
Implementation and Optimization of an  
in vivo Photo-crosslinking Methodology to Define Direct Targets of 

Transcriptional Activators 

by 

Adaora Nwokoye 

 

 

A dissertation submitted in partial fulfillment  
of the requirements for the degree of 

Doctor of Philosophy 
(Medicinal Chemistry) 

in The University of Michigan 
2012 

 

 

 

 

 

 

 

 

Doctoral committee: 

 Professor Anna K. Mapp, Chair 
 Professor Ronald W. Woodard 
 Associate Professor George A. Garcia 
 Assistant Professor Garry D. Dotson 



 

 

 

 

 

 

© Adaora Nwokoye 

2012 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

 

 

 

 

Dedicated to my Parents, Husband, and Daughter 
 

 

 

 



iii 
 

Acknowledgements 
 

 I will like to use this medium to thank everyone that has assisted me 

toward the accomplishment of my graduate degree. Starting with my research 

advisor Dr. Anna Mapp, I thank you for helping me to develop as an independent 

scientist. Anna, you challenged me to think extensively about my project while 

providing a welcoming environment that has facilitated the achievement of my 

research goals. Also, thank you for the emotional support and generosity towards 

my family.  I truly appreciate it. In addition, I would like to thank my committee 

members for their time and for helping me think about my project with different 

perspectives. Thank you. 

 I want to thank all the members of the Mapp lab that have assisted me in 

anyway. Specifically, I would like to thank Dr. Chinmay Majmudar for helping me 

in my first few years of graduate school and Amanda Dugan for helping to 

proofread my thesis document.   I have been privileged to work with some of the 

best scientists, who have serves as collaborators on various projects. To my 

collaborators, Dr. Lori Lee, Dr. Jody Lancia, Dr. Chinmay Majmudar, Dr. Malathy 

Krishnamurthy, Amanda Dugan and Hugo Fung, thank you for the expertise you 

brought to our projects. To all other members of the Mapp lab thank you for 

always making the lab fun and interesting. 



iv 
 

 I would like to thank all my friends for their support and encouragements 

throughout this endeavor. In particular, I will like to thank Dr Cherie Dotson for all 

the love she has showered on my family and the support to me personal. Cherie, 

I thank you, for the constant encouragement to push myself. Much thanks to Dr 

Helmy, my undergraduate MARC director, for providing the leverage to be 

successful in graduate school. Thanks Dr Helmy for your support throughout. 

 I can truly say that without the support from my family I will not have 

accomplished my goals in graduate school.  To my husband, Anosike, words 

cannot articulate what your love and support has meant to me all these years. I 

would not have been able to achieve my goals in graduate school without your 

constant support. I love you. Somtochukwu, thank you helping me to remember 

to laugh and have fun every day I come home. You are the best daughter anyone 

can ask for. I love you.  To my parents, thank you for being my cheerleaders, I 

am truly grateful, from the bottom of my heart, for your support. In particular, I 

want to thank my mom who moved to the USA to take care of my daughter so 

that I can finish graduate school. Thank you mom for always being there for me, 

and supporting me in every way with patience.  You are the best mom ever, 

thank you.  

 And last but not the least; I thank God for the strength and enablement 

throughout my graduate experience. 



v 
 

Table of Contents 

 

Dedication .............................................................................................................ii 

Acknowledgements .............................................................................................. iii 

List of Figures ..................................................................................................... viii 

List of Tables ........................................................................................................xi 

List of Abbreviations ............................................................................................ xii 

Abstract ...............................................................................................................xv 

CHAPTER 1 INTRODUCTION ............................................................................. 1 

A. Summary ...................................................................................................... 1 

B.  Overview of transcription ............................................................................. 2 

C.  Transcriptional activators ............................................................................. 5 

C.1. DNA binding domain .............................................................................. 6 

C. 2 Transcriptional activation domain .......................................................... 7 

D. The binding partners of TADs: the great unknown ..................................... 11 

E. Transcription-related diseases .................................................................... 14 

F.  Strategies for capturing protein-protein interactions .................................. 19 

G. Thesis overview ......................................................................................... 23 

H. References ................................................................................................. 24 

CHAPTER 2 CAPTURING A KEY BINDING PARTNER OF GAL4 IN S. 
cerevisiae ........................................................................................................... 37 

A.  Chapter overview ....................................................................................... 37 

B.  In vivo photo crosslinking strategy ............................................................. 38 



vi 
 

C.  Nonsense suppression strategy and nonnatural amino acids ................... 40 

C.1. Nonsense suppression strategy ........................................................... 41 

C.2. Nonnatural photo-reactive amino acids................................................ 46 

D.  Results and discussion .............................................................................. 49 

D.1. Optimization experiments for in vivo photo-crosslinking studies .......... 50 

D.1a. tRNA/synthetase optimization experiments .................................... 51 

D.1.b Optimization experiment with pBpa and pAzpa .............................. 53 

D.2. p-benzoyl-L-phenylalanine incorporation across the Gal4 transcriptional 
activation domain ........................................................................................ 56 

D.2.a. p-benzoyl-L -phenylalanine incorporation experiments along the 
Gal4 TAD ................................................................................................. 57 

D.2.b. Transcriptional activity of Gal4 containing p-benzoyl-L -
phenylalanine proteins ............................................................................. 59 

D.2.c. In vivo photo-crosslinking across the Gal4 transcriptional activation 
domain ..................................................................................................... 60 

E. Impacting crosslinking efficiency by increasing mutant protein output ........ 64 

E.1. Effect of tRNA and Synthetase copy number on pBpa incorporation 
efficiency ..................................................................................................... 65 

E.2. Effect of PTC124 on pBpa incorporation efficiency .............................. 67 

F.  Methods ..................................................................................................... 69 

G. References ................................................................................................. 76 

CHAPTER 3 DISCOVERY OF ENDOGENOUS TARGETS OF 
TRANSCRIPTIONAL ACTIVATORS .................................................................. 82 

A.  Chapter overview ....................................................................................... 82 

B.  Significance ............................................................................................... 83 

C.  Targeting the transcriptional machinery during recruitment ....................... 84 

C.1 Mediator as a target .............................................................................. 85 



vii 
 

C.2 SAGA as a target .................................................................................. 87 

C.3 SWI/SNF as a target ............................................................................. 89 

D.  Results and Discussions ........................................................................... 90 

D.1. Med15 is a direct partner of Gal4 ......................................................... 90 

D.2. Tra1 is a direct partner of Gal4 ............................................................ 94 

D.3. Taf12 is a direct partner of Gal4 .......................................................... 95 

D.4. Snf2 is a direct partner of Gal4 ............................................................ 97 

D.5. Implications of shared and unshared activator targets ....................... 102 

E. Methods .................................................................................................... 108 

F. References ............................................................................................... 118 

CHAPTER 4 CONCLUSIONS AND FUTURE DIRECTIONS ........................... 126 

A.  Summary of dissertation .......................................................................... 126 

B. Future directions ....................................................................................... 129 

B.1. Development of probes and therapeutic small molecules .................. 131 

B.2. Map the entire network of PPIs needed for transcription .................... 132 

C. References ............................................................................................... 133 



viii 
 

List of Figures 
 

Chapter 1 

Figure 1-1: A general schematic of endogenous transcription. ............................ 3 

Figure 1-2: Protein complexes that have been associated with TAD 
transcription and/or have been proposed as targets of TADs. .............................. 4 
 
Figure 1-3: The modules of transcriptional activators in domain swapping 
experiments can work independently to accomplish transcription. ....................... 6 

Figure 1-4: Crystal structure of transcriptional activator DBDs in complex 
with DNA. ............................................................................................................. 7 
 
Figure 1-5: A schematic showing the different class of interactions of 
transcriptional activators. ...................................................................................... 8 

Figure 1-6: Example of a masking interaction, between the Gal4 TAD, 
which is involved with galactose catabolism and its masking protein Gal80. ........ 9 

Figure 1-7: Examples of TAD classifications. ...................................................... 9 
 
Figure 1-8: A schematic diagram showing some subunits within the 
Mediator complex that have been named potential binding partners of 
TADs.  ................................................................................................................ 13 

Figure 1-9: A schematic of zinc finger protein as a modular replacement 
for DBD.  ............................................................................................................. 16 
 
Figure 1-10: 4 weeks of treatment with adenovirus containing REST-
VP16 fusion protein results in a reduction in tumor size.. ................................... 17 
 
Figure 1-11:  Artificial small molecule TADs. ..................................................... 18 

Chapter 2 
 
Figure 2-1: A schematic of the in vivo photo-crosslinking strategy. ................... 40 
 
Figure 2-2: Site-specific incorporation of nonnatural amino acids in vivo, 
using nonsense suppression strategy. ............................................................... 42 
 



ix 
 

Figure 2-3: A summary of modifications made to the original tRNA 
developed by the Shultz group. .......................................................................... 44 
 
Figure 2-4: pBpa crosslinking reactive mechanism. .......................................... 46 

Figure 2-5: pAzpa crosslinking reactive mechanisms. ....................................... 48 

Figure 2-6: The general mechanism of Gal4 activation. .................................... 50  

Figure 2-7: The chimeric LexA-Gal4 construct used for initial optimization 
experiments. ....................................................................................................... 51 

Figure 2-8: Using 4 different tRNA/synthetase systems, the pSNR system 
yielded the highest amount of full-length LexA-Gal4(849 TAG) protein. ............. 53 

Figure 2-9: Comparison of pAzpa and pBpa incorporation in to LexA-Gal4 
to yield the highest amount of full-length LexA-Gal4 (849 TAG) protein. ............ 54  

Figure 2-10: Thirteen amino acid residues (highlighted in red) selected for 
pBpa incorporation along Gal4 TAD. .................................................................. 56 

Figure 2-11: Evaluation of site-specific incorporation of pBpa at ten 
positions along the Gal4 TAD. ............................................................................ 58 

Figure 2-12: The functional impact of incorporating pBpa into the Gal4 
TAD. ................................................................................................................... 59 

Figure 2-13: In vivo photo-crosslinking experiments with thirteen Gal4 
mutants containing pBpa. ................................................................................... 61  
 
Figure 2-14: Crosslinking experiments to determine whether Gal4 
crosslinks to c-Myc-Gal80 in vivo. ...................................................................... 62 

Figure 2-15: Determining the effect of pBpa concentration, tRNA/aaRS 
copy number and PTC124 on LexA-Gal4 Phe849pBpa protein output. ............. 67 
 
Figure 2-16: PTC124. ........................................................................................ 68   
 
Chapter 3 
 
Figure 3-1: A schematic diagram showing the different class of 
interactions of transcriptional activators. ............................................................. 83  

Figure 3-2: An EM image of Mediator in complex with RNA pol II. .................... 86 
  
Figure 3-3: A schematic of the SAGA complex. ................................................. 88 

Figure 3-4: A schematic of the Swi/Snf complex. .............................................. 90  



x 
 

Figure 3-5: Med15 interactions with isolated TADs. .......................................... 91  
 
Figure 3-6: In vivo photo-crosslinking experiments with Gal4 containing 
pBpa mutants comparing two different sugar conditions. ................................... 92 
 
Figure 3-7: In vivo photo-crosslinking captures the moderate affinity 
interaction between LexA-Gal4 fusion protein and Med15. ................................ 93  
 
Figure 3-8: In vivo photo-crosslinking captures interaction between LexA-
Gal4 fusion protein and the SAGA subunit, Tra1. ............................................... 95  
 
Figure 3-9: In vivo photo-crosslinking captures the interaction between 
LexA-Gal4 fusion protein and Taf12. .................................................................. 96  
 
Figure 3-10: In vivo photo-crosslinking captures interaction between 
LexA-Gal4 fusion protein and endogenous Snf2. ............................................... 98  
 
Figure 3-11: In vivo photo-crosslinking suggesting that Snf2 interacts with 
residues in the middle of the Gal4 TAD. ............................................................. 99  
 
Figure 3-12: In vivo photo-crosslinking experiments, alanine point 
mutations at TAD positions 856, 868 and 869 do not disrupt Gal4-Snf2 
interaction. ........................................................................................................ 100 
 
Figure 3-13: The functional impact of incorporating pBpa into LexA-
Gal4867TAG in yeast for Snf5 delete and Swi1 delete LS41 strains. ............... 101   
 
Figure 3-14: In vivo photo-crosslinking captures the moderate affinity 
interaction between LexA-VP16 and LexA-Gcn4 fusion proteins and 
Med15. ............................................................................................................. 104  
 
Figure 3-15: Using in vivo photo-crosslinking to determine other direct 
binding partners of VP16 and Gcn4 TADs in live yeast cells. ........................... 105  
 
Figure 3-16: In vivo photo-crosslinking captures Snf2 as the direct binding 
partner of VP16 but not Gcn4. .......................................................................... 106  

Figure 3-17: Summary of shared direct targets between Gal4, VP16 and 
Gcn4 based on our In vivo photo-crosslinking experiment. .............................. 107  
 
Chapter 4 
 
Figure 4-1: Summary of coactivator targets identified to directly contact 
the Gal4 TAD through in vivo photo-crosslinking experiments. ........................ 128 

Figure 4-2: On-line mass spectrometry setup. ................................................. 130



xi 
 

List of Tables 
 

Chapter 2 

Table 2-1: Transcriptional proteins classified by either complex associated 
or function with the number of protein copies per cell based. ............................. 39  

Table 2-2:  A summary of the optimal conditions for carrying out in vivo 
photo-crosslinking experiments. ......................................................................... 55 
 
Table 2-3: Selected residues for TAG mutation, representative of all the 
amino acid classes. ............................................................................................ 57 

Table 2-4: Plasmids used for study in Chapter 2. .............................................. 69 

 

Chapter 3 

Table 3-1: Plasmids used for study in Chapter 3. ............................................ 108 

Table 3-2: Primers used for PCR based gene deletion. ................................... 114 

 

 

 



xii 
 

List of Abbreviations 
A alanine 
a.a amino acid 
aaRS tRNA synthetase 
ATP adenosine-5'-triphosphate 
b-ME mercaptoethanol 
BSA bovine serum albumin 
C carbon 
CBP CREB binding protein 
CD circular dichroism 
Cdk8 cyclin dependent kinase 
ChIP chromatin immunoprecipitation 
CREB cAMP response element-binding 
cryo-EM cryo-electron microscopy 
Cys cysteine 
D aspartic acid 
DBD DNA-binding domain 
DMSO dimethylsulfoxide 
DNA deoxyribonucleic acid 
DTT dithiothreitol 
E glutamic acid 
EDTA ethylenediaminetetraacetic acid 
ESI electrospray ionization 
F phenylalanine 
Fmoc 9-fluorenylmethoxycarbonyl 
FP fluorescence polarization 
FRET fluorescence resonance energy transfer 
G gram 
Gal4 galactose protein 4 
Gal80 galactose protein 80 
GAPDH glyceraldehyde-3-phosphate dehydrogenase 
GCN4 general control nonderepressible 4 
GTF general transcription factor 
H hydrogen 
HCl hydrochloric acid 
HER2 human Epidermal growth factor Receptor 2 
His histidine 
hMDM2 human double-minute 2 



xiii 
 

HPLC high pressure liquid chromatography 
HRP horseradish peroxidase 
hSOD human Superoxide dismutases 
IPTG isopropyl ß-D-1-thiogalactopyranoside 
K lysine 
KD dissociation constant at equilibrium 
kDa kilodalton 
KIX kinase-inducible domain interacting domain of CBP 
KOAc potassium acetate 
L leucine 
LiCl lithium Chloride 
M methionine 
MDM2 murine double minute 2 
Med mediator 
MeOH methanol 
MES 2-(N-morpholino)-ethane sulfonic acid 
MgOAc magnesium acetate 
min minutes 
MP masking protein 
mRNA messenger RNA 
MudPIT multidimensional protein identification technology 
N asparagine 
NaCl sodium Chloride 
Ni-NTA nickel-nitrilotriacetic acid 
NMR nuclear magnetic resonance 
NRSF neuron-restrictive silencer factor  
NUA4 nucleosome acetyltransferase of histone H4 
ONPG ortho-Nitrophenyl-ß-galactoside 
P proline 
p53 protein 53 
pAzpa p-Azido-L-phenylalanine 
pBpa p-benzoyl-L-phenylalanine 
PBS phosphate Buffered Saline 
PDB protein data bank 
PEAS N-((2-pyridyldithio) ethyl)-4-azidosalicylamide  
PEG polyethylene glycol 
Phe phenylalanine 
PIC pre-initiation complex 
PNA peptide nucleic acids  
PTC124 premature termination codon 124 
PVDF polyvinyl difluoride 
REST repressor element 1 silencing transcription factor 
RNA ribonucleic acid 



xiv 
 

RNA Pol II RNA Polymerase II 
RP-HPLC reverse-phase HPLC 
SAGA Spt-Ada-Gcn5-Acetyltransferase 
SCX strong cation exchange 
SDOM standard deviation of the mean 
SnRNA small nuclear ribonucleic acid 
Srb4 subunit of the RNA polymerase II mediator complex 4 
Ste12 transcription factor that is activated by a MAP kinase signaling 

cascade 
Sug1 (RPT) regulatory Particle Triple-A protein 1 
Sug2 (RPT) regulatory Particle Triple-A protein 2 
SUR2 sulfonylurea receptors 
SWI/SNF switch/Sucrose nonfermentable 
T threonine 
TAD transcriptional activation domain 
TAF TATA binding protein associated factor 
TBP TATA-binding protein 
TBS tert-butyldimethylsilane 
TFA trifluoroacetic acid 
TFIIA transcription factor II A 
TFIIB transcription factor II B 
TFIID transcription factor II D 
TFIIE transcription factor II E 
TFIIF transcription factor II F 
TFIIH transcription factor II H 
TFO triplex-forming oligonucleotide 
UAS upstream activation sequence 
VEGF-A vascular endothelial growth factor A 
VP16 Viral protein 16 
W tryptophan 
WT Wild type 
Y tyrosine 
ZFP zinc finger protein 
Zn zinc 

 

 



xv 
 

Abstract 
 

Implementation and Optimization of an  
in vivo Photo-crosslinking Methodology to Define Direct Targets of 

Transcriptional Activators 

by 

Adaora Nwokoye 

 

 

Chair: Anna K. Mapp 

 

 Protein-protein interactions are used to accomplish many biological 

processes. Understanding the identity of and mechanisms governing directly 

interacting proteins is instrumental to offering therapeutic interventions for 

diseases they facilitate. For example, in transcription many human diseases have 

strong correlations with alterations in gene expression. Thus, there is intense 

interest in the development of chemical agents to restore aberrant gene 

expression to normal levels. However, in order to ultimately find therapies for 

diseases associated with altered transcription profiles, there needs to be an in-

depth understanding of how transcriptional activators interact with their 

transcriptional machinery partners (coactivators). Currently, very few direct 

binding partners of transcriptional activators are known, let alone structurally 

characterized, making the generation of tailored screens for inhibitors of 
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activator−coactivator interactions challenging. To better understand 

activator−coactivator interactions, we probed for direct binding partners of 

activators in vivo, using an enhanced tRNA/tRNA synthetase pair developed to 

site specifically incorporate the nonnatural amino acid p-benzoyl-L-phenylalanine 

(pBpa) into the amphipathic activators. Initially we started with the model 

prototypical yeast transcriptional activator, Gal4, and later expanded our studies 

to two other prototypical activators, Gcn4 and VP16. 

  First, we used a powerful method, nonsense suppression, to incorporate 

pBpa, which has a crosslinking moiety, into Gal4. Using pBpa-containing 

constructs of Gal4 we carried out in vivo photo-crosslinking experiments in the 

yeast strain LS41. Crosslinked activator−coactivator complexes were 

immunoprecipitated and analyzed by Western blotting. Before identifying the 

binding partners of Gal4, we determined whether pBpa was readily incorporated 

into the Gal4 TAD and if these photo-crosslinkable constructs were 

transcriptionally active. Results showed that all Gal4 pBpa constructs were 

permissive for the incorporation of pBpa, produced the full length protein and 

were transcriptionally functional. Our initial in vivo crosslinking experiments 

revealed a well-characterized binding partner of Gal4, the masking protein Gal80. 

Further, using in vivo photo-crosslinking again, we were able to capture other 

targets that engage in modest-affinity and/or transient interactions with 

transcriptional activators (Gal4, Gcn4 and VP16) including Med15, Taf12, Tra1 

and Snf2. In the future, in vivo photo-crosslinking methodology can be used to 

define both tight and modest-affinity protein-protein interactions.
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CHAPTER 1 
INTRODUCTION 

 

A. Summary 

 In response to signaling cues, a needed set of genes is transcribed to 

RNA, which is then translated into, proteins. Precise regulation of this process 

allows specific functions to be efficiently carried out for the maintenance of 

numerous cellular processes required within an organism. Since transcription of 

specific genes is a vital process required to maintain normal human physiology, 

misregulation of transcription can produce severe consequences.  In fact, gene 

misregulation has been linked to almost all human diseases, either as a cause or 

an effect.1-3 The need to discover small molecules that can modulate 

transcription and in doing so address disease-associated transcriptional 

misregulation continually builds, but first, scientists have to identify the specific 

protein interactions needed for transcription to occur.  

 As alluded to above, a major problem blocking the development of small 

molecule transcriptional modulators is that direct protein-protein interactions 

(PPIs) for the process of transcription to occur are not fully understood. Knowing 

direct proteins that interact with transcriptional activators, researchers can further 

study their binding interfaces. Information from these types of studies can be 

used to generate tailored-screens for small molecules that can modulate 
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transcription. My dissertation will focus on developing and implementing an in 

vivo photo-crosslinking methodology that is used to tease out and characterize 

the direct binding partners of the prototypical transcriptional activator, Gal4. 

Furthermore, the direct partners of Gal4 will be compared to two other well-

studied prototypical activators to determine if these activators use similar 

mechanisms for transcription. The major implication when activators have similar 

mechanisms is that the same small molecule may be used to modulate the 

transcription of those activators.  

B.  Overview of transcription  

 Transcription is an essential process needed for the viability of an 

organism. During transcription, the cell’s genetic material (DNA) is transcribed to 

RNA.  Generally, transcription is initiated by internal and external cellular stimuli, 

which causes a class of proteins know as transcriptional activators to undergo 

post-translational modifications and sometimes translocate to the nucleus, 

localize there, and bind specific DNA sites upstream of a gene (Figure 1-1).4 

Once localized to their genes, transcriptional activators recruit numerous 

multi-protein coactivator complexes in order to assemble the transcriptional 

machinery at the promoter and initiate transcription.5-7 In eukaryotes, of the 3 

types of RNA polymerases, pol II is responsible for transcribing all protein 

encoding mRNA and SnRNA; subsequently mRNA is translated into protein by 

the ribosome. 8-10 The focus of this chapter is to review the current model of the 

protein-protein contacts needed for pol II transcription. 
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Figure 0-1-1: A general schematic of endogenous transcription. (A) Sequence of events that 
transcriptional activators participate in and protein complexes they interact with for transcription to 
be achieved. (B) Architecture of transcriptional activators, which function as modular proteins, 
and contain a transcriptional activator domain (TAD) and/or a DNA binding domain (DBD).  

The core promoter within the gene serves as a platform for transcriptional 

activator-stimulated assembly of the transcriptional pre-initiation complex (PIC) -

TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH and RNA polymerase II, and other 

proteins complexes like the mediator, chromatin remodeling complexes,  SAGA 

and Swi/Snf complexes as shown in Figure 1-2.11  
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Figure 1-2: Protein complexes (over 3 decades) that have been associated with TAD 
transcription and/or have been proposed as targets of TADs. Transcriptional activators interact 
with coactivators to assemble the PIC and specify the transcription initiation site. This figure has 
been slightly modified from the original publication.4 
 

Collectively coactivators specify the transcriptional start site.11-13 It is 

generally accepted that transcriptional activators interact with specific proteins 

within the complexes that make up the PIC. Data from chromatin 

immunoprecipitation (ChIP) and in vitro fluorescence resonance energy transfer 

(FRET) experiments have supported a sequential recruitment model in which the 

prototypical yeast activator Gal4 first recruits SAGA, a chromatin modifying 

complex, to the promoter, followed by the Mediator scaffolding complex, RNA 

Polymerase II, TFIIH, TFIIE, THIIB and TBP roughly at the same time.14-19  

However, while activators such as Gal4 stimulate PIC formation through direct 

binding interactions with the transcriptional machinery, the identities of the 

binding partners within the PIC and other transcription related complexes 

remains hotly debated.4 
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C.  Transcriptional activators 

 A transcriptional activator may be described as a protein that has the 

ability to bridge two chemically different complex molecules, DNA and proteins, 

for the transcription of a gene to occur. In order to accomplish this, transcriptional 

activators are modular proteins that minimally contain two domains that function 

independently (Figure 1-1B).20, 21 The two domains, the DNA binding domain 

(DBD) and the transcriptional activation domain (TAD) together respond to 

extracellular and intracellular signals to bind to specific sequences on DNA, and 

then recruit proteins and protein complexes that are important for high-level 

transcription.20, 21 

 Transcriptional activators interestedly have the ability to swap these 

domains and still maintain their function as demonstrated in a domain swapping 

experiments carried out by Brent and Ptashne (Figure 1-3).22, 23 In these 

experiments, a fusion protein between the DBD of a bacterial transcription 

repressor LexA and the TAD of a yeast transcription activator was able to 

function as a transcriptional activator at the LexA binding sites.22  Results from 

the above experiment have opened the door to possible development of artificial 

transcription activators where the functional domains of endogenous 

transcriptional activators are swapped out for their artificial equivalents.24 
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Figure 1-3: The modules of transcriptional activators in domain swapping experiments, work 
independently to accomplish transcription. Different TADs when linked to the same DBD were 
able to activate the same gene.  

C.1. DNA binding domain 

 The DNA binding domain (DBD) is responsible for gene-targeting 

specificity. It localizes the transcriptional activator by binding to specific DNA 

sequences. Through a series of favorable electrostatic and/or Van der Waals 

interactions the DBD makes contact with base pairs and sugar phosphate 

backbones protruding from recognition motifs within the DNA matrix.25, 26 

Historically DBDs have been amenable to structural characterization by both 

solution and solid-state techniques, and thus DBDs are more extensively 

structurally characterized than the TAD. DBDs in transcriptional activators have 

been shown to use several structural folds including zinc fingers, zinc clusters, 

and leucine zippers for DNA binding.27 For example, the alpha helixes of the 

yeast transcription activator Gcn4 are positioned to interact with adjacent 
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pseudo-palindromic 4 bp half sites so that it forms a coiled coil homodimer as 

seen in figure 1-4A.25, 28 As another example, the Zn(II)2Cys6 binuclear clusters of 

the yeast activator Gal4 specifically interact with the highly conserved CGG 

triplets located at the ends of a 17 bp recognition sequence (Figure 1-4B).29, 30 

The DBDs interact with DNA through highly specific interactions with affinities 

ranging from low to high nM.26, 27, 29, 31 Furthermore, techniques like chromatin 

immunoprecipitation and in vivo footprinting have been used to identify the DNA 

binding sites for DBDs within the genome.32-34  Therefore, there is a better 

understanding of how the DBD of transcription activators function in the context 

of activator localization to cognate DNA sequences. 

 

Figure 1-4: Crystal structure of transcriptional activator DBDs in complex with DNA. (A) The 
basic region leucine zipper (bZIP) DNA-binding motif of Gcn4 bound to DNA as a dimer from PDB 
1YSA and (B) the zinc cluster DNA-binding motif of Gal4 bound to DNA as a dimer from PBD 
3COQ. 

C. 2 Transcriptional activation domain 

 The transcriptional activation domain (TAD) of an activator modulates the 

level of transcription of a transcribed gene by facilitating the assembly of the PIC; 
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however, the mechanism by which the TAD accomplishes this remains ill-

defined. It is known that the TAD participates in many interactions throughout the 

course of transcription (Figure 1-5). Some of these interactions with 

transcriptional activators yield post-translational modifications such as 

ubiquitylation, acetylation, phosphorylation, sumoylation, and glycosylation.35-43 

When transcriptional activators are not actively participating in transcription, they 

may be making regulatory contacts with their masking proteins.  

 

Figure 1-5: A schematic showing the different class of interactions of transcriptional activators. 
TADs can participate in high affinity interactions with their masking protein (pink circles), these 
interactions are better characterized than those made with coactivator complexes (green circles) 
that are moderate in affinity, transient in nature and not well characterized. 

These masking interactions are important because the TAD is abrogated from 

interacting with its partners until it is time for transcription.44, 45 For example, the 

TAD of the amphipathic yeast activator Gal4 makes a key masking interaction 

with the repressor protein Gal80 under conditions where glucose is readily 

available, Figure 1-6.46  



9 
 

 

Figure 1-6: Example of a masking interaction between the Gal4 TAD, which is involved with 
galactose catabolism and its masking protein Gal80. In this crystal structure, the Gal4 TAD 
(orange) is bound as an α-helix to its masking protein Gal80 (cyan), from PDB 3E1K. 

 However, in the presence of an inducing sugar such as galactose, a 

conformational change between Gal4 and Gal80 occurs such that Gal4 is able to 

up regulate transcription of galactose inducible genes by making contacts with 

needed partners.47 Because, the TAD is not as well-characterized as the DNA-

binding domain it is primarily characterized by its amino acid content. Such class-

characterizations include proline-rich, glutamine-rich and amphipathic, which is 

the largest and well-studied of all the TAD classes see Figure 1-7.4, 21, 24  

 

Figure 1-7: Examples of TAD classifications.  Amphipathic TADs like the yeast activator protein 
(Gal4) contain acidic residues that are interspersed with hydrophobic residues (highlighted in red) 
Proline rich TADs like the Human CAAT box transcription Factor (hCTF) contains several prolines 
(highlighted in red) residues. Glutamine rich TADs like the Drosophila Antennapedia protein 
(Antp) TAD contains several glutamines (highlighted in red) residues.  
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The amphipathic TADs have hydrophobic amino acids interspersed with polar 

amino acids. It has been demonstrated experimentally that the acidic residues 

within amphipathic TADs contributes to the overall acidity needed for initial 

electrostatic binding to its targets.48-58 On the other hand, results from 

mutagenesis studies show that the hydrophobic residues play a crucial role in 

function. For example, in vitro studies have revealed several hydrophobic 

residues within the amphipathic VP16 TAD, were shown to be critical for 

interaction with transcription proteins as well as for function.48, 53  

 Circular dichroism (CD) and NMR studies with isolated TADs show that 

they are largely unstructured in aqueous solutions at neutral pH.51, 57, 59-69 

However, when TADs are in complex with their binding partners (like masking 

proteins), in hydrophobic solvent or lower pH conditions they have a propensity 

to form alpha-helixes or beta-sheets.64, 65, 69 For example Figure 1-6 already 

above shows the Gal4 TAD as an alpha-helix in complex with its masking protein 

Gal80.47, 70, 71 It is still unclear what common structural motifs amphipathic TADs 

must utilize for contacting their binding partners. A general understanding is that 

the coactivator-binding motifs located within activators are transiently-structured. 

52, 72-74 Put together, the lack of structural detailed information available for TADs 

further demonstrates the complexity encountered in the mechanistic 

understanding of TAD function and further, the discovery of artificial 

transcriptional modulators.   
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D. The binding partners of TADs: the great unknown 

 Amphipathic transcriptional-activation domains are known to exhibit 

promiscuous binding profiles, a trait that comes as a result of their need to 

interact with multiple proteins in order to assemble transcriptional complexes at 

the promoter (Figure 1-2). For example, many proteins have been shown to 

interact with the Gal4 TAD in vitro.75 Biochemical and genetic experimental 

evidence have suggested that Gal4 has several targets including TBP, TFIIB, 

Med15, Cdk8, Tra1, Taf12, Srb4 and Sug1, among others.14, 17, 18, 76-84 However, 

while much is known about interactions between TADs and isolated, purified 

protein partners in vitro, little is known about the direct, in vivo interactions that 

occur as an activator recruits large, multi-protein complexes throughout 

transcription initiation.4 The next few paragraphs highlight the difficulty 

encountered so far by scientists while defining targets of transcriptional activators 

and the many possible targets that have been proposed. 

 The discovery of the direct binding partners of transcriptional activation 

domains has been the focus of intense study since the early 1980s. The earliest 

experiments focused upon components of the transcription machinery - general 

transcription factors- and RNA pol II as candidates for TAD interactions.85, 86 

TBP, a component of the general transcription factor complex TFIID was shown 

by in vitro experiments to interact with amphipathic TADs.81, 87, 88 Soon after, 

TFIIB recruitment was also shown to be important for activator-dependent 

transcription.89, 90 Additional studies produced a growing list of suggested target 

complexes including TFIIH, TFIIA and RNA pol II. Further evaluation of these 
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suggested targets in the form of in vitro transcription assays, where these 

components were supplemented in the experiments, did not stimulate activated 

transcription and TAD function.91-94 91-94 A little later, TBP-associated factors 

(TAFs), components of the TFIID, were speculated to contact TADs during TFIID 

recruitment and thus joined the list of putative targets of TADs.95-97 This belief 

was questioned in 1996 after reports from both the Struhl and Green groups 

indicated that TAFs were not essential for transcription in yeast.98, 99  

 Soon after, it was discovered that other protein complexes were needed 

for activated transcription and possibly could serve as TAD binding partners. The 

Mediator is a modular complex, consisting of a head, a middle module and a tail. 

The head interacts with RNA pol II while the tail region has been predicted to 

interact with TADs.100 Apart from TFIID, the Mediator complex has been shown 

to be recruited to gene promoters.101 For example, Gal1, a tightly regulated 

promoter and developmentally regulated promoters utilize Mediator recruitment 

and possibly TFIID to synergistically recruit RNA pol II and the transcriptional 

machinery.101 Although the Mediator complex is not utilized at all promoters, it 

has been shown to be important for activated transcription.101-106 In fact, a series 

of biochemical and genetic experiments suggest that the Med17 (Srb4), CDK8 

(Srb10), Med15 (Gal11), and Med2 subunits of the Mediator complex interact 

with TADs (Figure 1-8).46, 78, 107  
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Figure 1-8: A schematic showing some subunits within the Mediator complex that have been 
named potential binding partners of TADs. 

Additionally, chromatin remodeling and modifying complexes have equally been 

considered as TAD targets because of their role in transcription initiation.108-112 

The ATP-dependent nucleosome remodeling complex, SWI/SNF, is required for 

function and binding of Gal4 to nucleosomal binding sites in vivo at low 

affinities.113 Other TADs like VP16, Gcn4, Swi5, and the mammalian 

glucocorticoid receptor, through in vitro experiments could interact with ATP-

dependent nucleosome remodeling complexes. Another complex, SAGA, is a 

chromatin modifying complex that contains histone modifying enzymes as well as 

a subset of TAFs. This complex has been shown through cell-based experiments 

to be recruited by transcriptional activators.117, 118 In vivo FRET experiments have 

shown that within the SAGA complex, the protein Tra1, which is required for 

Mediator recruitment to the upstream activating sequence (UAS) of the 

endogenous Gal1 Gene directly, interacts with the Gal4 TAD.17, 18  This result 

indicated that Tra1 may be a direct, in vivo target of Gal4.   
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 Both the 26S and the 19S proteasome have been thought to play an 

important role in regulating transcription. Although the proteasome is not 

considered a member of the transcription machinery, it is thought to control 

activator stability and abundance by proteolytically degrading the activator after it 

initiates transcription.119 Specifically, within the 19S component, the proteins, 

Sug1 and Sug2 through in vitro and in vivo experimental evidences are thought 

to be transcriptional targets, since the proteasome is associated with proteolysis 

mediated transcriptional regulation.77, 120-124 

 In spite of the success made so far, much is yet to be determined about 

the direct targets of activators. Decades of studies have very successfully 

identified the complexes that are recruited by activators, but much is still 

unknown about their direct binding partners within those complexes. To fully 

appreciate transcriptional mechanisms, there has to be a better understanding of 

the direct PPIs needed for transcriptional regulation. Importantly, this 

understanding is instrumental to therapeutic intervention for transcription related 

diseases.   

E. Transcription-related diseases 

Numerous diseases are associated with malfunctioning transcriptional 

regulators, resulting in much interest in identifying molecules that can correct 

misregulated pathways.45, 125, 126 A number of activator●co-activator interactions 

are implicated in human diseases and are thus potential targets for therapeutic 

intervention.127, 128 As an example, the oncogenic tyrosine kinase HER2 is 

regulated via the activator-coactivator interaction between ESX and SUR2, and 
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disruption of this interaction with a small molecule blocks proliferation of cells 

exhibiting this phenotype.127 However, the broader discovery of inhibitors of 

transcriptional protein interactions has been problematic, largely due to the lack 

of knowledge about which contacts TADs make with coactivators as they are 

turning a gene on.129-134  

 The modular architecture of transcriptional activators simplifies the general 

strategy for designing artificial replacements. One can imagine, for example, 

creating an artificial transcriptional activator by replacing one or both of the native 

DNA-binding and transcriptional activation domains with non-natural 

counterparts, a modular replacement strategy that has been successfully used in 

a number of applications. For example the nonnatural zinc finger protein (ZFP), 

which serves as a modular replacement for DBD, has been successfully 

engineered to recognize specific DNA sequences required for gene activation 

(Figure 1-9).  In one particular study, the target gene for which the non-natural 

zinc finger protein was designed encoded for vascular endothelial growth factor A 

(VEGF-A), which when aberrantly expressed has been linked to tumorgenesis, 

diabetic retinopathy, ischemic heart and limb disease.135 The designed ZFP, 

which was engineered to bind a specific DNA sequence within the VEGF-A 

promoter, was fused to either VP16 or p53 transcriptional activator to produce 

expression of VEGF-A.135 In another study, ZFP dependent transcriptional 

activation was used to induce angiogenesis in infected mice.136 Currently, ZFPs 

are in clinical trials and are being evaluated for efficacy in treating diabetic 

related diseases, neuropathy, cancer, and HIV infection.137-139 Other artificial 
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DBD replacements to include the polyamides, triplex forming oligonucleotides 

(TFOs) and peptide nucleic acids (PNAs) have also been designed and utilized in 

in vivo and in vitro experiments.140-144  

 

Figure 1-9: A schematic of zinc finger protein as a modular replacement for DBD. ZFP binds a 
specific DNA sequence where the tethered VP16 TAD recruits coactivators and RNA polymerase 
II, leading to increased levels of gene expression. 
 

 Similar to DNA binding domains, transcriptional activation domains can 

also serve as replacement therapies for inducing transcription. For example, the 

TAD VP16 when fused to REST DBD was able to activate transcription by 

offsetting the repressor element-1silencing transcription/neuron-restrictive 

silencer factor (REST/NRSF) repression. In abnormal cerebellum, REST/NRSF 

inhibits transcription by repressing a set of neuronal differentiation genes by 

binding the same promoter regions as transcriptional activators, thus blocking 

activator occupancy.139, 145 In this experiment, a REST DBD-VP16 TAD fusion 

protein was used to de-repress REST/NRSF regulated genes in mice with pre-

formed medulloblastoma tumors. Results showed that not only were the terminal 

neuronal differentiation genes being expressed, but cells expressing REST-VP16 
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displayed signs of apoptosis, and importantly, there was evident reduction in the 

tumor size after four weeks (Figure 1-10).139  

 

Figure 1-10: 4 weeks of treatment with adenovirus containing REST-VP16 fusion protein resulted 
in a reduction in tumor size compared to the control. 

Although therapeutic TAD replacements are desired, there are a limited number 

of non-protein-based TADs. A greater number of the commonly used TADs are 

short sequences from their endogenous counterparts. A major limitation when 

using protein-based TADs is proteolysis, this lack of stability results to reduced 

cellular delivery. Therefore, a reasonable approach will be to generate synthetic 

TADs like small molecules that do not have the limitations mentioned above. The 

problem with using small molecules is that they cannot easily replicates PPIs, 

because these types of interactions entail large surface contacts, which are 

required for specificity.146-151  The fact that irrespective of the extensive research 

employed thus far to generate synthetic TADs, there are only a hand full of 

examples see Figure 1-11, further underscores the difficulty encountered in 

generating synthetic TADs. In fact, the first synthetic small molecule TAD (Figure 

1-11A) to have come so far to having a close binding 
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Figure 1-11:  Artificial small molecule TADs. (A) Isoxazolidine, made by Mapp and coworkers,  
(B) a peptoid made by Kodadek and coworkers and (C) Wrenchnolol, made by Uesugi and 
coworkers. 

fingerprint with natural TADs, and have been shown to exhibit close function in in 

vitro and in vivo experiments was reported by the Mapp laboratory.152, 153 At this 

rate, better understanding of transcriptional PPIs with emphasis on the direct- 

partner interactions, will help to better design small molecules that can suffice for 

larger protein surface contacts and further serve as both mechanistic tools and 

prototype transcription-based therapeutic agents.  

Furthermore, the array of transcriptional proteins available for possible 

binding, and the possibility that a protein may bind to more than one protein to 

facilitate assembly of a large (>50 proteins) complex needed for transcription has 

made the understanding of activator-target interactions difficult. Without knowing 

exactly which targets interact with a specific activator for transcriptional activation 

to occur, it is difficult to design screens for small molecule modulators that exhibit 
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the needed multi-partner binding profile. As discussed in detail in the next 

section, a major hindrance to the identification and characterization of direct PPIs 

involved in transcription is that the methods that have been employed to study 

these types of interactions have shortfalls. A better understanding of activator-

target interactions will help to forge towards the development of efficient 

transcriptional modulators particularly those that can function as inhibitors. 

F.  Strategies for capturing protein-protein interactions 

 To efficiently understand transcriptional PPIs, one has to ensure that the 

methodologies employed for studying these types of interactions are appropriate. 

Over three decades, researchers have used traditional biochemical and genetic 

techniques to study protein-protein interactions required for transcription. Using 

these methodologies and techniques has revealed several possible targets that 

interact with transcription activators. Many questions are still unanswered 

especially, what are the relevant direct binding partners of transcriptional 

activators? Due to the complex nature of transcription, results from 

methodologies like traditional genetic deletions are not readily understood and 

interpreted. This is because of the pleiotropic effects observed when critical 

proteins and/or sequences of critical transcription proteins are altered.154, 155 

Transcriptional machinery proteins like Med15 and CBP can employ the same 

binding surface to interact with multiple activators and other proteins.78, 82, 156-158  

This functional redundancy creates the possibility for the disruption of an 

interaction(s) to be compensated for, to some extent, by other interactions that 

may or may not be physiologically relevant. In like manner TAD sequences 
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contain overlapping binding sites. For example, the VP16 TAD sequence can 

interact with a number of transcription protein targets, as well as the ubiquitnating 

E3 ligase complex.159-161 Therefore, deletion or mutagenesis within the VP16 

TAD can affect more than one single binding event making results from such 

experiments hard to interpret. 

 Biochemical techniques have revealed a significant amount of information 

regarding transcriptional network facilitators; however, little progress has been 

achieved in discovering the direct binding partners of transcriptional activators. 

For example, chromatin immunoprecipitation (ChIP) is an extensively used 

method that uses formaldehyde to crosslink proteins to DNA, thus revealing a 

snapshot of all the protein complexes interacting at a particular DNA location. 

ChIP has been a fundamentally important technique in showing what coactivator 

complexes co-localize with activators at a given promoter, and additionally, 

delineating the general time of co-localization. In two examples, in vivo ChIP 

assays were used to reveal that SAGA was localized to the Gal4 upstream 

activation sequence (UAS), and that the SAGA and ADA complexes were 

targeted to the promoter of a Gcn4 regulated gene.18, 159, 162 Although ChIP has 

been useful in identifying the proteins that associate with activators at the 

promoter, one major limitation of this method is that is does not readily 

distinguish between proteins that are directly contacting one another from those 

that are interacting indirectly. In addition, ChIP cannot provide information on the 

spatial arrangement of coactivators or the relative distances between associated 

proteins. 
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 While ChIP cannot be used to determine the relative distances between 

proteins within a complex or between complexes, fluorescence resonance 

energy transfer (FRET) has proven to be a useful tool for studying molecular 

dynamics such as protein-protein interactions and protein conformational 

changes. When used to study two proteins that are in close proximity, the first 

and second proteins are labeled with donor and acceptor fluorophores, 

respectively. If these proteins come in close proximity to one another, the donor’s 

excitation energy is transferred to the acceptor’s fluorophore so that the 

acceptor’s emission is predominantly observed. Using in vivo FRET, Bhaumik et. 

al. found that Tra1, a subunit of the SAGA complex interacts with Gal4 in yeast.17 

Even though FRET gives spatial information about coactivators and TADs in 

comparison to ChIP, its limitations include a high probability of false negatives as 

well as false positives. Fluorophores that are poorly positioned in such a manner 

that they are incapable of interacting gives rise to false negatives. Another 

complexity is that TAD structures are not well defined, so, determining where to 

place fluorophores when studying transcription protein interactions is even more 

difficult. False positives occur when the two proteins containing fluorophores are 

brought together by a bridging protein even though they are not directly 

interacting. False positives can easily be a problem in a transcriptional context, 

since several protein complexes continually interacts with one another to achieve 

transcription.  

 Another technique, in vitro photo-crosslinking has two major advantages. 

Not only can it be used to identify the direct binding partners of a TAD but also it 
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can specify the binding site, and even, amino acids involved with binding when 

paired with other methods. This experiment requires that a label which has 

crosslinking capabilities is placed on the protein of choice like a TAD, and upon 

UV activation the protein forms covalent bonds with any proteins that are in close 

proximity. Using this technique in the presence of purified PIC in vitro, the Hahn 

group identified several potential direct binding partners of the yeast activator 

Gcn4 to include Tra1, a component of SAGA, Med15, a component of Mediator, 

and Taf12, part of the SAGA and TFIID complexes.131 In this experiment, Gcn4 

was labeled with the aryl azido photo-crosslinker 125I-PEAS, which interacts with 

proteins through a cysteine mediated disulfide bond formation.131 A similar result 

was reported by the same group for yeast Gal4 TAD, which was shown to target 

Tra1, Taf12 and Med15 also within the purified PIC in vitro conditions.163  

 Similarly, other crosslinking agents have been used to investigate the 

binding behavior of isolated TADs. Another, aryl azide crosslinker, Sulfo-SBED, 

has been utilized to study the direct in vitro binding partners of the transcriptional 

activators VP16 and Gcn4. Sulfo- SBED also contains a biotin label, which when 

transferred to the target is useful for Western blot analysis. After crosslinking, the 

biotin handle is transferred to the target through a DTT mediated disulfide bond 

disruption. Using this crosslinker, two TADs VP16 and Gcn4 were thought to 

interact with three subunits of the Swi/Snf complex namely, Swi1, Snf2 and 

Snf5.164 Although in vitro photo crosslinking experiments are better poised to 

present direct binding partners of TADs, these experiments have flaws as well. 
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 One flaw of in vitro crosslinking experiments is that the linker lengths of 

photo crosslinkers utilized for in vitro photo crosslinking increases the number of 

false positives associated with these experiments. For example, 125I-PEAS, has a 

linker length that makes it possible for crosslinking to extend 14 Å beyond the 

alpha carbon of the cysteine.165 Therefore, increasing its ability to capture in-

direct binding partners that may be serving as bridge proteins to the actual 

relevant direct partner, leads to false positives. Another limitation is that some 

photo cross-linkers can nonspecifically label the TAD. For example, Sulfo-SBED 

carries out nonspecifically labeling of lysines, this again, increases the probability 

of false positives as well as false-negatives, which further complicates 

interpretations from such experiments. Therefore, there is a pressing need for a 

technique (discussed in chapter 2) that satisfies the limitations presented in 

others.  

G. Thesis overview 

 Chapter 1 presents a brief description of transcription, the numerous 

research endeavors of scientists seeking to understand the mechanisms involved 

with transcription, the modular nature of transcriptional activators, the types of 

interactions and interacting complexes associated with transcriptional activators, 

and the methodologies that have been used to identify these activator targets, 

and finally the health benefits associated with understanding transcription 

activator interactions with strides made so far towards this end. Chapter 2 starts 

out making the case that there is an immense need for better methodologies that 

has to be employed to better understand transcription PPIs. Furthermore, 
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chapter 2 describes the development, optimization, implementation, and 

validation of an in vivo photo-crosslinking strategy that can be utilized for 

studying transcriptional PPIs.  Chapter 3 further pushes the envelope by 

determining whether in vivo photo-crosslinking strategy can be employed to 

capture weak affinity targets as well as endogenous targets. Chapter 4 concludes 

by proposing some future experiments that can be carried out to accurately 

characterize activator-target binding interfaces. The work presented in this 

dissertation is the much-needed step that has to be accomplished before the 

effective design and generation of small molecule- screens appropriate for the 

search of transcriptional PPI modulators.  
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CHAPTER 2 
CAPTURING A KEY BINDING PARTNER OF GAL4 IN S. 

cerevisiae* 
 

A.  Chapter overview 

 Transcriptional activators are proteins that modulate transcription, this 

requires that they bind to several other proteins to assemble the pre-initiation 

complex (PIC) for transcription to occur 1, 2 Due to several decades of research, 

there is a greater understanding of  the complexes that co-localize with 

transcriptional activators at gene promoters. And yet not much has been 

revealed regarding the direct binding partners within those complexes.3-9 This 

lack of understanding of transcriptional protein-protein interactions, and 

correspondingly the mechanisms used to successfully turn on genes, can in part 

be attributed to the methodologies that have been employed to study 

transcription PPIs. Importantly, a major roadblock towards the development of 

transcriptional therapeutics has been the lack of detailed mechanistic 

understanding of interactions between activators. Towards the identification of 

direct partners of activators, in this Chapter I outline the development of a 

strategy, in vivo photo-crosslinking that will be tested and evaluated for capturing 

a key direct binding partner of the prototypical transcription activator Gal4.   
                                            
* Portions of this Chapter have been published. Chinmay Y. Majmudar, Lori W. Lee, Jody K. 
Lancia, Adaora Nwokoye,  Qian Wang, Amberlyn M. Wands, Lei Wang and Anna K. Mapp, J. Am 
Chem Soc. 2009, 40, 14240-42. 
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B.  In vivo photo crosslinking strategy 

 All of the techniques for studying protein-protein interactions surveyed in 

Section E of Chapter 1 have helped to deepen our understanding of 

transcriptional protein-protein interactions. However, to correctly define activator 

binding partners, we need methodologies and/or strategies that capture relevant 

direct protein partners of transcriptional activation domains (TADs) in an in vivo 

context. Satisfying the major limitations presented in other techniques would 

mean that such a methodology would be able to covalently capture the direct-

binding protein partners of transcriptional activators in their native environment. 

 One problem encountered while studying transcriptional activator 

interactions is the low abundance of transcription proteins. A detailed report from 

Erin O’Shea and coworkers revealed that transcriptional proteins are generally 

less than 5000 copies per cell (Table 2-1)10. Another major challenge is that 

transcriptional activators only transiently interact with proteins in order to 

assemble the PIC.11  With these considerations in mind, we wanted to develop a 

strategy for studying transcriptional protein-protein interactions that would 

capture direct binding partners. This methodology should possess the ability to 

capture all the interactions that activators carry out, even transient interactions 

that are modest in strength, with little to no perturbation of the proteins interacting 

interfaces. 
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Table 2-1: Transcriptional proteins classified by either the complex they associate with or the 
function they perform in the cell with the number of protein copies per cell based on the yeast 
GFP fusion database (http://www.yeastgenome.org). 

Figure 2-1 shows a schematic of the strategy conceived. In vivo photo- 

crosslinking strategy, as defined here, includes using site-specific incorporation 

to label the TAD with a photo-reactive nonnatural amino acid that has the ability 

to form covalent crosslinks to the nearest binding partners. Following 

crosslinking, the crosslinked complexes were immunopurified and the identities 

of the binding partners were then determined by Western blot analysis. Indeed, 

the in vivo photo crosslinking strategy outlined in Figure 2-1 holds great promise 

for tackling the problems encountered so far when studying direct TAD binding 
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partners. This strategy does not only expand the utility of mutagenesis but can 

covalently capture direct proteins in live cells, with a molecule that minimally 

perturbs the protein surfaces.     

 

Figure 2-1: A schematic of the in vivo photo crosslinking strategy. In this strategy, A TAD protein 
(red box) with a site specifically incorporated photo-crosslinker is used to accomplish crosslinking 
and further crosslinked complexes are immunopurified before the identities of the binding 
partners of the TAD are determined by Western blotting analysis or other comparable techniques. 
 

C.  Nonsense suppression strategy and nonnatural amino acids 

 One way to achieve site specific incorporation of an amino acid with 

unique crosslinking abilities is to use nonsense suppression strategy. In the sub-

sections below, I will provide a brief description of nonsense suppression 
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strategy and the two commonly used nonnatural amino acids with unique abilities 

that are suited for the studies described in this chapter. 

C.1. Nonsense suppression strategy 

 The site-specific incorporation of nonnatural amino acids has facilitated 

the expansion of the genetic code beyond the twenty naturally occurring amino 

acids.12-14 One of the most powerful methods, nonsense suppression, uses the 

cell’s translational machinery to incorporate nonnatural amino acids into a protein 

of choice.14  Standard site-directed mutagenesis techniques are used to 

incorporate a stop codon like an amber stop codon (TAG, the least used stop 

codon in most organisms) into the DNA sequence encoding the protein of 

choice.13, 15  A tRNA that has been acylated with the desired nonnatural amino 

acid recognizes the amber stop codon during translation and incorporates the 

desired non-natural amino acid into the protein sequence. tRNA acylation is 

accomplished in the cell by using a modified aminoacyl-tRNA synthetase, which 

is capable of charging the tRNA with the nonnatural amino acid (Figure 2-2 ).  

Nonnatural amino acid incorporation has been accomplished in eukaryotes and 

bacteria in vitro and in vivo.16, 17  In eukaryotes, especially S. cerevisiae, there 

are only a handful of examples with successful incorporation of non-natural 

amino acids. 

 A long list of tRNA modifications have been carried out to achieve an 

appreciable amount of protein that contains site specifically incorporated 

nonnatural amino acid in bacteria, yeasts and mammalian systems.  
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Figure 2-2: Site-specific incorporation of nonnatural amino acids in vivo, using nonsense 
suppression strategy. By means of the endogenous translational machinery, an orthogonal 
tRNA/synthetase pair recognizes the amber stop codon (designated here as a blue box) and 
charges the tRNA with a nonnatural amino acid.  
 
For efficient incorporation of a nonnatural amino acid, the modified tRNA needs 

to be paired with a tRNA synthetase (orthogonal pair), which will only recognize 

that tRNA and incorporate the nonnatural amino acid instead of stopping 

translation or incorporating one of the naturally occurring amino acids.13, 18 The 

first orthogonal tRNA/synthetase pair in E. coli was developed by the Schultz 

group. By modifying the tRNATyr/tyrosyl-tRNA synthetase from Methanococcus 

jannaschii (M. jannaschii) they were able to realize low aminoacylation across 

kingdoms.18  Through a general scheme of negative and positive selections, an 

efficient pair of orthogonal tRNA and tRNA synthetase that recognizes the amber 

stop codon was identified.  The negative selection retains the orthogonal tRNAs 

from the library, and the subsequent positive selection retains the functional 

tRNAs with high affinity for the cognate synthetase. Briefly, first, a library of 
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tRNAs was generated by mutagenizing specific nucleotides on the tRNA and a 

library of tRNA synthetases were generated by randomizing some amino acid 

residues in the active site of the tRNA synthetase before the selection rounds, 

which yielded the efficient orthogonal tRNA and tRNA synthetase.18   

 Using the orthogonal tRNA/tRNA synthetase pairs designed for each 

unique amino acid, over 30 nonnatural amino acids have been successfully 

incorporated into proteins in bacteria. Also in bacteria, site-specific nonnatural 

amino acids have been successfully incorporated into proteins with yields of 

several milligrams to tens of milligrams per liter.19-22  In contrast, the yields in 

eukaryotic systems have been significantly lower, ranging from 5ng/L to 8mg/L, 

which has been attributed to the differences in tRNA processing between 

prokaryotes and eukaryotes.15, 23, 24 As an ongoing effort, several other groups 

have worked towards improving mutant (protein with the nonnatural amino acid 

incorporated) protein expression in eukaryotes by several modifications 

including: i) adding elements to the tRNA expression plasmid that are found 

naturally in eukaryotic tRNAs such as the A and B box and removing the 3’-CCA 

found in prokaryotic tRNAs, to generate a mature and functional tRNA (ii) testing 

expression of the tRNA under the control of different promoters and (iii) 

inactivating the rapid nonsense mediated mRNA degradation mechanism.23, 25, 26  

 Toward increasing protein expression yields in yeast, various groups have 

made key modifications to the first tRNA/tRNA synthetase reported by the 

Schultz group. Figure 2-3 is a summary of the different modifications that have 

been made to the orthogonal tRNA reported by Schultz.  Starting with the Hahn 
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group, the effect of different promoters needed to drive tRNA production was 

tested. In these experiments, Hahn reported that the medium-strength N(GTT)PR 

promoter was able to produce “normal” levels of proteins with the nonnatural 

amino acid incorporated while the strong promoter fell short.24, 26  

 Further modifications were made by the Schultz laboratory where the 

orthogonal tRNA was expressed by a strong Pol II promoter. pPGK1 drove the 

expression of 3(SUP4-tRNA) chimeras, which are tRNAs lacking the 3ʼ-CCA, but 

having SUP4 5ʹ and 3ʹ -flanking sequences.15 SUP4 is a pol III promoter that 

contains internal A and B boxes, which is required for yeast tRNA transcription, 

unlike bacteria tRNAs.23  

 

Figure 2-3: A summary of modifications made to the original tRNA developed by the Shultz 
group. 

Additionally they removed the 3ʼ CCA nucleotides which is normally lacking in 

yeast.  The series of modifications reported here, which was made to 

accommodate the difference in how bacteria and yeast process tRNA, were used 

to produce the fully processed tRNA.27, 28   The new tRNA/tRNA synthetase 
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reported in these experiments was used to yield hSOD protein containing p-

propargyloxyphenylalanine ranging 3-10mg/L.23  

 More recently, Wang and co-workers further improved the 

tRNA/synthetase expression plasmid, such that the E. coli tRNA may be post-

transcriptionally cleaved to yield the final tRNA.25 Using two yeast  genes, SNR52 

and RPR1 that are transcribed by Pol III and contain A and B-box promoter 

elements, they achieved enhanced production of the functional tRNA.25  Similar 

to the second generation Schultz tRNAs, the Wang laboratory inserted the E. coli 

tRNA lacking the 3ʼ-CCA but the SUP4 3ʼ-flanking sequence into the plasmid.23, 

25 Their experiments showed that this new tRNA/synthetase expression plasmid 

yielded the mature tRNA and a subsequent increase in protein yield, 6-9 fold 

compared to the constructs with the SUP4 5ʼ-flanking sequence alone.25 They 

also showed that SNR52 promoter driving tRNA transcription produced more 

incorporated protein product even though having SUP4 5ʼ-flanking sequence 

alone produced more tRNA, highlighting that tRNA processing possibly impacts 

tRNA function.25  

 Increasing nonnatural amino acid incorporation in eukaryotes opens the 

door to endless opportunities, since proteins with novel functionalities in 

appreciable amounts can be used to probe unanswered biological questions. For 

example nonnatural amino acids with crosslinking abilities can be used to 

covalently capture undefined direct binding partners of transcriptional activators. 

In the next sub-section, I will describe the two commonly used nonnatural amino 
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acids, which possess photo-reactive moieties that are employed in this chapter 

for studying transcriptional protein-protein interactions. 

C.2. Nonnatural photo-reactive amino acids 

 Photo-active nonnatural amino acids have been used in vitro and in vivo 

for photo-crosslinking and photo-affinity labeling while studying protein-protein 

and protein/ ligand interactions.14, 29, 30 The strength of the covalent bond formed 

after UV irradiation maintains the ligand/protein-target complexes, which are 

otherwise lost because of weak binding affinities seen with conventional methods 

used for studying ligand/protein interactions.14, 31-36 Using nonsense suppression 

strategy, two primary nonnatural amino acids (pBpa and Azpa) that can 

participate in covalent capture have been successfully incorporated into proteins 

in vivo.23 37, 38 The first, p-benzoyl-l-phenylalanine (pBpa) when activated, forms a 

diradical upon UV irradiation at 350-365 nm (Figure 2-4) making it able to insert 

into C-H bonds found in amino acids chains on the protein backbone of a close-

by protein. pBpa has been shown to preferentially insert into C-H bonds that are 

connected to nitrogen or sulphur atoms, followed by triple and double bonded 

carbon bonds.39-41 

 

Figure 2-4: pBpa crosslinking reactive mechanism 
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 In particular, pBpa shows a preference for reacting with methionine. When 

two helical peptides containing pBpa were used to label the hydrophobic cavity 

on calmondulin, pBpa selectively labeled two separate methionines in this 

cavity.42 Other experiments have equally shown similar results similar to those 

reported by DeGrado and coworkers and further, that pBpa can react with 

methionine beyond the 3.1 Å reactive radius.43  pBpa C-H insertion may not 

occur even in the presence of methionine because it was determined that the 

ideal angle of pBpa diradical attack is 108.9º, which occurs almost in-plane.41 

Advantages for using pBpa as a crosslinker include that its excitation wavelength 

(350-365 nm) is less damaging to biomolecules than Azpa. 15, 40 Another 

advantage is that the diradical induced by UV light can be maintained for up to 

120 μs. If C-H insertion was not achieved, pBpa can relaxes back down and then 

re-initiate diradical formation, thereby increasing its chances of crosslinking.44 

 p-Azido-L-phenylalanine (pAzpa) is another nonnatural amino acid that 

has been used for studies in in vivo systems.  It is believed that aryl azides like 

pAzpa convert to the more stable ketenimine upon UV irradiation at ~254 nm, 

and then crosslink to nucleophilic side chains in the protein-binding surface 

(Figure 2-5).32, 45, 46 In one experiment the aryl azide located within a synthetic 

phospholipid bilayer was able to crosslink to tryptophan present on the 

polypeptide gramicidin, which was positioned at almost the opposite end.46 

Additionally, pAzpa can insert into either C-H or heteroatom-H bonds.40 

Unsuccessful insertion causes the nitrene to rearrange to a more stable 

ketenimine, which can react with nucleophiles like water.40, 47   
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Figure 2-5: pAzpa crosslinking reactive mechanisms 

 Overall, incorporation of either pBpa or pAzpa in TADs will be useful for 

probing and targeting known and undiscovered direct binding partners of 

transcriptional activators. Making this route particularly promising is the fact that 

a large number of proposed TAD targets possess methionine and/or tryptophan 

and histidine residues, preferred by pBpa and pAzpa, respectively. For example, 

key residues needed for interaction between the well-characterized TAD, p53 a 

tumor suppressor protein, and its repressor protein, MDM2 includes methionine, 

tryptophan and histidine. Therefore, a p53 TAD containing either pBpa or pAzpa 

can be predicted to result in efficient crosslinking.48  In summary, proteins 

containing pBpa and pAzpa may be efficient tools for studying transcriptional 

protein-protein interactions. In the next section, both pBpa and pAzpa will first be 

evaluated for efficient incorporation in the yeast transcriptional activator Gal4, 

followed by further development and optimization of the in vivo photo-crosslinking 

strategy, leading to the identification of a known direct binding partner of Gal4 in 

live yeast. 
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D.  Results and discussion 

 One issue that remains unresolved in transcriptional protein-protein 

interactions is the identity of the direct binding partners of TADs during the 

process of transcription. To address this issue we used S. cerevisiae as the 

model organism because its transcriptional machinery is highly homologous to 

that of higher eukaryotes.49 Importantly, genetic manipulations are fairly 

straightforward50 in yeast relative to mammalian systems. Also we used the 

prototypical activator Gal4 for studies reported here to examine if an in vivo 

photo-crosslinking strategy can be utilized to identify direct TAD binding targets. 

   As the most characterized of the amphipathic activators, Gal4 is 

responsible for up-regulating expression of genes whose protein products are 

responsible for galactose catabolism in yeast.51 Gal4 function is tightly regulated 

by the inhibitory protein Gal80.52, 53 In the presence of glucose, Gal4 is engaged 

in an interaction with Gal80, making Gal4 unable to contact the necessary 

proteins for transcription initiation. Conversely, in the absence of glucose and in 

the presence of the inducing sugar galactose, Gal4 is no longer inhibited by 

Gal80 and is able to activate transcription (Figure 2-6).52, 53  
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Figure 2-6: The general mechanism of Gal4 activation. In the present of glucose transcription is 
repressed by Gal80 and under galactose growth conditions Gal4 is activated for transcription. 

Gal4 contains an N-terminal DNA binding and dimerization domain (DBD 

residues 1-147) and a C- terminal transcriptional activating (TAD residues 840-

881) domain.54 The Gal4 TAD has been shown to stimulate transcription in all 

eukaryotes tested when linked to a heterologous DBD, such as LexA.55, 56  Here, 

all Gal4 TADs were linked to LexA DBD and constructed for expression in S. 

cerevisiae as previously described.57 All protein expression was carried out in a 

yeast strain (LS41) containing an integrated LacZ reporter downstream of two 

LexA binding sites and the Gal1 promoter. 

D.1. Optimization experiments for in vivo photo-crosslinking studies 

 Initially, our first goal was to develop a yeast system that could be used to 

successfully incorporate and express modified proteins (Gal4 having a 

nonnatural amino acid incorporated) in good yields.  However, one primary 

problem of site-specific nonnatural amino acid incorporation is that there is often 

both read-through and high amounts of truncated protein. Here, read-through is 

defined as the incorporation of any other amino acid except for the nonnatural 

amino acid at the amber stop codon, which results in a full length transcriptional 
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activator that lacks the unnatural amino acid. Truncated proteins are defined as 

the resulting protein product when either a natural or nonnatural amino acid is not 

inserted during translation.  A chimeric construct, LexA-Gal4 with a C-terminal 

FLAG tag, was constructed for initial yeast expression studies. In this construct 

the well-studied bacterial repressor protein, LexA was to serve as the DBD for 

localization to DNA, Gal4(840-881) as the TAD for interaction with the 

transcriptional machinery and FLAG was added for Western blot analysis.58 In 

initial studies the construct in Figure 2-7, LexA-Gal4Phe849TAG, achieved by 

standard site directed mutagenesis, was used to develop conditions needed for 

successful incorporation. 

 

Figure 2-7: The chimeric LexA-Gal4 construct used for initial optimization experiments. 

D.1a. tRNA/synthetase optimization experiments 

 To achieve the best tRNA/synthetase plasmid for expressing full-length 

protein containing pBpa, Dr. Majmudar and I carried out a side-by-side 

comparison of four eukaryotic tRNA/tRNA synthetase (tRNA/aaRS) systems that 

have been previously published by other research groups. The first system 

obtained from the Schultz group was a single copy tRNA/aaRS plasmid from 

which two variants, expressing either 2 or 3 copies of the tRNA, were generated 

in our laboratory.24 The second system, which was an improvement reported by 
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the Hahn laboratory, had a medium-strength N(GTT)PR promoter driving a single 

copy E. coli tRNACUA.26 The third system, also developed by Schultz laboratory, 

involved a modification to their first system in which a strong two Pol II promoter, 

pPGK1 drove the expression of 3(SUP4-tRNA) chimeras, which are tRNAs 

lacking the 3ʼ-CCA, but having SUP4 5ʹ and 3ʹ -flanking sequences.23, 24 The final 

system was more recently improved by the Wang laboratory. In their system, a 

Pol III promoter (pSNR52) containing consensus A and B box sequences were 

used to enhance the production of tRNA lacking the 3ʼ-CCA, but maintaining the 

SUP4 3ʼ-flanking sequence.25 These four tRNA/aaRS systems were used to test 

incorporation of the nonnatural amino acid pBpa in vivo into Gal4 TAD at 

Phe849.  In order to test this, the tRNA/aaRS and the LexA-Gal4849TAG coding 

plasmids were co-transformed into S. cerevisiae (LS41 strain). Successful 

incorporation yielding full-length protein (~30 kDa) was evaluated by Western 

blotting to detect the C-terminal FLAG tag. Results from these experiments 

showed that the Wang system that used a pSNR52 promoter yielded the most 

mutant protein output with minimal read-through (Figure 2-8). This result also 

indicates that the addition of the A and B boxes, which influence the production 

of functional tRNA, is important for efficient incorporation.  
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Figure 2-8: Using 4 different tRNA/synthetase systems (described above), the pSNR system was 
shown to yield the highest amount of full-length LexA-Gal4(849 TAG) protein with minimal 
amount of read-through. 

D.1.b Optimization experiment with pBpa and pAzpa 

 To further optimize the yield of non-natural amino acid incorporation within 

the Gal4 TAD, we assessed which nonnatural amino acid between pBpa and 

pAzpa resulted in increased incorporation as well as for crosslinking studies. The 

first experiment in this sub-section was carried out to determine if using a pSNR 

tRNA/aaRS, specific for incorporating pAzpa could produce full length LexA-Gal4 

similarly as seen for pBpa. LexA-Gal4849TAG was co-expressed with either the 

Wang group’s pSNR tRNA/aaRS plasmid specific for either pBpa incorporation or 

pAzpa incorporation. Results from Figure 2-9 showed that both pBpa and pAzpa 

were readily incorporated to produce full-length protein. Because the results from 

this experiment were encouraging, the two nonnatural amino acids were further 

explored to assess which would produce efficient crosslinking with modified Gal4.  
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Figure 2-9: Comparison of pAzpa and pBpa incorporation in to LexA-Gal4 to yield the highest 
amount of full-length LexA-Gal4 (849 TAG) protein. Visualized with Flag HRP. 
Gal4WTpSNR(Azpa) and Gal4WTpSNR(Bpa) are controls. 

 A unique problem with transcriptional proteins is that they are not 

abundant proteins;10 thus, we wanted to ensure that the nonnatural amino acid 

that would be selected for studying direct binding partners of Gal4 TAD would be 

efficient for capturing relevant target proteins. Towards that end optimization 

experiments summarized in Table 2-2 were carried out to ascertain the 

conditions needed for optimal crosslinking. After incorporation was achieved, 

LexA-Gal4 proteins containing pBpa or pAzpa were used to test whether UV light 

from either a Rayonet photo reactor at 4°C or an Enrosolar 15W UV lamp with 

cooling would produce crosslinked Gal4 complexes. Among other optimization 

experiments, we carried out a time course experiment to determine the length of 

time required for efficient crosslinking under UV light and we assessed the best 

stage in the population growth phase to harvests our yeast cells (Table 2-2).  



55 
 

 From optimization experiments, starting with the UV source experiment, 

we found that using the Enrosolar 15W UV lamp as a UV light source produced a 

greater number of crosslinked Gal4 complexes for both LexA-Gal4 pBpa and 

pAzpa containing proteins after quantification by western blotting.  

 

Table 2-2: A summary of the experimentally determined optimal conditions for carrying out in vivo 
photo-crosslinking experiments, based on results from all our extensive optimization experiments. 

Overall, from crosslinking experiments, unlike pBpa, pAzpa exhibited a poor 

crosslinking profile. The low level of crosslinking observed could have been 

because pAzpa ketenimine intermediates readily interacts with water, thereby 

decreasing its capturing efficiency.40, 59  From our time course experiment, results 

showed that increased crosslinking time yielded greater number of crosslinked 

Gal4 complexes after quantification by western blotting.  To lessen the negative 

impact of UV exposure on the yeast cells, crosslinking time was limited to 1h. 

Extensive optimization experiments were carried out to determine other optimal 

conditions required for crosslinking experiments, see Table 2-2. All crosslinking 

experiments from this point were accomplished using these optimal conditions 

summarized in Table 2-2. Optimal crosslinking was achieved when: pBpa was 
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used for incorporation, yeast cells were harvested between 0.8-1.5 OD, 

crosslinking with UV light source (15W UV lamp) was between 30-60 min, LexA 

was used for immuno-precipitation and FLAG-HRP was employed for Western 

blot analysis. 

D.2. p-benzoyl-L-phenylalanine incorporation across the Gal4 
transcriptional activation domain* 

 Transcriptional activator function requires the contact of several 

transcriptional proteins; however, molecular understanding of these interactions 

is limited.60 Knowing that we could incorporate pBpa successfully at Gal4 

F849TAG, we hypothesized that in vivo photo-crosslinking with Gal4 containing 

pBpa at various positions along the TAD would give a clearer understanding of 

proteins that interact with Gal4. To test our hypothesis, twelve additional point 

mutations, constructed in the same fashion as LexA-Gal4 F849TAG, were made 

throughout the Gal4 TAD (Figure 2-10).  

 

Figure 2-10: Thirteen amino acid residues (highlighted in red) selected for pBpa incorporation 
along Gal4 TAD. 

Some of the residues mutated for the incorporation of pBpa in the Gal4 TAD 

have been shown through in vitro experiments to be important for binding to a 

well-studied binding partner like Gal80 or punitive binding partners like Tra1, 

Gal11, Ste12, and Taf12. Starting from the N terminus of the Gal4 TAD, amino 
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acids (a.a) 840 and 846 are thought to be outside Gal80 binding site while 

residues at positions, a.a 859 and a.a 856 have been suggested by protein gel 

shift experiments to be important for Gal4-Gal80 binding.61  Furthermore, 

residues at positions a.a 860, a.a 864 and a.a 868, have been implied to engage 

in mediating the Gal4-Gal80 interaction. With the exception of positions a.a 861 

and a.a 867, in vitro crosslinking indicates that a.a 869, a.a 870 and a.a 873 may 

contact Tra1, Gal11, Ste12, Taf12.62 In addition, the last three positions, were 

selected to test if they were permissive for the incorporation of pBpa. The profile 

of all the residues selected was such that every amino acid class would be 

represented (see Table 2-3).   

 

Table 2-3: Selected residues for TAG mutation were representative of all the amino acid classes. 

D.2.a. p-benzoyl-L -phenylalanine incorporation experiments along the Gal4 
TAD1 

 To determine if pBpa can be successfully incorporated throughout the 

Gal4 TAD, eleven pLexA high copy expression plasmids expressing the wild type 
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(Wt) LexA(1-202)+Gal4(840-881)+FLAG  and ten separate TAG mutations, were 

individually co-transformed with the already tested pSNR tRNA/synthetase pair 

plasmid in LS41 yeast strain.  pSNRtRNA-рBpaRS incorporates pBpa at the 

amber stop codon mutations in the LexA-Gal4TAG constructs. Individual yeast 

colonies were grown in selection media containing 2% glucose.  Following 

incubation, these cultures were used to inoculate 5 mL cultures induced with or 

without 2 mM pBpa for protein expression. The cells were lysed and analyzed by 

Western blotting with a FLAG-HRP conjugated antibody. All mutants of Gal4 

were observed to express the full length protein only in the presence of pBpa 

(Figure 2-11). 

 

Figure 2-11: Evaluation of site-specific incorporation of pBpa at 10 positions along the Gal4 TAD. 

Extending this study to the broader range of mutations throughout the Gal4 TAD 

resulted in improved incorporation at all positions, although the efficiency varied. 
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D.2.b. Transcriptional activity of Gal4 containing p-benzoyl-L -phenylalanine 
proteins* 

 In our next set of experiments the functional impact of incorporating pBpa 

across the Gal4 TAD at all thirteen positions using quantitative ß-galactosidase 

assays was determined. The repressor protein Gal80 inhibits Gal4 TAD 

activation in the presence of glucose.  Gal4’s inactivation by Gal80 can be 

overcome when galactose is present. Therefore, what we expected to see in our 

experiments was Gal4 activation in raffinose/galactose condition and the 

opposite in glucose conditions.   

 

Figure 2-12: The functional impact of incorporating pBpa into the Gal4 TAD. (A.) β-galactosidase 
assays in LS41 (yeast strain), testing for pBpa incorporation with different sugars. (B.) Further 
analysis of β-galactosidase assays carried out in A. to assess fold activation (C.)  LS41 contains 
an integrated LacZ reporter downstream of two LexA binding sites and the Gal1 promoter. 

To determine if pBpa was transcriptionally functional and also, the efficiency of 

incorporating pBpa in all the Gal4 mutants, β-Galactosidase assays63 were 
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performed using yeast cells expressing the LexA-Gal4 mutants. The yeast cells 

were grown in media containing either 2% raffinose + 2% galactose, 2% raffinose 

or 2% glucose and each sugar with or without 2 mM pBpa. As expected in Figure 

2-12 under raffinose/galactose growth conditions, all the Gal4mutant proteins 

showed activity, and it seemed that activity was enhanced when the TAG 

mutation was closer to the C-terminus of Gal4TAD. Conversely, under glucose or 

raffinose growth conditions minimal transcriptional activity was observed, 

therefore the Gal4 protein containing pBpa was able to maintain its 

environmental sensitivity and be repressed by Gal80. Further analysis to assess 

the effect of truncation on activation (Figure 2-12C), indicates that Gal4 mutant 

protein incorporated from TAG positions closer to the N terminus, possibly have 

low protein truncations since they showed greater fold activation over their 

counterparts on the C terminus. 

D.2.c. In vivo photo-crosslinking across the Gal4 transcriptional activation 
domain* 

 Once it was known that pBpa could be successfully incorporated at 

various positions along the Gal4 TAD and that all the mutants maintained 

functional activity, we carried out in vivo photo-crosslinking experiments to 

determine the binding profile of the Gal4 TAD. After pBpa was incorporated, 

yeast cells were crosslinked under optimized conditions. The cells were 

subsequently lysed and analyzed by Western blotting.  Excitingly, all Gal4 

mutants formed several crosslinked products, consistent with the multi-partner 

binding nature of Gal4.62, 64, 65 Also, different binding profiles were exhibited 
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across the entire Gal4 TAD, so that there were some shared and unshared 

targets. For example, all the mutant proteins except for positions a.a 840 , a.a 

856 and a.a 879, formed crosslinked products with a particular protein, adding up 

to the molecular weight of ~80 kDa (highlighted in the red box, Figure 2-13). We 

hypothesized that the boxed band was Gal80, which has a molecular weight of 

~50 kDa.   

 

Figure 2-13: In vivo photo-crosslinking experiments with 13 Gal4 mutants containing pBpa. 
Crosslinked complexes are only observed with application of UV light. A band with a sum 
molecular weight of 80 kDa (red box) is shared by most mutants. 
 
 Being able to capture Gal80 as a direct binding partner of Gal4 in vivo, 

would demonstrate the usefulness of photo-crosslinking strategy for identifying 

direct transcription protein-protein interactions.  
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Figure 2-14: Crosslinking experiments to determine whether Gal4 crosslinks to c-Myc-Gal80 in 
vivo. (A.) Yeast cell expressing c-Myc-Gal80 and LexA-Gal4849Bpa. Only in the presence of c-
Myc-Gal80 and UV light is Gal4-Gal80 crosslink observed. The experiment with Gal80 Wt is 
control. (B.) Yeast cells expressing c-Myc-Gal80 containing pBpa at positions 234 (outside Gal4 
interacting site) and 245 (within Gal4 interacting site). Only position 245 shows crosslinking Gal80 
(lane 4), lane 5 is used as control. 

To determine if the 80 kDa protein complex was an interaction between Gal4-

Gal80, Dr. Majmudar carried out crosslinking experiments in live yeast cells. In 

this experiment a c-Myc-tagged version of Gal80 was introduced into yeast and 

subsequently the cross-linked products between Gal4 and Gal80 was visualized 

with a c-Myc antibody (Figure 2-14A).  Similarly, pBpa was incorporated into 

Gal80 at residue a.a 245 and crosslinking experiments with LexA-Gal4 confirmed 

that Gal4 directly interacts with Gal80 (Figure 2-14B).   

 We know that a.a 856 on the Gal4 TAD has been suggested to be 

important for Gal4-Gal80 interaction, but crosslinking experiments, showed what 

seemed to be attenuated binding due to pBpa incorporation at that position.61, 66  

To clarify if pBpa incorporation was responsible for attenuated interaction or loss 

of binding, Dr Majmudar carried out fluorescence polarization experiments to 
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access the binding of Gal4 TAD pBpa containing peptides, with Gal80. This 

experiment revealed that on the contrary, the Gal4856pBpa TAD exhibits a KD of 

0.7 ± 0.2 µM for Gal80, and this KD is nearly identical to 1.2 ± 0.1 µM, (which is 

for the native Gal4 TAD with Gal80). Similarly, Gal4852pBpa and Gal4867pBpa 

TAD mutants, which seemed to show better crosslinking in Figure 2-13, had KDs 

that were nearly identical to that of Gal4856pBpa TAD. A possible explanation for 

the differences seen across the TAD for pBpa crosslinking is that the 

benzophenone moiety on pBpa may have been better positioned for 

crosslinking.43  

 Conventional mutagenesis and structural studies have suggested that the 

amino acids 851-871 on the Gal4 TAD comprise the binding site for Gal80.  It is 

somewhat surprising that this short sequence incredibly impacts the function 

within Gal4-Gal80 complex interaction.61, 66, 67 Using crosslinking experiments we 

were also able to see, that positions beyond 851-871, showed crosslinking to 

Gal80 (Figure 2-13). This result suggests that Gal4-Gal80 interaction extends to 

positions 846 on the N terminus, and 875 on the C terminus, but not as far as 

840 and 879 (Figure 2-13) 

 We also demonstrated that pBpa could be incorporated in the Gal4 TAD to 

replace residues from all amino acid classes. Furthermore, an in vivo photo 

crosslinking strategy was used to capture Gal80, a well-defined binding partner 

of Gal4. Using this strategy also revealed an extended Gal4-Gal80 contact 

interface, a finding that was not uncovered with traditional biochemical methods. 

The important information from the experiments reported in this sub-section is 
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that an in vivo photo cross-linking strategy is appropriate for capturing direct 

protein-protein interactions in live cells. 

E. Impacting crosslinking efficiency by increasing mutant protein output 

 Even though in vivo photo-crosslinking is a powerful method, it has not yet 

been successfully used to report discovery of novel PPIs, which would be the 

most powerful implementation of this strategy.  Discovering unknown PPIs using 

this method require that ample amount of protein containing a crosslinker is 

produced and the crosslinker placement and reactivity are ideal for target 

identification.  Some barriers to crosslinking experiments with site specifically 

incorporated nonnatural amino acids often include, low incorporation efficiencies 

and the inherent selectivities of the crosslinking reactions, all of which could 

perturb the crosslinked protein product distribution.15, 40 Significant optimization of 

mutant protein expression is required to effectively maximize the chances for 

producing crosslinks in eukaryotes.  

 To further improve the incorporation efficiency of the photo-crosslinker, 

pBpa, we first determined the optimal pBpa concentration needed to achieve the 

highest amount of incorporation, a variable we had not addressed in our previous 

optimization experiments. Secondly, the copy number of orthogonal tRNA and 

aaRS was optimized. Finally, a chemical agent that aids in mis-sense codon 

read-through was evaluated for pBpa incorporation.  Again, using the yeast 

transcriptional activator Gal4 as a model system we were able to show the 

optimal conditions for expressing the highest yield of the protein with the 

crosslinker incorporated, thus increasing the chances of capturing a direct 
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binding partner. The Gal4 model system was used not only because it is a well-

studied transcriptional activator, but it interacts with low abundant proteins 

involved in transcription that have a history of being difficult to define.2, 10, 68 

E.1. Effect of tRNA and Synthetase copy number on pBpa incorporation 
efficiency  

 Since our earlier optimization experiments (Section D.1) showed that the 

Wang pSNR52 system yielded the most protein activity and mutant protein 

output while minimizing read-through, we focused our optimization on the 

pSNR52 system. We evaluated the concentration of pBpa required for yielding 

the highest amount of mutant protein by varying the concentration of pBpa 

present in the growth media.  Our results show that an optimal concentration of 

pBpa of 1 mM, was sufficient and afforded yields of modified protein that were 

~64% of the WT construct (Figure 2-15A).  pBpa concentrations greater than 1 

mM did not show increase in the yield of full-length LexA-Gal4 Phe849pBpa 

protein. This may be because increasing pBpa concentration in the media may 

not necessarily increase the amount present in the cell as demonstrated 

previously with other nonnatural amino acids in mammalian systems.70 

Decreasing pBpa concentration to 0.5 mM resulted in a slight decrease in pBpa 

incorporation.  

 Knowing the optimal concentration for pBpa incorporation, we further fine-

tuned the conditions in the pSNR52 system to improve mutant protein output, by 

increasing the copies of gene for both the tRNA and tRNA synthetase. 

Additionally, we evaluated the effect of varying the copy number of the aaRS and 
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its significance on the incorporation efficiency. In this set of experiments, we 

compared pBpa incorporation under the following tRNA/aaRS expression 

conditions: 1 copy рSNR52 tRNA/1 copy aaRS; 2 copies рSNR52  tRNA-1 copy 

aaRS; 1 copy рSNR52 tRNA-2 copies aaRS and 2 copies рSNR52 tRNA-2 

copies aaRS.  Results from the β-galactosidase assays, which also compared 

transcriptional activity of three additional tRNA/aaRS systems, revealed a slight 

gain in activity for the 2 copies рSNR52 tRNA-1 copy aaRS and 2 copies 

рSNR52 tRNA-2 copies aaRS constructs (Figure 2-15B). To determine if the 

slight gain in activity was due to an increase in incorporation efficiency, LexA-

Gal4 Phe849pBpa protein expression was measured by Western blot analysis for 

the same tRNA/aaRS combinations. Figure 2-15C showed an increase in pBpa 

incorporation with 2 copies рSNR52 tRNA-2 copies aaRS, but a lowered 

expression with 2 copies рSNR52 tRNA-1 copy aaRS. Contrary to previous 

publications, these results with 2 copies рSNR52 tRNA-2 copies aaRS, shows 

that the additional copy of tRNA and synthetase resulted in an increase in full 

length mutant protein output, as well as statistically significant gain in activity 

(Figure 2-15B, blue box).70, 71  
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Figure 2-15: Determining the optimal orthogonal tRNA/aaRS pair, pBpa concentration, 
tRNA/aaRS copy number and the effect of PTC124 on LexA-Gal4 Phe849pBpa protein output.  
(A.) A quantitated Western Blot of lysed yeast generated using the pSNR52 tRNA/aaRS pair. 
Yeast cultures where grown in the presence of varying concentrations of pBpa. The % protein 
yield is calculated relative to WT LexA-Gal4. To account for loading variations, each band was 
normalized to α-tubulin. (B.) The optimal tRNA/aaRS pair and copy numbers was determined by 
β-galactosidase assays. The amount of activity, which is the average values of three independent 
experiments with the indicated error (SDOM), is related to functional protein output. Within the 
pSNR52 tRNA/aaRS system (red box), The construct with 2 tRNA and 2 aaRS copy numbers 
showed statistically significant activity with a p value of 0.0066 (** = p) (C) A quantitated Western 
Blot of lysed yeast generated with varying copy numbers of the tRNA/aaRS. The % protein yield 
is calculated relative to optimal LexA-Gal4 Phe849pBpa (pSNR 1 copy of tRNA and aaRS each). 
To account for loading variations, each band was normalized to α-tubulin and ~10% read-through 
was observed in the absence of pBpa. (d) A Western Blot of lysed yeast generated using the 
pSNR52 tRNA/aaRS in the presence of varying concentration of PTC124.  All quantitated 
Western Blots were analyzed by Adobe Photoshop software to determine the density of the 
protein bands. 
 

E.2. Effect of PTC124 on pBpa incorporation efficiency 

 The final experimental strategy employed to increase protein output was 

to use Premature termination codon 124 (PTC124) to create a loose translational 

mechanism that would permit an increase of amino acid incorporation at our 

engineered amber stop codon (TAG). PTC124 (Figure 2-16) in chemical 

footprinting studies have been shown to bind to the 60s ribosomal subunit 

thereby inducing read-through of nonsense mutations by allowing the ribosome 
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to insert an amino acid at a premature stop codon.72-74 PTC124, functioning as a 

nonsense codon suppressor, results in read-through of the mutation and 

synthesis of the mature protein.74  

 

Figure 2-16: PTC124 

To test if the presence of PTC124 will increase pBpa incorporation, LexA-Gal4 

Phe849TAG and рSNRtRNA-рBpaRS plasmids were expressed in yeast at 

varying concentrations of PTC124. The addition of 0.1 µM to 10 µM PTC124 did 

not show increase in either full-length mutant protein output (Figure 2-15D) or 

transcriptional activity (data not shown). Results seen here may be because 

PTC124 propagated read-through levels for the UAG termination signals are 

generally less than UGA.75 Also, since propensity of stop codon suppression 

depends on the nucleotide at the +1 position of the coding sequence, using 

PTC124 in these experiments may not have been optimal.75-77 Based on these 

results it appears that the use of PTC124 as a vehicle to increase read-through 

did not result in increased protein output. 

 Collectively, the work in this section addresses some key variables that 

affect the experimental outcome when using photo-crosslinking in live cells. 

Several factors need to be considered when using in vivo photo-crosslinking for 

studying PPIs. We were able to demonstrate here that increasing the copy 
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number of tRNAs and aaRS present in the vector produced more protein, and a 

significant gain in activity was observed. Applying the considerations presented 

here would aid the use of in vivo photo-crosslinking as a tool for studying PPIs 

involved in a variety of biological processes. 

F.  Methods  

 LS41 [JPY9::pZZ41, Matα his3∆200 leu2∆1 trp1∆63 ura3-52 lys2∆385 

gal4 URA::pZZ41] yeast was used for all experiments. pBpa was purchased from 

Chem-Impex International (Wood Dale, IL). All plasmids described below were 

constructed using standard molecular biology techniques and the sequences of 

all the isolated plasmids were verified by sequencing at the University of 

Michigan Core Facility (Ann Arbor, MI). 

Table 2-4: Plasmids used for study in Chapter 2 

Plasmid name Function 

pLexAGal4 Expresses LexA(1-202)+Gal4(840-
881)+FLAG tag 

pLexAGal4 840TAG, pLexAGal4 846TAG, 
pLexAGal4 849TAG, pLexAGal4 852TAG, 
pLexAGal4 856TAG, pLexAGal4 859TAG, 
pLexAGal4 861TAG, pLexAGal4 867TAG, 
pLexAGal4 869TAG, pLexAGal4 871TAG 

Express LexA(1-202)+Gal4(840-
881)+FLAG tag with a TAG 
replacing the codon of the existing 
amino acid 

pSNRtRNA-pBpaRS  Expresses tRNA under the control 
of the SNR52 promoter and 
contains synthetase specific for 
pBpa 

ptRNA-pBpaRS Expresses tRNA with no eukaryotic 
Pol III promoter and contains 
synthetase specific for pBpa24 

pMycGal80 Expresses Gal80 fused to c-Myc 
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tag 

pMycGal80 234 TAG, pMycGal80 245 
TAG 

Expresses Gal80 fused to c-Myc 
tag with a TAG replacing the codon 
of the existing amino acid 

pmOCR-Gal80 Expresses Gal80 fused to the 
mOCR solubility tag in E. coli 

 

pLexAGal4 

A high copy plasmid expressing LexA(1-202)+Gal4(840-881)+FLAG tag under 

the control of the ADH1 promoter was created from pNLexA (Origene). First, site-

directed mutagenesis was used to mutate the existing EcoRI and BamHI sites at 

the N-terminus of LexA and subsequently to insert EcoRI and BamHI sites at the 

C-terminus of LexA, producing the plasmid pCLexA. Primers (5’- TTA CGA ATT 

CTG GAC GGA CCA AAC TG -3’) and (5’- AGT GGA TCC TTA TTT GTC GTC 

GTC GTC TTT ATA GTC CTC TTT TTT TGG G -3’) were used to amplify 

Gal4(840-881) from EGY48 yeast genomic DNA. The amplified PCR product was 

digested with EcoRI and BamHI and inserted into pCLexA digested with EcoRI 

and BamHI and calf intestinal phosphate treated to create pLexAGal4. 

pLexAGal4 840TAG, pLexAGal4 846TAG, pLexAGal4 849TAG, pLexAGal4 

852TAG, pLexAGal4 856TAG, pLexAGal4 859TAG pLexAGal4 861TAG, 

pLexAGal4 867TAG, pLexAGal4 869TAG and pLexAGal4 871TAG plasmids 

containing various amber mutants in the Gal4 TAD were derived from 

pLexAGal4. To create each plasmid, site-directed mutagenesis was used to 

replace an existing amino acid codon with TAG within the Gal4 TAD. In general, 

PCR primers were designed to have ~15 bases of homology on either side of the 
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TAG mutation. QuikChange (Stratagene, La Jolla, CA) was used to incorporate 

the TAG mutants using manufacturer recommended conditions.  

pSNRtRNA-pBpaRS 

The previously described pSNRtRNA-TyrRS plasmid incorporating tyrosine at the 

amber position was used to generate a plasmid pSNRtRNA-pBpaRS to 

incorporate pBpa at the amber position.25 This plasmid was generated by 

insertion of the pBpa-specific E. coli tyrosyl synthetase (amplified from ptRNA-

pBpaRS (p-benzoylPheRS-2)24 obtained from Dr. P. G. Schultz, Scripps 

Research Institute, La Jolla, CA) using primers 5’- AGT TCA ACT AGT ATG 

GCA AGC AGT AAC TTG ATT -3’ and 5’-TCG ATC TCG AGT TAT TTC CAG 

CAA ATC AGA CA-3’) into SpeI and XhoI digested and calf intestinal phosphate 

treated pSNR TyrRS. 

pMycGal80, pMycGal80234TAG and pMycGal80245TAG 

A plasmid expressing Gal80 fused to the c-Myc tag under the control of the 

ADH1 promoter was generated by insertion of DNA encoding S. cerevisiae Gal80 

into the high copy plasmid pADT7 (Clontech, Mountain View, CA). Primers 5’- 

TGT GAA GCT TAT GGA ACA AAA GTT GAT TTC TGA AGA AGA TTT GGA 

CTA CAA CAA GAG ATC TTC G -3’ and 5’ CGT CAA GCT TTT ATA AAC TAT 

AAT GCG AG -3’ were used to amplify Gal80 from LS41 yeast genomic DNA. 

The amplified PCR product was digested with HindIII and inserted into HindIII 

digested and calf intestinal phosphate treated pADT7. pMycGal80234TAG and 
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pMycGal80245TAG were constructed by performing site-directed mutagenesis to 

incorporate a TAG codon to replace the codon of the existing amino acid 

Incorporation of pBpa into LexA(1-202)+Gal4(840-881)  

LS41 yeast was transformed with various pLexAGal4 TAG mutant plasmids and 

pSNRtRNA-pBpaRS or ptRNA-pBpaRS. Individual colonies were grown in 5 mL 

SC media containing 2% glucose but lacking histidine and tryptophan for 

selection. The cultures were incubated overnight at 30 °C and agitated at 250 

rpm. Following incubation, these cultures were used to inoculate 5 mL cultures of 

SC media containing 2% glucose, with or without varying amounts of pBpa 

(dissolved in 50 μL of 1M NaOH), and 50 mL 1M HCl, except for the PTC124 

experiments were varying concentrations of PTC124 (0, 0.1,1 and 10µM) were 

first dissolved in DMSO and then added, were subsequently incubated overnight 

at 30 °C with agitation to an OD660 of 1.5. 3 ODs of cells were isolated, washed 

with cold, sterile water and stored dry at -20 °C. The samples were lysed in 10 

mL 4x NuPAGE LDS Sample buffer (Invitrogen), 15 mL Lysis Buffer (50 mM Tris-

Acetate, pH 7.9, 150 mM KOAc, 20% glycerol, 0.2% Tween-20, 2 mM b-

mercaptoethanol, 2 mM MgOAc) 5 mL 1M DTT and analyzed using Western blot 

with the anti-FLAG(M2) antibody (Sigma). 

In vivo cross-linking 

To perform in vivo cross-linking, individual colonies of each pLexAGal4 TAG 

mutant were grown in 5 mL SC media containing 2% glucose but lacking 

histidine and tryptophan for selection. The cultures were incubated overnight at 
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30 °C and agitated at 250 rpm. Following incubation, these cultures were used to 

inoculate 50 mL cultures of SC media containing 2% glucose, with 2 mM pBpa 

(dissolved in 0.5 mL of 1M NaOH), and 0.5 mL 1M HCl, which were subsequently 

incubated overnight at 30 °C with agitation to an OD660 of 1.5. For each mutant, 

50 ODs of cells were isolated, washed with water and either resuspended in 2 

mL water and irradiated for 1 h with 365 nm light (Eurosolar 15 W UV lamp) with 

cooling or kept in the dark at 4 °C. Following irradiation, all the cells were pelleted 

and stored at -80 °C until lysis. For lysis, cells were resuspended in 600 mL Lysis 

buffer (50 mM Hepes-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 

0.1% Na-Deoxycholate and 2X Complete Mini, EDTA Free Protease Inhibitor 

(Roche) and lysed using glass beads by vortexing at 4 °C. Subsequently, the 

lysate was pelleted and the supernatant incubated with 10 mL of LexA antibody 

(N-19, Santa Cruz Biotechnologies) for 2 h at 4 °C for immunoprecipitation. The 

protein bound to the antibody was isolated by incubation for 1 h with ~50 mL of 

prewashed protein G magnetic beads (Dynal Corporation, Invitrogen, Carlsbad, 

CA) at 4 oC. The beads were washed  3X with 1 mL Wash Buffer (10 mM Tris-

HCl pH 8.0, 250 mM LiCl, 0.5% NP-40, 1% Na-Deoxycholate and 1 mM EDTA) 

and stored dry at -20 oC. The protein was eluted from the beads by heating at 95 

oC for 10 min in NuPAGE LDS Sample buffer  (Invitrogen, Carlsbad, CA) 

containing DTT and probed using Western Blot analysis using anti-FLAG (M2) 

antibody (Sigma, St. Louis, MO). 

β-Galactosidase assays 
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To evaluate the ability of each LexA+Gal4 TAG mutant in the absence or 

presence of 2 mM pBpa to activate transcription, saturated cultures (SC media + 

2% raffinose) of each mutant were used to inoculate 5 mL SC media lacking 

histidine and tryptophan supplemented with 2% glucose or 2% raffinose + 2% 

galactose or 2% raffinose and grown to an OD of 1.5-2.0 before being harvested. 

The activity of each construct was monitored using β-galactosidase assays as 

previously described.63   

Expression of Gal80 

Expression of Gal80 fragments fused to the His6-mOCR solubility tags was 

carried out in Rosetta2 (DE3) pLysS E. coli cells (Novagen). Briefly, cultures (50 

mL) from single colonies were grown overnight at 37°C (300 rpm) in Select APS 

Super Broth (Difco) supplemented with ampicillin (100μg/mL) and 

chloramphenicol (34 μg/mL) before addition to 1L of Select APS Super Broth 

supplemented with ampicillin (100 μg/mL). After an OD600 of 0.8 was reached, 

the cultures were cooled on ice for 30 m, and expression was induced with IPTG 

(final concentration 0.1 mM) for ~14 h at 20 °C. The cell pellet was resuspended 

in Buffer A (100 mM Tris pH 7.5 at 4 °C, 10% glycerol (v/v), 150 mM NaCl, 10 

mM β-ME and Roche Complete Protease Inhibitor Cocktail), lysed using 

sonication, and the His-tagged protein was isolated using Ni NTA-Agarose 

(Qiagen). The Ni-NTA beads were washed 6 times with Wash buffer (100 mM 

Tris pH 7.5 at 4 °C, 10% glycerol (v/v), 150 mM NaCl, 10 mM β-ME, 30 mM 

imidazole). The protein was eluted from the beads at 4 ºC 3 times using Elution 

buffer (100 mM Tris pH 7.5 at 4 °C, 10% glycerol (v/v), 150 mM NaCl, 10 mM β-
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ME, 300 mM imidazole). The resulting mixture was placed in dialysis tubing 

(Pierce) and the buffer exchanged to a low salt buffer (50 mM Tris pH 7.5 at 4 °C, 

10% glycerol (v/v), 50 mM NaCl, 10 mM β-ME) overnight at 4 °C. The solution 

thus obtained was loaded onto an anion-exchange column (Q sepharose, GE 

Healthcare) and eluted with a NaCl gradient from 0-1 M. Fractions containing 

Med15(1-416) were pooled and buffer exchanged to Storage buffer (10 mM PBS 

pH 7.4, 10% glycerol, 0.01% NP-40, 1 mM DTT) using a PD-10 column (GE 

Healthcare) and concentrated using a 30K centrifugal filter device. The protein 

concentration was measured using absorbance at 280 nm. The identity and 

purity of the protein was verified by reducing SDS-PAGE with appropriate 

molecular weight standards. 

Peptide Synthesis 

Gal4(840-870) peptides with pBpa at various positions were synthesized using 

solid phase peptide synthesis in accordance with standard protocols. FMOC-

pBpa was purchased from Chem-Impex International. The peptides contained a 

b-alanine linker at N-terminus and they were labeled using fluorescein 

isothiocynate on solid phase and subsequently cleaved using 95% TFA, 2.5% 

TIS, 2.5% H20. The products were purified to homogeneity using reversed-phase 

HPLC on a C18 column with a gradient solvent system (buffer A: 20 mM 

Ammonium Acetate, buffer B: MeOH) and stored at -80 ºC. The identity was 

verified using electrospray mass spectrometry (LCT Micromass). 

Fluorescence Polarization  
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Dissociation constants for fluorescein labeled Gal4 TADs and Gal80 were 

determined using fluorescence polarization as previously described. For each 

experiment, 50 nM TAD was incubated with varying concentrations of Gal80 in 

100 mM PBS pH 7.2, 10% glycerol, 0.01% NP-40, 1 mM DTT and incubated for 

10 min in 384 well low volume plate (Corning) before being detected using a 

TECAN Genios Pro plate reader and the dissociation constant calculated as 

previously described. 
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CHAPTER 3 
DISCOVERY OF ENDOGENOUS TARGETS OF 

TRANSCRIPTIONAL ACTIVATORS* 

A.  Chapter overview 

 Transcriptional activators are engaged in numerous interactions with a 

variety of protein partners, ranging from masking proteins or suppressors to 

multi-protein coactivator complexes (Figure 3-1). While the interactions between 

an activator and a masking protein are often high affinity, activators also engage 

in a series of moderate affinity, transient interactions with the array of protein 

targets within the transcriptional machinery.1, 2 The majority of the current 

methodologies available to study protein-protein interactions are ideally suited for 

high-affinity interactions; therefore, the relationships between activators and their 

masking proteins are well-characterized.  However, few methods exist that allow 

for the capture of transient protein-protein interactions in their native context.  As 

a result, the interactions between activators and the transcriptional machinery are 

still poorly defined, thus demonstrating clearly the need for new methodologies 

for studying transient and/or moderate affinity PPIs in vivo.  

                                            
* Portions of this Chapter have been published. Krishnamurthy, M., A. Dugan, A. Nwokoye, Y.H. 
Fung, J.K. Lancia, C.Y. Majmudar, and A.K. Mapp, Caught in the act: covalent crosslinking 
captures activator-coactivator interactions in vivo. ACS Chem Biol, 2011. 
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 In Chapter 2, in vivo photo-crosslinking was used to capture the high-

affinity and well-characterized binding interaction between the Gal4 TAD and its 

inhibitory protein Gal80. In this chapter, we will use in vivo photo-crosslinking 

again to capture the moderate-affinity binding interactions of Gal4 with Med15, 

Tra1, Taf12 and Snf2.  Additionally, we extend these studies to include two other 

amphipathic activators, VP16 and Gcn4, and examine if these activators target 

the same subunits within shared coactivator complexes.  

 

Figure 3-1: A schematic showing the different classes of interactions of transcriptional activators. 
TADs can participate in high affinity interactions with repressive masking protein (pink circles) as 
well as with coactivator complexes (green circles) to initiate transcription.  TAD-masking protein 
interactions are generally well-characterized; However, the more moderate -affinity, transient 
interactions between TADs and the transcriptional machinery are not well characterized. 

B.  Significance 

 Many diseases result from misregulated gene transcription, often the 

consequence of a faulty protein network.3-5  Therefore, researchers have a 

vested interest in designing small molecules that serve as transcriptional 

modulators to reconstitute lost interactions.6-9 Nevertheless, the discovery of 

small molecule modulators has been hindered by a lack of structural and 

mechanistic information regarding the transient and multi-partner binding profile 

of transcriptional activators.  Techniques such as co-crystallization and co-
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purification have limited utility for studying transient PPIs in their native 

environments. This is because these techniques are best suited for probing 

stably associated proteins and are less ideal for studying proteins that engage in 

modest-affinity and/or transient multi-protein binding interactions, such as those 

between an activator and the transcriptional machinery.10-12 Biochemical and 

genetic experiments have been used to identify several targets of the 

amphipathic activator Gal4, including TBP, TFIIB, Med15, Cdk8, Tra1, Taf12, 

Srb4 and Sug1 amongst others. 13-24 However, these studies have not 

successfully distinguished which of these speculated targets are indeed the 

binding partners in vivo. Thus, there is a clear need for in vivo methodologies that 

can capture transient activator-coactivator interactions in their native 

environment. 

C.  Targeting the transcriptional machinery during recruitment 

 As discussed previously in Chapter 1, transcriptional activators are 

modular proteins with a DNA binding domain (DBD) that localizes the activator to 

DNA and a transcriptional activation domain (TAD) that mediates the majority of 

contacts with various coactivator complexes.  Activators assemble the 

transcriptional machinery at the promoter of a gene through a series of binding 

interactions with a variety of protein complexes (coactivators), including 

scaffolding proteins, helicase and chromatin-modifying complexes.25, 26 

 Chromatin immunoprecipitation (ChIP) experiments focused on the Gal1 

promoter have demonstrated a sequential recruitment of coactivator complexes 

by the amphipathic activator, Gal4.  First, Spt-Ada-Gcn5-acetyltransferase 
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(SAGA), a chromatin remodeling complex is recruited, followed by the SAGA-

independent recruitment of Mediator and finally RNA polymerase II along with the 

general transcriptional machinery.16 Additionally in other experiments, TADs were 

able to recruit the SWI/SNF complex, an ATP-dependent nucleosome 

remodeling enzyme, to promoters.27, 28 Thus, from all these studies, it is apparent 

that activators like Gal4 recruit complexes such as Mediator, SAGA and 

SWI/SNF. However, the identity of the direct targets within these complexes and 

the extent of these interactions in cells remain unclear. 

C.1 Mediator as a target 

 The Mediator scaffolding complex (Figure 3-2) is modular, consisting of a 

head (8 proteins), middle (8 proteins) and tail module (5 proteins) and serves as 

a bridge between activators and RNA polymerase II.29 30, 31 The Mediator was 

originally discovered in yeast and is conserved in metazoans. 30, 31, 29  27, 28 

Studies from Asturias and coworkers and Tijian and coworkers strongly support 

that the Mediator undergoes several conformational changes when contacted by 

activators.32-34 In addition to the head domain component Med17(Srb4), several 

other proteins from the tail module including Med14(Rgr1), Med3(Pgd1), Med2 

and Med15(Gal11) have been identified to influence transcription.35-37   
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Figure 3-2: An EM image of Mediator in complex with RNA pol II.59 The Mediator complex is 
composed of ~30 proteins divided into three regions, the head, middle, and tail. 
 

 Of this group of proteins, Med15 in particular stands out as a likely direct 

binding partner of transcriptional activators. Med15 is a 120 kDa protein that  

contains a N-terminus GACKIX domain between residues 2-93, and a glutamine 

rich region.38 Importantly, the C-terminus of Med15 has been observed to 

associate with general transcription factors.38, 39 In a study by Gaudreau et. al., 

various components of Mediator was localized to DNA to determine which 

Mediator proteins are sufficient for transcription to occur. From this elegant 

‘activator by-pass’ experiment, it was revealed that Med15 was able to activate 

transcription two orders of magnitude higher than any other Mediator component 

and to similar levels as the potent yeast activator Gal4.40  

 Although the function of Med15 is not fully known, a number of genetic 

and biochemical studies have led scientists to believe that it is a likely target of 

DNA-bound transcriptional activators.18 In addition to Gal4, Med15 has been 
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shown to be essential for activated transcription by the activators Gcn4, Swi5, 

Msn2, VP16 and Met4.41-46 In fact, using direct binding experiments and 

integrated yeast reporter assays, fragments of Med15 were shown to interact 

with a number of natural TADs in vitro and deleting the fragments of Med15 

resulted in a decreased activation in yeast.18, 35, 36 Supporting this, Hahn and 

coworkers performed in vitro crosslinking studies with yeast whole cell extracts 

and identified Med15 to be a target of both Gal4 and Gcn4.47, 48 Furthermore, 

Med15 has been implicated as a target of amphipathic activators through in vitro 

crosslinking and pull-down assays.20, 47-49 Together, these studies suggest that 

Med15 is a probable target of amphipathic activators.  

C.2 SAGA as a target 

 Besides the Mediator complex, the complex SAGA (Figure 3-3) has been 

implicated to interact with transcriptional activators. The SAGA complex is made 

up of TBP-associated factors (TAFs) as well as histone acetyltransferase (HATs) 

which modify histone proteins in the nucleosome.50 The SAGA complex is also 

involved in recognition of methylated histone H3, contacting TATA-binding 

protein (TBP) and deubiquitinating several transcription proteins.51  



88 
 

 

Figure 3-3: A schematic of the SAGA complex, which houses the proteins Tra1 and Taf12, 
implicated as TAD binding partners. 

 During transcription, the SAGA subunits Tra1 and Taf12 are believed to 

directly contact amphipathic activators. 47, 48 In fact, the TADs of Hap4, Gal4, 

Gcn4 and VP16 where shown to interact with purified Tra1, as determined by 

GST-pull-down assays.52 Furthermore, the activator Hap4 was incubated with 

reconstituted SAGA complex in a cell free system and it specifically crosslinked 

to Tra1.52 Additional experiments from Hahn and coworkers helped to support 

that Tra1 was a target of activators. In this in vitro crosslinking experiment, using 

yeast nuclear extracts, the Gal4 and Gcn4 TADs were shown to interact with 

Tra1.47, 48
  Furthermore, experiments carried out by the Green laboratory using in 

vivo FRET-based experiments identified Tra1, in the context of SAGA, as the 

cellular target of the activator Gal4 in live yeast.15, 53  These experiments strongly 

support Tra1 to be a target of activators. 

 Another SAGA protein, Taf12, was shown to crosslink to TADs of both 

Gal4 and Gcn4.47, 48 Taf12 is made up of 539 amino acids and is believed to 

interact with binding partners through a sequence spanning residues 250-260.54 
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Although much is not known about the role Taf12 plays to influence the output of 

transcription, experimental evidence suggests that this subunit is important for 

recruitment of SAGA and TFIID, of which it is also a subunit.  

C.3 SWI/SNF as a target 

 The Swi/Snf chromatin-modifying complex (Figure 3-4) is an ATP-

dependent nucleosome remodeling enzyme that has also been proposed to be 

important for activator function and has been shown to directly contact activators 

in vitro.27, 37, 55-61 62 Studies carried out by Workman and coworkers found that 

Gcn4, Gal4 and VP16 were able to recruit the SWI/SNF complex to several 

promoters in vivo.27, 28 Additional in vivo and in vitro colocalization studies show 

that VP16 recruits the Swi/Snf chromatin-remodeling complex early in 

transcription initiation.27, 62, 63 In addition to the amphipathic activators Gal4 and 

VP16, Gcn4 has been shown through in vivo and in vitro binding studies to also 

recruit the Swi/Snf complex to a variety of promoters, implying that these 

activators are making contacts within the Swi/Snf complex.27, 37, 56-58, 60, 61, 64 

Experimental evidence through in vitro assays exists to further support that within 

the Swi/Snf complex, several subunits are possible targets of transcriptional 

activators.56, 57, 64 
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Figure 3-4: A schematic diagram of the Swi/Snf complex, three subunits from this complex - 
Snf2, Swi1 and Snf5 have been implicated as TAD binding partners. 

One such possible target is the Snf2 ATPase, which is vital for Swi/Snf function 

and is highly conserved among eukaryotes.65 This catalytic subunit, through 

structural studies of Swi/Snf in complex with the nucleosome, has been 

suggested to be positioned close to the activator.28, 66, 67 In vitro studies have 

further suggested that the subunits Swi1 and Snf5 are additional possible 

activator targets.56, 57, 64 Even though several subunits have been proposed 

based on in vitro studies, there is little support as to which subunits serves as the 

activator-binding subunit in vivo. 

D.  Results and Discussions  

D.1. Med15 is a direct partner of Gal4 

 Activators participate in dynamic binding interactions with coactivator 

complexes that are characterized as modest-affinity and/or transient in nature.55, 

64, 68, 69 One of the Mediator proteins, Med15, has been backed by a strong body 

of in vitro and in vivo experimental evidence from our laboratory that suggests it 

has direct contacts with activators.68, 70 Furthermore, the interaction between 
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Med15 and activators such as Gal4, Gcn4 and VP16 has been characterized as 

being moderate in affinity (Figure 3-5).68, 70, 71  

 

Figure 3-5: Med15 interactions with isolated TADs. Kinetic rate constants have determined that 
TADs interact transiently with the coactivator Med15 and equilibrium binding measurements place 
the affinity of the TAD for Med15 in the moderate category.72, 88 
 
Thus, Med15 appeared to be an excellent test case to determine if the in vivo 

photo-crosslinking strategy will be effective for capturing moderate affinity binding 

interactions. Because in vitro crosslinking experiments performed by Dr 

Majmudar from our lab revealed contacts between the N-terminus fragment of 

Med15, (residues 1-416) and TADs of Gal4 and Gcn4, we hypothesized that 

Med15(1-416) is a probable target of Gal4 in vivo.   

 Before determining the ability of the Gal4 TAD to bind Med15(1-416), we 

carried out crosslinking experiments under raffinose and galactose conditions to 

find out if pBpa is readily incorporated under raffinose and galactose conditions 

and also to assess change in the pattern of formed crosslink-complexes as 

compared to growth under glucose conditions.  In this experiment, plasmids 

expressing the LexA-Gal4867TAG mutation were co-transformed with pSNR 
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tRNA/synthetase pair plasmid in LS41 yeast strain. The yeast cells were grown in 

media containing 2% raffinose + 2% galactose with or without 2 mM pBpa.  Our 

anticipation was that under raffinose/galactose growth conditions pBpa would be 

successfully incorporated into the Gal4 TAD. Additionally, the crosslinked Gal4 

complex profile would be different since Gal4 is no more repressed by Gal80 (in 

glucose conditions) and so Gal4 has the ability to interact with other complexes. 

As expected, the Gal4 complex profile was different under raffinose/galactose 

condition and additionally there were more complexes formed (Figure 3-6B).61, 67  

 

Figure 3-6: In vivo photo-crosslinking experiments with Gal4 containing pBpa mutants for 
different sugar conditions. Crosslinked complexes are only observed with application of UV light 
and pBpa. (A.) Experiments were carried out in glucose sugar conditions and (B.) experiments 
were carried out in raffinose/galactose sugar conditions. A comparison of both sugar conditions 
for Gal4867 (red box in A.) and B. show that the Gal4 complex profiles are different and more 
Gal4 complexes are seen in raffinose/galactose conditions.  
 
Next we tested the ability for Gal4 TAD to crosslink with Med15 (1-416) in vivo. 

We carried out our experiment under raffinose and galactose conditions to 

increase the chances for Med15(1-416) to interact with uninhibited Gal4 TAD. In 

this experiment, LexA-Gal4TAG mutants were co-expressed with Myc-tagged 
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Med15(1-416) and subsequently crosslinking experiments were carried out. 

Results show that Med15 indeed interacts directly with Gal4 (Figure 3-7).   

 Previously in chapter 2, the Gal4 TAD was shown to crosslink to Gal80. 

Contrary to reported literature until this time, Gal4 in our crosslinking experiments 

showed an extended binding sequence beyond residues 851-871(Figure 3-6A 

red box).49, 71  In similar analysis, we wanted to determine if Gal4 interacted with 

Med15 with an extended residue sequence. In Figure 3-7, Med15 interaction with 

Gal4 again extends beyond residues 851-871 on the Gal4 TAD. It is possible that 

the length of the Gal4 TAD sequence that participates in binding to Med15 may 

be important in gene up-regulation.  

 

Figure 3-7: In vivo photo-crosslinking captures the moderate affinity interaction between LexA-
Gal4 fusion protein and the Mediator protein, Med15. Live yeast cells bearing plasmids 
expressing LexA-Gal4 fusion proteins containing pBpa at positions 846, 861 and 875, in addition 
to a plasmid expressing Myc-Med15(1-416) were irradiated with UV light (365 nm) for I hr. 
Subsequently, cell lysates were immunoprecipitated with α-LexA and analyzed by Western blot 
(α-Myc). For all constructs, a crosslink with Med15(1-416) was observed. The MW for a Gal4-
Med15 complex is ~ 75kDa 
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D.2. Tra1 is a direct partner of Gal4  

 Based on the result of Med15, we wanted to tease out other 

modest-affinity and/or transient protein binding interactions. In vitro and in vivo 

experimental evidences exist to support that components of the SAGA complex 

directly contact activators.14, 47, 48 In fact, the Hahn group reported that Tra1 

(component of SAGA) and Taf12 (a shared subunit of SAGA and TFIID) 

crosslinked to two TADs.47, 48 Starting with Tra1, which is 433 kDa, we wanted to 

investigate if Tra1 directly contacts Gal4. Previously, Mapp and coworkers 

explored the multiple functional activator binding sites within the Tra1 protein. In 

this study, they created ~50 kDa fragments of Tra1 spanning amino acids 1900-

3500, which was expressed in E. coli as maltose binding protein (MBP) fusion 

proteins. Using fluorescence polarization, their work suggested that only Tra1 

(3092-3524) had any measurable affinity for the TADs used in this study.72 Given 

this experimental evidence that suggests that Tra1 (3092-3524)  binds to 

activator TADs, we carried out crosslinking experiments with Tra1 residues 3000-

3744, which spans Tra1 (3092-3524)  and another Tra1 fragment Tra1(2000-

3000) from the sequence region that did not show binding to TADs.   

 To investigate if Tra1 directly contacts the Gal4 TAD, LexA-Gal4 

residue849TAG mutant was co-expressed with Myc-tagged Tra1 (2000-3000) or 

Tra1 (3000-3744) in yeast cells and grown in media containing 2% raffinose + 

2% galactose with or without 2 mM pBpa. After crosslinking experiments were 

carried out we were able to visualize a crosslink between Gal4TAD and Tra1 

(3000-3744) but not for Tra1 (2000-3000) construct (Figure 3-8).  This result 
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further supports that the Tra1 (3000-3744) sequence within Tra1 is important for 

binding to TADs like Gal4 in vivo. Additionally, the results from this experiment 

signal that the activator’s interaction with Tra1 may be responsible for SAGA 

recruitment to the promoter.47   

 

Figure 3-8: In vivo photo-crosslinking captures interaction between LexA-Gal4 fusion protein and 
the SAGA subunit, Tra1. Live yeast cells bearing plasmids expressing LexA-Gal4 fusion proteins 
containing pBpa at position 849, in addition to a plasmid expressing Myc-Tra1(2000-3000) and 
(3000-3744) were irradiated with UV light (365 nm) for I hr. Subsequently, cell lysates were 
immunoprecipitated with α-LexA and analyzed by Western blot (α-Myc). Between the two Tra1 
constructs, a crosslink with Tra1(3000-3744) was observed. The MW for a Gal4-Tra1(3000-3744) 
complex is ~ 111kDa. 
 

D.3. Taf12 is a direct partner of Gal4 

 Another protein that has been shown through in vitro experiments to 

crosslink to activators is the protein Taf12, which equally associates with the 

SAGA complex.47, 48 In an in vitro crosslinking experiment, Taf12 was reported to 

interact with two prototypical activators, Gal4 and Gcn4.47, 48 Similar to in vivo 

photo-crosslinking experiments carried out with Tra1, we wanted to assess if the 
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Taf12 protein was also a direct binding protein of Gal4. In order to do this, LexA-

Gal4TAG mutants were co-expressed with full length Myc-tagged Taf12 in yeast 

cells and grown in media containing 2% raffinose + 2% galactose with or without 

2 mM pBpa, after which crosslinking experiments were carried out. 

 

Figure 3-9: In vivo photo-crosslinking captures the moderate affinity interaction between LexA-
Gal4 fusion protein and Taf12. Live yeast cells bearing plasmids expressing LexA-Gal4 fusion 
proteins containing pBpa at positions 849, 866 and 867, in addition to a plasmid expressing full 
length Myc-Taf12 were irradiated with UV light (365 nm) for I hr. Subsequently, cell lysates were 
immunoprecipitated with α-LexA and analyzed by Western blot (α-Myc). For all constructs, a 
crosslink with Taf12 was observed. The MW for a Gal4-Taf12 complex is ~ 97kDa. 
 
Results from our crosslinking experiments showed that Taf12 crosslinks to all the 

Gal4 TAD mutants tested (Figure 3-9).  Figure 3-9 also shows that Taf12 

interacts with the residues in the middle of the Gal4 TAD. Based on the results 

from this experiment, one could also propose mechanistically that apart from 

Tra1 or in addition to Tra1, activators utilize interactions with Taf12 to recruit the 

SAGA complex during transcription. 
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D.4. Snf2 is a direct partner of Gal4* 

 Components of the Swi/Snf complex have been suggested to interact with 

transcriptional activators. 15, 35, 56, 57, 65, 82-85 For example, in vitro assays have 

suggested that Snf2, Swi1 and Snf5, subunits within the Swi/Snf complex, to be 

possible targets of TADs. 56, 57, 64 Therefore, we wanted to use in vivo photo-

crosslinking experiments to find subunits within the Swi/Snf complex that directly 

contacts activators. Since, the in vivo crosslinking strategy (with the Gal4 

genetically incorporated, photo-labile amino acid pBpa) was demonstrated to 

serve as a useful method for capturing a direct high affinity protein-protein 

interaction (chapter 2) and a known transient protein-protein interaction (Chapter 

3, section D.1.) we hypothesized that this strategy will be applicable to the 

Swi/Snf complex.73   

 Given that structural studies of Swi/Snf in complex with the nucleosome 

suggested that the catalytic subunit Snf2 is closely positioned to the activator, 

first direct interaction of Snf2 and Gal4 in vivo was determined. 28, 66, 67 Similar 

crosslinking experiments as reported earlier in this section were carried out. In 

these experiments the ability for Gal4 to capture a native binding partner at 

endogenous levels was also tested, therefore Snf2 was not co-expressed.  

Briefly, live yeast cells expressing the LexA-Gal4 Phe867Bpa were photo-

crosslinked, and then the Gal4-Snf2 complexes were immunopurified with a Snf2 

antibody before the complex was visualized with the immuno-detectable FLAG 

probe.  Our results (shown in Figure 3-10) revealed that Snf2 directly contacts 

our Gal4 TAD construct. This experiment not only shows for the first time that 
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Snf2 interacts with Gal4 in vivo but we also demonstrated that in vivo photo-

crosslinking strategy was appropriate for capturing activator targets at their native 

concentrations. On the mechanistic end, it is possible that the interaction 

between Gal4 and the Swi/Snf complex is mediated by Snf2.  

 

Figure 3-10: In vivo photo-crosslinking captures interaction between LexA-Gal4 fusion protein 
and Snf2. Live yeast cells bearing plasmids expressing LexA-Gal4 fusion protein containing pBpa 
at positions 867, was irradiated with UV light (365 nm) for I hr. Subsequently the cell lysates were 
immunoprecipitated with an antibody to Snf2 and resolved by Western blot (α-FLAG) or (Myc). A 
crosslink with Snf2 was observed. The MW for a Gal4-Snf2 complex is ~ 226kDa. 
 
 Next, we wanted to determine if Swi1 and Snf5, other proposed binding 

partners from the Swi/Snf complex, indeed directly contact Gal4.  Using a similar 

strategy employed for in vivo identification of Snf2, live yeast cells expressing the 

LexA-Gal4Phe867Bpa were photo-crosslinked, and then immuno-enriched with 

either a Swi1 or Snf5 antibody before being visualized with the immuno-

detectable FLAG probe.  Contrary to the result seen for the Snf2 experiments, no 

crosslinked products with Gal4 were detected.  A possible interpretation for the 
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Swi1 and Snf5 experiments is that these two subunits do not directly contact 

Gal4, or the Swi1 and Snf5 antibodies used in these experiments were not 

capable of recognizing Gal4-Swi1 and Gal4-Snf5 complexes. In addition, these 

subunits have very low concentrations with about 100-500 copies per cell. 

Therefore, it is equally possible that the low expression levels of these 

coactivators subunits contributed to our results. 

 From our crosslinking experiments it was established that Snf2 was a 

direct binding partner of Gal4 and so further characterization of this interaction 

was carried out. First we wanted to know how much of the Gal4 TAD sequence 

participated in this interaction.  

 

Figure 3-11: In vivo photo-crosslinking suggesting that Snf2 interacts with residues in the middle 
of the Gal4 TAD. Live yeast cells bearing plasmids expressing LexA-Gal4 fusion protein 
containing pBpa at positions 849, 861,867, 869, 871 and 879 was irradiated with UV light (365 
nm). Subsequently the cell lysates were immunoprecipitated with an antibody to Snf2 and 
resolved by Western blot (α-FLAG). Crosslinks were seen for only positions 867 and 869. 

To test this, additional in vivo photo-crosslinking experiments with the Gal4 TAD 

containing pBpa incorporated at different positions were carried out. Figure 3-11 

suggests that Gal4-Snf2 interaction is restricted to residues within the middle of 
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the Gal4 TAD, since this complex is not visualized when pBpa is incorporated at 

positions 849 and 861 (closer to the N terminus), and 871 and 879 (closer to the 

C terminus). 

 In additional efforts to further characterize Gal4-Snf2 interaction, some 

mutations that have been shown to affect Gal4 interaction with binding partners 

without negatively affecting its ability to activate transcription were made.48, 74, 75  

Again crosslinking experiments revealed that these mutations either did not affect 

Gal4’s ability to interact with Snf2 or were not sufficient to disrupt binding to Snf2 

(Figure 3-12). The latter is more consistent with other mutagenesis experiment 

that support that point mutations are not effective for abolishing the function of 

activators.1, 75    

 

Figure 3-12: In vivo photo-crosslinking experiments, suggesting that alanine point mutations at 
TAD positions 856, 868 and 869 do not disrupt Gal4-Snf2 interaction. Live yeast cells bearing 
plasmids expressing LexA-Gal4 fusion protein containing pBpa at positions 867 and alanine 
mutations at positions 856 or 868 or 869  was irradiated with UV light (365 nm). Subsequently the 
cell lysates were immunoprecipitated with an antibody to Snf2 and resolved by Western blot (α-
FLAG). Crosslinks to Snf2 was seen for the entire constructs, suggesting that the alanine 
mutations are not sufficient for disruption snf2 interaction with Gal4.   
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Figure 3-13: The functional impact of incorporating pBpa into LexA-Gal4867TAG in yeast non-
delete, Snf5 delete and Swi1 delete LS41 strains.  Liquid β-galactosidase assay was used to 
assess their ability to up regulate transcription in an integrated LacZ reporter gene in S. 
cerevisiae.  Each activity is the average of values from at least three independent experiments 
with the indicated error (SDOM). 
 
 
 Gal4 interaction with Snf2 revealed that this Swi/Snf subunit may be the 

only direct binding partner and required interaction for an activator like Gal4 to 

engage the Swi/Snf complex. Furthermore, based on the functional results from 

the β-galactosidase assays of Figure 3-13, the subunits Swi1 and Snf5 may be 

carrying out other functions that are required for complex recruitment but not 

specifically for directly contacting the activator. This proposal is supported by 

experimental evidence from similar experiments with the VP16 TAD.76 In this 

experiment, it was determined that the VP16 TAD does not interact with Snf5 but 

Snf5 may work cooperatively with Snf2 for recruitment of the Swi/Snf complex, 

with VP16 directly contacting Snf2.76 In similar results, enrichment with either a 

Swi1 or Snf5 antibody did not result in any detectible crosslinked product for 

VP16. In addition, crosslinking experiment in yeast strains lacking either Swi1 or 
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Snf5, suggests that Swi1 is not a direct target of VP16.76 The results with Med15, 

Tra1, Taf12 and Snf2 signify that a complete interaction map of the direct binding 

partners of transcriptional activators is possible and achievable. 

D.5. Implications of shared and unshared activator targets 

 Transcriptional activators function by binding an array of transcriptional 

proteins, to facilitate assembly of the large (>50 proteins) complex needed for 

transcription. Therefore, there is a great possibility for transcriptional activators to 

use promiscuous binding sequences to interact with their binding partners also 

this style of binding may be conserved within a class of activators. 47, 74, 77 In fact, 

considerable evidence exists that different activators share at least a subset of 

co-activator binding partners in order to up-regulate transcription. As an example, 

the TADs of Gal4, Gcn4, VP16 and XLy have all been shown to bind to the co-

activator Med15 despite considerable differences in sequence.18, 36, 78, 79  In 

another example the multi-domain protein CBP, which has been implicated in 

several processes (including diseases) and serves to integrate signals in the 

nucleus,80, 81 is highly conserved among metazoans, and it’s KIX domain 

interacts with a set of amphipathic activators like Creb and p53.82-84 Apart from 

the therapeutic advantages presented for understanding shared/unshared targets 

of TADs, scientists can gain detailed mechanistic understanding of how the 

different activator partners contribute to transcription. 

 Since there are in vitro experimental evidences that TADs bind the same 

targets, two other well studied amphipathic TADs VP16 and Gcn4, were 

assessed for direct contact with the targets of Gal4 that were identified through in 
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vivo photo-crosslinking. The Viral Protein 16 (VP16) has been proposed to 

interact with several targets (TFIID, SAGA amongst others).77, 85 The VP16 TAD 

is unique because it comprises of two potent sub-domains, an amino terminal 

VP16N (residues 413-456) and a carboxyl terminal VP16C (residues 446-490) 

and they can function independently from one another.86, 87 Another well studied 

amphipathic activator, Gcn4, has been shown to also bind to Tra1, Med15 and 

Taf12 in vitro.47 Gcn4 is a member of the AP-1 transcription factor family, has 

been shown to be responsible for the induction of ~40 genes associated with the 

biosynthesis of amino acids and aminoacyl-tRNA synthetase.88-91 VP16 and 

GCN4 are good activators for such comparative study because they have been 

shown to have overlapping targets with Gal4. A comparison of the three 

activators will help define the mechanistic conservation of amphipathic activator 

targets.  

 First, in vivo photo-crosslinking was used to determine whether Med15 is 

shared by VP16 and Gcn4 TADs. Previously, some of my colleagues, tested the 

ability for 3 constructs from the TAD sequences shown in Figure 3-14, 

LexA+VP16N444Bpa and LexA+VP16C475Bpa (for VP16) and 

LexA+Gcn4120Bpa (for Gcn4), to incorporate pBpa as well as maintain activator 

function. Their results revealed that these constructs were able to incorporate 

pBpa and functions as activators. Therefore, using these constructs, in vivo 

experiments were carried out to investigate if Med15 was a direct partner of 

VP16 and Gcn4 TADs as well. Briefly, the three TAD constructs (two for VP16 

and one for Gcn4) were was co-expressed with Myc-tagged Med15(1-416) in 
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LS41 yeast strain and grown in media containing 2% raffinose + 2% galactose 

with or without 2 mM pBpa, after which, crosslinking experiments were carried 

out. Results from our crosslinking experiments showed that Med15(1-416) 

crosslinks to both VP16 and Gcn4 (Figure 3-14).   

 

Figure 3-14: In vivo photo-crosslinking captures the moderate affinity interaction between LexA-
VP16N, LexA-VP16C and LexA-Gcn4 fusion proteins and the Mediator protein, Med15. Live 
yeast cells bearing plasmids expressing each TAD-Bpa construct, in addition to a plasmid 
expressing Myc-Med15(1-416) were irradiated with UV light (365 nm). Subsequently, cell lysates 
were immunoprecipitated with α-LexA and analyzed by Western blot (α-Myc). For all constructs, a 
crosslink with Med15(1-416) was observed. The MW for the LexA-TAD complexes with Med15 is 
~ 75kDa. 

 Next we hypothesized that the in vivo photo-crossing experiment can be 

used to determine if Taf12, Tra1 and Snf2 are direct targets of VP16 and Gcn4. 
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Figure 3-15: Using in vivo photo-crosslinking to determine the direct binding partners of VP16 
and Gcn4 TADs with live yeast cells bearing plasmids that expressed three TAD-Bpa constructs.  
VP16N term and VP16C term were expressed, in addition to a plasmid expressing either (A.) 
Myc-Tra1(3000-3744) or (B.) full length Myc-Taf12, and Gcn4 TAD was expressed, in addition to 
a plasmid expressing (C.) Mcy-Tra1(2000-3000) or Mcy-Tra1(3000-3744) or (D.) full length Taf12. 
The cells were irradiated with UV light (365 nm) and subsequently, cell lysates were 
immunoprecipitated with α-LexA and analyzed by Western blot (α-Myc). For all constructs, VP16 
directly contacts Taf12 and not Tra1, while Gcn4 contacts both Tra1 and Taf12.   

 
In the case of determining if Taf12 and Tra1 are shared targets of VP16 and 

Gcn4, crosslinking experiments were carried out with yeast cell expressing  Myc 

version of full length Taf12 alongside LexA+VP16N444Bpa or 

LexA+VP16C475Bpa (for VP16) or LexA+Gcn4120Bpa and Tra1(3000-3744) 

alongside LexA+VP16N444Bpa or LexA+VP16C475Bpa (for VP16) or 

LexA+Gcn4120Bpa.  Crosslinking experiments revealed that although both TADs 

directly contact Taf12, VP16 did not directly contact the Tra1 fragment used for 

these experiments (Figure 3-15).  
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 Finally, crosslinking experiments were carried out to assess if our VP16 

and Gcn4 constructs could directly contact the coactivator Snf2 at endogenous 

levels. In these experiments, the TAD constructs were expressed but Snf2 was 

not co-expressed. Formed TAD-Snf2 complexes were immunopurified with a 

Snf2 antibody before the complex was visualized with the immuno-detectable 

FLAG probe.  Our results revealed that Snf2 directly contacts VP16 but not Gcn4 

(Figure 3-16).  

 

Figure 3-16: In vivo photo-crosslinking captures Snf2 as the direct binding partner of VP16 but 
not Gcn4. Live yeast cells bearing plasmids expressing VP16TAG475 or Gcn4 construct with Bpa 
at positions 110, 120 and 132 were irradiated with UV light (365 nm). Subsequently, cell lysates 
were immunoprecipitated with α-LexA and analyzed by Western blot (α-Myc). Results show that 
VP16 directly contacts Snf2 but Gcn4 does not, at all positions tested. 

 After identifying the coactivator targets that direct contact Gal4, VP16 and 

Gcn4 in vivo using photo-crosslinking, we can summarize from Figure 3-17 that 

all the TADs directly contact Med15 and Taf12 as a target,  Gal4 and Gcn4  only 

directly contact Tra1 and Gal4 and VP16 only directly contact Snf2. Taken 

together, these results suggest that transcriptional activators do not always 
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contact the same targets and therefore do not entirely use the same mechanism 

for assembling coactivator complexes during transcription.  

 In conclusion, the in vivo experimental analysis outlined in this section 

gave mechanistic insight into binding interactions between transcriptional 

activation domains and co-activators and further, shared or overlapping direct 

targets found after comparing the binding partners of Gal4 with two other 

transcriptional activators, VP16 and Gcn4.  

 

Figure 3-17: Summary of shared direct targets between Gal4, VP16 and Gcn4 based on our In 
vivo photo-crosslinking experiment.  
 

In depth study of TAD interaction with Med15 will serve as an excellent 

model for understanding what mechanisms transcriptional activators utilize for 

interacting with a shared target. Such basic understanding will positively 

influence studies meant to screen for molecules that will serve to inhibit 

activators that contact the same coactivator. Similarly, the differences between 

the shared targets can be exploited for the development of inhibitors selective for 

a given activator(s). For example, Snf2, which did not interact with all 3 
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activators, is an excellent candidate for studying mechanistic preferences of 

activators that do not share same coactivators.  Further, the ATPase Snf2 is 

highly conserved and may be a viable target for small molecule intervention in 

diseases with misregulated gene profile.92-94  Finally, studies from this section 

serves as a test case for similar experiments that need to be accomplished to 

provide high level understanding for the development of efficient screens for 

small molecules transcriptional activator inhibitors and subsequently, therapies 

for diseases caused by misregulation in gene expression.  

E. Methods 

Yeast Strain LS41 [JPY9::pZZ41, Matα his3Δ200 leu2Δ1 trp1Δ63 ura3-52 

lys2Δ385 gal4 URA::pZZ41] was used for the crosslinking experiments. Swi1 and 

Snf5 delete strains were made by gene disruption via PCR in LS41 and used for 

delete crosslinking experiments. pBpa was purchased from Chem-Impex 

International (Wood Dale, IL). All plasmids described below were constructed 

using standard molecular biology techniques. The sequences of all the isolated 

plasmids were verified by sequencing at the University of Michigan Core Facility 

(Ann Arbor, MI). 

 

Table 3-1: Plasmids used in this study 

Plasmid name Function 
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pLexAGal4 846TAG, 849TAG, 861TAG, 
866TAG, 867TAG, 869TAG, 871TAG, 
875TAG,    879TAG and Wt 

 

 

Expresses LexA(1-202)+Gal4(840-
881)+FLAG tag with a  TAG 
replacing the codon of the existing 
amino acid or Wt which does not 
contain a TAG 

 

 

pLexAGal4 867TAG856A 867TAG868A, 
869TAG856A 

 

 

Expresses LexA(1-202)+Gal4(840-
881)+FLAG tag with a TAG 
replacing the codon of the existing 
amino acid plus the appropriate 
alanine mutation  

 

 

pLexAVP16N 439TAG, 442TAG, 444TAG, and 
Wt  

 

 

Expresses LexA(1-202)+VP16 
(446-490)+FLAG tag with a TAG 
replacing the codon of the existing 
amino acid or Wt which does not 
contain a TAG 

 

 

pLexAVP16C 473TAG, 475TAG, 479TAG and 
Wt 

 

 

Expresses LexA(1-202)+VP16 
(413-456)+FLAG tag with a TAG 
replacing the codon of the existing 
amino acid or Wt which does not 
contain a TAG 

 

 

pLexAGcn4 110TAG, pLexAGcn4 120TAG, 
132TAG and Wt 

Expresses LexA(1-202)+Gcn4(110-
132)+FLAG tag with a TAG codon 
replacing the codon of the existing 
amino acid or Wt which does not 
contain a TAG 
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pSNRtRNA-pBpaRS Expresses tRNA under the control 
of the SNR52 promoter and 
contains synthetase specific for 
pBpa ptRNA-pBpaRS 

pMyc Med15(1-416) Expresses Med15 (1-416) fused to 
c-Myc tag 

pMyc Taf12 Expresses Taf12 fused to c-Myc 
tag 

pMyc Tra1(2000-3000) and (3000-3744) pMyc Tra1(2000-3000) and (3000-
3744) each fused to a c-Myc tag 

 

pLexAGal4 (840-881) TAGs and Wt 

pLexA(1-202)+Gal4(840-881) TAGs was created as previously described (in 

Section F of Chapter 2) In the case of plasmids with alanine mutants, site-

directed mutagenesis was used to replace the existing amino acid codon with 

GCT within the Gal4 TAD. In general, PCR primers were designed to have ~15 

bases of homology on either side of the TAG mutation. Quick Change 

(Stratagene, La Jolla, CA) was used to incorporate the TAG mutants using 

manufacturer recommended conditions. 

pLexAVP16 N and pLexAVP16C TAGs and Wt 

A high copy plasmid expressing LexA(1-202)+VP16N (413-456)+FLAG tag and 

LexA(1-202)+VP16C (446-490))+FLAG tag under the control of the ADH1 

promoter was created from pCLexA containing EcoRI and BamHI sites.  

Primers 5’- catgaattcATGGCCCCCCCGACCGATGTC-3’ and  
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5’catggatccTTACTTGTCATCGTCGTCCTTGTAGTCTCCCGGCCCCGGGGAAT

CCC-3’ were used to amplify VP16 (413-456) using pMVP16 as a template. The 

amplified PCR product was digested with EcoRI and BamHI and inserted into 

pCLexA digested with EcoRI and BamHI and calf intestinal phosphate treated to 

create pLexAVP16N. Primers 5’ catgaattcATGTTGGGGGACGGG- 3’ and (5’-

catggatccTTACTTGTCATCGTCG -3’) were used to amplify VP16 (446-490) 

using pMVP16 as a template.  The amplified PCR product was digested with 

EcoRI and BamHI and inserted into pCLexA digested with EcoRI and BamHI and 

calf intestinal phosphate treated to create pLexAVP16C. Plasmids containing 

various amber mutants in the VP16 TAD were derived from pLexAVP16N and 

pLexAVP16C. To create each plasmid, site-directed mutagenesis was used to 

replace an existing amino acid codon with TAG codon within the VP16C or 

VP16N TAD. In general, PCR primers were designed to have ~15 bases of 

homology on either side of the TAG mutation. QuikChange (Stratagene, La Jolla, 

CA) was used to incorporate the TAG mutants using manufacturer recommended 

conditions. 

pLexAGcn4(110-132) TAGs and Wt  

In a similar fashion to the VP16 plasmid construction, a high copy plasmid 

expression LexA(1-202)+Gcn4(107-144)+FLAG tag under the control of the 

ADH1 promoter was created from pCLexA containing EcoRI and BamHI sites. 

Primers 5’-GAATTCATGTTTGAGTATGAAAACCTAGAAGACAACTC-3’ and 5’-

GGATCCGGATTCA ATTGCCTTATCAGCCAATG-3’ were used to amplify 
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Gcn4(107-144) from yeast genomic DNA.  The amplified product was digested 

with BamHI and EcoRI and then treated with Calf intestinal phosphatase to 

create pLexAGcn4. Plasmids containing various amber mutants in the Gcn4 TAD 

were derived from pLexAGcn4. To create each plasmid, site-directed 

mutagenesis was used to replace an existing amino acid codon with TAG codon 

within the Gcn4 TAD. In general, PCR primers were designed to have ~15 bases 

of homology on either side of the TAG mutation. QuikChange (Stratagene, La 

Jolla, CA) was used to incorporate the TAG mutants using manufacturer 

recommended conditions. 

pMycMed15 (1-416) 

A high copy plasmid pMycMed15(1-416) expressing Med15(1-416) under the 

ADH1 promoter, N-terminally tagged with the c-Myc epitope was constructed by 

amplifying the DNA sequence encoding Med15(1-416) from yeast genomic DNA 

using primers (5’-GACAGGATCCATGTCTGCTGCTCCTGTCCAAGAC-3’) and 

(5’-CGATCATATGTCAC TGATATAATTTAGAACTTGC-3’) and inserted into 

BamHI and NdeI digested pMyc using standard molecular biology techniques. 

The pMyc cloning vector was created by inserting an ADH1 driven c-myc epitope 

tag in pGADT7 (Clontech) followed by restriction sites for gene insertion using 

site-directed mutagenesis using primers (5’-AGCTATGGAACAAAAGTTGATT 

TCTGAAGAAGATTTGGGATCCAATGCATATGATCT-3’) and (5’-AGCTTGATCA 

TATGCATTGGATCCCAAATCTTCTTCAGAAATCAACTTTTGTTCCAT-3’).  
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pMycTaf12 

A high copy plasmid pMycTaf12 expressing full length Taf12 under the ADH1 

promoter, N-terminally tagged with the c-Myc epitope was constructed by 

amplifying the DNA sequence encoding Taf12 from yeast genomic DNA using 

primers (5’-GCCCATATGATGTCTTCCAATCCAGA-3’) and (5’- CCG CCAT 

GGTTATTTTTTTGTATTCAA-3’) and inserted into Nde1 and Nco1 digested 

pMyc using standard molecular biology techniques. The pMyc cloning vector was 

created by inserting an ADH1 driven c-myc epitope tag in pGADT7 (Clontech) 

followed by restriction sites for gene insertion using site-directed mutagenesis 

using primers (5’-AGCTATGGAACAAAAGTTGATTTCTGAAGAAGATTTGGG 

ATCCAATGCATATGATCT-3’) and (5’-AGCTTGATCATATGCATTGGATCC CAA 

ATCTTCTTCAGAAATCAACTTTTGTTCCAT-3’).  

pMycTra1(2000-3000) and (3000-3744) 

High copy plasmids pMycTra1(2000-3000) and (3000-3744) expressing 

Tra1(2000-3000) and Tra1(3000-3744) under the ADH1 promoter, N-terminally 

tagged with the c-Myc epitope was constructed by amplifying the DNA sequence 

encoding Tra1(2000-3000) from yeast genomic DNA using primers (5’-

GCCCTCGAGAGAGATTTGTT CATATC-3’) and (5’-CGGGGATCCTTATAACTC 

CCTAATCT-3’) and Tra1(3000-3744)  from yeast genomic DNA using primers 

(5’-GCCCTCGAAACAACGGGTCTG GATC-3’) and (5’-CGGGGATCC 

TTAGAACCATGGCATGA-3’) were inserted into Xho1 and BamHI digested pMyc 

using standard molecular biology techniques. The pMyc cloning vector was 
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created by inserting an ADH1 driven c-Myc epitope tag in pGADT7 (Clontech) 

followed by restriction sites for gene insertion using site-directed mutagenesis 

using primers (5’-AGCTATGGAACAAAAGTTGATTTCTGAAGAAGATTTGGG 

ATCC AATGCATATGATCT-3’) and (5’-AGCTTGATCATATGCATTGGATCCCAA 

ATCTTCTTC AGAAATCAACTTTTGTTCCAT-3’).  

Construction of Snf5 and Swi1 delete strains 

The yeast delete strains were made by gene disruption via PCR using a method 

described earlier (Longtine, M. S et al, Yeast 14, 953–961 (1998)). All the delete 

strains were derived from LS41 [JPY9::pZZ41, Matα  his3Δ200  leu2Δ1  trp1Δ63  

ura3-52 lys2Δ385  gal4 URA::pZZ41]. Plasmid PFa6-TRP1 (generously donated 

by Karbstein group, University of Michigan)(ref) was used as a template to clone 

out deletion inserts using target-gene-specific primer pairs as designated in 

Table 3-2.  

 

Table 3-2: Primers used for PCR based gene deletion 

Primer Purpose Primer Sequence 

5’-3’ 

Snf5-
Fwd-1 

Round 1 
PCR 

CATCAAGGGAACATATAGTAAAGAACTACACAAAAGCAACA 
CGGATCCCCGGGTTAATTAA 

Snf5-
Rev-1 

Round 1 
PCR 

GGTTATTTACATCTCCGGTATATTTTATATATGTGTATATATTTT 

GAATTCGAGCTCGTTTAAAC 
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Snf5-
Fwd-2 

Round 2 
PCR 

CATAAACACCAAAACAAAGCATCATCAAGGGAA 
 
CATATAGTAAAG 

Snf5-
Rev-2 

Round 2 
PCR 

GATAATACAAATTCTTCCACGGTTATTTACATCT 

CCGGTA 

Swi1-
Fwd 

 Round 1 
PCR 

ATGGATTTCTTTAATTTGAATAATAATAATAATAATAATAATAC 

CGGATCCCCGGGTTAATTAA 

Swi1-
Rev 

 Round 1 
PCR 

TCATTCCAAATTGGTTAGGATATCATTTTTT 
 
AAATTGTAAAGGAATTCGAGCTCGTTTAAAC 
 

 

The underlined sequences correspond to the sequence on the pFa6-TRP1 

plasmid and the sequences in italics are gene specific sequences. The 

sequences in bold are Snf5 gene specific sequences and are ~ 20 bp upstream 

and downstream of Snf5 sequence from Round 1 PCR product.  

In case of Swi1 deletion, pFa6-TRP1 was used as template and PCR inserts 

were cloned out using primers Swi1-Fwd and Swi1-Rev. 1-5 ug of the PCR 

product was transformed into LS41 and spread on plates containing SC media + 

2% Glucose, lacking uracil and tryptophan.  After 3-4 days, the colonies grown 

were screened for deletion strains by lysing a small amount of cells in the colony.  

Briefly, a small amount of the colony (~ 0.25-0.5 uL) was taken into a PCR tube 

containing 20 uL of 20 mM NaOH. The tube was boiled for 20 min at 95 °C in a 

PCR machine and spun down. The supernatant (0.5 – 1 uL) was used as a 

template and using sequencing primers, the deletion was verified by gel 

electrophoresis and DNA sequencing. In case of the Snf5 deletion, there was no 



116 
 

successful deletion with one round of PCR and hence a ~ 60 bp Snf5 specific 

homologous sequence was cloned upstream and downstream of the Trp1 

sequence by two rounds of PCR using primers described in Table 2.  Screening 

and selection was done as described for Swi1 deletion and verified by DNA 

sequencing. 

Incorporation of pBpa into LexA+TAD constructs 

LS41 yeast was transformed with various pLexAVP16 TAG mutant plasmids and 

pSNRtRNA-pBpaRS. Individual colonies were grown to saturation in 5 mL SC 

media lacking histidine and tryptophan for selection and 2% raffinose, 30 °C, with 

agitation.  Starter cultures were then used to inoculate 5 mL SC media lacking 

histidine and tryptophan, containing 2% raffinose and 2% galactose. For pBpa 

incorporation, 50 µL of 100 mM pBpa (dissolved in 1M NaOH) and 50 µL 1M HCl 

were added to the above cultures.  The cultures were grown overnight at 30 °C, 

with agitation to an OD660 of ~1.0. 3 OD’s of cells were harvested and lysed in 12 

uL pellet lysis buffer (50 mM Tris Acetate, pH 7.9, 150 mM KOAc, 20% glycerol, 

0.2% Tween-20, 2 mM MgOAc) containing complete EDTA free protease 

inhibitor tablets (Roche), 7 uL 1 mM DTT, and 7 uL 4X LDS NuPAGE dye 

(Invitrogen).  Lysates were boiled at 95 °C and analyzed using Western blot with 

anti-FLAG (M2) antibody (Sigma). 

In vivo cross-linking 

To perform in vivo cross-linking, individual colonies of each pLexA-TAD TAG 

mutant were grown in 5 mL SC media containing 2% raffinose or but lacking 
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histidine and tryptophan for selection. The cultures were incubated overnight at 

30 °C with agitation. Following incubation, these cultures were used to inoculate 

100 mL cultures of SC media containing 2% raffinose and 2% galactose. For 

pBpa incorporation, 1 mL of 100 mM pBpa (dissolved in 1M NaOH) and 1 mL 1M 

HCl were added to the above cultures. For control cultures, 1 mL 1M NaOH  and 

1 mL 1M HCl were added. The cultures were incubated overnight at 30 °C with 

agitation to an OD660 of ~1.0. When cultures reached the appropriate OD660, the 

cells were spun down by centrifuging at 3901 rcf, 4oC for 5min following which 

the cell pellets were washed with SC media lacking histidine and tryptophan.  

The cell pellets were resuspended in 2mL H-W- media + 2% raffinose, 2% 

galactose and transferred to small cell culture dishes and subjected to UV 

irradiation at 365 nm light (Eurosolar 15 W UV lamp) with cooling for 0.5 h. The 

cells were isolated by centrifugation and stored at -80oC until lysis.  For 

crosslinking studies with co-expressed cofactors and the deletion strains, the 

procedure was identical except that cells were grown in SC media lacking 

histidine, leucine, and tryptophan and, were grown in 2% raffinose and 2% 

galactose. For lysis, cells were resuspended in 600 μL Lysis buffer (50 mM 

Hepes-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% Na-

Deoxycholate and 2X Complete Mini, EDTA Free Protease Inhibitor (Roche) and 

lysed using glass beads by vortexing at 4 °C. Subsequently, the lysate was 

pelleted and the supernatant incubated with 10 μL of LexA antibody (sc-1725, 

Santa Cruz Biotechnologies) for 2 h at 4 °C for immunoprecipitation. The protein 

bound to the antibody was isolated by incubation for 1 h with either ~50 μL of 
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prewashed protein G magnetic beads (Dynal Corporation, Invitrogen, Carlsbad, 

CA) or ~ 25 uL prewashed protein G agarose beads (Millipore) at 4 oC. After 

immunoprecipitation, the beads were washed 6X with 1 mL Wash Buffer (10 mM 

Tris-HCl pH 8.0, 250 mM LiCl, 0.5% NP-40, 0.1% Na-Deoxycholate and 1 mM 

EDTA) and stored dry at -80 oC until elution. The crosslinked sample was eluted 

from the beads by heating at 95 oC for 10 min in NuPAGE 4x LDS Sample buffer 

(Invitrogen, Carlsbad, CA) containing 250 mM DTT and probed using Western 

Blot analysis using anti-FLAG (M2) antibody (Sigma, St. Louis, MO) or anti-myc 

antibody (SC-40, Santa Cruz Biotechnology, Santa Cruz, CA). 

β-Galactosidase assays in delete strains 

To evaluate the ability of each TAG mutant to activate transcription in the 

presence or absence of 1 mM pBpa, saturated cultures (SC media + 2% 

raffinose) of each mutant were used to inoculate 5 mL SC media containing 2% 

raffinose/galactose but lacking histidine and tryptophan for selection. The cells 

were grown to an OD of 0.8-1.5 and harvested. The activity of each construct 

was monitored using β-galactosidase assays as previously described in chapter 

2. 
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CHAPTER 4 
CONCLUSIONS AND FUTURE DIRECTIONS 

 

A.  Summary of dissertation 

 Transcriptional activators use two domains (DBD and TAD) in order to 

modulate gene expression, regulate the timing and extent to which mRNA levels 

are upregulated in response to cellular stimuli.1 The DBD is responsible for 

localizing the activator to a specific set of sequences in DNA and the TAD makes 

contact with several protein and protein complexes to assemble the 

transcriptional machinery for transcription of that gene to be accomplished.2 

Many diseases ranging from cancer to diabetes arise from gene misregulation 

facilitated by malfunctioning transcriptional activators.3, 4  Therefore, a major goal 

towards the treatment of these disease states has been to generate molecules 

that can influence or mimic the function of natural activator proteins.5-8 However, 

this effort has been hampered by the lack of structural and mechanistic 

information regarding the interactions between activators and the transcriptional 

machinery, a direct result of insufficient methodologies available for studying 

these interactions. Towards overcoming this hurdle, an in vivo photo-crosslinking 

methodology has been presented which provides a way to covalently capture 

both tight and modest-affinity protein-protein interactions in living cells. To push 

forward towards tailored library screens for small molecule modulators of 

transcription, scientists need to not only know the direct binding partners of 
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transcriptional activators but also to characterize their binding interfaces. This will 

yield valuable insight that can be applied to the generation of tailored screens for 

artificial activators. 

 In the body of work presented in this dissertation, we used in vivo photo-

crosslinking strategy to identify direct binding partners of transcriptional activators 

in live cells. In Chapter 2, nonsense suppression was achieved using a bio-

orthogonal pSNR tRNA/aaRS to specifically and efficiently incorporate the 

unnatural amino acid pBpa at multiple sites within the TAD of the prototypical 

amphipathic activator Gal4. Importantly, the incorporation of pBpa within the Gal4 

TAD was achieved with minimal impact on activator function. Additionally in 

Chapter 2, this in vivo photo-crosslinking strategy was used successfully to 

capture the high affinity interaction between Gal4 and its suppressor protein, 

Gal80 (Figure 4-1). The identification of the well-characterized Gal4-Gal80 

interaction was an important first step in validating in vivo photo-crosslinking as 

an indispensable tool for studying transcriptional activator protein interactions.

 While TAD-repressor interactions such as that between Gal4 and Gal80 

can be high in affinity, the interactions between a TAD and the various 

coactivator complexes tend to be much more moderate in affinity and transient in 

nature. These characteristics of TAD-coactivator protein interactions have made 

the study of this interaction more difficult.   
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Figure 4-1: Summary of coactivator targets identified to directly contact the Gal4 TAD through in 
vivo photo-crosslinking experiments from chapters 2 and 3. In vivo photo-crosslinking was used 
to capture a high affinity masking protein interaction (Gal80), as well as moderate affinity and or 
transient interactions with coactivator proteins co-expressed (green circle) and native 
concentrations (gray circle)  

In Chapter 3, I describe how this challenge was overcome and demonstrated that 

the in vivo photo-crosslinking strategy is powerful enough to capture modest-

affinity and/or transient activator interactions.  Specifically, using Gal4, we 

showed that Gal4 directly contacts Med15, Taf12 and Tra1 in vivo (Figure 4-1). 

Moreover, the identification of endogenous protein targets was achieved using 

this in vivo photo-crosslinking strategy. As a clear example of this, we 

experimentally showed that Gal4 directly binds to endogenous Snf2 (Figure 4-1). 

Next, we extended these studies to include two other well-characterized 

amphipathic activators, VP16 and Gcn4, and examined the extent of overlapping 

targets between Gal4, VP16 and Gcn4. These experiments suggest that, while 

amphipathic activators may recruit the same coactivator complex to a given 

promoter, they do not necessarily target the same protein subunits within that 

coactivator complex.  These subtle differences in coactivator recruitment reveal 

interactions specific to a particular activator that can be explored for therapeutics. 
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 In summary, the presented in vivo photo-crosslinking methodology is a 

powerful tool for teasing out both high- and modest-affinity protein interactions, in 

living cells. Further characterization of the TAD-coactivator interactions identified 

through these studies will be important in the design of small molecule 

transcriptional modulators.  

B. Future directions 

 Given the importance of transcription, it is not surprising that gene 

misregulation is associated with almost every disease.9, 10 Therefore, there have 

been numerous efforts towards the development of artificial transcriptional 

modulators to influence or mimic the function of natural activator proteins.11-13 

Although the work presented in this thesis has led to the identification of several 

of the direct, in vivo targets of transcriptional activators, detailed characterization 

of these interaction interfaces is still required in order to aid in the design of small 

molecule transcriptional modulators.  Moreover, the identification of novel 

activator interactions may provide additional opportunities for small molecule 

development. Currently, the optimal methodology to carry out these 

characterizations is mass spectrometry, which should be employed in 

conjunction with in vivo photo-crosslinking for defining other unknown targets of 

TADs. 

 Mass spectrometry has been employed for studying protein-protein 

interactions and has been proven to be a highly sensitive and powerful method.  

In particular, multidimensional protein identification technology (MudPIT) has 

been utilized for detecting proteins in a complex mixture. The Yates group has 
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used this method to analyze a large-scale yeast protein mixture, resulting in the 

identification of 1,484 proteins.14 In their on-line setup (Figure 4-2), trypsin-

digested proteins were loaded onto a biphasic 2D microcapillary column and the 

peptide mixture was separated by strong cation exchange (SCX) and reverse-

phase (RP-HPLC) before being eluted directly onto an ESI-MS/MS. Afterwards 

peptide sequences were analyzed by the SEQUEST software to identify 

proteins.16  

 

Figure 4-2: On-line mass spectrometry setup.15 The protein sample in not handled in between 
protein separation and the mass spectrometer.  
 
The yeast proteins identified from studies from the Yates group were 

representatives from all sub-cellular compartments and some had extreme 

hydrophobicity and isoelectric points.14 For the purposes of studying endogenous 

transcriptional proteins, perhaps the most important observation from this 

experiment was the identification of several low abundance proteins. In fact, 

about 54% of the proteins identified from this study had CAI values that were less 

than 0.2, indicating that MudPIT is an effective tool for analyzing low abundance 

proteins, including transcriptional proteins.  Among the 1, 484 proteins identified, 

45 were transcription proteins including the SNF5, SWI6 and SWI4 subunits of 
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the Swi/Snf complex.14 As such, the utility of MudPIT appears promising for 

further identification and characterization of direct binding partners of the Gal4 

TAD. In fact, preliminary experiments by the Mapp lab have coupled in vivo 

crosslinking experiments with MudPIT analysis to identify the masking protein 

Gal80 as a binding partner of Gal4. Using similar experiments, the direct binding 

partners found from the work in this dissertation can be confirmed and further the 

binding sites within these targets can be teased out (further discussed in Section 

B.1).  

B.1. Development of probes and therapeutic small molecules 

 MudPIT possesses remarkable sensitivity for identifying low abundant 

proteins and therefore can be employed for further analysis of our crosslinked 

protein samples. After the direct, in vivo targets of Gal4 identified from this work 

are confirmed by MudPIT, further, the binding sites within the targets can be 

characterized for the protein interface utilized for interaction. One way to identify 

the binding site, while utilizing mass spectrometry coupled with photo-

crosslinking is to use isolated TADs from activators, containing pBpa, like Gal4 

and perform in vitro crosslinking experiments with different fragments of the 

established target. Using western blotting, the regions on the target that crosslink 

with the TAD can be first identified.  Furthermore, the crosslinked fragments + 

TAD can be submitted for a more challenging mass spectrometry analysis for 

exact binding site(s) determination.  

 From the targets reported in this dissertation as direct targets of Gal4, 

Snf2 is a good candidate for binding site determination not only because it is 



132 
 

reported here for the first time as a direct binding partner of Gal4 in vivo, but Snf2 

interacted  with Gal4 endogenous levels. Fragments spanning the entire 

sequence of Snf2 can be expressed as fusion proteins before crosslinking 

experiments with pBpa containing TADs. Subsequently, the physiological 

relevance of the fragments of Snf2 that interact with Gal4 could be determined by 

measuring their activity in Snf2 deletion strains. Such information will guide 

studies with small molecule probes that can be used to further understand TAD-

partner binding interfaces. Towards the design of artificial TAD therapeutics, 

small molecule screens to identify molecules that disrupt an endogenous 

activator-coactivator interaction can be achieved easily if the binding interface 

between a TAD and its partner is better understood.  This is a major reason for 

detailed structural understanding of TAD-coactivator interactions. In the long 

term, efforts to determine the identity of activator binding partners and the 

binding sites will establish screening targets for artificial activator and inhibitor 

design for therapeutic and other applications. 

B.2. Map the entire network of PPIs needed for transcription 

 Transcriptional activators are known to have a multi-protein binding profile 

and make many contacts with proteins in the transcriptional machinery. Despite 

numerous studies directed at identifying the direct binding partners of activators, 

the direct, in vivo targets of transcriptional activators remain largely unknown. 

While in vivo photo-crosslinking has led to the identification of several direct, in 

vivo targets of Gal4, one limitation to using this strategy is that only already 

proposed targets can be identified. This poses a problem, as many of the 
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putative binding partners of transcriptional activators do not have high-quality 

antibodies available. Therefore, MudPIT offers the potential to map the entire 

network of PPIs that take place during transcription, as this technique can be 

utilized for identifying unknown targets.  Importantly, mass spectrometry provides 

a complete picture of the proteins that bind to transcriptional activators when 

coupled with photo-crosslinking, which in vivo photo-crosslinking by itself cannot 

offer.  In conclusion, in vivo photo-crosslinking accompanied by mass 

spectrometry techniques (like MudPIT) will be useful for not only identifying 

unknown partners of TADs but for answering questions pertaining to the primary 

mechanisms utilized for transcription..  
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