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ABSTRACT 

 

Neurotropic arboviruses are a group of pathogens capable of causing 

severe and fatal central nervous system infections for which there are few 

effective treatments or vaccines.  The extent of neurotropic arbovirus-mediated 

destruction of central nervous system neurons is often an important determinant 

in the severity and clinical outcome after infection.  Early cellular innate immune 

responses mediated by pattern recognition receptors (PRRs) are often vital for 

effective pathogen control, and an effective neuronal innate immune response 

may be crucial to prevent the essentially irreversible loss of critical central 

nervous system neurons by neurotropic arboviruses.  The work presented here 

describes efforts to preserve neurotropic arbovirus-infected neurons by: a) 

studying the interactions between neurotropic arboviruses and neuronal PRR 

pathways in order to indentify novel targets for future therapeutics, and b) 

identifying potential anti-neurotropic arbovirus medications which target viral 

replication.  
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Innate PRR pathways function in both a cell and pathogen-specific 

manner.  However, relatively little is known about the induction and regulation of 

neuronal PRR signaling.  Therefore, I assessed PRR pathway expression and 

function in neurons and found that neurons possess functional PRR pathways 

mediated by select receptors and signaling molecules which activate the 

downstream transcription factors NFB and IRF3 resulting in the production of 

genes with putative antiviral activity.  Next, I characterized how neuronal PRR 

pathways interact with neurotropic arboviruses using western equine encephalitis 

virus (WEEV) as a model neurotropic arbovirus.  From these studies I concluded 

that IRF3 mediates a neuron-protective response to WEEV; however, this 

response was independent of type-I IFN signaling, which possesses potent 

antiviral activity and is canonically activated downstream of IRF3 in alternate cell 

types.  Importantly, WEEV inhibited neuronal PRR-mediated induction of antiviral 

type-I interferons, and this inhibitory capacity was mapped to the WEEV capsid 

protein.  These data indicated that neuronal PRR pathways may be important 

determinants in neurotropic arbovirus pathogenesis and that neuronal PRR 

pathways and viral countermeasures to them may be exploited to develop anti-

neurotropic arboviral treatments.  Finally, I identified a novel class of small 

molecules which inhibit WEEV replication, protect neuronal cells from WEEV-

induced cell death, and may be a useful component of future anti-neurotropic 

arbovirus therapies.   
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Chapter I 

General Introduction 

Early cellular innate immune responses are vital for effective pathogen 

control, and an effective neuronal innate immune response may be crucial to 

prevent the essentially irreversible loss of critical central nervous system neurons 

by neurotropic arboviruses.  Neurotropic arboviruses are a group of viral 

pathogens transmitted by insect vectors, most often mosquitoes, capable of 

causing severe and potentially fatal central nervous system infections in humans.  

Unfortunately there are very few effective treatments or vaccines for these viral 

infections, which are classified as NIAID Category B Priority Pathogens due to 

their potential misuse as bioterrorism agents.  The extent of neurotropic 

arbovirus-mediated destruction of central nervous system neurons is often an 

important determinant in the severity and clinical outcome after infection.  The 

work presented here describes efforts to preserve neurotropic arbovirus-infected 

neurons by: a) studying the interaction between neurotropic arboviruses and the 

neuronal innate immune response to indentify novel targets for future 

therapeutics and vaccines; and b) identifying potential anti-neurotropic arbovirus 

medications which inhibit viral replication.  This introductory chapter provides 

background information on innate cellular immunity and neurotropic arbovirus 
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pathogenesis with a particular emphasis on the new world alphavirus western 

equine encephalitis virus which is the model neurotropic arbovirus primarily 

studied in this body of work. 

 

Neurotropic Arbovirus Epidemiology and Clinical Significance 

Neurotropic arboviruses preferentially infect central nervous system (CNS) 

neurons and include but are not limited to West Nile virus (Flaviviridae), St. Louis 

encephalitis virus (Flaviviridae), La Crosse virus (Bunyaviridae), and the equine 

encephalitic alphaviruses (Togaviridae genus alphavirus) (Table 1.1).  

Neurotropic arboviruses are transmitted via insect vectors and are responsible 

for sporadic epidemics of viral encephalitis (71).  Many neurotropic arboviruses 

are endemic to North America including West Nile virus (WNV), St. Louis 

encephalitis virus (SLEV), La Crosse virus (LACV), Western equine encephalitis 

virus (WEEV), Eastern equine encephalitis virus (EEEV), and Venezuelan equine 

encephalitis virus (VEEV) (26).  Most infections occur during warmer, moister 

months due to increased amounts of mosquito vectors and an increased amount 

of time spent outdoors by the human population in temperate regions (132).  

There are currently no recommended or approved anti-viral treatments for these 

viral infections, and the standard of care is purely supportive (132).  Ribavirin, an 

FDA-approved nucleoside analogue, may be beneficial for some neurotropic 

arboviruses in the Flaviviridae family (90), but definitive clinical evidence is 

lacking (8).  Initial studies have identified novel small molecules with  
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Table 1.1.  Neurotropic arboviruses.      

Family Genus Species Genome BSL Priority 

Togaviridae Alphavirus  Western equine 
encephalitis virus 

 Eastern equine 
encephalitis virus 

 Venezuelan 
equine 
encephalitis 
viruses 

Positive 
sense RNA 
(subgenome 
structural 
gene 
production) 

3 B 

Flaviviridae Flavivirus  St. Louis 
encephalitis virus  

 West Nile virus 

 Japanese 
encephalitis virus 

Positive 
sense RNA 

3 B 

Bunyaviridae Orthobunyavirus  La Crosse virus 

 California 
encephalitis 
viruses 

Segmented 
negative 
sense RNA 

2 B 
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anti-neurotropic arboviral properties (121, 122, 128), but it is unclear how 

clinically useful these will be.  Vaccines to some neurotropic-arboviruses exist, 

including WEEV, EEEV, VEEV, and Japanese encephalitis virus (JEV), but with 

the exception of JEV, which is not endemic to North America, they are all poorly 

protective, have significant side effects including mild encephalitic symptoms for 

the VEEV vaccine, and are not available to the general public (155).  

Development of better vaccines for neurotropic arboviruses is an active area of 

research, and several promising candidates have been identified (12, 54, 123, 

152, 168, 169, 174, 181).  To summarize, there is a great need for better 

vaccines and effective antivirals to treat neurotropic arbovirus infections.   

Most neurotropic arboviruses are listed as NIAID priority A, B, or C 

pathogens due to numerous characteristics that make them potential biological 

weapons including: a) high clinical morbidity and mortality; b) potential for aerosol 

transmission; c) lack of effective countermeasures for disease prevention or 

control; d) public anxiety elicited by CNS infections; e) ease with which large 

volumes of infectious materials can be produced; and f) potential for malicious 

introduction of foreign genes designed to increase virulence (23, 155).  

Unfortunately, it is widely thought that VEEV has been weaponized for aerosol 

delivery (80).  Due to many of the same reasons that contribute to their 

classification as potential biological weapons, many neurotropic arboviruses 

require biosafety level 3 containment (33), highlighting the importance of 

understanding and being able to combat these severe pathogens. 



5 

 

The clinical portrait of neurotropic arbovirus infection can range from 

moderate constitutional symptoms and uncomplicated resolution to fulminant 

encephalitis, especially in the young, old, immunocompromised, or chronically ill 

(64, 72, 132, 142, 151). The incubation period for neurotropic arbovirus 

encephalitis ranges from 2-21 days, and encephalitis is typically preceded by a 

prodrome of fever, malaise, headache, stiff neck, and occasionally sore throat 

and nausea/vomiting.  These symptoms can then progress to fulminant 

encephalitis including changes in mentation, stupor, coma, convulsions, and 

signs of upper motor neurons lesions such as exaggerated deep tendon reflexes 

and spastic paralysis. Diagnosis is usually accomplished by identifying pathogen-

specific IgM antibodies in the cerebral spinal fluid of symptomatic patients.  The 

acute encephalitic phase lasts from a few days to as long as 2-3 weeks, and full 

recovery, if achieved, may take months (64, 72, 132, 142, 151).  However, 

survivors, especially children, are often left with significant sequelae including 

changes in cognition, seizures, developmental delays, and motor deficits.  

The virulence of each neurotropic arbovirus as measured by case fatality 

rates varies on the high end from 50-75% for EEEV and 20-50% for JEV (132).  

On the low end, La Crosse virus case fatality rates are about 0.5 %, and the 

majority of neurotropic arboviruses including WEEV, SLEV, and WNV have 

intermediate case fatality rates of 5-10% (132). Neurotropic arboviruses also 

have a wide range of case-to-infection ratios where the more prevalent West 

Nile, St. Louis, and La Crosse viruses have ratios of 1:100, 1:200, and 1:1000, 
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respectively, whereas the equine encephalitic alphaviruses have ratios ranging 

from 1:1 to 1:1000 (132).  In the United States, there are about 5-10 cases of 

each of the equine encephalitis viruses and about 75 cases for LACV and SLEV 

annually; however, all of these viruses undergo sporadic epidemics in which the 

number of cases can soar into the thousands and historically reach as high as 

several hundred thousand (64, 132, 142).  For example, prior to the introduction 

of WNV to North America in 1999, WNV was not endemic to the continent; now, 

approximately 1000-3000 cases and 100-300 deaths can be attributed to it each 

year (132, 142).  However, neurotropic arbovirus epidemics do not necessarily 

involve geographical relocation to areas with immunologically naïve populations 

(64).      

Predilection for clinically apparent disease of specific age groups varies 

among the neurotropic arboviruses.  La Crosse encephalitis primarily infects 

children less than 15 years old whereas WNV typically causes disease in the 

elderly (132).  SLEV causes a milder disease in the young and a more severe 

disease in those greater than 40 years of age (132).  The equine encephalitic 

alphaviruses all have a predilection for children, which is most apparent for 

WEEV where the case to infection ratio is 1:1 for infants versus 1:1000 for adults 

(132).  Interestingly, WEEV also has a slight predilection for causing disease in 

males over females, a feature of WEEV epidemiology that remains relatively 

understudied (64, 132).  In summary, neurotropic arboviruses generally cause 

severe, sporadic epidemics, especially in vulnerable human populations including 
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the young and the old, and there are currently no broadly approved antiviral 

medications or vaccines to treat or prevent these infections.  

 

Neurotropic Arbovirus Biology 

Neurotropic arboviruses belong to one of three viral families: Flaviviridae, 

Bunyaviridae, and Togaviridae.  Each of these families has a unique genomic 

structure, and that of the equine encephalitic alphaviruses will be thoroughly 

reviewed in a later section.  The genomes of flaviviruses and togaviruses consist 

of a single positive-sense RNA that can be immediately transcribed upon entry 

into the cytosol (94, 106).  Both togavirus and flavivirus genomes contain 5’ cap 

structures analogous to that of cellular mRNAs, but only togavirus genomes are 

3’ polyadenylated (94, 106).  Furthermore, the togavirus structural proteins are 

translated as a polyprotein from a transcript whose production is controlled by a 

viral subgenomic promoter on the viral negative-sense genomic strand.  Due to 

this genomic architecture, expression of alphavirus structural proteins requires 

viral RNA replication (94).  In contrast, flavivirus structural proteins are 

synthesized directly from genomic RNA (106).  Unlike flavi- and togavirus 

genomes, bunyavirus genomes consist of three negative-sense RNA segments 

which lack 5’ caps and polyadenylated tails, and some bunyaviruses also have 

ambisense segments (151).  The negative orientation of the bunyavirus genomic 

segments necessitates the inclusion of at least one viral RNA-dependent RNA 

polymerase (RdRp) within each viral particle to initiate synthesis of positive-
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sense strands to produce viral proteins and negative-sense genomic strands for 

packaging into viral progeny (151).  Despite the obvious differences in genomic 

architecture and RNA replication strategies among the neurotropic arboviruses, 

important similarities among these viruses exist such as: a) they consist of an 

enveloped viral particle with an encapsidated RNA genome; b) they almost 

exclusively replicate in the cytoplasm of host cells; and c) they have the ability to 

directly infect and damage CNS neurons (64, 94, 106, 151).  Due to these 

important similarities and differences, interaction of these viruses with neuronal 

innate immune pathways may also have both unique and common features.     

The natural life cycle of neurotropic arboviruses involves an enzootic cycle 

generally between mosquitoes and birds or other small animals (64, 72, 132, 

142, 151).  Periodically, an epizootic cycle initiates resulting in the infection of 

larger mammals and humans; however, humans and large mammals are 

generally dead-end hosts and, except for VEEV epizootics and horses, do not 

sustain epizootic cycles (26, 64, 72, 132, 142, 151).  The involvement of 

abundant non-human reservoirs in the natural life cycle of neurotropic 

arboviruses makes them an important source of re-emerging pathogens with 

potentially increased virulence (71).  One example of a re-emerging arboviral 

pathogen is that of Chickungunya virus, a close relative to the equine 

encephalitic arboviruses.  From 2004-2009, this virus caused millions of cases of 

Chickungunya fever in south eastern Asia and the Indian subcontinent, which is 

characterized by fever, rash, and arthritis (157).  It is hypothesized that mutations 
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in its receptor binding protein allowed Chickungunya virus to infect more 

anthropophilic mosquito vectors, thereby contributing to a massive outbreak of 

what was a relatively uncommon human pathogen (157). 

Neurotropic arboviruses infect humans when an infected arthropod takes 

a blood meal from a human host.  Depending on the virus, it may infect tissues at 

the site of infection and undergo local replication and subsequent viremia, or it 

may infect cells of the reticuloendothelial system and secondary lymphoid organs 

followed by replication in these secondary tissues and viremia (47, 64, 72, 108, 

112, 130, 151).  Viremia leads to CNS invasion, which for most neurotropic 

arboviruses is not completely understood but may involve infection of the 

olfactory neuroepithelium with passage through the cribiform plate and/or 

infection of cerebral endovascular cells and subsequent multifocal entry into the 

CNS (47, 64, 72, 130, 132, 151).  Within the CNS, most neurotropic arboviruses 

primarily infect neurons with little infection of supporting neuronal cell types such 

as oligodendrocytes, astrocytes, and microglia (26, 47, 64, 72, 130, 132, 151).  

The areas of the CNS targeted by each neurotropic arbovirus varies slightly, but 

in general, the cortex, basal ganglia, and brainstem are most often affected (26, 

47, 64, 72, 130, 132, 151).  The histopathology of infected CNS tissue reveals 

wide-spread neuron destruction, perivascular cuffing with polymorphonuclear 

cells and mononuclear leukocytes, and vasculitis with vessel occlusion (26, 47, 

64, 72, 130, 132, 151).  Apoptotic glia and inflammatory cells are also often found 

near affected neurons, and the meninges can also become inflamed and/or 
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infected (26, 47, 64, 72, 130, 132, 151).  Important for this body of work, the 

clinical symptoms of encephalitis and subsequent sequelae arise directly from 

viral-induced damage of neurons and partly from indirect damage of neurons due 

to edema and inflammation, suggesting that discovering ways of preventing 

neuron damage may lead to novel treatments for these devastating infections. 

 

Immune Response to Neurotropic Arboviruses 

The immune response to neurotropic arbovirus infection is complex and 

ultimately pathogen-specific, but a couple of important parallels can be discerned 

among these viruses.  First, innate immune signaling is important for the 

response to many neurotropic arbovirus infections, as demonstrated by 

increased mortality, neurovirulence, viral load, and extraneural viral 

dissemination in the absence of an intact type-I IFN signaling pathway (18, 64, 

110, 146, 179).  Second, disease resolution and immune-mediated clearance of 

many neurotropic arboviruses requires adaptive B and T-cells (46, 64, 65).  

These observations indicate that a highly orchestrated immune response, 

involving both innate and adaptive branches of the immune system, is needed for 

successful resolution of neurotropic arboviral infections. 

  It is not particularly surprising that, like most viral infections, both the 

innate and adaptive immune systems are required for efficient resolution of 

neurotropic arbovirus infections, but immune-mediated clearance of virus from 

the CNS is likely more regulated than clearance from other sites of infection 
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because the brain is thought to be an immuno-privileged organ (65).  For 

instance, cerebral capillary endothelial cells are relatively unreactive and 

contribute to a blood-brain barrier, which is a physiologic barrier that normally 

ensures low levels of leukocytes and lymphocytes within the CNS (30, 65, 87).  

The blood-brain barrier is not an absolute barrier because a systemic immune 

response to a peripheral infection can increase its permeability, resulting in 

increased CNS immune surveillance (79, 105).  In addition to limiting immune 

system access to the CNS via the blood-brain barrier, the CNS also tightly 

regulates the adaptive immune response through limited MHC expression and 

active suppression of cytotoxic T-cell responses (65).  These data suggest that 

the immune response within the CNS is highly regulated, a finding that may 

reflect the need of the CNS to preserve vital CNS neurons, which have a very 

limited self-renewal capacity, from immune-mediated damage.   

Most cell-types in the CNS play an active role in the regulated immune 

response to neurotropic viral infections, including neurons, astrocytes, and 

microglia (46, 65, 72, 100, 131, 151).  For instance, neurons may participate in 

the innate response by generating antiviral type-I and II interferons (44, 65, 125, 

131), but these same cytokines can also be neurotoxic when produced in excess 

(5, 65, 131).  Like neurons, glial cells (astrocytes, oligodendrocytes, and 

microglia) are capable of producing an innate response, and microglia, which are 

the myeloid-derived resident cell-type in the CNS, contain highly active TLR-

mediated pathways (103, 140).  Importantly, glial cell PRR signaling may mediate 
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the neuropathology of several diseases, including viral encephalomyelitis (103, 

140).  These observations further demonstrate the intricacy and the participation 

of multiple CNS resident cell types in immune responses within the CNS. 

Neurons are relatively resistant to both viral-induced death and T-cell 

killing, which is consistent with their limited capacity for self-renewal, and 

suggests that immune-mediated clearance of virus from the CNS is neuron 

sparing (65).  Furthermore, clearance of virus from neurons is generally heavily 

dependent on antibody and cytokine responses, whereas cytotoxic T-cell 

responses may not be required  for all neurotropic pathogens (46, 65).  Due to 

the general neuron-sparing nature of the immune response in the CNS, symptom 

resolution may be due to an immune response that checks viral replication and 

spread and may not completely eliminate all viral RNA (65).  Consistent with this, 

viral RNA can be detected in the CNS throughout the life of recovered animals 

along with antiviral antibody, which suggests that low-level, non-cytolytic, 

immune-mediated control may be required for long-term resolution of viral-

induced disease (64, 65, 127).  In summary, all arms of the immune system are 

involved in neurotropic arbovirus resolution, including innate responses from 

neurons, and the clearance of virus from the CNS is highly regulated and neuron-

sparing. 

 

 

 



13 

 

Neurotropic Alphavirus Basic Biology and Replication Cycle 

Alphaviruses have long been used as model neurotropic arbovirus 

pathogens and are generally subdivided into new and old world viruses based on 

their location primarily in the western or eastern hemispheres, respectively (150).  

The commonly studied old world alphaviruses, Sindbis (SIN) and Semliki Forest 

(SFV) viruses, cause a febrile illness associated with rash and polyarthropathy, 

whereas the more virulent new world alphaviruses WEEV, EEEV, and VEEV 

typically cause CNS infections (26, 45, 51).  The new world alphaviruses 

naturally infect the CNS (26, 32, 75).  Thus, we chose WEEV as our model 

alphavirus to study the interaction of neurotropic arboviruses with neuronal innate 

immune pathways.  However, most of the knowledge regarding alphavirus 

biology and neuropathogenesis was gained by studying old world pathogens 

such as SFV and neuro-adapted SINV, suggesting that our knowledge of 

encephalitic alphavirus pathogenesis may be incomplete.  

The alphavirus genome is roughly 11-12 kb in length and encodes the 

non-structural proteins, which are required for RNA replication, on the 5’ two-

thirds, and the viral structural genes on the 3’ one-third (Fig 1.1) (94).  Non-

structural protein-1 (nsP1) is a methyl-transferase involved in 5’-capping (118).  

Non-structural protein-2 (nsP2) contains both helicase and protease activity. The 

nsP2 helicase is required for efficient replication, and the protease activity is 

required for polyprotein processing (62, 171).  Non-structural protein-3 (nsP3) is 

a phosphoprotein with no known function, although it appears to play a role in     
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Figure 1.1.  Alphavirus genome architecture and replication.  Upon entry into 
the cytosol, the non-structural proteins are translated, autocatalytically 
processed, and mediate production of negative-sense templates and subsequent 
positive-sense genomic strands.  Viral replicase proteins also produce 
subgenomic templates, which encode the structural proteins, via a subgenomic 
promoter encoded on the negative-sense genomic template.  For further details 
see text. 
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replication and may mediate neurovirulence in old world alphaviruses (98, 167, 

177).  The viral RdRp and core of the alphavirus replication complex is encoded 

by nsP4 (135).  The structural components include the capsid, which  

encapsidates the RNA genome, and the envelope glycoproteins, which mediate 

viral attachment and entry (94, 158).   

Alphavirus entry into host cells requires clathrin-mediated endocytosis and 

is highly pH-dependent (94, 158).  A specific cellular receptor has not been 

identified, and it is proposed that several may be sufficient given the broad tissue 

tropism and species host range of alphaviruses (94, 158).  Due to the complex 

and incomplete understanding of host receptors required for alphavirus 

attachment and entry, the neurotropism of the new world alphaviruses remains 

poorly understood but may be dependent on increased heparin sulfate binding 

relative to old world alphaviruses (143).  Consistent with this, serially passaged 

old world alphaviruses develop mutations in envelope protein-2  which enhances 

heparin sulfate binding and correlates with increased neurovirulence (143).  

Furthermore, old world viruses, versus naturally encephalitic new-world 

alphaviruses, poorly bind heparin sulfate (143).  These observations indicate that 

alphavirus attachment to and entry into host cells requires clathrin-mediated 

endocytosis, but host and viral factors mediating attachment and neurotropism 

remain poorly defined and may be complex and multifactorial. 

The alphavirus glycoproteins E1 and E2, which span the viral envelope, 

mediate the entry process, where cell binding is largely attributed to E2 (94, 158).  
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Upon acidification, E1, which is a type-II fusion protein, exposes its fusion 

peptide and, through large conformational changes, mediates the fusion of the 

viral envelope with the endosomal membrane resulting in the release of the 

nucleocapsid core into the cytosol (94, 158).  After entering the cytosol, the RNA 

genome is immediately translated by host machinery (Fig 1.1) (64, 158).  This 

generates the predominant polyprotein, nsP123, and the minor polyprotein, 

nsP1234, via read-through of an opal codon (94, 158).  These polyproteins are 

autocatalytically processed via the protease activity of nsP2 (94, 158).  The 

sequential processing of these polyproteins into their constituent parts forms 

distinct replication complexes which preferentially produce negative-sense RNA 

strands followed by positive-sense genomic RNA strands and finally sub-

genomic RNA strands (94, 158).  The viral replication complexes recognize and 

bind promoter-like elements termed conserved sequence elements (CSE) 

located at the 5’ and 3’ ends of the viral RNA and at the sub-genomic promoter 

near the junction of the nsP4 and capsid genes (94, 158).  Within host cells, the 

viral replication complexes are located on the cytosolic surface of cellular 

membranes.  These membranes are thought to be derived from endosomes or 

lysosomes but are often ambiguously termed cytopathic vacuoles (94, 158).  

Following subgenomic RNA synthesis, the structural genes are translated via 

host machinery into a poly-protein with capsid on the N-terminus and E1 on the 

C-terminus (Fig 1.1) (94, 158).  Immediately following translation, capsid is 

released via autoproteolytic activity of a protease domain located in the C-
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terminus of capsid (94, 158), a fact that, along with polyprotein processing of the 

nsPs, will be important for understanding the design of constructs used in 

chapter III.  Release of capsid exposes a signal peptide on the N-terminus of the 

new polyprotein containing the envelope proteins (94, 158).  This signal 

sequence directs the envelope proteins to the ER-Golgi network for further post-

translational processing, including glycosolation and modification by host 

proteases, before being translocated to the cellular membrane (94, 158).  

Meanwhile, capsid associates with viral RNA genomes via packaging sequences 

on its N-terminus and forms neucleocapsid cores that then interact with envelope 

proteins near the cell membrane (94, 158).  Finally, viral particles bud from the 

cell surface (94, 158). 

 

Alphavirus Phylogeny 

Alphaviruses are believed to be derived from an unknown protoalphavirus 

that originated in the Americas and gave rise to the new and old world 

alphaviruses in existence today (64).  Alphavirus phylogeny is based on both 

sequence analysis and envelope protein antigenic complexes.  Generally these 

two methods produce similar phylogenetic trees except for where on these trees 

each method places WEEV. The reason for this is that WEEV is a recombinant 

alphavirus in which the non-structural proteins and capsid are derived from an 

EEEV-like common relative, and the envelope glycoproteins are derived from a 

Sindbis virus-like relative (74).  This will be important for this body of work 
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because the old and new world alphaviruses utilize either nsP2 or capsid, 

respectively, to mediate important virulence mechanisms described below.   

 

Immune Response to Neurotropic Alphaviruses 

Neurotropic alphavirus pathogenesis and the immune response mounted 

against alphaviruses are generally similar to the description given above 

regarding all neurotropic arboviruses; however, some aspects of 

neuropathogenesis are far better characterized for alphaviruses than other 

neurotropic arboviruses.  For instance, the humoral immune response is 

incredibly important for alphavirus encephalitis resolution, and passive 

administration of protective antibodies can be therapeutic for established 

infections (73).  These protective antibodies don’t have to be neutralizing, are 

independent of complement, are generally directed against viral E1 or E2, can 

decrease intracellular replication, are non-lytic, and are synergistic with type-I 

IFNs (64, 65, 85, 116, 156).  Furthermore, WEEV patients lacking an antibody 

response at the time of presentation are more likely to die (64, 65).  Another 

particularly well-studied area of alphavirus neuropathogenesis is that type-II IFN, 

namely IFN can clear virus from certain neuronal populations in the absence of 

a B-cell response (27).  Finally, increased neuronal maturation is inversely 

proportional to alphavirus virulence and cytopathic effect (17).  This phenomenon 

is independent of developmental changes in the adaptive immune system and 

the induction of type-I IFN (32, 67, 70).  In fact, younger animals, and possibly 
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immature neurons, actually produce more inflammatory cytokines and type-I 

IFNs than older animals, which may contribute to the increased severity of 

neurotropic alphaviruses in younger animals (68).  While seemingly unrelated to 

developmental changes in the adaptive immune system and induction of type-I 

IFNs, the resistance of mature neurons to neurotropic alphavirus infections has 

been attributed to neuronal resistance to virus-induced apoptosis (164-166) and 

may be augmented by increased IFN responsiveness of mature neurons relative 

to immature neurons (66, 67, 69, 70, 101, 102).  These observations outline 

many of the similarities of the immune response to diverse alphaviruses and 

suggest that significant amounts of alphavirus biology can be learned by studying 

model alphaviruses.     

As described above, there are important similarities in the immune 

response to most alphaviruses.  However, the majority of alphavirus 

pathogenesis studies examined old world alphaviruses, which in humans are not 

naturally encephalitic, and recently, important differences in pathogenic 

mechanisms between new and old world alphaviruses have emerged.  For 

instance, the ability of alphaviruses to induce a cytopathic effect and shut down 

host macromolecular synthesis has long been a proposed virulence mechanism.  

For the old world alphaviruses, nsP2 mediates neurovirulence, cytopathic effect 

(CPE), shut off of host macromolecular synthesis, and interference with type-I 

IFN induction (32, 96).  In contrast, the capsid protein of new world alphaviruses 

mediates CPE, shut off of host macromolecular synthesis, and may mediate 
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interference with type-I IFN induction (22, 25, 60, 63).  This difference is 

important because shut down of host macromolecular synthesis may inhibit the 

induction of an innate antiviral response.  In support of this, attenuated strains of 

new world alphaviruses contain mutations in critical residues of capsid 

responsible for inhibition of host macromolecular synthesis (2, 3, 59, 60); and 

chimeric viruses containing new world non-structural proteins and old world 

structural proteins were cleared from IFN/ competent cells but replicated 

similar to their wild-type counterparts in IFN/deficient cells (10).  The capsid 

protein from the new world virus VEEV also blocks nuclear import (60); however, 

it is unclear whether capsid-mediated inhibition of nuclear import blocks nuclear 

translocation of innate antiviral transcription factors.  In contrast, old world nsP2 

does not appear to affect virus-induced nuclear translocation of innate antiviral 

transcription factors (10, 11).  Furthermore, it is unclear whether new world 

capsid-mediated CPE, shut off of host macromolecular synthesis, and 

interference with type-I IFN induction are the result of one common mechanism 

or are all independent functions of capsid.  In the case of old world nsP2, these 

functions may be distinct given that nsP2 mutants have been identified that no 

longer inhibit either type-I IFN induction, host transcription, or host translation 

(22, 25).  In addition to nsP2, virulence determinants mapped to the cleavage site 

between nsp1 and 2 also influence inhibition of type-I IFN induction independent 

of shut off of host macromolecular synthesis (22, 63).  These studies highlight the 

fact that while much can be learned about alphavirus pathogenesis by studying 
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model old world viruses, important differences between the encephalitic new 

world and non-encephalitic old world alphaviruses exist, especially with regard to 

how each group of viruses shuts down host gene expression and interferes with 

innate immune responses.  

Just as old and new world alphaviruses have distinct pathogenic 

mechanisms, there are also important pathogenic differences among the 

encephalitic new world alphaviruses.  For instance, VEEV pathogenesis has a 

prominent lymphoid component, whereas EEEV largely spares the lymphatic 

system and appears to avoid replication in myeloid lineage cells altogether (38).  

In addition, VEEV robustly increases serum type-I IFNs as do old world 

alphaviruses (57), whereas EEEV fails to do so (154, 164-166).  In fact, 

attenuated strains of EEEV correlated with increased induction of type-I IFNs in 

vivo (57). Altogether, these alphavirus pathogenesis studies demonstrate that 

parallels among alphaviruses exist in terms of pathogenic mechanisms and 

immune responses mounted against them, but, as with many closely related 

viruses, important differences are also present.  In this body of work, I chose 

WEEV as a model neurotropic arbovirus for two main reasons.  First, it is the 

least studied of the new world encephalitic alphaviruses and may be particularly 

illuminating for alphavirus pathogenesis because it is a recombinant virus 

between new and old world alphaviruses.  Second, while WEEV requires BSL3 

containment, it is safer than other new world encephalitic alphaviruses for healthy 

lab personnel to manipulate due to its lower case to infection ratio for adults.  
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Ultimately, all observations presented in this body of work will need to be verified 

for the other new world encephalitic alphaviruses and, more generally, 

neurotropic arboviruses, but I reasoned that studying the lesser characterized 

and recombinant alphavirus, WEEV, would reveal novel insight about alphavirus 

and potentially neurotropic arbovirus biology.         

 

Innate Antiviral Pattern Recognition Receptor Pathways 

Gerneral Characteristics 

Innate immune pathways are early responses important for pathogen control, 

and are activated by pattern recognition receptors that bind ligands containing 

pathogen- or danger-associated molecular patterns, such as modified 

carbohydrate or nucleic acid structures (58).  For antiviral innate immune 

responses, ligation of these receptors induces a signal transduction cascade that 

results in the production of type-I IFNs, other proinflammatory cytokines, and cell-

intrinsic factors important for the generation of an antiviral cellular 

microenvironment (99, 133).  In addition, antiviral PRR signaling is important for 

activating an appropriate adaptive immune response (133), which is required for 

the eventual clearance of most viral infections (7).  Thus, PRR-mediated innate 

immune signaling serves a pivotal role in stimulating rapid yet nonspecific 

antiviral activity while also providing activation signals for more specialized 

adaptive immune responses. 
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There are three general steps in innate antiviral immune responses: 

recognition, amplification, and effector production (Fig 1.2).  Activation is 

achieved by receptors that activate several transcription factors via 

phosphorylation events or degradation of transcription factor inhibitors.  These 

activation events often result in transcription factor dimerization and nuclear 

translocation.  Once in the nucleus, activated transcription factors then induce 

the expression of many genes important for mounting a cellular antiviral 

response including the type-I IFNs (24).  Type-I IFNs then signal in either a 

paracrine or autocrine manner through the type-I IFN receptor (IFNAR).  The 

interferon receptor signals in a JAK/STAT-dependent manner and activates the 

transcription factor complex interferon-stimulated gene factor-3 (ISGF3) (95).  

ISGF3 binds interferon-stimulated response elements (ISREs) present in the 

promoters of interferon-stimulated genes (ISGs) and promotes their expression 

(143).  There are several IFN-stimulated genes that act directly as antiviral 

effectors, but many are also components of antiviral PRR pathways, which 

provides a mechanism for positive feedback regulation and amplification (143). 

PRR pathway activation is initiated by four groups of antiviral PRR receptors: the 

cytosolic retinoic acid gene-I-like (RLR) receptors; the cytosolic nucleotide-

binding oligomerization domain (NOD)-like receptors (NLR); the cytosolic DNA 

recognition receptors; and the transmembrane toll-like receptors (TLR) (95, 133).  

Due to differential expression, ligand specificity, and pathogen- 

  



24 

 

 

  
 
 
Figure 1.2.  Innate antiviral signaling pathways.  1. Recognition. Innate 
antiviral signaling is initiated via ligation of pattern recognition receptors (PRR), 
which signal the induction of cytokines, antiviral effector genes, and type-I IFNs 

(IFN/).  2. Amplification. Type-I IFNs are then secreted and undergo 
autocrine/paracrine signaling through the type-I IFN receptor (IFNAR) resulting in 
the induction of interferon-stimulated genes (ISGs) that contain interferon-
stimulated response elements (ISRE) in their promoters.  ISGs encode pattern 
recognition receptor pathway components, thereby providing amplification and 
positive feedback on pattern recognition receptor-mediated signaling.  3. 
Antiviral Effectors. Many ISGs and genes directly induced by PRR signaling 
encode proteins with potent antiviral effects. 
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mediated interference, PRRs respond to viral infections in both a 

pathogen and cell type-specific manner (161, 184). 

 

Cytosolic Antiviral PRR Pathways 

The RLR pathways are initiated by the receptors RIG-I, melanoma differentiation-

associated gene 5 (MDA5), and laboratory of genetics and physiology-2 (LGP2)  

(Fig 1.3) (95, 161, 184, 185).  RLRs recognize non-self RNAs via a DexD/H-box 

RNA helicase domain and signal via two N-terminal caspase recruitment 

domains (CARDs) that mediate downstream protein-protein interactions required 

for antiviral signaling (95, 161, 184).  However, LGP2 lacks CARD domains and, 

depending on the context, appears to function as either a positive or negative 

regulator of RLR signaling (185).  RIG-I and LGP2 contain C-terminal regulatory 

domains that inhibit CARD-mediated signal transduction in the absence of ligand 

(184).  In contrast, MDA5 lacks a regulatory domain (184), and overexpression of 

MDA5 robustly activates downstream signal transduction in the absence of ligand 

(184).  Despite being highly similar, the RLRs appear to differentially recognize 

specific, non-self RNA moieties and viral pathogens (9).  For instance, RIG-I 

recognizes 5’ triphosphorylated double-stranded RNAs, homopolymeric RNA 

motifs, short dsRNAs (<2 kb), unanchored polyubiquitin chains, and many 

families of RNA viruses, whereas MDA5 recognizes picornaviruses and long 

dsRNAs (>2 kb) often mimicked by the synthetic dsRNA molecule polyinosinic-

polycytidylic acid (poly(I-C)) (92, 93, 161, 184).   
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Figure 1.3.  Cytosolic antiviral PRR signaling pathways.  Receptor ligation 
results in the formation of signaling complexes dependent on the adaptors IPS-I 
and MITA, which mediate the activation of kinases.  These kinases then activate 
antiviral transcription factors, which translocate into the nucleus and induce 
cytokines, antiviral effectors, and type-I IFNs.  For further details see text. 
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RLR-mediated signal transduction requires the CARD-containing 

mitochondrial adaptor protein interferon- promoter stimulator protein-1 (IPS-1) 

(also referred to as Cardif, MAVS, and VISA) (139, 161, 184, 185, 187).  IPS-I, 

when localized to peroxisomes, can also mediate an antiviral signal transduction 

pathway that is independent of type-I IFNs (185).  IPS-I serves as a scaffold for 

the formation of a large signaling complex that is formed when ligand-bound 

RLRs interact with IPS-1 via intermolecular CARD interactions (49).  This large 

signaling complex mediates the assembly of several important signaling 

molecules, including TRAF3, TRAF6, and FADD, resulting in the activation of 

numerous kinases including MAPKs, IKK, IKK, IKK, and TBK1 (161, 184).  

These kinases then activate the transcription factors NF-B, IRF3, IRF7, and 

AP1, which induce the expression of antiviral genes, inflammatory cytokines, and 

type-I IFNs (161, 184).   

In addition to antiviral signaling, RLRs also activate inflammatory 

pathways which classically involve NFB-dependent induction of the prototypic 

inflammatory cytokine, pro-IL-1, and formation of an inflammasome that 

activates Caspase-1 which cleaves pro-IL-1 to form mature, bioactive IL-

1(161, 184, 185).  RLRs induce inflammatory NFB-dependent cytokines IL-6 

and IL-1 in a manner dependent on IPS-I and CARD9, whereas type-I IFN 

induction is independent of CARD9 (186).  Interestingly, RIG-I and MDA5-

mediated IL-1 maturation is independent of IPS-1, and each receptor induces a 
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slightly different inflammasome (136).  For instance, RIG-I-mediated maturation 

of pro-IL-1 requires the inflammasome adaptor ASC and activates Caspase-1, 

but the process is independent of the well characterized but relatively non-

specific NLRP3-containing inflammasome (136).  In contrast, MDA5-mediated 

maturation of pro-IL-1 induces an inflammasome containing NLRP3 (136).  

Unlike canonical IPS-I-dependent RLR signaling, it is unclear if inflammatory 

RLR signaling pathways mediate a direct antiviral effect, but an indirect antiviral 

effect may be important given the long standing link between inflammatory 

responses and induction of adaptive immunity (136).    

 RLR pathways are highly regulated, and several negative and positive 

regulators have been identified.  Mediator of IRF3 activation (MITA) (also known 

as stimulator of interferon genes (STING)), a transmembrane protein potentially 

located on ER and mitochondria, positively regulates RLR signaling (6, 86, 162).  

Another mitochondrial protein and member of the NLR family, NLRX1, negatively 

regulates RLR signaling (161, 184).  Ubiquitination mediated via several 

enzymes has both negative and positive effects on RLR signaling.  The ring-

finger protein, RNF125, ubiquitinates MITA, and potentially other molecules in 

the RLR pathway, resulting in decreased signal transduction (120).  In contrast, 

the E3 ubiquitinase, tripartite motif protein-25 (TRIM25), specifically ubiquitinates 

RIG-I, which is required for RIG-I and IPS-I interaction and subsequent signal 

transduction (161, 184).  In addition, Riplet (also termed RNF135 and REUL) 

ubiquitinates and positively regulates RIG-I independent of TRIM25 (161, 184).  
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Finally, the ubiquitin ligase A20 and the ubiquitin modifying enzymes CYLD and 

DUBA negatively regulate RLR signaling (161, 184).  The autophagy-related 

complex, Atg5-Atg12, also negatively regulates RLR signaling despite having a 

positive regulatory role for TLR-mediated signaling (161, 184).  Specific negative 

regulation of MDA5 is achieved by dihydroacetone kinase (DAK) (161, 184).  

Interestingly, small self RNAs generated by the antiviral effector genes OAS and 

RnaseL amplify RLR signal transduction (48).  These studies highlight the 

intricate and complex nature of these pathways and demonstrate the many 

mechanisms the host employs to fine-tune and appropriately regulate RLR 

pathways.  

 In additon to RLRs, the NLR NOD2 also recognizes viral RNA in the 

cytoplasm and induces an antiviral signal transduction pathway requiring IPS-I 

and IRF3 (Fig 1.3) (113).  NOD2 recognizes ssRNA and protects mice from 

respiratory syncytial virus pathogenesis, but the role this receptor plays in other 

viral infections needs further investigation (144). 

 The induction of an innate antiviral response by cytosolic DNA requires 

the classic PRR pathway transcription factors IRF3 and NFB as well as the 

kinases TBK1 and IKK(Fig 1.3) (144).  Just as cytoplasmic recognition of RNA 

is achieved by a variety of receptors, the recognition of cytoplasmic DNA is 

complex, redundant, cell type-, and species-specific (84, 161, 184).  One 

mechanism involves the transcription of 5’ triphosphorylated dsRNA from 

cytoplasmic dsDNA by RNA polymerase III (84, 161, 184).  These transcribed 
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RNAs then serve as ligands for RIG-I (1, 35, 84, 161, 184).  RNA polymerase III 

templates include the mimetic of B-form DNA, poly(dA-dT), and the viruses 

adenovirus, herpes virus, and Epstein-Barr virus (1, 35).  Another candidate 

cytoplasmic DNA sensor is DNA-dependent activator of IFN-regulatory factors 

(DAI; also known as ZBP1), which activates IRF3 and NFB in response to 

poly(dA-dT) (35); however, deletion of DAI in mice had no effect on DNA-induced 

interferon production, suggesting redundant mechanisms for cytoplasmic DNA 

detection (160).  Recent reports also indicate that an AIM2-containing 

inflammasome recognizes dsDNA and requires ASC for the activation of 

caspase-1 and subsequent release of the inflammatory cytokine IL-1(84, 88, 

160, 161, 184).  However, this pathway does not induce type-I interferons, and it 

is unclear if it produces a direct antiviral effect.            

Several signaling molecules, in addition to STING and downstream 

kinases and transcription factors, mediate antiviral signal transduction in 

response to both cytoplasmic dsDNA and dsRNA.  High mobility group box-1 

(HMGB1) is regarded as an universal sentinel for nucleic acid-mediated innate 

immune responses (53, 83, 84, 161, 184).  HMGB1 appears to mediate the early 

capture and delivery of nucleic acids to their appropriate receptors for induction 

of antiviral signaling (182).  In addition to HMGB1, a coactivator pathway 

responsive to both dsDNA and dsRNA increases type-I IFN induction (161, 182).  

This pathway is mediated by the nucleic acid receptor LRRFIP1, which upon 

ligation leads to the activation of -catenin (183).  Activated -catenin then 
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interacts with IRF3 and the IRF3 coactivator p300 resulting in enhanced 

transcription of IRF3 antiviral target genes (183).  However, the requirement of 

LRRFIP1 for antiviral responses in vivo remains to be tested.  These studies 

further demonstrate the intricate mechanisms cells employ to detect and respond 

to cytosolic viral pathogen associated molecular patterns, and this intricacy 

generates a plethora of unanswered questions suggesting that much remains to 

be learned about these pathways. 

 

TLR-mediated Antiviral PRR Pathways   

The transmembrane toll-like receptors mediate antiviral signaling by detecting 

pathogen-associated molecular patterns at the cell membrane or within 

endosomes (Fig 1.4) (183).  At the cell membrane, TLR4 recognizes viral 

glycoproteins (95), whereas the ligand for the antiviral activity of cell-surface 

localized TLR2 remains to be determined (95).  While TLR4 and 2 likely 

recognize their ligands at the cell surface, induction of an antiviral response 

following ligation of these receptors requires internalization (13).  In contrast to 

TLR 4 and 2, TLR3, TLR7/8, and TLR9 are localized to endosomes where they 

recognize dsRNA, ssRNA, and hypomethylated CpG DNA motifs, respectively 

(13, 19, 95).  Generation of signaling-competent TLR9, and possibly TLR7, 

requires proteolytic cleavage of the ectodomain within endosomes (19, 137), but 

no cleavage of TLR3 has been observed (19, 52, 129).  Trafficking of TLR3, 

TLR7/8, and TLR9 to endosomes requires the ER protein UNC93B1    
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Figure 1.4.  Toll-like receptor-mediated antiviral PRR signaling pathways.  
Receptor ligation results in the formation of signaling complexes dependent on 
the adaptors MYD88 and TRIF, which mediate the activation of kinases.  These 
kinases then activate antiviral transcription factors, which translocate into the 
nucleus and induce cytokines, antiviral effectors, and type-I IFNs.  For further 
details see text. 
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(19, 95, 161), and mutations in UNC93B1 increase human susceptibility to viral 

pathogens including HSV encephalitis (19, 95, 161).  TLR3 has also been 

observed on the surface of certain cell types including neuronal cells (31), but it 

is unclear if this population of TLR3 mediates antiviral signal transduction. 

Like the RLRs, the TLRs require specific adaptor proteins for efficient 

antiviral signal transduction.  TLRs 2, 7, 8, and 9 all require the adaptor molecule 

myeloid differentiation primary response gene 88 (MYD88) for antiviral signal 

transduction (19).  In contrast, TLR3 requires the adaptor TIR-domain-containing 

adapter-inducing interferon-β (TRIF) (13, 95).  Both TIR-domain-containing 

adaptors interact with the cytoplasmic TIR domains of ligand-bound TLRs (95).  

Most antiviral TLRs utilize TRAF3 and TRAF6 for signal transduction and activate 

the kinases MAPK’s, IKK, IKK, IKK, and TBK1 (95). In addition, 

phophatidylinositol-3 kinases (PI3K) are positive signal transducers for TLR7 (19, 

95, 161, 184), may be negative signal transducers for TLR4 (29), and are 

reported to be both positive and negative regulators of TLR3 (4).  As with RLR-

mediated antiviral signaling, these kinases activate the transcription factors AP1, 

NFB, IRF3, and IRF7; however, TLR7/8 and 9 largely depend on IKK and 

IRAK1 for activation of primarily IRF7 and not IRF3 (4, 50, 147).  In contrast, 

TLR3 and 4 activate both IRF3 and IRF7 via the kinases TBK1/IKK(19, 95, 161, 

184).  

 Similar to the RLR pathways, the TLR pathways are highly regulated, a 

topic that has been extensively reviewed (19, 95, 161, 184).  Of note, there are 
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parallels between the regulation of antiviral RLR and TLR signal transduction 

pathways, suggesting that some communication and integration of signals 

between the cytosolic and TLR pathways takes place.  This is best exemplified 

by the negative regulation of TLRs and RLRs by the ubiquitin modifying enzymes 

DUBA and A20 (19, 95, 161, 184).  In addition to common regulatory 

mechanisms between RLR and TLR pathways, regulatory mechanisms favoring 

distinct TLR-mediated signals have also been described.  For instance, the E3 

ubiquitin ligase NRDP1 promotes the activation of TRIF-dependent activation of 

IRF3 while inhibiting MYD88-dependent activation of NFB (19, 95, 161, 184), 

suggesting that NRDP1 promotes antiviral TLR signaling and blocks 

inflammatory TLR signaling.  Just as with the cytosolic PRRs, regulation of the 

TLR pathways is also complex and suggests that further study is likely to reveal 

novel biology underlying these important antiviral pathways.   

 

Ligands and Viruses Recognized by PRRs  

Due in part to ligand specificity, differential expression, and pathogen-mediated 

interference, PRRs differentially recognize and respond to distinct viral infections, 

but some pathogens are recognized by several receptors (Table 1.2) (173).  

Limited information is available regarding what receptors recognize neurotropic 

arboviruses in neurons, but WNV is recognized by both RIG-I and MDA5 in non-

neuronal cell types (19, 95, 161, 184, 185) and TLR3 in neurons (55, 56).  

Japanese encephalitis virus is recognized by RIG-I (40), but it is unclear if  
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Table 1.2.  Antiviral PRRs.    

PRR Location Ligand Virus Family 

RLR    

LGP2 Cytoplasm dsRNA + Picornaviruses 
and 
paramyxoviruses 
- Rhabdoviruses 

MDA5 Cytoplasm dsRNA Picornaviruses 
Caliciviruses 
Coronaviruses 
Reoviruses 
Flaviviruses 
Togaviruses 

RIG-I Cytoplasm Short, 5’-
triphosphorylated 
dsRNA and poly-
ubiquitin chains 

Orthomyxoviruses 
Rhabdoviruses 
Paramyxoviruses 
Flaviviruses 
Reoviruses 
Togaviruses 

NLR    

NOD2 Cytoplasm ssRNA Paramyxoviruses 

Cytosolic DNA    

DAI Cytoplasm B-form DNA Herpesviruses 

RNApol III/RIG-I Cytoplasm B-form DNA Herpesviruses 
Adenoviruses 

TLR    

TLR2 Plasma membrane/ 
intracellular 

 Herpeseviruses 
Poxviruses 

TLR3 Endosome dsRNA Reoviruses 
Flaviviruses 
Picornaviruses 
Paramyxoviruses 
Rhabdoviruses 
Herpesviruses 
Arenaviruses 

TLR4 Plasma 
membrane/intracellular 

Viral 
glycoproteins 

Paramyxoviruses 
Retroviruses 

TLR7/8 Endosome ssRNA Rhabdoviruses 
Orthomyxoviruses 

TLR9 Endosome CpG DNA Herpesviruses 

“+/-” indicates positive/negative regulation of signal transduction.   
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neurons have this capability.  To date, it is unknown what PRRs recognize new 

world encephalitic alphaviruses, but evidence exists for the recognition of old 

world alphaviruses, which are not naturally encephalitic, via RIG-I or MDA5 

depending on the cell type and virus (93).  The non-arboviral encephalitic rabies 

and herpes viruses are recognized by RIG-I and TLR9, respectively (25, 134), 

and TLR3 may recognize rabies virus in neuronal cells (95, 185).  Further work 

will need to clarify what receptors recognize neurotropic arboviruses and if they 

do so in neurons. 

 

Antiviral Mechanisms of PRR Pathways       

The ability of PRR pathways to induce an antiviral effect is partly due to the direct 

or indirect induction of antiviral effector genes.  There are a multitude of these 

genes, many of which have uncharacterized mechanisms of action.  However, 

one well-characterized antiviral effector system involves the oligoadenylate 

synthetase (OAS) genes and RNaseL.  OAS, upon ligation of viral RNA, 

synthesizes 2’-5’-linked oligoadenylate which then binds and activates RNaseL 

resulting in the degradation of host and viral RNA and the subsequent inhibition 

of viral propagation (137).  The antiviral activity of PRR pathways can also be 

attributed to altruistic induction of apoptosis in virally infected cells, thereby 

limiting viral replication and spread (20, 145).  Direct PRR pathway-mediated 

induction of apoptosis is achieved by activation of IRF3 triggering the interaction 

of IRF3 with the pro-apoptotic protein Bax (16, 78, 81, 153).  IRF3 and Bax then 
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translocate to the mitochondria and activate the mitochondrial apoptosis pathway 

(34).  Interestingly, IRF3-dependent induction of apoptosis in conjuction with Bax 

does not require IRF3’s DNA binding domain, suggesting that this process is 

independent of an IRF3-mediated transcriptional response (34).  In addition to 

direct PRR pathway-mediated induction of altruistic apoptosis, there are multiple 

indirect mechanisms for viral activation of apoptosis including damage of host 

cell machinery by OAS-RNaseL (34).  Paradoxically, PRR pathway activation can 

be both cell sparing and cell death promoting when activated by viral pathogens.  

Presumably cells are spared when antiviral effectors are sufficient to control viral 

replication, but when antiviral effectors are insufficient to control viral replication, 

cells undergo altruistic apoptosis.  In the end, the effectiveness of either antiviral 

effectors or altruistic apoptosis to produce a net antiviral effect may depend on 

the pathogen, the pathogen load, and the responding cell type.     

In addition to immediate local antiviral effects, PRR pathway activation has 

profound effects on the entire immune response (20).  These effects are largely 

due to type-IFNs, but other inflammatory cytokines induced by PRR signaling 

may also play a role.  Early after infection, chemokines, cytokines, and type-I 

IFNs induced by PRR signaling mediate the upregulation of adhesion molecules 

and promote the migration of inflammatory cells (7).  PRR-mediated induction of 

type-I IFN alerts and helps activate natural killer cells and local antigen 

presenting cells, such as dendritic cells, which are important for activating 

adaptive responses (7).  In addition, type-I IFNs directly influence adaptive 
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responses by regulating T-cell activation and memory and influencing B cell 

functions such as antibody secretion and isotype switching (7).  The influence of 

PRR pathways on adaptive responses to neurotropic arboviruses has been 

studied for WNV: virus-infected IPS-1-/- mice mount an altered inflammatory 

response and ultimately ineffective humoral and T-cell responses (7).  These 

studies indicate that early PRR pathway responses are crucial for producing not 

only early, non-specific antiviral responses, but also for mediating highly effective 

and specific adaptive responses and eventual disease resolution.   

 

Cell Type-Specific PRR Signaling 

The molecular mechanisms of antiviral PRR signaling have been defined 

primarily using a limited number of cell lines and primary cell types, many of 

which are derived from small rodent models; and these include professional 

immune cells such as dendritic cells or macrophages.  These studies have 

revealed important cell type-specific differences in antiviral PRR pathways.  For 

example, dendritic cells express relatively high basal levels of TLR7 and TLR9, 

and as a result vigorously respond to ligands for these receptors (159).  In 

contrast, “non-professional” immune cells, such as fibroblasts, use primarily 

cytoplasmic RLRs for innate antiviral pathway activation (36), although some cell 

types such as keratinocytes (92) and respiratory epithelial cells (175) can also 

mount vigorous TLR-mediated antiviral responses.  Plasmacytoid dendritic cells 

also constitutively express the transcription factor IRF7, which is thought to 
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contribute to their ability to produce IFN rapidly after PRR-mediated stimulation 

(91), whereas IFN production in other cell types occurs later if at all, and is 

linked to IFN-mediated induction of IRF7 (14, 36, 82).  Interestingly, TLR2 

antiviral signaling is unique to an inflammatory monocyte population (115, 148, 

149), and myeloid cells remain responsive to WNV virus even when the key 

transcription factors IRF3 and IRF7 are deleted, which is in contrast to both 

WNV-infected fibroblasts and cortical neurons (13).  Additional examples of cell 

type-specific differences in innate antiviral immunity include a lower basal activity 

of PRR pathways in cardiac fibroblasts compared to cardiac myocytes (43), 

differential responses of specific human hepatocyte cell lines to poly(I-C) and 

Sendai virus (SeV) stimulation (190), and cell type-specific roles for IRF3 and 

IRF7 in response to West Nile virus infection (104).  Furthermore, species-

specific differences also exist with respect to DAI (107) and TLR expression, 

regulation, and function (39, 41).  These observations suggest that caution 

should be exercised in extrapolating results on innate antiviral pathway activity 

between species and cell types. 

 

Neuronal Antiviral PRR Pathways      

Little is known regarding the PRR antiviral pathways that are active in CNS 

neurons or how these pathways may influence neurotropic arbovirus 

pathogenesis, but important observations have been made.  For instance, 

several studies have examined the role of TLR3 in response to CNS viral 
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infections (76, 77, 138, 178).  These studies demonstrated expression of TLR3 in 

human neurons (28, 40, 89, 117, 137) and enhanced West Nile virus replication 

in cortical neurons isolated from TLR3-/- mice (28, 89, 117, 137, 189).  However, 

the potential antiviral role of TLR3-mediated pathways is controversial and may 

be pathogen-specific (40).  For example, humans with a TLR3 deficiency have a 

genetic predisposition to herpes simplex virus encephalitis (172), but mice are 

protected from rabies virus encephalitis when TLR3 is deleted (188).  

Furthermore, TLR3-/- mice have been shown to have both increased (117) and 

decreased (176) susceptibility to West Nile virus (WNV) encephalitis.  However, 

these studies cannot fully separate the neuron-specific activity of TLR3 from 

other cell types, including professional immune cells such as macrophages and 

dendritic cells.  Although CNS neurons from TLR3-/- mice have a modest 

increase in WNV production, when infected in culture (40), suggesting that 

neuronal TLR3-mediated responses can have antiviral effects, further studies in 

mice with conditional cell-specific TLR3 deletions will be required to fully 

delineate the potential antiviral activity of TLR3-activated innate immune 

pathways in neurons and their role in viral pathogenesis.  In addition to the 

neuronal TLR3 studies, many groups have demonstrated virus-mediated and, in 

some cases, neurotropic arbovirus-mediated induction of type-I IFNs in CNS 

neurons both in vitro (40) and in vivo (39-41, 137). The interaction between 

neurotropic arboviruses and RLR pathways is best characterized for West Nile 

virus encephalitis in which replication is enhanced and type-I IFN induction is 
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reduced in cortical neurons isolated from IPS-1-/-, IRF7-/-, and IRF7/3-/- mice (44). 

In addition to putative antiviral functions, PRR pathways have also been 

implicated in neuronal development (39-41, 43, 159), neuronal regeneration 

(141), and neuroinflammatory diseases (28, 111).  Altogether, these reports 

suggest that CNS neurons possess active PRRs that may have multiple 

physiologic functions, but the full extent of their activity and influence on 

neurotropic arbovirus pathogenesis remain to be determined.   

 

Viral Countermeasures to Antiviral PRR Pathways 

Antiviral PRR pathways protect host cells and tissues against viral infections, yet 

many viruses, including neurotropic arboviruses, possess PRR pathway 

countermeasures allowing them to efficiently replicate, avoid immune detection, 

and cause disease (37, 119).  Often, viruses encode more than one PRR 

pathway evasive or inhibitory protein, and many of these viral proteins mediate 

evasion or subversion of PRR signaling in multiple ways.  Two of the best 

characterized mechanisms for viral interference of PRR pathways involve the 

NS1 protein of influenza virus and the NS3-4A protein of hepatitis C virus.  

Influenza NS1 sequesters viral dsRNA and binds RIG-I, thereby suppressing 

RIG-I signaling (21).  Hepatitis C NS3-4A inhibits TLR3 signaling by degrading 

TRIF, disables RLR signaling by cleaving IPS-I from its mitochondrial tether, and 

decreases IRF3 phosphorylation by disrupting the TBK1-IRF3 interaction (170).  

Neurotropic arboviruses also interfere with antiviral PRR signaling.  For instance, 
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the NS2A and NS1 proteins of WNV inhibit the activation of antiviral PRR 

pathways (170) resulting in higher viral replication and enhanced virulence in a 

manner that may be both viral strain- and cell type-dependent.  The neurotropic 

arbovirus LACV also interferes with host antiviral signaling.  The NSs protein of 

LACV mediates this effect by potently inhibiting type-I IFN induction, and mutant 

LACV lacking NSs robustly induces type-I IFNs resulting in reduced virulence 

(42, 46, 109, 180).  These studies demonstrate that viruses are not just passive 

agents that activate PRR signaling, but that they likely co-evolved with their 

respective hosts and actively interact and modulate the antiviral effects of PRR 

pathways.   

   

PRR Pathway Associated Diseases and Pathologies 

PRR pathways mediate potent antiviral responses, and these pathways are 

checked by a large number of negative regulators.  Unfortunately, misregulation 

of antiviral PRR pathways can also drive or influence a multitude of diseases 

including carcinogeneis and autoimmune diseases such as systemic lupus 

erythematosus, Crohn’s disease, and antiphospholipid antibody syndrome (18).  

Furthermore, human variants in MDA5 protect against type-I diabetes (161, 184), 

and within the CNS, unchecked or inappropriately activated antiviral PRR 

pathways may mediate neuroinflammatory diseases such as multiple sclerosis, 

amyotrophic lateral sclerosis, and Alzheimer’s disease (124).  Additionally, 

antiviral PRR pathways within CNS cells may play a role in chronic pain and 
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seizure development (15, 61, 97, 100, 114, 119, 126, 163).  These observations 

highlight the importance of studying PRR pathways so that we can better 

understand the disease processes they mediate.  Ultimately, the study of PRR 

pathways may lead to the development of therapies to treat viral infections by 

activating PRR pathways or inhibiting viral countermeasures to PRR pathways.  

Alternatively, therapies may be designed to inhibit the inappropriate activation of 

PRR signaling to treat autoimmune disorders and cancer. 
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Summary 

 Neurotropic arboviruses cause devastating CNS infections where the 

extent of virus-mediated destruction of neurons is often an important determinant 

in the severity and clinical outcome after infection.  Early cellular innate immune 

responses are often vital for effective pathogen control, and I hypothesized that 

an effective neuronal innate immune response may be crucial to prevent the 

essentially irreversible loss of critical central nervous system neurons by 

neurotropic arboviruses.  To begin testing this hypothesis, chapter II describes 

efforts to identify highly active neuronal innate antiviral pathways, and chapter III 

tests the impact these pathways have on neurotropic arbovirus infection of 

neurons and how these viruses counteract neuronal innate immune pathways.  In 

chapter IV, I take a different approach to preventing neurotropic arbovirus-

mediated neuronal death by identifying small molecules that inhibit neurotropic 

arbovirus replication and enhance cell viability, which may be useful for mono-

therapy or in combination with potential therapeutics designed to enhance the 

neuronal innate immune response or inhibit viral countermeasures to the innate 

immune response.  Chapter V discusses the overall relevance of these studies 

and potential future directions.   
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Chapter II 
 

Human Neuronal Cells Possess Functional Cytoplasmic and Toll-Like 
Receptor-Mediated Innate Immune Pathways Influenced by 

Phosphatidylinositol-3 Kinase Signaling 
 
 Innate immune pathways are early defense responses important for the 

immediate control and eventual clearance of many pathogens, where signaling is 

initiated via pattern recognition receptor-mediated events that occur in a ligand- 

and cell-type specific manner.  Within CNS neurons, innate immune pathways 

are likely crucial to control pathogens that target these essential yet virtually 

irreplaceable cells.  However, relatively little is known about the induction and 

regulation of neuronal pattern recognition receptor signaling.  In this report, we 

used human neuronal cell lines and primary rat neuronal cultures to examine 

pattern recognition receptor expression and function.  We found that several 

innate immune receptor ligands, including Sendai virus, the dsRNA mimetic 

polyinosinic-polycytidylic acid, and LPS all activated differentiation-dependent 

neuronal innate immune pathways.  Functional genetic analyses revealed that 

interferon regulatory factor 3-mediated pathways that resulted in IFN 

transcriptional upregulation were activated in cultured human neuronal cells by 

the pattern recognition receptors TLR3, melanoma differentiated-associated 

gene 5, or retinoic acid inducible gene I in a ligand-specific manner.  

Furthermore, genome-wide transcriptional array and targeted genetic and 

pharmacologic analyses identified PI3K signaling as crucial for the induction of 
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innate immune pathways in neurons.  These results indicate that human 

neuronal cells possess specific and functional pattern recognition receptor 

pathways essential for the effective induction of innate immune responses, and 

suggest that neurons can play an active role in defense against neurotropic 

pathogens. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 

Introduction 

 Innate immune pathways are early responses important for pathogen 

control, and are activated by pattern recognition receptors (PRRs) that bind 

ligands containing pathogen- or danger-associated molecular patterns, such as 

modified carbohydrate or nucleic acid structures (39).  For antiviral innate 

immune responses, ligation of these receptors induces a signal transduction 

cascade that results in the production of type-I IFNs, other proinflammatory 

cytokines, and cell-intrinsic factors important for the generation of an antiviral 

cellular microenvironment (51).  In addition, antiviral PRR signaling is important 

for activating an appropriate adaptive immune response, which is required for the 

eventual clearance of many viral infections.  Thus, PRR-mediated innate immune 

pathway signaling serves a pivotal role in stimulating rapid yet nonspecific 

antiviral activity while also providing activation signals for the production of more 

specialized adaptive immune responses. 

 There are three general steps in innate antiviral immune responses: 

activation, amplification, and effector production.  Antiviral PRR signaling is 

initiated by a variety of receptors, including the transmembrane TLR proteins 2, 

3, 4, 7/8, and 9, and the cytoplasmic retinoic acid inducible gene I (RIG-I)-like 

receptors (RLRs) RIG-I and melanoma differentiated-associated gene 5 (MDA5) 

(51).  TLR3, TLR7/8, and TLR9 recognize the non-self nucleic acid moieties 

dsRNA, ssRNA, and hypomethylated CpG DNA, respectively, whereas TLR4 

recognizes viral glycoproteins and the viral ligand for TLR2 remains to be 

identified.  In the cytoplasm, RIG-I binds double-stranded 5’ triphosphorylated 
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RNAs, homopolymeric RNA motifs, and short dsRNAs less than 2 kb in length 

(63, 64), whereas MDA5 recognizes complex dsRNAs greater than 2 kb in length 

(52) that can be mimicked by the synthetic dsRNA molecule polyinosinic-

polycytidylic acid (poly(I-C)) (74).  Due in part to this ligand specificity, PRRs 

differentially recognize and respond to distinct viral infections (39).  After PRR 

ligation, signal transduction is mediated by several distinct adaptor proteins, 

including MyD88, TIR-domain-containing adapter-inducing IFN-β (TRIF), and 

IFN- promoter stimulator protein 1 (IPS-1; also referred to as Cardif, MAVS, and 

VISA) (39, 51).  These adaptor protein complexes activate the transcription 

factors NFB and IFN regulatory factor 3 (IRF3) via multiple downstream 

kinases.  Activated NFB and IRF3 subsequently upregulate the expression of 

many genes important for mounting a robust antiviral response, including type-I 

IFNs (56), which function in either a paracrine or autocrine manner to induce IFN-

stimulated genes that contain IFN-stimulated response elements (ISREs) within 

their promoters.  There are several IFN-stimulated genes that act directly as 

antiviral effectors, but many are also components of antiviral PRR pathways, 

which provides a mechanism for positive feedback regulation and amplification 

(39, 51). 

The molecular mechanisms of antiviral PRR signaling have been defined 

primarily using a limited number of cell lines and primary cell types, many of 

which are derived from small rodent models and are professional immune cells 

such as dendritic cells or macrophages.  These studies have revealed important 

cell type-specific differences in antiviral PRR pathways.  For example, dendritic 



64 

cells express relatively high basal levels of TLR7 and TLR9, and as a result 

vigorously respond to ligands for these receptors (8).  In contrast, “non-

professional” immune cells such as fibroblasts use primarily cytoplasmic RLRs 

for innate antiviral pathway activation (34), although some cell types such as 

keratinocytes (32) and respiratory epithelial cells (70) can also mount vigorous 

TLR-mediated antiviral responses.  Plasmacytoid dendritic cells also 

constitutively express the transcription factor IRF7, which is thought to contribute 

to their ability to produce IFN rapidly after PRR-mediated stimulation (2, 8, 27), 

whereas IFNproduction in other cell types occurs later, if at all, and is linked to 

IFN-mediated induction of IRF7 (44, 61, 62).  Additional examples of cell type-

specific differences in innate antiviral immunity include a lower basal activity of 

PRR pathways in cardiac fibroblasts compared cardiac myocytes (80), differential 

responses of specific human hepatocyte cell lines to poly(I-C) and Sendai virus 

(SeV) stimulation (42), and cell type-specific roles for IRF3 and IRF7 in response 

to West Nile virus infection (13, 15).  Furthermore, species-specific differences 

also exist with respect to TLR expression, regulation, and function (25, 26, 57, 

72).  These observations suggest that caution should be exercised in 

extrapolating results on innate antiviral pathway activity between species and cell 

types. 

Viruses from several families preferentially infect CNS neurons, and the 

extent of neurotropic virus-mediated cell death can be an important determinant 

in the severity and clinical outcome of infection (22).  Thus, an effective neuronal 

innate antiviral response that controls virus replication until an adaptive immune 
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response can be generated may be crucial to prevent the essentially irreversible 

loss of these critical cells.  However, we have limited knowledge regarding the 

PRR antiviral pathways that are active in CNS neurons.  TLR3 expression has 

been reported in human neurons (3, 30, 45, 54, 79), West Nile virus replication is 

enhanced in cortical neurons isolated from TLR3-/- mice (14), and neural 

progenitor cells respond to poly(I-C) stimulation by reducing proliferation and 

neurosphere formation in a TLR3-dependent manner (41).  Furthermore, studies 

have demonstrated virus-mediated induction of type-I IFNs in CNS neurons both 

in vitro (13-15, 54) and in vivo (16).  In addition to putative antiviral functions, 

PRR pathways have been implicated in neuronal development (58), neuronal 

regeneration (3, 43), and neuroinflammatory diseases (12, 46).  Altogether, these 

reports suggest that CNS neurons possess active PRRs that may have multiple 

physiologic functions, but the full extent of their activity and the downstream 

components that mediate their activation remain to be determined. 

In this report, we use both global and targeted approaches to examine 

PRR expression and pathway activity in response to RLR and TLR ligands.  We 

found that human neuronal cells show differentiation-dependent selective 

responses to TLR3-, TLR4-, MDA5-, and RIG-I-mediated stimulation.  

Furthermore, detailed genetic and pharmacologic studies revealed that select 

neuronal innate immune pathways were dependent on PI3K activity.  These 

results demonstrate that human neuronal cells are immunologically active and 

possess specific and non-redundant functional PRR pathways that may play a 

protective role in neurotropic virus pathogenesis. 
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Materials and Methods 

Plasmids 

We purchased the reporter plasmids pISRE-SEAP and pNFB-SEAP, the wild 

type expression plasmid pTLR3, the dominant negative-expression plasmids 

pDN-TLR3(TIR), pDN-TRIF(TIR), and pDN-RIG-I(N), and the short-hairpin 

RNA expression plasmid pshRNA-MDA5 from InvivoGen (San Diego, CA).  The 

dominant negative expression plasmid pDN-IRF3(N) was generously provided 

by Rongtuan Lin (McGill University, Montreal).  We purchased the lentivirus 

short-hairpin RNA expression plasmids pGIPZ-shCD14 and pGIPZ-

shPI3K110from Open Biosystems (Huntsville, AL).  The lentivirus helper 

plasmids pCMV-VSV/G and pCMV-Gag/Pol were generously provided by David 

Markovitz (University of Michigan, Ann Arbor, MI). 

 

Virus 

Recombinant SeV that contains a GFP tag between the viral P and M genes was 

generously provided by Valery Grdzelishvilli (University of North Carolina at 

Charlotte, Charlotte, NC) and was expanded twice through Vero cells at a low 

multiplicity of infection to generate viral stocks.  SeV growth curves were 

analyzed by monitoring GFP accumulation in infected cells using a FLUOstar 

Omega plate reader (BMG Labtech, Durham, NC) and black-walled, translucent-

bottomed 96-well tissue culture plates. 

Lentivirus production for shRNA knockdown was done as previously 

described (33).  Briefly, HEK293FT cells at 90% confluence were incubated with 
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25 g/ml chloroquine and transfected either pGIPZ-shCD14 or pGIPZ-

shPI3K110 and the packaging plasmids pCMV-VSV/G and pCMV-Gag/Pol 

using calcium chloride.  Virus was harvested from clarified supernatants at 24 

and 48 h after transfection and stored at 4°C in the dark prior to cell infections. 

 

Antibodies, Cytokines, PRR Ligands, and Kinase Inhibitors 

Antibodies against GAPDH and IRF3 were purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA), antibodies against synaptophysin, 

neurofilament 200, and glial fibrillary acidic protein were purchased from Sigma 

(St. Louis, MO), antibodies against TLR3 were purchased from either Santa Cruz 

Biotechnology (clone TLR3.7, catalog no. sc-32232) or Imigenex (San Diego, 

CA; clone 40C1285.6, catalog no. IMG-315A), antibodies against PI3K p110 

were purchased from Cell Signaling Technology (Danvers, MA), and antibodies 

against RIG-I were purchased from Alexis Biochemical (San Diego, CA).  

Antibodies against MDA5 were generously provided by Paul Fisher (Columbia 

University, New York, NY).  Neutralizing antisera against type I IFNs and the 

corresponding control sera were obtained from the Biodefense and Emerging 

Infections (BEI) Research Resources Repository (Manassas, VA).  All secondary 

antibodies for immunoblotting and immunofluorescence staining were purchased 

from Jackson Immunoresearch (West Grove, PA). 

Recombinant human IFN-A/D and rat IFN were purchased from PBL 

Biomedical Laboratories (Piscataway, NJ), recombinant human TNF was 

purchased from R&D Systems (Minneapolis, MN), and human leukocyte IFN 
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and fibroblast IFN were obtained from the BEI Repository.  All cytokines were 

stored in single use aliquots at -80°C.  Ultrapure E. coli K12 LPS, the 

imidazoquinoline derivative CLO97, and the CpG-containing synthetic 

oligonucleotide ODN2006 were purchased from InvivoGen.  Poly(I-C) was 

purchased from either Sigma or InvivoGen and stored as a 5-10 mg/ml solution 

in sterile water at -20°C.  We transfected poly(I-C) using Lipofectamine 2000 

(Invitrogen) at a ratio of 200 g poly(I-C) per 60 l of Lipofectamine 2000 in a 

total volume of 150 l Opti-MEM I (Gibco) media. 

The kinase inhibitor library was provided by the University of Michigan 

Center for Chemical Genomics and was originally purchased from TimTec 

(Newark, DE).  The kinase inhibitors LY294002 and TGX-221 were purchased 

from Calbiochem (San Diego, CA) and the kinase inhibitors AS-252424 and 

p110 inhibitor 2 were purchased from Cayman Chemical (Ann Arbor, MI). 

 

Cell Culture 

BE(2)-C, SHSY-5Y, HCN-1A, U937, and Vero cells were all obtained from the 

American Type Culture Collection (Manassas, VA).  We differentiated BE(2)-C 

cells with all-trans retinoic acid as previously described (5), the non-malignant 

human cortical neuronal cell line HCN-1A with nerve growth factor, 1-isobutyl-3-

methylxanthine, and dibutyryl cAMP as previously described (59), and human 

monocytic U937 cells with 15 nM PMA for 48 h.  To avoid potential confounding 

effects of cell differentiation on transfection or transduction efficiency, we 

generated stable cell lines prior to differentiation.  BE(2)-C and SH-SY5Y cells 
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were transfected with reporter gene-, dominant negative-, or shRNA-expressing 

plasmids using Lipofectamine 2000 according to the manufacturer’s instruction 

(Invitrogen, Carlsbad, CA), whereas U937 cells were transfected by 

electroporation using a GenePulser Xcell according to the manufacturer’s 

instructions (Bio-Rad, Hercules, CA).  For lentiviral transduction, cells were 

infected with recombinant lentiviruses in the presence of 8 g/ml polybrene.  Cell 

lines were passed at least three times in the presence of selection antibiotic prior 

to use in experiments, and selection agents were removed for retinoic acid- or 

PMA-induced differentiation. 

 Primary rat neuronal cultures were prepared from embryonic day 18 

Sprague-Dawley rat cortices according to the supplier’s recommendations 

(BrainBits LLC, Springfield, IL).  Briefly, cortices were digested with 2 mg/ml 

papain (Worthington, Lakewood, NJ) for 30 minutes at 30°C in HibernateE 

solution (BrainBits LLC) without calcium followed by gentle trituration.  Cell 

suspensions were allowed to settle by gravity for 1 min to remove large debris, 

supernatants were collected and centrifuged at 500 x g for 5 min, cell pellets 

were gently resuspended in Neurobasal E media supplemented with 2% B27 

(Gibco, Grand Island, NY), 500 M L-glutamine, 10 units/ml penicillin, and 10 

g/ml streptomycin, dispensed into poly-D-lysine-coated plates at 1 x 105 

cells/cm2, and incubated at 37°C with 5% CO2.  Eighteen to twenty-four h after 

plating the media was completely replaced and on subsequent days half of the 

culture volume was replaced.  Cells were routinely used at 12-14 days after 

plating, at which time immunofluorescence staining showed that ~95% of cells 
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expressed the transmembrane synaptic vesicle glycoprotein synaptophysin and 

neurofilament 200, which are both markers of mature neurons, but not the 

astrocyte marker glial fibrillary acid protein (Supplemental Fig S2.1.A and B).  

Furthermore, primary rat neuronal cultures were also highly sensitive to 

glutamate-mediated excitotoxicity (Supplemental Fig S2.1.C), which is a well 

described phenotype of mature cortical neurons in vitro (77). 

 

Cell Viability and SEAP Assays 

Cell viability was determined with either Alamar Blue according to the 

manufacturer’s instructions (AbD Serotec, Oxford, UK) or an MTT assay as 

previously described (5).  Secreted alkaline phosphatase (SEAP) assays were 

conducted using Quanti-Blue substrate according to manufacturer’s instructions 

(InvivoGen).  Fluorescence and absorbance endpoint values for viability and 

SEAP assays were obtained with a FLUOstar Omega plate reader. 

 

Immunoblotting, Immunofluorescence, and RT-PCR Analysis 

Immunoblotting, immunofluorescence staining of cultured cells, and RT-PCR 

were done as previously described (5, 49) with the following modifications.  For 

TLR3 immunoblotting, membranes were blocked with PBS containing 1% BSA 

and 1% polyvinylpyrrolidone, and TLR3-specific bands were detected with the 

Imigenex monoclonal antibody, a biotinylated secondary antibody, and 

streptavidin-conjugated HRP.  For TLR3 immunofluorescence staining, cells 

were permeabilized with 0.1% Triton X-100 after paraformaldehyde fixation, 
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immunostained with the Santa Cruz monoclonal antibody, a biotinylated 

secondary antibody, and streptavidin-conjugated PE.  Primer sequences for PCR 

are available upon request. 

 

Microarray, Pathway Analysis, and Validation 

Total RNA was isolated from five independent sets of cultures containing similar 

numbers of immature BE(2)-C or differentiated BE(2)-C/m cells using TRIzol 

(Invitrogen), digested with RQ1 DNaseI (Promega), and repurified using an 

RNeasy kit (Qiagen, Valencia, CA) according to the manufacturer’s instructions.  

RNA integrity and quantity were assessed using a microfluidics-based Agilent 

2100 Bioanalyzer (Foster City, CA).  RNA labeling, hybridization, and array 

scanning was done by either SeqWright DNA Technology Services (Houston, 

TX) or the University of Michigan Microarray core facility using biotinylated 

amplified cRNAs and Affymetrix Human U133 Plus 2.0 microarray chips.  

Complete original data files for all microarray experiments have been deposited 

in the Gene Expression Omnibus (GEO) database 

(http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE16452. 

 The Genomatix ChipInspector software package (Genomatix Software 

Inc., Ann Arbor, MI; www.genomatix.de) was used for primary microarray data 

analysis.  This program uses a single probe method with an enhanced statistics 

package based on the original SAM algorithm (67) that incorporates a t-test with 

a permuted artificial background to reduce false-positives.  The following 

parameters were chosen to identify sets of differentially regulated transcripts: (i) 
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false-discovery rate of 1%; (ii) three probe minimum coverage; and (iii) 

expression level log2 change ≥ 0.5 (~1.4-fold) compared to control.  Similar 

results were obtained when microarray data were analyzed with the Affymetrix 

package of Bioconductor (29).  The list of genes preferentially upregulated in 

differentiated BE(2)-C/m cells were analyzed using Ingenuity Pathway Analysis 

software (Ingenuity Systems, Redwood, CA; www.ingenuity.com).  This analysis 

used the Ingenuity Pathway Analysis library of 103 signaling and 80 metabolic 

canonical pathways to identify those that were most significant to the data set.  

This significance was measured by determining the ratio of the number of genes 

from the data set that map to a particular canonical pathway to the total number 

of genes for that pathway, and calculating a subsequent p-value using a 

Fischer’s exact test.  The association with a particular canonical pathway was 

considered significant if the p-value < 0.05. 

 To validate microarray results, PI3K-AKT pathway real-time RT-PCR 

arrays (SABiosciences, Frederick, MD) were used to analyze transcript 

expression level differences between two independent sets of immature BE(2)-C 

and differentiated BE(2)-C/m cultures.  Total RNA was isolated as described 

above and RNA integrity and quantity was assessed using non-denaturing 

agarose gel electrophoresis and spectrophotometry, respectively.  cDNA 

synthesis and real time PCR were conducted using the manufacturer’s 

recommended reagents and protocols for the BioRad iCycler iQ thermocycler, 

and fluorescence threshold cycle (Ct) values were calculated using SDS 700 

system software (Bio-Rad).  Results were normalized to the average Ct for 5 
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housekeeping genes contained on the RT-PCR array and Ct values were 

calculated to determine expression changes.  Genes that reached the Ct 

maximum of 35 in either trial were excluded from the analysis. 

 

Statistical Analysis 

Microarray and pathway statistical analyses are described above.  For 

comparative analyses we used a two-tailed Student’s t-test assuming unequal 

variances where a p-value of < 0.05 was considered significant.  Quantitative 

EC50 and IC50 values were calculated using Prism GraphPad 3.0 software.  

Unless otherwise indicated, presented results are representative of at least three 

independent experiments, where quantitative data represent the mean ± SEM. 
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Results 

Poly(I-C) Induces PRR Pathway Activation and IFNProduction in 

Differentiated Human Neuronal Cells 

To initially study neuronal PRR pathway activity, we used the previously 

characterized human BE(2)-C neuronal culture model (50).  This neuroblastoma 

cell line can be differentiated in the presence of retinoic acid to form cells with 

morphological, biochemical, and physiological characteristics of mature human 

neurons, and it has been used to demonstrate differentiation-dependent 

responses of human neuronal cells to type-I IFN stimulation and neurotropic virus 

infection (5).  We generated stable cell lines that expressed either an NFB 

promoter-driven or IRSE promoter-driven SEAP reporter gene, induced 

differentiation with retinoic acid, and examined reporter gene activity in tissue 

culture supernatants of cells stimulated with poly(I-C), which is a dsRNA mimetic 

and potent inducer of PRR pathway activation (74).  We used increasing 

concentrations of poly(I-C) delivered either extracellularly for cell surface or 

endosomal TLR activation or complexed with Lipofectamine and transfected for 

intracellular RLR stimulation, and examined responses in both undifferentiated 

and differentiated BE(2)-C cell lines (Fig 2.1).  Both NFB (Fig 2.1.A) and ISRE 

(Fig 2.1.B) promoter-driven reporters showed dose responsive expression in 

differentiated BE(2)-C/m cells with both extracellular and transfected poly(I-C), 

whereas essentially no responses were seen in undifferentiated cells.  Calculated 

poly(I-C) concentrations that produced 50% maximal responses (EC50 values) in 

differentiated BE(2)-C/m cells were between ~10 ng/ml and 10 g/ml (Table 2.1).   
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Figure 2.1.  Poly(I-C) activates NFB and ISRE promoters and induces IFN 

production in human neuronal cells.  A and B.  Similar numbers of NFB (A) 
or ISRE (B) promoter-reporter cells were stimulated with increasing amounts of 
extracellular poly(I-C) (upper graphs) or transfected poly(I-C) (lower graphs), and 
SEAP reporter activity in culture supernatants was measured 20 h after 
stimulation.  C.  BE(2)-C (lanes 1-6) or BE(2)-C/m (lanes 7-12) cells were 

stimulated with 100 g/ml extracellular poly(I-C) (lanes 3, 4, 9, and 10) or 700 

ng/ml transfected poly(I-C) (lanes 5, 6, 11, and 12) for 10 h, and IFNand rRNA 
transcript levels were assessed via RT-PCR.  Adjacent lanes for individual 
samples represent results using 10-fold dilutions of cDNA.  D.  BE(2)-C/m ISRE 

reporter cells were stimulated with either 20 IU/ml human leukocyte IFN, 20 

IU/ml human fibroblast IFN, 100 g/ml extracellular poly(I-C) (pIC), or 600 ng/ml 

transfected poly(I-C) (T-pIC) in the presence of neutralizing IFN or 

IFNantisera at concentrations capable of neutralizing 4000 IU/ml of IFN or 

IFN respectively.  Results are expressed as the percent SEAP activity 
compared to control samples incubated with pre-immune serum. 
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The inability of undifferentiated BE(2)-C cells to respond to poly(I-C) was not due 

to inactive ISRE or NFB promoters, as universal type I IFN-A/D stimulated 

ISRE-SEAP activity, albeit with a 4-fold higher IFN-A/D EC50 compared to 

differentiated BE(2)-C/m cells (5).  Furthermore, TNF, a potent NFB inducer, 

stimulated NFB-SEAP activity in undifferentiated BE(2)-C cells, although EC50 

values were approximately 30-fold higher in undifferentiated compared to 

differentiated cells (850 vs 25 pg/ml, respectively).  We obtained similar results 

using reporter cell lines generated from SH-SY5Y cells, another human neuronal 

cell line unrelated to BE(2)-C cells (19) (Supplemental Fig S2.2.A). 

The poly(I-C) stimulated ISRE promoter-driven SEAP expression seen in 

differentiated BE(2)-C/m cells could have been due to type-I IFN production and 

autocrine activity or IFN-independent ISRE activation (48).  To initially examine 

endogenous IFN transcription in response to poly(I-C) stimulation we used 

semi-quantitative RT-PCR (Fig 2.1.C).  Poly(I-C) delivered both extracellularly 

and by transfection stimulated IFN mRNA upregulation in differentiated BE(2)-

C/m cells, whereas undifferentiated cells showed no responses, consistent with 

the reporter gene expression results (Figs 2.1.A and B).  We also observed 

poly(I-C)-stimulated IFN mRNA induction with differentiated HCN-1A cells 

(Supplemental Fig S2.2.C), a non-malignant human cortical neuronal cell line 

(59).  Furthermore, we observed ~10- and 100-fold increases in IFN mRNA up 

regulation in differentiated primary rat cortical neurons stimulated with 

extracellular or transfected poly(I-C), respectively (see Fig 2.5.B below).  These 

results suggested that transcriptional upregulation of type-I IFNs in response to 
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PRR stimulation in differentiated BE(2)-C/m cells was not due to their derivation 

from neuroblastoma cells. 

To further examine the potential for autocrine type I IFN activity in human 

neuronal cells we conducted antibody neutralization experiments (Fig 2.1.D).  

We simultaneously incubated cells with poly(I-C) and control pre-immune serum 

or antisera specific for human IFN or IFN, and measured SEAP activity in 

tissue culture supernatants.  To determine antibody specificity and neutralization 

efficiency, we stimulated control wells with either human leukocyte IFN or 

fibroblast IFN instead of poly(I-C).  The ISRE-SEAP responses of differentiated 

BE(2)-C/m cells to both extracellular and transfected poly(I-C) were significantly 

reduced by IFN- but not IFN-specific antisera (Fig 2.1.D).  We obtained similar 

results with differentiated SH-SY5Y cells (Supplemental Fig S2.2.B).  These 

results indicated that differentiated human neuronal cells activated NFB and 

ISRE promoters in response to poly(I-C) stimulation, and that ISRE promoter 

activation was due to IFN production and autocrine activity. 

 

SeV Infection Activates PRR Pathways in Human Neuronal Cells 

To determine if neuronal PRR pathways are also activated in the context of a 

virus infection we used SeV, which has been shown to potently induce innate 

immune responses in other cell types (42).  We infected undifferentiated and 

differentiated BE(2)-C cells expressing an NFB promoter-driven reporter gene 

with increasing doses of recombinant GFP-tagged SeV and measured SEAP 

activity in tissue culture supernatants 30 h post-infection (hpi).  We observed 
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dose-dependent NFB responses only in differentiated BE(2)-C/m cells (Fig 

2.2.A), which was not due to differences in SeV replication kinetics (Fig 2.2.B).  

Furthermore, SeV infection also induced endogenous IFN mRNA upregulation 

in both differentiated BE(2)-C/m cells (Fig 2.2.C) and primary rat cortical neurons 

(Supplemental Fig S2.1.F).  However, the response in BE(2)-C/m cells was 

delayed until 20 hpi (Fig 2.2.C, compare lanes 3 and 6), whereas the 

transcriptional response to poly(I-C) stimulation was much more rapid (Fig 2.2.C, 

lane 2).  The delayed IFN transcriptional response until 20 hpi corresponded 

with early logarithmic replication of SeV (Fig 2.2.B), suggesting that active viral 

replication was required for IFN mRNA induction.  In support of this conclusion, 

UV inactivation of SeV abrogated IFN mRNA transcriptional responses 

(Supplemental Fig S2.3).  Thus, both synthetic and natural PRR ligands were 

capable of activating innate immune pathways and IFN transcriptional 

upregulation in differentiated human neuronal cells. 

 

Human Neuronal Cells Show Restricted Responses to PRR Ligands 

Poly(I-C) and SeV are stimuli that are frequently used to activate innate immune 

pathways via TLR3, MDA5, or RIG-I.  To determine whether the differentiation-

dependent responses of BE(2)-C cells to poly(I-C) and SeV extended to other 

stimuli, we examined several additional PRR ligands (Table 2.1).  We stimulated 

NFB or ISRE promoter-driven reporter cell lines with increasing concentrations 

of LPS, the imidazoquinoline compound derivative CLO97, or the CpG-containing 

oligonucleotide ODN2006, which are ligands for TLR4, TLR7/8, or TLR9, 
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Figure 2.2.  SeV infection induces a neuronal PRR response.  A.  NFB 
reporter cells were infected with GFP-tagged SeV using an increasing multiplicity 
of infection (MOI), and SEAP reporter activity was assessed at 30 hpi.  B.  Cells 
were infected as in A and SeV replication, assessed by GFP fluorescence, was 

measured.  C.  BE(2)-C/m cells were stimulated with 100 g/ml extracellular 
poly(I-C) (pIC, lanes 2 and 5) or infected with SeV at an MOI of 10 (lanes 3 and 

6), and IFN mRNA or rRNA accumulation was assessed via RT-PCR 5 h (lanes 
1-3) or 20 h (lanes 4-6) later. 
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Table 2.1.  Human neuronal responses to PRR ligands. 

 NFB promoter ISRE promoter 

Stimulus BE(2)-C BE(2)-C/m BE(2)-C BE(2)-C/m 

Extracellular 
poly(I-C) 

> 1000 g/ml
* 

0.093 ± 0.036 g/ml
 

> 1000 g/ml 8.0 ± 3.5 g/ml 

Transfected 
poly(I-C) 

> 400 g/ml
 

0.015 ± 0.007 g/ml
 

> 400 g/ml 0.043 ± 0.003 g/ml 

LPS > 100 g/ml 0.012 ± 0.004 g/ml > 100 g/ml > 100 g/ml 

Imidazoquinoline > 25 g/ml > 25 g/ml > 25 g/ml > 25 g/ml 

CpG DNA > 25 M > 25 M > 25 M > 25 M 

 

*Results represent EC50 values for the indicated stimulus, promoter reporter, and cell line 
combination.  Where appropriate, values are presented as the mean ±  
SEM. 
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respectively (39).  BE(2)-C cells showed a differentiation-dependent response to 

LPS using an NFB promoter-driven reporter, whereas the ISRE promoter-driven 

reporter was not stimulated by LPS regardless of cell differentiation.  This 

observation was consistent with the differentiation-dependent expression of 

TLR4 and its co-receptor CD14 identified by microarray analyses (see below, 

Supplemental Tables S2.1 and S2.2 available online with publication 

doi/10.4049/jimmunol.0904133), and published studies demonstrating TLR4 

expression in primary CNS neurons and neuronal cell lines (66, 79).  Neither 

CLO97 nor ODN2006 stimulated reporter gene activity in BE(2)-C cells 

regardless of differentiation (Table 2.1), even though these TLR ligands were 

able to activate an NFB promoter-driven reporter in differentiated U937 cells, a 

human macrophage cell line (21) (Supplemental Fig S2.4).  We did not 

specifically examine TLR7/8 or TLR9 expression, and therefore cannot exclude 

the possibility that the inability of BE(2)-C cells to respond to CLO97 or ODN2006 

was secondary to the absence of these TLRs.  However, published data suggest 

that mRNAs for TLR7, 8, and 9 are present in some primary neurons and 

neuronal cell lines (79).  Nevertheless, these results suggested that human 

neuronal cells possess restricted PRR-mediated responses, and ligands that 

stimulated predominantly antiviral innate immune pathways via TLR3- , MDA5-, 

or RIG-I-mediated responses were particularly active.  Thus, we specifically 

focused subsequent studies on these pathways. 
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Differentiated Neurons Express TLR3, MDA5, and RIG-I 

We initially examined the expression of TLR3, MDA5, and RIG-I in neuronal cells 

by immunoblotting and immunofluorescence microscopy (Fig 2.3).  Previously 

published studies have demonstrated TLR3 expression in both cultured human 

and rodent neurons and CNS tissue sections (3, 30, 45, 54, 66), and we also 

observed TLR3 expression in lysates from undifferentiated BE(2)-C cells (Fig 

2.3.A, lane 1), differentiated BE(2)-C/m cells (Fig 2.3.A, lanes 2-4), and primary 

rat neurons (Fig 2.3.A, lane 5).  To validate the specificity of TLR3 

immunoblotting, we used lysates from BE(2)-C/m cells transfected with plasmids 

overexpressing either wild-type TLR3 (Fig 2.3.A, lane 3) or a dominant-negative 

mutant that contains a deletion of the TIR domain (Fig 2.3.A, lane 4).  We also 

examined TLR3 expression in BE(2)-C/m cells by immunofluorescence 

microscopy, and observed a punctate cytoplasmic distribution (Fig 2.3.B,upper 

right image), that was particularly evident at higher magnification (Fig 2.3.B, 

lower left image).  We observed a similar distribution pattern but increased TLR3 

immunofluorescent signal intensity in cells transfected with a plasmid 

overexpressing wild-type TLR3 (Fig 2.3.B, lower right image).  These 

immunofluorescence results were consistent with the previously described 

endosomal localization of TLR3 in cultured human neuronal cells (45).  

Furthermore, immunoblot analysis revealed that both MDA5 and RIG-I were 

expressed in human BE(2)-C cells (Fig 2.3.C, lanes 1-4) and primary rat neurons  
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Figure 2.3.  Human neuronal cells and differentiated rodent neurons express 
antiviral PRRs.  A.  Lysates from BE(2)-C cells (lane 1), differentiated BE(2)-C/m cells 
(lanes 2-4), or primary rat neurons (lane 5) were immunoblotted for TLR3 levels.  To 
validate antibody specificity, BE(2)-C/m cells were transfected with either empty vector 
(lane 2) or plasmids expressing wild-type TLR3 (lane 3) or a dominant-negative (dn) 
TLR3 (lane 4) that contains a TIR domain deletion.  The human TLR3 gene encodes a 
904 amino acid protein with a predicted MW of 103 kDa, although it is heavily 

glycosylated.  The TLR3 TIR mutant contains a 162 amino acid deletion that reduces 
the predicted MW by approximately 18 kDa.  The GAPDH-specific monoclonal antibody 
used for immunoblotting cross-reacted poorly with the rat lysate (lane 5), but total protein 
staining showed that the rat lysate sample contained approximately 2- to 3-fold more 
total protein than the other lanes (data not shown).  B.  Immunofluorescent staining of 
TLR3 expression in BE(2)-C/m cells.  The primary TLR3-specific antibody was excluded 
during incubation in control cells (upper left image).  Nuclei were stained with DAPI 
(blue), whereas the punctate PE-staining (red) indicates TLR3 expression.  Cells in the 
upper right and lower left images were transfected with empty vector, whereas cells in 
the lower right image were transfected with a plasmid expressing wild-type TLR3.  We 
also saw a similar punctuate pattern but increased TLR3 signal intensity in cells 
transfected with the dnTLR3 expression plasmid (data not shown).  C.  Lysates from 
BE(2)-C cells (lanes 1 and 3), differentiated BE(2)-C/m cells (lanes 2 and 4), or primary 
rat neurons (lanes 5 and 6), were immunoblotted for RIG-I, MDA5, and GAPDH (human) 

or tubulin (rat) levels.  Lysates from cells treated with 100 IU/ml human IFN-A/D for 6 h 

(lanes 3 and 4) or 50 IU/ml rat IFN for 24 h (lane 6) were used as controls to validate 
the identity of RIG-I and MDA5 as IFN-stimulated genes. 



84 

(Fig 2.3.C, lanes 5 and 6).  Interestingly, although RIG-I expression increased 

with BE(2)-C differentiation, probably due to the use of retinoic acid to induce 

neuronal maturation, MDA5 expression levels were independent of differentiation 

(Fig 2.3.C, lanes 1 and 2).  However, the expression of both PRRs increased in 

response to type-I IFN stimulation in both human BE(2)-C neuronal cells (Fig 

2.3.C, lanes 3 and 4) and primary rat neurons (Fig 2.3.C, lane 6).  These results 

suggested that the three PRRs associated with potent antiviral innate immune 

responses, TLR3, MDA5, and RIG-I, are expressed in human neuronal cells and 

differentiated neurons. 

 

Specific PRRs are Required for Poly(I-C)- and SeV-Mediated Activation of 

Innate Immune Pathways in Human Neuronal Cells 

We next examined the functional impact of PRR expression on neuronal innate 

immune responses using genetic disruption of receptor function (Fig 2.4).  To 

disrupt TLR3- or RIG-I-mediated pathway activation in BE(2)-C/m cells, we used 

stable cell lines expressing specific dominant-negative mutants.  Initial 

experiments using transient transfection with the TLR3 TIR mutant described 

above showed an approximate 50% reduction in extracellular poly(I-C)-

stimulated ISRE-SEAP activity (Supplemental Fig S2.5.A).  However, we were 

unable to generate stable cell lines constitutively expressing this construct, and 

therefore we subsequently targeted a downstream signaling molecule.  Since 

TLR3 is the only known dsRNA-sensing PRR to use the adaptor protein TRIF for  
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Figure 2.4.  Human neuronal cells possess functional PRR-mediated innate 
immune pathways.  A.  BE(2)-C/m cells stably overexpressing dominant negative forms 

of IRF3, TRIF, or RIG-I were stimulated with 100 g/ml extracellular poly(I-C) or 700 

ng/ml transfected poly(I-C) for 10 h, or infected with SeV for 30 h, and IFN mRNA 
levels were measured by quantitative RT-PCR using rRNA transcript levels as the 
loading control.  Results are expressed as the fold-change compared to similarly 
stimulated cells stably transfected with an empty vector.  B.  Lysates from BE(2)-C/m 
cells stably transfected with plasmids expressing shRNAs targeted against either a 
control protein (lanes 1 and 3) or MDA5 (lanes 2 and 4) were immunoblotted for MDA5, 
RIG-I, and GAPDH expression levels.  The level of MDA5 suppression in cells 
expressing an MDA5-specific shRNA was 44.5 ± 7.4% compared to control cells.  Live-
cell imaging of differentiated cells also demonstrated that greater than 95% of cells 
expressed the control GFP reporter gene encoded on the shRNA expression plasmid 

(data not shown).  Lysates from cells treated with 1000 IU/ml IFN-A/D for 12 h (lanes 3 
and 4) served as positive controls to validate the specificity of shRNA-mediated 

knockdown of MDA5 under enhanced expression levels.  C.  IFN mRNA levels in 
BE(2)-C/m cells stably expressing an MDA5-targeted shRNA after stimulation with 
extracellular poly(I-C) (pIC), transfected poly(I-C) (T-pIC), or infected with SeV as 
described above.  Transcript levels were determined by quantitative RT-PCR and results 
are expressed as the fold-change compared to similarly stimulated cells stably 
transfected with an shRNA-encoding vector targeting an irrelevant control protein.  *p-
value < 0.05. 
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signal transduction (51), we used a TRIF mutant that contains only the TIR 

domain (73) to disrupt TLR3 function.  In contrast, both RIG-I and MDA5 use the 

adaptor protein IPS-1 (51).  We therefore used an N-terminal RIG-I deletion 

mutant (75) to disrupt RIG-I function.  As a positive control we used a dominant 

negative IRF3 mutant (6), since this transcription factor is a central regulator of 

innate antiviral responses (51).  We generated BE(2)-C cell lines stably 

transfected with individual constitutive expression plasmids encoding the 

dominant negative mutants described above, differentiated cells with retinoic 

acid, stimulated with either extracellular or transfected poly(I-C) or infected with 

recombinant SeV, and measured IFN mRNA induction by quantitative RT-PCR 

(Fig 2.4.A).  Dominant negative IRF3 expression inhibited the IFN 

transcriptional responses to all three stimuli, where the largest decrease (~130-

fold) was seen with SeV infection.  In contrast, dominant negative TRIF 

expression specifically inhibited extracellular poly(I-C)-stimulated responses, 

whereas dominant-negative RIG-I expression specifically inhibited SeV-

stimulated responses. 

To disrupt MDA5-mediated pathway activation in BE(2)-C/m cells, we 

depleted receptor levels through stable expression of a plasmid encoding a short 

hairpin RNA (shRNA) specifically targeting MDA5 (Fig 2.4.B and C).  We initially 

optimized conditions and obtained a 40-50% reduction in MDA5 expression 

levels in BE(2)-C/m cells without significantly altering expression levels of the 

related RLR, RIG-I (Fig 2.4.B, compare lanes 1 and 2).  Depletion of MDA5 

inhibited the IFN transcriptional response to stimulation with transfected poly(I-
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C) but not with extracellular poly(I-C) or SeV infection (Fig 2.4.C).  These results 

indicated that human neuronal cells possess functional TLR3-, MDA5-, and RIG-

I-activated pathways that respond to specific stimuli. 

 

Neuronal Cell Differentiation Modulates Innate Immune Signaling Pathway 

Component Expression 

There are multiple signal transduction events that occur between PRR interaction 

with its ligand and downstream antiviral effector production.  To identify potential 

neuronal components involved in these events, we used genome-wide 

transcriptional microarray results combined with pathway analyses and 

compared BE(2)-C cells before and after retinoic acid-mediated differentiation.  

This approach was feasible since BE(2)-C cells showed minimal responsiveness 

to select PRR ligand stimulation (Figs 2.1 and 2.2, Table 2.1) prior to 

differentiation.  We identified 1,002 upregulated and 863 downregulated genes in 

differentiated BE(2)-C/m cells.  The complete list of differentially regulated genes 

is provided in Supplemental Table A.1. 

We subsequently conducted an in silico analysis with upregulated genes 

that were assigned to known cellular pathways using Ingenuity Pathway software 

to identify potential innate immune networks active in neuronal PRR signaling.  

We identified 29 canonical signaling pathways preferentially upregulated in 

differentiated BE(2)-C/m cells, 9 of which have been linked with innate immunity 

(Table 2.2).  We were particularly interested in the identification of the PI3K/AKT 

signaling pathway, as PI3Ks have been implicated as positive and negative  
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Table 2.2.  Signaling pathways preferentially upregulated in differentiated 
human BE(2)-C/m neuronal cells. 

SIGNALING PATHWAY* NO. OF GENES P-VALUE 

14-3-3-mediated signaling 21 0.0016 

α-Adrenergic signaling 13 0.0089 

Axonal guidance signaling 38 0.0044 

cAMP-mediated signaling† 18 0.0162 

Cardiac β-adrenergic signaling 15 0.0129 

Caveolar-mediated endocytosis 11 0.0155 

Ephrin receptor signaling 23 0.0010 

ERK/MAPK signaling† 20 0.0158 

Fcγ receptor-mediated phagocytosis in 
macrophages and monocytes 

12 0.0269 

G-protein coupled receptor signaling† 24 0.0025 

Hepatic fibrosis/stellate cell activation 21 0.0001 

IGF-1 signaling 17 0.0001 

IL-8 signaling† 20 0.0098 

Insulin receptor signaling 15 0.0209 

Integrin signaling† 24 0.0029 

Leukocyte extravasation signaling 19 0.0457 

Neuregulin signaling 15 0.0006 

Neurotrophin/TRK signaling† 10 0.0112 

Notch signaling 8 0.0037 

p53 signaling† 11 0.0355 

PI3K/AKT signaling† 15 0.0102 

PTEN signaling 15 0.0008 

PXR/RXR activation 9 0.0417 

RAR activation 25 0.0002 

Synaptic long term potentiation 14 0.0115 

TGF-β signaling† 14 0.0007 

Tight junction signaling 18 0.0174 

VDR/RXR activation 13 0.0021 

Wnt/β-catenin signaling 22 0.0011 

 
*The listed pathways were identified as significantly associated with BE(2)-C 
differentiation using Ingenuity Pathway Analysis software and datasets derived from both 
Genomatix and Affymetrix Bioconductor analyses of microarray data.  Only those 
pathways identified with both datasets are shown, where the number of genes and p-
values listed are from the Genomatix dataset analysis. 
 

†Signaling pathways associated with innate immunity in the literature are shown in bold.  
These pathways were identified by the presence of at least 10 Medline co-references 
with the keywords “innate” and “immunity”. 
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regulators of TLR3-mediated signaling events (1, 18, 23, 60, 65, 78), TLR3 

expression and function have been implicated in neuronal antiviral responses (3, 

14, 30, 45, 54), and the extracellular poly(I-C) stimulation experiments implicated 

an active TLR3-mediated pathway in differentiated BE(2)-C/m cells (Figs 2.1 and 

2.4).  To validate the microarray results with a particular focus on the PI3K/AKT 

pathway, we used a microplate-based quantitative RT-PCR array that included 

71 genes associated with this pathway.  Using this targeted array we validated 

the transcriptional upregulation of 19 genes in differentiated BE(2)-C/m cells that 

are associated with PIK3 signaling, including AKT3, APC, CD14, CTNNB1, 

FOXO1, FOXO3, FRAP, GSK3B, ITGB1, JUN, MAPK8, PAK1, PDPK1, PI3KCA, 

PI3KR1, RASA1, TLR4, TSC2, and YWHAH (Supplemental Table S2.2).  

Furthermore, we validated increased protein expression levels of the PI3K 

regulatory subunit isoform p85 encoded by the PI3KR1 gene in differentiated 

BE(2)-C/m cells by immunoblotting (Supplemental Fig S2.6).  These results 

suggested that canonical PI3K/AKT pathway components were involved in 

neuronal innate immune responses. 

 

PI3K Inhibition Blocks Poly(I-C)-Mediated Innate Immune System Activation 

in Neuronal Cells 

To examine the potential functional role of PI3K in neuronal PRR pathway 

signaling we initially used the universal PI3K inhibitor LY294002 (11).  We 

incubated differentiated BE(2)-C/m cells expressing ISRE or NFB promoter-

driven reporter genes with increasing concentrations of LY294002, stimulated 
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with extracellular or transfected poly(I-C), LPS, IFN-A/D, or TNF, and 

measured SEAP activity in tissue culture supernatants after 20 h (Fig 2.5.A).  

Initial viability studies showed minimal cytotoxicity with up to 25 M LY294002 in 

BE(2)-C/m cells (Supplemental Fig S2.7).  LY294002 potently inhibited both 

extracellular and transfected poly(I-C) stimulation in ISRE reporter cells with an 

IC50 of approximately 7 M (Fig 2.5.A, top graph), but had no effect on NFB 

promoter activation in response to poly(I-C), LPS, or TNF (Fig 2.5.A, bottom 

graph).  The inhibition of LY294002 on the IRSE promoter-driven reporter gene 

was due to disruption of autocrine IFN production rather than feedback 

signaling and amplification, as LY294002 had no effect on exogenous IFN-A/D 

stimulation of ISRE promoter reporter cells (Fig 2.5.A, top graph) but did 

suppress poly(I-C)-stimulated IFN mRNA transcriptional upregulation (see 

below, Fig 2.6.B).  Furthermore, LY294002 suppressed poly(I-C)-stimulated 

IFN mRNA transcriptional upregulation in primary rat cortical neurons (Fig 

2.5.B).  These results suggested that PI3K is involved in NFB-independent 

neuronal PRR pathways stimulated by poly(I-C) and mediated through TLR3 and 

MDA5. 

To gain further insight into the signaling molecules involved in neuronal 

PRR pathway activation, we used a defined library of kinase inhibitors and 

examined their effects on poly(I-C)-mediated activation of differentiated BE(2)-

C/m cells expressing an ISRE promoter-driven reporter.  This library contains 99 

inhibitors targeting 48 different kinases, including several involved in canonical 

PI3K/AKT signaling networks (Supplemental Table S2.3).   
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Figure 2.5.  Neuronal response to poly(I-C) is mediated by PI3K.  A.  BE(2)-C/m 

ISRE (upper graph) and NFB (lower graph) promoter-driven reporter cells were treated 

with an increasing concentration of LY294002, stimulated with 100 g/ml extracellular 

poly(I-C) (pIC), 700 ng/ml transfected poly(I-C) (T-pIC), 100 IU/ml IFN-A/D, 50 ng/ml 

TNF, or 500 ng/ml LPS, and SEAP reporter activity was measured 24 h later.  Results 
are expressed as the percentage of SEAP activity compared to DMSO-treated controls.  

TNF and LPS were used as controls only with NFB promoter-driven reporter cells as 
the ISRE reporter cells did not respond to either stimuli even in the absence of 
LY294002 (see Table 2.1 and data not shown).  B.  Primary rat cortical neurons were 

treated with either DMSO (lanes 1 and 2) or 10 M LY294002 (lane 3), stimulated with 

50 g/ml of extracellular poly(I-C) for 8 h (lanes 2 and 3), and IFN mRNA levels were 
assessed by RT-PCR. 
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Each inhibitor was serially diluted in duplicate from 100 to 0.8 M, incubated with 

reporter cells stimulated with extracellular or transfected poly(I-C), and SEAP 

activity was measured after 20 h.  To control for non-specific cytotoxicity, we 

conducted parallel viability assays.  We identified 23 kinase inhibitors that 

blocked either extracellular or transfected poly(I-C)-mediated activation of an 

ISRE promoter-driven reporter gene in differentiated BE(2)-C/m cells (Table 2.3).  

Interestingly, there was not a complete overlap between the lists of inhibitors that 

disrupted extracellular vs. transfected poly(I-C) stimulation.  For example, 

inhibitors of epidermal growth factor receptor kinase were more active against 

transfected poly(I-C) (Supplemental Table S2.3), suggesting that further studies 

using these pharmacologic probes may provide additional information regarding 

potential divergences in neuronal PRR signaling pathways. 

One noteworthy observation from the kinase inhibitor library studies in the 

context of our previous results was the identified activity of several PI3K 

inhibitors (Table 2.3).  However, these active compounds were either general 

PI3K inhibitors or targeted to the PI3K p110 subunit, where compounds 

targeted to the PI3K p110 or p110 subunits were not active in this medium 

throughput assay.  The PI3K complex consists of a receptor subunit that binds 

activated membrane-associated receptors and recruits a p110 catalytic subunit 

(, , or ) that mediates the conversion of phosphatidylinositol (4,5)-

bisphosphate to phosphatidylinositol (3,4,5)-trisphosphate, which is generally 

required for downstream signaling (68).  To validate the kinase inhibitor library 
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Table 2.3.  Kinase inhibitors that suppressed poly(I-C)-mediated ISRE promoter 
stimulation in human neuronal cells. 

INHIBITOR* TARGET(S)† 

BML-257 AKT 

Triciribine AKT 

Terreic acid BTK 

Flavopiridiol CDK 1,2,4 

Apigenin CK-II 

PI-103 DNA-PL, PI3K p110, mTOR 

Tyrphostin 25 EGFRK 

Tyrphostin 51 EGFRK 

BML-265 EGFRK 

5-Iodotubercidin ERK2, Adenosine kinase, CK1, CK2 

PK412 FTL3, Src, ABL 

GSK3 Inhibitor XIII GSK3 

Purvalanol A GSK3-, CDKs 

ZM 449829 JAK-3 

Rapamycin mTOR 

2-Aminopurine P58 PITSLRE-1 

LY294002 PI3K 

Quercetin dehydrate PI3K 

PI3K Inhibitor 2 PI3K p110 

H8 PKA, PKG 

Palmitoyl-DL-carnitine Cl PKC 

HBDDE (2,2',3,3',4,4'-Hexahydroxy-1,1'-
biphenyl-6,6'-dimethanol dimethyl ether) 

PKC, PKC 

Rottlerin PKC 

Tyrphostin AG 1288 Tyrosine kinases 
 

*The listed inhibitors suppressed ISRE promoter-driven reporter gene activity in BE(2)-

C/m cells with IC50 values < 20 M for either extracellular or transfected poly(I-C) and 

had CC50 values > 20 M.  Inhibitors with activity against PI3K are shown in bold italics 
type. 
 

†Kinase abbreviations: AKT, protein kinase B; BTK, Bruton’s tyrosine kinase; CDK, 
cyclin-dependent kinase; CK, creatine kinase; EGFRK, epidermal growth factor receptor 
kinase; ERK, extracellular signal-regulated kinase; FLT3, FMS-like tyrosine kinase 3; 
GSK3, glycogen synthase kinase 3; JAK, Janus kinase; mTOR, mammalian target of 
rapamycin; PKA/PKC/PKG, protein kinase A/C/G. 

 

 

 



94 

results, we purchased new inhibitors specifically targeting p110 (PI3K p110 

Inhibitor 2), p110 (TGX-221), or p110 (AS-252424), and used these 

compounds in detailed dose-titration studies with the same reporter cell line used 

for the kinase inhibitor library medium throughput assays (Fig 2.6.A).  The PI3K 

p110-specific inhibitor blocked both extracellular and transfected poly(I-C)-

activated ISRE reporter activity with IC50 values of 0.5 and 1.6 M, respectively 

(Fig 2.6.A, upper graph).  In contrast, neither the p110-specific (Fig 2.6.A, 

middle graph) nor p110-specific (Fig 2.6.A, lower graph) inhibitor significantly 

suppressed poly(I-C)-stimulated reporter gene activity until reaching 

concentrations greater than 10 M, at which point their subunit specificity 

decreases significantly (31, 53).  To verify the ability of PI3K subunit-specific 

inhibitors to block the induction of endogenous IFN mRNA, we examined the 

effects of LY294002, p110 Inhibitor 2, and AS-2552424 on IFN mRNA 

transcription after poly(I-C) stimulation in BE(2)-C/m cells (Fig 2.6.B).  We found 

that both LY294002 and the PI3K p110-selective inhibitor significantly 

suppressed IFN mRNA transcriptional activation when stimulated with either 

extracellular or transfected poly(I-C), whereas the p110-selective inhibitor had 

no effect. 

Finally, to provide genetic validation for the inhibitor studies, we depleted 

protein levels through stable shRNA expression targeted against the PI3K p110 

subunit (Fig 2.7).  We obtained an approximate 60% reduction in PI3K p110 

levels in differentiated BE(2)-C/m cells (Fig 2.7.A), which resulted in 
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Figure 2.6.  PI3K catalytic subunit p110 mediates human neuronal cell 
responses to poly(I-C).  A.  BE(2)-C/m ISRE reporter cells were treated with 

increasing concentrations of a selective PI3K p110 (p110a Inhibitor 2), p110 

(TGX-221), or p110 (AS-252424) catalytic subunit inhibitor, stimulated with 100 

g/ml extracellular poly(I-C) (pIC), 700 ng/ml transfected poly(I-C) (T-pIC), or 100 

IU/ml IFN-A/D, and SEAP reporter activity was measured 20 h later.  Results 
are presented as the percent reporter gene activity compared to DMSO-treated 

controls.  B.  BE(2)-C/m cells were treated with 10 M LY294002, 5 M p110 

Inhibitor 2, or 5 M AS-252424, stimulated with poly(I-C) as described above, 

and IFN mRNA levels were measured 4 h later by quantitative RT-PCR.  *p-
values < 0.05. 
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Figure 2.7.  The PI3K p110 catalytic subunit mediates a TLR3-dependent 
response in neuronal cells.  A.  Lysates from BE(2)-C/m cells stably 
transduced with lentiviruses expressing an empty vector (lane 1) or shRNAs 

targeted against either a control protein (CD14, lane 2) or PI3K p110 (lane 3) 

were immunoblotted for p110 and GAPDH expression levels.  The level of 

suppression in cells expressing a p110-specific shRNA was 60.4 ± 4.9% 
compared to control cells.  Live-cell imaging of differentiated cells also 
demonstrated that greater than 95% of cells expressed the control GFP reporter 

gene encoded on the shRNA expression plasmid (data not shown).  B.  IFN 

mRNA levels in BE(2)-C/m cells stably expressing a p110-targeted shRNA after 
stimulation with extracellular poly(I-C) (pIC) or transfected poly(I-C) (T-pIC) as 
described in Fig 2.6.  Transcript levels were determined by quantitative RT-PCR 
and results are expressed as the fold-change compared to similarly stimulated 
cells stably transfected with an shRNA-encoding vector targeting an irrelevant 
control protein.  *p-value < 0.05. 
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significant inhibition of extracellular poly(I-C)-mediated stimulation of IFN mRNA 

transcription (Fig 2.7.B).  However, in contrast to results with p110-specific 

inhibitors (Fig 2.6), shRNA-mediated knockdown of p110 protein levels did not 

suppress the ability of transfected poly(I-C) to stimulate IFN mRNA transcription 

(Fig 2.7.B).  The ability of the p110-depleted neuronal cells to remain 

responsive to transfected poly(I-C) may have been due to an insufficient 

depletion of p110levels, which is consistent with a reproducible three-fold 

higher IC50 of the p110-specific inhibitor for transfected versus extracellular 

poly(I-C) mediated neuronal responses (Fig 2.6.A).  Nevertheless, these results 

indicated that PI3K, and in particular the p110 subunit, modulates TLR3- and 

possibly MDA5-dependent innate immune pathway activation in human neuronal 

cells. 
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Discussion 

The innate immune system plays a critical role in both the initial response 

to an invading pathogen, which frequently limits or contains pathogen replication 

and dissemination, and the induction of an effective adaptive immune response, 

which is most often the primary mechanism for pathogen clearance.  The 

characteristics of the innate immune response are determined in part by the 

pathogen initiating the response but can also be influenced by the type of cell in 

which the response is generated.  In this report we examined the functional PRR-

mediated pathways present in human neuronal cells and differentiated primary 

rat neurons, with a particular focus on those pathways previously identified as 

being important for antiviral innate immune responses in other cell types.  We 

drew four main conclusions.  First, human neuronal cells possess functional 

TLR3-, TLR4-, RIG-I-, and MDA5-mediated PRR pathways whose activity was 

maturation-dependent.  Second, both extracellular and transfected poly(I-C) 

induced potent IFN induction in neurons that resulted in autocrine ISRE 

activation.  Third, the neuronal antiviral innate immune pathways mediated by 

TLR3, RIG-I, and MDA5 are non-redundant and preferentially respond to distinct 

ligands.  Fourth, TLR3- and possibly MDA5-mediated neuronal responses are 

positively regulated by the PI3K pathway, and in particular the PI3K p110 

subunit.  These results indicate that human neuronal cells possess a relatively 

broad complement of PRR-mediated innate immune pathways, and that those 

pathways typically stimulated by viral pathogens via nucleic acid recognition are 

particularly active. 
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Previous studies on PRR pathways in CNS neurons have focused 

predominantly on TLR-mediated pathways and have examined their impact on 

multiple aspects of brain physiology, including development and regeneration 

(40).  Several studies have examined the role of TLR3 in response to CNS viral 

infections (3, 14, 30, 45, 54), although the potential antiviral role of TLR3-

mediated pathways is controversial and may be pathogen-specific (69).  For 

example, humans with a TLR3 deficiency have a genetic predisposition to herpes 

simplex virus encephalitis (76), but TLR3-/- mice have decreased susceptibility to 

rabies virus encephalitis (45).  Furthermore, TLR3-/- mice have been shown to 

have both increased (71) and decreased (14) susceptibility to West Nile virus 

(WNV) encephalitis.  However, these studies cannot fully separate the neuron-

specific activity of TLR3 from other cell types, including professional immune 

cells such as macrophages and dendritic cells.  Although CNS neurons from 

TLR3-/- mice have a modest increase in WNV production when infected in culture 

(14), suggesting that neuronal TLR3-mediated responses can have antiviral 

effects, further studies in mice with conditional cell-specific TLR3 deletions will be 

required to fully delineate the potential antiviral activity of TLR3-activated innate 

immune pathways in neurons and their role in viral pathogenesis. 

In contrast to TLR3, neuronal innate immune responses mediated by the 

cytosolic PRRs RIG-I and MDA5 have been less well studied.  The expression of 

both RIG-I or MDA5 could be induced by IFN or WNV infection in cultured 

mouse cortical neurons, but basal expression was not detected by 

immunoblotting (13).  Although we also found that both RLRs were upregulated 
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with type-I IFN treatment of human neuronal cells, we did detect basal 

expression, especially in differentiated cells.  Furthermore, we found that both 

RIG-I- and MDA5-mediated pathways were active in human neuronal cells.  The 

presence of functional cytosolic PRR-activated innate immune pathways in 

neurons is not surprising, as the innate antiviral responses to several neurotropic 

viruses has been shown to involve RIG-I- and/or MDA5-mediated pathways in 

non-neuronal cells (20, 35).  However, the outcome of these responses may 

differ significantly between neuronal and non-neuronal cells, where mature CNS 

neurons are essentially irreplaceable and therefore initiation of an altruistic 

apoptotic cascade may result in irreversible damage to the host, despite 

simultaneously preventing virus spread.  One intriguing hypothesis is that 

neuronal PRR responses, potentially augmented or modulated by PRR-initiated 

responses in other CNS-resident cells such as astrocytes or microglia, control 

virus replication and promote neuronal survival through either previously 

unrecognized or uncharacterized pathways.  Consistent with this hypothesis, 

results presented in chapter III suggest that the neurotropic alphavirus western 

equine encephalitis virus activates an IRF3-dependent pro-survival pathway in 

human neuronal cells.  Detailed studies in chapter III will describe efforts to 

examine the roles of TLR3-, RIG-I, and MDA5-activated pathways in human 

neurons in response to a variety of neurotropic viruses in an attempt to more fully 

explore this hypothesis. 

The signal transduction pathways that mediate PRR-activated immune 

responses are complex and interconnected at multiple levels.  Several steps in 
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these pathways are mediated by cellular kinases, and we found that the PI3K 

pathway was important for optimal TLR3- and possibly MDA5-activated 

responses in human neuronal cells.  The PI3K pathway has previously been 

implicated in innate immune pathway regulation, and in particular TLR3-mediated 

signaling (24).  However, both stimulatory (18, 60) and inhibitory (1) effects on 

TLR3-mediated signaling have been observed, which may be explained in part 

by cell type differences.  Our results suggest that the PI3K pathway plays a 

stimulatory role in neuronal TLR3-mediated responses, and is necessary for full 

IFN mRNA induction.  Furthermore, both pharmacologic and genetic 

approaches identified a potential role for PI3K, and in particular the PI3K p110 

subunit, in neuronal MDA5-mediated signaling.  Although the PI3K pathway has 

been tentatively implicated in cytoplasmic RLR-initiated signaling (50), the 

majority of work thus far has focused on its effects during TLR-initiated signaling 

(24).  Cellular PI3K/AKT pathways are essential for neuronal development and 

survival (9, 10, 28), suggesting a potential link between antiviral PRR pathway 

activation and the ability of neurons to overcome an infection until an adaptive 

immune response can be fully established.  Additional studies will be required to 

further delineate the precise PI3K pathway components involved in neuronal 

antiviral PRR activation, but our kinase inhibitor library studies suggest that 

protein kinase B (AKT), mammalian target of rapamycin (mTOR), and glycogen 

synthase kinase 3 may be involved.  All of these kinases participate in PI3K 

signaling and have been implicated in innate immunity in non-neuronal model 

systems (4, 7, 36-38, 47). 
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Innate immune pathway stimulation via TLRs or RLRs eventually results in 

the activation of multiple genes involved in immune responses (39, 51).  For 

antiviral pathway stimulation via TLR3, RIG-I, or MDA5, one important group of 

upregulated genes are type-I IFNs, and in particular IFN in non-professional 

immune cells (56).  Indeed, IFN mRNA upregulation is a convenient marker of 

innate antiviral pathway activation, which we used to monitor responses to TLR3, 

RIG-I, and MDA5 ligands.  Furthermore, we found that BE(2)-C/m human 

neuronal cells are capable of synthesizing and excreting IFN in response to 

specific PRR stimulation, consistent with previously published studies in other 

cultured human neuronal cell lines (54) and rodent neurons both in vitro (13-15) 

and in vivo (16).  However, whether neuronal IFN production in vivo in response 

to neurotropic pathogens or other CNS inflammatory conditions plays an 

important role in either the amelioration or augmentation of disease is 

controversial.  Studies in conditional knockout mice that have disrupted type-I 

IFN receptor expression in neuroectodermal cells, which includes neurons, 

indicate that responses to type-I IFNs are important to control virus spread within 

the CNS (17) but not in the progression of experimental autoimmune 

inflammatory disease (55).  Similar studies with mice containing conditional 

disruption of IFN production in CNS-resident cells will be needed to definitively 

examine the potential importance of neuronal type-I IFN production in vivo. 
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Supplemental Figure S2.1.  Validation of primary cortical neuronal cultures.  
A.  3 or 14 day in vitro (DIV) rat primary cortical neuron lysates were 

immunoblotted for synaptophysin, NF68, or -tubulin.  B.  Immunofluorescence 
images of 14 DIV rat neurons were stained with DAPI, NF200, or synaptophysin.  
400X images are shown.  C and D.  Primary (C) or BE(2)-C-derived (D) neuronal 
cultures were treated with glutamate (Glu) as indicated, and viability was 
measured 24 hours later via a luminescent ATP (C) or MTT (D) assay.  E.  14 
DIV primary neurons were infected with WEEV, and supernatants were titered 
via plaque assay.  F.  14 DIV cortical neurons were infected with SeV MOI 0.1, 

RNA was harvested 72 hours later, and IFN mRNA was analyzed via 
quantitative RT-PCR.  Data are representative of 3 independent trials for A, B, 
and C and 2 trials for D, E, and F. 
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Supplemental Figure S2.2.  PRR signaling in SYSY-5Y and HCN-1A 
neuronal cells.  A.  Undifferentiated and differentiated SHSY-5Y human 
neuroblastoma cells stably expressing an ISRE-SEAP reporter were stimulated 

with pIC (1.5 g/ml) or T-pIC (0.015 g/ml), and SEAP was measured 24 hours 
later.  B.  Differentiated SHSY-5Y ISRE reporter cells were stimulated with pIC or 

T-pIC along with either a control, IFN(10,000 neutralizing units), or IFN (2000 
neutralizing units) neutralizing antibody.  SEAP activity was measured 24 hours 
later.  C.  Differentiated HCN-1A neuronal cells were mock-treated or treated with 

10 or 100 g/ml pIC.  20 hours later RNA was harvested, and IFN and rRNA 
transcripts were assessed via RT-PCR.  Adjacent lanes represent ten-fold 
dilutions of cDNA.  Data are representative of 2 independent trials for A and B 
and one trial for C.  Error bars represent standard deviations of duplicate wells.  
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Supplemental Figure S2.3.  UV-treated SeV fails to robustly induce IFN 
mRNA in neuronal cells.  BE(2)-C/m cells were mock treated, treated with pIC, 
infected with SeV (MOI 5), or UV-treated SeV.  RNA was harvested 20 hours 

later, and IFN and actin transcripts were measured via RT-PCR.  Data are 
representative of 2 independent trials.   
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Supplemental Figure S2.4.  PRR responses in U937 human monocyte-

derived macrophages.  U937 monocytes stably expressing an NFB- or ISRE-
SEAP reporter were differentiated and stimulated with a panel of PRR ligands.  
All ligands were tested at starting concentrations at least 5 times the 
manufacturer’s suggested concentration and at dilutions covering at least 3 
orders of magnitude.  Stimuli were delivered for 24 hours followed by 
assessment of SEAP activity.  Representative concentrations are shown.  A.  

NFB reporter cells were stimulated with TNF (100 ng/ml), IFN-A/D (10 U/ml), 

LPS (10 ng/ml), CLO97 (5 g/ml), CpG (10 M), pIC (5 g/ml), or T-pIC (5 

ug/ml).  B.  ISRE reporter cells were stimulated as in A except 1 g/ml of LPS, 50 

g/ml of T-pIC, or 100 g/ml of pIC was used.  Data are representative of 3 
independent trials.  Error bars represent standard deviations of duplicate wells. 
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Supplemental Figure S2.5.  TLR3- and PI3K p110-dependent responses in 
neuronal cells.   A.  ISRE reporter BE(2)-C/m cells were transfected with a 
vector control or a dominant negative TLR3 (pdn.TLR3) for 48 hours.  Cells were 

then stimulated for 24 hours with pIC (50 g/ml) or IFN-A/D (100 U/ml) for 24 
hours.  B.  Cells were treated as in A except a wild-type TLR3 (pTLR3) or 

constitutively active PI3K p110 (p110.CAAX) were transiently expressed, and 

cells were stimulated with pIC at either 10 (pIC-10) or 50 (pIC-50) g/ml.  In A, 
averages and SEMs are displayed from 2 trials.  Data are representative of 1 trial 
for B where error bars represent standard deviations of duplicate wells.  *p < 
0.05.        
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Supplemental Figure S2.6.  PI3KR1 protein expression increases upon 
neuronal differentiation.  BE(2)-C or BE(2)-C/m lysates were analyzed by 
Western blot for PI3KR1 or GAPDH expression.  Data are representative of 2 
trials.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



117 

 
 
 
Supplemental Figure S2.7.  LY294002 cytotoxicity in BE(2)-C/m cells.  
BE(2)-C/m cells were treated with the indicated concentrations of LY294002 for 
24 hours.  Percent viability relative to DMSO treated controls was measured via 
an AlamarBlue assay.  Averages and SEMs are displayed from 2 trials.  
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Supplemental Table S2.1.  BE(2)-C Genomatix Microarray Analysis.     

Differentiated BE(2)-C/m vs. Undifferentiated BE(2)-C cells 

Parameters: 5 independent experiments (biological replicates) 
  Genomatix ChipInspector program with exhaustive pairwise analysis 
  FDR 1%, minimum 3 probe coverage, log2 fold change >= 0.5 (approx 1.4-fold) 

Genes Increased with Neuronal Differentiation 
Gene Symbol Gene Name Fold 

Change 

A1BG alpha-1-B glycoprotein 1.5 

AAK1 AP2 associated kinase 1 1.4 

AATK apoptosis-associated tyrosine kinase 1.6 

ABAT 4-aminobutyrate aminotransferase 1.6 

ABCA1 ATP-binding cassette, sub-family A (ABC1), member 1 1.8 

ABCB1 ATP-binding cassette, sub-family B (MDR/TAP), member 1 1.8 

ABCG1 ATP-binding cassette, sub-family G (WHITE), member 1 1.5 

ABHD14A abhydrolase domain containing 14A 1.5 

ABI3BP ABI gene family, member 3 (NESH) binding protein 2.7 

ACADVL acyl-Coenzyme A dehydrogenase, very long chain 1.4 

ACCN4 amiloride-sensitive cation channel 4, pituitary 2.1 

ACP6 acid phosphatase 6, lysophosphatidic 1.7 

ACTA2 actin, alpha 2, smooth muscle, aorta 4.6 

ACTG2 actin, gamma 2, smooth muscle, enteric 1.5 

ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 1.7 

ADAMTS5 ADAM metallopeptidase with thrombospondin type 1 motif, 5 
(aggrecanase-2) 

1.5 

ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 1.6 

ADCY1 adenylate cyclase 1 (brain) 1.8 

ADD3 adducin 3 (gamma) 2.5 

ADH5 alcohol dehydrogenase 5 (class III), chi polypeptide 1.6 

ADM adrenomedullin 1.7 

AK3L1 adenylate kinase 3-like 1 1.7 

AKAP9 A kinase (PRKA) anchor protein (yotiao) 9 1.4 

AKR1C1 aldo-keto reductase family 1, member C1 (dihydrodiol 
dehydrogenase 1; 20-alpha (3-alpha)-hydroxysteroid 
dehydrogenase) 

1.5 

AKR1C2 aldo-keto reductase family 1, member C2 (dihydrodiol 
dehydrogenase 2; bile acid binding protein; 3-alpha hydroxysteroid 
dehydrogenase, type III) 

1.8 

AKTIP AKT interacting protein 1.5 

ALCAM activated leukocyte cell adhesion molecule 1.5 

ALS2 amyotrophic lateral sclerosis 2 (juvenile) 1.5 

AMHR2 anti-Mullerian hormone receptor, type II 1.6 

ANGPT1 angiopoietin 1 1.5 

ANGPTL6 angiopoietin-like 6 1.4 

ANK2 ankyrin 2, neuronal 1.9 

ANKRA2 ankyrin repeat, family A (RFXANK-like), 2 1.6 

ANKRD1 ankyrin repeat domain 1 (cardiac muscle) 1.9 

ANKRD6 ankyrin repeat domain 6 1.5 

ANTXR2 anthrax toxin receptor 2 2.1 

ANXA1 annexin A1 2.9 

ANXA3 annexin A3 1.7 

ANXA6 annexin A6 1.5 

AP1G2 adaptor-related protein complex 1, gamma 2 subunit 1.5 
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AP1S2 adaptor-related protein complex 1, sigma 2 subunit 1.7 

AP2B1 adaptor-related protein complex 2, beta 1 subunit 1.5 

APBA1 amyloid beta (A4) precursor protein-binding, family A, member 1 
(X11) 

1.6 

APC adenomatous polyposis coli 1.5 

APC2 adenomatosis polyposis coli 2 1.6 

APLP2 amyloid beta (A4) precursor-like protein 2 1.7 

AQP1 aquaporin 1 (Colton blood group) 1.5 

AQP3 aquaporin 3 (Gill blood group) 2.0 

AQP6 aquaporin 6, kidney specific 1.4 

ARG2 arginase, type II 1.5 

ARHGAP17 Rho GTPase activating protein 17 1.4 

ARHGAP26 Rho GTPase activating protein 26 2.1 

ARHGAP29 Rho GTPase activating protein 29 2.1 

ARHGDIB Rho GDP dissociation inhibitor (GDI) beta 1.6 

ARHGEF17 Rho guanine nucleotide exchange factor (GEF) 17 1.4 

ARHGEF3 Rho guanine nucleotide exchange factor (GEF) 3 3.1 

ARHGEF7 Rho guanine nucleotide exchange factor (GEF) 7 1.4 

ARL15 ADP-ribosylation factor-like 15 1.4 

ARL6 ADP-ribosylation factor-like 6 1.7 

ARL6IP5 ADP-ribosylation-like factor 6 interacting protein 5 1.5 

ARMC9 armadillo repeat containing 9 1.5 

ARMCX1 armadillo repeat containing, X-linked 1 1.5 

ARMCX3 armadillo repeat containing, X-linked 3 1.5 

ARNT2 aryl-hydrocarbon receptor nuclear translocator 2 2.0 

ARNTL aryl hydrocarbon receptor nuclear translocator-like 1.5 

ASAH1 N-acylsphingosine amidohydrolase (acid ceramidase) 1 2.0 

ASL argininosuccinate lyase 1.6 

ASTN1 astrotactin 1 2.0 

ATAD1 ATPase family, AAA domain containing 1 1.4 

ATCAY ataxia, cerebellar, Cayman type (caytaxin) 1.7 

ATP1A3 ATPase, Na+/K+ transporting, alpha 3 polypeptide 1.8 

ATP1B1 ATPase, Na+/K+ transporting, beta 1 polypeptide 1.5 

ATP2B1 ATPase, Ca++ transporting, plasma membrane 1 1.8 

ATP2B3 ATPase, Ca++ transporting, plasma membrane 3 1.4 

ATP2B4 ATPase, Ca++ transporting, plasma membrane 4 1.5 

ATP6V0A1 ATPase, H+ transporting, lysosomal V0 subunit a1 1.5 

ATP6V1A ATPase, H+ transporting, lysosomal 70kDa, V1 subunit A 1.7 

ATP6V1G2 ATPase, H+ transporting, lysosomal 13kDa, V1 subunit G2 1.6 

ATP6V1H ATPase, H+ transporting, lysosomal 50/57kDa, V1 subunit H 1.4 

ATP7A ATPase, Cu++ transporting, alpha polypeptide (Menkes syndrome) 3.4 

AUTS2 autism susceptibility candidate 2 1.7 

AXL AXL receptor tyrosine kinase 1.6 

B4GALNT1 beta-1,4-N-acetyl-galactosaminyl transferase 1 1.8 

BACH2 BTB and CNC homology 1, basic leucine zipper transcription factor 
2 

1.9 

BAI3 brain-specific angiogenesis inhibitor 3 1.5 

BASP1 brain abundant, membrane attached signal protein 1 1.7 

BCAS3 breast carcinoma amplified sequence 3 1.7 

BCL2 B-cell CLL/lymphoma 2 1.6 

BDKRB2 bradykinin receptor B2 1.5 

BEX2 brain expressed X-linked 2 1.8 

BEX4 BEX family member 4 1.7 

BEX5 BEX family member 5 2.0 
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BLCAP bladder cancer associated protein 1.5 

BMP6 bone morphogenetic protein 6 1.6 

BMP7 bone morphogenetic protein 7 (osteogenic protein 1) 2.1 

BMPR1B bone morphogenetic protein receptor, type IB 1.4 

BMPR2 bone morphogenetic protein receptor, type II (serine/threonine 
kinase) 

1.8 

BNIP3L BCL2/adenovirus E1B 19kDa interacting protein 3-like 1.7 

BOK BCL2-related ovarian killer 1.8 

BRSK1 BR serine/threonine kinase 1 1.4 

BSCL2 Bernardinelli-Seip congenital lipodystrophy 2 (seipin) 1.4 

BTG2 BTG family, member 2 1.6 

BVES blood vessel epicardial substance 1.8 

C16orf5 chromosome 16 open reading frame 5 1.4 

C17orf28 chromosome 17 open reading frame 28 1.5 

C19orf63 chromosome 19 open reading frame 63 1.6 

C1orf76 chromosome 1 open reading frame 76 1.5 

C4orf6 chromosome 4 open reading frame 6 15.0 

C5orf13 chromosome 5 open reading frame 13 2.6 

C5orf5 chromosome 5 open reading frame 5 1.4 

C6orf134 chromosome 6 open reading frame 134 1.7 

C7 complement component 7 1.6 

C8orf4 chromosome 8 open reading frame 4 1.4 

C8orf70 chromosome 8 open reading frame 70 1.5 

C9orf127 chromosome 9 open reading frame 127 1.5 

C9orf19 chromosome 9 open reading frame 19 1.6 

C9orf95 chromosome 9 open reading frame 95 1.8 

CA11 carbonic anhydrase XI 2.0 

CACNA1B calcium channel, voltage-dependent, N type, alpha 1B subunit 1.8 

CACNB1 calcium channel, voltage-dependent, beta 1 subunit 1.4 

CACNB3 calcium channel, voltage-dependent, beta 3 subunit 1.8 

CACNG2 calcium channel, voltage-dependent, gamma subunit 2 1.5 

CADM1 cell adhesion molecule 1 1.7 

CADM3 cell adhesion molecule 3 1.6 

CADM4 cell adhesion molecule 4 1.5 

CADPS Ca2+-dependent secretion activator 2.2 

CALCA calcitonin-related polypeptide alpha 1.5 

CALCB calcitonin-related polypeptide beta 25.7 

CALCOCO1 calcium binding and coiled-coil domain 1 1.5 

CALM1 calmodulin 1 (phosphorylase kinase, delta) 1.6 

CAMK2B calcium/calmodulin-dependent protein kinase (CaM kinase) II beta 1.7 

CAMTA1 calmodulin binding transcription activator 1 1.7 

CAP2 CAP, adenylate cyclase-associated protein, 2 (yeast) 1.5 

CASD1 CAS1 domain containing 1 1.5 

CASP6 caspase 6, apoptosis-related cysteine peptidase 1.4 

CASZ1 castor zinc finger 1 1.6 

CBL Cas-Br-M (murine) ecotropic retroviral transforming sequence 1.5 

CCDC80 coiled-coil domain containing 80 1.5 

CCL2 chemokine (C-C motif) ligand 2 3.6 

CCNA1 cyclin A1 1.7 

CCNDBP1 cyclin D-type binding-protein 1 1.9 

CCNG2 cyclin G2 2.2 

CD14 CD14 molecule 1.9 

CD151 CD151 molecule (Raph blood group) 1.6 

CD177 CD177 molecule 3.4 
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CD200 CD200 molecule 1.9 

CD24 CD24 molecule 3.8 

CD276 CD276 molecule 1.5 

CD44 CD44 molecule (Indian blood group) 2.1 

CD59 CD59 molecule, complement regulatory protein 2.1 

CDC14B CDC14 cell division cycle 14 homolog B (S. cerevisiae) 1.4 

CDC42 cell division cycle 42 (GTP binding protein, 25kDa) 1.5 

CDH11 cadherin 11, type 2, OB-cadherin (osteoblast) 1.9 

CDH12 cadherin 12, type 2 (N-cadherin 2) 1.7 

CDK5R1 cyclin-dependent kinase 5, regulatory subunit 1 (p35) 1.5 

CDK5R2 cyclin-dependent kinase 5, regulatory subunit 2 (p39) 1.6 

CDK6 cyclin-dependent kinase 6 1.5 

CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) 1.6 

CDKN2B cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) 2.1 

CDKN2D cyclin-dependent kinase inhibitor 2D (p19, inhibits CDK4) 1.6 

CEBPD CCAAT/enhancer binding protein (C/EBP), delta 2.2 

CFI complement factor I 2.1 

CHAC1 ChaC, cation transport regulator homolog 1 (E. coli) 1.5 

CHRM1 cholinergic receptor, muscarinic 1 1.6 

CHRM3 cholinergic receptor, muscarinic 3 2.0 

CHST11 carbohydrate (chondroitin 4) sulfotransferase 11 2.1 

CLASP2 cytoplasmic linker associated protein 2 1.8 

CLCN5 chloride channel 5 (nephrolithiasis 2, X-linked, Dent disease) 2.5 

CLCN6 chloride channel 6 1.5 

CLIP1 CAP-GLY domain containing linker protein 1 1.5 

CLIP2 CAP-GLY domain containing linker protein 2 1.7 

CLIP3 CAP-GLY domain containing linker protein 3 2.3 

CLSTN2 calsyntenin 2 1.6 

CLSTN3 calsyntenin 3 1.6 

CMAH cytidine monophosphate-N-acetylneuraminic acid hydroxylase 
(CMP-N-acetylneuraminate monooxygenase) pseudogene 

1.7 

CMIP c-Maf-inducing protein 1.5 

CNN1 calponin 1, basic, smooth muscle 1.6 

CNN2 calponin 2 1.7 

CNTN1 contactin 1 1.5 

COL12A1 collagen, type XII, alpha 1 1.5 

COL13A1 collagen, type XIII, alpha 1 2.0 

COL1A1 collagen, type I, alpha 1 3.6 

COL3A1 collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, 
autosomal dominant) 

3.5 

COL4A1 collagen, type IV, alpha 1 1.9 

COL4A2 collagen, type IV, alpha 2 2.0 

COL5A1 collagen, type V, alpha 1 1.8 

COL6A3 collagen, type VI, alpha 3 1.4 

COLQ collagen-like tail subunit (single strand of homotrimer) of 
asymmetric acetylcholinesterase 

1.8 

CORO1A coronin, actin binding protein, 1A 1.7 

COTL1 coactosin-like 1 (Dictyostelium) 1.8 

CPA4 carboxypeptidase A4 4.6 

CPE carboxypeptidase E 2.9 

CPEB4 cytoplasmic polyadenylation element binding protein 4 1.9 

CPNE3 copine III 1.5 

CPT1C carnitine palmitoyltransferase 1C 1.5 

CPVL carboxypeptidase, vitellogenic-like 1.6 
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CRABP2 cellular retinoic acid binding protein 2 8.6 

CRB1 crumbs homolog 1 (Drosophila) 1.8 

CREB5 cAMP responsive element binding protein 5 1.4 

CRH corticotropin releasing hormone 2.2 

CRIM1 cysteine rich transmembrane BMP regulator 1 (chordin-like) 4.8 

CRMP1 collapsin response mediator protein 1 1.4 

CRYGC crystallin, gamma C 4.7 

CRYM crystallin, mu 1.7 

CSRP1 cysteine and glycine-rich protein 1 1.4 

CSRP2 cysteine and glycine-rich protein 2 1.5 

CTGF connective tissue growth factor 7.0 

CTNNA1 catenin (cadherin-associated protein), alpha 1, 102kDa 1.5 

CTNNA2 catenin (cadherin-associated protein), alpha 2 1.5 

CTSB cathepsin B 3.1 

CTSC cathepsin C 1.4 

CTSH cathepsin H 3.2 

CXADR coxsackie virus and adenovirus receptor 1.8 

CXCL12 chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1) 1.4 

CYB5R3 cytochrome b5 reductase 3 1.5 

CYFIP2 cytoplasmic FMR1 interacting protein 2 2.1 

CYP1A1 cytochrome P450, family 1, subfamily A, polypeptide 1 1.7 

CYP26A1 cytochrome P450, family 26, subfamily A, polypeptide 1 37.5 

CYP26B1 cytochrome P450, family 26, subfamily B, polypeptide 1 4.2 

CYP3A5 cytochrome P450, family 3, subfamily A, polypeptide 5 1.7 

CYR61 cysteine-rich, angiogenic inducer, 61 1.6 

CYTL1 cytokine-like 1 2.3 

DAAM1 dishevelled associated activator of morphogenesis 1 2.0 

DACH1 dachshund homolog 1 (Drosophila) 2.0 

DACT3 dapper, antagonist of beta-catenin, homolog 3 (Xenopus laevis) 1.7 

DCHS1 dachsous 1 (Drosophila) 1.8 

DCLK1 doublecortin-like kinase 1 6.8 

DCLK2 doublecortin-like kinase 2 2.0 

DCTN4 dynactin 4 (p62) 1.5 

DCX doublecortex; lissencephaly, X-linked (doublecortin) 5.4 

DDAH2 dimethylarginine dimethylaminohydrolase 2 1.7 

DDEF1 development and differentiation enhancing factor 1 1.6 

DDEF2 development and differentiation enhancing factor 2 2.5 

DDIT3 DNA-damage-inducible transcript 3 1.4 

DDX17 DEAD (Asp-Glu-Ala-Asp) box polypeptide 17 1.5 

DFNA5 deafness, autosomal dominant 5 1.6 

DHRS3 dehydrogenase/reductase (SDR family) member 3 2.2 

DIRAS3 DIRAS family, GTP-binding RAS-like 3 2.1 

DKK2 dickkopf homolog 2 (Xenopus laevis) 2.5 

DLG2 discs, large homolog 2, chapsyn-110 (Drosophila) 5.8 

DLL3 delta-like 3 (Drosophila) 1.7 

DOCK11 dedicator of cytokinesis 11 1.4 

DOCK4 dedicator of cytokinesis 4 1.8 

DPP6 dipeptidyl-peptidase 6 3.1 

DPYSL3 dihydropyrimidinase-like 3 2.0 

DPYSL4 dihydropyrimidinase-like 4 2.8 

DRAM damage-regulated autophagy modulator 1.7 

DST dystonin 1.6 

DUSP1 dual specificity phosphatase 1 1.5 
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DUSP6 dual specificity phosphatase 6 5.3 

DUSP8 dual specificity phosphatase 8 1.6 

DYNC1I1 dynein, cytoplasmic 1, intermediate chain 1 2.0 

DYRK1B dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1B 1.5 

DYSF dysferlin, limb girdle muscular dystrophy 2B (autosomal recessive) 1.5 

E2F7 E2F transcription factor 7 1.4 

EDG1 endothelial differentiation, sphingolipid G-protein-coupled receptor, 
1 

1.6 

EDG2 endothelial differentiation, lysophosphatidic acid G-protein-coupled 
receptor, 2 

1.5 

EDN1 endothelin 1 1.8 

EDNRA endothelin receptor type A 1.7 

EFHA2 EF-hand domain family, member A2 1.6 

EGR1 early growth response 1 1.9 

EGR3 early growth response 3 2.8 

EHD3 EH-domain containing 3 1.6 

EIF4E3 eukaryotic translation initiation factor 4E family member 3 1.7 

ELAVL1 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1 (Hu 
antigen R) 

1.6 

ELAVL2 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2 (Hu 
antigen B) 

1.4 

ELAVL3 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 3 (Hu 
antigen C) 

1.6 

ELAVL4 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 4 (Hu 
antigen D) 

2.3 

ELMO2 engulfment and cell motility 2 1.4 

ELMOD1 ELMO/CED-12 domain containing 1 1.7 

EMCN endomucin 1.6 

ENO2 enolase 2 (gamma, neuronal) 1.5 

ENO3 enolase 3 (beta, muscle) 1.6 

ENPP2 ectonucleotide pyrophosphatase/phosphodiesterase 2 (autotaxin) 1.4 

ENPP4 ectonucleotide pyrophosphatase/phosphodiesterase 4 (putative 
function) 

1.6 

ENSA endosulfine alpha 1.5 

EPAS1 endothelial PAS domain protein 1 1.9 

EPB41L1 erythrocyte membrane protein band 4.1-like 1 1.4 

EPB49 erythrocyte membrane protein band 4.9 (dematin) 1.7 

EPS15 epidermal growth factor receptor pathway substrate 15 1.4 

ETHE1 ethylmalonic encephalopathy 1 5.6 

EXOC1 exocyst complex component 1 1.5 

EXOC6B exocyst complex component 6B 3.3 

EXPH5 exophilin 5 1.5 

FAM127A family with sequence similarity 127, member A 1.7 

FAM13A1 family with sequence similarity 13, member A1 1.7 

FAM38A family with sequence similarity 38, member A 1.6 

FAM84B family with sequence similarity 84, member B 1.4 

FAT FAT tumor suppressor homolog 1 (Drosophila) 1.5 

FAT4 FAT tumor suppressor homolog 4 (Drosophila) 1.6 

FBLIM1 filamin binding LIM protein 1 1.6 

FBXL2 F-box and leucine-rich repeat protein 2 1.7 

FCHO2 FCH domain only 2 1.6 

FDFT1 farnesyl-diphosphate farnesyltransferase 1 1.4 

FER1L3 fer-1-like 3, myoferlin (C. elegans) 1.5 

FEZ2 fasciculation and elongation protein zeta 2 (zygin II) 1.5 
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FGF1 fibroblast growth factor 1 (acidic) 1.5 

FGF13 fibroblast growth factor 13 2.3 

FGL1 fibrinogen-like 1 1.4 

FHL1 four and a half LIM domains 1 1.4 

FHOD3 formin homology 2 domain containing 3 1.5 

FIBIN fin bud initiation factor 1.5 

FIG4 FIG4 homolog (S. cerevisiae) 1.6 

FILIP1L filamin A interacting protein 1-like 1.9 

FKBP1B FK506 binding protein 1B, 12.6 kDa 1.8 

FLJ22536 hypothetical locus LOC401237 2.4 

FLNB filamin B, beta (actin binding protein 278) 2.9 

FLOT1 flotillin 1 1.5 

FMNL2 formin-like 2 1.7 

FN1 fibronectin 1 7.7 

FNBP1L formin binding protein 1-like 1.9 

FNDC4 fibronectin type III domain containing 4 1.6 

FNDC5 fibronectin type III domain containing 5 2.6 

FOXC1 forkhead box C1 2.0 

FOXN3 forkhead box N3 1.4 

FOXO1 forkhead box O1 1.8 

FOXO3 forkhead box O3 2.0 

FREM1 FRAS1 related extracellular matrix 1 2.2 

FRS3 fibroblast growth factor receptor substrate 3 1.4 

FSTL1 follistatin-like 1 8.8 

FSTL3 follistatin-like 3 (secreted glycoprotein) 1.4 

FUCA1 fucosidase, alpha-L- 1, tissue 1.6 

FZD5 frizzled homolog 5 (Drosophila) 1.5 

G0S2 G0/G1switch 2 1.6 

GAB2 GRB2-associated binding protein 2 2.3 

GABARAPL1 GABA(A) receptor-associated protein like 1 1.5 

GABBR1 gamma-aminobutyric acid (GABA) B receptor, 1 1.9 

GAL galanin prepropeptide 2.9 

GALNT7 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-
acetylgalactosaminyltransferase 7 (GalNAc-T7) 

1.4 

GALR1 galanin receptor 1 2.2 

GAS2 growth arrest-specific 2 1.8 

GATS opposite strand transcription unit to STAG3 1.8 

GBP1 guanylate binding protein 1, interferon-inducible, 67kDa 1.4 

GDAP1 ganglioside-induced differentiation-associated protein 1 1.5 

GDAP1L1 ganglioside-induced differentiation-associated protein 1-like 1 1.7 

GDF1 growth differentiation factor 1 2.1 

GDF10 growth differentiation factor 10 1.8 

GDF15 growth differentiation factor 15 2.9 

GDI1 GDP dissociation inhibitor 1 1.5 

GFRA2 GDNF family receptor alpha 2 1.6 

GJA5 gap junction protein, alpha 5, 40kDa 1.7 

GKAP1 G kinase anchoring protein 1 1.6 

GLIPR1 GLI pathogenesis-related 1 (glioma) 1.6 

GLIS2 GLIS family zinc finger 2 1.5 

GLS glutaminase 1.6 

GNAO1 guanine nucleotide binding protein (G protein), alpha activating 
activity polypeptide O 

2.4 

GNAQ guanine nucleotide binding protein (G protein), q polypeptide 1.5 

GNB5 guanine nucleotide binding protein (G protein), beta 5 1.5 
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GNG2 guanine nucleotide binding protein (G protein), gamma 2 2.3 

GNG3 guanine nucleotide binding protein (G protein), gamma 3 3.3 

GNG4 guanine nucleotide binding protein (G protein), gamma 4 1.5 

GNPTAB N-acetylglucosamine-1-phosphate transferase, alpha and beta 
subunits 

1.4 

GNS glucosamine (N-acetyl)-6-sulfatase (Sanfilippo disease IIID) 1.4 

GPC2 glypican 2 2.0 

GPM6B glycoprotein M6B 1.9 

GPNMB glycoprotein (transmembrane) nmb 2.0 

GPR124 G protein-coupled receptor 124 1.5 

GPR137B G protein-coupled receptor 137B 2.0 

GPR160 G protein-coupled receptor 160 1.4 

GPR161 G protein-coupled receptor 161 1.5 

GPR176 G protein-coupled receptor 176 1.5 

GPR22 G protein-coupled receptor 22 1.8 

GPR56 G protein-coupled receptor 56 1.5 

GPR64 G protein-coupled receptor 64 1.9 

GPR68 G protein-coupled receptor 68 1.5 

GPR83 G protein-coupled receptor 83 1.6 

GPR85 G protein-coupled receptor 85 1.6 

GPRC5A G protein-coupled receptor, family C, group 5, member A 1.5 

GRB10 growth factor receptor-bound protein 10 1.5 

GREM1 gremlin 1, cysteine knot superfamily, homolog (Xenopus laevis) 1.7 

GRIA1 glutamate receptor, ionotropic, AMPA 1 1.5 

GRIA2 glutamate receptor, ionotropic, AMPA 2 2.0 

GRK4 G protein-coupled receptor kinase 4 1.5 

GRK5 G protein-coupled receptor kinase 5 1.9 

H2AFY2 H2A histone family, member Y2 1.5 

HBEGF heparin-binding EGF-like growth factor 1.9 

HBP1 HMG-box transcription factor 1 1.5 

HEBP2 heme binding protein 2 3.4 

HECW2 HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2 1.4 

HERV-FRD HERV-FRD provirus ancestral Env polyprotein 1.8 

HEY1 hairy/enhancer-of-split related with YRPW motif 1 1.5 

HIC1 hypermethylated in cancer 1 1.7 

HIST2H2BE histone cluster 2, H2be 1.7 

HIVEP2 human immunodeficiency virus type I enhancer binding protein 2 1.4 

HLA-DPB1 major histocompatibility complex, class II, DP beta 1 1.7 

HLA-DRB1 major histocompatibility complex, class II, DR beta 1 2.2 

HMGCL 3-hydroxymethyl-3-methylglutaryl-Coenzyme A lyase 
(hydroxymethylglutaricaciduria) 

1.4 

HOMER3 homer homolog 3 (Drosophila) 1.5 

HOXA5 homeobox A5 2.0 

HOXC4 homeobox C4 1.5 

HOXD1 homeobox D1 1.9 

HOXD10 homeobox D10 2.5 

HOXD11 homeobox D11 1.5 

HOXD4 homeobox D4 1.8 

HOXD9 homeobox D9 1.8 

HPCAL1 hippocalcin-like 1 1.6 

HRASLS3 HRAS-like suppressor 3 1.7 

HRH1 histamine receptor H1 1.6 

HS6ST3 heparan sulfate 6-O-sulfotransferase 3 1.7 

HSD17B2 hydroxysteroid (17-beta) dehydrogenase 2 2.4 
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HSPB8 heat shock 22kDa protein 8 1.4 

HTN1 histatin 1 2.0 

HTN3 histatin 3 1.8 

HTR2B 5-hydroxytryptamine (serotonin) receptor 2B 3.2 

IDH1 isocitrate dehydrogenase 1 (NADP+), soluble 2.0 

IDS iduronate 2-sulfatase (Hunter syndrome) 1.5 

IER3 immediate early response 3 1.7 

IFI16 interferon, gamma-inducible protein 16 1.7 

IFNAR2 interferon (alpha, beta and omega) receptor 2 1.5 

IGF2 insulin-like growth factor 2 (somatomedin A) 2.0 

IGF2R insulin-like growth factor 2 receptor 1.4 

IGFBP3 insulin-like growth factor binding protein 3 2.6 

IGFBP5 insulin-like growth factor binding protein 5 1.9 

IGFBP6 insulin-like growth factor binding protein 6 1.9 

IGH immunoglobulin heavy locus 2.1 

IGSF11 immunoglobulin superfamily, member 11 1.8 

IL13RA1 interleukin 13 receptor, alpha 1 1.5 

IL17D interleukin 17D 1.8 

INHBA inhibin, beta A 2.5 

INSC inscuteable homolog (Drosophila) 1.5 

INSM1 insulinoma-associated 1 1.6 

IRF9 interferon regulatory factor 9 1.7 

ISYNA1 myo-inositol 1-phosphate synthase A1 1.6 

ITGA1 integrin, alpha 1 5.7 

ITGA2 integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor) 1.5 

ITGA3 integrin, alpha 3 (antigen CD49C, alpha 3 subunit of VLA-3 
receptor) 

2.2 

JAG1 jagged 1 (Alagille syndrome) 1.5 

JARID1B jumonji, AT rich interactive domain 1B 2.9 

JARID2 jumonji, AT rich interactive domain 2 1.8 

JMJD1A jumonji domain containing 1A 1.6 

JMJD2B jumonji domain containing 2B 1.5 

JMJD2C jumonji domain containing 2C 1.5 

JMJD3 jumonji domain containing 3, histone lysine demethylase 1.5 

JPH3 junctophilin 3 1.8 

JUB jub, ajuba homolog (Xenopus laevis) 1.7 

JUND jun D proto-oncogene 1.4 

JUP junction plakoglobin 1.7 

KALRN kalirin, RhoGEF kinase 1.6 

KBTBD11 kelch repeat and BTB (POZ) domain containing 11 1.4 

KCNA3 potassium voltage-gated channel, shaker-related subfamily, 
member 3 

1.7 

KCNAB1 potassium voltage-gated channel, shaker-related subfamily, beta 
member 1 

3.0 

KCNIP4 Kv channel interacting protein 4 1.6 

KCNJ2 potassium inwardly-rectifying channel, subfamily J, member 2 2.2 

KCNMA1 potassium large conductance calcium-activated channel, subfamily 
M, alpha member 1 

1.9 

KCNMB4 potassium large conductance calcium-activated channel, subfamily 
M, beta member 4 

1.7 

KCNQ2 potassium voltage-gated channel, KQT-like subfamily, member 2 1.5 

KCNT2 potassium channel, subfamily T, member 2 1.5 

KCTD13 potassium channel tetramerisation domain containing 13 1.7 

KDELR3 KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention 1.7 
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receptor 3 

KIAA0513 KIAA0513 1.5 

KIAA0746 KIAA0746 protein 1.7 

KIAA1109 KIAA1109 1.4 

KIAA1199 KIAA1199 1.5 

KIDINS220 kinase D-interacting substrate of 220 kDa 1.6 

KIF13B kinesin family member 13B 1.5 

KIF1A kinesin family member 1A 1.5 

KIF1B kinesin family member 1B 2.2 

KIF3A kinesin family member 3A 1.5 

KIF3C kinesin family member 3C 1.9 

KIF5A kinesin family member 5A 1.7 

KIF5C kinesin family member 5C 2.2 

KIFAP3 kinesin-associated protein 3 2.1 

KIRREL kin of IRRE like (Drosophila) 1.4 

KLC1 kinesin light chain 1 2.2 

KLF5 Kruppel-like factor 5 (intestinal) 1.5 

KLF7 Kruppel-like factor 7 (ubiquitous) 1.5 

KLHDC9 kelch domain containing 9 1.5 

KLHL13 kelch-like 13 (Drosophila) 1.6 

KLHL24 kelch-like 24 (Drosophila) 1.4 

KLHL7 kelch-like 7 (Drosophila) 2.0 

KRT18 keratin 18 6.5 

KRT7 keratin 7 1.6 

KRT86 keratin 86 1.5 

LAMP2 lysosomal-associated membrane protein 2 1.4 

LAPTM4A lysosomal-associated protein transmembrane 4 alpha 1.4 

LARP6 La ribonucleoprotein domain family, member 6 1.9 

LASP1 LIM and SH3 protein 1 1.8 

LASS5 LAG1 homolog, ceramide synthase 5 1.5 

LATS2 LATS, large tumor suppressor, homolog 2 (Drosophila) 1.6 

LBH limb bud and heart development homolog (mouse) 2.5 

LCOR ligand dependent nuclear receptor corepressor 1.7 

LCP1 lymphocyte cytosolic protein 1 (L-plastin) 1.9 

LEF1 lymphoid enhancer-binding factor 1 1.6 

LGALS3 lectin, galactoside-binding, soluble, 3 2.0 

LHFPL2 lipoma HMGIC fusion partner-like 2 2.2 

LIN7B lin-7 homolog B (C. elegans) 1.4 

LMBRD1 LMBR1 domain containing 1 1.9 

LMO3 LIM domain only 3 (rhombotin-like 2) 2.1 

LOC57228 small trans-membrane and glycosylated protein 1.8 

LONRF2 LON peptidase N-terminal domain and ring finger 2 2.2 

LOXL2 lysyl oxidase-like 2 1.6 

LPHN1 latrophilin 1 1.4 

LRP12 low density lipoprotein-related protein 12 1.5 

LRRC15 leucine rich repeat containing 15 1.4 

LRRFIP1 leucine rich repeat (in FLII) interacting protein 1 1.9 

LRRN3 leucine rich repeat neuronal 3 1.6 

LTB4DH leukotriene B4 12-hydroxydehydrogenase 1.7 

LTBP1 latent transforming growth factor beta binding protein 1 2.2 

LTBP3 latent transforming growth factor beta binding protein 3 2.1 

LTK leukocyte receptor tyrosine kinase 1.4 

LYST lysosomal trafficking regulator 1.7 
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MAB21L1 mab-21-like 1 (C. elegans) 1.4 

MAFB v-maf musculoaponeurotic fibrosarcoma oncogene homolog B 
(avian) 

1.4 

MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F 
(avian) 

1.5 

MAFK v-maf musculoaponeurotic fibrosarcoma oncogene homolog K 
(avian) 

2.6 

MAGED2 melanoma antigen family D, 2 1.7 

MAGEH1 melanoma antigen family H, 1 1.4 

MAML3 mastermind-like 3 (Drosophila) 1.5 

MAOA monoamine oxidase A 1.8 

MAP1B microtubule-associated protein 1B 1.8 

MAP1LC3A microtubule-associated protein 1 light chain 3 alpha 1.4 

MAP1LC3B microtubule-associated protein 1 light chain 3 beta 2.4 

MAP3K13 mitogen-activated protein kinase kinase kinase 13 1.7 

MAP3K5 mitogen-activated protein kinase kinase kinase 5 1.6 

MAP3K9 mitogen-activated protein kinase kinase kinase 9 2.0 

MAP4 microtubule-associated protein 4 2.1 

MAP4K4 mitogen-activated protein kinase kinase kinase kinase 4 1.4 

MAP6 microtubule-associated protein 6 1.5 

MAPK10 mitogen-activated protein kinase 10 1.5 

MAPK8 mitogen-activated protein kinase 8 1.6 

MAPKAPK3 mitogen-activated protein kinase-activated protein kinase 3 1.8 

MAPRE2 microtubule-associated protein, RP/EB family, member 2 1.4 

MAPRE3 microtubule-associated protein, RP/EB family, member 3 1.5 

MAPT microtubule-associated protein tau 2.3 

MARCH6 membrane-associated ring finger (C3HC4) 6 1.4 

MARCKSL1 MARCKS-like 1 1.6 

MAST1 microtubule associated serine/threonine kinase 1 1.5 

MAST4 microtubule associated serine/threonine kinase family member 4 1.8 

MATN2 matrilin 2 1.5 

MBNL3 muscleblind-like 3 (Drosophila) 1.7 

MCC mutated in colorectal cancers 1.8 

MCF2L MCF.2 cell line derived transforming sequence-like 1.8 

MDK midkine (neurite growth-promoting factor 2) 2.3 

MEIS1 Meis homeobox 1 2.3 

MEIS3 Meis homeobox 3 2.0 

MEST mesoderm specific transcript homolog (mouse) 14.2 

MGAT3 mannosyl (beta-1,4-)-glycoprotein beta-1,4-N-
acetylglucosaminyltransferase 

1.5 

MGAT4B mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-
acetylglucosaminyltransferase, isozyme B 

1.6 

MGP matrix Gla protein 7.8 

MGST3 microsomal glutathione S-transferase 3 1.9 

MID1IP1 MID1 interacting protein 1 (gastrulation specific G12 homolog 
(zebrafish)) 

1.4 

MLLT11 myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, 
Drosophila); translocated to, 11 

1.8 

MLLT4 myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, 
Drosophila); translocated to, 4 

1.4 

MMP1 matrix metallopeptidase 1 (interstitial collagenase) 2.0 

MMP11 matrix metallopeptidase 11 (stromelysin 3) 1.5 

MMP15 matrix metallopeptidase 15 (membrane-inserted) 1.5 

MOAP1 modulator of apoptosis 1 1.5 
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MOXD1 monooxygenase, DBH-like 1 2.2 

MRAS muscle RAS oncogene homolog 1.4 

MSRB3 methionine sulfoxide reductase B3 1.4 

MTA3 metastasis associated 1 family, member 3 1.6 

MUC12 mucin 12, cell surface associated 1.7 

MYADM myeloid-associated differentiation marker 2.4 

MYC v-myc myelocytomatosis viral oncogene homolog (avian) 2.3 

MYLK myosin light chain kinase 1.9 

MYO5A myosin VA (heavy chain 12, myoxin) 2.1 

MYO6 myosin VI 1.6 

MYPN myopalladin 1.7 

MYRIP myosin VIIA and Rab interacting protein 1.9 

MYST4 MYST histone acetyltransferase (monocytic leukemia) 4 1.5 

N4BP2L2 NEDD4 binding protein 2-like 2 1.4 

NAB2 NGFI-A binding protein 2 (EGR1 binding protein 2) 1.6 

NANOS1 nanos homolog 1 (Drosophila) 1.6 

NAP1L2 nucleosome assembly protein 1-like 2 2.0 

NAP1L5 nucleosome assembly protein 1-like 5 1.4 

NAV2 neuron navigator 2 1.4 

NBEA neurobeachin 1.8 

NCAM1 neural cell adhesion molecule 1 1.6 

NCAM2 neural cell adhesion molecule 2 2.4 

NCOA3 nuclear receptor coactivator 3 1.5 

NCOA7 nuclear receptor coactivator 7 1.6 

NDN necdin homolog (mouse) 1.7 

NDRG4 NDRG family member 4 2.2 

NEBL nebulette 1.6 

NEDD9 neural precursor cell expressed, developmentally down-regulated 9 1.6 

NEIL2 nei like 2 (E. coli) 1.5 

NELL2 NEL-like 2 (chicken) 3.5 

NEO1 neogenin homolog 1 (chicken) 1.4 

NEURL2 neuralized homolog 2 (Drosophila) 1.4 

NFASC neurofascin homolog (chicken) 1.5 

NFIB nuclear factor I/B 1.5 

NFIL3 nuclear factor, interleukin 3 regulated 2.2 

NGB neuroglobin 1.5 

NGFR nerve growth factor receptor (TNFR superfamily, member 16) 2.0 

NID1 nidogen 1 1.9 

NIPSNAP3A nipsnap homolog 3A (C. elegans) 1.5 

NLRP1 NLR family, pyrin domain containing 1 2.1 

NNMT nicotinamide N-methyltransferase 1.9 

NOTCH2 Notch homolog 2 (Drosophila) 2.3 

NOVA1 neuro-oncological ventral antigen 1 1.6 

NPC2 Niemann-Pick disease, type C2 3.2 

NPPA natriuretic peptide precursor A 1.5 

NPPB natriuretic peptide precursor B 3.5 

NPR1 natriuretic peptide receptor A/guanylate cyclase A (atrionatriuretic 
peptide receptor A) 

1.5 

NPTX1 neuronal pentraxin I 1.4 

NPTX2 neuronal pentraxin II 2.5 

NR0B1 nuclear receptor subfamily 0, group B, member 1 5.5 

NR0B2 nuclear receptor subfamily 0, group B, member 2 1.4 

NR3C1 nuclear receptor subfamily 3, group C, member 1 (glucocorticoid 
receptor) 

1.5 
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NRG1 neuregulin 1 1.5 

NRG3 neuregulin 3 1.9 

NRXN2 neurexin 2 1.4 

NT5E 5'-nucleotidase, ecto (CD73) 2.2 

NTNG2 netrin G2 1.5 

NTRK2 neurotrophic tyrosine kinase, receptor, type 2 1.4 

NUAK1 NUAK family, SNF1-like kinase, 1 3.0 

OLFM3 olfactomedin 3 1.6 

OLFML3 olfactomedin-like 3 2.0 

ONECUT2 one cut homeobox 2 1.5 

OPTN optineurin 1.8 

OSBPL8 oxysterol binding protein-like 8 1.4 

OSTF1 osteoclast stimulating factor 1 2.9 

P4HA2 procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-
hydroxylase), alpha polypeptide II 

1.4 

PACSIN2 protein kinase C and casein kinase substrate in neurons 2 1.5 

PAK3 p21 (CDKN1A)-activated kinase 3 1.5 

PAK7 p21(CDKN1A)-activated kinase 7 1.5 

PALM paralemmin 1.9 

PANX1 pannexin 1 1.5 

PAPSS1 3'-phosphoadenosine 5'-phosphosulfate synthase 1 1.6 

PAPSS2 3'-phosphoadenosine 5'-phosphosulfate synthase 2 1.5 

PART1 prostate androgen-regulated transcript 1 1.5 

PBX3 pre-B-cell leukemia homeobox 3 1.9 

PBXIP1 pre-B-cell leukemia homeobox interacting protein 1 1.4 

PCBP4 poly(rC) binding protein 4 1.7 

PCDH7 protocadherin 7 1.7 

PCDHA9 protocadherin alpha 9 1.8 

PCDHB9 protocadherin beta 9 1.5 

PCNXL2 pecanex-like 2 (Drosophila) 1.4 

PCSK1N proprotein convertase subtilisin/kexin type 1 inhibitor 2.8 

PCSK5 proprotein convertase subtilisin/kexin type 5 1.5 

PDE11A phosphodiesterase 11A 1.5 

PDE4DIP phosphodiesterase 4D interacting protein (myomegalin) 1.5 

PDE5A phosphodiesterase 5A, cGMP-specific 1.4 

PDLIM5 PDZ and LIM domain 5 1.8 

PDLIM7 PDZ and LIM domain 7 (enigma) 1.5 

PDZD2 PDZ domain containing 2 1.7 

PDZK1 PDZ domain containing 1 2.4 

PECI peroxisomal D3,D2-enoyl-CoA isomerase 1.6 

PELI1 pellino homolog 1 (Drosophila) 1.5 

PGAM2 phosphoglycerate mutase 2 (muscle) 1.9 

PGM2L1 phosphoglucomutase 2-like 1 2.5 

PGPEP1 pyroglutamyl-peptidase I 1.5 

PHLDA2 pleckstrin homology-like domain, family A, member 2 1.9 

PHLDB2 pleckstrin homology-like domain, family B, member 2 1.7 

PHOX2A paired-like homeobox 2a 1.6 

PHOX2B paired-like homeobox 2b 1.7 

PI15 peptidase inhibitor 15 2.5 

PID1 phosphotyrosine interaction domain containing 1 1.4 

PIK3R1 phosphoinositide-3-kinase, regulatory subunit 1 (alpha) 2.3 

PIPOX pipecolic acid oxidase 1.7 

PITPNC1 phosphatidylinositol transfer protein, cytoplasmic 1 1.8 

PITPNM1 phosphatidylinositol transfer protein, membrane-associated 1 1.5 
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PKIA protein kinase (cAMP-dependent, catalytic) inhibitor alpha 1.6 

PKIG protein kinase (cAMP-dependent, catalytic) inhibitor gamma 1.5 

PLAT plasminogen activator, tissue 3.3 

PLAUR plasminogen activator, urokinase receptor 1.4 

PLB1 phospholipase B1 1.4 

PLD3 phospholipase D family, member 3 2.1 

PLEKHA5 pleckstrin homology domain containing, family A member 5 1.4 

PLEKHA6 pleckstrin homology domain containing, family A member 6 4.2 

PLK2 polo-like kinase 2 (Drosophila) 8.3 

PLSCR3 phospholipid scramblase 3 1.6 

PLXNA2 plexin A2 3.0 

PLXNA3 plexin A3 1.5 

PLXNB1 plexin B1 1.5 

PNMAL1 PNMA-like 1 1.5 

PNOC prepronociceptin 1.5 

PNRC1 proline-rich nuclear receptor coactivator 1 1.7 

PPAP2A phosphatidic acid phosphatase type 2A 1.6 

PPAP2B phosphatidic acid phosphatase type 2B 1.6 

PPAPDC1A phosphatidic acid phosphatase type 2 domain containing 1A 3.3 

PPARG peroxisome proliferator-activated receptor gamma 1.8 

PPFIBP2 PTPRF interacting protein, binding protein 2 (liprin beta 2) 1.4 

PPIC peptidylprolyl isomerase C (cyclophilin C) 1.6 

PPM2C protein phosphatase 2C, magnesium-dependent, catalytic subunit 1.6 

PPP1R14A protein phosphatase 1, regulatory (inhibitor) subunit 14A 1.4 

PPP1R15A protein phosphatase 1, regulatory (inhibitor) subunit 15A 1.4 

PPP2R2B protein phosphatase 2 (formerly 2A), regulatory subunit B, beta 
isoform 

1.5 

PPP2R2C protein phosphatase 2 (formerly 2A), regulatory subunit B, gamma 
isoform 

1.7 

PPP2R5B protein phosphatase 2, regulatory subunit B', beta isoform 1.6 

PRAF2 PRA1 domain family, member 2 1.6 

PRCP prolylcarboxypeptidase (angiotensinase C) 1.6 

PRDM1 PR domain containing 1, with ZNF domain 2.1 

PREP prolyl endopeptidase 1.6 

PRG2 plasticity-related gene 2 1.7 

PRICKLE1 prickle homolog 1 (Drosophila) 2.6 

PRKACB protein kinase, cAMP-dependent, catalytic, beta 1.4 

PRKAR2B protein kinase, cAMP-dependent, regulatory, type II, beta 2.2 

PRKCE protein kinase C, epsilon 1.6 

PRKCH protein kinase C, eta 3.3 

PRKCZ protein kinase C, zeta 2.0 

PRNP prion protein (p27-30) (Creutzfeldt-Jakob disease, Gerstmann-
Strausler-Scheinker syndrome, fatal familial insomnia) 

1.5 

PROK2 prokineticin 2 1.5 

PROM1 prominin 1 1.4 

PRSS12 protease, serine, 12 (neurotrypsin, motopsin) 2.2 

PRSS23 protease, serine, 23 3.6 

PSAP prosaposin (variant Gaucher disease and variant metachromatic 
leukodystrophy) 

1.5 

PSCD3 pleckstrin homology, Sec7 and coiled-coil domains 3 1.5 

PSEN1 presenilin 1 (Alzheimer disease 3) 1.5 

PSEN2 presenilin 2 (Alzheimer disease 4) 1.5 

PTGIR prostaglandin I2 (prostacyclin) receptor (IP) 1.9 

PTPN18 protein tyrosine phosphatase, non-receptor type 18 (brain-derived) 1.5 
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PTPN21 protein tyrosine phosphatase, non-receptor type 21 1.5 

PTPRE protein tyrosine phosphatase, receptor type, E 1.8 

PTPRF protein tyrosine phosphatase, receptor type, F 1.5 

PTPRH protein tyrosine phosphatase, receptor type, H 3.1 

PTPRM protein tyrosine phosphatase, receptor type, M 1.6 

PTPRN2 protein tyrosine phosphatase, receptor type, N polypeptide 2 1.8 

PTPRR protein tyrosine phosphatase, receptor type, R 1.6 

PTRF polymerase I and transcript release factor 1.5 

PTTG1IP pituitary tumor-transforming 1 interacting protein 1.5 

PTX3 pentraxin-related gene, rapidly induced by IL-1 beta 9.0 

PURG purine-rich element binding protein G 1.8 

PVRL2 poliovirus receptor-related 2 (herpesvirus entry mediator B) 1.5 

QPCT glutaminyl-peptide cyclotransferase (glutaminyl cyclase) 1.4 

QPRT quinolinate phosphoribosyltransferase (nicotinate-nucleotide 
pyrophosphorylase (carboxylating)) 

1.6 

QSOX1 quiescin Q6 sulfhydryl oxidase 1 1.4 

RAB20 RAB20, member RAS oncogene family 3.5 

RAB27B RAB27B, member RAS oncogene family 1.5 

RAB2B RAB2B, member RAS oncogene family 2.0 

RAB38 RAB38, member RAS oncogene family 12.1 

RAB39B RAB39B, member RAS oncogene family 1.7 

RAB3A RAB3A, member RAS oncogene family 1.8 

RAB4B RAB4B, member RAS oncogene family 1.4 

RAB5B RAB5B, member RAS oncogene family 1.5 

RAB6B RAB6B, member RAS oncogene family 2.2 

RABAC1 Rab acceptor 1 (prenylated) 1.4 

RAI14 retinoic acid induced 14 2.5 

RALB v-ral simian leukemia viral oncogene homolog B (ras related; GTP 
binding protein) 

1.6 

RAMP1 receptor (G protein-coupled) activity modifying protein 1 1.7 

RARA retinoic acid receptor, alpha 1.6 

RARB retinoic acid receptor, beta 2.4 

RASA1 RAS p21 protein activator (GTPase activating protein) 1 2.7 

RASGRF1 Ras protein-specific guanine nucleotide-releasing factor 1 1.7 

RBM9 RNA binding motif protein 9 1.6 

RBP1 retinol binding protein 1, cellular 3.4 

RBPMS RNA binding protein with multiple splicing 1.4 

RCAN2 regulator of calcineurin 2 2.0 

RDH10 retinol dehydrogenase 10 (all-trans) 1.7 

REC8 REC8 homolog (yeast) 1.8 

REEP1 receptor accessory protein 1 3.2 

REEP2 receptor accessory protein 2 1.5 

REG3G regenerating islet-derived 3 gamma 2.5 

RET ret proto-oncogene 2.4 

RFTN1 raftlin, lipid raft linker 1 1.5 

RGS16 regulator of G-protein signaling 16 1.6 

RGS4 regulator of G-protein signaling 4 2.5 

RHBDD2 rhomboid domain containing 2 1.4 

RHOBTB3 Rho-related BTB domain containing 3 1.4 

RHOC ras homolog gene family, member C 1.7 

RIT2 Ras-like without CAAX 2 1.8 

RNASEL ribonuclease L (2',5'-oligoisoadenylate synthetase-dependent) 1.5 

RND3 Rho family GTPase 3 2.7 

RNF103 ring finger protein 103 1.4 
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RNF11 ring finger protein 11 1.7 

RNF146 ring finger protein 146 1.5 

RNF19A ring finger protein 19A 1.5 

RNF24 ring finger protein 24 1.5 

ROR1 receptor tyrosine kinase-like orphan receptor 1 1.5 

RP1-21O18.1 kazrin 1.5 

RP4-691N24.1 ninein-like 1.7 

RSL1D1 ribosomal L1 domain containing 1 1.5 

RTN1 reticulon 1 2.1 

RTN2 reticulon 2 1.5 

RUFY2 RUN and FYVE domain containing 2 1.5 

RUFY3 RUN and FYVE domain containing 3 2.3 

RUSC2 RUN and SH3 domain containing 2 1.5 

RYBP RING1 and YY1 binding protein 1.6 

S100A10 S100 calcium binding protein A10 2.0 

S100A13 S100 calcium binding protein A13 1.8 

S100A16 S100 calcium binding protein A16 2.0 

SALL2 sal-like 2 (Drosophila) 1.4 

SAMD9 sterile alpha motif domain containing 9 1.5 

SAMD9L sterile alpha motif domain containing 9-like 1.7 

SBK1 SH3-binding domain kinase 1 2.4 

SCARB2 scavenger receptor class B, member 2 1.6 

SCG2 secretogranin II (chromogranin C) 1.7 

SCG5 secretogranin V (7B2 protein) 3.6 

SCN2A sodium channel, voltage-gated, type II, alpha subunit 1.6 

SCN3A sodium channel, voltage-gated, type III, alpha subunit 2.6 

SCOC short coiled-coil protein 1.7 

SCRG1 scrapie responsive protein 1 2.4 

SDC3 syndecan 3 1.4 

SDC4 syndecan 4 1.7 

SDCBP syndecan binding protein (syntenin) 1.8 

SEMA3C sema domain, immunoglobulin domain (Ig), short basic domain, 
secreted, (semaphorin) 3C 

1.5 

SEMA4F sema domain, immunoglobulin domain (Ig), transmembrane 
domain (TM) and short cytoplasmic domain, (semaphorin) 4F 

1.5 

SEPT3 septin 3 2.3 

SEPT6 septin 6 1.7 

SEPT8 septin 8 1.8 

SERINC1 serine incorporator 1 1.9 

SERINC3 serine incorporator 3 1.7 

SERP2 stress-associated endoplasmic reticulum protein family member 2 1.8 

SERPINB9 serpin peptidase inhibitor, clade B (ovalbumin), member 9 1.6 

SERPINE1 serpin peptidase inhibitor, clade E (nexin, plasminogen activator 
inhibitor type 1), member 1 

1.9 

SERPINE2 serpin peptidase inhibitor, clade E (nexin, plasminogen activator 
inhibitor type 1), member 2 

1.4 

SERPINI1 serpin peptidase inhibitor, clade I (neuroserpin), member 1 1.6 

SFXN3 sideroflexin 3 1.5 

SGCB sarcoglycan, beta (43kDa dystrophin-associated glycoprotein) 1.4 

SGIP1 SH3-domain GRB2-like (endophilin) interacting protein 1 2.2 

SH2D3C SH2 domain containing 3C 1.5 

SH3BGRL SH3 domain binding glutamic acid-rich protein like 1.9 

SH3BGRL2 SH3 domain binding glutamic acid-rich protein like 2 1.6 

SH3BP5 SH3-domain binding protein 5 (BTK-associated) 2.3 
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SH3D19 SH3 domain containing 19 1.4 

SH3KBP1 SH3-domain kinase binding protein 1 1.5 

SH3PXD2A SH3 and PX domains 2A 1.5 

SHANK3 SH3 and multiple ankyrin repeat domains 3 1.9 

SHC1 SHC (Src homology 2 domain containing) transforming protein 1 1.6 

SHC2 SHC (Src homology 2 domain containing) transforming protein 2 1.9 

SIGIRR single immunoglobulin and toll-interleukin 1 receptor (TIR) domain 2.1 

SKAP2 src kinase associated phosphoprotein 2 1.4 

SLC12A6 solute carrier family 12 (potassium/chloride transporters), member 
6 

1.4 

SLC16A2 solute carrier family 16, member 2 (monocarboxylic acid transporter 
8) 

1.4 

SLC17A5 solute carrier family 17 (anion/sugar transporter), member 5 1.6 

SLC18A3 solute carrier family 18 (vesicular acetylcholine), member 3 1.5 

SLC22A17 solute carrier family 22, member 17 1.7 

SLC23A2 solute carrier family 23 (nucleobase transporters), member 2 1.4 

SLC25A24 solute carrier family 25 (mitochondrial carrier; phosphate carrier), 
member 24 

1.6 

SLC27A6 solute carrier family 27 (fatty acid transporter), member 6 1.6 

SLC30A3 solute carrier family 30 (zinc transporter), member 3 1.5 

SLC35D2 solute carrier family 35, member D2 1.4 

SLC40A1 solute carrier family 40 (iron-regulated transporter), member 1 1.7 

SLC44A2 solute carrier family 44, member 2 1.4 

SLC47A1 solute carrier family 47, member 1 1.5 

SLC6A17 solute carrier family 6, member 17 2.0 

SLIT2 slit homolog 2 (Drosophila) 4.2 

SLITRK6 SLIT and NTRK-like family, member 6 1.6 

SMAD1 SMAD family member 1 1.6 

SMAD3 SMAD family member 3 1.5 

SMARCA1 SWI/SNF related, matrix associated, actin dependent regulator of 
chromatin, subfamily a, member 1 

1.4 

SMARCD3 SWI/SNF related, matrix associated, actin dependent regulator of 
chromatin, subfamily d, member 3 

1.5 

SMOX spermine oxidase 1.4 

SMPD3 sphingomyelin phosphodiesterase 3, neutral membrane (neutral 
sphingomyelinase II) 

1.5 

SMURF2 SMAD specific E3 ubiquitin protein ligase 2 1.5 

SMYD3 SET and MYND domain containing 3 1.5 

SNAI2 snail homolog 2 (Drosophila) 1.4 

SNAP25 synaptosomal-associated protein, 25kDa 2.1 

SNCG synuclein, gamma (breast cancer-specific protein 1) 1.4 

SNIP SNAP25-interacting protein 1.5 

SNN stannin 1.8 

SNRPN small nuclear ribonucleoprotein polypeptide N 1.4 

SOCS2 suppressor of cytokine signaling 2 2.9 

SOCS5 suppressor of cytokine signaling 5 1.5 

SOCS6 suppressor of cytokine signaling 6 1.8 

SOHLH2 spermatogenesis and oogenesis specific basic helix-loop-helix 2 1.4 

SORCS2 sortilin-related VPS10 domain containing receptor 2 2.6 

SORL1 sortilin-related receptor, L(DLR class) A repeats-containing 2.7 

SOX11 SRY (sex determining region Y)-box 11 1.6 

SOX4 SRY (sex determining region Y)-box 4 1.8 

SOX9 SRY (sex determining region Y)-box 9 (campomelic dysplasia, 
autosomal sex-reversal) 

1.4 
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SPARC secreted protein, acidic, cysteine-rich (osteonectin) 2.5 

SPARCL1 SPARC-like 1 (mast9, hevin) 1.4 

SPG3A spastic paraplegia 3A (autosomal dominant) 1.5 

SPIN1 spindlin 1 1.5 

SPINK5 serine peptidase inhibitor, Kazal type 5 1.5 

SPOCK1 sparc/osteonectin, cwcv and kazal-like domains proteoglycan 
(testican) 1 

1.7 

SPOCK2 sparc/osteonectin, cwcv and kazal-like domains proteoglycan 
(testican) 2 

1.6 

SPP1 secreted phosphoprotein 1 (osteopontin, bone sialoprotein I, early 
T-lymphocyte activation 1) 

1.7 

SPRY1 sprouty homolog 1, antagonist of FGF signaling (Drosophila) 1.6 

SPTAN1 spectrin, alpha, non-erythrocytic 1 (alpha-fodrin) 1.6 

SRA1 steroid receptor RNA activator 1 1.6 

SRC v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog 
(avian) 

1.4 

SRGAP1 SLIT-ROBO Rho GTPase activating protein 1 1.4 

SRPX sushi-repeat-containing protein, X-linked 1.5 

SRrp35 serine-arginine repressor protein (35 kDa) 1.6 

SST somatostatin 6.0 

SSTR2 somatostatin receptor 2 1.5 

ST6GALNAC3 ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-
acetylgalactosaminide alpha-2,6-sialyltransferase 3 

1.8 

ST8SIA4 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4 1.9 

STAU2 staufen, RNA binding protein, homolog 2 (Drosophila) 1.6 

STC1 stanniocalcin 1 1.7 

STK17A serine/threonine kinase 17a 1.6 

STK32B serine/threonine kinase 32B 2.5 

STMN2 stathmin-like 2 1.8 

STMN4 stathmin-like 4 5.5 

STX12 syntaxin 12 1.7 

STX7 syntaxin 7 1.5 

STX8 syntaxin 8 1.5 

STXBP1 syntaxin binding protein 1 1.6 

SUCNR1 succinate receptor 1 5.0 

SULT1E1 sulfotransferase family 1E, estrogen-preferring, member 1 1.9 

SULT4A1 sulfotransferase family 4A, member 1 1.9 

SYN1 synapsin I 1.5 

SYNGR1 synaptogyrin 1 1.7 

SYNGR3 synaptogyrin 3 3.1 

SYNJ2 synaptojanin 2 1.5 

SYNPO synaptopodin 1.4 

SYNPO2 synaptopodin 2 1.9 

SYT1 synaptotagmin I 1.6 

SYT11 synaptotagmin XI 2.4 

SYT4 synaptotagmin IV 2.2 

SYT5 synaptotagmin V 1.7 

TAGLN transgelin 7.3 

TAGLN3 transgelin 3 5.0 

TBC1D9 TBC1 domain family, member 9 (with GRAM domain) 1.7 

TBX2 T-box 2 1.4 

TBX3 T-box 3 (ulnar mammary syndrome) 1.7 

TCEA2 transcription elongation factor A (SII), 2 1.5 

TCEAL7 transcription elongation factor A (SII)-like 7 1.9 
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TDRD7 tudor domain containing 7 1.6 

TFAP2B transcription factor AP-2 beta (activating enhancer binding protein 2 
beta) 

1.4 

TFDP2 transcription factor Dp-2 (E2F dimerization partner 2) 1.7 

TGFB1 transforming growth factor, beta 1 2.5 

TGFB1I1 transforming growth factor beta 1 induced transcript 1 1.8 

TGFBR1 transforming growth factor, beta receptor I (activin A receptor type 
II-like kinase, 53kDa) 

1.5 

TGIF1 TGFB-induced factor homeobox 1 1.6 

TGM2 transglutaminase 2 (C polypeptide, protein-glutamine-gamma-
glutamyltransferase) 

2.5 

THBS1 thrombospondin 1 2.2 

THBS2 thrombospondin 2 2.3 

TIMP2 TIMP metallopeptidase inhibitor 2 1.7 

TLE3 transducin-like enhancer of split 3 (E(sp1) homolog, Drosophila) 1.5 

TLR4 toll-like receptor 4 1.4 

TM4SF1 transmembrane 4 L six family member 1 1.7 

TM4SF4 transmembrane 4 L six family member 4 1.8 

TM7SF2 transmembrane 7 superfamily member 2 1.8 

TMEFF1 transmembrane protein with EGF-like and two follistatin-like 
domains 1 

1.6 

TMEM130 transmembrane protein 130 1.7 

TMEM2 transmembrane protein 2 1.9 

TMEM35 transmembrane protein 35 2.6 

TMEM45A transmembrane protein 45A 1.6 

TMEM59L transmembrane protein 59-like 1.6 

TMEPAI transmembrane, prostate androgen induced RNA 1.6 

TMSB10 thymosin beta 10 1.9 

TMSB4Y thymosin beta 4, Y-linked 1.6 

TMSL8 thymosin-like 8 3.3 

TNFRSF10B tumor necrosis factor receptor superfamily, member 10b 1.5 

TNFRSF12A tumor necrosis factor receptor superfamily, member 12A 1.9 

TNIK TRAF2 and NCK interacting kinase 1.7 

TNRC4 trinucleotide repeat containing 4 1.8 

TNS3 tensin 3 12.4 

TOM1L2 target of myb1-like 2 (chicken) 1.5 

TOX2 TOX high mobility group box family member 2 2.4 

TP53BP1 tumor protein p53 binding protein 1 1.4 

TP53I3 tumor protein p53 inducible protein 3 1.6 

TP53INP1 tumor protein p53 inducible nuclear protein 1 2.6 

TP53INP2 tumor protein p53 inducible nuclear protein 2 3.0 

TPPP3 tubulin polymerization-promoting protein family member 3 2.1 

TPST1 tyrosylprotein sulfotransferase 1 2.0 

TRAF3IP2 TRAF3 interacting protein 2 1.5 

TRAK1 trafficking protein, kinesin binding 1 1.5 

TRIB2 tribbles homolog 2 (Drosophila) 1.7 

TRIM2 tripartite motif-containing 2 1.4 

TRIM36 tripartite motif-containing 36 1.7 

TRIM5 tripartite motif-containing 5 1.4 

TSC22D3 TSC22 domain family, member 3 1.5 

TSHZ1 teashirt zinc finger homeobox 1 1.6 

TSPAN13 tetraspanin 13 2.2 

TSPAN18 tetraspanin 18 1.4 

TSPAN31 tetraspanin 31 1.6 
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TSPAN5 tetraspanin 5 1.8 

TSPAN7 tetraspanin 7 1.5 

TSPAN8 tetraspanin 8 1.6 

TSPYL2 TSPY-like 2 1.8 

TTC3 tetratricopeptide repeat domain 3 1.5 

TTC8 tetratricopeptide repeat domain 8 1.6 

TUBB2B tubulin, beta 2B 1.7 

TUBB3 tubulin, beta 3 1.8 

TUSC3 tumor suppressor candidate 3 1.4 

UBE2H ubiquitin-conjugating enzyme E2H (UBC8 homolog, yeast) 1.5 

UBE2L6 ubiquitin-conjugating enzyme E2L 6 1.5 

UCHL1 ubiquitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase) 1.5 

UGCG UDP-glucose ceramide glucosyltransferase 1.4 

USP11 ubiquitin specific peptidase 11 1.6 

USP20 ubiquitin specific peptidase 20 1.4 

VAMP2 vesicle-associated membrane protein 2 (synaptobrevin 2) 1.5 

VANGL2 vang-like 2 (van gogh, Drosophila) 1.6 

VASH1 vasohibin 1 1.4 

VAT1 vesicle amine transport protein 1 homolog (T. californica) 2.2 

VCAN versican 1.6 

VEZT vezatin, adherens junctions transmembrane protein 1.5 

VIM vimentin 1.6 

VLDLR very low density lipoprotein receptor 2.1 

VTN vitronectin 1.6 

WARS tryptophanyl-tRNA synthetase 1.7 

WDR44 WD repeat domain 44 1.4 

WSB1 WD repeat and SOCS box-containing 1 1.5 

WSCD2 WSC domain containing 2 1.5 

WWTR1 WW domain containing transcription regulator 1 1.6 

XPNPEP1 X-prolyl aminopeptidase (aminopeptidase P) 1, soluble 1.5 

XYLT1 xylosyltransferase I 2.1 

YAP1 Yes-associated protein 1, 65kDa 1.5 

YIPF5 Yip1 domain family, member 5 1.5 

YPEL1 yippee-like 1 (Drosophila) 1.5 

YPEL5 yippee-like 5 (Drosophila) 2.2 

ZBTB20 zinc finger and BTB domain containing 20 1.8 

ZBTB38 zinc finger and BTB domain containing 38 1.5 

ZDHHC2 zinc finger, DHHC-type containing 2 1.5 

ZFHX3 zinc finger homeobox 3 1.5 

ZFP90 zinc finger protein 90 homolog (mouse) 1.5 

ZFPM1 zinc finger protein, multitype 1 2.0 

ZKSCAN1 zinc finger with KRAB and SCAN domains 1 1.4 

ZNF10 zinc finger protein 10 1.4 

ZNF135 zinc finger protein 135 1.8 

ZNF177 zinc finger protein 177 1.4 

ZNF193 zinc finger protein 193 1.5 

ZNF238 zinc finger protein 238 1.7 

ZNF25 zinc finger protein 25 1.5 

ZNF587 zinc finger protein 587 1.4 

ZNF627 zinc finger protein 627 1.7 

ZNF711 zinc finger protein 711 1.5 

ZYX zyxin 1.4 
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Genes Decreased with Neuronal Differentiation 

Gene Symbol Gene Name Fold 
Change 

AATF apoptosis antagonizing transcription factor -1.6 

ABCB10 ATP-binding cassette, sub-family B (MDR/TAP), member 10 -1.9 

ABCB6 ATP-binding cassette, sub-family B (MDR/TAP), member 6 -1.5 

ABCB9 ATP-binding cassette, sub-family B (MDR/TAP), member 9 -1.4 

ABCE1 ATP-binding cassette, sub-family E (OABP), member 1 -1.5 

ABCF1 ATP-binding cassette, sub-family F (GCN20), member 1 -1.5 

ACE angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 -1.5 

ADAMTS17 ADAM metallopeptidase with thrombospondin type 1 motif, 17 -1.6 

ADAMTS3 ADAM metallopeptidase with thrombospondin type 1 motif, 3 -1.8 

ADAT2 adenosine deaminase, tRNA-specific 2, TAD2 homolog (S. 
cerevisiae) 

-1.4 

ADRA2C adrenergic, alpha-2C-, receptor -2.0 

AEBP2 AE binding protein 2 -1.5 

AGPAT2 1-acylglycerol-3-phosphate O-acyltransferase 2 (lysophosphatidic 
acid acyltransferase, beta) 

-1.6 

AGPAT5 1-acylglycerol-3-phosphate O-acyltransferase 5 (lysophosphatidic 
acid acyltransferase, epsilon) 

-1.4 

AHCTF1 AT hook containing transcription factor 1 -1.5 

AK1 adenylate kinase 1 -1.4 

AK2 adenylate kinase 2 -1.5 

ALDH18A1 aldehyde dehydrogenase 18 family, member A1 -1.4 

AMD1 adenosylmethionine decarboxylase 1 -1.4 

ANLN anillin, actin binding protein -1.7 

ANP32B acidic (leucine-rich) nuclear phosphoprotein 32 family, member B -1.6 

ANP32E acidic (leucine-rich) nuclear phosphoprotein 32 family, member E -1.5 

ARF6 ADP-ribosylation factor 6 -1.4 

ARHGAP10 Rho GTPase activating protein 10 -1.8 

ARL5A ADP-ribosylation factor-like 5A -1.4 

ARS2 arsenate resistance protein 2 -1.5 

ASAM adipocyte-specific adhesion molecule -1.7 

ASPH aspartate beta-hydroxylase -1.5 

ASPM asp (abnormal spindle) homolog, microcephaly associated 
(Drosophila) 

-1.7 

ASXL1 additional sex combs like 1 (Drosophila) -1.6 

ATAD2 ATPase family, AAA domain containing 2 -1.8 

ATAD3A ATPase family, AAA domain containing 3A -1.6 

ATAD5 ATPase family, AAA domain containing 5 -1.6 

ATF1 activating transcription factor 1 -1.5 

ATG3 ATG3 autophagy related 3 homolog (S. cerevisiae) -1.6 

ATIC 5-aminoimidazole-4-carboxamide ribonucleotide 
formyltransferase/IMP cyclohydrolase 

-1.7 

ATP5D ATP synthase, H+ transporting, mitochondrial F1 complex, delta 
subunit 

-1.4 

ATP5G1 ATP synthase, H+ transporting, mitochondrial F0 complex, subunit 
C1 (subunit 9) 

-1.5 

ATPBD4 ATP binding domain 4 -1.8 

ATR ataxia telangiectasia and Rad3 related -1.5 

ATXN7 ataxin 7 -1.4 

AURKA aurora kinase A -1.8 

AURKAIP1 aurora kinase A interacting protein 1 -1.5 

AURKB aurora kinase B -1.9 
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B3GNT2 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 2 -1.5 

BAALC brain and acute leukemia, cytoplasmic -1.6 

BAG3 BCL2-associated athanogene 3 -1.5 

BARD1 BRCA1 associated RING domain 1 -1.7 

BAZ1A bromodomain adjacent to zinc finger domain, 1A -1.5 

BCCIP BRCA2 and CDKN1A interacting protein -1.5 

BCL11A B-cell CLL/lymphoma 11A (zinc finger protein) -1.6 

BDH1 3-hydroxybutyrate dehydrogenase, type 1 -1.5 

BIRC5 baculoviral IAP repeat-containing 5 (survivin) -1.7 

BLM Bloom syndrome -1.4 

BRCA1 breast cancer 1, early onset -1.6 

BRCA2 breast cancer 2, early onset -1.5 

BRMS1 breast cancer metastasis suppressor 1 -1.5 

BRP44L brain protein 44-like -1.5 

BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta 
(yeast) 

-1.6 

BXDC2 brix domain containing 2 -1.5 

BZW2 basic leucine zipper and W2 domains 2 -1.5 

C10orf119 chromosome 10 open reading frame 119 -1.5 

C10orf2 chromosome 10 open reading frame 2 -1.4 

C13orf34 chromosome 13 open reading frame 34 -1.6 

C17orf79 chromosome 17 open reading frame 79 -1.5 

C17orf81 chromosome 17 open reading frame 81 -1.8 

C19orf48 chromosome 19 open reading frame 48 -1.5 

C1orf107 chromosome 1 open reading frame 107 -1.4 

C1orf43 chromosome 1 open reading frame 43 -1.9 

C1QBP complement component 1, q subcomponent binding protein -1.7 

C20orf20 chromosome 20 open reading frame 20 -1.6 

C21orf45 chromosome 21 open reading frame 45 -1.6 

C6orf153 chromosome 6 open reading frame 153 -1.4 

C6orf159 chromosome 6 open reading frame 159 -1.6 

C6orf173 chromosome 6 open reading frame 173 -1.8 

C6orf66 chromosome 6 open reading frame 66 -1.7 

C7orf23 chromosome 7 open reading frame 23 -1.5 

CABC1 chaperone, ABC1 activity of bc1 complex homolog (S. pombe) -1.6 

CABLES1 Cdk5 and Abl enzyme substrate 1 -1.5 

CACNA2D2 calcium channel, voltage-dependent, alpha 2/delta subunit 2 -1.8 

CACNG4 calcium channel, voltage-dependent, gamma subunit 4 -1.6 

CACYBP calcyclin binding protein -1.5 

CAD carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, 
and dihydroorotase 

-1.6 

CALML4 calmodulin-like 4 -1.6 

CAMK4 calcium/calmodulin-dependent protein kinase IV -1.5 

CAMKK1 calcium/calmodulin-dependent protein kinase kinase 1, alpha -1.5 

CARD9 caspase recruitment domain family, member 9 -1.6 

CASC5 cancer susceptibility candidate 5 -1.5 

CASP3 caspase 3, apoptosis-related cysteine peptidase -1.7 

CASP7 caspase 7, apoptosis-related cysteine peptidase -1.5 

CBLB Cas-Br-M (murine) ecotropic retroviral transforming sequence b -1.4 

CBX3 chromobox homolog 3 (HP1 gamma homolog, Drosophila) -1.4 

CBX5 chromobox homolog 5 (HP1 alpha homolog, Drosophila) -1.4 

CCDC59 coiled-coil domain containing 59 -1.5 

CCDC85B coiled-coil domain containing 85B -1.5 

CCNA2 cyclin A2 -1.5 
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CCNB1 cyclin B1 -1.7 

CCNB2 cyclin B2 -1.6 

CCNC cyclin C -1.6 

CCNE2 cyclin E2 -1.7 

CCT6A chaperonin containing TCP1, subunit 6A (zeta 1) -1.5 

CD320 CD320 molecule -1.4 

CD3EAP CD3e molecule, epsilon associated protein -1.7 

CDC14A CDC14 cell division cycle 14 homolog A (S. cerevisiae) -1.5 

CDC2 cell division cycle 2, G1 to S and G2 to M -1.5 

CDC20 cell division cycle 20 homolog (S. cerevisiae) -1.9 

CDC25A cell division cycle 25 homolog A (S. pombe) -1.6 

CDC45L CDC45 cell division cycle 45-like (S. cerevisiae) -1.5 

CDC6 cell division cycle 6 homolog (S. cerevisiae) -1.7 

CDC7 cell division cycle 7 homolog (S. cerevisiae) -1.4 

CDCA2 cell division cycle associated 2 -1.5 

CDCA3 cell division cycle associated 3 -1.6 

CDCA4 cell division cycle associated 4 -1.5 

CDCA7 cell division cycle associated 7 -1.8 

CDCA7L cell division cycle associated 7-like -2.3 

CDCA8 cell division cycle associated 8 -1.5 

CDH2 cadherin 2, type 1, N-cadherin (neuronal) -1.5 

CDK2 cyclin-dependent kinase 2 -1.4 

CDKAL1 CDK5 regulatory subunit associated protein 1-like 1 -1.6 

CDKN3 cyclin-dependent kinase inhibitor 3 (CDK2-associated dual 
specificity phosphatase) 

-1.7 

CDON Cdon homolog (mouse) -1.8 

CDT1 chromatin licensing and DNA replication factor 1 -1.6 

CENPA centromere protein A -1.6 

CENPB centromere protein B, 80kDa -1.4 

CENPE centromere protein E, 312kDa -1.6 

CENPF centromere protein F, 350/400ka (mitosin) -1.5 

CENPK centromere protein K -1.8 

CENPM centromere protein M -1.9 

CENPN centromere protein N -1.6 

CEP55 centrosomal protein 55kDa -1.5 

CHAF1A chromatin assembly factor 1, subunit A (p150) -1.4 

CHAF1B chromatin assembly factor 1, subunit B (p60) -1.5 

CHCHD3 coiled-coil-helix-coiled-coil-helix domain containing 3 -1.6 

CHCHD4 coiled-coil-helix-coiled-coil-helix domain containing 4 -1.4 

CHD1L chromodomain helicase DNA binding protein 1-like -1.4 

CHEK1 CHK1 checkpoint homolog (S. pombe) -1.4 

CHEK2 CHK2 checkpoint homolog (S. pombe) -1.6 

CHERP calcium homeostasis endoplasmic reticulum protein -1.4 

CHORDC1 cysteine and histidine-rich domain (CHORD)-containing 1 -1.6 

CHPT1 choline phosphotransferase 1 -1.5 

CHRAC1 chromatin accessibility complex 1 -1.5 

CHTF18 CTF18, chromosome transmission fidelity factor 18 homolog (S. 
cerevisiae) 

-1.6 

CINP cyclin-dependent kinase 2-interacting protein -1.5 

CKS2 CDC28 protein kinase regulatory subunit 2 -1.7 

CLN6 ceroid-lipofuscinosis, neuronal 6, late infantile, variant -1.8 

CMPK1 cytidine monophosphate (UMP-CMP) kinase 1, cytosolic -1.5 

CMTM7 CKLF-like MARVEL transmembrane domain containing 7 -1.8 

CNBP CCHC-type zinc finger, nucleic acid binding protein -1.5 
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CNDP2 CNDP dipeptidase 2 (metallopeptidase M20 family) -1.4 

CNTNAP2 contactin associated protein-like 2 -1.4 

COASY Coenzyme A synthase -1.6 

COQ2 coenzyme Q2 homolog, prenyltransferase (yeast) -1.5 

COQ3 coenzyme Q3 homolog, methyltransferase (S. cerevisiae) -1.6 

CPLX2 complexin 2 -1.7 

CPNE2 copine II -1.4 

CPNE8 copine VIII -1.8 

CPOX coproporphyrinogen oxidase -1.5 

CREB3L2 cAMP responsive element binding protein 3-like 2 -1.5 

CRIP1 cysteine-rich protein 1 (intestinal) -2.5 

CRTAP cartilage associated protein -1.5 

CRY1 cryptochrome 1 (photolyase-like) -1.4 

CSE1L CSE1 chromosome segregation 1-like (yeast) -1.5 

CTDSPL CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) 
small phosphatase-like 

-1.5 

CTNNAL1 catenin (cadherin-associated protein), alpha-like 1 -2.0 

CTNNBL1 catenin, beta like 1 -1.5 

CTPS CTP synthase -1.5 

CWF19L2 CWF19-like 2, cell cycle control (S. pombe) -1.4 

CYC1 cytochrome c-1 -1.6 

CYGB cytoglobin -2.1 

DARS aspartyl-tRNA synthetase -1.4 

DAXX death-associated protein 6 -1.4 

DAZAP1 DAZ associated protein 1 -1.5 

DBF4 DBF4 homolog (S. cerevisiae) -1.5 

DBR1 debranching enzyme homolog 1 (S. cerevisiae) -1.5 

DDN dendrin -1.6 

DDT D-dopachrome tautomerase -1.5 

DDX11 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 (CHL1-like 
helicase homolog, S. cerevisiae) 

-1.7 

DDX18 DEAD (Asp-Glu-Ala-Asp) box polypeptide 18 -1.5 

DDX21 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 -1.5 

DDX46 DEAD (Asp-Glu-Ala-Asp) box polypeptide 46 -1.6 

DEK DEK oncogene (DNA binding) -1.6 

DEPDC1 DEP domain containing 1 -1.5 

DEPDC1B DEP domain containing 1B -1.5 

DIAPH3 diaphanous homolog 3 (Drosophila) -1.4 

DKC1 dyskeratosis congenita 1, dyskerin -1.5 

DLEU1 deleted in lymphocytic leukemia, 1 -1.4 

DLG7 discs, large homolog 7 (Drosophila) -1.6 

DLK1 delta-like 1 homolog (Drosophila) -2.2 

DNA2 DNA replication helicase 2 homolog (yeast) -1.5 

DNPEP aspartyl aminopeptidase -1.5 

DOK4 docking protein 4 -1.9 

DPP9 dipeptidyl-peptidase 9 -1.5 

DRD2 dopamine receptor D2 -1.5 

DSCC1 defective in sister chromatid cohesion 1 homolog (S. cerevisiae) -1.7 

DSN1 DSN1, MIND kinetochore complex component, homolog (S. 
cerevisiae) 

-1.4 

DTL denticleless homolog (Drosophila) -1.5 

DTYMK deoxythymidylate kinase (thymidylate kinase) -1.7 

DUSP7 dual specificity phosphatase 7 -1.5 

DUT deoxyuridine triphosphatase -1.5 
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E2F1 E2F transcription factor 1 -1.5 

E2F2 E2F transcription factor 2 -1.4 

E2F8 E2F transcription factor 8 -1.7 

EBF3 early B-cell factor 3 -2.5 

EBNA1BP2 EBNA1 binding protein 2 -1.6 

ECE2 endothelin converting enzyme 2 -1.5 

ECSIT ECSIT homolog (Drosophila) -1.4 

ECT2 epithelial cell transforming sequence 2 oncogene -1.6 

EDIL3 EGF-like repeats and discoidin I-like domains 3 -2.1 

EED embryonic ectoderm development -1.4 

EEF1E1 eukaryotic translation elongation factor 1 epsilon 1 -1.5 

EFNB1 ephrin-B1 -1.4 

EGFR epidermal growth factor receptor (erythroblastic leukemia viral (v-
erb-b) oncogene homolog, avian) 

-1.4 

EI24 etoposide induced 2.4 mRNA -1.4 

EIF2B5 eukaryotic translation initiation factor 2B, subunit 5 epsilon, 82kDa -1.4 

EIF2S1 eukaryotic translation initiation factor 2, subunit 1 alpha, 35kDa -1.5 

EIF3B eukaryotic translation initiation factor 3, subunit B -1.5 

EIF3J eukaryotic translation initiation factor 3, subunit J -1.4 

EIF3M eukaryotic translation initiation factor 3, subunit M -1.6 

EIF4EBP1 eukaryotic translation initiation factor 4E binding protein 1 -1.4 

EIF5B eukaryotic translation initiation factor 5B -1.5 

ELMO1 engulfment and cell motility 1 -1.4 

EMG1 EMG1 nucleolar protein homolog (S. cerevisiae) -1.7 

EMILIN1 elastin microfibril interfacer 1 -1.7 

ENDOD1 endonuclease domain containing 1 -1.5 

ENDOG endonuclease G -2.0 

ENOSF1 enolase superfamily member 1 -1.5 

ERCC6L excision repair cross-complementing rodent repair deficiency, 
complementation group 6-like 

-1.5 

ERLIN1 ER lipid raft associated 1 -1.6 

ERO1L ERO1-like (S. cerevisiae) -1.4 

ESCO2 establishment of cohesion 1 homolog 2 (S. cerevisiae) -1.4 

ESF1 ESF1, nucleolar pre-rRNA processing protein, homolog (S. 
cerevisiae) 

-1.6 

ESPL1 extra spindle pole bodies homolog 1 (S. cerevisiae) -1.4 

ETF1 eukaryotic translation termination factor 1 -1.4 

ETFA electron-transfer-flavoprotein, alpha polypeptide (glutaric aciduria 
II) 

-1.5 

ETFB electron-transfer-flavoprotein, beta polypeptide -1.5 

EXO1 exonuclease 1 -1.8 

EXOSC2 exosome component 2 -1.6 

EXOSC3 exosome component 3 -1.4 

EXOSC5 exosome component 5 -1.7 

EXOSC8 exosome component 8 -1.6 

EXOSC9 exosome component 9 -1.5 

EZH2 enhancer of zeste homolog 2 (Drosophila) -1.4 

FAIM Fas apoptotic inhibitory molecule -1.7 

FAM105A family with sequence similarity 105, member A -1.5 

FAM120A family with sequence similarity 120A -1.5 

FAM26B family with sequence similarity 26, member B -1.4 

FAM82C family with sequence similarity 82, member C -1.5 

FAM83D family with sequence similarity 83, member D -1.8 

FANCG Fanconi anemia, complementation group G -1.4 
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FANCI Fanconi anemia, complementation group I -1.6 

FBL fibrillarin -1.7 

FBXO5 F-box protein 5 -1.6 

FDX1 ferredoxin 1 -1.4 

FEN1 flap structure-specific endonuclease 1 -1.7 

FGFR1OP2 FGFR1 oncogene partner 2 -1.4 

FHL2 four and a half LIM domains 2 -1.4 

FIGNL1 fidgetin-like 1 -1.6 

FKBP4 FK506 binding protein 4, 59kDa -1.5 

FKBP5 FK506 binding protein 5 -1.5 

FLJ45983 FLJ45983 protein -1.7 

FOXM1 forkhead box M1 -1.9 

FOXP4 forkhead box P4 -1.5 

FRAS1 Fraser syndrome 1 -1.7 

FRMD3 FERM domain containing 3 -1.7 

FRMD4B FERM domain containing 4B -1.5 

FTSJ2 FtsJ homolog 2 (E. coli) -1.5 

FUBP3 far upstream element (FUSE) binding protein 3 -1.5 

FUSIP1 FUS interacting protein (serine/arginine-rich) 1 -1.4 

FUT9 fucosyltransferase 9 (alpha (1,3) fucosyltransferase) -1.5 

GABRA1 gamma-aminobutyric acid (GABA) A receptor, alpha 1 -1.4 

GABRA4 gamma-aminobutyric acid (GABA) A receptor, alpha 4 -1.5 

GABRB1 gamma-aminobutyric acid (GABA) A receptor, beta 1 -1.5 

GALM galactose mutarotase (aldose 1-epimerase) -1.5 

GALNAC4S-
6ST 

B cell RAG associated protein -2.5 

GALNT14 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-
acetylgalactosaminyltransferase 14 (GalNAc-T14) 

-2.3 

GART phosphoribosylglycinamide formyltransferase, 
phosphoribosylglycinamide synthetase, 
phosphoribosylaminoimidazole synthetase 

-1.6 

GATA3 GATA binding protein 3 -5.3 

GEMIN5 gem (nuclear organelle) associated protein 5 -1.7 

GEMIN6 gem (nuclear organelle) associated protein 6 -1.4 

GINS1 GINS complex subunit 1 (Psf1 homolog) -1.9 

GLE1 GLE1 RNA export mediator homolog (yeast) -1.5 

GLO1 glyoxalase I -1.8 

GLRX2 glutaredoxin 2 -1.5 

GLRX5 glutaredoxin 5 -1.6 

GMNN geminin, DNA replication inhibitor -1.9 

GNB4 guanine nucleotide binding protein (G protein), beta polypeptide 4 -1.7 

GNL2 guanine nucleotide binding protein-like 2 (nucleolar) -1.5 

GPAM glycerol-3-phosphate acyltransferase, mitochondrial -1.5 

GPATCH4 G patch domain containing 4 -1.8 

GPBAR1 G protein-coupled bile acid receptor 1 -1.5 

GPD2 glycerol-3-phosphate dehydrogenase 2 (mitochondrial) -1.5 

GPR107 G protein-coupled receptor 107 -1.4 

GPR125 G protein-coupled receptor 125 -1.4 

GRIA4 glutamate receptor, ionotrophic, AMPA 4 -2.1 

GRID1 glutamate receptor, ionotropic, delta 1 -1.8 

GRM5 glutamate receptor, metabotropic 5 -1.5 

GSPT1 G1 to S phase transition 1 -1.4 

GTF3C4 general transcription factor IIIC, polypeptide 4, 90kDa -1.5 

GTPBP4 GTP binding protein 4 -1.4 
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GTSE1 G-2 and S-phase expressed 1 -1.5 

GUCY1B3 guanylate cyclase 1, soluble, beta 3 -1.4 

GULP1 GULP, engulfment adaptor PTB domain containing 1 -1.5 

GYG1 glycogenin 1 -1.5 

H2AFX H2A histone family, member X -1.7 

HAND1 heart and neural crest derivatives expressed 1 -1.7 

HAT1 histone acetyltransferase 1 -1.6 

HDAC1 histone deacetylase 1 -1.6 

HDAC9 histone deacetylase 9 -1.9 

HDGF hepatoma-derived growth factor (high-mobility group protein 1-like) -1.4 

HELLS helicase, lymphoid-specific -1.7 

HES1 hairy and enhancer of split 1, (Drosophila) -1.4 

HHEX hematopoietically expressed homeobox -1.5 

HK2 hexokinase 2 -2.0 

HMGN3 high mobility group nucleosomal binding domain 3 -1.5 

HMMR hyaluronan-mediated motility receptor (RHAMM) -1.7 

HNRPD heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA 
binding protein 1, 37kDa) 

-1.5 

HRSP12 heat-responsive protein 12 -1.7 

HS3ST5 heparan sulfate (glucosamine) 3-O-sulfotransferase 5 -1.9 

HS6ST2 heparan sulfate 6-O-sulfotransferase 2 -1.6 

HSCB HscB iron-sulfur cluster co-chaperone homolog (E. coli) -1.5 

HSPA14 heat shock 70kDa protein 14 -1.6 

HSPA9 heat shock 70kDa protein 9 (mortalin) -1.4 

HSPC111 hypothetical protein HSPC111 -1.7 

HSPE1 heat shock 10kDa protein 1 (chaperonin 10) -1.5 

ICAM3 intercellular adhesion molecule 3 -1.5 

ID2 inhibitor of DNA binding 2, dominant negative helix-loop-helix 
protein 

-1.4 

ID3 inhibitor of DNA binding 3, dominant negative helix-loop-helix 
protein 

-1.4 

IFRD2 interferon-related developmental regulator 2 -1.6 

IGFBP2 insulin-like growth factor binding protein 2, 36kDa -1.8 

IGFBP4 insulin-like growth factor binding protein 4 -3.0 

IL11RA interleukin 11 receptor, alpha -1.8 

ILKAP integrin-linked kinase-associated serine/threonine phosphatase 2C -1.5 

IMPDH1 IMP (inosine monophosphate) dehydrogenase 1 -2.4 

IMPDH2 IMP (inosine monophosphate) dehydrogenase 2 -1.5 

INF2 inverted formin, FH2 and WH2 domain containing -1.6 

INSM2 insulinoma-associated 2 -1.9 

IPO4 importin 4 -1.5 

IRAK1 interleukin-1 receptor-associated kinase 1 -1.5 

ISG20L1 interferon stimulated exonuclease gene 20kDa-like 1 -1.6 

ITGA9 integrin, alpha 9 -2.4 

ITGAV integrin, alpha V (vitronectin receptor, alpha polypeptide, antigen 
CD51) 

-1.4 

ITGB1BP1 integrin beta 1 binding protein 1 -1.4 

ITGB3BP integrin beta 3 binding protein (beta3-endonexin) -1.7 

ITGB5 integrin, beta 5 -1.6 

ITM2C integral membrane protein 2C -1.4 

ITPA inosine triphosphatase (nucleoside triphosphate pyrophosphatase) -1.4 

JOSD3 Josephin domain containing 3 -1.4 

JUNDM2 Jun dimerization protein 2 -1.5 

KANK2 KN motif and ankyrin repeat domains 2 -1.4 
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KAZALD1 Kazal-type serine peptidase inhibitor domain 1 -1.4 

KCNG1 potassium voltage-gated channel, subfamily G, member 1 -1.5 

KCNJ14 potassium inwardly-rectifying channel, subfamily J, member 14 -1.5 

KCNK3 potassium channel, subfamily K, member 3 -1.5 

KCTD3 potassium channel tetramerisation domain containing 3 -1.5 

KHDRBS3 KH domain containing, RNA binding, signal transduction associated 
3 

-1.6 

KHSRP KH-type splicing regulatory protein -1.4 

KIAA0020 KIAA0020 -1.5 

KIAA0101 KIAA0101 -1.7 

KIAA0586 KIAA0586 -1.4 

KIF11 kinesin family member 11 -1.8 

KIF14 kinesin family member 14 -1.8 

KIF15 kinesin family member 15 -1.4 

KIF20A kinesin family member 20A -1.4 

KIF22 kinesin family member 22 -1.5 

KIF23 kinesin family member 23 -1.6 

KIF2C kinesin family member 2C -1.4 

KIF4A kinesin family member 4A -1.5 

KLF15 Kruppel-like factor 15 -1.9 

KPNB1 karyopherin (importin) beta 1 -1.5 

KRIT1 KRIT1, ankyrin repeat containing -1.5 

KRR1 KRR1, small subunit (SSU) processome component, homolog 
(yeast) 

-1.4 

LARP7 La ribonucleoprotein domain family, member 7 -1.5 

LBR lamin B receptor -1.5 

LDB2 LIM domain binding 2 -1.9 

LGR5 leucine-rich repeat-containing G protein-coupled receptor 5 -2.0 

LHX9 LIM homeobox 9 -2.3 

LIMD1 LIM domains containing 1 -1.8 

LMNA lamin A/C -1.6 

LMNB1 lamin B1 -1.6 

LMNB2 lamin B2 -1.4 

LMO4 LIM domain only 4 -1.7 

LPGAT1 lysophosphatidylglycerol acyltransferase 1 -1.5 

LPHN2 latrophilin 2 -1.5 

LPPR4 plasticity related gene 1 -3.7 

LRRC4C leucine rich repeat containing 4C -1.5 

LSM2 LSM2 homolog, U6 small nuclear RNA associated (S. cerevisiae) -1.5 

LSM3 LSM3 homolog, U6 small nuclear RNA associated (S. cerevisiae) -1.5 

LSM5 LSM5 homolog, U6 small nuclear RNA associated (S. cerevisiae) -1.6 

LSM8 LSM8 homolog, U6 small nuclear RNA associated (S. cerevisiae) -1.4 

LUM lumican -2.3 

LYAR Ly1 antibody reactive homolog (mouse) -1.7 

LYPLA1 lysophospholipase I -1.5 

MAD2L1 MAD2 mitotic arrest deficient-like 1 (yeast) -1.6 

MAGOH mago-nashi homolog, proliferation-associated (Drosophila) -1.5 

MAGOHB mago-nashi homolog B (Drosophila) -1.5 

MAP3K3 mitogen-activated protein kinase kinase kinase 3 -1.5 

MAP3K4 mitogen-activated protein kinase kinase kinase 4 -1.5 

MAP7 microtubule-associated protein 7 -1.6 

MASTL microtubule associated serine/threonine kinase-like -1.4 

MAT2A methionine adenosyltransferase II, alpha -1.4 

MBD2 methyl-CpG binding domain protein 2 -1.8 
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MBNL1 muscleblind-like (Drosophila) -1.5 

MCM10 minichromosome maintenance complex component 10 -1.8 

MCM2 minichromosome maintenance complex component 2 -1.6 

MCM3 minichromosome maintenance complex component 3 -1.7 

MCM4 minichromosome maintenance complex component 4 -1.4 

MCM5 minichromosome maintenance complex component 5 -1.6 

MCM6 minichromosome maintenance complex component 6 -1.6 

MCM7 minichromosome maintenance complex component 7 -1.6 

MCM8 minichromosome maintenance complex component 8 -1.7 

MDGA1 MAM domain containing glycosylphosphatidylinositol anchor 1 -1.5 

MEG3 maternally expressed 3 -1.7 

MELK maternal embryonic leucine zipper kinase -1.7 

MEPCE methylphosphate capping enzyme -1.5 

METTL7A methyltransferase like 7A -1.5 

MFHAS1 malignant fibrous histiocytoma amplified sequence 1 -1.4 

MGAT5B mannosyl (alpha-1,6-)-glycoprotein beta-1,6-N-acetyl-
glucosaminyltransferase, isozyme B 

-1.8 

MID1 midline 1 (Opitz/BBB syndrome) -1.6 

MIHG1 microRNA host gene (non-protein coding) 1 -1.5 

MINA MYC induced nuclear antigen -1.5 

MITF microphthalmia-associated transcription factor -1.5 

MKI67 antigen identified by monoclonal antibody Ki-67 -1.6 

MLF1IP MLF1 interacting protein -1.5 

MND1 meiotic nuclear divisions 1 homolog (S. cerevisiae) -1.5 

MPHOSPH1 M-phase phosphoprotein 1 -1.7 

MPHOSPH9 M-phase phosphoprotein 9 -1.5 

MRE11A MRE11 meiotic recombination 11 homolog A (S. cerevisiae) -1.6 

MRPL11 mitochondrial ribosomal protein L11 -1.8 

MRPL12 mitochondrial ribosomal protein L12 -1.7 

MRPL13 mitochondrial ribosomal protein L13 -1.6 

MRPL23 mitochondrial ribosomal protein L23 -1.6 

MRPL39 mitochondrial ribosomal protein L39 -1.5 

MRPL43 mitochondrial ribosomal protein L43 -1.4 

MRPS12 mitochondrial ribosomal protein S12 -1.4 

MRPS18B mitochondrial ribosomal protein S18B -1.6 

MRPS24 mitochondrial ribosomal protein S24 -1.5 

MRPS7 mitochondrial ribosomal protein S7 -1.4 

MSX2 msh homeobox 2 -1.5 

MT2A metallothionein 2A -1.8 

MTDH metadherin -1.5 

MTHFD1 methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1, 
methenyltetrahydrofolate cyclohydrolase, formyltetrahydrofolate 
synthetase 

-1.8 

MTHFD1L methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-
like 

-1.6 

MTHFD2 methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, 
methenyltetrahydrofolate cyclohydrolase 

-1.4 

MTHFS 5,10-methenyltetrahydrofolate synthetase (5-formyltetrahydrofolate 
cyclo-ligase) 

-1.5 

MTIF2 mitochondrial translational initiation factor 2 -1.4 

MTR 5-methyltetrahydrofolate-homocysteine methyltransferase -1.5 

MYBBP1A MYB binding protein (P160) 1a -1.5 

MYBL2 v-myb myeloblastosis viral oncogene homolog (avian)-like 2 -1.6 

MYCBP c-myc binding protein -1.4 
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NAF1 nuclear assembly factor 1 homolog (S. cerevisiae) -1.5 

NASP nuclear autoantigenic sperm protein (histone-binding) -1.4 

NAT13 N-acetyltransferase 13 -1.5 

NBN nibrin -1.4 

NCAPD2 non-SMC condensin I complex, subunit D2 -1.8 

NCAPD3 non-SMC condensin II complex, subunit D3 -1.6 

NCAPG non-SMC condensin I complex, subunit G -1.8 

NCAPG2 non-SMC condensin II complex, subunit G2 -1.5 

NCAPH non-SMC condensin I complex, subunit H -1.6 

NCL nucleolin -1.5 

NDC80 NDC80 homolog, kinetochore complex component (S. cerevisiae) -1.5 

NDUFV1 NADH dehydrogenase (ubiquinone) flavoprotein 1, 51kDa -1.4 

NEFH neurofilament, heavy polypeptide 200kDa -3.6 

NEIL3 nei endonuclease VIII-like 3 (E. coli) -1.6 

NEK2 NIMA (never in mitosis gene a)-related kinase 2 -1.6 

NELL1 NEL-like 1 (chicken) -1.9 

NF2 neurofibromin 2 (merlin) -1.4 

NFATC3 nuclear factor of activated T-cells, cytoplasmic, calcineurin-
dependent 3 

-1.4 

NFATC4 nuclear factor of activated T-cells, cytoplasmic, calcineurin-
dependent 4 

-1.5 

NHS Nance-Horan syndrome (congenital cataracts and dental 
anomalies) 

-1.4 

NID2 nidogen 2 (osteonidogen) -2.2 

NIP7 nuclear import 7 homolog (S. cerevisiae) -1.6 

NLE1 notchless homolog 1 (Drosophila) -1.6 

NMB neuromedin B -1.4 

NMT1 N-myristoyltransferase 1 -1.4 

NOC2L nucleolar complex associated 2 homolog (S. cerevisiae) -1.4 

NOC3L nucleolar complex associated 3 homolog (S. cerevisiae) -1.8 

NOL1 nucleolar protein 1, 120kDa -1.5 

NOL14 nucleolar protein 14 -1.5 

NOL5A nucleolar protein 5A (56kDa with KKE/D repeat) -1.5 

NOL7 nucleolar protein 7, 27kDa -1.4 

NOL8 nucleolar protein 8 -1.4 

NOLA1 nucleolar protein family A, member 1 (H/ACA small nucleolar 
RNPs) 

-1.4 

NOLC1 nucleolar and coiled-body phosphoprotein 1 -1.4 

NOX3 NADPH oxidase 3 -1.4 

NP nucleoside phosphorylase -2.7 

NPM1 nucleophosmin (nucleolar phosphoprotein B23, numatrin) -1.9 

NPM3 nucleophosmin/nucleoplasmin, 3 -1.7 

NR2C2AP nuclear receptor 2C2-associated protein -1.4 

NR2F2 nuclear receptor subfamily 2, group F, member 2 -1.6 

NRCAM neuronal cell adhesion molecule -1.8 

NRM nurim (nuclear envelope membrane protein) -1.5 

NRP1 neuropilin 1 -1.8 

NSBP1 nucleosomal binding protein 1 -1.8 

NSMAF neutral sphingomyelinase (N-SMase) activation associated factor -1.5 

NTHL1 nth endonuclease III-like 1 (E. coli) -1.6 

NTRK1 neurotrophic tyrosine kinase, receptor, type 1 -1.7 

NUDT1 nudix (nucleoside diphosphate linked moiety X)-type motif 1 -1.5 

NUF2 NUF2, NDC80 kinetochore complex component, homolog (S. 
cerevisiae) 

-1.8 
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NUP107 nucleoporin 107kDa -1.4 

NUP153 nucleoporin 153kDa -1.5 

NUP155 nucleoporin 155kDa -1.5 

NUP205 nucleoporin 205kDa -1.5 

NUP37 nucleoporin 37kDa -1.7 

NUP43 nucleoporin 43kDa -1.7 

NUP85 nucleoporin 85kDa -1.5 

NUP88 nucleoporin 88kDa -1.5 

NUSAP1 nucleolar and spindle associated protein 1 -1.6 

OAF OAF homolog (Drosophila) -1.8 

OAS3 2'-5'-oligoadenylate synthetase 3, 100kDa -1.5 

ODC1 ornithine decarboxylase 1 -1.4 

OIP5 Opa interacting protein 5 -1.7 

OLFM1 olfactomedin 1 -3.4 

OPRM1 opioid receptor, mu 1 -1.5 

OPRS1 opioid receptor, sigma 1 -1.6 

ORAI1 ORAI calcium release-activated calcium modulator 1 -1.6 

ORC6L origin recognition complex, subunit 6 like (yeast) -1.5 

P2RY11 purinergic receptor P2Y, G-protein coupled, 11 -1.5 

PA2G4 proliferation-associated 2G4, 38kDa -1.6 

PAICS phosphoribosylaminoimidazole carboxylase, 
phosphoribosylaminoimidazole succinocarboxamide synthetase 

-1.4 

PAK1IP1 PAK1 interacting protein 1 -1.5 

PAP2D phosphatidic acid phosphatase type 2 -1.8 

PAPD5 PAP associated domain containing 5 -1.5 

PARVA parvin, alpha -1.5 

PAXIP1 PAX interacting (with transcription-activation domain) protein 1 -2.0 

PBK PDZ binding kinase -1.8 

PC pyruvate carboxylase -1.5 

PCDH9 protocadherin 9 -1.9 

PCNA proliferating cell nuclear antigen -1.5 

PCOLCE procollagen C-endopeptidase enhancer -1.7 

PCOLCE2 procollagen C-endopeptidase enhancer 2 -1.9 

PDCD2 programmed cell death 2 -1.6 

PDE2A phosphodiesterase 2A, cGMP-stimulated -1.9 

PDE4D phosphodiesterase 4D, cAMP-specific (phosphodiesterase E3 
dunce homolog, Drosophila) 

-1.4 

PDE9A phosphodiesterase 9A -1.5 

PDGFRB platelet-derived growth factor receptor, beta polypeptide -1.5 

PEG10 paternally expressed 10 -1.6 

PER2 period homolog 2 (Drosophila) -1.4 

PES1 pescadillo homolog 1, containing BRCT domain (zebrafish) -1.5 

PEX3 peroxisomal biogenesis factor 3 -1.4 

PFAS phosphoribosylformylglycinamidine synthase (FGAR 
amidotransferase) 

-1.6 

PGM2 phosphoglucomutase 2 -1.6 

PHB prohibitin -1.5 

PHF17 PHD finger protein 17 -1.5 

PHF5A PHD finger protein 5A -1.5 

PHIP pleckstrin homology domain interacting protein -1.5 

PIF1 PIF1 5'-to-3' DNA helicase homolog (S. cerevisiae) -1.4 

PINX1 PIN2-interacting protein 1 -1.5 

PLK1 polo-like kinase 1 (Drosophila) -1.6 

PLK4 polo-like kinase 4 (Drosophila) -1.5 
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PLXND1 plexin D1 -1.9 

PMM2 phosphomannomutase 2 -1.5 

PMP22 peripheral myelin protein 22 -1.5 

PMPCA peptidase (mitochondrial processing) alpha -1.5 

PNPT1 polyribonucleotide nucleotidyltransferase 1 -1.5 

POLA1 polymerase (DNA directed), alpha 1 -1.6 

POLA2 polymerase (DNA directed), alpha 2 (70kD subunit) -1.6 

POLD2 polymerase (DNA directed), delta 2, regulatory subunit 50kDa -1.5 

POLD3 polymerase (DNA-directed), delta 3, accessory subunit -1.5 

POLE2 polymerase (DNA directed), epsilon 2 (p59 subunit) -1.8 

POLE3 polymerase (DNA directed), epsilon 3 (p17 subunit) -1.8 

POLQ polymerase (DNA directed), theta -1.6 

POLR2C polymerase (RNA) II (DNA directed) polypeptide C, 33kDa -1.5 

POLR2H polymerase (RNA) II (DNA directed) polypeptide H -1.5 

POLR3C polymerase (RNA) III (DNA directed) polypeptide C (62kD) -1.4 

POLR3G polymerase (RNA) III (DNA directed) polypeptide G (32kD) -1.6 

POLR3K polymerase (RNA) III (DNA directed) polypeptide K, 12.3 kDa -1.5 

POLRMT polymerase (RNA) mitochondrial (DNA directed) -1.4 

POP5 processing of precursor 5, ribonuclease P/MRP subunit (S. 
cerevisiae) 

-1.4 

POP7 processing of precursor 7, ribonuclease P/MRP subunit (S. 
cerevisiae) 

-1.5 

PPARGC1B peroxisome proliferator-activated receptor gamma, coactivator 1 
beta 

-1.5 

PPFIBP1 PTPRF interacting protein, binding protein 1 (liprin beta 1) -1.5 

PPIF peptidylprolyl isomerase F (cyclophilin F) -1.7 

PPIH peptidylprolyl isomerase H (cyclophilin H) -1.6 

PPIL1 peptidylprolyl isomerase (cyclophilin)-like 1 -1.6 

PPIL5 peptidylprolyl isomerase (cyclophilin)-like 5 -1.6 

PPP1CA protein phosphatase 1, catalytic subunit, alpha isoform -1.4 

PPP2R1B protein phosphatase 2 (formerly 2A), regulatory subunit A, beta 
isoform 

-1.6 

PPRC1 peroxisome proliferator-activated receptor gamma, coactivator-
related 1 

-1.6 

PRC1 protein regulator of cytokinesis 1 -1.5 

PRELID1 PRELI domain containing 1 -1.5 

PRICKLE4 prickle homolog 4 (Drosophila) -1.5 

PRIM1 primase, DNA, polypeptide 1 (49kDa) -1.4 

PRIM2 primase, DNA, polypeptide 2 (58kDa) -1.5 

PRKCA protein kinase C, alpha -2.3 

PRKD3 protein kinase D3 -1.5 

PRMT3 protein arginine methyltransferase 3 -1.5 

PRPF3 PRP3 pre-mRNA processing factor 3 homolog (S. cerevisiae) -1.5 

PRPF4 PRP4 pre-mRNA processing factor 4 homolog (yeast) -1.4 

PRPH peripherin -2.0 

PSAT1 phosphoserine aminotransferase 1 -1.6 

PSD3 pleckstrin and Sec7 domain containing 3 -1.5 

PSMC3IP PSMC3 interacting protein -1.5 

PSMG1 proteasome (prosome, macropain) assembly chaperone 1 -1.7 

PSMG3 proteasome (prosome, macropain) assembly chaperone 3 -1.4 

PSMG4 proteasome (prosome, macropain) assembly chaperone 4 -1.6 

PSRC1 proline/serine-rich coiled-coil 1 -1.7 

PTBP1 polypyrimidine tract binding protein 1 -1.4 

PTDSS1 phosphatidylserine synthase 1 -1.6 
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PTGER3 prostaglandin E receptor 3 (subtype EP3) -1.5 

PTGES2 prostaglandin E synthase 2 -1.4 

PTN pleiotrophin (heparin binding growth factor 8, neurite growth-
promoting factor 1) 

-1.8 

PTPLA protein tyrosine phosphatase-like (proline instead of catalytic 
arginine), member A 

-1.4 

PTPLB protein tyrosine phosphatase-like (proline instead of catalytic 
arginine), member b 

-1.4 

PTPN13 protein tyrosine phosphatase, non-receptor type 13 (APO-1/CD95 
(Fas)-associated phosphatase) 

-1.5 

PTPRK protein tyrosine phosphatase, receptor type, K -1.6 

PTPRU protein tyrosine phosphatase, receptor type, U -1.7 

PTTG1 pituitary tumor-transforming 1 -1.5 

PUNC putative neuronal cell adhesion molecule -1.6 

PUS1 pseudouridylate synthase 1 -1.7 

PVRL1 poliovirus receptor-related 1 (herpesvirus entry mediator C) -1.6 

PWP2 PWP2 periodic tryptophan protein homolog (yeast) -1.4 

PXMP2 peroxisomal membrane protein 2, 22kDa -1.4 

QKI quaking homolog, KH domain RNA binding (mouse) -1.5 

RAB27A RAB27A, member RAS oncogene family -1.7 

RABGGTB Rab geranylgeranyltransferase, beta subunit -1.5 

RAD18 RAD18 homolog (S. cerevisiae) -1.4 

RAD51 RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae) -1.5 

RAD51AP1 RAD51 associated protein 1 -1.6 

RAD54L RAD54-like (S. cerevisiae) -1.4 

RANBP1 RAN binding protein 1 -1.6 

RANBP5 RAN binding protein 5 -1.5 

RASA3 RAS p21 protein activator 3 -1.5 

RASEF RAS and EF-hand domain containing -2.2 

RASL11B RAS-like, family 11, member B -1.4 

RBBP8 retinoblastoma binding protein 8 -1.5 

RBL1 retinoblastoma-like 1 (p107) -1.6 

RBM14 RNA binding motif protein 14 -1.4 

RCC1 regulator of chromosome condensation 1 -1.6 

RCOR1 REST corepressor 1 -1.5 

RDX radixin -2.0 

RELN reelin -3.7 

RERG RAS-like, estrogen-regulated, growth inhibitor -2.1 

REXO4 REX4, RNA exonuclease 4 homolog (S. cerevisiae) -1.5 

RFC2 replication factor C (activator 1) 2, 40kDa -1.5 

RFC3 replication factor C (activator 1) 3, 38kDa -1.5 

RFC4 replication factor C (activator 1) 4, 37kDa -1.5 

RFC5 replication factor C (activator 1) 5, 36.5kDa -1.5 

RFXAP regulatory factor X-associated protein -1.5 

RGS10 regulator of G-protein signaling 10 -1.5 

RGS19 regulator of G-protein signaling 19 -1.8 

RHOB ras homolog gene family, member B -1.4 

RHOU ras homolog gene family, member U -1.6 

RIMS2 regulating synaptic membrane exocytosis 2 -2.2 

RIN2 Ras and Rab interactor 2 -1.5 

RIOK1 RIO kinase 1 (yeast) -1.6 

RMI1 RMI1, RecQ mediated genome instability 1, homolog (S. 
cerevisiae) 

-1.5 

RNASEH2A ribonuclease H2, subunit A -1.5 
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RNF138 ring finger protein 138 -1.5 

RPA1 replication protein A1, 70kDa -1.5 

RPA3 replication protein A3, 14kDa -1.5 

RPL39L ribosomal protein L39-like -1.7 

RPP25 ribonuclease P/MRP 25kDa subunit -2.4 

RPS19BP1 ribosomal protein S19 binding protein 1 -1.4 

RPS24 ribosomal protein S24 -1.7 

RRM1 ribonucleotide reductase M1 -1.6 

RRM2 ribonucleotide reductase M2 polypeptide -1.6 

RRP1 ribosomal RNA processing 1 homolog (S. cerevisiae) -1.4 

RRP1B ribosomal RNA processing 1 homolog B (S. cerevisiae) -1.5 

RRP9 ribosomal RNA processing 9, small subunit (SSU) processome 
component, homolog (yeast) 

-1.6 

RRS1 RRS1 ribosome biogenesis regulator homolog (S. cerevisiae) -1.5 

RUVBL1 RuvB-like 1 (E. coli) -1.7 

RWDD1 RWD domain containing 1 -1.5 

RXRA retinoid X receptor, alpha -1.5 

S100A4 S100 calcium binding protein A4 -2.0 

SAC3D1 SAC3 domain containing 1 -1.5 

SACM1L SAC1 suppressor of actin mutations 1-like (yeast) -1.5 

SAP30 Sin3A-associated protein, 30kDa -1.4 

SASS6 spindle assembly 6 homolog (C. elegans) -1.4 

SC65 synaptonemal complex protein SC65 -1.5 

SCARB1 scavenger receptor class B, member 1 -1.8 

SCLY selenocysteine lyase -1.9 

SCYE1 small inducible cytokine subfamily E, member 1 (endothelial 
monocyte-activating) 

-1.4 

SDC1 syndecan 1 -1.7 

SDHD succinate dehydrogenase complex, subunit D, integral membrane 
protein 

-1.5 

SEMA6A sema domain, transmembrane domain (TM), and cytoplasmic 
domain, (semaphorin) 6A 

-2.0 

SEP15 15 kDa selenoprotein -1.4 

SEPT10 septin 10 -1.7 

SERBP1 SERPINE1 mRNA binding protein 1 -1.4 

SERPINF1 serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment 
epithelium derived factor), member 1 

-1.5 

SERTAD4 SERTA domain containing 4 -1.6 

SF3A1 splicing factor 3a, subunit 1, 120kDa -1.4 

SF3A3 splicing factor 3a, subunit 3, 60kDa -1.5 

SF3B3 splicing factor 3b, subunit 3, 130kDa -1.4 

SFRS1 splicing factor, arginine/serine-rich 1 (splicing factor 2, alternate 
splicing factor) 

-1.5 

SFRS2 splicing factor, arginine/serine-rich 2 -1.4 

SFXN2 sideroflexin 2 -1.5 

SGOL2 shugoshin-like 2 (S. pombe) -1.7 

SHCBP1 SHC SH2-domain binding protein 1 -2.0 

SHF Src homology 2 domain containing F -1.6 

SHOX2 short stature homeobox 2 -2.6 

SIVA1 SIVA1, apoptosis-inducing factor -1.6 

SIX3 SIX homeobox 3 -1.6 

SLC10A4 solute carrier family 10 (sodium/bile acid cotransporter family), 
member 4 

-1.9 

SLC12A7 solute carrier family 12 (potassium/chloride transporters), member -1.6 
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7 

SLC12A8 solute carrier family 12 (potassium/chloride transporters), member 
8 

-1.6 

SLC16A1 solute carrier family 16, member 1 (monocarboxylic acid transporter 
1) 

-1.4 

SLC16A7 solute carrier family 16, member 7 (monocarboxylic acid transporter 
2) 

-1.5 

SLC18A1 solute carrier family 18 (vesicular monoamine), member 1 -1.4 

SLC1A5 solute carrier family 1 (neutral amino acid transporter), member 5 -1.5 

SLC25A33 solute carrier family 25, member 33 -1.6 

SLC25A37 solute carrier family 25, member 37 -1.4 

SLC25A39 solute carrier family 25, member 39 -1.6 

SLC29A1 solute carrier family 29 (nucleoside transporters), member 1 -1.5 

SLC2A4RG SLC2A4 regulator -1.4 

SLC30A5 solute carrier family 30 (zinc transporter), member 5 -1.5 

SLC31A1 solute carrier family 31 (copper transporters), member 1 -1.6 

SLC35A3 solute carrier family 35 (UDP-N-acetylglucosamine (UDP-GlcNAc) 
transporter), member A3 

-1.4 

SLC35F2 solute carrier family 35, member F2 -1.8 

SLC39A14 solute carrier family 39 (zinc transporter), member 14 -1.6 

SLC39A8 solute carrier family 39 (zinc transporter), member 8 -1.5 

SLC5A6 solute carrier family 5 (sodium-dependent vitamin transporter), 
member 6 

-1.6 

SLCO4A1 solute carrier organic anion transporter family, member 4A1 -2.0 

SLITRK5 SLIT and NTRK-like family, member 5 -1.5 

SMAD6 SMAD family member 6 -1.7 

SMARCD2 SWI/SNF related, matrix associated, actin dependent regulator of 
chromatin, subfamily d, member 2 

-1.6 

SMC2 structural maintenance of chromosomes 2 -1.7 

SMC4 structural maintenance of chromosomes 4 -1.5 

SNF1LK2 SNF1-like kinase 2 -1.5 

SNHG5 small nucleolar RNA host gene (non-protein coding) 5 -1.5 

SNRPA small nuclear ribonucleoprotein polypeptide A -1.5 

SNRPB small nuclear ribonucleoprotein polypeptides B and B1 -1.5 

SNRPD1 small nuclear ribonucleoprotein D1 polypeptide 16kDa -1.4 

SNRPD3 small nuclear ribonucleoprotein D3 polypeptide 18kDa -1.4 

SNX3 sorting nexin 3 -1.4 

SNX5 sorting nexin 5 -1.5 

SOAT1 sterol O-acyltransferase (acyl-Coenzyme A: cholesterol 
acyltransferase) 1 

-1.4 

SOLH small optic lobes homolog (Drosophila) -1.5 

SORBS2 sorbin and SH3 domain containing 2 -2.6 

SOX2 SRY (sex determining region Y)-box 2 -1.5 

SOX7 SRY (sex determining region Y)-box 7 -1.5 

SPAG5 sperm associated antigen 5 -1.7 

SPC24 SPC24, NDC80 kinetochore complex component, homolog (S. 
cerevisiae) 

-1.5 

SPC25 SPC25, NDC80 kinetochore complex component, homolog (S. 
cerevisiae) 

-1.7 

SPOCK3 sparc/osteonectin, cwcv and kazal-like domains proteoglycan 
(testican) 3 

-2.6 

SPTBN1 spectrin, beta, non-erythrocytic 1 -1.5 

SRFBP1 serum response factor binding protein 1 -1.4 

SRGAP2 SLIT-ROBO Rho GTPase activating protein 2 -1.5 
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SRM spermidine synthase -1.4 

SS18L2 synovial sarcoma translocation gene on chromosome 18-like 2 -1.4 

SSB Sjogren syndrome antigen B (autoantigen La) -1.5 

SSFA2 sperm specific antigen 2 -1.6 

SSRP1 structure specific recognition protein 1 -1.5 

SSU72 SSU72 RNA polymerase II CTD phosphatase homolog (S. 
cerevisiae) 

-1.5 

ST3GAL4 ST3 beta-galactoside alpha-2,3-sialyltransferase 4 -1.4 

STC2 stanniocalcin 2 -1.6 

STEAP3 STEAP family member 3 -1.7 

STIL SCL/TAL1 interrupting locus -1.6 

STOM stomatin -1.5 

STOML2 stomatin (EPB72)-like 2 -1.5 

SUCLG2 succinate-CoA ligase, GDP-forming, beta subunit -1.5 

SULF2 sulfatase 2 -3.4 

SUV39H1 suppressor of variegation 3-9 homolog 1 (Drosophila) -1.5 

SUV39H2 suppressor of variegation 3-9 homolog 2 (Drosophila) -1.5 

SUZ12 suppressor of zeste 12 homolog (Drosophila) -1.5 

SVIL supervillin -1.8 

SYCP3 synaptonemal complex protein 3 -1.4 

SYNCRIP synaptotagmin binding, cytoplasmic RNA interacting protein -1.6 

SYPL1 synaptophysin-like 1 -1.4 

TACC3 transforming, acidic coiled-coil containing protein 3 -1.6 

TAF4B TAF4b RNA polymerase II, TATA box binding protein (TBP)-
associated factor, 105kDa 

-1.6 

TAF5 TAF5 RNA polymerase II, TATA box binding protein (TBP)-
associated factor, 100kDa 

-1.5 

TARBP2 TAR (HIV-1) RNA binding protein 2 -1.5 

TATDN2 TatD DNase domain containing 2 -1.4 

TBC1D2B TBC1 domain family, member 2B -1.6 

TBC1D4 TBC1 domain family, member 4 -1.6 

TBRG4 transforming growth factor beta regulator 4 -1.5 

TCF12 transcription factor 12 (HTF4, helix-loop-helix transcription factors 
4) 

-1.5 

TCF19 transcription factor 19 (SC1) -1.6 

TCF7L2 transcription factor 7-like 2 (T-cell specific, HMG-box) -1.8 

TCHP trichoplein, keratin filament binding -1.5 

TFAM transcription factor A, mitochondrial -1.6 

TFB2M transcription factor B2, mitochondrial -1.5 

TFEB transcription factor EB -1.5 

TGS1 trimethylguanosine synthase homolog (S. cerevisiae) -1.5 

THAP11 THAP domain containing 11 -1.4 

THOC4 THO complex 4 -1.4 

THOC7 THO complex 7 homolog (Drosophila) -1.5 

THOP1 thimet oligopeptidase 1 -1.6 

THRAP3 thyroid hormone receptor associated protein 3 -1.5 

TIAM1 T-cell lymphoma invasion and metastasis 1 -1.5 

TIFA TRAF-interacting protein with forkhead-associated domain -1.5 

TIMELESS timeless homolog (Drosophila) -1.6 

TIMM10 translocase of inner mitochondrial membrane 10 homolog (yeast) -1.4 

TIMM13 translocase of inner mitochondrial membrane 13 homolog (yeast) -1.9 

TIMM8A translocase of inner mitochondrial membrane 8 homolog A (yeast) -1.4 

TIPIN TIMELESS interacting protein -1.8 

TJAP1 tight junction associated protein 1 (peripheral) -1.4 
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TLE1 transducin-like enhancer of split 1 (E(sp1) homolog, Drosophila) -2.9 

TLE2 transducin-like enhancer of split 2 (E(sp1) homolog, Drosophila) -1.5 

TMEM106C transmembrane protein 106C -1.4 

TMEM115 transmembrane protein 115 -1.5 

TMEM48 transmembrane protein 48 -1.6 

TMEM97 transmembrane protein 97 -1.5 

TMTC1 transmembrane and tetratricopeptide repeat containing 1 -1.9 

TNFAIP2 tumor necrosis factor, alpha-induced protein 2 -1.5 

TOB1 transducer of ERBB2, 1 -1.6 

TOM1L1 target of myb1 (chicken)-like 1 -1.6 

TOMM22 translocase of outer mitochondrial membrane 22 homolog (yeast) -1.4 

TOMM40 translocase of outer mitochondrial membrane 40 homolog (yeast) -1.5 

TOP1MT topoisomerase (DNA) I, mitochondrial -1.8 

TOP2A topoisomerase (DNA) II alpha 170kDa -1.6 

TOPBP1 topoisomerase (DNA) II binding protein 1 -1.5 

TP53 tumor protein p53 -1.5 

TPCN1 two pore segment channel 1 -1.5 

TPD52 tumor protein D52 -1.5 

TPST2 tyrosylprotein sulfotransferase 2 -2.4 

TPX2 TPX2, microtubule-associated, homolog (Xenopus laevis) -1.6 

TRA T cell receptor alpha locus -1.7 

TRAF5 TNF receptor-associated factor 5 -1.8 

TRIM14 tripartite motif-containing 14 -1.5 

TRIM24 tripartite motif-containing 24 -1.5 

TRIM25 tripartite motif-containing 25 -1.5 

TRIM59 tripartite motif-containing 59 -1.4 

TRIM9 tripartite motif-containing 9 -2.0 

TRIP13 thyroid hormone receptor interactor 13 -1.7 

TROAP trophinin associated protein (tastin) -1.6 

TRPA1 transient receptor potential cation channel, subfamily A, member 1 -3.2 

TRPM7 transient receptor potential cation channel, subfamily M, member 7 -1.5 

TSPO translocator protein (18kDa) -1.9 

TSR1 TSR1, 20S rRNA accumulation, homolog (S. cerevisiae) -1.6 

TTF2 transcription termination factor, RNA polymerase II -1.6 

TTK TTK protein kinase -1.8 

TUBD1 tubulin, delta 1 -1.4 

TUBGCP3 tubulin, gamma complex associated protein 3 -1.5 

TUSC4 tumor suppressor candidate 4 -1.5 

TXN2 thioredoxin 2 -1.5 

TXNDC1 thioredoxin domain containing 1 -1.8 

TYMS thymidylate synthetase -1.7 

UBAP2L ubiquitin associated protein 2-like -1.5 

UBE2C ubiquitin-conjugating enzyme E2C -1.4 

UBE2CBP ubiquitin-conjugating enzyme E2C binding protein -1.6 

UBE2G2 ubiquitin-conjugating enzyme E2G 2 (UBC7 homolog, yeast) -1.5 

UCHL5 ubiquitin carboxyl-terminal hydrolase L5 -1.5 

UCHL5IP UCHL5 interacting protein -2.0 

UMPS uridine monophosphate synthetase -1.6 

UNG uracil-DNA glycosylase -1.9 

USP1 ubiquitin specific peptidase 1 -1.6 

UTRN utrophin -2.0 

VRK1 vaccinia related kinase 1 -1.5 

WASF3 WAS protein family, member 3 -1.5 
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WDR4 WD repeat domain 4 -1.6 

WDR5 WD repeat domain 5 -1.4 

WDR61 WD repeat domain 61 -1.4 

WDR77 WD repeat domain 77 -1.5 

WDSOF1 WD repeats and SOF1 domain containing -1.5 

WFS1 Wolfram syndrome 1 (wolframin) -1.4 

WHSC1 Wolf-Hirschhorn syndrome candidate 1 -1.4 

WIPF1 WAS/WASL interacting protein family, member 1 -1.8 

WT1 Wilms tumor 1 -2.0 

XPO1 exportin 1 (CRM1 homolog, yeast) -1.4 

XTP3TPA XTP3-transactivated protein A -1.7 

ZAK sterile alpha motif and leucine zipper containing kinase AZK -1.4 

ZBTB24 zinc finger and BTB domain containing 24 -1.5 

ZFPM2 zinc finger protein, multitype 2 -3.3 

ZFYVE16 zinc finger, FYVE domain containing 16 -1.6 

ZMYND19 zinc finger, MYND-type containing 19 -1.4 

ZNF367 zinc finger protein 367 -1.9 

ZNF423 zinc finger protein 423 -1.5 

ZNF503 zinc finger protein 503 -1.6 

ZNF536 zinc finger protein 536 -1.6 

ZNF804A zinc finger protein 804A -1.4 

ZRF1 zuotin related factor 1 -1.8 

ZWINT ZW10 interactor -1.5 
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Supplemental Table S2.2.  Quantitative RT-PCR Validation of Microarray 
Results. 

Superarray PI3K-Akt qRT-PCR Array 

-Data normalized to average Ct for 5 control housekeeping genes; genes with maximal Ct = 35 in       
either trial not analyzed (italics) 
-Averages calculated from two individual experiments, fold-change calculated from log2 
transformed data 
-Statistical analysis: two-tailed Student's t-test assuming unequal variance, significant 
upregulated genes in bold 
-Microarray results using both Genomatix and Bioconductor software are shown for comparison; 
"-", not significant) 

pRT-PCR array validation results  Microarray results (fold-change) 

Gene Fold change p-value   Genomatix Bioconductor 

AKT1 3.3 0.232   - - 

AKT2 1.4 0.488   - - 

AKT3 2.3 0.007   - - 

APC 7.1 0.006   1.6 1.9 

BAD 1.9 0.091   - - 

CASP9 3.7 0.087   - - 

CCND1 3.7 0.114   - - 

CD14 27.9 0.000   1.9 4.6 

CDC42 2.6 0.113   1.5 2.1 

CHUK 1.0 0.873   - - 

CSNK2A1 1.8 0.070   - - 

CTNNB1 1.8 0.017   - - 

EIF2AK2 1.5 0.430   - - 

EIF4B 1.7 0.165   - - 

EIF4E 1.3 0.513   1.7 2.0 

EIF4EBP1 1.2 0.549   -1.4 - 

EIF4G1 2.9 0.088   - - 

ELK1 1.5 0.143   - - 

FKBP1A 5.1 0.095   - - 

FOXO1 86.3 0.011   1.8 8.3 

FOXO3 4.6 0.004   2.0 2.0 

FRAP1 1.3 0.020   - - 

GRB10 NA NA   - 4.1 

GRB2 2.5 0.076   - - 

GSK3B 3.0 0.036   - - 

HRAS 1.6 0.505   - - 

HSPB1 1.6 0.364   - - 

IGF1R 3.7 0.071   - - 

IRAK1 2.2 0.166   -1.5 - 

IRS1 1.2 0.095   - - 

ITGB1 2.6 0.001   - 2.1 

JUN 1.7 0.037   - - 

MAP2K1 2.4 0.085   - - 

MAPK1 1.9 0.072   - - 

MAPK14 1.9 0.474   - -2.0 

MAPK3 3.2 0.148   - - 
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MAPK8 4.0 0.021   1.6 2.0 

MTCP1 0.9 0.553   - - 

MYD88 2.6 0.111   - - 

PABPC1 1.2 0.300   - - 

PAK1 3.9 0.011   - 1.7 

PDGFRA NA NA   - - 

PDK1 2.1 0.087   - - 

PDPK1 2.0 0.019   - - 

PIK3CA 3.0 0.004   - - 

PIK3CG NA NA   - - 

PIK3R1 5.7 0.040   2.3 2.6 

PIK3R2 2.0 0.210   - - 

PRKCA 0.4 0.276   - -2.6 

PRKCZ 3.1 0.124   2.0 - 

PTEN 1.0 1.000   - - 

PTK2 1.6 0.088   - - 

PTPN11 0.9 0.684   - - 

RAC1 1.6 0.408   - - 

RAF1 1.4 0.689   - - 

RASA1 4.5 0.003   2.7 2.5 

RBL2 1.2 0.198   - - 

RHEB 1.7 0.108   - - 

RHOA 0.9 0.572   - - 

RPS6KA1 0.8 0.776   - - 

RPS6KB1 1.1 0.804   - - 

SHC1 3.1 0.070   1.6 1.8 

SOS1 1.1 0.423   - - 

SRF 2.1 0.150   - - 

TIRAP 1.1 0.860   - - 

TLR4 40.3 0.019   1.4 31.0 

TOLLIP 1.4 0.255   - - 

TSC1 1.4 0.304   - - 

TSC2 2.2 0.017   - - 

WASL 1.5 0.353   - - 

YWHAH 2.2 0.050   - - 
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Supplemental Table S2.3.  Effects of Kinase Inhibitors on Poly(I-C)-
Stimulated BE(2)-C/m-ISRE Cells.  

-Values represent averages from two replicates - ranges are given due to limited titrations 

-IC50 = concentrations producing 50% maximal inhibition 

-CC50 = concentrations producing 50% cytotoxicity 

-Active inhibitors, defined as IC50 values for either extracellular or transfected poly(I-C) <20, 
CC50 values >20, and no overlap in ranges, are indicated in bold italic type 

Kinase inhibitor name Target(s) Extracellular 
poly(I-C) 

IC50 

Transfected-
poly(I-C) 

IC50 

CC50 

BML-257 Akt 0.8-4 4-20 >100 

Triciribine Akt  0.8-4 0.8 100 

Perifosine Akt, JNK, 
MAPK 

100 20 100 

Imatinib BCL/ABL 0.8 0.8 20 

Terreic acid BTK 4 100 >100 

LFM-A13 BTK >100 100 >100 

KN-93 CaMK II <0.8 <0.8 <0.8 

KN-62 CaMK II 100 100 >100 

Olomoucine CDK 20-100 4 0.8 

N9-Isopropyl-olomoucine CDK >100 >100 100 

Roscovitine CDK 20 20-100 >100 

Flavopiridol CDK 1,2,4 0.8-4 0.8-4 20-
100 

BML-259 CDK5/p25 100 >100 >100 

DRB (5,6-Dichloro-1-b-D-
ribofuranosylbenzimidazole) 

CK II 100 >100 >100 

Apigenin CK-II 100 4-20 100 

GW 5074 cRAF 20-100 20-100 20 

ZM 336372 cRAF >100 100 >100 

PI-103 DNA-PK, PI3K 

p110 , mTOR 

<0.8 <0.8 >100 

Tyrphostin 25 EGFRK 20-100 4 >100 

Tyrphostin 51 EGFRK 20-100 0.8-4 >100 

BML-265 (Erlotinib analog) EGFRK 4-20 0.8 100 

Tyrphostin 47 EGFRK 20-100 0.8-4 0.8 

Lavendustin A EGFRK 100 >100 >100 

Tyrphostin 23 EGFRK 100 >100 >100 

Tyrphostin AG 1478 EGFRK >100 100 >100 

RG-14620 EGFRK 20-100 100 >100 

Erbstatin analog EGFRK 20-100 20-100 20-
100 

Tyrphostin 46 EGFRK,  
PDGFRK 

20-100 20 20-
100 

HDBA (2-Hydroxy-5-(2,5-
dihydroxybenzylamino)benzoic acid) 

EGFRK, CaMK 
II 

4 <0.8 20 

AG-494 EGFRK, 
PDGFRK 

4-20 0.8-4 20 

5-Iodotubercidin ERK2, 
Adenosine 
kinase, CK1, 
CK2,  

4 20 100 

SU 4312 FLK1 100 4 0.8 
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SU1498 FLK1 20-100 100 >100 

FLT3 Inhibitor FLT3 >100 20-100 >100 

PK412  FLT3, SRC, 
ABL 

0.8 <0.8 >100 

GSK3 Inhibitor XIII GSK3  0.8-4 0.8-4 100 

GSK3 Inhibitor VI GSK3  0.8-4 0.8-4 4 

SB-415286 GSK3  100 100 100 

SB-216763 GSK3- 100 20 100 

Purvalanol A  GSK3-, 
CDK's 

4-20 4-20 100 

Kenpaullone GSK3 4-20 0.8-4 20 

Indirubin-3'-monoxime GSK3 4-20 0.8-4 20 

Indirubin-3'-monoxime GSK3 100 4 20 

Indirubin  GSK3, CDK5 0.8 0.8 20 

AG-825 HER1-2  100 100 >100 

AG1024 IGF-IR IGF-IR 100 20-100 >100 

BAY 11-7082 IKK pathway 100 100 >100 

SC-514 IKK2 100 20-100 >100 

AG-126 IRAK 100 100 >100 

HNMPA (Hydroxy-2-
naphthalenylmethylphosphonic acid) 

IRK  4-20 4-20 20-
100 

AG-490 JAK-2 20-100 20-100 100 

ZM 449829 JAK-3 100 4-20 100 

SP 600125 JNK >100 100 >100 

PD-98059 MEK  >100 >100 >100 

U-0126 MEK  100 20-100 >100 

ML-7 MLCK 20-100 20-100 >100 

ML-9 MLCK 20-100 20-100 >100 

Rapamycin mTOR 20 <0.8 20-
100 

Daidzein Negative 
control for 
genistein 

20-100 20-100 100 

iso-Olomoucine Negative 
control for 
olomoucine 

100 100 100 

Tyrphostin 1 Negative 
control for TK 
inhibitors 

20-100 4-20 20 

AG-879 NGFRK 20-100 20-100 100 

SB-203580 p38 MAPK  >100 >100 >100 

SB-202190 p38 MAPK  20-100 20-100 >100 

Damnacanthal p56 LCK 4-20 0.8-4 20 

2-Aminopurine p58 PITSLRE-
b1 

20-100 4-20 100 

Staurosporine Pan-specific 0.8 <0.8 4 

AG-370 PDGFRK 100 >100 >100 

AG-1296 PDGFRK 100 100 >100 

Tyrphostin 9 PDGFRK 4-20 0.8-4 4-20 

LY 294002 PI3K 4-20 4-20 >100 

Quercetin dihydrate PI3K 20-100 4 100 

Wortmannin PI3K 4-20 4-20 20 

PI3K Inhibitor 2 PI3K p110 0.8-4 0.8-4 100 
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TGX-221 PI3K p110 20-100 20-100 100 

AS-252424 PI3K p110 20-100 20-100 100 

AS-605240 PI3K p110 100 20-100 100 

PIM1 Inhibitor II PIMI  100 100 >100 

Quercetagetin PIMI 100 100 >100 

H-89 PKA 100 100 >100 

HA-1077 PKA, PKG 100 20-100 0.8 

HA-1004 PKA, PKG 20-100 20-100 100 

H-8  PKA, PKG 4 4-20 20-
100 

H-7 PKA, PKG, 
MLCK, and 
PKC. 

20 4-20 20 

H-9 PKA, PKG, 
MLCK, and 
PKC. 

20-100 20-100 100 

Hypericin PKC <0.8 <0.8 20 

GF 109203X PKC 100 100 100 

Ro 31-8220 PKC 20-100 20-100 >100 

Sphingosine PKC 100 20-100 >100 

Palmitoyl-DL-carnitine Cl PKC 4 20-100 20-
100 

HBDDE (2,2',3,3',4,4'-
Hexahydroxy-1,1'-biphenyl-6,6'-
dimethanol dimethyl ether) 

PKC, PKC 4-20 4-20 100 

Rottlerin PKC 4-20 4 20-
100 

Sunitinib Receptor 
tyrosine 
kinases 

<0.8 <0.8 4 

Y-27632 ROCK 100 >100 >100 

PP2 Src family >100 >100 >100 

PP1 Src family 4-20 4-20 20-
100 

Piceatannol Syk 20-100 20-100 >100 

Tyrphostin AG 1295 Tyrosine 
kinases 

100 20-100 >100 

Genistein Tyrosine 
Kinases 

20-100 20-100 >100 

Tyrphostin AG 1288 Tyrosine 
kinases (TK) 

4 0.8 >100 
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Chapter III 
 

IRF3 Mediates an Interferon-Independent Cytoprotective Response                       
Against Neurotropic Arboviruses in Neurons 

 
Early cellular innate immune responses are often vital for effective 

pathogen control, and an effective neuronal innate immune response may be 

crucial to prevent the essentially irreversible loss of critical central nervous 

system neurons by neurotropic arboviruses.  To test this hypothesis, we used 

targeted, genetic approaches and a variety of neuronal culture models to study 

the influence of neuronal PRR pathway signaling on neurotropic arbovirus 

pathogenesis mainly using western equine encephalitis virus (WEEV) as a model 

neurotropic arbovirus.  We found that WEEV activates neuronal PRR pathways 

in a replication dependent manner that requires IRF3, and abrogation of IRF3 

enhanced virus-mediated neuronal cytopathogenicity for distinct neurotropic 

arboviruses including WEEV.  Interestingly, IRF3-dependent protection of 

neurons from neurotropic arbovirus mediated cytopathology was independent of 

autocrine/paracrine type-I IFN activity and was likely due to direct IRF3-mediated 

induction of cell-intrinsic factors with cytoprotective properties.  Importantly 

WEEV, and other neurotropic arboviruses, were found to potently and specifically 

block induction of neuronal antiviral PRR pathways at early times post infection.  

The antiviral PRR pathway inhibitory capacity of WEEV was mapped to the 

capsid gene, which blocked antiviral PRR signaling downstream of IRF3 
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activation.  In addition, we determined that a WEEV structural gene, likely capsid, 

inhibited IRF3 nuclear translocation and host gene expression providing a 

potential dual mechanism for capsid-mediated inhibition of neuronal antiviral 

PRR signaling.  Altogether, these data indicated that neuronal PRR pathways 

may be important determinants in neurotropic arbovirus pathogenesis.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



163 
 

Introduction 

Viruses within several families preferentially infect CNS neurons, 

especially the neurotropic arboviruses which include but are not limited to West 

Nile virus (Flaviviridae), St. Louis encephalitis virus (Flaviviridae), La Crosse 

virus (Bunyaviridae), and the equine encephalitic alphaviruses (Togaviridae).  

Neurotropic arboviruses are transmitted via insect vectors and are responsible 

for sporadic epidemics of viral encephalitis (29) in which the extent of virus-

mediated destruction of CNS neurons is often an important determinant in the 

severity and clinical outcome after infection.  Unfortunately, there are very few 

effective treatments or vaccines for these viral infections, which contributes to 

their classification as potential bioterrorism agents (54).   

Early cellular innate immune responses are often vital for effective 

pathogen control (15-17, 19, 21, 28), and an effective neuronal innate immune 

response may be crucial to prevent the essentially irreversible loss of critical 

central nervous system neurons by neurotropic arboviruses.  Innate immune 

responses are activated by pattern recognition receptors (PRRs) that bind 

ligands containing pathogen-associated molecular patterns, such as modified 

carbohydrate or nucleic acid structures (37, 47).  Ligation of these receptors 

induces a signal transduction cascade resulting in the production of antiviral type-

I IFNs, other proinflammatory cytokines, and cell-intrinsic factors important for the 

generation of an antiviral cellular microenvironment (47).  In addition, PRR 

signaling is important for activating an appropriate adaptive immune response 

(1), which is required for the eventual clearance of most viral infections (9).  
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Thus, PRR-mediated innate immune pathway signaling serves a pivotal role in 

controlling viral infections and may protect neurons from neurotropic arbovirus 

mediated destruction.   

 There are three general steps in innate antiviral immune responses: 

activation, amplification, and effector production.  Antiviral PRR signaling is 

initiated by a variety of receptors, including the transmembrane Toll-like receptor 

(TLR) proteins and the cytoplasmic retinoic acid inducible gene I (RIG-I)-like 

receptors (RLRs) RIG-I and melanoma differentiated-associated gene 5 (MDA5) 

(34).  Due to differential expression, ligand specificity, and pathogen-mediated 

interference, PRRs respond to viral infections in both a pathogen and cell type-

specific manner (34, 61).  After PRR ligation, PRR signal transduction is 

mediated by several adaptor proteins, including MyD88, TIR-domain-containing 

adapter-inducing IFN-β (TRIF), and IFN- promoter stimulator protein 1 (IPS-1) 

(also referred to as Cardif, MAVS, and VISA) (34, 61).  These adaptor protein 

complexes mediate the downstream activation of kinases such as TANK-binding 

kinase 1 (TBK1), several IB kinases, and PI3K, which subsequently activate the 

transcription factors NFB and IFN regulatory factor 3 (IRF3) (5, 8, 10, 11).  

Activated NFB and IRF3 upregulate the expression of many genes important for 

mounting a robust antiviral response, including type-I IFNs, which function in 

either a paracrine or autocrine manner to induce IFN-stimulated genes (ISGs) 

(52).  There are several ISGs that act directly as antiviral effectors, but many are 

also components of antiviral PRR pathways, which provides a mechanism for 

positive feedback regulation and amplification (8). 
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 Viral PRR pathways protect host cells and tissues against viral infections, 

yet many viruses including neurotropic arboviruses possess PRR pathway 

countermeasures (61).  For instance, the NS2A and NS1 proteins of the 

neurotropic arbovirus West Nile virus (WNV) inhibit the activation of antiviral PRR 

pathways (18, 22, 38, 59) resulting in higher viral replication and enhanced 

virulence in a manner that may be both viral strain and cell type-dependent.  In a 

similar fashion, the NSs protein of La Crosse virus (LACV) potently inhibits type-I 

IFN induction, and in its absence, mutant virus robustly induces type-I IFNs 

resulting in reduced virulence (7).        

We and others have demonstrated that neurons possess active antiviral 

PRR pathways mediated by the receptors TLR3, RIG-I, and MDA5 which activate 

NFB and require IRF3 for the induction of type-I interferons (11, 30, 35, 41, 42, 

44, 49).  However, relatively little is known about how neuronal PRR pathways 

influence neurotropic arbovirus pathogenesis, but important observations have 

been made.  For instance, it is known that infection of neurons with several 

neurotropic arboviruses induces the expression of type-I interferons (15, 17, 20, 

49, 51, 53) and West Nile virus replication is enhanced in cortical neurons 

isolated from IPS-1-/-, TLR3-/-, IRF7-/, and IRF7/3-/- mice (15-17, 19, 57).  

Additionally, WNV is known to be recognized by both RIGI and MDA5 in non-

neuronal cell types (19), and evidence exists for the recognition of old world 

alphaviruses, which are not naturally encephalitic, via RIGI or MDA5 depending 

on the cell type and virus (10, 48).  



166 
 

In this report, we used targeted, genetic approaches to study the influence 

of neuronal PRR pathway signaling on neurotropic arbovirus pathogenesis using 

western equine encephalitis virus (WEEV) as a model neurotropic arbovirus due 

to its natural neurotropism.  We found that IRF3 mediates a cytoprotective 

response against WEEV that was likely due to IRF3-mediated induction of cell-

intrinsic factors with cytoprotective properties and independent of 

autocrine/paracrine type-I IFN activity.  Viral countermeasures to neuronal PRR 

pathways were also observed, where WEEV, and other neurotropic arboviruses, 

were found to potently and specifically block induction of neuronal antiviral PRR 

pathways at early times post infection.  The antiviral PRR pathway inhibitory 

capacity of WEEV was mapped to the capsid gene, which inhibited neuronal 

antiviral PRR signaling in part by early inhibition of IRF3 nuclear translocation 

and late inhibition of host macromolecular synthesis.  These data indicated that 

neuronal PRR pathways may be important determinants in neurotropic arbovirus 

pathogenesis and that neuronal PRR pathways and viral countermeasures to 

them may be exploited to develop more efficacious vaccines and anti-neurotropic 

arboviral treatments.  
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Materials and Methods 

Plasmids and Cytokines 

The dominant negative overexpression plasmids pDN-TLR3, pDN-TRIF(TIR), 

pDN-RIG-I(N), and pDN-IRF3(N), as well as the short-hairpin RNA 

overexpression plasmids pshRNA-MDA5, pGIPZ-shCD14, and pGIPZ-

shPI3K110 are described elsewhere (44).  The construction of the HA-tagged -

galactosidase in a pCMV-TnT (Promega, Madison, WI) backbone (pIVT-LacZ) 

has been previously described (55).  The shRNA overexpression plasmid pGIPZ-

shOASL was purchased from Open Biosystems (Huntsville, AL).  The 

overexpression plasmids pUNO-IRF3, pUNO-saIRF3, pUNO-MDA5, pUNO-

TLR3, and pUNO-saTRIF as well as the promoter-reporter constructs pISRE-

SEAP and pNFB-SEAP were purchased from InvivoGen (San Diego, CA).  The 

WEEV and WNV gene expression constructs were generated by PCR-amplifying 

individual WEEV genes from the full length WEEV cDNA clone pWEE2000 (12) 

or the WNV cDNA non-structural protein clone pc-WNV (provided by Richard 

Kinney, CDC, Atlanta, GA) and inserting them into the expression vector pCMV-

TnT.  V5-tagged viral gene expression constructs were generated for the 

indicated genes by first subcloning viral gene PCR products into pMT/V5-HisA 

(31) prior to inserting them into pCMV-TnT.  Recombinant human IFN-A/D and 

poly(I-C) are described elsewhere (44).  Murine IFN (NR-3082) human 

IFN (NR-3078), and human IFN (NR-3080) were obtained from the BEI 

repository (Manassas, VA).  Cells pre-treated with type-I IFNs were washed twice 

with HBSS (Life Technologies) prior to viral infection unless otherwise noted.          
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Cell Culture 

BE(2)-C and Vero cells were cultured as previously described (44).  BHK21 and 

BHK21 cells stably overexpressing bacteriophage T7 RNA polymerase (BHK21-

T7/C3) were cultured as for the Vero cells except cells were supplemented with 

non-essential amino acids (Life Technologies), and 10% fetal calf serum was 

used instead of bovine growth serum.  To avoid potential confounding effects of 

cell differentiation on transfection efficiency, stable cell lines were generated prior 

to differentiation as previously described (44) using Lipofectamine 2000.  Primary 

rat cortical neurons were isolated and cultured as previously described (44).  

Primary mouse cortical neurons were isolated from wild-type, IRF3-/- (15),    

MDA5-/- (27), and IFNAR-/- (19) C57BL/6 mice or IPS-I-/- (C57Bl/6 x 129Sv/Ev) 

(57) and wild-type litter mate control mice.  Freshly dissected cortices were 

stored in Hibernate E, 2% B27, 0.5 mM L-Gln and shipped overnight on ice.  

Mouse cortical neurons were disassociated and cultured as described for rat 

cortical neurons except they were plated at a density of 5 x 105 cells per cm2 on 

poly-D-lysine and laminin coated plates (15), washed once three hours after 

plating, and fed every 1-2 days until use at 10-12 days in culture at which point 

they were highly susceptible to glutamate excitotoxicity, a characteristic of 

differentiated cortical neurons.  

 Populations of human neurons were derived from the human embryonic 

stem cell line H7 (WiCell, University of Wisconsin Madison, Madison, WI)  over 

the course of four weeks through the sequential development of embryoid 

bodies, neuroepithelial rosettes, and neuroprogenitor cell cultures based on 
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previously established techniques (39, 43, 62).  Fully differentiated cultures were 

screened by immunuflourescence for the expression of neurofilament 200 and 

synaptophysin and analyzed by flow cytometry to assess culture purity.  Our 

hESC-derived human neurons were routinely positive for the neuronal surface 

markers CD90 (94.52 + 3.58), PSA-NCAM (97.76 + 0.17), and NGFR (72.61 + 

2.40).   

 Cell viability was determined by an MTT assay (44) or a luminescent ATP 

assay (ATPlite, PerkinElmer, Waltham, MA) according to manufacturer 

instruction.  Lipofection of BE(2)-C/m cells was accomplished using 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA) according to manufacturer 

instructions except one-fourth the amount of total DNA by weight was used to 

transfect 60-75% confluent monolayers.  For cotransfections involving 3 or more 

plasmids, 25% of the total DNA weight was the transfection control pIVT-LacZ, 

and the remaining 75% of total DNA weight was divided equally among the 

remaining plasmids. Transfection complexes were removed after 6-20 hours of 

incubation.  Transfection of BHK cells was described previously (45). 

 

Viruses 

The Cba 87 WEEV strain generated from the cDNA WEEV clone, pWE2000, was 

used for all WEEV infections as previously described (12), except reconstitution 

of infectious virus was accomplished by transfecting BSR-T7/5 cells (45) and 

harvesting tissue culture supernatants 36 hours post transfection at which point 

most of the cells had rounded up and detached.  Infectious tissue culture 



170 
 

supernatants were cleared by centrifuging at 1500 x g for 10 minutes and 

contained 1-10 x 106 pfu/ml when quantitated by plaque assay on Vero cell 

monolayers.  Stocks were further expanded by passing them once in Vero cells 

for 48 hours at a low multiplicity of infection (MOI).  This typically yielded a final 

stock of 1-10 x 106 pfu/ml that was stored at -80o C in single use aliquots and 

used for all infections unless otherwise noted.   

 Generation of sucrose gradient purified WEEV was accomplished using 

infectious WEEV 2000 tissue culture supernatants generated previously (12).  

Supernatants containing infectious virions were precipitated overnight at 4o C 

with stirring in sterile 7% polyethylene glycol (Fisher, Fair Lawn, NJ) and 2.3 % 

sodium chloride (Fisher, Fair Lawn, NJ).  Virions were recovered by centrifuging 

at 3500 x g for 20 minutes, resuspended in HBSS (Life Technologies), loaded 

onto 15-45% linear sucrose gradients, and centrifuged at 35,000 x g for 60 

minutes.  Virion bands were readily visible at approximate 15-30% and 30-45% 

sucrose levels and were collected separately and diluted in HBSS.  Virions were 

pelleted at 35,000 x g for 60 minutes, resuspended in HBSS, titered (typically 

107-109 pfu/ml), and stored at -80o C in single use aliquots. 

 St. Louis encephalitis virus (SLEV) strain TBH-23 was obtained from 

Robert Tesh (University of Texas at Galveston) and propagated once in BHK21 

cells followed by propagation in Vero cells to generate viral stocks.  LaCrosse 

virus (LACV) strain LACV/human/1960 was also provided by Robert Tesh and 

propagated in Vero cells.  The GFP-tagged Sendai virus (SeV) is described 

elsewhere (44).  Viral titers were determined via plaque formation on Vero cell 
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monolayers as previously described (44), except SLEV was titered using BHK21 

monolayers.  To inactivate virus, supernatants were treated with ultraviolet light 

for 15 minutes on ice using a Spectrolinker crosslinker (Spectronics Corporation, 

Westbury, NY), which reproducibly blocked the propagation of WEEV in Vero 

cells and failed to produce detectable levels of WEEV transcripts in neuronal 

cells infected for 20 hours.  Viral attachment was carried out in complete culture 

media for 90 minutes followed by two washes and application of neutralizing 

antisera where indicated.  Primary cortical neuronal cultures were exclusively 

infected with sucrose-gradient purified WEEV to avoid non-specific neurotoxicity 

of unpurified viral preparations observed at high MOIs in preliminary experiments 

and to control for potential virus-independent activation of PRR pathways in 

unpurified viral preparations. 

 

Conditioned Supernatants  

Supernants from BE(2)-C/m cells or media treated with IFN-A/D were UV-

inactivated as described above, spun at 100,000 x g for 1 hour at 40 C, sterile 

filtered, and stored at -80o C.   

 

Immunoblotting, Immunofluorescence, Antibodies, SEAP Assay, and RT-

PCR Analysis 

Immunoblotting, RT-PCR, and immunofluorescence analysis were carried out as 

previously described (44).  All antibodies have been previously described (44) 

except V5, WEEV, and Oct-1 which were purchased from Sigma-Aldrich (St. 
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Louis, MO), ATCC (Manassas, VA), and BioVision (Mountain View, CA), 

respectively. Neutralizing antisera against IFN and IFN were purchased from 

PBL Biomedical Laboratories (Piscataway, NJ) and used at 500 neutralizing units 

per mL.  RT-PCR primer sequences are available upon request.  Secreted 

alkaline phosphatase activity was measured by a Quanti-Blue assay as 

previously described (12).   

 

Subcellular Fractionation and Protein Radiolabeling 

Nuclear and cytoplasmic extracts were generated as previously described (36) 

with several modifications.  Namely, aprotinin was not used, the first spin was at 

1500 x g, and the nuclei were washed twice with PBS and centrifuged at 1500 x 

g for 5 minutes at 4o C after each wash.   

To measure total protein synthesis, we used metabolic incorporation of 

35S-labeled methionine and cysteine.  Control and WEEV-infected cells were 

incubated with 50 μCi per ml PRO-MIX 35S-cell labeling mix (Amersham) for 30 

min, washed with TBS containing 100 μg cycloheximide per ml, and lysed in 

SDS-PAGE sample buffer (12).  After electrophoresis, gels were fixed, 

impregnated with sodium salicylate, dried, exposed, and digitized images of 

radioactive protein bands were quantitated as described previously (13).  
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Results 

WEEV Replication Induces IFN Transcription in Neurons 

To begin studying the influence of neuronal PRR pathways on neurotropic 

arbovirus pathogenesis, we first asked if WEEV could induce IFN transcription, 

a hallmark of PRR pathway activation, in a variety neuronal culture models (Fig 

3.1).  The first model employed was the previously characterized BE(2)-C 

neuronal culture model (46).  This neuroblastoma cell line can be differentiated 

into mature human neurons, designated BE(2)-C/m, using retinoic acid, and it 

has been used to demonstrate differentiation-dependent responses of human 

neuronal cells to type-I IFN stimulation and neurotropic virus infection (12).  

Infection of differentiated BE(2)-C/m neuronal cells with WEEV, or the positive 

control Sendai virus (SeV) (44), robustly induced IFN transcripts (Fig 3.1.A).   

However, treatment of BE(2)-C/m neuronal cells with UV-inactivated WEEV (see 

materials and methods) largely failed to induce IFN transcription (115 fold 

induction versus 4-fold induction respectively, p < 0.003), suggesting that viral 

replication was required and that mere cell surface exposure of virus was largely 

insufficient to induce IFN transcription in human neuronal cells (Fig 3.1.A).  

Similarly, human embryonic stem cell-derived neurons induced IFN transcripts 

in response to both SeV and WEEV infection (Fig 3.1.B).  Finally, rat primary 

cortical neurons induced IFN transcripts independent of the WEEV inoculating 

dose (Fig 3.1.C).  These data suggest that human neuronal PRR pathways  

respond to WEEV. 
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Figure 3.1.  WEEV induction of IFN transcription in neurons.  A.  BE(2)-C/m 
cells were infected with SeV MOI 5.0 for 30 hours, WEEV MOI 1.0 for 20 hours, 

or UV-treated WEEV MOI 1.0 for 20 hours, and IFN transcript levels were 
assessed via qRT-PCR.  B.  Human embryonic stem cell-derived neurons were 

infected with SeV MOI 0.1 for 72 hours or WEEV MOI 0.1 for 24 hours, and IFN 
transcript levels were assessed.  C.  Rat primary cortical neurons were infected 

with WEEV at the indicated MOI, and IFN transcript levels were assessed 20 
hours later.  Data represent averages and SEMs from three independent trials for 
A and B and two independent trials for C.  *p-value < 0.05.  
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IRF3 mediates a neuronal cytoprotective response against WEEV 

To further characterize the neuronal innate immune response to WEEV, we 

tested the functional impact of known PRR pathway signaling components on 

neuronal responses to WEEV.  PRR pathway signaling components were 

genetically disrupted by stably overexpressing specific dominant negative 

mutants to the central PRR pathway transcription factor IRF3, the cytoplasmic 

PRR RIG-I, and the required TLR3 adaptor TRIF in BE(2)-C/m cells (see (44) for 

validation and pertinent controls).  The IRF3 mutant lacks a DNA binding domain 

such that it competes for activation signals but does not induce transcription; the 

RIG-I mutant lacks the N-terminal CARD domains required for signal 

transduction; and the dominant negative TRIF mutant contains only a TIR 

domain and blocks downstream signal transduction.  Overexpression of the  

dominant negative IRF3 and RIG-I mutants in BE(2)-C/m cells reduced WEEV-

mediated induction of IFN transcripts (Fig 3.2.A); whereas no reduction was 

observed when the dominant negative TRIF mutant was overexpressed.  These 

results indicated that RIG-I and IRF3 mediated a neuronal transcriptional 

response to WEEV and that a TLR3-TRIF-mediated pathway was largely 

dispensible.  In further support of this, BE(2)-C/m cells stably expressing an 

shRNA targeting PI3K p110, which we previously demonstrated influences 

TLR3 signaling in neuronal cells (44), showed no reduction in IFN transcripts 

following WEEV infection (Supplemental Fig S3.1.A). 

 Next, we tested the significance of PRR pathway signaling components on 

cell viability and viral titers following WEEV infection.  Genetic disruption of IRF3  
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Figure 3.2.  Neuronal PRR pathway component-dependent responses to WEEV.  A.  
BE(2)-C/m cells stably overexpressing dominant negative forms of IRF3, RIG-I, or TRIF 

were mock infected or infected with WEEV MOI 1.0 for 20 hours, and IFN mRNA levels 
were measured by qRT-PCR.  Results are expressed as the fold-change compared to 
similarly treated cells stably transfected with an empty vector.  B.  Control and dominant 
negative IRF3 overexpressing BE(2)-C/m cells were infected with WEEV at the indicated 
MOI and percent viability relative to mock infected controls was assessed via a MTT 
assay 48 hours post infection (HPI: left panel), or titers (MOI 1.0) were measured via 
plaque assay from supernatants harvested at the indicated times (right panel).  Similar 
titers were observed for MOI 0.01 infections (data not shown).  C.  Control and dominant 
negative RIG-I overexpressing BE(2)-C/m cells were infected and analyzed as in B.  
Data represent averages and SEMs from at least three independent trials.  *p-value < 
0.05. 
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rendered BE(2)-C/m neuronal cells more susceptible to WEEV-mediated 

cytopathic effect (CPE) and resulted in modestly higher WEEV titers independent 

of MOI (Fig 3.2.B).  Expression of dominant negative RIG-I only impaired 

neuronal viability in response to a high WEEV inoculum and had no impact on 

viral titers (Fig 3.2.C).  These results indicated that in neuronal cells IRF3 

mediated a cytoprotective and potentially antiviral response to WEEV; however, 

RIG-I only mediated a cytoprotective response when the initial viral burden was 

high, suggesting that there may be redundancy for cytosolic detection of WEEV 

at the receptor level in neuronal cells or that the level of dominant negative RIG-I 

expression was insufficient to effect cell viability or viral replication following 

WEEV infection.  Consistent with the dispensable role of a TLR3-TRIF pathway 

for transcriptional responses to WEEV in neuronal cells, no change in viability or 

WEEV titers was observed in cells stably overexpressing dominant negative 

TRIF (Supplemental Fig S3.2.A).  Furthermore, transient overexpression of 

wild-type TLR3 or a dominant negative TLR3 mutant lacking a TIR domain failed 

to modulate neuronal viability following WEEV infection (Supplemental Fig 

S3.2.B and C).  To demonstrate the functionality of transiently overexpressed 

wild-type and dominant negative TLR3, we verified the appropriate modulation of 

an ISRE promoter in neuronal cells when presented with the TLR3 ligand poly(I-

C) (Supplemental Fig S2.5).  

 Since genetic disruption of RIG-I suggested that multiple cytoplasmic 

receptors may respond to WEEV in neurons, we examined the role of MDA5 in   
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Figure 3.3.  Neuronal cell MDA5-dependent response to WEEV.  A.  BE(2)-
C/m cells stably overexpressing a control or MDA5-targeted shRNA were either 

mock-pretreated or pretreated with 1000 U/ml of IFN-A/D for six hours, washed 
twice, and mock-infected or infected with WEEV MOI 1.0 for 20 hours.  Samples 

were analyzed by RT-PCR for IFN and rRNA transcripts.  Adjacent lanes for 
individual samples represent results using 10-fold dilutions of cDNA.  B.  Control 
BE(2)-C/m cells or cells stably overexpressing a MDA5-targeted shRNA were 

either mock-pretreated or pretreated with 1000 U/ml of IFN-A/D for six hours, 
washed twice, and then mock-infected or infected with WEEV MOI 1.0.  Cell 
viability relative to mock-infected controls was assessed 48 hours after infection 

via a MTT assay.  C.  Supernatants from WEEV-infected, IFN-A/D-pretreated 
control or MDA5-depleted BE(2)-C/m cells were titered via plaque assay at the 
indicated times post infection.  Data are representative of three independent trials 
for A.  Averages and SEMs are displayed from three independent trials for B and 
two trials for C.  *p-value < 0.05. 
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neuronal responses to WEEV (Fig 3.3).  To achieve this we generated stable 

BE(2)-C/m cells expressing a shRNA targeting MDA5.  In these neuronal cells, 

MDA5 expression was reduced by approximately 50% (Fig 2.4.B) (44), but when 

pretreated with type-I IFNs, the difference in MDA5 expression between control 

cells and cells with an MDA5-targeted shRNA greatly increased (Fig 2.4.B) (44).  

We observed no difference in the IFN transcriptional response to WEEV in 

control neuronal cells versus cells expressing an shRNA targeting MDA5 (Fig 

3.3.A) (compare lane 5 to 13), but when the difference in MDA5 expression was 

accentuated by pretreating with type-I IFNs, WEEV activated IFN transcription 

in control neuronal cells to a greater extent than in MDA5-depleted neuronal 

cells, which trended towards a significant difference (average density of lane 8 

versus 16, p-value 0.15) (Fig 3.3.A).  Targeting MDA5 expression in mock 

pretreated cells had no impact on neuronal cell viability following WEEV infection 

(Fig 3.3.B), but pretreating control versus MDA5-depleted neuronal cells with 

type-I IFNs significantly rendered the MDA5-depleted neuronal cells more 

susceptible to a WEEV-mediated CPE (Fig 3.3.B) and trended towards higher 

WEEV titers at 20 hours post infection (Fig 3.3.C) when the difference in MDA5 

expression was still greatly accentuated by the type-I IFN pretreatment 

(Supplemental Fig S3.3).  Pretreating the neuronal cells with type-I IFNs could 

have given them the capacity to produce functional amounts of 

autocrine/paracrine antiviral type-I IFN protein following WEEV infection, a 

finding that would be in contrast with our previous observations in mock 

pretreated neuronal cells (44).  To assess this possibility, we tested the ability of 
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type-I IFN neutralizing antibodies to modulate neuronal viability following WEEV 

infection. To accomplish this, we incubated IFN-pretreated BE(2)-C/m cells with 

type-I IFN neutralizing antibodies following WEEV attachment, and observed no 

difference in WEEV-mediated CPE compared to matched cells in which no 

neutralizing antibody was given (see the far right bar of Fig 3.3.B for reference).  

Altogether, these data indicated that MDA5 may detect WEEV in neuronal cells 

and mediate a cytoprotective and potentially antiviral response independent of 

antiviral autocrine/paracrine type-I IFN signaling. 

 In addition to the loss-of-function studies described above, we also 

attempted gain-of-function studies for neuronal PRR pathway signaling 

components, but we were unable to isolate neuronal cells stably overexpressing 

wild-type IRF3, RIG-I, or MDA5.  However, transient overexpression of IRF3 or 

RIG-I did protect neuronal cells from WEEV-mediated CPE, and transient 

overexpression of IRF3 or, as a positive control, a constitutively active IRF3 

mutant reduced viral titers (Supplemental Fig S3.4.A and B).  However, 

subsequent analysis revealed that transient overexpression of wild-type RIG-I or 

IRF3 constitutively induced type-I IFNs (Supplemental Fig S3.4.C and D), which 

we have previously shown decreases WEEV titers and enhances WEEV-infected 

neuronal cell viability (12).  Therefore, we could not confidently interpret the role 

these over expression constructs played in neuronal responses to WEEV given 

the confounding ability of the constructs to constitutively activate neuronal 

antiviral PRR pathways. 
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IRF3 Mediates a Cytoprotective Response to WEEV in Primary Cortical 

Neurons 

PRR pathway responses can be both cell type- and species-specific (34).  To 

determine if our observations were unique to neuroblastoma-derived human 

neurons, we examined neuronal responses to WEEV in primary cortical neurons 

derived from wild-type, IRF3-/-, MDA5-/-, and IPS-1-/- mice.  Consistent with results 

from neuroblastoma-derived human neurons, IRF3-/- and MDA5-/- cortical 

neurons were deficient in transcriptional induction of IFN when infected with 

WEEV (Fig 3.4.A and B).  In addition, IRF3-/- cortical neurons were significantly 

more susceptible to WEEV-mediated CPE independent of MOI but showed no 

difference in WEEV titers (Fig 3.4.C and D).  In contrast to the differentiated 

neuronal BE(2)-C/m cells, MDA5-/- and IPS-1-/- primary cortical neurons were as 

susceptible to WEEV-mediated CPE as wild-type cortical neurons (Fig 3.4.C), 

and WEEV titers from MDA5-/- primary neurons were no different than controls 

(Fig 3.4.D).  These results suggested that neuronal IRF3 mediated a 

cytoprotective response to WEEV and that the influence of individual PRRs on 

this neuron-protective response may be complex, redundant, unique to 

immortalized human neuronal cells, or a combination of these factors.  

Accordingly, we focused further studies on the role of IRF3 in neuronal 

responses to neurotropic arboviruses.         
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Figure 3.4.  PRR pathway component-dependent responses to WEEV in 
primary neurons.  A and B.  Wild-type, IRF3-/- (A), or MDA5-/- (B) primary 
neurons were mock infected or infected with WEEV MOI 1.0 for 20 hours, and 
transcript expression was assessed via RT-PCR for the indicated genes.  C.  
Primary cortical neurons derived from C57BL/6 wild-type, IRF3-/-, MDA5-/-, and 
IPS-1-/- mice were infected with WEEV MOI 1.0, and cell viability relative to mock 
infected controls was analyzed via a luminescent ATP assay 48 hours later.  
Neurons infected at an MOI of 0.01 demonstrated a similar phenotype (data not 
shown).  D.  WEEV titers from supernatants harvested from C were determined 
via plaque assay.  Neurons infected at an MOI of 0.01 demonstrated a similar 
phenotype (data not shown).  Data are representative of two independent trials 
for A and one trial for B.  Data represent averages and SEMs from three 
independent trials for C and two for D.  *p-value < 0.05. 
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Neuronal Cell PRR Responses to Diverse Neurotropic Arboviruses 

Pattern recognition receptor pathway responses are often both pathogen- and 

cell type-specific.  To determine if neuronal PRR pathways broadly respond to 

neurotropic viral infection, we examined neuronal cell responses to the 

neurotropic arboviruses St. Louis encephalitis virus (SLEV) and La Crosse virus 

(LACV).  Both SLEV and LACV induced IFN transcription in neuronal cells, 

albeit SLEV did so to a greater extent than LACV 20 hours post infection.  In 

addition, dominant negative IRF3 overexpression reproducibly reduced neuronal 

IFN transcription induced by SLEV and may have had a minor effect on LACV-

induced IFN transcription, but the ability of dominant negative IRF3 to inhibit 

LACV-mediated induction of IFN was not reproducible (Fig 3.5.A).  Next we 

assessed the effect of genetic disruption of the central PRR pathway 

transcription factor IRF3 on neuronal responses to SLEV and LACV, and we 

observed that neuronal cells overexpressing dominant negative IRF3 were 

significantly more susceptible to SLEV-mediated CPE independent of MOI (Fig 

3.5.B).  These data indicated that IRF3, like in the case of a WEEV infection, 

may influence neuronal survival following a SLEV infection.  In contrast, 

overexpression of dominant negative IRF3 had no effect on LACV-mediated 

CPE, indicating that IRF3 may be dispensable for neuronal survival following 

LACV infection or that the extent of dominant negative IRF3 overexpression was 

insufficient to affect LACV-mediated CPE (Fig 3.5.C) (note that end points for 

each viral infection were adjusted to give viabilities within typical linear death 

curves for BE(2)-C/m cells).  The differing influence of IRF3 in neuronal  



184 
 

 

 
Figure 3.5.  IRF3-dependent neuronal cell response to St. Louis and La 
Crosse viruses.  A.  BE(2)-C/m cells stably overexpressing a dominant negative 
IRF3 or a vector control were mock infected, infected with SLEV MOI 1.0, or 

infected with LACV MOI 1.0 for 20 hours followed by IFN and rRNA RT-PCR.  B 
and C.  Control or dominant negative IRF3 overexpressing BE(2)-C/m cells were 
infected with SLEV (B) or LACV (C) MOI 1.0, and cell viability relative to mock 
infected controls was assessed 48 (B) and 24 (C) hours later via a MTT assay.  
Neuronal cells infected at an MOI of 0.01 with either SLEV (B) or LACV (C) 
demonstrated similar phenotypes (data not shown).  Data are representative of 
two independent trials for A.  Averages and SEMs are displayed from three 
independent trials for B and C.  *p-value < 0.05. 
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responses to WEEV, SLEV, and LACV suggests that neuronal PRR responses 

are indeed complex and pathogen-dependent, but not without some level of 

overlap. 

 

Neuronal IRF3-Dependent Cytoprotective Response to WEEV is 

Independent of Type-I IFN Autocrine/Paracrine Signaling  

The observation that a dominant negative IRF3 mutant lacking a DNA binding 

domain accentuated WEEV-mediated CPE in neuronal cells suggested that IRF3 

transcriptional activity was involved in the IRF3-dependent cytoprotective 

response to WEEV.  To begin to understand what factors downstream of IRF3 

were required for this response, we first assessed whether induction of antiviral 

type-I IFNs might mediate the IRF3-dependent cytoprotective response.  

Previous attempts to identify type-I IFNs in supernatants of WEEV-infected 

neuronal cells via ELISAs failed to detect any measurable amount of type-I IFNs, 

and treatment of WEEV-infected neuronal cells with type-I IFN neutralizing 

antibodies failed to increase WEEV-mediated CPE (12).  In addition, WEEV 

failed to activate IFN-dependent ISRE reporter neuronal cells (data not shown).  

However, these assays may not have been sensitive enough to detect low levels 

of biologically relevant autocrine IFN signaling.  Therefore, we developed an 

alternative assay that measured accumulation of the interferon-stimulated gene, 

RIG-I, following viral infection.  When neuronal cells were infected with the 

positive control SeV, RIG-I protein accumulated (Fig 3.6.A, compare lane 1 and 

lane 6) in a manner dependent on autocrine IFN signaling because an IFN  
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Figure 3.6.  Neuronal response to WEEV is independent of type-I IFN 
autocrine/paracrine signaling.  A.  BE(2)-C/m cells were mock infected or 
infected with SeV MOI 5.0 and then incubated with 500 neutralizing units of 

control, IFN, IFN, or IFN and IFN neutralizing antibodies.  As positive 
controls for IFN neutralization, indicated mock-infected, neutralizing antibody-

treated cells were stimulated with 20 U/ml IFN or 10 U/ml IFN 28 hours post 
infection.  Whole cell lysates were collected 48 hours post infection and analyzed 
by western blot for RIG-I and GAPDH.  B.  BE(2)-C/m cells were mock-infected 
or infected with SeV MOI 5.0 for 48 hours, or  mock infected or infected with 
WEEV MOI 1.0 for 24 hours.  Lysates were analyzed by western blot for RIG-I 
and GAPDH.  C.  C57Bl/6 wild-type or IFNAR-/- cortical neurons were mock-

pretreated or pretreated with 100 U/ml of mouse IFN for 24 hours followed 
by WEEV MOI 1.0.  Cell viability relative to mock infected controls was assessed 
48 hours post infection via a luminescent ATP assay.  Similar results were 
observed with WEEV MOI 0.01 (data not shown).  D.  WEEV titers from 
supernatants collected from neurons infected for 20 hours described in C were 
determined via plaque assay.  Similar results were observed with WEEV MOI 
0.01 (data not shown).  No difference in titers was observed between wild-type or 
IFNAR-/- neurons at 8 or 48 hours post infection (data not shown).  Data are 
representative of three independent trials for A and B.  Averages and SEMs are 
displayed from three independent trials for C and one for D.  *p-value < 0.05. 
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neutralizing antibody blocked the SeV-mediated induction of RIG-I (compare lane 

6 to lane 8).  Treatment with an IFN neutralizing antibody had no effect on SeV-

mediated induction of RIG-I (compare lane 6 to lane 7).  Activity of the 

neutralizing antibodies was verified by demonstrating the specific ability of each 

antibody to potently and selectively block IFN- or IFN-mediated induction of 

RIG-I (see lanes 1-5).  To assess the neutralizing capacity of the type-I IFN 

antibodies throughout the experiment, exogenous IFN delivered to the antibody 

specificity control samples was added 28 hours after addition of neutralizing 

antibodies.  In addition, SeV increased global expression of IRF3 and expression 

of a slower migrating form of IRF3, often indicative of phosphorylated, 

transcriptionally-active IRF3 (Supplemental Fig S3.5).  Interestingly, WEEV 

failed to upregulate RIG-I expression in BE(2)-C/m cells (Fig 3.6.B) despite 

optimization of both MOI and assay end point.  As a further test for WEEV-

mediated induction of functional, antiviral type-I IFNs in neurons, we compared 

responses of primary cortical neurons derived from wild-type and interferon 

receptor (IFNAR) knock-out mice.  No difference in cell viability (Fig 3.6.C) or 

WEEV titer (Fig 3.6.D) from IFNAR-/- versus wild-type primary neurons was 

observed.  As a control for IFNAR function, primary neurons were pretreated with 

murine IFN which, as expected, protected neurons from WEEV-mediated 

CPE and decreased WEEV titers 20 hours after infection of wild-type neurons, 

while IFNAR-/- primary neurons were refractory to this treatment.  Altogether 

these data indicated that the IRF3-dependent, neuron-protective response to 

WEEV was independent of type-I IFN signaling.        
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 After ruling out type-I IFN signaling, we asked if the IRF3-dependent, 

cytoprotective response to WEEV was mediated by cell-intrinsic or -extrinsic 

factors other than type-I IFNs.  To accomplish this, we set up a bioassay to 

determine if conditioned supernatants from WEEV-infected BE(2)-C/m cells could 

transfer any modulatory capacity to a subsequent neuronal, WEEV-mediated 

cytopathic response.  Control conditioned supernatants, with exogenous IFN-

A/D added to them prior to conditioning, protected target neurons from a WEEV-

mediated CPE; however, conditioned supernatants from WEEV-infected 

producer neurons had no modulatory capacity on a subsequent WEEV-mediated 

CPE (Supplemental Fig S3.6).  These data suggested that the IRF3-dependent, 

cytoprotective response to WEEV may be independent of cytoprotective, soluble, 

secreted factors.  However, we could not rule out the possibility that our bioassay 

was insufficient to detect low levels of biologically relevant cell-extrinsic factors 

because we did observe a reduction in the protective capacity of type-I IFN-

treated conditioned media relative to that of media with fresh, unconditioned 

type-I IFN.  Therefore, we chose to directly test our alternate hypothesis that cell-

intrinsic factor(s) downstream of IRF3 were responsible for the IRF3-dependent, 

cytoprotective response to WEEV.     

 

WEEV-Induced, IRF3-Dependent Genes Which are Cytoprotective Against 

Neurotropic Arboviruses 

Many antiviral effector genes are directly induced by IRF3 (2, 58), some of which 

have known antiviral activity against alphaviruses, although most have not been 
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tested against WEEV (6, 63).  To test our hypothesis that the IRF3-dependent, 

cytoprotective response to WEEV in neuronal cells was mediated by cell-intrinsic 

factors, we searched for IRF3-dependent, WEEV-induced, antiviral effector 

genes.  We looked for the WEEV-mediated induction of several of these genes in 

BE(2)-C/m cells at both ten and twenty hours post infection via RT-PCR using 

IFN and rRNA as positive and loading controls, respectively (Fig 3.7).  The 

antiviral effectors oligoadenylate synthetase-like protein (OASL), myxoma 

resistance gene-B (MxB), MxA, and interferon inducible transcript-2 (IFIT2) were 

all reproducibly induced by WEEV, albeit to differing extents.  In contrast, the 

expression of the IRF3-inducible antiviral effectors IFIT1, viperin, ISG20, ISG15, 

and zinc finger antiviral protein (ZAP) were unresponsive to WEEV infection.  We 

verified that the two most responsive putative effectors, OASL and MxB (Mx2 is 

the mouse homologue), were dependent on not only IRF3, but also MDA5 in 

primary cortical neurons (Fig 3.4.A and B).  WEEV envelope protein-1 

transcripts were similar under each condition indicating that viral RNA burden 

between samples was equal.  These data demonstrated that WEEV induces cell-

intrinsic, IRF3-dependent, antiviral effector genes that may mediate an IRF3-

dependent, cytoprotective response.   

 To determine if IRF3-dependent antiviral effector genes might mediate the 

neuronal-protective response to neurotropic arboviruses, we assessed whether 

shRNA-mediated depletion of the most responsive putative effector, OASL, 

rendered neuronal cells more susceptible to neurotropic arbovirus-mediated  
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Figure 3.7.  WEEV-induced genes in neuronal cells.  BE(2)-C/m cells were 
mock infected or infected with WEEV MOI 1.0 for 10 or 20 hours, and 
transcription of the indicated genes was analyzed by RT-PCR.  Data are 
representative of three independent trials.   
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CPE.  For this purpose, we generated stable neuronal cell lines expressing 

control- or OASL-targeting shRNAs.  Targeted depletion of OASL was verified by 

RT-PCR from mock-, WEEV-, and LACV-infected BE(2)-C/m cells in relation to 

cells stably expressing a control shRNA (Fig 3.8.A).  Figure 3.8.A also 

demonstrates that LACV induces OASL mRNA.  Decreased expression of OASL 

had no effect on a neuronal WEEV- (Fig 3.8.B) or SLEV-mediated CPE (Fig 

3.8.D), but did modestly enhance a LACV-mediated cytopathic response (Fig 

3.8.C).  This finding indicated that OASL may mediate a neuronal response to 

LACV that could potentially be independent of IRF3, as cells stably 

overexpressing a dominant negative mutant of IRF3 responded normally to 

LACV (Fig 3.5.C).  Given that depletion of OASL had no effect on a neuronal 

response to WEEV, but did affect the response to LACV, we concluded that 

OASL was not likely to be involved in the IRF3-dependent, cytoprotective 

response to WEEV.  However, OASL depletion may have been insufficient to 

affect a neuronal response to WEEV.  Nevertheless, these results suggested that 

cell-intrinsic factor(s) downstream of IRF3 may be responsible for the IRF3-

dependent, cytoprotective response to WEEV, and that further study of other 

IRF3-dependent, putative cytoprotective genes, such as MxB, may identify genes 

which are protective against WEEV and possibly SLEV.  In addition, non-biased 

methods, such as transcriptional arrays, may identify alternative WEEV-induced, 

IRF3-dependent cytoprotective genes in neuronal cells. 
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Figure 3.8.  OASL protects neuronal cells from a LACV-mediated cytopathic 
effect.  A.  BE(2)-C/m cells stably overexpressing a control shRNA or a shRNA 
directed against OASL were mock-infected or infected at a MOI of 1.0 with 
WEEV or LACV for 20 hours and analyzed by RT-PCR for the transcription of 
OASL and rRNA.  B-G.  Cells described in A were infected with WEEV (B and E), 
LACV (C and F), or SLEV (D and G) at a MOI 0.01 (B-D) or 1.0 (E-F), and 
viability relative to mock-infected controls was assessed via a MTT assay at 24 
(F), 48 (B, C, E, and G), or 72 (D) hours post infection.  Data are representative 
of one trial for A.  Averages and SEMs are displayed from four independent trials 
for B-G.  *p-value < 0.05.  
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WEEV Impairs Poly(I-C)-Induced activation of ISRE and NFB Reporter 

Neuronal Cells                 

Time course studies in neuronal cells revealed that IFN transcription was not 

robustly activated until ten or more hours post WEEV infection (Supplemental 

Fig S3.7) despite measurable amounts of viral RNA, protein, and viral particles at 

times as early as six hours post infection (12).  Furthermore, WEEV induced 

IFN transcription, but we failed to observe any antiviral type-IFN protein 

production (Fig 3.6).  Together, these observations suggested that WEEV may 

impair antiviral PRR pathway signaling at early times post infection, which is a 

hypothesis that others have formed and subsequently confirmed based on similar 

observations of West Nile virus (WNV) (23).  To test this hypothesis, we 

determined if WEEV could inhibit poly(I-C)-mediated induction of neuronal 

antiviral PRR signaling.  We either pre-infected (Fig 3.9.A and Supplemental 

Fig S3.8.A) or pre-stimulated (Fig 3.9.B and Supplemental Fig S3.8.B) IFN-

dependent ISRE or NFB reporter neuronal cells (44) with the TLR3 ligand, 

poly(I-C) (pIC); the MDA5 ligand, transfected-poly(I-C) (T-pIC); IFN-A/D; or 

TNF and measured SEAP reporter production 20 hours later.  To control for 

non-specific effects of viral-mediated CPE, we monitored neuronal cell viability.  

WEEV impaired pIC- and T-pIC-mediated induction of ISRE and NFB reporter 

neuronal cells independent of order of infection (Fig 3.9.A and B), albeit the 

reduction in reporter signal was greater in pre-infected cells.  Under these 

conditions WEEV did not affect type-I IFN signaling, but when cells were pre-

infected for at least four hours prior to IFN  
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Figure 3.9.  WEEV inhibition of neuronal cell antiviral PRR pathways.  A.  

BE(2)-C/m ISRE (top panel) or NFB (bottom panel) reporter cells were mock 
pre-infected or pre-infected with WEEV MOI 1.0 for 90 minutes followed by 

mock-stimulation or stimulation with 100 U/ml IFN-A/D, TNF (25 ng/ml), 50 

g/ml poly(I-C) (pIC), or 500 ng/ml transfected-poly(I-C) (T-pIC) as indicated.  
Secreted alkaline phosphatase (SEAP) reporter activity and cell viability were 
measured 20.5 hours post infection and expressed as percents of mock-infected 
controls.  B.  Cells were treated as in A except they were pre-stimulated for 3 
hours and analyzed 16 hours post infection.  C.  BE(2)-C/m cells were pre-

infected with WEEV MOI 1.0 for 3 hours followed by a 4 hour mock, IFN-A/D, 
pIC, or T-pIC stimulation.  The indicated transcripts were analyzed by RT-PCR.  
Averages and SEMs are displayed from three independent trials for A and B.  
Data are representative of three independent trials for C.  *p-value < 0.05 
compared to either percent viability or matched mock-infected percent reporter 
activity.  
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stimulation, ISRE reporter levels decreased in parallel with cell viability, indicating 

that the impaired type-I IFN response by a well-established WEEV infection was 

likely due to a non-specific mechanism (Supplemental Fig S3.8.A).  WEEV also 

inhibited TNF-mediated activation of NFB reporter cells (Fig 3.9.A and B), 

suggesting that WEEV inhibits a common factor between PRR and TNF 

signaling pathways. 

 

WEEV Impairs Transcription of Poly(I-C)-Induced Endogenous Genes in 

Neuronal Cells 

To validate that WEEV specifically blocks neuronal PRR signaling at early times 

post infection, we examined whether WEEV could block poly(I-C)-mediated 

induction of endogenous transcripts.  As expected, pre-infection of BE(2)-C/m 

cells with WEEV decreased the induction of IFN transcripts by a four hour 

treatment of either pIC (compare group 3 to 7) or T-pIC (compare group 4 to 8) 

(Fig 3.9.C).  Importantly, WEEV was unable to block the IFN-mediated induction 

of ISG15 (compare group 2 to 6), but it did inhibit the poly(I-C)-mediated 

induction of ISG15 (compare group 3 to 7 and 4 to 8) (Fig 3.9.C).  A similar 

phenotype to that of ISG15 was observed for MxB, OASL, and Viperin and, 

which like ISG15, are responsive to both type-I IFN and PRR pathway signaling 

(Supplemental Fig S3.9).  WEEV envelope protein-1 transcripts were similar 

under each condition indicating that viral RNA burden between samples was 

equal.  These data demonstrated WEEV’s ability to specifically block neuronal 

antiviral PRR signaling at early times post infection.   
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Diverse Neurotropic Arboviruses Inhibit Poly(I-C)-Induced Activation of 

ISRE Reporter Neuronal Cells                         

 To determine if neuronal antiviral PRR pathway inhibition might be a general 

feature of neurotropic arboviruses, we assessed the ability of LACV and SLEV to 

inhibit poly(I-C)-mediated induction of ISRE reporter cells.  Both viruses, when 

co-administered with poly(I-C) or IFN-A/D, inhibited both exogenous poly(I-C) 

and transfected poly(I-C) stimulations, but had no effect an IFN-A/D stimulation 

(Fig 3.10.A and B).  Pre-infection for ten hours with LACV or SLEV did decrease 

type-I IFN-induced ISRE activity, but the reduction in ISRE activity was paralleled 

by a reduction in neuronal viability, indicating that the impaired type-I IFN 

response by a well-established LACV or SLEV infection was likely due to a non-

specific mechanism (Supplemental Fig S3.10).  Based on previous work (7), we 

expected LACV to block PRR signaling, but to our knowledge this is the first 

demonstration of SLEV inhibiting PRR signal transduction.  Given that WNV (22), 

WEEV, LACV, and SLEV inhibit antiviral PRR signal transduction, we postulate 

that this may be a common virulence mechanism of many neurotropic 

arboviruses. 

 

Exogenous Expression of WEEV Capsid Inhibits Neuronal Antiviral PRR 

Signaling  

To determine which WEEV gene was responsible for antiviral PRR pathway 

inhibition, we individually placed the WEEV genes non-structural protein-1 

(pnsP1), nsP2 (pnsP2), nsP3 (pnsP3), capsid (pCapsid), and the entire structural   
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Figure 3.10.  LACV and SLEV inhibit neuronal antiviral PRR pathways.  A 
and B.  BE(2)-C/m ISRE reporter neurons were infected with LACV MOI 1.0 (A) 

or SLEV MOI 1.0 (B) and co-stimulated with IFN-A/D (100 U/ml), pIC (50 
ug/ml), or T-pIC (700 ng/ml).  SEAP reporter activity and cell viability were 
measured 22 hours later and expressed as percents of mock infected controls.  
Averages and SEMs are displayed from three independent trials.  *p-value < 
0.05.       
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protein ORF (pStructural) under the control of a nuclear promoter.  Repeated 

attempts to clone full-length nsP4 under the control of a mammalian promoter 

failed as did attempts to express nsP4 in bacterial cells.  This was likely due to 

the short half-life observed for alphavirus nsP4 and is consistent with the 

relatively low amount of nsP4 expressed by cells infected with whole virus (56).  

A construct harboring the complete ORF for the nsP123 poly-protein did not 

express any detectable nsP123 in neuronal cells.  As positive controls for 

antiviral PRR pathway inhibition, WNV NS1 and NS2A were also cloned (pNS2A 

and pNS1) (18, 22, 38, 59).  Each viral gene was transfected into ISRE and 

NFB reporter neuronal cells and, 48 hours later, were mock-stimulated or 

stimulated with pIC, T-pIC, IFN-A/D, or TNF.  Neuronal viability was monitored 

following stimulation via an MTT assay to control for potential toxicity; none was 

observed.  Twenty-four hours after stimulation, SEAP reporter activity was 

assessed, and the results are shown in Figure 3.11.A and B.  Importantly, 

pCapsid and pStructural inhibited pIC and T-pIC-mediated ISRE activation 

without affecting an IFN-A/D stimulation.  pnsP1, pnsP2, and pnsP3 had no 

inhibitory activity, and the WNV genes pNS2A and pNS1 only inhibited a T-pIC 

stimulation.  TNF and pIC-mediated NFB activation were inhibited by both 

pCapsid and pStructural, whereas pnsP1, pnsP2, and pnsP3 had no NFB-

inhibitory capacity.  The WNV genes pNS2A and pNS1 only inhibited pIC-

mediated NFB activation.  T-pIC-mediated activation of NFB reporter cells 

previously transiently transfected with viral gene constructs was not assessed 

because we were unable to obtain sufficient T-pIC-mediated activation of  
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Figure 3.11.  WEEV capsid inhibits neuronal PRR signaling.  A and B.  

BE(2)-C/m ISRE (A) and NFB (B) reporter cells were transfected with a vector 
control or expression constructs containing the WNV genes pNS2A and pNS1, or 
the WEEV genes pCapsid, pStructural, pnsP1, pnsP2, or pnsP3.  48 hours post 

transfection cells were mock-stimulated or stimulated for 24 hours with IFN-A/D 

(100 U/ml) (A only), TNF (25 ng/ml) (B only), pIC (50 g/ml), or T-pIC (700 
ng/ml) (A only), and SEAP reporter activity was assessed and presented as 
percent of vector-transfected control cells.  Mock stimulations did not induce 
SEAP activity and were omitted from the figure.  Averages and SEMs are 
displayed from three independent trials.  *p-value < 0.05.  
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previously transiently-transfected NFB reporter cells.  The inability of WNV 

NS2A and NS1 to inhibit pIC-mediated induction of a neuronal ISRE, while still 

inhibiting a T-pIC stimulation and a pIC-mediated activation of neuronal NFB, is 

in contradiction with previous work.  One explanation for the ISRE phenotype 

may be that the dose of pIC given was too strong to observe NS1- or NS2A-

mediated inhibition.  This is consistent with the fact that the T-pIC stimulation is a 

much less efficacious activator of neuronal ISRE than the pIC stimulation (44), 

and may have been a weak enough stimulation to observe inhibition mediated by 

NS2A and NS1. In addition, the ability of NS1 to inhibit TLR3 signaling has 

recently come into question (5).  Since pCapsid and pStructural essentially 

mimicked the antiviral PRR pathway inhibitory capacity of live WEEV, we 

concluded that WEEV capsid was likely responsible for antiviral PRR pathway 

inhibition.           

Viral gene expression from the cloned constructs was verified in a variety 

of ways.  pNS1, pNS2A, pnsP1, pnsP2, and pnsP3 all contained a C-terminal V5 

epitope tag, and their expression in neuronal cells was verified via western 

blotting (Fig 3.12.A).  Transfection efficiency was monitored by co-transfection of 

a HA-tagged -galactosidase and western blotting for HA (Fig 3.12.A).  We were 

unable to find commercially-available antibodies sufficiently sensitive to detect 

any of the untagged WEEV structural genes in BE(2)-C/m cells at 24 or 48 hours 

post transfection, nor were we able to detect expression of a V5-tagged version 

of pCapsid in BE(2)-C/m cells.  Importantly, the V5-tagged version of pCapsid 

also inhibited neuronal PRR pathways (Supplemental Fig S3.11).  However, we   
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Figure 3.12.  Viral gene expression analysis.   A.  Lysates from cells 
transfected for 48 hours, as described in figure 11, were analyzed by western 
blot for HA-tagged B-galactosidase, V5-tagged viral gene expression constructs, 
and GAPDH.  B.  BE(2)-C/m cells were transfected for 24 hours with an empty 
vector or an expression construct containing WEEV capsid.  Samples were 
analyzed via RT-PCR for WEEV capsid or rRNA transcripts.  “-RT” denotes 
controls where reverse-transcriptase was omitted.  Data are representative of 
three independent trials for A and one for B. 
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did verify plasmid-mediated expression of WEEV capsid transcripts in BE(2)-C/m 

cells (Fig 3.12.B).  These data indicated that plasmid-mediated capsid 

expression in neuronal cells was poor, but, despite the poor expression of WEEV 

capsid protein, transfection of pCapsid was sufficient to inhibit PRR signaling. 

 

WEEV Capsid-Mediated Inhibition of Host Gene Expression  

It is well documented that the capsid protein of the new world alphavirus 

Venezuelan equine encephalitis virus (VEEV), a close relative to WEEV, inhibits 

host gene expression (25, 26).  Given our inability to visualize plasmid-mediated 

WEEV capsid protein expression in neuronal cells, we began to suspect that 

WEEV capsid may auto inhibit its own expression when under the control of a 

host-dependent promoter.  To test this, we asked if capsid expression from 

pCapsid, which also contains a T7 promoter, could be enhanced in cells 

expressing bacteriophage T7 RNA polymerase.  To accomplish this, BHK21 and 

BHK21 cells stably expressing a T7 bacteriophage RNA polymerase (BHK21-

T7/C3) were transfected with an empty vector, pCapsid, pStructural, or a   

T7-driven WEEV replicon with the N-terminal 27 residues of capsid fused to YFP 

(pWEErep-YFP) which served as a positive control for our capsid antibody and 

T7 function.  Whole cell lysates were collected 24 and 48 hours later and 

immunoblotted with a mouse ascites fluid generated from a WEEV-infected 

animal that we had previously determined recognized capsid.  Transfection 

efficiency was monitored by co-transfecting a HA-tagged -galactosidase and 

western blotting for HA.  Surprisingly, WEEV capsid (approximately 30 kDa) was 
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visualized in both BHK21 and BHK21-T7/C3 cells transfected with pCapsid or 

pStructural at 24 hours with slightly more capsid being expressed from pCapsid 

than pStructural, whereas replicon-driven expression of capsid was appropriately 

observed only in BHK21-T7/C3 cells (Fig 3.13.A).  However, by 48 hours post 

transfection, capsid expression was undetectable or extremely reduced in BHK21 

cells.  In contrast, capsid expression 48 hours post transfection in BHK21-T7/C3 

cells was maintained (Fig 3.13.A), suggesting that capsid undergoes 

autoinhibition when controlled by mammalian nuclear promoters.  In agreement 

with this, HA-tagged -galactosidase expression, which was controlled by the 

same hybrid promoter region as pCapsid and pStructural, was reduced by capsid 

expression, but -galactosidase expression was relatively even for matched 

transfections between BHK21 and BHK21-T7/C3 cells at 24 hours post 

transfection.  In comparison to the 24 hours time point, expression of -

galactosidase 48 hours post transfection in BHK21 cells co-transfected with 

pCapsid or pStructural was undetectable or extremely reduced, whereas in the 

BHK21-T7/C3 cells, levels of -galactosidase were significantly higher than in the 

identically transfected parental BHK21 cells 48 hours post transfection.  

Furthermore, sustained, high-level expression of capsid induced a cytopopathic 

effect observed 48 hours after pCapsid transfection of BHK21-T7/C3 cells 

(Supplemental Fig S3.12).  These data indicated that pCapsid is capable of 

producing WEEV capsid protein and that WEEV capsid is capable of inhibiting 

the expression of genes controlled by mammalian nuclear promoters.  These  
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Figure 3.13.  WEEV capsid-mediated inhibition of host gene expression.  A.  
Identical numbers of BHK21 or BHK21 cells stably expressing T7 RNA 
polymerase (BHK21-T7/C3)  were seeded overnight followed by transfection with 
a vector control, pCapsid, pStructural, or a T7-controlled WEEV replicon 
(pWEErep-YFP).  Whole cell lysates were collected 24 and 48 hours post 
transfection and subjected to western blot analysis.  Transfection efficiency was 
approximately 65% in both lines 24 hours post transfection with a GFP reporter 
(data not shown).  B.  BE(2)-C/m cells were infected with WEEV at an MOI of 10, 
labeled with 50 μCi per ml 35S-Met/Cys for 30 min prior to harvesting at 3, 6, 9, 
and 12 hpi, and lysates were analyzed by SDS-PAGE and fluorography.  
Translation of a cellular protein at approximately 45 kDa was quantitated by 
densitometry, and results are expressed as the percentage of uninfected 
controls.  Data are representative of two trials for A and four for B. 
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data, along with the fact that we could not detect capsid in BE(2)-C/m cells 

transfected with pCapsid, yet transfection with this construct inhibited neuronal 

PRR signaling, suggest that relatively little capsid expression was required to 

inhibit neuronal antiviral PRR signal transduction.  The ability of small amounts of 

WEEV capsid to inhibit PRR signaling is consistent with the early inhibition of 

antiviral PRR signaling in WEEV-infected neurons (Fig 3.9.C), a time when 

capsid expression is relatively low. 

The data in Figure 3.13.A suggested that WEEV capsid inhibits host gene 

expression.  To determine if this may contribute to WEEV-mediated inhibition of 

PRR signaling, we first assessed, in neuronal cells, the kinetics of WEEV-

mediated host translational shut down, which is often kinetically similar to 

alphavirus-mediated inhibition of host translation (14).  To achieve this, BE(2)-

C/m cells were labeled with 35S-Met/Cys at varying times post WEEV infection 

(MOI 10), and analyzed by SDS-PAGE and fluorography.  WEEV infection of 

neuronal cells suppressed host protein synthesis by just 25% compared to 

uninfected controls 9 hours post infection (Fig 3.13.B).  However, WEEV 

suppressed antiviral PRR signaling by approximately 65% (Fig 3.9.C 

densitometry of IFN RT-PCR) at 7 hours post infection with a ten-fold lower 

inoculum, suggesting that host translational shut off was not likely to be the sole 

mechanism for capsid-mediated inhibition of antiviral PRR signaling. 
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Capsid Inhibits Neuronal Antiviral PRR Signaling After IRF3 Activation 

To further characterize at what point WEEV capsid inhibits antiviral PRR signal 

transduction, we tested the ability of capsid to inhibit neuronal PRR pathways 

activated by expression of PRR pathway components that drive signaling from 

distinct points within the PRR pathway.  Specifically, ISRE reporter neuronal cells 

were stimulated by transfecting an empty vector (pEmpty), MDA5 (pMDA5), 

constitutively-active TRIF mutant (psa.TRIF), or a constitutively-active IRF3 

mutant (psa.IRF3) along with either a vector control (pVector), pnsP1, pDN.IRF3, 

pCapsid, or pStructural and an HA-tagged -galactosidase to monitor 

transfection efficiency (Fig 3.14.A).  As predicted, co-transfection of pDN.IRF3 

with psa.TRIF or pMDA5 inhibited ISRE activation, whereas co-transfection of 

pDN.IRF3 with psa.IRF3 was unable to inhibit ISRE induction.  Co-transfection of 

either pCapsid or pStructural with either psa.TRIF, pMDA5, or psa.IRF3 inhibited 

ISRE activation, where pCapsid had greater PRR pathway inhibitory activity than 

pStructural when co-transfected with psa.TRIF or psa.IRF3.  pNS1 and pnsP1 

had no inhibitory activity.  Expression of constitutively-active TRIF, MDA5, 

constitutively-active IRF3, and the transfection efficiency control -galactosidase 

was confirmed by western blot analysis (Fig 3.14.B).  Of note, transfection of 

psa.TRIF, pMDA5, or psa.IRF3 reduced expression of -galctosidase with 

psa.IRF3 and pMDA5 having the most and least dramatic effect respectively.  

Transfection of capsid reduced expression of constitutively-active TRIF, MDA5, 

and constitutively-active IRF3 by 80, 50, and 10%, respectively, relative to an 

empty vector (compare lane 2 to 8, lane 3 to 9, and lane 4 to 10).  In comparison,     
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Figure 3.14.  WEEV capsid inhibits neuronal antiviral PRR signaling after 
IRF3 activation.  A.  BE(2)-C/m ISRE reporter cells were co-transfected with a 

HA-tagged -galactosidase to monitor transfection efficiency as well as an empty 
vector (pEmpty) or the PRR pathway signaling components constitutively active 
MDA5 (pMDA5), TRIF (psa.TRIF), and constitutively active IRF3 (psa.IRF3).  To 
assess the ability of WEEV capsid to inhibit PRR signaling driven by the above 
PRR signaling components, cells were co-transfected with a negative vector 
control (pVector), pnsP1, the positive dominant negative IRF3 (pDN.IRF3) 
control, pCapsid, or pStructural.   SEAP reporter activity was measured 48 hours 
later and expressed as percent of pVector-transfected controls.  pEmpty-
transfected cells failed to induce SEAP activity and were omitted from the figure.  
B.  Lysates from the transfected cells described above were subject to western 
blot analysis for TRIF, MDA5, IRF3, HA, and GAPDH.  Densitometry (44) was 
used to quantitate relative expression of proteins indicated in the text.  Averages 
and SEMs are displayed from three independent trials for A.  Data are 
representative of two trials for B.  *p-value < 0.05.  
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transfection of pStructural reduced expression of constitutively-active TRIF, 

MDA5, and constitutively-active IRF3 by 45, 5, and 0%, respectively, relative to 

an empty vector (compare lane 2 to 11, lane 3 to 12, and lane 4 to 13).  

Therefore, we cannot rule out a role for capsid-mediated inhibition of host gene 

expression as a mechanism for inhibition of PRR signaling, especially when PRR 

signal transduction was activated by constitutively-active TRIF overexpression; 

however, capsid-mediated reduction of 0-10% for constitutively-active IRF3 

expression is unlikely to solely account for the capsid-dependent 80-90% 

inhibition of PRR signaling driven by constitutively-active IRF3 overexpression.  

These data further confirmed that WEEV capsid blocks antiviral PRR signaling 

and that it does so after IRF3 activation.  

          

A WEEV Structural Gene, Likely Capsid, Inhibits IRF3 Nuclear 

Translocation 

Venezuelan equine encephalitis virus capsid was recently shown to inhibit 

nuclear translocation by disrupting nuclear pore function (3, 4), and attenuated 

strains of VEEV blocked pores less efficiently (3).  In addition, strong VEEV 

capsid-mediated blockade of nuclear translocation was observed just 4 hours 

post infection, whereas strong inhibition of cellular transcription was delayed until 

10-24 hours post infection (3).  These data correlate nicely with our results 

regarding WEEV inhibition of antiviral PRR signaling and host gene shut off 

(Figures 3.9.C and 3.13.B).  To determine if disruption of nuclear translocation 

contributes to WEEV capsid-dependent inhibition of PRR signaling, we asked if 
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WEEV capsid inhibited nuclear translocation of IRF3 following a poly(I-C) 

stimulation.  To achieve this, BE(2)-C/m cells were transfected with an empty 

vector or pStructural.  pStructural was used as opposed to pCapsid because 

pStructural had a greater inhibitory capacity against a poly(I-C) stimulation and 

affected host gene expression less than pCapsid (Figures 3.11 and 3.14), which 

may be due to different dynamics for capsid expression and autoinhibition 

mediated by capsid expressed from pStructural versus pCapsid.  As before, cells 

were co-transfected with a HA-tagged -galactosidase to monitor transfection 

efficiency.  Forty-eight hours post transfection, BE(2)-C/m cells were mock 

stimulated or stimulated with pIC for 2.5 or 5 hours, separated into cytosolic and 

nuclear fractions, and analyzed by western blotting (Fig 3.15.A).  Immunoblotting 

for HA revealed uniform transfections and, as expected, a predominantly 

cytosolic localization of -galactosidase.  In contrast, the nuclear marker Oct-1 

was primarily present in the nuclear fractions, and -actin expression was 

present in both the cytosolic and nuclear fractions.  Throughout the time-course, 

IRF3 expression was predominantly cytosolic, but upon poly(I-C) stimulation, 

IRF3 accumulated in the nucleus of vector-transfected cells but not pStructural-

transfected cells.  These data suggested that a WEEV structural gene, possibly 

capsid, inhibits IRF3 nuclear translocation.   

To test if WEEV capsid, expressed in the absence of WEEV envelope 

proteins, inhibited IRF3 nuclear translocation, we co-transfected BE(2)-C/m cells     
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Figure 3.15.  A WEEV structural gene, possibly capsid, inhibits IRF3 
nuclear translocation.  A.  BE(2)-C/m cells were transfected with a vector 
control or pStructural for 48 hours followed by mock stimulation or stimulation 

with pIC (50 g/ml) for 2.5 or 5 hours.  Cells were also co-transfected with an HA-

tagged -galactosidase transfection control.  Samples were separated into 
cytosolic and nuclear fractions and subjected to western blot analysis for IRF3, 

HA, -actin, and Oct-1.  Blots were visualized via chemiluminescence using 
HRP-conjugated secondary antibodies; however, assessment of IRF3 was 
achieved by amplifying with a biotin-conjugated antibody and visualized using 
HRP-conjugated streptavidin.  B.  BE(2)-C/m cells were transfected with a vector 
control or pCapsid along with an empty vector or psa.IRF3.  Cells were also co-

transfected with an HA-tagged -galactosidase transfection control.  24 hours 
later cells were processed and analyzed as in A.  C.  BHK21-T7/C3 cells were 
transfected with a vector control or pCapsid and stained for WEEV capsid via 
immunofluorescence.  Total magnification is 1000X.  Data are representative of 
one trial for A, four for B, and one for C. 
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with either an empty vector or psa.IRF3 along with either a control vector or 

pCapsid.  We used psa.IRF3 as a PRR stimulus as opposed to psa.TRIF or 

pMDA5 because pCapsid inhibited constitutively active IRF3 expression the least 

(Fig 3.14.B).  Twenty-four hours post transfection, lysates were harvested, 

separated into cytosolic and nuclear fractions, and analyzed by western blotting 

(Fig 3.15.B).  Transfection of pCapsid reduced the expression of constitutively 

active IRF3 by 20% relative to a vector control (densitometry of lane 4 versus 3).  

However, transfection of pCapsid reduced the nuclear accumulation of 

constitutively active IRF3 by 40% relative to a vector control (densitometry of 

lane 8 versus lane 7: p < 0.05 when comparing the ratio of IRF3 in the 

cytoplasmic fraction to that in the nuclear fraction).  These data indicated that 

WEEV capsid may inhibit IRF3 nuclear translocation in neuronal cells.    

To assess where capsid is expressed in cells and to begin asking if it 

might also inhibit nuclear pore function, we performed immunofluorescence 

staining for WEEV capsid in BHK21-T7/C3 cells transfected with a vector control 

or WEEV capsid.  We viewed cells via epifluorescence, and in most transfected 

cells, we observed cytoplasmic capsid staining with more intense punctuate 

staining in a region surrounding nuclei.  In approximately 25% of cells, we also  

observed intense nuclear staining.  Importantly, an intense signal surrounding 

DAPI-stained nuclei was observed in approximately 30% of transfected cells (Fig 

3.15.C), a pattern which is reminiscent of VEEV capsid localization to the nuclear 

pore complex (3).  Together these data demonstrated that a WEEV structural 

gene, likely capsid, inhibits IRF3 nuclear translocation potentially by disabling 
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nuclear pores, and that this activity, along with suppression of host gene 

expression, may account for the ability of WEEV to inhibit neuronal cell antiviral 

PRR signaling.   

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



213 
 

Discussion 

Early cellular innate immune responses are often vital for effective 

pathogen control and may ameliorate the destruction of CNS neurons by 

neurotropic arboviruses, the extent of which is often an important determinant in 

the severity and clinical outcome of these infections.  In this report, we examined 

the functional impact of previously identified neuronal PRR pathways (44) on 

neurotropic viral infections primarily using WEEV as a model neurotropic 

arbovirus, whose primary target cell type within the CNS is the neuron.  We drew 

five main conclusions which are graphically represented in Figure 3.16.  First, 

WEEV activated neuronal PRR pathways via recognition by RIG-I and/or MDA5 

and subsequent induction of an IRF3-dependent transcriptional response.  

Second, IRF3 mediated a neuronal cytoprotective response to WEEV which was 

likely dependent on IRF3-mediated induction of cell-intrinsic factors with 

cytoprotective properties and independent of autocrine/paracrine antiviral type-I 

IFN signaling.  Third, the neurotropic arboviruses, WEEV, SLEV, and LACV all 

specifically inhibited neuronal antiviral PRR pathways at early times post 

infection.  Fourth, WEEV capsid was the main WEEV gene responsible for 

inhibition of neuronal antiviral PRR pathways.  Fifth, WEEV capsid likely inhibited 

neuronal antiviral PRR signaling by a combination of early inhibition of IRF3 

nuclear translocation and late inhibition of host macromolecular synthesis.  

These results indicated that neuronal PRR-pathway responses may be important 

determinants of neurotropic arbovirus pathogenesis. 
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Figure 3.16.  Interactions of neuronal PRR pathways with WEEV.  Following 
infection and replication of neuronal cells, WEEV may be recognized by RIG-I 
and MDA5, which mediate a transcriptional and cytoprotective response, 
depending on the neuronal culture model.  Future work using alternative 
neuronal models will have to definitively assess the role these two proteins play 
in neuronal PRR responses to WEEV.  On the other hand, IRF3 mediates both a 
transcriptional and cytoprotective response to WEEV in neurons.  Importantly, 
WEEV capsid inhibits antiviral PRR signaling in neurons possibly by inhibiting 
IRF3 nuclear translocation at early times post infection and shutting down host 
gene expression at late times post infection.  
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Previous studies investigating the role of PRR pathway signaling 

components on alphavirus infections suggested that old world alphaviruses, 

which are not naturally encephalitic, may be recognized by RIG-I (10) and MDA5 

(48) and require TBK1 for activation of IRF3 (10).  In contrast, the role of 

individual PRR signaling components on new world equine encephalitic 

alphaviruses has been much less studied, but it is known that equine encephalitic 

alphaviruses increase serum levels of type-I IFNs in mice (24, 33), and VEEV 

induces neuronal type-I IFN transcription (53, 60).  In this report, we examined 

the role of previously identified neuronal PRR signaling components (44) on a 

WEEV infection and found that RIG-I, MDA5, and IRF3 mediate a neuronal 

transcriptional response; however, only IRF3 consistently mediated a 

cytoprotective response to WEEV in both human neuronal cells and primary 

neurons, suggesting that cytosolic recognition of WEEV resulting in neuronal 

protection is likely complex and possibly redundant.  To clarify the role of 

individual neuronal PRR signaling components on neuron-protective responses 

to neurotropic arboviruses, future studies will require neuron-specific conditional 

knock-out mouse models to specifically analyze neuronal PRR responses in the 

neuron’s natural environment.   

In contrast to encephalitic alphaviruses, the neuronal PRR response to the 

neurotropic arbovirus WNV is fairly well characterized (15-17, 19, 57).  Similar to 

what we observed with WEEV, IRF3-/- primary neurons showed reduced 

induction of type-I IFNs following WNV infection and only modest increases in 

titers at late time points (15); therefore, it would be interesting to determine if a 



216 
 

neuronal IRF3-dependent cytoprotective response to WNV exists, especially 

since its relative, SLEV, induced a greater CPE in dominant negative IRF3 

overexpressing neuronal cells.      

 Many antiviral effector genes for old world alphaviruses have been 

identified (63), but to our knowledge, few have been tested for antiviral activity 

against intact new world alphaviruses (6).  Here, we identified the WEEV-

mediated, IRF3-dependent induction of several reported antiviral and potentially 

cytoprotective genes in neurons.  shRNA-mediated depletion of the most induced 

putative effector, OASL, revealed that OASL protects neuronal cells from a 

LACV-mediated CPE, but not from a WEEV- or SLE-mediated CPE.  To our 

knowledge, this is the first demonstration of an OASL-mediated cytoprotective 

effect in response to LACV, or any bunyavirus, in neuronal cells.  Little is known 

about how OASL exerts its antiviral and potentially related neuronal 

cytoprotective effect, but the antiviral activity of OASL against 

encephalomyocarditis virus, a picornavirus, requires its ubiquitin-like domain.  

Furthermore, the OASL-mediated antiviral effect against encephalomyocarditis 

virus is thought to be drastically different than the classic OAS genes because it 

lacks any 2’-5’ oligoadenylate synthetase activity (40).  The next most WEEV-

induced, IRF3-dependent, putative cytoprotective gene was MxB, which is 

currently being investigated for cytoprotective activity against neurotropic 

arboviruses.  In humans, MxB, unlike MxA, does not appear to have antiviral 

activity.  Moreover, MxB hasn’t been tested against most neurotropic 

arboviruses, and the high similarity between MxA and MxB suggests that MxB 
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may have an unobserved antiviral role.  MxA exerts its antiviral effect by 

disrupting the trafficking of viral components, which results in abrogated viral 

replication (50).  In contrast, the best described cellular function of MxB is to 

enhance nuclear import (32).  This suggests a particularly attractive hypothesis in 

which MxB may achieve a putative cytoprotective effect against WEEV by 

counteracting WEEV capsid’s ability to inhibit nuclear translocation of IRF3.  

Regardless, future studies will be required to further clarify the neuronal 

cytoprotective effects of these genes in response to neurotropic arboviruses.   

These future studies should be done in vivo as much as possible because 

important differences between tissue culture and animal models have been 

observed for antiviral effector responses to old world alphaviruses (63).      

 Many viruses block antiviral PRR signaling including the neurotropic 

arboviruses WNV (18, 22, 38, 59) and LACV (7).  Here we confirm the PRR 

pathway inhibitory capability of LACV and also demonstrate that WEEV and 

SLEV block neuronal antiviral PRR signaling.  We are unaware of any 

documented ability of SLEV to inhibit antiviral PRR signaling, and future work will 

be required to determine how SLEV achieves this, and if it does so in a manner 

similar to the related flavivirus WNV.   

Previous studies demonstrated that a panel of old and new world 

alphaviruses failed to induce type-I IFNs in MEFs and that the old world 

alphavirus, Sindbis virus, blocked SeV and poly(I-C)-mediated induction of type-I 

IFNs (10).  However, the PRR pathway inhibition by Sindbis virus and WEEV are 

in conflict with reports documenting that many new and old world alphaviruses 
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increase serum levels of type-I IFNs in mice (14, 24).  These conflicting data 

suggest that, in vivo, alphavirus antiviral PRR pathway countermeasures may not 

be completely effective in all cell types.    

We mapped the WEEV-mediated inhibition of neuronal antiviral PRR 

signaling to the capsid gene, which in the related new world alphaviruses, VEEV 

and eastern equine encephalitis virus (EEEV), blocks host transcription (25, 26).  

VEEV capsid also blocks nuclear translocation by “clogging” nuclear pores, and 

an attenuated VEEV strain blocked nuclear pores less efficiently leaving others to 

postulate that capsid-mediated blockade of nuclear pores and inhibition of host 

transcription may inhibit antiviral pathways (3, 4).  Accordingly, we tested and 

confirmed that a WEEV structural gene, likely capsid, inhibits IRF3 nuclear import 

and that WEEV capsid inhibits host gene expression, but future studies will have 

to definitively assess whether WEEV capsid localizes to and disrupts nuclear 

pores.  Future studies will also have to rule out a role for WEEV envelope 

proteins in the WEEV-mediated disruption of IRF3 nuclear translocation.  Since 

capsid expression had no effect on type-I IFN signaling and also blocked a 

TNF-mediated activation of NFB in neuronal cells, future studies will also have 

to determine the selectivity and specificity of WEEV-mediated inhibition of 

nuclear import.   

Based on these data, we speculate that WEEV capsid blocks neuronal 

antiviral PRR signaling early by inhibiting nuclear translocation and late through a 

combined inhibition of nuclear translocation and inhibition of host gene 

expression.  We base this hypothesis on the observation that IRF3 nuclear 
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translocation was robustly inhibited at early times post WEEV infection (Fig 

3.15.A), and this correlated well with early inhibition of neuronal antiviral PRR 

signaling (Fig 3.9.C).  In contrast, robust inhibition of host gene expression 

occurred much later (Fig 3.13.B).   

Despite the ability of WEEV to inhibit neuronal antiviral PRR signaling, a 

functional cell-intrinsic, IRF3-dependent, type-I IFN- independent, neuronal 

cytoprotective response remained.  One explanation for this paradox could be 

that the cytoprotective pathway is more responsive to low levels of PRR signal 

transduction reaching the nucleus than the antiviral type-I IFN-dependent 

pathway.  However, this hypothesis will need to be specifically addressed.  

Finally, future studies should also confirm that neuronal PRR pathways are 

indeed inhibited from responding to a WEEV stimulus, as opposed to a poly(I-C) 

stimulus, by identifying WEEV capsid mutants or generating WEEV virus-like 

particles lacking structural genes that robustly induce antiviral type-I IFNs in 

neuronal cells.  In conclusion, our data indicate that neuronal PRR pathways may 

be important determinants of neurotropic arbovirus pathogenesis and that 

neuronal PRR pathways, and viral countermeasures to them, may be exploited to 

develop more efficacious vaccines and anti-neurotropic arboviral treatments.                  
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Supplemental Figure S3.1.  Effect of PI3K p110 depletion on neuronal 
responses to WEEV.  A.  BE(2)-C/m cells stably expressing a vector control or 

shRNA targeting PI3K p110 were infected with WEEV (MOI 1) for 20 hours.  

RNA was harvested, and quantitative RT-PCR was used to assess IFN and 
rRNA transcript expression.  B.  BE(2)-C/m described in A were mock infected or 
infected with WEEV as indicated.  48 hours later cell viability was assessed by an 
MTT assay.  Averages and SEMs are displayed from 2 trials for A and B. 
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Supplemental Figure S3.2.  TRIF and TLR3-independent neuronal response 
to WEEV.  A.  BE(2)-C/m cells stably overexpressing an empty vector or 
dominant negative TRIF were mock infected or infected with WEEV as indicated.  
Cell viability was assessed 48 hours later via an MTT assay.  B and C.  BE(2)-
C/m cells were transfected with either a vector control (B and C), wild-type TLR3 
(B), or dominant negative TLR3 (C).  48 hours after transfection cells were 
infected and analyzed as in A.  Averages and SEMs are displayed from 3 
independent trials for A.  Representative experiments are displayed from 2 
independent trials for B and C.  
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Supplemental Figure S3.3.  IFN-mediated induction of MDA5 is transient 
relative to IFN-mediated induction of RIG-I in neuronal cells.  A.  BE(2)-C (C) 

or BE(2)-C/m (C/m) cells were mock stimulated or stimulated with IFN-A/D (100 
U/ml) for the indicated times.  Lysates were collected and analyzed by Western 
blotting for MDA5, RIG-I, and GAPDH.  B.  BE(2)-C cells stably expressing a 
control shRNA or an shRNA targeting MDA5 were mock stimulated or stimulated 

with IFN-A/D (1000 U/ml) for the indicated times.  Lysates were collected and 
analyzed as in A.  Data represent one trial.    
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Supplemental Figure S3.4.  Wild-type and constitutively active neuronal 
PRR pathway component-dependent responses to WEEV.  A.  BE(2)-C/m 
cells were transiently transfected with a vector control (pVector), wild-type RIG-I 
(pRIG-I), wilt-type IRF3 (pIRF3), or a constitutively active IRF3 (psa.IRF3) for 48 
hours.  Transfected cells were infected with WEEV as indicated, and viability was 
assessed 48 hours post infection via an MTT assay.  B.  BE(2)-C/m cells 
transiently overexpressing the indicated constructs were infected with WEEV 
(MOI 0.1).  Supernatants were harvested 72 hours post infection, and WEEV 
titers were determined via a plaque assay.  C.  Supernatants from BE(2)-C/m 
cells transfected with the indicated constructs were harvested at the indicated 
times and stored at -80o C.  Thawed supernatants were serially diluted and used 
to stimulate BE(2)-C/m ISRE reporter cells.  ISRE activation mediated by these 

supernatants was compared to a standard curve of IFN-A/D-mediated activation 
of an ISRE in neuronal cells.  Therefore, the amount of type-I IFNs in these 
supernatants harvested from PRR component-transfected neuronal cells are 
expressed in relative IFN units.  D.  BE(2)-C/m ISRE-SEAP reporter cells were 
transfected with the constructs listed in A as well as wild-type TLR3 (pTLR3) and 
wild-type MDA5 (pMDA5).  Six hours after transfection, cells were washed and 

incubated with fresh media containing a control antibody or a mix of IFN (500 

neutralizing U/ml) and IFN (500 neutralizing U/ml) neutralizing antibodies.  48 
hours after transfection, supernatants were harvested and SEAP activity was 
measured.  Averages and SEMs are displayed from 3 trials for A and 2 trials for 
C and D.  Data in B represent averages and standard deviations from duplicate 
wells for one trial.  *p < 0.05.        
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Supplemental Figure S3.5.  SeV-mediated activation and induction of IRF3 
in neuronal cells.  Lysates from BE(2)-C/m cells described in Figure 3.6.A were 
analyzed by Western blot for IRF3.  Data are representative of 3 independent 
trials.   
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Supplemental Figure S3.6.  Neuronal cell bioassay for viral-induced cell-
extrinsic factors capable of modulating a WEEV-mediated CPE.  
Supernatants from producer BE(2)-C/m cells mock infected, WEEV infected at 

the indicated MOI for 24 hours, or media treated with 80 U/ml IFN-A/D were 
conditioned to inactivate and remove viral particles and used to pretreat target 
BE(2)-C/m cells (bars 1,2,4, and 5) for 18 hours.  As a positive control, target 
BE(2)-C/m cells were pretreated with unconditioned media containing 80 U/ml 

IFN-A/D (bar 3).  Following pretreatment, target BE(2)-C/m cells were mock 
infected or infected with WEEV MOI 0.1 and cell viability relative to mock infected 
controls was assessed 48 hours post infection by a MTT assay.  Averages and 
SEMs are displayed from three independent trials.  *p-value < 0.05.      
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Supplemental Figure S3.7.  Kinetics of WEEV-mediated induction of IFN 
mRNA in neuronal cells.  BE(2)-C/m cells were mock infected or infected with 
WEEV MOI 5.0.  RNA was isolated at five and twenty hours post infection, and 

IFN, WEEV envelope protein-1 (WEEV-E1), and actin transcript expression was 
assessed via RT-PCR.  Data are representative of 2 independent trials.        
 
 
 
 
 
 



233 
 

 
 
Supplemental Figure S3.8.  WEEV inhibits PRR signaling but not type-I IFN 
signaling independent of its cytopathic effect in neuronal cells.  A.  ISRE-
reporter BE(2)C/m cells were mock infected or infected with WEEV MOI 1.0 for 

4.5 hours followed by mock stimulation or stimulation with IFN-A/D (100 U/ml) 
for 15 hours.  SEAP reporter activity and cell viability were assessed 15 hours 

after stimulation and presented as percents of mock infected controls.  B.  NFB 
reporter BE(2)-C/m cells were treated and analyzed as in Figure 3.9.B except 
they were pre-stimulated for 7.5 hours.  Averages and SEMs are displayed from 
three independent trials.  *p-value < 0.05 compared to either percent viability or 
matched mock-infected percent reporter activity.    
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Supplemental Figure S3.9.  WEEV inhibits neuronal cell PRR pathways but 
not type-I IFN pathways at early times post infection.  BE(2)-C/m cells were 
treated and analyzed as in Figure 3.9.C except MxB, OASL, and Viperin 
transcripts were assessed via RT-PCR.  Data are representative of 3 trials for 
Viperin, 2 for OASL, and 1 for MxB.      
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Supplemental Figure S3.10.  LACV and SLEV-mediated inhibition of 
neuronal type-I IFN signaling parallels virus-mediated cytopathic effect.  
BE(2)-C/m ISRE reporter cells were infected with either LACV (left panel) or 
SLEV (right panel) at a MOI of 1.0 for 10 hours followed by mock stimulation or 

an IFN-A/D (100 U/ml) stimulation.  SEAP reporter activity and cell viability were 
assessed 15 hours after stimulation and presented as percents of mock infected 
controls.  Averages and SEMs are displayed from three independent trials.      
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Supplemental Figure S3.11.  V5-tagged WEEV capsid inhibits neuronal PRR 
pathway signaling.  BE(2)-C/m ISRE reporter cells were treated and analyzed 
as in Figure 3.14.A except a C-terminal V5-tagged version of capsid was used.  
Averages and SEMs are displayed from 2 trials.     
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Supplemental Figure S3.12.  WEEV capsid causes death of BHK21-T7/C3 
cells.  BHK21 or BHK21 cells stably expressing a bacteriophage T7 RNA-
polymerase (BHK21-T7/C3) were transfected with the indicated constructs 
described in Figure 3.13.A.  100X, live-cell, phase-contrast images were acquired 
48 hours post transfection using an Olympus IX70 inverted microscope.  Data 
are representative of 2 trials.     
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Chapter IV 
 

The Identification of Thieno[3,2-b]pyrrole Derivatives as Novel Small 
Molecule Inhibitors of Neurotropic Alphaviruses 

 

 Neurotropic alphaviruses such as western, eastern, and Venezuelan 

equine encephalitis viruses cause serious and potentially fatal central nervous 

system infections in humans and are high priority potential bioterrorism agents.  

There are currently no widely available vaccines or effective therapies for these 

virulent pathogens.  To identify potential novel antivirals, we developed a cell-

based assay with a western equine encephalitis virus replicon expressing a 

luciferase reporter gene and screened a small molecule diversity library of 

51,028 compounds.  We identified and validated a thieno[3,2-b]pyrrole 

compound with a 50% maximal inhibitory concentration of less than 10 M, 

toxicity:activity ratio greater than 20, and potent activity against live virus in 

cultured neuronal cells.  Furthermore, a structure-activity relationship analysis 

with twenty related compounds identified several with enhanced activity profiles, 

including six with submicromolar 50% maximal inhibitory concentrations.  In 

conclusion, we have identified a novel class of promising inhibitors with potent 

activity against virulent neurotropic alphaviruses. 
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Introduction 

The Alphavirus genus within the Togaviridae family contains about 30 

mosquito-borne, enveloped, positive-stranded RNA viruses, one third of which 

cause significant diseases in human and animals worldwide (16).  For example, 

neurotropic alphaviruses such as western, eastern, and Venezuelan equine 

encephalitis viruses (WEEV, EEEV, and VEEV, respectively) infect the central 

nervous system (CNS) and can lead to severe encephalitis in humans with 

fatality rates of up to 70%, and survivors often bear long-term neurological 

sequelae (7, 8).  Neurotropic alphaviruses are also important members of the 

growing list of emerging or resurging public health threats (17) and are listed as 

CDC and NIAID category B bioterrorism agents, due in part to numerous 

characteristics that make them potential biological weapons: (i) high clinical 

morbidity and mortality; (ii) potential for aerosol transmission; (iii) lack of effective 

countermeasures for disease prevention or control; (iv) public anxiety elicited by 

CNS infections; (v) ease with which large volumes of infectious materials can be 

produced; and (vi) potential for malicious introduction of foreign genes designed 

to increase alphavirus virulence (38). 

There are currently no licensed vaccines or antiviral drugs for alphaviruses. 

Formalin-inactivated vaccines for WEEV or EEEV and a live attenuated VEEV 

vaccine (TC-83 strain) are available on an investigational drug basis and are 

limited primarily to laboratory workers conducting research on these viruses (38).  

However, these vaccines have poor immunogenicity, require annual boosters, 

and have a high frequency of adverse reactions.  The development of alternative 
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live attenuated, chimeric, and DNA-based alphavirus vaccines is being actively 

pursued, and several candidates have been tested in animal models (3, 9, 29, 

37, 40, 41, 44, 46).  Nevertheless, the broad clinical application of these newer 

generation vaccines is likely years away.  Furthermore, combined active 

vaccination and antiviral therapy may be a more effective response to an 

outbreak due to either natural transmission or intentional exposure to a viral 

pathogen (4). 

Several compounds have been reported to inhibit alphavirus replication, 

including the nucleoside analogs ribavirin and mycophenolic acid (27), (-)-

carbodine (20), triaryl pyrazoline (35), and seco-pregnane steroids from the 

Chinese herbs Strobilanthes cusia and Cynanchum paniculatum (25).  

Nevertheless, there is still a pressing need to identify new antiviral drugs to treat 

these virulent pathogens.  To this end, we developed a cell-based assay 

amenable to high-throughput screening (HTS) and analyzed a diversity library of 

>50,000 compounds for activity against WEEV RNA replication.  We identified 

and validated several compounds with potent inhibitory activity against WEEV 

and related alphaviruses.  Furthermore, we conducted limited structure-activity 

analyses with one of these compounds and identified a series of thieno[3,2-

b]pyrrole derivatives as novel inhibitors of neurotropic alphaviruses. 
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Materials and Methods 

Cells and Viruses 

Human neuroblastoma (BE(2)-C), African green monkey kidney (Vero), and baby 

hamster kidney (BHK) cell lines were purchased from the American Type Culture 

Collection (ATCC, Manassas, VA) and cultured in Dulbecco's Modified Eagle 

Medium containing 5% bovine grown serum (HyClone, Logan, UT), 10 U/mL 

penicillin, and 10 g/mL streptomycin.  BSR-T7/5 cells, which are BHK cells that 

constitutively express bacteriophage T7 RNA polymerase (5), were generously 

provided by K. Conzelmann (Max von Pettenkofer-Institut, Munich, Germany) 

and were cultured in Glasgow Minimum Essential Medium containing 10% heat-

inactivated fetal bovine serum, 10% tryptose phosphate broth, 1% sodium 

pyruvate, 0.1 mM non-essential amino acids, 10 U/mL penicillin, 10 g/mL 

streptomycin, and 100-500 g/mL G418 for selection.  BHK cell lines 

VEErep/SEAP/Pac and EEErep/SEAP/Pac, which stably express double 

subgenomic VEEV or EEEV replicons with secreted alkaline phosphatase 

(SEAP) reporter and puromycin resistance genes (33), were generously provided 

by I. Frolov (UTMB, Galveston, TX) and were cultured in Dulbecco's Modified 

Eagle Medium containing 7% fetal bovine serum, 10 U/mL penicillin, 10 g/mL 

streptomycin, and 5 g/mL puromycin for selection.  Infectious WEEV 

corresponding to strain Cba87 was generated as described (6), and all 

experiments that involved infectious WEEV were conducted under BSL-3 

conditions in approved facilities at the University of Michigan.  Fort Morgan virus 

(FMV) strain CM4-146 was purchased from ATCC, and SINV strain Toto64 was 
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generously provided by R. Kuhn (Purdue University, West Lafayette, IN).  FMV 

and SINV stocks were prepared and quantified using Vero cells as described for 

WEEV (6). 

 

WEEV Replicon 

We generated the WEEV replicon plasmid pWR-LUC using the full-length 

genomic clone pWE2000 (37), generously provided by M. Parker (USAMRIID, 

Frederick, MD).  This cDNA clone contains a T7 polymerase promoter to initiate 

precise transcription and produce viral RNA with authentic 5’ termini.  We 

amplified the firefly luciferase (fLUC) gene from pTRE2hyg-LUC (Clontech, Palo 

Alto, CA) by PCR without an ATG initiator codon but with engineered AvrII and 

BstXI sites and inserted the resultant fragment into the AvrII-BstXI site of 

pWE2000.  This strategy replaced the majority of the WEEV structural genes with 

the fLUC reporter gene, but retained the first 27 amino acids of the capsid protein 

to preserve the predicted stem-loop region within the structural gene translation 

enhancer previously identified in alphaviruses (11).  We further modified pWR-

LUC by placing a hepatitis  ribozyme and T7 terminator downstream of the 

polyadenylation region to ensure efficient transcription termination and produce 

authentic viral 3’ termini (Fig 4.1.A).  To generate the control replicon pWR-

LUC, we deleted the NheI-NheI fragment to remove the non-structural protein 

(nsP) coding region that included the majority of nsP2, 3, and 4. 
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Primary HTS, Dose-Response, and Secondary Validation of Candidate 

Compounds 

BSR-T7/5 cells at approximately 60-70% confluence in 10 cm tissue culture 

plates (~2 x 106 cells/plate) were transfected with 15 g pWR-LUC using 22 L 

TransIT LT-1 (Mirus, Madison, WI) according to the manufacturer’s instructions.  

Six hours after transfection cells were detached with 0.05% trypsin, diluted to 

6.25 x105 cells/mL, and 20 L cell suspension per well was dispensed into 384-

well plates preloaded with individual compounds in 30 L media at approximately 

5-10 M.  All plates contained a series of 32 wells each of negative and positive 

controls, which consisted of dimethyl sulfoxide and 100 M ribavirin, respectively.  

Plates were cultured at 37°C and 5% CO2 for 18 h, 40 L media was removed 

and replaced with 10 L per well Steady-Glo luciferase reagent (Promega, 

Madison, WI), and luminescence was read on a PHERAstar multi-mode plate 

reader (BMG Labtech, Durham, NC).  Individual compounds identified as primary 

hits as described below and in table 1 were validated by dose-response analyses 

using a similar 384-well format, but with 3.3-fold serial dilutions of compounds 

from 100 M to 10 nM assayed in duplicate wells.  Selected compounds were 

purchased from the original supplier and were further analyzed by repeat dose-

response and toxicity studies using a 96-well format, where cell viability was 

quantitated by either 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide 

(MTT) assay as previously described (6) or with Alamar Blue (AbD Serotec, 

Oxford, UK) per the manufacturer’s instructions.  For secondary validation we 

used VEErep/SEAP/Pac and EEErep/SEAP/Pac cell lines cultured for 24 h with 
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compounds but without puromycin selection and measured SEAP reporter gene 

expression in supernatants using QUANTI-Blue (InvivoGen, San Diego, CA) per 

the manufacturer’s instructions. 

 

Final Verification of Candidate Compound Activity with Infectious Virus 

Human BE(2)-C neuroblastoma cells were incubated simultaneously with 

candidate compounds and infectious WEEV, FMV, or SINV at a multiplicity of 

infection (MOI) of 1 or 0.1, and MTT viability assays, Northern blots, and 

infectious virus quantitation by plaque assay were done at 6 to 48 h after 

infection as previously described (6).  For RT-PCR analyses, total RNA was 

isolated at 6 h after infection with TRIzol reagent (Invitrogen, Carlsbad, CA) 

according to the manufacturer’s instructions, digested with RQ1 DNAse 

(Promega), and RNA concentrations and integrity were determined by 

spectrophotometry and denaturing agarose gel electrophoresis.  First-strand 

cDNA synthesis was performed with the SuperScript First-Strand Synthesis 

System (Invitrogen) using equal amounts of total RNA with oligo(dT)12-16 

primers.  For semi-quantitative RT-PCR, we amplified 200-600 bp fragments of 

the WEEV nsP2 and E1 genes using cDNA serial dilutions and rRNA as the 

loading control, and analyzed products by agarose gel electrophoresis and 

ethidium bromide staining.  For quantitative RT-PCR, we amplified ~200 bp 

fragments of the WEEV or FMV E1 gene and rRNA as an internal control using 

iQTM SYBR Green Supermix (BioRad, Hercules, CA) according the 

manufacturer’s instructions in a 96-well format with triplicate wells.  Amplification 
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and detection were done with an iCycler iQ system, and fluorescence threshold 

values were calculated using SDS 700 system software (Bio-Rad). 
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Results 

Development and Validation of WEEV Replicon Cell-Based Assay for HTS  

The alphavirus life cycle includes three general steps that are viable targets for 

antivirals: (i) attachment and entry; (ii) genome replication; and (iii) encapsidation 

and release.  We focused on the second step, genome replication, in an attempt 

to identify novel alphavirus inhibitors.  The alphavirus genome is an 11-12 kb 

single-stranded positive-sense RNA molecule that is divided into two major 

domains (16).  The 5’ two-thirds of the alphavirus genome encodes the non-

structural proteins nsP1 through nsP4, which are initially synthesized as one or 

two polyproteins that undergo regulated autocatalytic processing to form an 

active replication complex.  This enzymatic complex subsequently synthesizes 

via a negative strand intermediate both full-length genomic RNA and a 4 kb 

subgenomic RNA.  The latter RNA segment encodes the structural capsid protein 

and envelope glycoproteins, which are not required for genome replication and 

therefore can be readily replaced by foreign genes to produce alphavirus vectors 

that are self-replicating, termed replicons (10). 

 To generate a WEEV replicon amenable to HTS, we replaced the majority 

of the structural genes in the full-length genomic clone pWE2000 (37) with the 

fLUC reporter gene (Fig 4.1.A).  To facilitate the host cell transcription necessary 

to “launch” the WEEV replicon from a plasmid we used a highly transfectable  
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Figure 4.1.  Cell-based WEEV replicon system for HTS.  A.  Schematic of 
WEEV replicon pWR-LUC.  Authentic 5’ and 3’ viral termini are generated by 

precise placement of T7 polymerase promoter (T7P) and hepatitis  ribozyme 

(Rz)/T7 terminator (T7T).  The final composition of the replicon transcript is 
indicated by the bar above the schematic.  Transcription of the fLUC reporter 
gene is controlled by the viral subgenomic promoter (SGP).  Region deleted for 

the control plasmid pWR-LUC is indicated by the dashed lines.  U, untranslated 
region; An, polyadenylated tail.  B.  fLUC reporter gene activity in BSR-T7/5 cells 

transfected with empty vector, pWR-LUC, or control pWR-LUC.  Results are 
expressed as relative luciferase units (RLU).  C.  BSR-T7/5 cells transfected with 

pWR-LUC were treated with no inhibitor, 50 M ribavirin (Rib), or 5 M 
mycophenolic acid (MPA), and fLUC activity was measured after 18 h.  Results 
are expressed as percentage of fLUC activity relative to untreated control. 
 
 

 

 

 

 

 



248 
 

BHK cell line derivative, BSR-T7/5 cells, which constitutively express 

bacteriophage T7 RNA polymerase (5).  One potential complication with using 

cell-based assays to identify antiviral compounds is the possibility that candidate 

compounds will induce type I interferon production and hence suppress virus 

replication indirectly.  The use of BSR-T7/5 cells minimizes this potential 

complication as BHK cells are deficient in both the production and response to 

type I interferons (2, 22, 28). 

BSR-T7/5 cells transiently transfected with the pWR-LUC replicon produced 

fLUC levels approximately three logs above background (Fig 4.1.B).  Reporter 

gene expression was dependent on viral RNA replication, as essentially no fLUC 

expression was detected in cells transfected with pWR-LUC, a control plasmid 

in which the majority of the nsP2-4 region had been deleted (Fig 4.1.A and B).  

Furthermore, both ribavirin and mycophenolic acid, which have previously been 

shown to inhibit alphavirus replication (27), suppressed fLUC expression in pWR-

LUC transfected BSR-T7/5 cells by approximately 80% (Fig 4.1.C).  We 

concluded from these results that the pWR-LUC:BSR-T7/5 system would 

function as a convenient and robust platform to identify small molecule inhibitors 

of WEEV RNA replication. 

  

Primary HTS and Validation of Candidate Antivirals Against Neurotropic 

Alphaviruses   

We initially optimized the pWR-LUC:BSR-T7/5 system to a 384-well HTS format 

and obtained Z’-scores greater than 0.6 (47), and subsequently used this 
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optimized system to screen a diversity library of 51,028 compounds at the 

University of Michigan Center for Chemical Genomics (CCG).  This composite 

library consisted of compounds from four smaller collections: Chembridge 

(13,028 compounds), ChemDiv (20,000 compounds), Maybridge (16,000 

compounds), and MS Spectrum 2000 (2,000 compounds), the latter of which 

included FDA-approved drugs.  Table 4.1 provides a composite overview of the 

experimental systems, criteria, and results from the HTS and subsequent 

validation steps.  For the primary HTS, we selected parameters to identify 

compounds with inhibitory activity that suppressed fLUC signal to at least 70% of 

the level obtained with the positive control ribavirin and obtained a hit rate of 

0.4%.  We further excluded 82 compounds that had activity in previous LUC-

based screens run at the CCG, thus reducing the selection of toxic compounds 

or those with direct activity against the reporter gene.  We subjected the 

remaining 114 compounds to dose-response analysis for primary validation, 

where 76% of these compounds had 50% maximal inhibitory concentration (IC50) 

values of less than 100 M. 

 We purchased new material from the original suppliers for 46 available 

compounds with the lowest IC50 values, and conducted secondary validation 

studies with cell-based replicons derived from VEEV or EEEV that incorporated a 

SEAP reporter gene rather than fLUC.  This step allowed us to further exclude 

compounds that were active against fLUC but also increased the potential of 

identifying compounds with broad activity against neurotropic alphaviruses.  

Eleven compounds showed activity in the secondary validation assays and were 
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Table 4.1.  Identification and validation steps in the discovery of novel 
small molecule compounds that inhibit neurotropic alphavirus replication. 

Step 
Experimental 
system/resource 

Criteria 
Number of 
compounds 

 
CCG chemical 
diversity library 

 51,028 

HTS 
pWR-LUC replicon 
and BSR-T7/5 cells 

Reduction in fLUC activity 
either: 

1) >2 S.D. per plate from 
negative control; or  

2) >90% per plate of 
positive control 

196 

  
No activity in previous 
CCG LUC-based screens 

114 

Primary 
validation 

pWR-LUC replicon 
and BSR-T7/5 cells 

Dose-response with IC50 

<100 M 
87 

Secondary 
validation 

EEEV/VEEV-SEAP 
replicon-bearing 
BHK cells 

Dose-response with IC50 

<100 M 
11 

Tertiary 
validation 

Repeat dose-
response with pWR-
LUC replicon and 
BSR-T7/5 cells 

Toxicity:activity ratio >5 4 
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evaluated in tertiary validation assays with repeat detailed dose-response and 

toxicity assessment to calculate precise 50% cytotoxicity concentration (CC50) 

and IC50 values using the original pWR-LUC:BSR-T7/5 system.  Four compounds 

had toxicity:activity (T:A) ratios (CC50/IC50) greater than 5 and were selected as 

candidates for further development as alphavirus inhibitors.  One of these 

compounds, designated CCG32091, was particularly potent with a T:A ratio of 

greater than 20 (Fig 4.2.A).  For comparison, ribavirin had an IC50 of 16.0 M 

and T:A ratio of 19 with the pWR-LUC:BSR-T7/5 system.  We chose CCG32091, 

which has a thieno[3,2-b]pyrrole core structure with a 4-fluorobenzyl R1 group 

attached to the pyrrole nitrogen and a 2-furanylmethylamine R2 group 

incorporated into the terminal carboxamide (IUPAC name, 1-({4-[(4-

fluorophenyl)methyl]-4H-thieno[3,2-b]pyrrol-5-yl}carbonyl)-N-(furan-2-

ylmethyl)piperidine-4-carboxamide), as our initial lead antiviral compound for final 

verification studies with live virus and structure-activity relationship (SAR) 

analysis (Fig 4.2.B). 

 

Verification of CCG32091 Antiviral Activity with Live Virus and Cultured 

Neuronal Cells 

The primary target cell of neurotropic alphaviruses is the CNS neuron (16), and 

thus we performed a final verification of the antiviral activity of CCG32091 using 

an in vitro model with human neuronal cells previously used to study WEEV 

pathogenesis (6).  For initial experiments with infectious virus we used FMV, an 

alphavirus closely related to WEEV, and SINV, the prototypic alphavirus used to 
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Figure 4.2.  CCG32091 potently inhibits WEEV replicon activity with 
minimal cytotoxicity.  A.  Dose-response curves of BSR-T7/5 cells transfected 
with pWR-LUC and treated with increasing concentrations of CCG32091.  fLUC 
reporter gene activity (closed circles) was measured by luciferase assay and 
viability (open circles) was measured by MTT assay.  Results are expressed as 
percentage of untreated controls.  Calculated concentrations that produced a 
50% inhibition of fLUC activity (IC50) or 50% cytotoxicity (CC50) compared to 
untreated controls are shown.  B.  Structure of CCG32091.  The R1 and R2 
groups central to the SAR (see Table 4.2) are highlighted by boxes. 
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study pathogenesis (16).  Both of these viruses can be handled safely under 

BSL-2 conditions.  One characteristic of alphavirus replication in cultured 

mammalian cells is the rapid development of cytopathic effect (CPE), which is 

due in part to virus-mediated disruption of host cell transcription and translation 

(12, 13, 15).  We infected BE(2)-C cells with FMV or SINV in the presence of 

12.5 M CCG32091 or 50 M ribavirin and measured cell viability at 48 h after 

infection by MTT assay (Fig 4.3.A).  Treatment with CCG32091 suppressed 

virus-induced CPE and increased cell viability from 20% in infected but mock-

treated cells to 50% or 70% for SINV- or FMV-infected cells, respectively.  

Furthermore, CCG32091 effectively suppressed FMV-induced CPE at 

concentrations as low as 3 M, the lowest concentration that we tested in this 

assay (data not shown). 

We also directly assessed the ability of CCG32091 to inhibit virus replication 

by examining infectious virion production (Fig 4.3.B) and viral RNA replication 

(Fig 4.3.C and D).  CCG32091 suppressed infectious FMV production by >90%, 

similar to the level of suppression seen with the positive control ribavirin (Fig 

4.3.B).  Furthermore, when we examined viral RNA replication by RT-PCR with 

either WEEV- or FMV-infected BE(2)-C cells, CCG32091 reduced the 

accumulation of viral RNAs encoding either nsP2 or E1 by 80-90% (Fig 4.3C and 

D).  Northern blotting confirmed that CCG32091 reduced both genomic and 

subgenomic RNA accumulation after infection (data not shown).  These results 

demonstrated that CCG32091 suppressed virus replication in infected neuronal 
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Figure 4.3.  CCG32091 inhibits alphavirus replication in cultured human 
neuronal cells.  A.  Human BE(2)-C neuronal cells were infected with FMV 
(black bars) or SINV (white bars) at an MOI of 0.1 and simultaneously treated 

with no inhibitor, 12.5 M CCG32091, or 50 M ribavirin (Rib), and cell viability 
was determined at 48 h after infection by MTT assay.  B.  BE(2)-C cells were 
infected with FMV at an MOI of 1, treated with inhibitors as described above, and 
virus titers in culture supernatants were determined at 24 h after infection by 
plaque assay.  C.  BE(2)-C cells were infected with WEEV at an MOI of 1, treated 
with CCG32091, and viral RNA corresponding to nsP2 and E1 regions were 
analyzed by RT-PCR at 6 h after infection.  rRNA levels are shown as a loading 
control.  D.  BE(2)-C cells were infected with FMV (black bars) or WEEV (grey 
bars) and treated with CCG32091 as described above, and viral RNA levels 
corresponding to the E1 gene were determined by quantitative RT-PCR. 
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cells, inhibited virus-induced CPE, and had broad activity against several 

alphaviruses. 

 

SAR Analysis with CCG32091   

To optimize the therapeutic profile of candidate antivirals in anticipation of future 

in vivo animal studies, we compared the structure of CCG32091 (Fig 4.2.B) with 

those of compounds in the entire CCG library.  We identified 20 compounds that 

contained a core thieno[3,2-b]pyrrole moiety but had different combinations of R1 

and R2 groups compared to CCG32091 (Table 4.2).  We had previously 

identified 6 of these compounds as “hits” in the primary HTS and had already 

completed dose-response analyses for validation (CCG32075, 32089, 32090, 

32092, 32095, and 32096).  We completed dose-response analysis of the 

remaining 14 compounds to obtain a limited SAR for CCG32091 (Table 4.2).  

This analysis revealed an approximate 250-fold range of IC50 values, from a high 

of 46.8 M to a low of 0.2 M, where 6 compounds had submicromolar IC50 

values (CCG32084, 32087, 32088, 32093, 32094, and 32095).  We also 

completed toxicity studies with these 20 compounds and found that 90% had 

CC50 values >100 M, including 5 of the 6 compounds with submicromolar IC50 

values (Table 4.2).  Although the data set was limited, several aspects of the 

SAR could be elucidated.  At R1, there appeared to be little difference between 

methyl and ethyl groups (compare the 4-methylbenzylamides CCG32055 and 

CCG32019).  However, substantially better activity was observed when the small 

alkyl group at R1 was replaced with 4-fluorobenzyl (compare CCG32088 with  
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CCG32052).  A direct comparison between 4-fluorobenzyl and 4-chlorobenzyl at 

R1 (2-furanylmethyl amides CCG32091 and CCG32095) also suggested that 4-

chlorobenzyl may represent a further optimization of R1.  Among the amines 

incorporated at R2, none were clearly superior to the others.  In fact, a variety of 

amines were seen with potent inhibitors, including 4-methylpiperidine 

(CCG32087), benzyl (CCG32088), isopentyl (CCG32093), and 4-(2-

furanylcarboxy)piperazine (CCG32084).  With regard to the internal piperidine 

carboxamide, the two 3-carboxamide analogs CCG32001 and CCG32009 had 

distinctly inferior activity compared to the closely related 4-carboxamide analogs 

CCG32025 and CCG32084, respectively.  Overall, these results identified 

several additional compounds with enhanced potency but similar toxicity 

compared to the original lead compound CCG32091, and provide a useful initial 

dataset to begin targeted design for optimized antiviral compound synthesis 

based on the core thieno[3,2-b]pyrrole structure. 
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Discussion 

 The neurotropic alphaviruses represent emerging pathogens with the 

potential for widespread dissemination and the ability to cause substantial 

morbidity and mortality (17, 38), but for which no licensed therapies currently 

exist.  In this report, we describe the identification of a novel class of thieno[3,2-

b]pyrrole compounds with inhibitory activity against WEEV and several related 

alphaviruses.  Heterocyclic compounds that contain a thieno[3,2-b]pyrrole core 

have been previously identified as possessing physiological activity with potential 

clinical applications, including uses as anti-inflammatory agents (23), glycogen 

phosphorylase inhibitors for diabetes treatment (45), and hepatitis C virus (HCV) 

inhibitors (30).  The latter use is particularly relevant for the work presented in 

this report, as thieno[3,2-b]pyrroles were identified as allosteric inhibitors of the 

HCV RNA polymerase (30), which is a plausible potential mechanism of action 

for their activity against alphaviruses (see below).  Significantly, the lead 

compound identified in this report, CCG32091 (Fig 4.2), is a PubChem registered 

compound (CID: 3240671) and part of the NIH Molecular Libraries-Small 

Molecule Repository (MLSMR), and has been identified as an active compound 

in only 5 of ~250 HTS assays conducted through the NIH Molecular Libraries 

Screening Center Network (MLSCN).  This indicates that the spectrum of its 

biological activity is fairly narrow, which is a highly desirable attribute in a 

potential lead compound.  In addition, Ilyin et al. recently described a solution-

phase strategy for the synthesis of novel combinatorial libraries containing a 

thieno[3,2-b]pyrrole core (19), thus providing the opportunity to further explore 
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and potentially exploit these compounds as therapeutics for a range of human 

diseases, including infections with neurotropic alphaviruses. 

 The mechanism(s) underlying the antiviral activity of thieno[3,2-b]pyrroles 

against neurotropic alphaviruses is unknown, but the use of a replicon-based 

assay for the HTS and validation steps (Fig 4.1 and Table 4.1) implicates viral 

replicase proteins as potential targets.  This hypothesis is supported by the 

observation that CCG32091 reduced viral RNA accumulation after infection of 

neuronal cells (Fig 4.3).  Furthermore, the broad activity of CCG32091 against 

infectious virus or replicons derived from WEEV, EEEV, VEEV, FMV, and SINV 

suggests that a highly conserved viral enzymatic activity may be targeted.  

Alphavirus nsPs contain several distinct enzymatic activities, including 

methyltransferase (nsP1) (1), protease and helicase (nsP2) (14, 18), and RNA 

polymerase (nsP4) (34).  In vitro assays have been developed for several of 

these activities (1, 39, 43), which provides a convenient approach to target 

identification.  An alternative approach that takes advantage of the intrinsically 

high error rate of viral RNA polymerases previously used successfully for antiviral 

target identification is the isolation and characterization of viral escape mutants 

(24, 26, 36). 

The preclinical utility of candidate novel antiviral agents rests on their ability to 

either prevent or treat established disease in animal models while exhibiting 

minimal toxicity.  The treatment of CNS infections presents an additional hurdle 

to overcome, as the blood-brain-barrier (BBB) represents a formidable obstacle 

for drug penetration (32).  The BBB is a highly effective physiologic barrier whose 
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primary function is to closely regulate access of blood stream components to the 

CNS.  Although infectious and inflammatory CNS diseases often disrupt BBB 

function and increase permeability, drug penetration remains an important aspect 

to consider in the development of antiviral agents against neurotropic 

alphaviruses.  Multiple physical-chemical factors influence CNS penetration of 

drugs, including lipophilicity, ionization properties, molecular flexibility, polar 

surface area (PSA), and size (31).  The latter two properties are particularly 

important, where studies of marketed CNS and non-CNS drugs indicate that PSA 

values less than 60-90 Å2 and MW less than 450 Da are required for adequate 

penetration (21, 42).  The lead thieno[3,2-b]pyrrole compound identified in this 

report, CCG32091 (Fig 4.2.B), has a calculated PSA of 67.5 Å2 and MW of 466 

Da (PubChem database; http://pubchem.ncbi.nlm.nih.gov).  Several of the 

compounds identified in the SAR (Table 4.2) had lower PSAs and MWs than 

CCG32091, and we are currently using the SAR results to refine the 

development of alphavirus inhibitors with reduced toxicity, enhanced potency, 

and optimal CNS penetration. 
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Chapter V 

General Discussion 
 

Summary of Results 

Neurotropic arboviruses cause severe and potentially fatal CNS infections 

where the extent of virus-mediated destruction of neurons is an important 

determinant in the severity and clinical outcome after infection.  Early cellular 

innate immune responses mediated by pattern recognition receptors are often 

vital for effective pathogen control, and an effective neuronal innate immune 

response may be crucial to prevent the essentially irreversible loss of critical 

central nervous system neurons by neurotropic arboviruses.  In this body of work 

I studied two complementary strategies of preventing death of neurotropic 

arbovirus-infected CNS neurons.  The first approach investigated the interaction 

of neurotropic arboviruses with neuronal innate immune pattern recognition 

receptor pathways where the goal was to identify host and viral targets for the 

development of more effective neurotropic arbovirus vaccines and therapeutics.  

The second approach identified novel small molecules which inhibited 

neurotropic arbovirus replication and enhanced the viability of neuronal cells 

infected with neurotropic arboviruses.  These studies significantly advance our 

knowledge of neuronal pattern recognition receptor signaling and neurotropic 

arbovirus biology by identifying specific, highly active PRR pathways in neurons 



266 

 

that mediate a neuron-protective response when challenged with neurotropic 

arboviruses.  In addition, these studies demonstrate the potent countermeasures 

that neurotropic arboviruses deploy against neuronal antiviral PRR pathways, 

and advance our understanding of how a particular neurotropic arbovirus, WEEV, 

subverts these antiviral pathways.  Finally, these studies identify a promising 

class of small molecules with anti-neurotropic arbovirus properties that may be 

clinically useful.  In this chapter, I further summarize these studies and discuss 

their implications, significance, and potential future directions.         

  

Neuronal Antiviral PRR Pathways 

To investigate the hypothesis that neuronal PRR pathways influence neurotropic 

arbovirus pathogenesis, I first asked what PRR pathways are present and active 

in neurons.  This was an important first step because PRR pathways are highly 

cell type-specific and few studies had investigated PRR signaling in neurons.  

Furthermore, the PRR signaling field progresses rapidly, suggesting that our 

knowledge of these pathways was, and likely still is, very incomplete.  Thus, 

establishing a basic molecular framework for PRR signaling in neurons would 

greatly facilitate future studies aimed at investigating their impact on neurotropic 

viral infections.  To accomplish this, I employed several neuronal culture models 

and used both global and targeted genetic and biochemical approaches to 

examine PRR expression and pathway activity in response to RLR and TLR 

ligands.  I discovered that human CNS neurons selectively respond to TLR3-, 

TLR4-, MDA5-, and RIG-I-mediated stimulation (Fig 5.1) and failed to 
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observe any TLR7/8 or 9-mediated stimulation.  TLR3, RIG-I and MDA5-

mediated stimulation was dependent on the transcription factor IRF3 and 

activated NFB resulting in the production of IFN and subsequent 

autocrine/paracrine ISRE activation mediated by the type-I IFN receptor.  In 

contrast, TLR4-mediated stimulation failed to activate an ISRE but did produce a 

neuronal NFB response.  In comparison to neurons, LPS stimulation of TLR4 in 

the human monocytic cell line, U937, robustly activated both NFB and an ISRE 

(Supplemental Fig S2.4), which suggested to us that neuronal TLR4 was 

unlikely to mediate a classical innate antiviral response and was not studied 

further.  Finally, detailed genetic and pharmacologic studies revealed that TLR3- 

and possibly MDA5-mediated neuronal responses are positively regulated by the 

PI3K pathway, and in particular the PI3K p110 subunit.  These results 

demonstrated that CNS neurons are immunologically active and possess specific 

and non-redundant functional PRR pathways.  In particular, those pathways 

typically stimulated by viral pathogens via nucleic acid recognition are especially 

active in neurons, and therefore may play a protective role in neurotropic virus 

pathogenesis.  In the time since these studies were conducted, several other 

viral PRRs were characterized including NOD2 (63) and DAI (67).  Due to this, 

the model depicted in Figure 5.1 in no way defines an absolute set of viral PRRs 

in neurons, and future studies should investigate the neuronal relevance of these 

newly identified PRRs. 
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Figure 5.1.  Neuronal PRR pathways.  Neuronal PRR pathways identified by 
the studies in chapter II are depicted.  Note that TLR4 does not appear to 
activate IRF3, and it is unclear if PI3Ks in neurons directly influence TLR3-
dependent activation of IRF3.  See text for further details.  pIC-polyinosinic-
polycytidylic acid, LPS-lipopolysaccharide, SeV-Sendai virus, T-pIC-transfected 
polyinosinic-polycytidylic acid. 
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Neuronal PRR Pathway Response to Neurotropic Arboviruses  

After establishing a basic molecular understanding of neuronal PRR pathways, I 

then tested whether these PRR pathways influenced neuronal responses to 

neurotropic viral infections.  To address this hypothesis I coupled targeted 

genetic and molecular techniques with several neuronal culture models including 

immortal neuronal cell lines, primary cortical neurons from mice with deletions in 

key PRR pathway component genes, and human embryonic stem cell-derived 

neurons.  I began studying the interaction between neuronal PRR pathways and 

neurotropic arbovirus infections by first asking if WEEV could induce neuronal 

IFN transcription, a hallmark of PRR pathway activation.  I found that 

replication-competent WEEV induced neuronal IFN transcription in a RIG-

I/MDA5 and IRF3-dependent manner (Fig 3.16).  These data are important 

because they greatly increase our knowledge of PRR pathway detection of 

encephalitic alphaviruses and subsequent downstream signaling in an 

appropriate target cell.   

Next, I determined if neuronal PRR pathway components mediated a 

cytoprotective or antiviral effect when challenged with a neurotropic arbovirus.  

Interestingly, IRF3 consistently mediated a neuron-protective response to WEEV 

and SLEV, but had no effect on a LACV challenge (Fig 3.16).  The differentiated 

human neuronal culture model, BE(2)-C/m, suggested that RIG-I and MDA5 also 

mediated a neuron-protective and possibly antiviral effect when challenged with 

WEEV, but these phenotypes were not recapitulated in the primary mouse 

neuronal culture model.   This discrepancy between neuronal culture models will 
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ultimately require further experimentation to settle the potential neuron-protective 

and antiviral role of RIG-I and MDA5 in response to WEEV.   

In differentiated human neuronal cells, IRF3 also appeared to have a 

small antiviral effect reflected by an approximate one-log10 reduction in WEEV 

titer, but this did not validate in primary cortical neurons derived from IRF3-/- 

mice.  Due to these discrepancies between neuronal culture models, I focused 

further experiments on the consistent neuron-protective effect of IRF3 and found 

it to be independent of the induction of antiviral type-I IFNs and likely due to 

direct IRF3-dependent induction of cytoprotective genes.  Candidate WEEV-

induced, IRF3-dependent, cytoprotective genes included OASL and MxB, where 

depletion of the most induced candidate, OASL, enhanced a LACV-mediated 

CPE but had no effect on WEEV or SLEV.  Curiously, OASL may mediate a 

neuronal response to LACV independent of IRF3, as cells stably overexpressing 

a dominant negative mutant of IRF3 responded normally to LACV.  Nevertheless, 

these results suggested that cell-intrinsic factor(s) downstream of IRF3 may be 

responsible for the IRF3-dependent, cytoprotective response to WEEV.  Further 

analysis of other neurotropic arbovirus-induced, IRF3-dependent, putative 

cytoprotective genes, such as MxB, may identify genes which are protective 

against WEEV and SLEV.  With this in mind, MxB is an attractive candidate 

because it is closely related to the well characterized antiviral effector gene MxA, 

which has antiviral effects against old world alphaviruses, bunyaviruses, and 

flaviviruses (64).  In contrast to MxA, which exerts its antiviral effect by disrupting 

the trafficking of viral nucleocapsids resulting in abrogated viral replication (60), 
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MxB is not known to be antiviral, but it has not been tested against many 

neurotropic arboviruses including WEEV.  The best described cellular function of 

MxB is to enhance nuclear import (41).  This suggests a particularly attractive 

hypothesis in which MxB may achieve a putative cytoprotective effect against 

WEEV by counteracting WEEV capsid’s ability to inhibit nuclear translocation of 

IRF3.  Future studies will be required to test this hypothesis. 

As mentioned above, the ability of OASL to mediate a neuron-protective 

effect against LACV is somewhat puzzling because OASL is an IRF3-dependent 

gene (50), yet IRF3 appeared to have no effect on an LACV-mediated CPE 

(Chapter III).  These results may indicate that in neurons infected with LACV, an 

alternate pathway independent of IRF3 induces OASL.  The antiviral effects of 

OASL are poorly characterized in comparison to the classic OAS genes (49), and 

future studies will need to address the mechanism of OASL-mediated 

cytoprotection against LACV as well as clarify whether OASL’s neuron-protective 

effects are direct or indirectly related to an antiviral effect.  In addition, future 

studies should be done in vivo as much as possible because important 

differences between tissue culture and animal models have been observed for 

antiviral effector responses (76).  In summary, these data extend the protective 

effect of OASL from picornaviruses (49) to now include a neurotropic arbovirus in 

Bunyaviridae.  More broadly, these studies establish neuronal PRR pathways as 

potentially important determinants in neurotropic arbovirus pathogenesis.   
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Neurotropic Arbovirus Countermeasures to Neuronal PRR Pathways 

Viral PRR pathways protect host cells and tissues against viral infections, yet 

many viruses, including the neurotropic arboviruses WNV and LACV, possess 

PRR pathway countermeasures allowing them to efficiently replicate, avoid 

immune detection, and cause disease (13, 51, 74).  I suspected that WEEV may 

also potently block these pathways given that IFN transcription was not robustly 

induced until late in infection, and that I could not detect any WEEV-induced 

antiviral type-I IFN protein production.  As suspected, WEEV, SLEV, and LACV 

all potently and specifically blocked induction of neuronal antiviral PRR pathways 

at early times post infection.  To my knowledge this is the first demonstration of 

WEEV and SLEV inhibiting PRR signal transduction in a relevant cell type.  It will 

be interesting to see if SLEV employs homologous mechanisms of PRR inhibition 

to that of other members of Flaviviridae, such as WNV and hepatitis C virus (4, 

18).  Since WNV, SLEV, LACV, and WEEV all inhibit PRR pathways, I postulate 

that this may be a general virulence mechanism for neurotropic arboviruses.     

Alphavirus inhibition of antiviral signaling is often attributed to non-specific 

inhibition of host gene expression mediated by nsP2 for old world viruses and 

capsid for new world viruses (25).  Recently, VEEV capsid has also been shown 

to inhibit nuclear translocation, and it was proposed that this may also contribute 

to the inhibition of antiviral signaling (3), although this hypothesis was not directly 

tested.  I decided to systematically and directly explore how WEEV inhibits 

neuronal PRR signaling at a molecular level, and similar to VEEV, I mapped the 

antiviral PRR pathway inhibitory capacity of WEEV to the capsid gene.  WEEV 
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capsid inhibited antiviral PRR signaling downstream of IRF3 activation, and a 

WEEV structural gene(s), likely capsid, inhibited IRF3 nuclear translocation.  

Further studies found that WEEV capsid also inhibited host gene expression, 

suggesting a dual mechanism for capsid-mediated inhibition of neuronal antiviral 

PRR signaling (Fig 3.16).  Interestingly, this mechanism appears to be distinct 

from that of nsP2 for old world alphaviruses in which IRF3 efficiently reaches the 

nucleus in SINV (7) and Semliki Forest virus-infected cells (5).   Altogether these 

studies examining the interaction of neuronal PRR pathways with neurotropic 

arboviruses indicated that neuronal PRR pathways are important determinants in 

neurotropic arbovirus pathogenesis.  These studies also suggest that neuronal 

PRR pathways and viral countermeasures to them may be exploited to develop 

more efficacious vaccines and anti-neurotropic arboviral treatments. 

It is somewhat paradoxical that WEEV activates neuronal IFN 

transcription, yet a functional cell-intrinsic, IRF3-dependent, type-I IFN-

independent, neuronal, cytoprotective response remains.  One explanation for 

this paradox could be that the cytoprotective pathway is more responsive to low 

levels of PRR signal transduction reaching the nucleus than the antiviral type-I 

IFN-dependent pathway.  Adding to this paradox, new and old world alphaviruses 

increase serum levels of type-I IFNs (14, 24) in mice, suggesting that PRR 

pathway inhibition may be incomplete or ineffective in alternate cell types.  

Reassuringly, there is literature precedence for the simultaneous requirement for 

host antiviral signaling to effectively resolve infection of viruses that deploy potent 

countermeasures to the very same required host antiviral pathways (4), and one 
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well studied example is that of the neurotropic arbovirus WNV (19).  Hence, it 

appears that there is an intense interplay between viruses and host antiviral PRR 

pathways possibly indicating that viruses and host PRR pathways generally co-

evolve in a way that strikes a balance between the need to efficiently replicate 

yet not be overly burdensome on the host such that transmission remains 

efficient.  Since humans are often dead end hosts for neurotropic arboviruses, it 

could be argued that neurotropic arboviruses and humans may have come into 

contact with each other relatively recently, and that over time host antiviral 

pathways and viral countermeasures to these antiviral pathways will reach an 

equilibrium such that neurotropic arboviruses are less pathogenic and that 

humans become natural participants in the transmission cycle of neurotropic 

arboviruses.  Of course, these hypotheses will need to be specifically addressed.  

One way of testing these hypotheses would be to determine if WEEV is less able 

to inhibit PRR signaling in hosts that participate in its natural enzootic cycle.  

Additionally, future efforts should also confirm that neuronal PRR pathways are 

indeed inhibited from responding to a neurotropic arbovirus stimulus, as opposed 

to a poly(I-C) stimulus.  For WEEV, this could be accomplished by identifying 

WEEV capsid mutants or generating WEEV virus-like particles lacking structural 

genes that robustly induce antiviral type-I IFNs in neuronal cells.       

 

Neurotropic Alphavirus Replication Inhibitors 

Finally, I took a different approach to preventing death of neurotropic arbovirus 

infected neurons by searching for small molecules that block neurotropic 
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arbovirus replication.  To achieve this, ~51,000 small molecules were screened 

for the ability to inhibit a WEEV replicon harboring a luciferase reporter.  I 

identified thieno[3,2-b]pyrrole derivatives as novel small molecule inhibitors of 

neurotropic alphaviruses.  Importantly, these molecules decreased alphavirus 

titers and protected human neuronal cells from alphavirus mediated cytopathic 

effect.  There is a great need for drugs to treat neurotropic arbovirus infections; 

therefore, these inhibitors are actively being pursued for clinical use by 

performing in vivo studies and optimizing the lead compound for reduced 

cytotoxicity, increased potency, increased efficacy, and greater CNS penetration.  

Perhaps small molecules derived from this screen will one day be partnered with 

small molecule modulators of PRR pathways to form a highly effective, anti-

neurotropic arbovirus, multi-component therapy.  
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Unanswered Questions and Future Directions 

 The studies in this body of work give rise to many important questions 

including: 

1. What is the mechanism and downstream factors of PI3K in neuronal 

antiviral PRR signaling? 

2. What is the role of PI3K in neuronal responses to neurotropic 

arboviruses? 

3. What other factors mediate the IRF3-dependent, neuron-protective 

response to WEEV? 

4. How does a WEEV structural gene(s), likely capsid, inhibit IRF3 nuclear 

translocation? 

5. What is the in vivo relevance of neuronal PRR signaling for WEEV 

pathogenesis? 

6. How do neuronal PRR responses interact with PRR responses by other 

resident CNS cell types? 

7. What is the mechanism of thieno[3,2-b]pyrrole derivatives’ inhibition of 

alphaviruses? 

8. Are neuronal PRR pathways and viral countermeasures to these 

pathways viable targets for development of therapeutics?   

 

The following pages will discuss these questions and potential future directions 

that could be taken to address them.   
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What is the mechanism and downstream factors of PI3K in neuronal 

antiviral PRR signaling? 

The PI3K pathway mediated by p110 and its receptor subunit p85 activate a 

number of downstream signaling molecules.  One well characterized pathway 

activates the kinase Akt which has been linked not only to mTOR activation and 

subsequent enhancement of translation (15), but also to activation of NFB (28, 

53, 56).  In addition, a PI3K/Akt/mTOR/S6-kinase pathway has been implicated 

in TLR9-mediated induction of IFN in dendritic cells (8).  In chapter II I identified 

PI3Ks as important mediators of neuronal RLR and TLR pathways, but the 

mechanism of PI3K-mediated antiviral PRR signaling remains obscure.  The 

majority of work investigating the role of PI3Ks in PRR signaling has focused on 

its effects during TLR-initiated signaling (32), where it appears to be necessary 

for full activation of IRF3.  Other studies determined that PI3K/AKT pathways are 

essential for neuronal development and survival (11, 12, 35), suggesting a 

potential link between antiviral PRR pathway activation and the ability of neurons 

to overcome an infection until an adaptive immune response can be fully 

established.  The kinase inhibitor library studies in chapter II suggested that Akt, 

mTOR, and glycogen synthase kinase 3 may be downstream of PI3K responses 

in neurons.  All of these kinases participate in PI3K signaling and have been 

implicated in innate immunity in non-neuronal model systems (8, 10, 39, 40, 42, 

55).  Furthermore, preliminary studies demonstrated that poly(I-C) induced rapid 

phosphorylation of Akt and S6K in neuronal cells, and the mTOR inhibitor, 

rapamycin, demonstrated a similar neuronal PRR pathway inhibitory profile as 



278 

 

the PI3K inhibitor LY294002 suggesting that a common pathway was targeted by 

each drug (Supplemental Fig S5.1).  Nevertheless, additional studies will be 

required to further delineate the precise PI3K pathway components involved in 

neuronal antiviral PRR activation.  

 Another potential hypothesis for how PI3K mediates antiviral PRR 

signaling is suggested by a recent interesting study demonstrating an antiviral 

PRR co-activator pathway.  The authors of this study demonstrated that the host 

protein LRRFIP1 binds viral PAMPs and interacts with -catenin, thereby 

promoting the interaction of IRF3 with its co-activator p300 (73).  -catenin is a 

known downstream target of PI3K/Akt signaling (21), suggesting that PI3K/Akt 

signaling may influence innate antiviral signaling via a similar co-activator 

pathway.  In a co-activator-like pathway, PI3K-mediated signals would be 

transmitted in parallel to canonical IPS-I dependent antiviral signals until they 

united at the level of transcription.  This hypothesis will need further study, but I 

have conducted a preliminary experiment consistent with a co-activator role for 

neuronal PI3K p110.  In this experiment, I asked if overexpression of a 

constitutively active p110 (61) could induce a neuronal ISRE.  Interestingly, it 

did not induce a neuronal ISRE unless a PRR pathway stimulus was also given 

(Supplemental Fig S2.5.B).  This is in stark contrast to most constitutively active 

direct PRR pathway signaling molecules (Chapter III).  Furthermore, microarray 

analysis revealed that LRRFIP1 transcripts are elevated in PRR pathway 

competent differentiated versus PRR pathway incompetent undifferentiated 

neuronal cells (Supplemental Table S2.1). Altogether these data suggest that 
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the canonical IPS-I dependent pathway may be parallel to a co-activator-like, 

PI3K-dependent pathway in neuronal cells.        

 The PI3K pathway has been tentatively implicated in cytoplasmic RLR-

initiated signaling (50), and in chapter II, I showed that PI3K inhibitors block 

MDA5-mediated signaling in neuronal cells.  However, depletion of p110 in 

neuronal cells had no effect on induction of an MDA5-mediated stimulation.  This 

may be due to insufficient depletion of p110, redundancy among the p110s for 

MDA5-mediated signaling, or off target effects of these drugs.  Because the 

PI3Ks are known druggable targets (33), the precise role of PI3K in RLR-

mediated signaling would be worth determining, especially if modulation of RLR 

pathways proves beneficial for autoimmune or neuroinflammatory diseases.  This 

could be accomplished in many ways, but one approach would be to explore 

RLR responses in animals with deletions of PI3K-components or attempting to 

deplete PI3K levels further.   

In addition to PI3K inhibitors and associated downstream signaling 

molecules, the kinase inhibitor screen in chapter II also implicated several 

kinases not known to be involved in PRR signaling.  Further investigation of 

these molecules and those kinases that showed preference to either a TLR3 or 

MDA5/RIG-I-mediated stimulus may provide novel insight for PRR signaling 

pathways. 
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What is the role of PI3K in neuronal responses to neurotropic arboviruses? 

PI3K signaling dramatically affected neuronal PRR pathway signaling (Chapter 

II), yet depletion of PI3K expression had no effect on WEEV-mediated induction 

of IFN mRNA (Chapter III and Supplemental Fig S3.1.A).  Curiously, depletion 

of PI3K expression slightly protected neurons from a WEEV-mediated cytopathic 

effect (Supplemental Fig S3.1.B).  These preliminary data indicated that the 

dominant effect of neuronal PI3K signaling on a WEEV infection may not be to 

promote antiviral signal transduction.  One alternative hypothesis consistent with 

the decreased WEEV-mediated CPE in PI3K-deficient neurons is that PI3K 

signaling may promote WEEV replication.  In support of this alternative 

hypothesis, previous studies found that ribosomal protein S6, a target of 

PI3K/Akt/mTOR/S6K signaling, interacts with alphavirus nsP2 and mediates 

enhanced expression of alphavirus messages (52).  While the observation that 

PI3K signaling may actually enhance WEEV replication in neurons was 

unexpected given the positive role PI3Ks play in neuronal antiviral PRR 

pathways, further examination of the interaction of alphaviruses and potentially 

other neurotropic arboviruses with PI3K-mediated pathways may provide novel 

insights about host factors involved in alphavirus replication.      

 

What other factors mediate the IRF3-dependent, neuron-protective 

response to WEEV? 

In chapter III I demonstrated an IRF3-dependent, neuron-protective response to 

WEEV that is independent of type-I interferons and likely due to direct, IRF3-
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dependent induction of cytoprotective genes.  IRF3 directly promotes an antiviral 

state independent of type-I IFNs (27), but very recently, a novel model for RLR- 

and IRF3-dependent but type-I IFN-independent signaling was presented.  The 

authors of this model described an antiviral PRR pathway dependent on 

peroxisomal as opposed to mitochondrial IPS-I that is independent of type-I IFN 

induction (20), which provides a potential mechanism for the neuronal response I 

observed.  While interesting, this potential model will need experimental 

verification in a neuronal system, and its dependence on IPS-I will have to be 

rectified with the apparent lack of dependence I observed for responses to 

WEEV in IPS-I-/- neurons.  Nevertheless, this study highlights the complexity of 

antiviral PRR pathways and suggests that antiviral signaling independent of type-

I IFNs is a relatively common phenomenon.     

The innate antiviral effect of PRR pathways and the type-I IFN pathway 

are often dependent on multiple antiviral effector genes (2, 64, 72).  In chapter III, 

I identified OASL and MxB as WEEV-induced, IRF3-dependent, putative 

cytoprotective genes against neurotropic arboviruses in neuronal cells.  Depletion 

of the most induced candidate cytoprotective gene, OASL, rendered neuronal 

cells more susceptible to LACV but had no effect on neuronal responses to 

WEEV or SLEV.  These data highlighted the pathogen-specific nature of antiviral 

effector genes and indicated that alternative cytoprotective genes mediate the 

neuronal cell response to WEEV and SLEV.  One candidate cytoprotective gene 

is, as mentioned above, MxB, which is actively being investigated.  However, 

other candidate genes may exist.  One way of discovering these candidate genes 
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would be to perform a microarray experiment comparing WEEV-infected control 

and IRF3-deficient neurons, and then studying those genes with diminished 

induction in the IRF3-defective neurons.  Of course, this approach assumes the 

IRF3-dependent response is transcriptional in nature.  I believe this is a valid 

assumption given that the dominant negative IRF3 construct used to identify the 

IRF3-dependent phenotype lacked a DNA binding domain, thereby rendering it 

incapable of inducing transcription but still capable of receiving PRR pathway-

mediated activation signals. The microarray approach outlined above is likely to 

identify several candidate genes, but rigorously and systematically characterizing 

the role these candidate genes play in the neuronal response to neurotropic 

arboviruses, including WEEV and SLEV, may be beneficial for future 

therapeutics development. 

  

How does a WEEV structural gene(s), likely capsid, inhibit IRF3 nuclear 

translocation? 

Work by others demonstrated that VEEV capsid localizes to nuclear pores and 

inhibits nuclear translocation (3), and other RNA viruses that do not require 

nuclei for their replication, including polio, rhino, rabies, and vesicular stomatitis 

viruses, have evolved mechanisms for efficient interference of nucleo-

cytoplasmic trafficking (29, 34, 38, 71).  In chapter III, I showed that a WEEV 

structural gene(s), likely capsid, inhibits IRF3 nuclear translocation in neuronal 

cells, and that WEEV capsid-staining in BHK cells showed intense capsid 

expression in a ring surrounding the nucleus.  These data provided a potential 
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mechanism, in conjunction with shut off of host gene expression, for the ability of 

capsid to inhibit antiviral PRR signaling.  Furthermore, these data supported the 

hypothesis that WEEV capsid, like VEEV capsid, inhibits nuclear pore function in 

neuronal cells.  However, given that a construct harboring the WEEV structural 

genes inhibited IRF3 nuclear translocation and that WEEV capsid’s ability to 

inhibit IRF3 nuclear accumulation could not be completely separated from its 

ability to inhibit host gene expression, future studies will have to rule out a role for 

WEEV envelope proteins in the WEEV-mediated disruption of IRF3 nuclear 

translocation.   

The ability of WEEV capsid to disrupt nuclear pore function also needs to 

be directly tested.  One approach would be to determine if WEEV capsid co-

localizes or immunoprecipitates with nuclear pore machinery or nuclear transport 

receptors.  In addition, the selectivity of the proposed capsid-mediated inhibition 

of nuclear translocation should also be tested given that an IFN-mediated 

transcriptional response, which also requires nuclear translocation of signal-

activated transcription factors, was not susceptible to capsid-mediated inhibition 

at early times post infection.  In a similar vein, TNF-mediated activation of NFB 

was inhibited by WEEV capsid, suggesting that a factor common to both 

pathways, potentially nuclear import of activated transcription factors, was 

inhibited by WEEV capsid.  Finally, it is unclear whether WEEV capsid-mediated 

CPE, shut off of host macromolecular synthesis, and interference with type-I IFN 

induction are the result of one common mechanism (e.g. disruption of nuclear 

pore function) or are all independent functions of capsid.  Efforts to identify 
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capsid mutants that differentially affect each of these functions may clarify this 

question.    

 

What is the in vivo relevance of neuronal PRR signaling for WEEV 

pathogenesis? 

While this question may seem intellectually trivial, its importance for this body of 

work could not be more paramount.  The studies I conducted used in vitro or ex 

vivo neuronal cultures to ensure that all phenotypes could directly be attributed to 

neurons.  However, these cultures do not perfectly mimic the natural environment 

of a CNS neuron.  Furthermore, PRR pathway responses also vary between in 

vitro and in vivo models.  For instance, DAI, a putative dsDNA sensor, was 

shown to detect cytosolic dsDNA and mediate an antiviral response in vitro (67), 

but when DAI was deleted, null mice responded normally to dsDNA (37).  The 

function of LGP2 may also vary between in vitro and in vivo models, where in 

vitro it may negatively regulate RLR signaling, but in vivo it appears to be 

required for RLR signaling (65).  Finally, important differences were observed 

between tissue culture and animal models for antiviral effector responses to old 

world alphaviruses (76).  In support of innate antiviral responses of resident CNS 

cells being relevant in vivo, studies in conditional knockout mice that have 

disrupted type-I IFN receptor expression in neuroectodermal cells, which 

includes neurons, indicated that responses to type-I IFNs are important to control 

virus spread within the CNS (17).  However, these responses may have been 

due to other neuroectoderm-derived cells such as astrocytes or 
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oligodendrocytes.  For this reason, future studies investigating the role of 

neuronal PRR pathways in vivo should generate neuron-specific deletions of key 

PRR pathway components, such as IRF3, by crossing mice containing loxP-

flanked alleles of interest (e.g. IRF3) with mice harboring the Cre-recombinase 

driven by the neuron-specific enolase promoter (43).  

 

How do neuronal PRR responses interact with PRR responses by other 

resident CNS cell types? 

The main target cell of neurotropic arboviruses in the CNS is the neuron, but this 

does not preclude other resident CNS cell types from eliciting an innate immune 

response.  For example, glial cells (astrocytes, oligodendrocytes, and microglia) 

are capable of producing an innate response, and microglia, which are the 

myeloid-derived resident cell-type in the CNS, contain highly active TLR-

mediated pathways (45, 62).  Glial cell PRR signaling may mediate the 

neuropathology of several diseases including viral encephalomyelitis, 

Alzheimer’s disease, amyotrophic lateral sclerosis, ischemic brain injury, and 

seizures (44, 62).  In addition, innate immune signaling by glial cells mediates 

pathology of bystander neurons in several diseases including a neuro-adapted 

Sindbis virus model of encephalomyelitis (16, 36, 54, 58, 59).  These studies 

suggest that PRR signaling by neurons and other resident cell types in the CNS 

may interact and be important for pathogenesis.  A research program utilizing 

mice deficient in various PRR pathway components could easily be designed to 

investigate how PRR responses in different CNS cell-types interact because 
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there are established protocols for the isolation, culture, and co-culture of all 

resident cell types in the CNS (6, 22, 48, 75).      

 

What is the mechanism of thieno[3,2-b]pyrrole derivatives’ inhibition of 

alphaviruses? 

The lack of antiviral medications and broadly approved vaccines highlights the 

urgent and pressing need for the development of broadly active antiviral agents 

against neurotropic arboviruses.  To address this need, I identified a class of 

small molecules with a thieno[3,2-b]pyrrole core structure that inhibited 

neurotropic alphavirus replication and protected human neuronal cells from 

alphavirus-mediated CPE (Chapter IV).  Although the mechanism underlying the 

antiviral activity of these molecules remains unknown, the fact that they were 

identified as inhibitors of neurotropic alphavirus replicons suggests that viral 

replicase proteins are potential targets, whereas early events in the viral life 

cycle, such as receptor engagement, internalization, and uncoating, are unlikely 

targets.  In addition, the broad activity of the lead compound, CCG32091, against 

infectious virus or replicons derived from WEEV, EEEV, VEEV, Fort Morgan 

virus, and SINV suggests that a highly conserved viral enzymatic activity may be 

targeted.  Alphavirus nsPs contain several distinct enzymatic activities, including 

methyltransferase (nsP1) (1), protease and helicase (nsP2) (26, 30), and RNA 

polymerase (nsP4) (57).  In vitro assays have been developed for several of 

these activities (1, 69, 70), which provides a convenient approach for target 

identification.  An alternative approach that takes advantage of the intrinsically 
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high error rate of viral RNA polymerases previously used successfully for antiviral 

target identification is the isolation and characterization of viral escape mutants 

(46, 47, 66).  Finally, affinity purification and identification of viral or cellular 

proteins that physically interact with antiviral agents, as well as identifying the 

spectrum of viruses susceptible to the lead compound, may aid target 

deconvolution.  All of these approaches, including optimizing the lead compound 

and testing its in vivo activity against diverse neurotropic arboviruses, are actively 

being pursued.  

 

Are neuronal PRR pathways and viral countermeasures to these pathways 

viable targets for development of neurotropic alphavirus therapeutics?   

Drug-resistant viral mutants quickly emerge due to intrinsically high error rates for 

viral RNA polymerases.  Moreover, when used in combination, antiviral therapy is 

much more effective due to the decreased probability of generating multiply 

resistant viruses.  One potential set of alternative antiviral drug targets are PRR 

pathways and viral countermeasures to these pathways.  Recent evidence 

suggests that developing such medications may be fruitful.  For instance, 

GSK983, a small molecule that induces a subset of ISGs independent of type-I 

IFN induction, inhibits replication of a wide array of viruses (31); and small 

molecules that block hepatitis C virus NS3/4A protease, a PRR pathway 

countermeasure, decrease viral replication and may be of clinical benefit (23, 

68).  Other examples include the TLR7 ligand imiquimod that is used topically to 

treat human papillomavirus, and the development of novel therapeutic platforms 
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that inhibit pandemic influenza replication such as gold nanorod delivery of the 

innate immune activator ssRNA (9).  Existing therapeutics activating innate 

antiviral pathways could be immediately tested for activity against neurotropic 

arboviruses, but generation of inhibitors of neurotropic arbovirus PRR pathway 

countermeasures, such as those targeting WEEV capsid, would require 

extensive research and development.  However, assays presented in chapter III 

could be easily modified and adapted for high throughput screening of small 

molecules that restore ISRE activation in neuronal cells transfected with WEEV 

capsid.          
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Overall Significance 

 The work presented here demonstrates that neurons are active players in 

the innate immune response to neurotropic arboviruses and that neuronal 

antiviral PRR pathways may be important determinants of neurotropic arbovirus 

pathogenesis.  Specifically, I showed that human neurons posses a compliment 

of highly active antiviral PRR pathways and that these pathways mediate 

neuronal responses to neurotropic arboviruses.  In addition, I demonstrated that 

neurotropic arboviruses posses PRR pathway countermeasures, and I 

determined that the neurotropic arbovirus WEEV subverts antiviral neuronal PRR 

pathways via inhibition of IRF3 nuclear translocation and host gene expression, 

both of which are likely mediated by WEEV-capsid.  Finally, I identified a novel 

class of neurotropic alphavirus replication inhibitors which may be useful for 

mono-therapy or in combination with potential therapeutics designed to enhance 

the neuronal innate immune response or inhibit viral countermeasures to the 

innate immune response.   
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Supplemental Figure S5.1.  Poly(I-C) induces Akt and S6K phosphorylation, 

and the mTOR inhibitor rapamycin disrupts neuronal PRR signaling.  A.  

BE(2)-C/m cells were serum starved for 24 hours in media containing 0.5% BSA.  

Following serum starvation, cells were mock treated or treated with pIC (100 

g/ml) for 5, 15, 30, or 60 minutes.  Then, lysates were collected and analyzed 

by Western blotting for phosphorylated Akt (pAkt-T308; Cell Signaling, Danvers, 

MA), phosphorylated S6K (pS6K-T389; Cell Signaling, Danvers, MA), or GAPDH.  

B and C.  BE(2)-C/m ISRE (B) or NFB (C) reporter cells were pre-treated with a 

DMSO control or serial dilutions of rapamycin (LC Laboratories, Woburn, MA) for 

30 minutes followed by a mock stimulation or stimulation with 100 g/ml pIC (B 

and C), 100 U/ml IFN-A/D (B), or 50 ng/ml TNF (C).  24 hours after 

stimulation, SEAP reporter activity and cell viability were assessed.  Reporter 

activity is presented as a percent of DMSO controls.  Rapamycin was not 

cytotoxic at any of the concentrations displayed (data not shown).  Data in A 

represent 1 trial.  Averages and SEMs from 2 trials are displayed for B and C 

except for the pIC stimulation of the NFB reporter cells which represents 1 trial.       
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