photons being multiply scattered 

and traveling further beneath the surface before exiting the medium at larger source-

detector (S-D) offsets. After initial demonstrations on layered chemical samples [162-

164], this technique has been applied to several biological systems. The most extensive 

biomedical work has been the detection of Raman spectra from bone under several 

millimeters of soft tissue [147, 149, 166-168]. Other work has been aimed at finding 

calcifications in breast tissues [161, 167].   

 

In both of the above biological applications, the detection target is hard tissue with strong 

Raman bands not present in soft tissue – e.g. the phosphate stretch at ~960 cm-1.  

Detecting the presence of one type of soft tissue below a different layer of soft tissue is 

more challenging because the Raman spectra of the two layers will typically be quite 

similar and therefore hard to distinguish; discrimination relies on more subtle differences 

such as peak widths and relative ratios.  This situation is demonstrated in Figure 3.5, 

which shows typical spectra obtained in a previous study at Vanderbilt, in which we 

demonstrated the ability of SORS to detect breast cancer tissue under up to 2 millimeters 

of normal breast tissue [165]. Using a classical least squares (CLS) model with the 

layers’ pure component spectra as inputs, spectra were taken at various S-D offsets from 

a layered tissue construct to determine the relative spectral contributions of the two 
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layers. While this study effectively showed the feasibility of using SORS on layered soft 

tissues, it also raised questions about the limits of such an approach, particularly for 

evaluating margin status following breast conserving surgery (BCS) - the clinical 

motivation for this work. 

 

 

 

 

 

 

 

 

Figure 3.5 Typical Raman spectra from previous SORS study [165, 169] (used with 
permission), offset for clarity. Normal and tumor spectra are from homogeneous tissue 
sections, and the "3mm" spectrum is from the setup shown in Figure 3.6 with a S-D 
separation of 3 mm and a top normal layer of 0.5 mm. 
 

Approximately 180,000 new breast cancer patients each year are eligible for BCS [170], 

in which the primary tumor is removed along with a surrounding margin of at least 1-2 

mm of normal tissue.  When the normal tissue margin is of insufficient size (i.e. the 

margin is “positive”), the patient’s risk of recurrence significantly increases, and a second 

operation becomes necessary [171, 172]. The exact definition of a positive margin varies 
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by institution [173]; reports show the lowest recurrence rates when a negative margin of 2 

mm or more is required, and this value is becoming more widely used [171]. Since 

current methods of intraoperative margin analysis are limited in terms of accuracy and/or 

time required [174-177], using SORS for this application could fill a major medical need.  

From the earlier feasibility study [165], it appears that SORS has the potential to address 

this need; however, a major issue to be addressed is the detection limit of this technique, 

in terms of the size of both the overlying normal layer and the tumor. 

 

Since it is very difficult and largely impractical to precisely control tissue thicknesses and 

geometries in intact specimens, a Monte Carlo (MC) simulation model was sought to 

investigate the issue of detection limits. Modeling using MC methods has long been 

considered the gold standard for predicting photon propagation in turbid media. 

Numerous MC codes have been developed to simulate diffuse reflectance and 

fluorescence from layered biological tissues [37, 75, 77], but little work has been done in 

this area with respect to Raman scattering. Matousek et al. previously developed a 

Raman MC model for layered turbid media [152], but their work was largely focused on 

chemical powders and thus made many simplifying assumptions. Schulmerich et al. 

recently reported on a Raman tomography algorithm for imaging of canine bone tissue 

using a finite-element reconstruction method [148]. Enejder et al. developed a Raman 

MC model for predicting the effect of system geometry on detected Raman signal from 

blood [178]. Shih et al. used a Raman MC code to validate a photon migration technique 

for correcting detected Raman spectra for tissue scattering and absorption artifacts [153]. 
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However, none of these previous studies has employed a MC code to model Raman 

scattering in a layered turbid biological medium using a SORS approach. 

 

The first goal of this study [169] was therefore to adapt the multi-layer fluorescence 

Monte Carlo code of Vishwanath and Mycek [37, 77] to model Raman scattering in 

breast tissue, as reported previously for modeling Raman scattering in bone tissues [154]. 

The model, which recorded the spatial origins of all detected Raman photons in the 

simulations, was validated by comparing its predicted relative tumor contributions to 

experimental results [165]. The validated MC model was then used to gain insight on 

practical considerations, such as detection limits and relevant source-detector separations, 

for using SORS to evaluate margins in BCS. To do so, models were created to examine 

relative spectral contributions from each layer in constructs with normal human breast 

tissue overlaid on breast tumor tissue.  A variety of factors were altered in these 

constructs, including the presence of quartz coverslips present in the tissue constructs 

used in the original experimental data, thicknesses of both the normal and tumor layers, 

and the presence of an additional normal layer underneath the tumor.   

 

The Raman Monte Carlo model employed in this report was developed by modifying the 

previously-existing multi-layer, multi-fluorophore Monte Carlo code of Vishwanath and 

Mycek [37, 77]. In the fluorescence code, all photons are launched into the medium in 

accordance with the radius and numerical aperture of the source fiber, with an initial 

weight equal to 1; a given photon is then scattered through the medium until it exits the 

tissue or its weight falls below some pre-defined threshold due to absorption. The length 
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of each scattering step of a photon in layer i of the tissue is determined from sampling a 

probability distribution dependent on the tissue scattering coefficient μsi in the ith tissue 

layer. At each step of the photon’s path, a new scattering angle is calculated by sampling 

the Henyey-Greenstein phase function based on the layer’s scattering anisotropy g. At 

any point on its path, a photon can be absorbed by a fluorophore; the probability of this 

effect is determined by sampling a probability distribution function that is dependent on 

the fluorophore absorption coefficient μafxi in the ith tissue layer. Photons that have been 

absorbed by a fluorophore in layer i of the tissue will then be re-emitted at the emission 

wavelength, after some time delay τi, determined by sampling a probability distribution 

for the mean time spent by the fluorophore in the excited state. The efficiency of the re-

emission of fluorescence photons is determined by the fluorophore quantum yield φQYi in 

layer i. When a photon exits the tissue, it is “detected” if the radial distance between its 

entry and exit positions is within one of the pre-defined “detector” bins and its angle of 

exit is within the acceptance cone defined by the numerical aperture of the detector 

fibers.  

 

In order to accommodate Raman scattering, the fluorophore absorption coefficient μafxi 

and fluorescence quantum yield φQYi in tissue layer i were treated as a single quantity Rxi 

indicative of the Raman cross section (i.e. how likely it is that an excitation photon will 

undergo Raman scattering) in the ith layer [154]. Once a photon was Raman scattered, 

any subsequent Raman scattering of that photon was neglected since the probability of 

Raman scattering is very low compared to elastic scattering or even fluorescence [179]. 

In addition, the mean time delay τi between fluorescence excitation and emission was set 
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to zero to indicate that Raman scattering could be approximated as instantaneous [179]. 

Each Raman scattering event was approximated as an isotropic process. While other 

Raman Monte Carlo reports [152, 153, 178, 180] use this assumption as well, we could 

not find any experimental validation of this property for biological tissues. To that end, 

goniometric-like measurements were performed initially on a cylindrical cuvette of 

cyclohexane in the style of Passos et al. [181], and subsequently on a 100 μm thick layer 

of chicken fat based on Arnfield et al. [182]; in both cases, Raman signal was detected 

rather than elastic scattering as in the references.  These experiments (results not shown) 

provided evidence in support of the assumption that Raman scattering in tissue is an 

isotropic process.  

 

The wavelength associated with the Raman scattered photons was chosen to be 884 nm.  

This wavelength falls almost exactly in the middle of the wavelength range 

corresponding to the relative wavenumber range used experimentally of 990 cm-1 (~851 

nm) to 1800 cm-1 (~914 nm). Optical properties for normal and malignant breast tissues 

are also available for this wavelength in the literature [183]. It was reasonable to use only 

a single Raman wavelength because in the near infrared region, absorption in biological 

tissues is close to zero and tissue scattering is nearly constant [183-185]. 

 

The modified Monte Carlo code also included sections that accounted for the presence of 

clear layers (e.g. glass or quartz coverslips or slides) that had no absorption or scattering 

but did have a different refractive index than the surrounding tissue layers. This 

modification was important since the experimental studies [165] included quartz 
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coverslips between the tissue layers. To simulate the zero-scattering nature of the 

coverslips, the code was modified to immediately move any photon that had just entered 

a clear layer to the opposite edge of that layer. Therefore, the next step of any photon that 

had entered a clear layer would take that photon across the boundary of the clear layer, 

unless the photon was reflected at the boundary. In that case, the reflected photon would 

be immediately transported to the opposite edge of the clear layer once again, and the 

aforementioned process would be repeated. In addition, since the experimental tissue 

constructs had coverslips on top of the upper tissue layer [165], the code was modified so 

that all photons began at the bottom edge of this first coverslip, to simulate the effect of 

the coverslip having no significant scattering properties. 

 

The values used for the relevant optical properties in the MC model are shown in Table 

3.2. For the simulations presented in this manuscript, specific values for the reduced 

scattering coefficient (μs’ = μs
.[1-g]) and absorption coefficient for both excitation 

photons at 785 nm and Raman photons at 884 nm were taken from a study by Grosenick 

et al. [183]. These values were also confirmed experimentally in-house at 785 nm for a 

small sample set using a double integrating sphere and the inverse adding-doubling 

method [157]. Anisotropy values for elastic scattering were held constant at both 

wavelengths and were taken from a report by Ghosh et al. [41]. Relative Raman cross 

sections were estimated by comparing the total area under the curve from non-normalized 

Raman spectra of optically thick samples of normal breast and breast cancer tissues 

obtained in identical fashions. The samples were acquired from the Cooperative Human 

Tissue Network; they were fresh-frozen and were thawed in buffered saline at room 
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temperature prior to measurement [165]. The values of "4" and "1" for Rxi in Table 3.2 

indicate that the total signal from normal breast tissues was four times higher than from 

tumor tissues. 

 

Table 3.2 Summary of optical properties for normal and tumor tissues at excitation (785 
nm) and Raman (884 nm) wavelengths [41, 183]. These properties include the absorption 
coefficient (μa), reduced scattering coefficient (μs

’), anisotropy (g), and relative Raman 
cross-section (Rx) [169]. 

Parameter Normal  

@785 nm 

Tumor 

@785 nm 

Normal 

@884 nm 

Tumor 

@884 nm 

μa (cm-1) 0.04 0.10 0.06 0.12 

μs
’ (cm-1) 9.5 11.6 8.0 9.1 

g 0.88 0.96 0.88 0.96 

Rx 4 1 N/A N/A 

 

Simulations whose results are shown in Figures 3.7 through 3.10 were run with 108 initial 

photons, and other simulations were run with 5 x 107 initial photons.  The excitation 

region and detector bins were set up to match the size (200 μm diameter), placement, and 

numerical aperture (0.22) of the optical fibers used in the experimental data.  Results 

were quantified by determining the fraction of detected Raman photons in each bin that 

originated in the tumor layer.  This measure was equivalent to the "relative tumor 

contribution" metric derived from experimental data, which used chemometrics to 

indicate the % contribution of the pure tumor layer spectrum to a measured spectrum at a 

given S-D offset [165]. Unless otherwise specified, the thickness of the tumor layer was 

set to 5 mm to correspond to the approximate thicknesses of the experimental samples. 
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For simulations with an additional normal layer under the tumor, the thickness of this 

bottom normal layer was set to 2 cm to act as an optically thick layer.  

 

Figure 3.6 shows the experimental setup used to obtain tissue SORS spectra with 

examples of paths photons can take from the source fiber to detector fiber at various 

spatial offsets.  A 200 μm source fiber delivered 80 mW of 785 nm light from a diode 

laser to the sample. This fiber was fixed in position for a given measurement site, and 

SORS spectra were acquired by translating a 200 μm detector fiber to S-D offsets of 0.75 

to 4.75 mm in 0.5 mm increments. Spectra were recorded using an imaging spectrograph 

and NIR-optimized CCD detector (details described in [165]). The tissue constructs 

consisted of a bottom layer of ~5 mm thick and 10 by 10 mm wide human breast tumors, 

with overlying 0.5, 1, and 2 mm thick, and slightly wider normal human breast tissue 

layers, each encompassed by quartz coverslips and appropriate spacers to accurately 

control the thickness. 
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Figure 3.6 Experimental setup from previous report [165, 169] (used with permission) 
along with sample Monte Carlo photon paths. Solid lines represent excitation photons, 
dotted lines represent Raman scattered photons. Raman scattering events are represented 
by symbols at junctions of lines. 

 

Some of the initial Monte Carlo results are shown in Figure 3.7. Each marker in the plot 

represents the spatial location where a detected Raman photon was generated. One can 

see that the number of Raman photons generated in the tumor layer (white markers) 

relative to those generated in the normal layer (black markers) is dramatically larger for 

the spatially offset detectors compared to the 0 mm offset simulation, especially for the 

thickest top layer. Figure 3.7 also illustrates the radial dependence of sampling volume on 

S-D offset, with that volume's width ranging from the excitation point to approximately 

twice the S-D offset.   
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Figure 3.7 Visualizations of spatial origins of Raman photons from SORS simulations 
[169] using the tissue model shown in Figure 3.6. Tumor thickness is 5 mm in each plot. 
In each row, the thickness of the top normal layer is constant in all four plots, while the 
probe S-D separation increases along each row.  Closed (black) markers represent Raman 
photons generated in the top (normal) layer of tissue, and open (white) markers represent 
Raman photons generated in the bottom tumor layer. 
 

The axial dependence of Raman photon generation is more clearly depicted in Figure 3.8, 

which plots the depth of Raman events for each panel in Figure 3.7. From this figure, it is 

clear that the relative production of Raman photons from the tumor layer increases as S-D 

offset increases and top layer thickness decreases.  A number of interesting effects can be 

seen besides the general drop-off in Raman photon generation with increasing depth. The 

coverslips, which are seen as blank areas, cause slight increases in Raman photon 

generation in their immediate vicinity due to index-mismatch reflections. This further 
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highlights the discontinuity in the plots at the boundary between the two layers that is 

otherwise caused by the lower Raman cross section of the tumor compared with normal 

tissue. 

  

 

 

 

 

 

 

 

 

 

Figure 3.8 Histograms showing depth of Raman photon generation [169] for each panel 
in Figure 3.7. Coverslip layers are indicated by the zero-valued regions at the surface and 
between the two tissue layers. 
 

To compare simulations versus experimental results in the remainder of the manuscript, 

the “relative tumor contribution” metric from our previous report [165] was 

approximated by dividing the number of detected tumor Raman photons by the total 

number of detected Raman photons. Figure 3.9 displays both the experimental and 

simulation results for relative tumor contribution versus source-detector offset for the 

constructs with normal breast tissue over breast tumors, as shown in Figure 3.6. Normal 

layers of 0.5, 1, and 2 mm were used as the top layer, while the bottom layer was fixed at 
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5 mm thick.  Simulations used the optical properties from Table 3.2 and included the 

presence of the 100 μm thick quartz coverslips above and below the normal layer that 

were used in experimental measurements. Overall, the simulation and experimental data 

match well, with R2 values of 0.95, 0.87, and 0.75 for the 0.5, 1, and 2 mm top layers, 

respectively. For the 2 mm top layer data, the simulation and experiment show better 

agreement past the 2.25 mm S-D offset point (R2 of 0.85 for that range only).  For smaller 

S-D offsets with the 2 mm top layer, the simulations indicated that there should be very 

small tumor spectral contributions to the overall detected Raman signal, but the 

experiments showed no measurable tumor contribution. Given the overall good fit 

between experimental measurements and simulations, the Monte Carlo model was then 

used to investigate the effects of changing various tissue construct parameters. 

 

 

 

 



 

125 

 

 

Figure 3.9 Experimental [165] (used with permission) and Monte Carlo results for 
relative tumor contributions from normal breast tissue layers 0.5, 1, and 2 mm thick, 
overlying breast tumors [169]. Error bars represent standard error over 3 different 
samples. 
 

Figure 3.10 displays the relative tumor contributions from simulation results of tissue 

models with and without quartz coverslips encompassing the normal top layer. The 

results without coverslips are very similar to the ones with coverslips, but demonstrate 

slightly stronger relative tumor contributions.  These differences range from ~20-25 % at 

the smallest S-D offsets to ~10% at the largest S-D offsets.  From this result, it appears 

unlikely that the inclusion of quartz coverslips in the original experiment had a 

significant effect on the trends in relative tumor contributions to the detected SORS 

signal. 
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Figure 3.10 Simulated relative tumor contributions from layered tissue constructs, with 
and without the presence of clear coverslips, for normal breast tissue layers of 0.5, 1, and 
2 mm overlying breast tumors [169].  
 

The effect on the simulated SORS signals of changing the tumor thickness is shown in 

Figures 3.11(a-d) for increasingly thick top normal layers of 0.5 to 2 mm, respectively.  

The tumor thicknesses ranged from 2 cm (approximately semi-infinite relative to the 

penetration depth of NIR light) down to 100 μm, which is about the size of a few cells.  

All panels of Figure 3.11 predict that relative tumor contributions will not substantially 

decrease compared to that of the semi-infinite layer until the tumor thickness is less than 

about 3 mm.  For tumor layers smaller than 3 mm, there is a relatively larger drop (e.g. 

from 3 mm to 1 mm compared with 20 mm to 3 mm) in how much tumor spectral 

signature can be detected at a given S-D offset.  For tumor thicknesses less than or equal 

to 1 mm, Figure 3.11 predicts that the relative tumor contribution will not vary 

appreciably with S-D offset.  For the most clinically relevant top layer of 2 mm, Figure 
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3.11(d) shows that there are minimal (less than 5%) spectral contributions from sub-

millimeter thick tumor layers under a 2 mm normal layer for all S-D offsets.  The results 

from the largest spatial offsets for the 0.1 mm thick tumor in Figure 3.11(a) are somewhat 

noisy, likely due to the high percentage of excitation photons that were transmitted 

through the two very thin layers. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 3.11 Simulated relative tumor contributions for various tumor layer thicknesses 
under (a) 0.5 mm, (b) 1 mm, (c) 1.5 mm, and (d) 2 mm normal layers [169]. 
 

The results shown in Figure 3.12 are from simulations identical to those in Figure 3.11, 

but for a three-layer tissue model that includes a 2 cm thick normal breast tissue layer 
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underneath the tumor to simulate conditions more likely to be seen in a clinical sample.  

For the two thickest tumor layers (20 and 5 mm), little to no difference is seen between 

all four corresponding panels of Figures 3.11 and 3.12, since not very many photons 

would enter the lower normal layer through the thick tumors. The same can be said for 

parts (c) and (d) of Figures 3.11 and 3.12 because of their thicker top normal layers 

compared with parts (a) and (b) of the two figures. Examination of these similarities 

between Figures 3.11 and 3.12 suggests that the bi-layered phantoms used for the SORS 

measurements in [165] were reasonable approximations of the more clinically relevant 

tri-layered tissue geometry. As the top normal and tumor layer thicknesses decrease, 

more differences become evident between the two figures.  For tumor thicknesses of 1 

mm and below, the curves in Figure 3.12(a) show lower relative tumor contributions than 

the corresponding curves in Figure 3.11(a) as the source-detector separation increases. 

This effect is likely due to the fact that the tumor volume has remained the same, but for 

the simulations shown in Figure 3.12, Raman photons can be generated below the tumor 

as well.  In addition, relative tumor contributions from the 1 mm and 0.5 mm tumor 

layers in Figure 3.12(a) are essentially flat, indicating that photons entering any detector 

bin have passed through about the same volume of tumor tissue.   

 

The initial goal of this study was to develop and validate a Monte Carlo model to 

accurately reflect experimental SORS results.  As seen in Figure 3.9, the simulations 

were able to replicate the experimental data very well, with R2 values of 0.95, 0.87, and 

0.75 for the 0.5, 1, and 2 mm top layers, respectively. While the simulation results did not 

hit every experimental data point, this was expected given the noise in the experimentally 
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measured data points. The decrease in R2 values with increasing top layer thickness 

makes sense because the absolute tumor Raman signal (represented by number of white 

markers in Figure 3.7 and y values in Figure 3.8 past the second coverslip), and therefore 

signal to noise ratio for "relative tumor contribution," decreased as the top layer thickness 

increased.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Simulated relative tumor contributions for various tumor layer thicknesses 
under (a) 0.5 mm, (b) 1 mm, (c) 1.5 mm, and (d) 2 mm normal layers, with an additional 
20 mm normal layer underneath the tumor [169].  
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As noted above, there is only one region in Figure 3.9 in which the experiments and 

simulations differ systematically - the smaller spatial offset measurements with a 2 mm 

top normal layer.  While the model predicted very small tumor contributions to the 

measured spectra (<= ~5%), no such contributions could be detected in the experimental 

data. It is likely, then, that a relative tumor contribution of about 5% represents the SORS 

detection limit of a tumor in practice, as such small spectral contributions would be 

equivalent in strength to noise levels present in the spectra. Applying this finding to 

simulations in Figures 3.11 and 3.12, we hypothesize that it would be possible to 

experimentally detect a very thin (100 μm) layer of tumor cells under 0.5 mm of normal 

breast tissue, while under 1 mm of normal tissue, the tumor detection limit would 

increase to a value between 100 and 500 μm thick.  For the thickest top normal layer of 2 

mm, Figures 3.11(d) and 3.12(d) suggest that it would likely not be possible to detect a 

tumor smaller than 1 mm thick.  It should be noted that these detection limits are likely 

specific to the experimental setup and conditions of our previous studies [165]; other 

systems and conditions with different achievable signal to noise ratios could lead to 

slightly different limits. 

  

The results reported here have a number of implications for using SORS for breast 

surgical margin analysis.  From the detection limits discussion, it is likely possible to 

experimentally detect a positive margin up to 2 mm below the surface, as needed for the 

most stringent BCS requirements, but not if the tumor is < 1 mm thick in that region.  For 

thinner normal layers, though, SORS is potentially capable of detecting a tumor layer 

only a few cells thick.  Another conclusion is that it would be very difficult to determine 
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the exact depth of normal tissue over a tumor in a clinical setting, given how sensitive the 

‘relative tumor contribution’ metric is to a number of factors.  For example, from Figure 

3.10, the inclusion of 100 μm thick, clear coverslips above and below the normal layer 

was enough to change the y-axis response by about 10-25% for given S-D offsets.  Such 

a change is expected, though, since these clear layers give the photons more of an 

opportunity to travel further, both in depth and radially, without being scattered or 

absorbed in those layers.   

  

The larger confounding factor in experimentally determining exact margin size is evident 

in Figures 3.11 and 3.12; namely, the effect of tumor layer thickness. For the same 

normal tissue layer, the observed relative tumor contribution differed by up to a factor of 

~7 based on size of the tumor.  In some cases, the presence of normal tissue beneath the 

tumor also changed the trend in relative tumor contribution as a function of S-D offset. 

While most lines in Figure 3.12 slope upward, the response is nearly flat for thinner 

tumor layers. This occurs because all of the photons being Raman scattered into any 

detector pass through the same volume of tumor regardless of how deep their trajectories 

extend into the lower normal layer.  With all of these confounding factors, it therefore 

seems unfeasible to use SORS to determine an exact negative margin size unless 

significant a priori information is available about the tissue geometry, as in the use of 

computed tomography (CT) to improve the recovery of Raman tomography signals from 

bone [186]. Given the intended use of this technique to interrogate freshly excised 

samples during an operation, such an approach does not seem practical.  Although one 

could also imagine using transmission Raman spectroscopy (TRS) to provide some tumor 
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geometry information while eliminating the need for a truly multi-modal approach, the 

spatial resolution of TRS is currently insufficient [187] given the typical size of the 

specimens removed during BCS (>5 cm cuboids). 

 

Based on the results presented here, a more viable approach for using SORS to evaluate 

excised breast specimen surgical margins would be simply to look for any evidence of 

tumor Raman spectral signatures from detector channels that are known to sample to the 

desired depth.  From Figures 3.10-3.12, limiting the spatial offsets to 3.5 mm or less 

would effectively suppress any spectral contributions from tumors > 2 mm below the 

surface of normal tissue (to avoid false positives), while still being able to interrogate up 

to 2 mm beneath the surface.  At spatial offsets larger than this, achieving adequate 

signal-to-noise ratios can be difficult as well.   

  

The SORS Monte Carlo code presented here showed good agreement with experimental 

results and provided useful predictions about the effects of tissue geometry on SORS 

measurements. A primary shortcoming of the current code, however, is that tissues had to 

be represented as stacks of planar, homogeneous slabs. In reality, breast tumors do not 

have planar boundaries with layers of normal tissue and are not infinitely broad and wide.  

Modeling a thin layer of tumor between two layers of normal tissue is a reasonable first 

step in investigating the detection of small tumor “projections,” but it remains to be seen 

what would happen, for example, if such a projection ran in the direction parallel to the 

fiber optics rather than perpendicular.  To this end, work is underway on a mesh-based 

SORS simulation code capable of creating irregularly shaped layers of finite sizes to 
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examine their effect on tumor detection limits.    

  

In conclusion, this work is expected to provide major insights into the use of SORS for 

evaluating margin status after partial mastectomies. In particular, the model has predicted 

that S-D offsets up to 3.5 mm are needed for clinically relevant depth interrogation 

during BCS.  It has also suggested likely tumor-thickness detection limits for SORS in 

human breast tissues; for the most clinically useful value of a 2 mm margin, the model 

predicted that a tumor greater than 1 mm thick can be detected. Future experimental work 

will be focused on using these results to design and test a multi-separation probe capable 

of effective sampling from the surface down to the clinically relevant depths in human 

breast tissue. In addition, the Monte Carlo code developed here could easily be adapted to 

examine other layered soft tissues, provided information about their optical properties 

and relative Raman cross sections are known.   
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3.3. Design and testing of Raman probe for breast tumor margin detection 

For many of the approximately 180,000 women diagnosed with early-stage invasive 

breast cancer or carcinoma in situ each year [188], a viable treatment option is breast 

conserving therapy (BCT). The surgical portion of BCT involves a partial mastectomy, or 

lumpectomy, to remove only the primary lesion with a small amount of surrounding 

normal tissue [189]. Depending on the hospital, the depth of normal tissue required from 

the surgical margin (i.e. the surface of the excised specimen) to the tumor is typically 1-2 

millimeters [173]. This situation is illustrated in Figure 3.13; if a sufficient amount of 

normal tissue exists, as in the right side of Figure 3.13, the margins are said to be 

negative for tumor. If tumor-positive margins are found, as shown on the left side of 

Figure 3.13, a second operation is necessary because positive margins are a major 

predictor of local tumor recurrence [172]. Currently available intraoperative margin 

evaluation tools, such as simple visual examination, ultrasound, cytological examination 

("touch prep"), and frozen section analysis, all have significant drawbacks in terms of 

accuracy and/or time required [175-177, 190], so there is a need for an automated, real-

time method to accurately evaluate surgical margins during BCT. 

 

Spatially offset Raman spectroscopy (SORS) has been shown to be a reliable method for 

recovering biological Raman spectra from depths greater than those possible with 

standard techniques [39, 147, 149, 161, 165-168, 191]. It does so because detection 

elements spaced radially further from source elements are more sensitive to photons 

traveling deeper beneath the tissue surface and to greater radial distances due to multiple 

scattering (Figure 3.13). It has been previously demonstrated that SORS can detect 
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spectral contributions from breast tumors buried under 0.5 to 2 mm of normal breast 

tissue [165]. A SORS Monte Carlo code (Section 3.2) was developed to quantify signals 

obtained from layered constructs of normal breast tissue overlying breast tumors [169]. In 

particular, the code was used to examine the effects of layer thicknesses and overall 

geometries on relative tumor contributions to detected spectra for a range of source-

detector (S-D) offsets [169]. To detect a tumor signature within the first 2 mm from the 

surface, the resulting spectrum at a given S-D offset must contain at least a 5% 

contribution from the tumor. To achieve this level of contribution, it was found that the 

tumor would have to be ~0.1 mm thick under 0.5 mm of normal tissue, or ~1 mm thick 

under 2 mm of normal tissue [169].     

 

Figure 3.13 Drawing of tumor-positive versus tumor-negative margins, defined by the 
distance between the surgical margin and the tumor boundary [192]. Overlaid are general 
photon migration paths demonstrating the advantage of SORS for this application. 
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Combining the results of experimental [165] and numerically simulated [169] SORS 

indicated that to be sensitive to breast tumors located up to 2 mm beneath normal breast 

tissue, as needed for surgical margin evaluation, a maximum S-D offset of ~3.5 mm 

should be used. With larger offsets, the measurements could possibly detect large tumors 

from over 2 mm deep and create false positives; also, recording spectra with adequate 

signal-to-noise ratios (SNRs) at larger offsets is difficult since fewer photons tend to 

escape the tissue surface as the S-D offset increases. In addition, a shortcoming of the 

previous experimental work was the need to translate the single detector fiber for each 

measurement. Thus, the goal of this work was to design, test, and implement a multi-

separation SORS probe for breast tumor surgical margin evaluation. In particular, this 

section describes the use of the previously developed SORS Monte Carlo code to 

investigate the theoretical drop in SNR as a function of S-D offset, the design of a SORS 

probe based on the above theoretical and experimental findings, its testing to ensure 

comparable signal quality in each detector ring, and its use in acquiring spectra from 

breast cancer samples to assess its ability to accurately evaluate surgical margin status 

[192]. 

 

The primary criterion for designing a SORS probe for breast tumor margin analysis was 

to ensure proper depth sampling - that is, to develop a probe sensitive to tumor spectral 

signatures if the tumor is anywhere within the first 2 mm in depth from the excised 

surface. As noted, the relevant S-D offsets for this purpose were determined to be < 3.5 

mm. To investigate the drop in SNR as S-D offset increases, SORS Monte Carlo 

simulations were run using the same model as for previous results [169]. Simulations 
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were run for 3-layered samples, consisting of a top layer of 0.5, 1, or 2 mm of normal 

breast tissue, a 0.1 to 20 mm thick middle layer of breast tumor, and then a 2 cm thick 

bottom layer of normal breast tissue to mimic the clinical situation of semi-infinite 

geometry. As a metric for SNR, the total number of simulated Raman photons, 

originating from any layer, reaching each detector bin was counted and normalized to a 

maximum of 1, since we are only interested in how SNR falls off with S-D offset. 

Because the raw signal strength was consistent among the four rings, it was assumed that 

noise levels were consistent among the four rings as well. Figure 3.14 shows the mean of 

these SNR curves; since the standard deviation was less than 1% over the range of 

thicknesses for the top two layers, no error bars are shown.   

 

Figure 3.14 Simulation results for total number of Raman photons detected as a function 
of S-D offset [192], normalized to a maximum of 1. Results were averaged for a variety 
of thicknesses of the top two tissue layers (0.5 to 2 mm for top normal layer, 0.1 to 20 
mm for middle tumor layer). No error bars are shown because the standard deviation was 
less than 1%. 
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As predicted, the number of Raman photons detected fell off at what appears to be an 

exponential decay as a function of S-D offset. Although the trend of SNR as a function of 

S-D offset was consistent regardless of relative thicknesses of normal and cancerous 

breast tissues, the trend may not hold for other tissue types, especially those in which 

optical properties can vary more drastically in inhomogeneous regions. 

 

These results were used to aid the design of a multi-separation SORS probe (assembled 

by EMVision, Loxahatchee, FL), whose distal tip is shown in Figure 3.15. A single 400 

μm diameter source, or excitation fiber is found on one end, and four (partial) rings of 

300 μm diameter collection fibers extend radially outward. The excitation fiber includes a 

bandpass filter at its tip to narrow the laser line, and the collection fibers have longpass 

filters at their tips to reject elastically scattered light. The center to center distances of the 

excitation fiber to each detection ring are 0.5, 1.5, 2.5, and 3.5 mm. Based on Figure 3.14, 

an additional collection fiber was added to each consecutive detector ring to make the 

SNRs from each ring more comparable to one another. While the curve in Figure 3.14 is 

not linear, adding a single fiber for each larger-offset ring provided the closest 

approximation of equivalent SNRs if all of the fibers in each ring were binned. Adding a 

fiber in each successive detector ring had an added benefit of increasing the lateral 

sampling volume of the probe as well. 

 

The SORS probe delivered 80 mW of power from a 785 nm diode laser 

(I0785MB0350M, Innovative Photonics Solutions, Monmouth Junction, NJ). The 

collection fibers delivered light to a NIR-optimized spectrograph (LS785, Princeton 
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Instruments, Princeton, NJ), which dispersed the light to be recorded by a deep depletion, 

thermo-electrically cooled CCD (Pixis 400BR, Princeton Instruments). 

 

Figure 3.15 Schematic of tip of SORS probe [192]. S – source fiber, all other circles – 
collection fibers. Each ring of collection fibers is separated by 1 mm (center to center) 
from the previous ring, with 0.5 mm between the centers of the source fiber and the first 
detector ring (R1). 
 

Each acquisition with the SORS probe recorded four spectra – one from each detector 

ring. Each ring was calibrated separately since the inherent curvature in the detection 

system created slight, but noticeable differences in peak locations on the CCD among 

different rings. A neon-argon lamp, naphthalene, and acetaminophen standards were used 

to calibrate the wavenumber axis, and a NIST-calibrated tungsten-halogen lamp was used 

to correct for the system response [193]. After wavenumber binning (in 3.5 cm-1 steps 

given the system resolution of ~7 cm-1) and noise smoothing, the background 

fluorescence was subtracted with a modified polynomial fit algorithm [193], and the 



 

140 

 

spectra were normalized according to their overall mean intensities. To create a 

composite spectrum with equal weighting from all four rings, which would contain 

information from the entire 2 mm sampling depth, the binned spectra from each of the 

four rings were averaged after processing. 

 

To ensure the probe's ability to gather spectra from each ring with comparable SNRs, 

spectra were acquired for 20 seconds each from 12 different spots on a ~1 cm thick piece 

of chicken breast (muscle). The spectra were processed as described previously, and the 

SNR of the binned spectrum from each ring was calculated by dividing the height of the 

1445 cm-1 peak, which is the strongest peak in all samples measured, by the standard 

deviation of the flat (i.e. no Raman signal) spectral range between the peaks at 1656 and 

1750 cm-1, which represent the noise inherent in the system that could not be removed via 

pre- or post-processing. 

 

With approval by the Vanderbilt Institutional Review Board (#050551) and the US Army 

Medical Research and Materiel Command’s Human Research Protection Office 

(USAMRMC HRPO), fresh-frozen human breast tissue samples were acquired from the 

Cooperative Human Tissue Network. Frozen-thawed tissues are not perfect surrogates for 

freshly excised tissue, as their optical properties can differ from each other [194]. A 

recent study by Reble, et al. [195] demonstrated that Raman sampling volumes can vary 

substantially based on a tissue’s optical properties, especially the reduced scattering 

coefficient. Nevertheless, using such tissues is a common first step for breast cancer 

studies [194, 196], and a recent study showed nearly equivalent performance of an 
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algorithm for differentiating normal, benign, and malignant breast tissues developed with 

in vitro Raman spectra and applied to in vivo measurements [197].   

 

In total, 35 samples were included in the study; 15 samples had either no tumor (n=13) or 

tumor > 2 mm beneath normal tissue at the point of measurement (n=2) and were thus 

labeled as "negative margins," while 20 samples had tumor (15 invasive ductal carcinoma 

[IDC] and five invasive lobular carcinoma [ILC]) regions within the first 2 mm from the 

measurement surface, and were thus labeled "positive margins." Of the negative samples, 

seven were predominantly adipose, and eight were varying compositions of adipose and 

fibroglandular tissue. Of the positive samples, eight had tumors underlying various 

compositions of normal tissue ranging from 0.1 to 1.5 mm thick, and 12 samples had 

tumor regions at the surface under at least part of the probe. Wherever possible, 

measurements from tumor samples were taken such that the SORS probe was placed on a 

small region of visually normal-appearing tissue on top of the actual tumor to mimic the 

situation of margin evaluation. Spectra were recorded for 10-30 seconds and processed as 

above. Measurement sites were inked, fixed in formalin, and serially sectioned to 

correlate the spectra with histopathology diagnoses of tissue type and the depths from the 

measurement surface of those tissues. In this manner, the analysis was done to 

discriminate “negative” margins from “positive” margins. 

 

The composite spectrum from averaging all four detector rings was used for analysis, and 

if there were histological evidence of tumor cells within 2 mm of the measurement 

surface, the "margin" was considered positive. All tumor-positive measurements were 
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lumped into a single category since the surgeon simply needs to know whether any types 

of malignant cells remain too close to the margin. Discrimination was performed with 

sparse multinomial logistic regression (SMLR) [198], a Bayesian machine-learning 

framework that computes the posterior probability of a spectrum belonging to each tissue 

class based on a labeled training set. In the case of this binary analysis, whichever class 

had the higher probability of membership was the one to which the spectrum was 

classified. SMLR also includes inherent dimensionality reduction as it seeks to create 

sparse basis vectors, which is important for these data sets given their small sizes. Since 

each in vitro sample had only one measurement site (their sizes relative to the probe 

precluded multiple independent sites), SMLR was run with leave-one-out cross-

validation. A range of input parameters to SMLR were tested, and the combination that 

provided the most accurate classification, while also maximizing sparsity, was using a 

Laplacian prior, direct kernel, lambda value of 0.01, and not adding a bias term. 

 

Figure 3.16 shows the results of the SNR testing on chicken muscle. Rings 1 and 4 of the 

SORS probe, with one and four fibers per ring, and with S-D offsets of 0.5 and 3.5 mm, 

respectively, displayed nearly identical SNRs. Rings 2 and 3 showed smaller SNRs 

compared with Ring 1, but only by ~30% and 20%, respectively. This trend was expected 

based on the shape of Figure 3.14, although the signal strengths of rings 2 and 3 were 

smaller than predicted by the simulations. The likely reason is that when imaging the 

detection fibers for the two middle rings during alignment and testing, their throughput 

appeared to be lower compared with the fibers for rings 1 and 4. Even so, the design of 

the SORS probe effectively accounted for SNR fall-off with increasing S-D offset. 
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Figure 3.16 Mean (n=12) signal-to-noise ratios (SNR), plus or minus one standard 
deviation, for spectra of chicken muscle binned within each detector ring and normalized 
to SNR of first ring [192]. 
 

Figure 3.17 shows typical composite spectra recorded from pure normal breast tissue and 

a pure breast tumor (invasive ductal carcinoma) with the SORS probe. As in the previous 

study [165], there are numerous spectral regions with major differences between the two 

tissue types. In particular, tumor tissue contains a strong band at 1006 cm-1, usually 

attributed to phenylalanine, while normal tissue does not. The ratios of the 1303 cm-1 to 

1265 cm-1 bands, indicative of the ratio of lipid to protein content, are very different 

between the tissue types, and the amide I band centered around 1656 cm-1 is much wider 

in tumor compared to normal - again indicative of increased relative protein contributions 

in the cancerous tissues. Also, the 1445 cm-1 CH stretch band is relatively more intense in 

normal tissue, and the normal tissue contains a carbonyl stretch peak around 1750 cm-1, 

typically due to fat content, while the tumor tissue does not. 
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Figure 3.17 Typical normalized composite spectra from SORS probe of normal breast 
tissue versus malignant breast tumor tissue [192]. 
 

Figures 3.18 and 3.19 show H&E stained tissue sections and the SORS spectra from 

those sections from three different (Figure 3.18, Figure 3.19(a, b), Figure 3.19(c, d)) in 

vitro tumor samples. In all histological images, the "S" arrow indicates the placement of 

the source fiber, while the "R1," "R2," etc. labels denote the location of the individual 

collection fiber rings.  
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Figure 3.18 (a) H&E stained tissue section of IDC sample with large area of normal fat 
(white colored area with "N") on the right, and solid IDC tumor (darkly stained area with 
"T") on the left.  Arrows indicate the placement of the source fiber (S) and each of the 
detector rings.  (b) Binned SORS spectra for each detector ring from tissue in (a).  To aid 
in the visualization of relevant, but subtle spectral changes, zoomed-in versions are 
shown for (c) the 1006 cm-1 phenylalanine peak, (d) the 1265 cm-1 amide III and 1303 
cm-1 lipid peak, and (e) the shoulders of the 1656 cm-1 amide I peak [192]. 
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Figure 3.19 (a) H&E stained tissue section of ILC sample with pockets of normal fat 
("N") near surface of otherwise darkly stained tumor tissue ("T").  Arrows again 
represent placements of fibers.  (b) SORS spectra for each detector ring from tissue in (a).  
(c) H&E stained tissue section of IDC sample with underlying fat and (d) corresponding 
SORS spectra [192]. 
 

In the tissue sample from Figure 3.18(a), the probe was delivering light to a large fatty 

area, as seen by the whitish (formerly lipid-filled) vacuoles, while only the outermost 

collection fibers were placed over a portion of the tumor, which comprises the remainder 

of the darkly stained section.  Since spectral differences among detector rings in Figure 

3.18(b) are visually subtle, except for differences around 1445 cm-1, close-ups of three 

spectral regions are shown in panels (c)-(e) of Figure 3.18. These plots show definite 

trends indicating that the closer rings are sampling normal tissue, while the outer rings 
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are picking up slight spectral contributions from the tumor as well.  By qualitatively 

comparing the spectra in Figure 3.18(b) with the typical pure normal and tumor spectra 

from Figure 3.17, these trends include the increasing presence of the 1006 cm-1 peak, the 

lesser relative contributions from the 1303 and 1445 cm-1 peaks, and the increasing width 

of the 1656 cm-1 peak as source-detector offset increases.  These trends are similar to 

those seen in the earlier report of SORS on layered breast tissues [165], but in this case, 

the tissue boundary was vertical rather than horizontal. 

 

The example in Figure 3.19(a, b) provides an illustration of what happens with smaller 

layers of normal tissue over a tumor.  Figure 3.19(a) shows a sample with a large tumor 

region but with pockets of normal adipose cells near the surface, including directly under 

the location where the excitation fiber from the probe was placed.  From Figure 3.19(b), 

in comparison to Figure 3.17, the spectrum from the smallest S-D offset contains mostly 

features indicative of normal fatty breast tissue, while spectra from the larger S-D offsets 

contain features indicative of tumor spectral signatures, as noted above. The sample from 

Figure 3.19(c, d) is included to confirm that if the excitation side of the probe is placed 

on tumor tissue overlying normal tissue (i.e. the opposite of margin analysis), then the 

inner detector rings picked up tumor signatures, while the outer rings picked up the 

appropriate degree of normal spectral signatures.  Thus, it is clear that the different 

detector rings are sampling different volumes, as desired. 

 

To simplify the “margin analysis” procedure, the spectra from each detector ring were 

averaged to create one composite spectrum per in vitro sample. Thus, a single 
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histological classification could be correlated to a single spectral classification. Table 3.3 

shows the confusion matrix for classification of these composite spectra with SMLR.  

 

Table 3.3 Confusion matrix for “margin analysis” on in vitro specimens [192]. 

 

This analysis showed an excellent ability for SORS to evaluate margin status in breast 

specimens, with 95% sensitivity and 100% specificity, and an area under the ROC curve 

of 0.993. Alternatively, the discrimination was performed with 94% negative predictive 

value (NPV) and 100% positive predictive value (PPV). The one false negative came 

from a tumor sample which, after formalin fixation and sectioning, was found to have a 

~1.5 mm layer of normal tissue between the measurement site and the tumor. Since it has 

been shown that normal tissue margins tend to shrink by an average of 33% during 

formalin fixation [199], it is possible that this normal layer was at least 2 mm thick when 

the spectra were obtained. 

 

 

  Spectral Margin Status  

  
Negative Positive  

Histopathology 
Margin Status 

Negative 
15 0 Specificity: 

100% 

Positive 
1 19 Sensitivity:  

95% 

  
NPV: 94% PPV: 100% 
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This section presents the design, testing, and implementation of a multi-separation SORS 

probe for use in evaluating surgical margin status following partial mastectomies. The 

design, as shown in Figure 3.15, was based on results from our earlier experimental and 

simulation-based studies [165, 169], and from the SNR simulation results from Figure 

3.14. To ensure that the SNRs were comparable across the different detector rings, a 

series of measurements was performed using the common soft tissue optical phantom of 

chicken breast. As seen in Figure 3.16, the design of adding an additional collection fiber 

for each further-offset ring worked well to keep the SNR of each ring no more than ~30% 

different from the others. Given the exponential shape of Figure 3.14, it would be very 

difficult to design a probe to both sample the desired depths in tissue and achieve even 

better equilibration of SNR among the various detector rings. Besides the SNR balancing, 

the probe design from Figure 3.15 also appeared to sample tissue to the expected depths 

based on earlier experimental [165] and simulation [169] results. This conclusion is 

supported by the success shown in Table 3.3 for classifying spectra according to margin 

status using 2 mm as the cutoff value for negative vs. positive classification. 

 

The ability of the detector rings to sample different volumes is demonstrated in Figures 

3.18 and 3.19. From Figure 3.18(a), it is clear that the SORS probe was placed over two 

very different regions of tissue for that specimen. A large area of normal fatty tissue was 

found directly under the excitation fiber and the first 2-3 detector rings, while the 

outermost 1-2 detector rings were placed against the tumor. Comparing Figures 3.18(b-e) 

to the pure normal and tumor spectra from Figure 3.17, rings 1 and 2 show essentially no 

tumor spectral signatures. Given this, a standard Raman probe placed in the same spot 
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would not detect any positive margin findings at this point. The 3rd and 4th rings of the 

probe were able to detect slight tumor contributions though, indicating that they 

successfully sampled a different volume of tissue than the inner rings. While most 

spectral regions showed increasing tumor contribution from ring 1 to ring 4, ring 3 had a 

stronger relative 1006 cm-1 peak than ring 4. Possible causes for this include a slight mis-

alignment between the probe and histology, especially considering rotation of the probe, 

or inconsistent biochemical composition of the tumor tissue sampled by rings 3 and 4. A 

similar situation to Figure 3.18 is seen in Figure 3.19(a, b), although only the first 

detector ring was sensitive to a small (< 1 mm thick) fat layer on the surface, while the 

outer rings sampled deeper and more radially distal tissue volumes. It should be noted 

that in the fixation of samples, the fat regions tend to shrink [199], so the measurement 

surface of these specimens were likely flatter during signal acquisition. Also, all 

specimens were cut after fixation and before sectioning to make a given section contain 

only the interrogated tissue region, so the fibers were never placed over the edge of any 

sample.   

 

The opposite situation of the above two samples is shown in Figure 3.19(c, d), where the 

source fiber was placed over a tumor region ~1-1.5 mm thick, with normal tissue 

underneath; outer detector rings were placed over a considerably thinner tumor layer with 

more underlying normal tissue. Taken with the above results, these panels demonstrate 

that the spectral signatures collected with the SORS probe vary appropriately as a 

function of S-D offset according to tissue type and location, not via any systematic 

response. Since some normal Raman signatures are present even in the Ring 1 spectra, 
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Figure 3.19(c, d) also shows that the presence of normal tissue under tumor tissue would 

be easier to detect than the current problem, since fat is a stronger Raman scatterer than 

tumor tissue [169]. 

 

Given these findings regarding sampling depths and volumes, the composite spectra were 

used for margin analysis on intact breast specimens in the laboratory. Since the SNR is 

approximately equal in all four rings (see Figure 3.16), averaging them provides 

information about the entire sampling volume in a single spectrum. This method also 

simplifies the analysis procedure; if spectra from individual rings were used, it would be 

difficult to determine how to correlate certain ones with pathology findings. For example, 

although all spectra in Figures 3.18(b) and 3.19(b) were from tissue sites that would be 

deemed positive margins within the spatial extent of the probe, it is unlikely that the 

innermost rings were actually detecting any signal from tumor tissues. A possible 

approach for using the individual spectra would be to label a measurement site “positive” 

if any spectrum from the four rings is predicted to be from a positive margin, but the 

aforementioned correlation issue arises in the training of such an algorithm for a 

retrospective analysis. Many normal-looking spectra, like ring 1 from Figure 3.18(b), 

would be labeled as tumor and would likely cause difficulties for discrimination 

algorithms trying to create decision boundaries between negative and positive margins. 

 

A binary diagnostic algorithm simpler than SMLR may seem like a more appropriate 

approach in this analysis, but the SMLR algorithm was able to significantly reduce the 

dimensionality of the data from the initial size of 232 variables (one per 3.5 cm-1 bin) to 
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perform its classification.  In addition, SMLR provides a probability of class membership 

that would be very useful in a clinical application.  A surgeon could act differently if the 

probability of a margin being negative is 99% versus 51%, although in either case, the 

diagnosis would be "negative." 

 

The results from using SMLR to classify the composite SORS spectra according to 

margin status are shown in Table 3.3. With only one false negative, the sensitivity, 

specificity, NPV, and PPV were all at least 94%. For this clinical application, perhaps the 

most important variable for long-term studies is NPV, since a surgeon needs to be 

confident in any diagnosis of negative margin status to prevent recurrence of the disease 

or unnecessary second operations. For the single false negative result in this study, the 

normal layer overlying the tumor was found to be ~1.5 mm thick upon histological 

examination, but prior to formalin fixation, this layer was likely around or slightly greater 

than 2 mm thick [199], which would surpass the sampling capabilities of the SORS 

probe. It may also be possible that a slight mis-alignment between the probe and the point 

of the histological section led to an error in the margin size determination. In addition, 

there is not a universal standard among hospitals of minimum margin size required 

during breast conserving surgery; rather, some locations use 2 mm, some use 1 mm, and 

others simply require that no cancer cells be found on the surface of the specimen [173]. 

A value of 2 mm was used as the cutoff in this study because that value provides the best 

prognosis for patients [173] and is the most stringent standard for proving the value of 

SORS. 
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The classification results above compare extremely favorably with current intraoperative 

margin evaluation techniques [175-177, 190]. For example, the reported sensitivity of 

"touch prep" is as low as 8% [175]; simple visual examination has sensitivity and 

specificity of approximately 50% and 72%, respectively [177]; and frozen section 

pathology, though its sensitivity and specificity per slide are generally > 90%, suffers 

from sampling error that brings per-specimen classification accuracy (i.e. overall 

designation of whether a second operation is required) below 85% [190]. Another optical 

approach for intraoperative margin evaluation is to image an entire margin (i.e. one of the 

six facets of the "cuboidal" excised specimen) at once with autofluorescence and/or 

diffuse reflectance modalities. Using extracted optical properties of the tissue from 

visible diffuse reflectance, that group has achieved 79% sensitivity and 67% specificity 

for discriminating normal from positive or close (< 2 mm) margins for a set of 48 patients 

[200]. Better classification - 100% sensitivity and 82% specificity - was achieved by 

Nguyen et al. using OCT [201], though the sample size of 20 patients was much smaller, 

and the technology in its current state still relies on a subjective analysis of the images. 

The biggest challenge for the SORS approach presented here, especially compared with 

the above two techniques, is adapting the probe and other system components to 

interrogate larger areas of tissue in a shorter time. 

 

The various optical approaches to intraoperative margin evaluation all hold significant 

potential for improving the standard of care, though each currently has its own strengths 

and weaknesses. To date, no method has demonstrated the combination of sampling 

speed, volume, and diagnostic accuracy needed for widespread clinical implementation. 
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The initial work presented here has demonstrated the feasibility and promise of using 

SORS to evaluate margin status on intact breast specimens in a laboratory setting.  

Studies are currently underway on using the same approach in a clinical setting, and 

initial results are equally as promising as the laboratory measurements.  
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Chapter 4 

Monte Carlo models for tissues with irregular interfaces 

 

Monte Carlo (MC) simulations are accurate and quantitative models for photon transport 

in biological tissue [75-77]. For layered tissues, MC codes frequently approximate the 

structure of each tissue layer as a homogeneous slab with flat upper and lower 

boundaries. Recently, MC codes have been developed for tissue models where the 

boundaries are defined by surface meshes (Figure 4.1); this technique has been applied to 

simulations of diffuse reflectance in bone [79] and fluorescence in a whole-mouse model 

[202]. Here we describe a MATLAB-based MC code for user-friendly simulation of 

time-resolved fluorescence in tissues with irregular interface geometry [203]. 
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Figure 4.1 Representative path of photon in bi-layered tissue model where photons enter 
and exit at a top surface that is flat but can cross an irregular internal interface during 
their path in the tissue [203]. Here, the buried interface is given by the equation z(x,y) = 
sin(x/4) cos(y/4) and represented as a triangle mesh. An excitation photon (green) can 
undergo a fluorescence event (orange star) and return to the surface as an emission 
photon (orange). 
 

The MC algorithm described in this section is a modified version of a pre-existing code 

written in C [37, 76, 77]. The new code was written in MATLAB, which provides a 

uniform, cohesive environment for importing simulation inputs such as mesh geometries 

and optical property spectra, as well as performing the photon transport simulations and 

visualizing the results. The MATLAB language is intuitive and familiar to a wide range 

of scientists and engineers, so the code will be easy for researchers to modify as needed. 

The MATLAB code can be easily modified for a wide range of source-detector 

configurations, tissue properties, and interface geometries. The code can model 

temporally- and spatially-resolved fluorescence, and it can be easily modified to store the 



 

157 

 

spatial and temporal origins of all detected fluorescence events to enable 3D fluorescence 

visualizations [77]. 

 

The use of surface meshes to represent tissue interfaces allows the simulation of photon 

propagation in realistic tissue geometries. Meshes can be defined in MATLAB, created 

using CAD software, or imported from CT or MRI images. Incorporating mesh surfaces 

into the MC code increases the computation time due to the large number of surface 

elements that are examined to identify when a photon path intersects a boundary. One 

way to reduce this inefficiency is to automatically identify and process only those mesh 

faces that lie within a small region of specified volume around the photon’s location. For 

this purpose, a spatial partitioning algorithm, similar to some previously described, is 

currently being developed to improve the MC simulation speed for complex mesh 

geometries [79].   

 

Figure 4.2 shows validations of the MATLAB MC code against the lab’s existing C MC 

code for time-resolved fluorescence at various source-detector separations. For this 

validation study, a bi-layered tissue model with slab shaped meshes (containing 12 faces) 

was employed to mimic the geometry of the C code. This geometry was employed to 

validate the ability of the MATLAB code to accurately process a user-defined mesh 

surface and use this surface to check for interface crossings. 
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Figure 4.2 Time-resolved fluorescence simulated by mesh-surface MATLAB MC code 
(stars) versus that generated from previously-validated MC code in C (circles), for a 
layered slab-mesh tissue geometry [203]. Detector 0 was the source fiber (400 μm 
diameter); detectors 1-4 were rings of increasing radii, comprised of identical 400 μm 
fibers. 
 

The thickness of the top layer was 300 μm, and the bottom layer thickness could be 

approximated as infinite. The photon transport parameters used in the model were the 

absorption and scattering coefficients μai and μsi in each layer i of the tissue, as well as 

the anisotropy g (kept at a constant value of 0.9), and refractive index n (kept at a 

constant value of 1.4). These tissue properties were defined at both the excitation and 

fluorescence emission wavelengths. At the excitation wavelength, μa1 (μa2) was set to 3.8 

(0.5) cm-1 and μs1 (μs2) was set to 487 (487) cm-1. At the emission wavelength, μa1 (μa2) 

was set to 2.5 (2.5) cm-1 and μs1 (μs2) was set to 376 (376) cm-1. The fluorescence 

parameters in the tissue model were the fluorescence absorption coefficient μafx (set to 1.2 
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cm-1 in layer 1 and 5.0 cm-1 in layer 2), quantum yield ΦQY (set to 1.0 in each layer to 

improve photon statistics), and mean fluorescence lifetime <t> (set to 1.5 ns in both 

layers). The values of these optical properties (except for ΦQY) were chosen to be within a 

range expected for biological tissue.  

      

Figure 4.2 shows that the MATLAB MC algorithm reproduced the time-resolved 

fluorescence curves from the previously-validated C code for a variety of source-detector 

separations, with a mean percent error of less than 6%. These results suggest that the 

MATLAB MC code has the potential to accurately model time-resolved fluorescence in 

tissue models defined by mesh surfaces. 

 

We have developed a versatile, user-friendly MATLAB MC code to model time-resolved 

fluorescence in layered biological tissues containing an irregular interface defined by a 

mesh surface. To the best of our knowledge, this is the first demonstration of such an 

approach for time-resolved fluorescence MC coding that can accommodate arbitrarily-

shaped tissue interfaces. The code should be useful for quantitative fluorescence lifetime 

sensing applications in complex biological tissues that require realistic computational 

models to account for effects caused by irregular interface geometry. 

 

Now we describe the development and verification of a version of the aforementioned 

user-friendly, MATLAB-based Monte Carlo code that uses analytically-defined surface 

meshes to model heterogeneous tissue geometry [204]. The code can use information 

from non-linear optical microscopy images to discriminate the fluorescence photons 
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(from endogenous or exogenous fluorophores) detected from different layers of complex 

turbid media. We present a specific application of modeling a layered human tissue-

engineered construct (Ex Vivo Produced Oral Mucosa Equivalent, EVPOME) designed 

for use in repair of oral tissue following surgery. Second-harmonic generation 

microscopic imaging of an EVPOME construct (oral keratinocytes atop a scaffold coated 

with human type IV collagen) was employed to determine an approximate analytical 

expression for the complex shape of the interface between the two layers. This expression 

can then be inserted into the code to correct the simulated fluorescence for the effect of 

the irregular tissue geometry. 

Fluorescence spectroscopy is frequently employed for tissue sensing because it has the 

potential to provide quantitative information about the relative contributions of native 

tissue fluorophores (such as collagen, NADH, and FAD) to the detected signal [3, 7, 10, 

205]. However, the detected fluorescence signal can often be distorted by tissue 

absorption and scattering. Monte Carlo (MC) simulations, the current gold standard for 

describing photon propagation in turbid media, are often employed to quantitatively 

model tissue fluorescence in a manner that accounts for tissue geometry and attenuation 

from absorption and scattering [76, 77]. This problem becomes particularly challenging 

in tissue models with complex geometries [78, 79, 206, 207]. Here, we describe the 

development of a versatile Monte Carlo (MC) code that can use easily-interchangeable, 

analytically-defined surface meshes to predict the effect of absorption and scattering on 

the detected fluorescence from tissues with irregular geometries. 
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Fluorescence microscopy and spectroscopy are being investigated to assess the viability 

of a human tissue-engineered construct (Ex Vivo Produced Oral Mucosa Equivalent; 

EVPOME [208-210]) pre- and post-implantation. The EVPOME construct (histology 

image shown in Figure 4.3) consists of primary human oral keratinocytes atop a collagen-

like scaffold. As the construct develops, the cells stratify and produce a top layer of non-

viable cells containing cross-linked keratin. The goal of the fluorescence sensing 

techniques is to extract the redox ratio of the construct on various days of development 

and under different environmental conditions. To accomplish this goal, it is necessary to 

obtain the intrinsic fluorescence signals from the endogenous fluorophores NADH and 

FAD in the cellular layer of the construct [210]. However, the structure of the EVPOME 

poses a significant challenge, because the viable cellular layer is located between the 

keratin layer and scaffold, each of which has its own absorption, scattering, and 

fluorescence properties. Therefore, it is important to develop an accurate model of photon 

propagation in the EVPOME construct in order to quantify the effect of the optical 

properties of each layer on the detected fluorescence signal, and consequently, the 

detected redox ratio. Furthermore, as Figure 4.3 illustrates, the interface between the cell 

layer and scaffold is irregular in shape, so it is also important to develop a model that can 

quantitatively predict the effect of the construct geometry on the detected fluorescence. 
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Figure 4.3 Histology image of an Ex Vivo Produced Oral Mucosa Equivalent (EVPOME) 
construct, comprised of scaffold (bottom layer, stained light pink), cells (middle layer, 
stained purple), and keratin-containing non-viable cell layer (top layer, stained dark pink) 
[204]. The interface between the cellular layer and the scaffold is noticeably irregular in 
shape.    
 

Non-linear optical microscopy images of EVPOME constructs were acquired using an 

880 nm femtosecond-pulsed laser source coupled to an inverted microscope (Leica) with 

a 25x water objective. Second-harmonic generation (SHG) cross-sectional (x-z) images 

were obtained at 420-460 nm emission (to detect collagen). From this data, the interface 

between the cells and the scaffold could be approximated as a sinusoid (Figure 4.4). The 

period and amplitude of the interface were estimated from Figure 4.4 to be 235 μm and 

20 μm, respectively. This data was then employed to generate a three-dimensional 

surface mesh of the interface between the stratified cellular layer and scaffold of the 

EVPOME construct (Figure 4.5). 
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Figure 4.4 Second-harmonic generation cross-sectional image of the scaffold of an 
EVPOME construct acquired with non-linear optical microscopy and overlaid onto a 
three-dimensional schematic of a tissue [204]. The interface between the stratified 
cellular layer and scaffold can be approximated as a sinusoid with amplitude 20 μm and 
period 235 μm.   
 

To simulate photon propagation in complex tissues, the pre-existing MC code was 

translated to MATLAB and the geometry of each layer was re-defined as a surface mesh. 

The MATLAB programming language is intuitive and widely used in science and 

engineering, so the code can be easily modified to change the source-detector 

configuration, tissue optical properties, and tissue geometry [203]. Each interface can be 

analytically defined as an expression for the depth as a function of the other two spatial 

coordinates: z(x,y). An example of this feature, for the equation corresponding to the cell-

scaffold interface in an EVPOME construct (Figure 4.4), is shown in Figure 4.5. For 

more complicated surfaces that are not easily represented by analytical functions, the 

meshes can be imported from external data sources such as CT or MRI images.  
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Figure 4.5 Surface mesh employed to model the interface between the cellular layer and 
scaffold in an EVPOME construct [204]. The equation of the irregular surface (based on 
the image in Figure 4.4) was z(x) = 20sin(2πx/235) - 25. Excitation light (blue) enters the 
tissue from the source optical fiber, and detected fluorescence (green) arrives back at the 
surface. 
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A flow chart of code inputs and outputs illustrating the differences between the mesh-

based MATLAB MC code and the previously-developed slab-based MC code is shown in 

Figure 4.6.  

 Code Inputs Code Outputs

Tissue optical properties
(μaxi, μsxi, gxi, μami, μsmi, gmi, 
ni, μafxi, φQYi, τi)

Fiber-probe properties
(source fiber radius, 
source-detector separation, 
numerical aperture)

Spatially- and 
temporally-resolved 
fluorescence F(ρ, t)
for planar slab 
tissue models

Thickness di of each 
tissue layer

Shape function z(x,y)
of each interface

Spatially- and 
temporally-resolved 
fluorescence F(ρ, t)
for tissue models 
with irregular 
geometries

Blue arrows and box: 
slab-based MC code 
or mesh-based MC code

Red arrows and box: 
mesh-based MC code only

 

Figure 4.6. Chart of inputs and outputs for slab-based Monte Carlo code (blue arrows 
and box) and mesh-based Monte Carlo code (red arrows and box) [204]. Both codes 
predict the spatially- and temporally-resolved fluorescence F(ρ,t), but the mesh-based 
code can generate this information for tissue models with irregular geometries as well as 
layered slab models. The subscript x (m) denotes the excitation (emission) wavelength, 
and the subscript i denotes the tissue layer. Both codes can also model multiple 
fluorophores in each tissue layer. 
 

Both codes require the same set of tissue optical properties and fiber probe properties: 

namely, the tissue absorption coefficients (μaxi, μami), scattering coefficients (μsxi, μsmi), 

and anisotropy values (gxi, gmi) at the excitation and emission wavelengths, the refractive 
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index ni of each tissue layer, the fluorophore absorption coefficients μafxi, the fluorophore 

lifetimes τi, and the fluorophore quantum yields φQYi. The subscript x (m) denotes the 

excitation (emission) wavelength, and the subscript i denotes the tissue layer. Both codes 

can also model multiple fluorophores in each tissue layer. 

 

The slab-based code requires the thickness of each individual (planar) tissue layer, while 

the mesh-based code takes a general shape function z(x,y) as its input for the geometry of 

each tissue interface. Both codes generate the spatially- and temporally-resolved tissue 

fluorescence F(ρ,t), but the mesh-based code can provide this information for tissue 

models with non-planar interfaces. 

 

To validate the analytical mesh-based MC code, a bi-layered slab model was created in 

MATLAB (where the two interfaces were defined analytically (as z(x,y) = 0 and z(x,y) = 

250 μm) according to a procedure that could be extended to more complex surfaces. The 

spatially-resolved fluorescence from the MATLAB MC code was compared to that from 

a previously-validated MC code [76, 77] written in C for tissue models approximated as 

stacks of homogeneous slabs. The scattering coefficients used in the validation were: μsx1 

= 120 cm-1, μsx2 = 100 cm-1, μsm1 =80 cm-1, μsm2 = 70 cm-1. The other optical properties 

were constant for both layers and both wavelengths: the absorption coefficient μa was set 

equal to 0.1 cm-1 everywhere, and the anisotropy g was set to a constant value of 0.9. 

Photons were launched with a 600 μm diameter fiber and detected by rings of 600 μm 

thickness. Validation results are shown in Figure 4.7 (linear scale) and Figure 4.8 
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(logarithmic scale). The mean difference in simulated fluorescence between the two 

codes was less than 6%. 

 

The results suggest that the mesh-based MATLAB MC code has the potential to 

accurately simulate fluorescence in complex layered tissues where the interfaces between 

layers are defined analytically with surface meshes. This code provides a user-friendly 

framework for simulations of photon propagation, allowing for rapid variation of tissue 

interface geometry by interchanging analytical expressions in small subsections of the 

code. The mesh-based MC code can potentially be integrated with tissue morphology 

information from non-linear optical microscopy images to discriminate the detected 

fluorescence from different spatial locations within complex layered turbid media. This 

code can also potentially be employed to model inelastic (Raman) scattering in layered 

tissue models with irregular geometries, allowing for predictions of detected Raman 

signal as a function of source and detector position [169, 192].   
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Figure 4.7 Comparison of plane-mesh MATLAB code (red line, triangles) with slab-
based C code (blue line, circles) for spatially resolved fluorescence on a linear scale 
[204]. The mean percent difference between the two codes was less than 6%. 
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Figure 4.8 Comparison of plane-mesh MATLAB code (red line, triangles) with slab-
based C code (blue line, circles) for spatially-resolved fluorescence on a logarithmic 
scale. The mean percent difference between the two codes was less than 6% [204]. 
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Chapter 5 

Discussion and conclusions 

 

5.1. Major contributions of this dissertation 

The work presented in this dissertation describes the development and application of DA, 

MC, and semi-empirical models to analyze reflectance, fluorescence, and Raman 

spectroscopy data from human tissues for tissue sensing and disease diagnostics. The 

tissue properties extracted by these models were often shown to be different for normal 

and diseased tissue, thereby illustrating the potential of optical spectroscopy to enable 

quantitative diagnostics in a wide range of human tissues. The work described in this 

dissertation focuses on the potential of three different types of mathematical models 

(diffusion theory, Monte Carlo simulations, and semi-empirical models) to accurately 

analyze measured reflectance and fluorescence spectra from human tissues. When fit to 

measured spectral data, the models have the capability to extract parameters related to 

tissue composition, vasculature, morphology, and metabolic function. These parameters 

can then be employed to distinguish between normal and diseased human tissues, thereby 

suggesting that optical spectroscopy has the potential to help improve human disease 

diagnostics. 
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The major contributions of this dissertation can be summarized as follows: 

Chapter 2 

• We developed the first-ever photon-tissue interaction (PTI) model of reflectance and 

fluorescence from human pancreatic tissue. We employed this model to extract 

biophysically-relevant tissue parameters from reflectance and fluorescence spectra of 

human pancreatic tissues for the first time.  

• We employed the PTI model to obtain the first-ever values of the optical absorption 

and scattering coefficients of normal and diseased (pancreatitis, adenocarcinoma) 

human pancreatic tissues.  

• We performed the first-ever comparison between results of the PTI model and those 

of histopathology, the diagnostic gold-standard. We showed for the first time that 

changes in PTI model parameters were consistent with those observed at histology.  

• We fit the PTI model to individual reflectance and fluorescence measurements to 

extract biophysically-relevant parameters from individual tissue sites for the first time 

and demonstrate the statistical significance of these parameters.  

• We incorporated the PTI parameters into a novel tissue classification algorithm that 

employed Generalized Estimating Equations to account for correlations in the data. 

The algorithm was able to accurately distinguish adenocarcinoma from the non-

malignant tissue types (normal and pancreatitis).  

Chapter 3 

• We developed the first-ever Monte Carlo model of Raman scattering in a multi-

layered model of human bone tissue to examine the effect of tissue and probe 

properties on the detected Raman signal. 
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• We developed the first-ever Monte Carlo model of Raman scattering in a multi-

layered model of human breast tissue to examine the effect of tissue and probe 

properties on the detected Raman signal. 

• We validated the predictions of spatially-resolved Raman signal for the novel layered 

Monte Carlo model against experimental data acquired from bi-layered tissue 

phantoms consisting of normal and cancerous human breast tissue. 

• We employed the novel layered Monte Carlo model to optimize and characterize the 

design of a fiber-optic Raman spectroscopy probe for accurate detection of breast 

tumor margins following surgery. 

Chapter 4 

• We developed novel user-friendly, versatile, MATLAB-based models of steady-state 

and time-resolved fluorescence from tissue models with irregular geometries. 

 

The work in this dissertation has been presented and documented as cited below: 

 

Journal articles and manuscripts in preparation: 

Chapter 1 

• R. H. Wilson and M.-A. Mycek, “Models of light propagation in human tissue 

applied to cancer diagnostics,” Technology in Cancer Research and Treatment 10, 

121, 2011 (14 pages). 

• W. R. Lloyd, R. H. Wilson, C.-W. Chang, G. D. Gillispie, and M.-A. Mycek, 

“Instrumentation to rapidly acquire fluorescence wavelength-time matrices of 

biological tissues,” Biomedical Optics Express 1, 574, 2010 (13 pages). 
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Chapter 2 

• R. H. Wilson, M. Chandra, L.-C. Chen, W. Lloyd, J. Scheiman, D. Simeone, J. Purdy, 

B. McKenna, and M.-A. Mycek, “Photon-tissue interaction model enables 

quantitative optical analysis of human pancreatic tissues,” Optics Express 18, 21612, 

2010 (10 pages). 

• R. H. Wilson, M. Chandra, J. Scheiman, D. Simeone, B. McKenna, J. Purdy, and M.-

A. Mycek, “Optical spectroscopy detects histological hallmarks of pancreatic cancer,” 

Optics Express 17, 17502, 2009 (15 pages). 

• R. H. Wilson, M. Chandra, L.-C. Chen, W. Lloyd, J. Scheiman, D. Simeone, B. 

McKenna, and M.-A. Mycek, “Photon-tissue interaction model consistently 

distinguishes optical characteristics of human pancreatic disease,” manuscript in 

preparation. 

• R. H. Wilson*, M. Chandra*, J. Scheiman, O. E. Lee, B. McKenna, D. Simeone, J. 

M. G. Taylor, and M.-A. Mycek, “Optical spectroscopy distinguishes pancreatic 

cancer from non-malignant pancreatic tissues,” manuscript in preparation. (*Equal 

contribution to authorship)  

Chapter 3 

• M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, M. C. 

Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset Raman 

spectroscopy probe for breast tumor surgical margin evaluation,” Journal of 

Biomedical Optics 16, 077006, 2011 (8 pages). 

• M. D. Keller*, R. H. Wilson*, M.-A. Mycek, and A. Mahadevan-Jansen, “Monte 

Carlo model of spatially offset Raman spectroscopy for breast tumor margin 
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analysis,” Applied Spectroscopy 64, 607, 2010 (8 pages). (*Equal contribution to 

authorship) 

• M. Raghavan, N. D. Sahar, R. H. Wilson, M.-A. Mycek, N. Pleshko, D. H. Kohn, and 

M. D. Morris, “Quantitative polarized Raman spectroscopy in highly turbid bone 

tissue,” Journal of Biomedical Optics 15, 037001, 2010 (7 pages). 

 

Conference proceedings: 

Chapter 1 

• W. R. Lloyd, R. H. Wilson, L.-C. Chen, G. D. Gillispie, and M.-A. Mycek, 

“Fluorescence wavelength-time matrix acquisition for biomedical tissue diagnostics,” 

Clinical and Biomedical Spectroscopy and Imaging II, Nirmala Ramanujam, Jürgen 

Popp, Editors, Proc. SPIE Int. Soc. Opt. Eng. 8087, 80870Y, 2011 (7 pages).   

• C.-W. Chang, W. Lloyd, R. Wilson, G. D. Gillispie, and M.-A. Mycek, “Clinically 

compatible instrumentation for accurate detection of fluorescence intensity and 

lifetime in turbid media,” Advanced Biomedical and Clinical Diagnostic Systems 

VIII, Tuan Vo-Dinh, Warren S. Grundfest, Anita Mahadevan-Jansen, Editors, Proc. 

SPIE Int. Soc. Opt. Eng. 7555, 755503, 2010 (6 pages). 

• R. H. Wilson, K. Vishwanath, and M.-A. Mycek, “Combined Monte Carlo and path-

integral method for simulated library of time-resolved reflectance curves from layered 

tissue models,” Optical Interactions with Tissues and Cells XX, Steven L. Jacques, E. 

Duco Jansen, William P. Roach, Editors, Proc. SPIE Int. Soc. Opt. Eng. 7175, 

717518, 2009 (9 pages). 
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• R. H. Wilson, K. Vishwanath, and M.-A. Mycek, “Semi-analytical method for rapid 

simulation of time-resolved reflectance in layered epithelial tissues,” in Frontiers in 

Optics 2008, OSA Technical Digest (Optical Society of America), FTuK3 (1 page). 

• R. H. Wilson, K. Vishwanath, and M.-A. Mycek, “Semi-analytical method for rapid 

calculation of time-resolved reflectance from bi-layered tissue models,” Diagnostic 

Optical Spectroscopy in Biomedicine IV, Dietrich Schweitzer, Maryann Fitzmaurice, 

Editors, Proc. SPIE Int. Soc. Opt. Eng. 6628, 66280W, 2007 (10 pages). 

• R. H. Wilson, K. Vishwanath, and M.-A. Mycek, “Time-resolved reflectance of two-

layered tissue models via scaling of ‘white’ Monte Carlo simulations,” in Biomedical 

Optics 2006 Technical Digest (Optical Society of America), ME1 (3 pages). 

Chapter 2 

• R. H. Wilson, M. Chandra, W. Lloyd, L.-C. Chen, J. Scheiman, D. Simeone, B. 

McKenna, and M.-A. Mycek, “Optical spectroscopy for quantitative sensing in 

human pancreatic tissues,” Clinical and Biomedical Spectroscopy and Imaging II, 

Nirmala Ramanujam, Jürgen Popp, Editors, Proc. SPIE Int. Soc. Opt. Eng. 8087, 

808713, 2011 (7 pages). 

• R. H. Wilson, M. Chandra, W. R. Lloyd, J. Scheiman, D. Simeone, J. Purdy, B. 

McKenna, and M.-A. Mycek, “Quantitative optical spectroscopy for pancreatic 

cancer detection,” in Biomedical Optics 2010 Technical Digest (Optical Society of 

America), BWB6 (3 pages). 

• M. Chandra, R. H. Wilson, J. Scheiman, D. Simeone, B. McKenna, J. Purdy, and M.-

A. Mycek, “Optical spectroscopy for clinical detection of pancreatic cancer,” Clinical 
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and Biomedical Spectroscopy, Irene Georgakoudi, Jürgen Popp, Katarina Svanberg, 

Editors, Proc. SPIE. Int. Soc. Opt. Eng. 7368, 73681G, 2009 (6 pages).  

• R. H. Wilson. M. Chandra, J. Scheiman, D. Simeone, B. McKenna, J. Purdy, and M.-

A. Mycek, “Mathematical modeling of reflectance and intrinsic fluorescence for 

cancer detection in human pancreatic tissue,” Biomedical Applications of Light 

Scattering III, Adam Wax, Vadim Backman, Editors, Proc. SPIE Int. Soc. Opt. Eng. 

7187, 71870H, 2009 (9 pages). 

• R. H. Wilson, M. Chandra, J. Scheiman, D. Heidt, D. Simeone, B. McKenna, and M.-

A. Mycek, “Modeling reflectance and fluorescence spectra of human pancreatic 

tissues for cancer diagnostics,” in Frontiers in Optics 2008, OSA Technical Digest 

(Optical Society of America), FTuK5 (1 page). 

Chapter 3 

• M. Raghavan, N. D. Sahar, R. H. Wilson, M.-A. Mycek, N. Pleshko, D. H. Kohn, and 

M. D. Morris, “Polarized Raman spectroscopy of bone tissue: watch the scattering,” 

Photonic Therapeutics and Diagnostics VI, Nikiforos Kollias, Bernard Choi, Haishan 

Zeng, Reza S. Malek, Brian J. Wong, Justus F. R. Ilgner, Kenton W. Gregory, 

Guillermo J. Tearney, Laura Marcu, Henry Hirschberg, Steen J. Madsen, Andreas 

Mandelis, Anita Mahadevan-Jansen, E. Duco Jansen, Editors, Proc. SPIE Int. Soc. 

Opt. Eng. 7548, 754848, 2010 (5 pages). 

• R. H. Wilson, K. A. Dooley, M. D. Morris, and M.-A. Mycek, “Monte Carlo 

modeling of photon transport in buried bone tissue layer for quantitative Raman 

spectroscopy,” Optics in Bone Biology and Diagnostics, Andreas Mandelis, Editor, 

Proc. SPIE Int. Soc. Opt. Eng. 7166, 716604, 2009 (10 pages). 



 

176 

 

• R. H. Wilson, M. D. Morris, and M.-A. Mycek, “Monte Carlo simulations of Raman 

scattering from bone within a multi-layered tissue model,” in Frontiers in Optics 

2008, OSA Technical Digest (Optical Society of America), FTuK2 (1 page). 

 

Chapter 4 

• R. H. Wilson, L.-C. Chen, W. Lloyd, S. Kuo, C. Marcelo, S. E. Feinberg, and M.-A. 

Mycek, “Mesh-based Monte Carlo code for fluorescence modeling in complex tissues 

with irregular boundaries,” Novel Biophotonic Techniques and Applications, Henricus 

J. C. M. Sterenborg, I. Alex Vitkin, Editors, Proc. SPIE Int. Soc. Opt. Eng. 8090, 

80900E, 2011 (7 pages). 

• L.-C. Chen, W. R. Lloyd, R. H. Wilson, S. Kuo, C. L. Marcelo, S. E. Feinberg, and 

M.-A. Mycek, “Nonlinear optical molecular imaging enables metabolic redox sensing 

in tissue-engineered constructs,” Molecular Imaging III, Charles P. Lin, Vasilis 

Ntziachristos, Editors, Proc. SPIE Int. Soc. Opt. Eng. 8089, 80890J, 2011 (7 pages). 

• V. Schweller*, R. H. Wilson*, and M.-A. Mycek, “User-friendly Monte Carlo code 

for time-resolved fluorescence models of tissues with irregular interfaces,” in 

Biomedical Optics 2010 Technical Digest (Optical Society of America), BME8 (3 

pages). (*Equal contribution to authorship) 

• R. H. Wilson, M. Chandra, W.-L. Lo, K. Vishwanath, K. Izumi, S. E. Feinberg, and 

M.-A. Mycek, “Simulated fiber-optic interrogation of autofluorescence from 

superficial layer of tissue-engineered construct,” in Frontiers in Optics 2008, OSA 

Technical Digest (Optical Society of America), FTuK6 (1 page). 
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• M. Chandra, R. H. Wilson, W.-L. Lo, K. Vishwanath, K. Izumi, S. E. Feinberg, and 

M.-A. Mycek, “Sensing metabolic activity in tissue-engineered constructs,” 

Diagnostic Optical Spectroscopy in Biomedicine IV, Dietrich Schweitzer, Maryann 

Fitzmaurice, Editors, Proc. SPIE Int. Soc. Opt. Eng. 6628, 66280B, 2007 (7 pages). 

 

Note: The appropriate permissions have been obtained for the inclusion of previously 

published material in this dissertation. 

 

Note: In between the publication of the 2009 and 2010 Optics Express articles included in 

Chapter 2, several errors in the pancreatic data analysis procedure were caught and fixed. 

These errors were not expected to change the main conclusions of Section 2.1.  

 

5.2 Future work 

Including time-resolved fluorescence data in pancreatic tissue classification algorithms 

In addition to the steady-state reflectance and fluorescence data described in Chapter 2, 

time-resolved data was obtained from each pancreatic tissue site. We have employed a 

variety of mathematical models to analyze the time-resolved data, and the extracted 

parameters have been incorporated into tissue classification algorithms. A systematic 

evaluation of the effect of these time-resolved parameters on the classification power of 

the algorithms is underway, and the following manuscript is in preparation: 

R. H. Wilson*, M. Chandra*, J. Scheiman, D. Simeone, B. McKenna, W. Lloyd, L.-C. 

Chen, O. E. Lee, J. M. G. Taylor, and M.-A. Mycek, “Combined steady-state and time-
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resolved optical spectroscopy improves pancreatic disease diagnostics” (in preparation).   

(*equal contribution to authorship) 

Unified model of steady-state and time-resolved fluorescence 

For each individual pancreatic tissue site, there should be equivalence between the 

information extracted from the steady-state fluorescence data and the time-resolved 

fluorescence data. A study is underway to compare the percentage contributions of 

endogenous tissue fluorophores extracted by the PTI model of steady-state fluorescence 

with the contributions of each component extracted from the different models of time-

resolved fluorescence. 

Using photon-tissue interaction model to distinguish other pancreatic tissue types 

In addition to the optical spectra of normal pancreatic tissue, pancreatitis, and 

adenocarcinoma sites described in Chapter 2, reflectance and fluorescence measurements 

were also performed on pre-cancerous tissues (pancreatic intraepithelial neoplasia and 

intraductal papillary mucinous neoplasm) and benign tumors (serous cystadenoma). A 

study is in progress to determine whether parameters from the data analysis methods 

described in Chapter 2 can be employed to accurately distinguish pre-cancers from 

normal pancreatic tissue and pancreatitis, and to accurately distinguish benign tumors 

from malignant tumors. 

Using photon-tissue interaction model to analyze pancreatic optical spectra acquired in 

vivo 

We have begun an IRB-approved study to acquire reflectance and fluorescence data from 

human pancreatic tissues in vivo during pancreatic surgery. Work is underway to employ 
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the photon-tissue interaction (PTI) model described in Chapter 2 to analyze the in vivo 

data and compare the extracted parameters with those obtained from spectra measured ex 

vivo from the same tissue sites. This analysis will also include a more detailed 

quantitative investigation of how the PTI model describes the effect of changing the 

properties of the fiber-optic probe, since the geometry of the in vivo fiber-probe is 

different than that of the probe used in the ex vivo study described in Chapter 2. This 

work will help us to determine whether the PTI model needs to be modified for analysis 

of in vivo data. 

Quantitative image analysis of pancreatic tissue histology 

A study is underway to employ image analysis software for more detailed quantitative 

analysis of the histology images obtained from the pancreatic tissue sites measured in the 

study described in Chapter 2. Quantitative information about the distribution of sizes of 

cell nuclei, collagen content, and other morphological features of the tissue, obtained 

from systematic image analysis, can potentially be employed to verify or improve 

components of the PTI model described in Chapter 2. 

Bone and breast tissue characterization with Raman spectroscopy 

Work is underway to employ the irregular-interface Monte Carlo models described in 

Chapter 4 for more accurate simulation of Raman scattering in bone. The Raman models 

described in Chapter 3 assumed that each tissue layer was flat, but for bone and the 

overlying tissues, the geometry is closer to cylindrical. Monte Carlo codes for more 

realistic tissue geometries (such as nested cylinders) have been written in MATLAB for 

more accurate description of the effect of tissue geometry on the detected Raman signal. 
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A comprehensive verification of these codes against pre-existing analytical and 

computational models is in progress, and experimental validation of these codes against 

measured data from tissue-simulating phantoms is also underway.  

Monte Carlo models for tissues with irregular interfaces 

In addition to the verification and validation studies described previously, work is 

underway to develop semi-analytical “scaling” methods to decrease the computation time 

required for simulation of spatially- and temporally-resolved photon propagation from a 

set of tissues with different optical and geometrical properties. These methods involve the 

use of path-integral models of photon transport in turbid media to obtain analytical 

equations for the average classical path of a photon in each tissue model of interest. The 

path-integral models can also be employed to visualize the distribution of photons within 

biological tissues for varying optical properties and fiber-probe geometries. The 

following manuscript is in preparation: 

R. H. Wilson and M.-A. Mycek, “Path-integral method for rapid, closed-form description 

of photon migration in layered biological tissues” (in preparation).  
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