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ABSTRACT

Artificial Mixture Methods for Correlated Nominal Responses and Discrete Failure
Time

by

Shufang Wang

Chair: Alexander Tsodikov

Multinomial logit model with random effects is a common choice for modeling corre-

lated nominal responses. But due to the presence of random effects and the complex

form of the multinomial probabilities, the computation is often costly. We generalize

the artificial mixture method for independent nominal response (Tsodikov and Chefo

(2008)) to correlated nominal responses. Our method transforms the complex multi-

nomial likelihood to Poisson-type likelihoods and hence allows for the estimates to

be obtained iteratively solving a set of independent low-dimensional problems. The

methodology is applied to real data and studied by simulations.

For discrete failure time data in large data sets, there are often many ties and

a large number of distinct event time points. This poses a challenge of a high-

dimensional model. We explore two ideas with the discrete proportional odds(PO)

model due to its methodological and computational convenience. The log-likelihood

function of discrete PO model is the difference of two convex functions, hence dif-

ference convex algorithm(DCA) carries over and brings computational efficiency. An

alternative method proposed is a recursive procedure. As a result of simulation stud-
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ies, these two methods work better than Quasi-Newton method in terms of both

accuracy and computational time .

The results from the research on the discrete PO model motivate us to develop ar-

tificial mixture methods to discrete failure time data. We consider a general discrete

transformation model and mediate the high-dimensional optimization problem by

changing the model form at the “complete-data”level (conditional on artificial vari-

ables). Two complete data representations are studied: proportional hazards(PH)

and PO mixture frameworks. In the PH mixture framework, we reduce the high-

dimensional optimization problem to many one-dimensional problems. In the PO

mixture framework, both recursive solution and DCA can be synthesized into the

Expectation-Maximization(EM)-type algorithm leading to simplification in the opti-

mization. PO mixture method is superior to the PH mixture method as a result of

this study. It is applied to real data sets to fit a discrete PH and PH-PH models.

Simulation study fitting discrete PH model shows that the advocated PO mixture

method outperforms Quasi-Newton method in terms of both accuracy and speed.
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CHAPTER I

Introduction

Nominal or polytomous response data and discrete failure time data are very

common in many fields of research. In this research, we develop a few artificial

mixture methods to model such response data.

1.1 Artificial Mixture Method

Artificial mixture methods are modeling techniques that simplify the likelihood

function and hence the computation by introducing artificial random variables to

the original model. It was first developed in Tsodikov (2003a), where the author

introduced frailty term in the form of PH frailty model under survival data set-

ting. It is natural to use EM-type algorithms after the introduction of artificial

random variables, treating them as missing data or part of missing data. However,

the “complete-data ”level likelihood sometimes does not correspond to a legitimate

probabilistic model. Tsodikov (2003a) proposed a well-formularized and theoreti-

cally vigorous Quasi-Expectation-Maximization(QEM) algorithm which inherits all

the benefits of Expectation-Maximization(EM) algorithm. The QEM algorithm jus-

tifies the artificial mixture method even when the “complete-data ”level likelihood is

probabilistically illegitimate.

It was named “Fake mixture method ”in Tsodikov and Chefo (2008) as an ap-
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proach to simplify the computation in the standard multinomial logit model. It

transforms the multinomial likelihood to Poisson one without introducing nuisance pa-

rameters, which makes the method superior to many other approaches that achieved

likelihood simplification at the cost of model augmentation leaving the model with a

lot of extra parameters to cope with. Besides, other Poisson-based approaches only

work with discrete covariates.

1.2 Correlated Nominal Responses

As an example of nominal response, types of health services utilization may include

in-patient, out-patient and day clinic, as in Kuss and McLerran (2007) and Wang and

Tsodikov (2010). Sometimes the multinomial outcome of interest may be constructed

from two or more categorical variables as in the real data application in Tsodikov

and Chefo (2008), where the four-category response was constructed from stage and

histologic grade of the tumor of prostate cancer. Correlated observations may be

present due to measures within a cluster or taken repeatedly for the same subject.

Assuming independence of observations and using the standard multinomial logit

model will lead to bias unless correlation between observations is modeled correctly.

One popular method to model the correlation is to use multinomial logit model with

random effects. However, the presence of random effects and the complex form of the

multinomial likelihood often make the computation costly.

A number of approaches have been proposed in the literature to tackle the compu-

tational complexity in both the standard multinomial logit model and mixed effects

multinomial logit model. They can be grouped into the following three types:

• Augmentation methods, where a large number of nuisance parameters were

added.

For example, Baker (1994)’s Multinomial-Poisson (MP) transformation is most

2



important and essential in this type of approaches. Methods resembling MP

transformation includes the Bayesian version of MP transformation in Gosh

et al. (2006), a Poisson log-linear or nonlinear model as in Chen and Kuo (2001).

Lang (1996) showed that the idea can be interpreted as using Lagrange mul-

tipliers to normalize multinomial probabilities. Because normalization needs

to be enforced for each distinct covariate pattern, this type of transformation

is restricted to discrete covariates. If the methods are used for continuous co-

variates, a separate parameter corresponding to the distinct covariate value is

needed. Then the dimension of the parameter space is comparable to the num-

ber of observations, the maximum likelihood estimates become biased or can

be inconsistent. Other augmentation methods applicable to data with continu-

ous covariates are also available such as Scott (2011). However, they introduce

high-dimensional augmentation adding many nuisance parameters.

• Approximate methods

In order to estimate the parameters in a multinomial logit model with ran-

dom effects, we need to integrate the “complete-data ”likelihood function with

respect to the random effects. Therefore methods dealing with integration nat-

urally apply here, such as (1) using approximate Taylor-series expansion to

linearize the integrand resulting from the random effects such as Breslow and

Clayton (1993) and (2) using quadrature methods to approximately evaluate

the integrals, such as Rabe-Hesketh et al. (2002), Hedeker (2003) and Clarkson

and Zhan (2002) etc. The third type of approximate approaches is the Monte

Carlo EM (MCEM) algorithm developed recently, where random effects were

treated as missing data and EM-type algorithm is used with Monte Carlo nu-

merical methods in the E step for the evaluation of integrals(McCulloch (1997),

Booth and Hobert (1999) and Chen et al. (2002) etc.).
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• Artificial mixture method for standard multinomial logit model

Different from the aforementioned approaches, Tsodikov and Chefo (2008) de-

veloped an artificial mixture method to simplify the computation in standard

multinomial logit model by transforming the multinomial likelihood to a set of

Poisson likelihoods through the introduction of artificial random variables.

This approach does not add any new parameters to the model as normalizarion

restrictions are enforced by averaging over artificial variables rather than by

Lagrange multipliers.

In this thesis we generalize this approach to correlated observations.

Among methods available for nominal responses with correlation in multinomial

logit model with random effects, quadrature methods are most commonly used. How-

ever, as pointed out in Hartzel et al. (2001), quadrature methods for integration are

feasible only for integrals with dimension up to about 5 or 6. MCEM algorithm may

be used to handle such situations, which synthesizes Monte Carlo approximation for

integrals and EM algorithm to obtain consistent parameter estimates.

We target at situations where quadrature methods are not feasible. We generalize

the artificial mixture method for independent nominal response to correlated nominal

responses. Our method is comparable to MCEM in terms of convergence rate, but

faster and easier to implement due to the simplificity of the likelihood function and

the dimension reduction of the parameter space in the M-step in the optimization

procedure. Our method transforms the complex multinomial likelihood to Poisson-

type likelihoods and hence allows for the estimates to be obtained iteratively solving

a set of independent low-dimensional problems. The methodology is applied to real

data and studied by simulations. Research results on this topic was published in

Wang and Tsodikov (2010).
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1.3 Discrete Failure Time Data

For large-scale studies, failure time data are often collected in a discrete time

scale, implying a discrete failure time model or a model for grouped failure time

data (Pipper and Ritz (2006)). Such studies are characterized by a large number

of ties and distinct event time points. if the failure is truly discrete or grouped on

purpose to a larger time unit, treating such times as discrete is more appropriate. As a

consequence, discrete failure time models have gained more attention lately. For large

data sets, this implies that the parameter space is high-dimensional when we adopt

a nonparametric form of the baseline hazards, since the number of baseline hazard

parameters equals the number of distinct event time points. Absent partial likelihood

machinery that is specific to the continuous form of the likelihood, optimization of

the likelihood in such high-dimensional parameter spaces becomes a challenge.

Researchers explored methods to deal with many ties and/or treat failure time as

discrete, such as Prentice and Gloeckler (1978),Stewart and Pierce (1982), Johnson

and Christensen (1986), Sinha et al. (1994), Yu et al. (2004), Pipper and Ritz (2006),

Zhao and Zhou (2008), Li et al. (2008), Yu et al. (2009) and etc. Most of existing

studies focused on a specific model for discrete failure time data such as Cox-type

models. Even with the Cox model in discrete form problems with method stability

were reported in high-dimentional cases Prentice and Gloeckler (1978).

We propose a general approach for a class of transformation models that shows

stable behavior in high-dimensional optimization problems.

We first study the use of discrete proportional odds(PO) model in this situation.

We propose a Minorization-maximization(MM)-type algorithm and a recursive proce-

dure for the high-dimensional optimization problem and compare these two methods

with a traditional full likelihood maximization method - Quasi-Newton method.

We then apply artificial mixture technique to extend the base discrete PO model

and proportional hazards(PH) model to a class of discrete transformation models.

5



Our proposed methods are superior in terms of accuracy and speed for parameter

estimation in such a high-dimensional cases.

1.3.1 Discrete proportional odds model

The Cox PH model (Cox (1972)) has been the most common choice for failure

time data. The PO model, which has been a popular tool for ordinal data, has become

widely accepted since its first application to failure time data by Bennett (1983a).

Although there are situations where the Cox PH model and PO model differ, in most

studies with limited follow up, the survivor function is close to one resulting in little

difference in these two models. We study the PO model for discrete failure time data

due to its methodological and computational convenience.

As pointed out earlier, models for discrete failure time data in large data sets

often contain a large number of parameters, including regression parameters and the

baseline survivor functions. Joint estimation of regression parameters and baseline

survivor functions has been subject to the curse of dimensionality. Researchers has

explored methods to simplify the computation, such as MM algorithm proposed in

Hunter and Lange (2002).

In our research, we further developed two methods with the discrete PO model:

Difference Convex Algorithm(DCA) and a recursive procedure. We compare these

two methods with Quasi-Newton method. Both DCA and recursive procedure work

better than Quasi-Newton method in terms of accuracy and speed. The results of

this research provide basic support for the PO mixture method proposed in Chapter

IV.

1.3.2 Artificial Mixture Methods for Discrete Failure Time Data

The presence of many ties and a large number of distinct event time points in

discrete failure time data poses a challenge of a high-dimensional model without the

6



simplicity of the continuous model. Conventional methods to treat ties or jointly fit

the full model are computationally prohibitive in large samples. We consider a general

discrete transformation model and mediate the problem by changing the model form

at the “complete-data”level (conditional on artificial variables). Two complete data

representations of a given discrete transformation model are studied: PH and PO

mixture frameworks. In the PH mixture framework, we reduce the high-dimensional

optimization problem to many one-dimensional problems. In the PO mixture frame-

work, an MM-type algorithm can be applied to simplify the optimization. Meanwhile,

a recursive procedure can also be utilized. We advocate the PO mixture method as

a result of this study. We apply our advocated PO mixture method to real data sets

and conduct simulation studies fitting discrete PH model using PO mixture method.

Simulation studies support our findings.

7



CHAPTER II

A Self-consistency Approach to Multinomial Logit

Model with Random Effects

Key Words: QEM algorithm, Multinomial logit model with random effects

2.1 Introduction

Multinomial logit model with random effects is a common choice in the analysis

of correlated nominal data in biomedical science. Such correlation could come from

repeated measures or clustered observations. The complex form of the likelihood func-

tion and the presence of random effects make the computation costly. The presence

of random effects implies computationally expensive multi-dimensional integrals.

A number of approaches have been proposed in the literature to overcome com-

putational difficulties both in standard multinomial logit model and multinomial

logit mixed effects model. Breslow and Clayton (1993) advocated penalized quasi-

likelihood estimation approach to avoid the complex form of multinomial likelihood.

Chen and Kuo (2001) used the fact that the multinomial distribution can be de-

rived from a set of Poisson random variables conditionally on their total being fixed

(Mccullagh and Nelder (1989)) and suggested transforming the multinomial problem

to Poisson log-linear or non-linear model. Lang (1996) showed that the idea can

8



be interpreted as using Lagrange multipliers to normalize multinomial probabilities.

Because normalization needs to be enforced for each distinct covariate pattern, the

Poisson log-linear transformation is restricted to discrete covariates. This introduces

high-dimensional augmentation adding nuisance parameters.

It is convenient that this method can be implemented with standard software such

as SAS NLMIXED. Chen and Kuo (2001) and Kuss and McLerran (2007) also con-

sidered a general non-linear modeling approach in conjunction with SAS NLMIXED.

A related series of methods used multinomial likelihood directly applying numerical

approximation to multidimensional integrals, such as Gaussian quadrature (Rabe-

Hesketh et al. (2002), Hedeker (2003) etc.), spherical-radial quadrature (Clarkson

and Zhan (2002)), first-order Taylor series expansion of the integrand (Breslow and

Clayton (1993)), and Bayesian methods (Daniels and Gatsonis (1997)). Tsodikov and

Chefo (2008) introduced artificial mixing variables to transform the multinomial like-

lihood to Poisson-type likelihood and reduce the complexity of the likelihood function.

They apply EM-type algorithm that enjoys factorization of the model dimension at

the M step that represents Poisson regressions. In this chapter, we extend the method

to the multinomial logit model with random effects. Treating random effects and the

artificial variables as missing data, we apply the generalized self-consistency approach

described in Tsodikov (2003b) (Quasi-EM algorithm) to parameter estimation. The

key benefit of this approach is that the M-step reduces to a set of low-dimensional

problems as described in Section 2.3.

EM-type methods are advocated because of their stability with complex models.

As pointed out in Hartzel et al. (2001), quadrature method for integration is feasible

only for integrals with dimensions up to about 5 or 6. There may be a slight in-

crease in the computation capacity these days, while it is still true that multivariate

quadrature method is not computationally feasible for evaluating high-dimensional

integrals. A number of Monte Carlo(MC) EM procedures were recently proposed

9



in the literature under a more general framework - generalized linear mixed models,

such as McCulloch (1997), Booth and Hobert (1999) and Chen et al. (2002), where

Monte Carlo approximation for integration and EM algorithm are synthesized to ob-

tain consistent parameter estimates. For ease of evaluating Monte Carlo error and

automatically adjusting Monte Carlo sample size, M , Booth and Hobert (1999) pro-

posed to use the MC approximations to high-dimensional integrals with independent

random samples. As a consequence, M can be automatically increased until algo-

rithm converges. Brian S. Caffo (2005) developed a more general method to increase

the MC sample size which requires less computation, while it roughly preserves the

ascent property of the observed likelihood function.

Unlike MCEM in McCulloch (1997), automated MCEM in Booth and Hobert

(1999) and ascent-based MCEM in Brian S. Caffo (2005), where the missing data

contain only the random effects, in this chapter, we introduce artificial random vari-

ables and treat them, together with the random effects, as missing data. We then use

MC approximation to high-dimensional integrals with independent random samples

in E-step. Our approach is different in the treatment of the M-step - the introduction

of artificial variables simplifies and factorizes the complex likelihood function in the

M-step which contributes to greater computational efficiency in a mixed multinomial

subclass of generalized linear mixed models. To accelerate the MCEM algorithm, we

propose a simple method to increase M , which does not require us to evaluate the

MC error. At the same time, it roughly preserves the ascent property of observed

likelihood function, since it is very similar to a special case of Brian S. Caffo (2005),

as shown later in the paper.

In Section 2, we specify the multinomial logit model with mixed effects. In Section

3, we specify estimation steps. Variance estimation is described in Section 4. We

summarize the detailed estimation procedure in Section 5, followed by simulation

studies in Section 6. The method is applied to a real dataset in Section 7.

10



2.2 Model specification

Suppose the categorical response, Y ∗
ij , has R categories, indexed as r(r = 1,...,R).

Clusters of correlated data are indexed by i (i = 1,..., I). Repeated measures within

a cluster are indexed by j (j =1,...,Ti). Let Yijr=I(Y ∗
ij = r). Hence, response cate-

gory probability pijr = E[Yijr] = P (Y ∗
ij = r). Let X ij denote the column vector of

exploratory variables for the j-th observation in the i-th cluster, in which the first

element is one, corresponding to the intercept in model (II.1). And let Zij denote

the column vector of random effects for the j-th observation in the i-th cluster.

Assume category R is the reference category. The logits compare any category

r = 1, ..., R − 1 with the reference category. The model is called reference-cell logit

random effects model as described in Agresti (2002).

log(
pijr

pijR
) = XT

ijβr + ZT

ijbir, r = 1, ..., R − 1, (II.1)

where βr is the fixed effects coefficient vector of length p + 1, corresponding to an

intercept and p covariates. βR is set to be zero. β1, . . . , βR−1 are to be estimated.

bir is the random effects coefficient vector. The assumption on the distribution of

{bir}R−1
r=1 is arbitrary and our choice will be specified in Section 3.

Define Yij as a column vector with rth element (Yij)r being Yijr . Under a GLM

setting, pijr is linked with the linear predictor, ηijr = XT

ijβr + ZT

ijbir, through the

reference-cell logit function g(.) = log(
pijr

pijR
).

pijr =
θijr

1 +
∑R−1

l=1 θijl

, r = 1, ..., R − 1 (II.2)

In the rest of the paper, we use the following notations: θijr=exp {ηijr}. bi is a

vector consisting of all elements in {bir}R−1
r=1 . Y i = {Y ij}Ti

j=1. EX indicates statistical

expectation taken with respect to random variable X.
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2.3 Estimation

2.3.1 Artificial Mixture

Tsodikov and Chefo (2008) introduced artificial variables {Uij} iid∼ Exp(1) to stan-

dard multinomial logit model, to transform the multinomial likelihood to Poisson-

type likelihood. This approach also works when repeated measures are present. For

standard exponentially distributed variable, U , the Laplace transform has the form

L(s) = EU

{
e−Us

}
=

1

1 + s
. (II.3)

Observing the similarity between (II.3) and the multinomial probabilities (II.2),

we can write pijr in the artificial mixture form

pijr = θijrEUij

{
exp

[
−Uij

R−1∑
l=1

θijl

]}
.

If we pretend that Uij(∀i, j) are observed, the expectation sign, E, can be removed

in the above equation. Denote the complete-data expression by p̃ijr(·|·, Uij).

p̃ijr = θijr exp

{
−Uij

R−1∑
l=1

θijl

}
. (II.4)

It is clear that p̃ijr(·|·, Uij) is no longer a legitimate probability. This indicates

that the likelihood function constructed from p̃ijr(·|·, Uij) is not a legitimate prob-

abilistic model. The self-consistency theory developed in Tsodikov (2003b) justifies

the approach. Denote U i as a column vector, U i = (Ui1, ..., UiTi
)T .
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2.3.2 Complete-data Likelihood

For model (II.4) with the artificial variables {Uij}, the complete data include

{X ij, Y ij, bir, Uij, ∀i, j, r}. The complete data likelihood function is

LCD(β,Σ) =
∏

i

f(yi, bi, U i; β,Σ) =
∏

i

f(yi | bi, U i; β) × f(bi) × f(U i),

where f(yi | bi, U i; β) =
∏

j,r {p̃ijr}yijr is the conditional multinomial density for the

i-th cluster with illegitimate probabilities {p̃ijr}. It can be derived that

log {f(yi | bi, U i; β)} =
∑
j,r

{yijr log(θijr) − Uijθijr}

Under the following assumptions: (1){Uij} iid∼ Exp(1); (2)Uij and bir are in-

dependent for any j, r; and (3)bi follows multivariate normal distribution, bi ∼
MV N(0,Σ), the complete data likelihood can be written as

LCD(β,Σ) =
∏

i

{f(yi | bi, U i; β) × f(bi;Σ) × f(U i)} . (II.5)

Denote the corresponding log-likelihood function as �CD and the contribution of

the i-th cluster to the log likelihood function �CD,i.

In the likelihood function (II.5), {bi} and artificial variables {Uij} can be treated

as missing data, hence EM-type algorithm can be used for parameter estimation.

2.3.3 Estimation steps

Let φ=(β,Σ) be the combined parameter vector. The EM algorithm is an iterative

process. Given parameter estimates from the k-th iteration, the (k + 1)-th iteration

can be formulated as Argmaxφ

{
Q(φ |φ(k))

}
, where Q(φ |φ(k)) forms the E-step.

Q(φ |φ(k)) = E
{

log(LCD(φ)) |y; φ(k)
}

. (II.6)
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The M-step finds φ(k+1) such that

Q(φ(k+1) |φ(k)) ≥ Q(φ |φ(k)), (II.7)

for any φ in the parameter space.

To evaluate the expectation in E-step, we need to evaluate the multi-dimensional

integrals with respect to bi and U i.

Q(φ |φ(k)) = E
{
�CD | y; φ(k)

}
=

∑
i

{∫
�CD,i × f(bi, U i |yi, φ

(k))dbidU i

}
,

where f(bi, U i |yi, φ
(k)) ∝ f(yi | bi, U i; β

(k)) × f(bi;Σ
(k)) × f(U i). The normalizing

constant is
∫

f(yi | bi, Ui; β
(k)) × f(bi;Σ

(k)) × f(U i)dbidU i, denoted as a
(k)
i .

Note that the dimension of the integrals easily exceeds the limit that the computer

can handle using quadrature methods when either R or the number of random effects

is large. In this case, Monte Carlo (MC) approximations to the intractable integrals

are often suggested. Booth and Hobert (1999) and Hartzel et al. (2001) proposed

to use rejection sampling or importance sampling based on f(bi, U i |yi, φ
(k)) as it’s

not easy to directly sample from f . By doing so, one does not need to evaluate

the normalizing constants a
(k)
i . In this research, we randomly select M independent

samples from multivariate normal distribution with mean zero and covariance matrix

Σ(k) for bi and from standard exponential distribution for Uij . Denote these samples

as bi,m, Uij,m for m = 1, ..., M . Hence, Q(φ |φ(k)) can be approximated by Q̃(φ |φ(k)),

and a
(k)
i by ã

(k)
i .

Q̃(φ |φ(k)) =
1

M

∑
i

M∑
m=1

{
f(yi | bi,m, U i,m; β(k))

ã
(k)
i

log f(yi, bi,m, U i,m; φ)

}
, (II.8)

where ã
(k)
i = 1

M

∑M
m=1 f(yi | bi,m, U i,m; β(k)). Compared to rejection sampling and/or
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importance sampling methods widely used in the literature on generalized mixed ef-

fects models such as Booth and Hobert (1999) and Hartzel et al. (2001), the main

advantage of our sampling scheme is that one does not need to look for a trial distri-

bution as we sample from the exact distributions, MV N(0,Σ(k)) and Exp(1). The

method synthesizes MC approximation and QEM algorithm developed in Tsodikov

(2003b), hence we will call it MCQEM algorithm to differentiate it from a regular

M-step procedure.

Denote w
(k)
i,m =

f(yi |bi,m,U i,m;β(k)
)

ã
(k)
i

. The M-step becomes

Argmax
β, Σ

{∑
i,m

w
(k)
i,m {log f(yi | bi,m, U i,m; β) + log f(bi;Σ) + log f(U i)}

}

We obtain β(k+1) and Σ(k+1) with a two-stage procedure. First, we estimate β(k+1)

with Σ fixed at Σ(k), achieved by maximizing the first term in Q̃(φ |φ(k)), which is the

log-likelihood function as if bi,m, U i,m are observed. Plugging in log f(yi | bi, U i; β)

specified early, the objective function in this step can be written as

∑
i,m

w
(k)
i,m {log f(yi | bi,m, U i,m; β)}

=
∑

r

∑
i,m

w
(k)
i,m

∑
j

{
yijr(X

T
ijβr + ZT

ijbir) − Uij exp(ZT
ijbir) exp(XT

ijβr)
}

.

It’s obvious that we can view the objective function as a sum of R−1 components,

each corresponding to the contribution of a Poisson likelihood with I {yij = r} as the

response and Uij,m exp(ZT
ijbir,m) as the offset term. As a consequence, we can obtain

β(k+1)
r (∀r) from a weighted Poisson regression with weight w

(k)
i,m. For each Poisson

regression, the original data are replicated M times.

Second, we estimate Σ(k+1) with β fixed at β(k+1). This step only relates to the

second term in Q̃(φ |φ(k)), which is simply the likelihood contribution of a linear

combination of multivariate normal samples with weight w
(k)
i,m.

15



Suppose we have p exploratory variables. Then, we have (p+1)×(R−1) coefficient

parameters to estimate in total. The M-step of our method estimates p+1 parameters

at a time, and repeats the process R − 1 times. In contrast, without introducing the

artificial variables, one has to estimate all (p + 1)× (R − 1) coefficient parameters in

one step. In this sense, our method results in greater simplicity in the M-step. This

advantage is demonstrated by a simulation study in Section 2.6.

The process iterates between E-step and M-step until a convergence criterion is

met. In this research, the process will stop when the relative change of parameter

estimates does not exceed a given tolerance, for instance, 1e-8.

2.3.4 Escalation of the MC sample size

Convergence may not be obtained when using a constant MC sample size, M ,

due to a persistent MC error (Brian S. Caffo (2005)). On the other hand, it’s not

efficient to use large M at an early stage of the EM iterations. Sometimes, it’s critical

to increase M automatically over iterations. Booth and Hobert (1999) proposed to

use normal approximation to MC error and construct a 100(1−α)% confidence ellip-

soid for φ(k+1) and hence determine to increase M or not, by comparing whether φ(k)

lies in the confidence ellipsoid. Brian S. Caffo (2005) developed a data-driven strat-

egy for increasing M which preserves the ascent property of the likelihood function

over iterations with large probabilities. They constructed an approximate confidence

interval for the change of Q(φ(k+1) |φ(k)) over two consecutive iterations and hence

determine whether to increase M .

Methods proposed in the aforementioned articles all require a large amount of

computation such as approximating MC error, second-order derivatives of Q(φ |φ(k))

and so on. There does not exist standard software to implement these methods. It’s

obviously tedious to derive these formulas for those who want only to apply these

methods to real problems. In this research, we suggest a simpler strategy for the
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escalation of M , which is similar to a special case as in Brian S. Caffo (2005) with

α=0.5. We increase M by a given factor whenever observed likelihood function at

φ(k+1) is less than that evaluated at φ(k). The observed likelihood function can be

easily approximated using MC method.

2.4 Variance Estimation

Louis (1982) described a variance estimation method based on the observed in-

formation matrix for EM algorithm. Let S be the complete data score vector.

S = ∂ log LCD

∂φ
, where LCD is given by (II.5). The observed information matrix, Iobs,can

be estimated through the formula: Iobs = EU ,b

{
ICD(U , b) − SST (U, W )|LCD(U , b)

}
,

where ICD = −∂2 log LCD

∂φ∂φT is the complete data information matrix. ICD overestimates

the sample information as it assumes that missing data are known. The expression

for Iobs represents the so-called missing information principle that observed informa-

tion is complete information minus the missing information. Inverting the observed

information matrix, we get the estimated covariance matrix. The procedure is tedious

as it requires the calculation of the first and second derivatives. Hence, we seek for

an alternative method to estimate the covariance matrix.

We estimate the variance components based on an approximation to the likelihood

curvature by a quadratic form fit by linear regression based on the sampled points on

likelihood surface around MLE. Related idea was used in Neilsen et al. (1992).

Applying the Taylor expansion to the log-likelihood function �(φ) at φMLE up to

the second order term, we get

�(φ) ≈ �(φMLE) + (φ − φMLE)
T G(φMLE) + (φ − φMLE)

T D(φMLE)(φ − φMLE)/2.

where G(·) and D(·) are the gradient vector and the Hessian matrix, respectively.
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Since G(φMLE) ≈ 0,

�(φ) − �(φMLE) ≈ (φ − φMLE)
T D(φMLE)(φ − φMLE)/2.

Denote �(φ) − �(φMLE) as Δ� and φ − φMLE as Δφ. Let {D(·)}ij = dij. If we

randomly sample K points for φ within the close neighborhood of φMLE, we then have

Δ�k =
1

2

∑
i,j

dijΔφkiΔφkj + εk, ∀k ∈ 1, ..., K, (II.9)

where Δφki is the ith element of Δφ of the kth sampled point on the log-likelihood

surface. The distribution of εk is Gaussian with mean zero.

We can estimate dij in the above equation by minimizing the following sum of

squares:

SS =
∑

k

{
Δ�k − 1

2

∑
i,j

dijΔφkiΔφkj

}2

=
∑

k

{
Δ�k − 1

2

∑
i

diiΔφ2
ki −

∑
i<j

dijΔφkiΔφkj

}2

.

Observe that the above sum of squares has the form of objective function in linear

regression with response being Δ�k, independent variables 1
2
Δφ2

i (i = 1, ..., m) and

ΔφiΔφj for any i < j, and the m(m+1)/2 unknown elements in matrix D being the

corresponding regression coefficients. Or we can directly recognize (II.9) as a linear

regression model without intercept term. Denote the unknown elements in the matrix

D as a vector, γ. Therefore, γ can be estimated, when K is large enough such that

the design matrix of the linear regression model is non-singular. In other words, the

Hessian matrix can be estimated through a multiple linear regression through the

origin. Hence, approximations of the standard errors of the parameter estimates can

be obtained easily.
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Elements of the K Δφ points are sampled independently from a symmetric dis-

tribution with mean 0 on the log-likelihood surface. They need to be close enough

to φMLE but not too close causing numerical concerns. They are chosen to be in the

1√
n
-range around φMLE.

The remaining part of the method is to solve (II.9). Simulation study in Section

2.6 suggests that the variance approximation method works well.

2.5 Algorithm

In this section, we outline the MCQEM algorithm in details.

1. Set initial values for β, Σ and MC sample size M . We may set β(0) to be the

coefficient estimates by fitting a standard multinomial logit model, ignoring the

within-cluster correlation. It is a good set of starting values especially when the

within-cluster correlation is small. Σ(0) can be identity matrix. M (0)=200. Let

k=0.

2. Calculate the observed log-likelihood function at φ(k), denoted as �obs(φ
(k)).

3. Randomly draw M (k) independent samples from MVN(0,Σ(k)) for bi,m and from

Exp(1) for Uij,m.

4. Calculate the weight w
(k)
i,m and offset Uij,m exp(ZT

ij,mbir). Estimate β (denoted

as β(new) through R − 1 Poisson regressions with the above weight and offset

and Σ(new) from a set of multivariate random samples with the weight.

5. Evaluate the observed log-likelihood function at φ(new), denoted as �obs(φ
(new))

and compare it with �obs(φ
(k)). If �obs(φ

(k)) < �obs(φ
(new)), accept φ(new) as

φ(k+1), update k, �obs(φ
(k)) and M (k+1) = M (k). Go back to step 3. Other-

wise, increase M (k) by a give factor, for instance, 5/4, without updating other

quantities and go back to Step 3.
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6. Iterate over these steps until convergence.

7. Estimate the Hessian matrix as described in Section 2.4 and obtain the standard

errors.

2.6 Simulation studies

In this section, two simulation studies are performed. First, a simulation study is

conducted to illustrate the benefit of introducing artificial variables to simplify the

M-step. Second, we do a simulation study to illustrate the MCQEM algorithm using

a random intercept multinomial logit model.

2.6.1 Simulation study 1

The introduction of artificial variables makes MCQEM different from MCEM in

estimating the parameters at the M-step. In the usual MCEM algorithm, a standard

multinomial logit model is fitted for the M-fold duplicated dataset, treating simulated

bi,m as observed. All (p + 1) × (R − 1) coefficient parameters are estimated jointly.

In contrast, in MCQEM algorithm, we fit (R − 1) independent Poisson regressions,

each having (p + 1) parameters as if bi,m and U i,m were observed. This simulation

study is designed to show the advantage of doing so.

We simulate three independent random variables of size 1000 from standard nor-

mal distribution, and dichotomize the third variable using zero as a cutpoint. We vary

the number of categories in the R = 3, ..., 15 range to highlight the computational

benefit achieved at the M-step. The set of true parameter values for R = 15 is a 4 by

14 matrix. For R < 15 we use the corresponding R − 1 column submatrix.

For a given R, we apply two methods to twenty simulated datasets. The first

method is to estimate all the parameters jointly in a multinomial logit model. The

second is to fit R − 1 Poisson regressions with prespecified artificial variables, which
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Figure 2.1: Number of response categories vs. time used per twenty estimation pro-
cedures (dashed line: multinomial logit model; solid line: R − 1 Poisson
models with prespecified artificial variables)

are drawn from standard exponential distribution. The convergence criteria for both

methods are set to be the same. The setting mimics what we have at the M-steps

of MCEM and MCQEM. Hence, it can be used to compare the M-steps of these two

methods.

Figure 1 shows the relationship between the number of response categories, R,

and total time used in parameter estimation for all twenty simulated datasets.

As shown in the figure 2.1, fitting R− 1 Poisson regressions always take less time

than estimating all parameters jointly in the multinomial logit model. The advantage

of reduced dimension increases rapidly with the number of categories R.

2.6.2 Simulation study 2

We explore the performance of the MCQEM algorithm and the variance approxi-

mation method for correlated multinomial data using a random intercept model. Four

exploratory variables are included along with random intercepts with the following

21



parameterization.

log(
pijr

pijR
) = Xij

Tβr + biαr, r = 1, ..., R − 1, (II.10)

where the random intercept bir is re-parameterized as biαr. This is a special case of

the general model (II.1) with random intercepts only and full dependency between

bi1, ..., bi(R−1).

We consider a categorical response with three categories, regressed on the covari-

ates of the real data described in Section 2.7. In this data set, there are 36 clusters of

size seven to ten. The true parameters used to simulate the responses are taken to be

the parameter estimates of the real dataset obtained through the proposed MCQEM

algorithm. It is compared with adaptive Gauss-Hermite quadrature methods using

NLMIXED in SAS.

Table 1 summarizes results of 500 simulations. The second column shows the

true parameter values used to simulate data. The third column lists the empirical

mean of parameter estimates using MCQEM algorithm proposed in this chapter. The

first number in the parenthesis is the standard error of the parameter estimate using

variance approximation method described in Section 2.4. The second number in the

parenthesis indicates the percentage of the estimated 95% confidence intervals cov-

ering the true parameter value. The fourth column contains those from NLMIXED

in SAS, using adaptive Gauss-Hermite quadrature method to approximation the in-

tractable integrals.

The empirical mean of parameter estimates of 500 simulations are very close to

the true parameter values, taking the small sample size (36 clusters in total) into

consideration. This supports the proposed methodology for multinomial logit model

with random effects.

As seen in Table 1, among all the 95% confidence intervals constructed based on

our standard error estimates, about 95% contain the true parameter values. The

22



True QEM(se, NLMIXED(se,
Parameters parameter coverage coverage

values rate*100) rate*100)
α1 1.652 1.609 (0.387, 95.2) 1.566 (0.365,90.8)
α2 1.293 1.253 (0.326, 94.8) 1.224 (0.307,92.6)
β10 -2.954 -3.049 (0.848, 93.8) -3.057 (0.835,96.4)
β11 1.333 1.368 (1.007, 92.4) 1.370 (0.917,92.4)
β12 0.316 0.323 (0.903, 91.8) 0.320 (0.852,92.0)
β13 4.073 4.219 (0.611, 94.0) 4.220 (0.607,94.8)
β14 -2.567 -2.660 (0.556, 95.2) -2.660 (0.543,95.2)
β20 -1.097 -1.133 (0.634, 94.4) -1.138 (0.611,95.0)
β21 0.283 0.293 (0.812, 92.0) 0.293 (0.723,90.6)
β22 -0.428 -0.469 (0.712, 97.0) -0.471 (0.706,94.8)
β23 2.390 2.452 (0.429, 95.0) 2.450 (0.424,95.8)
β24 -1.612 -1.642 (0.496, 94.8) -1.642 (0.491,95.2)

Table 2.1: Summary statistics of parameter estimates obtained by QEM algorithm
and standard errors by the variance approximation method described in
Section 2.4, compared with adaptive Gauss-Hermite quadrature method
through NLMIXED in SAS. Results are based on 500 simulations.

empirical means of the standard errors are also very close to the empirical standard

errors of the parameter estimates. These evidences suggest that the variance ap-

proximation method works well and is stable. Numerical errors with evaluation of

standard errors lead to problems less than 0.6% of all simulations.

Comparing the third and fourth column in Table 1, our method is competitive

to adaptive Gauss-Hermite quadrature method for low-dimensional problems. It is

worth pointing out again that quadrature methods are no longer feasible for high-

dimensional integrals due to computation cost.

2.7 Application to a real data set

Kuss and McLerran (2007) analyzed a data set on physician’s recommendations

and preferences in traumatic brain injury (TBI) rehabilitation. They kindly made

their data available for our study. For each of multiple TBI disease histories, 36
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physicians were asked to choose an optimal rehabilitation setting from the following:

in-patient, day-clinic and out-patient. Four binary covariates were measured as well.

The four covariates are answers to the following 4 questions: (1) Is the physician a

neurologist? (2) Is the physician a specialist? (3) Is time since last event longer than

three months? (4) Is the patient severely handicapped after TBI? The four covariates

are named neuro, special, time and severity respectively. Recommendations within

the same physician are expected to be correlated. Treating the rehabilitation setting

as nominal, this forms a typical multinomial problem with repeated measures.

To identify factors that influence setting recommendations, we apply our method

to this data set. Random intercepts only model with unstructured covariance matrix

and a model in the form of (II.10) are compared by likelihood ratio test with a p-value

0.32, which shows no evidence against model (II.10) for this real dataset. Hence, we

fit model (II.10) for the real dataset.

Results from our method are compared with (1) independence model, namely,

standard multinomial logit model, ignoring the correlation within cluster(shown in

Column 2 in Table 2); (2) model (II.10), implemented in SAS using PROC NLMIXED

with Gauss-Hermite quadrature method for integral approximation(shown in Column

3 in Table 2). Estimates of the independence model are obtained through PROC LO-

GISTIC in SAS and results from PROC NLMIXED are based on SAS codes modified

from those provided in Kuss and McLerran (2007). Results of our method are shown

in MCQEM column in Table 2. In order to be consistent with Kuss and McLerran

(2007), we choose in-patient as the reference category.

From Table 2, comparing the likelihood values, we see that the independence

model does not provide as good a fit as the correlated model. For the MCQEM algo-

rithm and PROC NLMIXED with Gaussian quadrature method for multi-dimensional

integration, the parameter estimates are all very close. These two methods also pro-

vide almost the same maximum log-likelihood. The estimated standard errors from
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Parameters IM NLMIXED MCQEM
αOP - 1.611(0.370) 1.652(0.442)
αDC - 1.246(0.311) 1.293(0.337)

(Out-patient)
Intercept -2.429(0.566) -2.948(0.810) -2.954(0.756)
Neuro 1.073(0.481) 1.319(0.910) 1.333(0.898)
Special 0.296(0.426) 0.280(0.851) 0.316(0.855)
Time 3.150(0.456) 4.088(0.573) 4.073(0.551)

Severity -2.022(0.441) -2.571(0.526) -2.567(0.522)
(Day-clinic)
Intercept -0.879(0.430) -1.073(0.595) -1.097(0.580)
Neuro 0.088(0.395) 0.269(0.713) 0.283(0.753)
Special -0.446(0.403) -0.453(0.697) -0.428(0.744)
Time 1.723(0.324) 2.383(0.403) 2.390(0.401)

Severity -1.204(0.414) -1.609(0.471) -1.612(0.461)
−2� 492.9 462.2 462.2

No. of parameters 10 12 12

Table 2.2: Comparison of Parameter Estimates: Multinomial logit model (with or
without random effects) fit to physician’s recommendations and prefer-
ences data in traumatic brain injury (TBI) rehabilitation (IM: Indepen-
dence Model; NLMIXED: Proc NLMIXED in SAS)

PROC NLMIXED and the quadratic variance estimation method proposed in this

chapter are also very close. The benefit of our method is that it simplifies the M

steps in estimating the coefficient parameters and avoids derivatives for variance es-

timation.

2.8 Discussion

The MCQEM algorithm proposed in this research is a MCEM-type algorithm with

artificial variables introduced to break the dimension of the M-step into a series of

Poisson regression sub-problems. Artificial variables slightly increase the dimension of

the E-step requiring larger MC sample size to achieve the same accuracy. Therefore,

the MCQEM algorithm is best suited for problems with smaller cluster size.

When the number of categories becomes larger, quadrature methods become pro-
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hibitively slow. While our method as well as MCEM would require a larger number

of MC sample size M in this case, it still remains feasible with larger number of cat-

egories. The MCQEM algorithm converges even when the model is non-identifiable

due to empty/sparse categories.

Similar to EM algorithm, the MCQEM algorithm does not provide variance esti-

mates automatically. We propose the variance approximation method based on the

idea of Neilsen et al. (1992), which only requires knowledge of the log-likelihood func-

tion and MLE. This allows us to get variance estimates avoiding taking derivatives.

It works well when the log-likelihood function is approximately quadratic around the

MLE. When the condition is not met, the variance estimates are not reliable. The

traditional variance estimates are no good in this case either. We have examined a

few extreme cases, where the parameters are near the boundary of the parameter

space, and the log-likelihood function is far from quadratic. Neither our method nor

numerical differentiation (SAS) is reliable in those extreme cases.

When missing observations are present, if the mechanism is missing at random

(MAR) or missing completely at random (MCAR), the method of this study could

be extended to deal with missing observations by incorporating them into the EM

framework. If missing is not at random, delicate care may be needed. Methods

proposed for this purpose in the literature such as sensitivity analysis and multiple

imputation (Fitzmaurice et al. (2008) and Roderick J.A. Little (2002)) should apply

to our setting.
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CHAPTER III

On the Estimation of Proportional Odds Model for

Discrete Failure Time

3.1 Introduction

The proportional odds (PO) model has long been a popular tool of ordinal cate-

gorical data analysis (Agresti (2007)). With the recognition of its utility in survival

analysis targeting continuous data (Bennett (1983a)) the model has gained more

widespread use as an alternative to the Cox model (Cox (1972)).

Let G(t|z) be a survivor function, given covariates z (assumed here to be time-

independent). The PO model is built from the assumption that cumulative odds of

survival G/(1−G) are proportional to a baseline survival function G0 that is assumed

to be arbitrary,

G(t|z)

1 − G(t|z)
=

G0(t)

1 − G0(t)
θ(zTβ), (III.1)

uniformly with respect to t, where usually G0(t) = G(t|0) or θ(0) = 1. This implies

that the odds ratio θ(zTβ) = exp (zTβ) does not depend on time, the PO assumption.

The Cox model is defined based on a similar concept with a different measure of

relative risk, the hazard ratio θ(zTβ) = exp (zTβ),

log G(t|z)

log G0(t)
= θ(zTβ), (III.2)
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uniformly with respect to t, where Λ(t|z) = − log G(t|z) is a cumulative hazard. The

hazard ratio (HR) is usually defined as an instantaneous characteristic

λ(t|z)

λ0(t)
= θ(zTβ), (III.3)

where λ(t|z) = dΛ(t|z)
dt

is the hazard function. The cumulative and instantaneous HR

effect measures (III.2) and (III.3) are the same as long as the true model is Cox.

While most of the time the family of responses reproduced by the two models

are very similar, there are situations when they do differ. Let θ̃(t, z) be the time-

dependent HR when the true model is PO (can be considered an HR in a misspecified

Cox model),

θ̃(t, z) = 1 − 1 − θ(z)
θ(z)

G(t|z)
+ 1 − θ(z)

, (III.4)

where θ(z) is the odds ratio. Follows from (III.4) is a well known fact (Kirmani and

Gupta (2001)) that the hazard ratio in the PO model attenuates to 1 in follow-up

time as G(t|z) decreases in t. With a proper PO model (G(∞|z) = 0), the hazard

ratio has a limit of 1, while with improper model (cure models, G(∞|z) > 0), the

limit stops short of 1, but the attenuation of HR is still happening. So the PO model

is potentially useful in situations where covariates become less relevant with time as

compared to the Cox model. One such example is shown in Figure 3.1. However, with

limited follow-up in most studies G is close to 1 resulting in little difference between

the two models, θ̃ = θ when G = 1 in (III.4). That makes the choice between the two

a matter of methodological and computational convenience.

With continuous data, the Cox model has been by far the most convenient choice

due to the advent of the partial likelihood, the martingale machinery (Andersen

et al. (1993); Fleming and Harrington (2005)), and the fact that a finite dimensional

maximization is used to get the maximum likelihood estimates (MLE).

Asymptotic theory for the continuous PO model has been a test case of empirical
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processes (Murphy et al. (1997); Murphy (2000)), estimating equations (Cheng et al.

(1995)), rank-based transformation model methods (Cuzick (1988)), use of marginal

likelihood (Pettitt (1984)), and sieve maximum likelihood (Shen (1998); Huang and

Rossini (1996)).

Computationally, joint estimation of β and the baseline survivor function via semi-

parametric maximum likelihood (Bennett (1983b)) has also been subject to the curse

of dimensionality that made researchers look for alternative approaches. Lange et al.

(2000); Hunter and Lange (2002) proposed to use MM algorithm for joint estima-

tion of β and G0 in PO model. They reparameterized the model to ensure existence

of a simpler surrogate objective function minorising the likelihood and touching the

likelihood surface at the current iteration point. EM algorithm (McLachlan and Kr-

ishnan (1997)) is a particular case of the MM where the construction of the surrogate

objective function corresponds to the E-step. Maximization of the surrogate objec-

tive function corresponds to the M-step. Tsodikov (2003a) used an artificial mixture

formulation for the PO model as

G(t | z) = E
{

F (t)U(β,z)
∣∣∣ z

}
=

θ(zTβ)

θ(zTβ) + H(t)
, (III.5)

where F = exp(−H) is a (transformed but still arbitrary) baseline survival function

(G0 = (1 + H)−1), H is an arbitrary cumulative hazard, and U = U(β, z) is an

exponential random variable with the rate θ(zTβ). This approach represents the PO

model as an average over artificially mixed Cox models that leads to an EM algorithm

with the M-step being a computationally efficient continuous Cox model solution.

The discrete Cox model or a model for grouped data has proven to be a chal-

lenge due to the fact that the likelihood contribution of exact observations (failures)

is no longer log linear in the baseline hazard function that erases the partial likeli-

hood advantage. Prentice and Gloeckler (1978) proposed to maximize the full likeli-
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hood. However problems were reported when the dimension was high. Prentice and

Kalbfleisch (2003) explored a different discrete model enforcing the log-linear likeli-

hood structure and preserving the multiplicative form of the model in terms of the

cumulative hazard. This convenience is reached at the cost of having to observe a

restriction on the cumulative hazard to keep the model probabilistically consistent.

Also, their model is not a Cox model for grouped data.

Observing the difficulties with the Cox model in the discrete (grouped data) case,

we explore the use of the PO model in this situation. In doing so we are targeting sit-

uations when the dimension of the model is high so that the traditional full likelihood

approach to fit the discrete PO model may be problematic. In this chapter we further

explore two ideas with the discrete PO model. First, we observe that the grouped data

likelihood for the discrete PO model retains a log-linear form in the differential of the

baseline cumulative hazard resembling the likelihood of a continuous transformation

model in survival analysis. This allows us to develop a Difference Convex Algorithm

(DCA) (de Leeuw (1994); An and Pham (1997)) motivated by the artificial mixture

method for continuous transformation models (Tsodikov (2003a)). The second is the

idea of a recursive procedure applied to an artificially unrestricted model (relieved

of the normalization restriction on probabilities) and subsequent enforcement of the

restriction by a Lagrange multipliers method, initially explored in (Tsodikov et al.

(1998)) in a two-sample test context. Both procedures will be compared to the tra-

ditional full likelihood maximization by a generic (conjugate gradients) method.

3.2 Likelihood

Let i index discrete time points, ti, i = 1, . . . , K, that define the support of

a discrete survival distribution or a set of grouping intervals. Let Ci be a set of

subjects who are censored at ti, and Di be the set of subjects who fail at ti; j will

index subjects in these sets. So, each subject is indexed by a pair (i, j) and the set
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that j belongs to.

The event indicator is denoted by cij , cij = 1, if (i, j)-th subject fails at ti (j ∈ Di)

and 0 otherwise.

Note that a discrete baseline cumulative hazards function Hi =
∑

k≤i ΔHk is a

sum of its jumps ΔHk at times tk.

The log-likelihood function of a discrete (grouped) model can be written as

� =
∑

i

∑
j∈Ci

log[Gij(Hi)] +
∑

i

∑
j∈Di

log[Gij(Hi−1) − Gij(Hi)] (III.6)

where Gij(Hi−1) = G(ti−1|zij). Here it is understood that G(t|·) depends on t only

through a baseline cumulative hazard function H(t), a typical assumption in nonlinear

transformation models. Also zij means a covariate vector for the jth subject whose

event (censoring or failure) is associated with ti, where j is in Ci if cij = 0 or in Di if

cij = 1.

The key distinction from a continuous likelihood is that here the contribution

of failures G(Hi−1) − G(Hi) cannot be approximated by the first term of Taylor

series, G(Hi)λ(Hi)ΔHi, since the residual term o(ΔHi) of the series does not be-

come small asymptotically because ΔHi is fixed. Note that availability of Nelson-

Aalen-Breslow type estimators and associated computationally efficient processing of

high-dimensional nuisance function H with continuous models is contingent upon the

“linearity” of the failure contribution in ΔH (Tsodikov (2003a)). We note that this

“linearity” is preserved by the PO model. In other words, the form of the failure con-

tribution with PO model is invariant to whether the model is discrete or continuous

so that in both cases we have the contribution as ϕ(H)ΔH for different but similar

smooth functions ϕ of H . Indeed, from (III.5), with the survivor function

Gij =
θij

θij + Hi
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we have

Gij(Hi−1) − Gij(Hi) =
θij

(θij + Hi−1)(θij + Hi)
ΔHi. (III.7)

Because of this property there is little difference in estimation methods between dis-

crete and continuous versions of the PO model.

Finally, the log-likelihood function of discrete PO model takes the form

�(β) =
∑

i

{ ∑
j∈Ci∪Di

log
θij

θij + Hi
+

∑
j∈Di

log
1

θij + Hi−1
+

∑
j∈Di

log ΔHi

}
(III.8)

3.3 Methods

3.3.1 Difference Convex Algorithm (DCA)

Note that the first two terms of (III.8) are convex functions (denote by B(h)) of

the vector

h = (ΔH1, . . . , ΔHK)T

while the last term is a concave function (denote by A(h)). The log-likelihood function

(III.8) is therefore the difference of two concave functions, �(x) = B(x)−A(x). The

iterative maximization procedure,

∇B
(
h(m+1)

)
= ∇A

(
h(m)

)
, (III.9)

where m counts iterations and ∇A(h) = ∂A/∂h is the gradient of A, represents

an MM algorithm, as follows from convexity arguments (de Leeuw (1994); An and

Pham (1997); Tsodikov (2003a)). The surrogate objective function for the above

construction has the form

Q
(
h |h(m)

)
= B

(
h(m)

)
− A(h) + ∇TA

(
h(m)

) (
h − h(m)

)
. (III.10)

32



Specifically, we have the following iterations

ΔH
(m+1)
k =

dk∑
i≥k

∑
j∈Ci∪Di

1

θij+H
(m)
i

+
∑
i>k

∑
j∈Di

1

θij+H
(m)
i−1

(III.11)

for k = 1, . . . , K, where dk is the number of failures associated with tk. Note that

with Hi−1 substituted by Hi we would have (III.11) become the algorithm proposed by

Tsodikov (2003a) for the continuous PO model. As an MM algorithm each iteration

of (III.11) will improve the likelihood.

Estimation of regression coefficients β jointly with H can be accomplished in a

variety of ways. Here we use a stable if not the fastest Gauss-Seidel type two-stage

procedure.

DCA for PO model

0: Initialize the baseline h vector and β.

1: Exercise (III.11) until convergence with the fixed β.

2: Maximize the likelihood with respect to β with fixed h as found at the previous

step by a general numerical maximization algorithm (Conjugate Gradients).

3: Check convergence. If not satisfied return to Step 1 with the β as found at Step

2.

3.3.2 Recursive procedure

The algorithm of this section is based on the idea of relieving the model of nor-

malization restriction and subsequently enforcing it through the method of Lagrange

multipliers. We take the normalization restriction on the baseline hazard function in

the form of H(0) = 0.

In order to keep the likelihood maximization problem from being ill-defined, an-

other restriction must be placed on the model. Let us pretend that the cumulative
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hazard function is known HK = x.

Consider the score equation

dk

ΔHk
−

∑
i≥k

{ ∑
j∈Ci∪Di

1

θij + Hi
+

∑
j∈Di

1

θij + Hi−1

}
= 0, (III.12)

for k = 1, . . . , K. Note that the left part of (III.12) is a function of

Hk, Hk+1, . . . , HK = x.

Starting with k = K−1 we can solve the equation for HK−1 obtaining it as a function

of HK = x, say ϕK−1(x). Next, we can take the equation at k = K − 2 and solve

it for HK−2 obtaining it as a function of HK−1 = ϕK−1(x) and HK = x, and in the

end also as a function of x. Repeating the process until k = 0 we get the recursively

obtained equation

H0 = ϕ0(x) = 0. (III.13)

Solving this algebraic equation with respect to x gives the solution x∗.

Having obtained x∗ we run the recursion again with x = x∗ for k = K, K−1, . . . , 1

to get the full vector h.

This recursive procedure replaces (III.11), and the rest of the algorithm is similar

to DCA.

It can be shown that the above algorithm is implementing the method of Lagrange

multipliers for maximization of the likelihood under the restriction ΔH0 = 0.

Note that neither of the proposed two procedures involve high-dimensional generic

maximization with respect to h, that ensures their computational efficiency.

34



3.3.3 Conjugate Gradient method for PO model

In order to compare the proposed two algorithms with the traditional approach, a

Quasi-Newton method is used to estimate the baseline hazards in discrete PO model.

To make this procedure comparable with the other two methods examined in this

study, we use two-stage maximization procedure and iterate between β and ΔH. We

first estimate ΔH, given β = β, using a Quasi-Newton method with box constraints.

Then, we estimate β, given h found at the previous step, and repeat the cycle until

convergence is satisfied.

3.4 Real Data Example

As an example, we apply these three methods to fit a discrete PO model to prostate

cancer data from the National Cancer Institute’s Surveillance epidemiology and end

results (SEER) programme. The dataset is similar to the one used in Tsodikov (2003a)

except that we used full data with 3 stages in the present paper.

In this data set, 11621 cases of primary prostate cancer diagnosed in the state of

Utah between 1988 and 1999 were identified. The following selection criteria were

applied to the original 19819 Utah cases registered in the database: valid positive

survival time, valid stage of the disease and age 18 years or more. Prostate cancer

specific survival was analyzed by the stage of the disease (localized, regional and

distant).

Survival time is measured in months resulting in all observations grouped into 143

time intervals with ties reaching a few hundred observations for some intervals.

All methods agree up to 3rd digit in the point estimates given in the following

table.

We note a better fit of the PO model to this dataset that shows survival in a

distant stage slightly attenuated with time. We will use this model fit to furnish a
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Table 3.1: Point estimates and standard errors (in brackets) resulting from fitting
discrete PO model to Surveillance, Epidemiology and End Results (SEER)
prostate cancer survival data

Point Estimates DCA Recursive Quasi-Newton
Regional -0.5817(0.0925) -0.5817(0.0925) -0.5814(0.0925)
Distant -3.4328(0.0895) -3.4328(0.0895) -3.4327(0.0895)

realistic simulation example.

3.5 Simulation studies

3.5.1 Simulation setting

The purpose of the simulation studies is to examine the performance of three

methods in fitting a discrete PO model: DCA, recursive solution and Quasi-Newton

method. For Quasi-Newton method, we use R function optim() with finite-difference

approximation to the gradient vector, which makes it comparable to the other two

methods since neither of them requires the specification of gradient vector in the

optimization procedure.

We generate data sets of size 11621 and use the parameter estimates from the

prostate cancer data as the true parameters. Average censoring proportions of about

50% and 80% are examined. The results are based on 500 simulation replicates. The

tolerance is set to be 1e-4.

3.5.2 Simulation results

Simulation results are presented in the following tables. Parameter estimates are

shown in Tables 3.2 and 3.3. Tables 3.5 and 3.4 summarizes the time used by recursive

method and Quasi-Newton method relative to that used by DCA. In the simualtion

study for time, we examined three different accuracy levels as distances of parameter

estimates from the true parameters(estimated from DCA with tolerance 1e-10).
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Table 3.2: Simulation results with average censoring proportion around 80%: discrete
PO model fit using three methods: Recursive procedure, DCA algorithm
and Quasi-Newton method

Stage True parameters DCA Recursive Quasi-Newton
β1 -0.5817 -0.5814(0.0694) -0.5814(0.0694) -0.5791(0.0695)
β2 -3.4329 -3.4366(0.0719) -3.4366(0.0719) -3.4331(0.0724)

Table 3.3: Simulation results with average censoring proportion around 50%: discrete
PO model fit using three methods: Recursive procedure, DCA algorithm
and Quasi-Newton method

Stage True parameters DCA Recursive Quasi-Newton
β1 -0.5817 -0.5798(0.0671) -0.5797(0.0671) -0.5667(0.0668)
β1 -3.4329 -3.4330(0.0616) -3.4330(0.0616) -3.4204(0.0611)

Table 3.4: Time used by recursive and Quasi-Newton methods relative to that used
by DCA - discrete PO model, censoring proportion = 80%

Distance from true parameters Recursive Quasi-Newton
0.1 2.9 7
0.01 2.9 9.2
0.001 3.9 12

Table 3.5: Time used by recursive and Quasi-Newton methods relative to that used
by DCA - discrete PO model, censoring proportion = 50%

Distance from true parameters Recursive Quasi-Newton
0.1 3 6.3
0.01 3.4 5.8
0.001 2.8 6
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We observed that both DCA and the recursive procedure outperformed the tra-

ditional Quasi-Newton approach in terms of accuracy and speed. The Quasi-Newton

methods was an order of magnitude slower as measured by the relative computation

time in Tables 3.4 and 3.5 and less accurate at that as given by the comparison of

the estimates in Tables 3.2 and 3.3. All methods showed decent stability to censoring

perhaps a result of ample sample size available.

3.6 Discussion and Conclusion

With this study we have revisited the point estimation algorithms for the discrete

proportional odds model. We found the PO model naturally suited for the discrete or

grouped data setting because the form of its likelihood function with right censored

data is invariant with respect to the type of data (continuous or grouped) in the

sense that the contribution of failures is still proportional to the jump of the baseline

cumulative hazard functions. This property ensured that the artificial mixture and

MM approaches carry over with slight modification from the continuous setting and

bring their computational efficiency with them. This stands in stark contrast with

the Cox model that has seen a number of challenges with discrete data.

A novel recursive approach has been developed as an alternative method. Al-

though a little slower than the MM-type algorithms it has potentially superior accu-

racy and stability as it is based on recursive solution to algebraic equations that can

be accomplished by stable bi-section algorithms if needed.

The research targeted the most difficult niche of data applications when the di-

mensionality was high despite the model still being discrete. Cancer registry such as

SEER gives such an example. The fact that traditional maximization methods fail to

exploit the specific likelihood structure and are subject to the curse of dimensionality

makes them slow. In particular, Newton type methods have O(n3) complexity due to

a direct or indirect (iterative) information matrix inverse. At the same time MM-type
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methods show approximately linear complexity curve with increase in the dimension

of h.

There is probably little difference between these methods if the dimensionality of

the problem is low.

The results of this study hold much promise for the development of efficient compu-

tational methods for the broad class of transformation models. The artificial mixture

approach (Tsodikov (2003a)) allowed to extend the numerical efficiency of the Cox

model estimates to transformation models. The Cox model has shown itself poorly

in the discrete setting. The PO model, on the contrary, takes to the discrete set-

ting naturally because of its ordinal heritage. It appears therefore that we might

be able to develop computationally efficient procedures for a broad class of models

that can be represented as an (artificial) mixture of PO models just like continuous

transformation models are usually mixtures of PH models (univariate frailty models).

With this study we have shown that efficient methods exist for the PO model and it

is therefore a good candidate as the base model spawning a mixture family for the

discrete and grouped data setting.
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Figure 3.1: Discrete Cox model (top) and PO model (bottom) fit and observed
Kaplan-Meier curves; Surveillance, Epidemiology and End Results
(SEER) prostate cancer survival data by stage of the disease at diagnosis.
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CHAPTER IV

Aritificial Mixture Methods for Discrete Failure

Time

Key Words: QEM algorithm, discrete failure time data, artificial mixture methods,

PH mixture method, PO mixture method

4.1 Introduction

Most research on analyzing failure time data considers time as a continuous mea-

sure, a basic underlying assumption of which is that failure times are untied. As a

result, the exact method of treating ties has to consider all possible orderings of tied

events (See Kalbfleisch and Prentice (1973) and Kalbfleisch and Prentice (2002)). In

practice, failure time is always measured in a certain time unit, such as month or year,

so that ties can occur. A moderate number of ties can be handled appropriately by

slight modifications to the exact likelihood such as Breslow (1974) and Efron (1977).

If time is truly discrete, or if there exist many ties, then treating such failure time as

discrete is more appropriate. Analyzing such event times as if they were exact may

introduce bias and hence leads to incorrect inferences. Sometimes the original failure

time data are grouped to a larger time unit for various purposes such as simplification

of computation in interim analysis. Under such circumstance, treating failure time
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as discrete is also more consistent with the data. As a consequence, discrete failure

time models have gained more attention lately.

Researchers explored methods to deal with many ties and/or treat failure time as

discrete, such as Prentice and Gloeckler (1978), Stewart and Pierce (1982), Johnson

and Christensen (1986), Sinha et al. (1994), Yu et al. (2004), Pipper and Ritz (2006),

Zhao and Zhou (2008), Li et al. (2008), Yu et al. (2009), etc. For example, Prentice

and Gloeckler (1978) proposed a method to fit a discrete PH model by a Newton-

Raphson algorithm applied to maximize the full model likelihood. They reported

instability and difficulties in situations when the problem was high-dimensional. Yu

et al. (2004) studied mixture cure models for grouped failure time data and focused

on the estimation of cure fraction. Prentice and Kalbfleisch (2003) proposed a mixed

discrete and continuous Cox model that enjoys computational efficiency but does

not apply to the grouped data likelihood. Besides it requires a restriction on the

cumulative hazard that has to be observed in order to make the model probabilistically

consistent. Zhao and Zhou (2008) studied a discrete PH cure model as an extension

of the latter framework.

Most of the methods mentioned above are case by case studies focused on a specific

model. With this study we propose a new approach that serves a general class of

discrete transformation models.

Depending on the assumptions made for baseline hazards, they can either be

treated as nuisance parameters and hence the regression parameters can be estimated

semi-parametrically, or have to be estimated jointly with regression parameters. Since

there does not exist a criterion to select the baseline hazard functions, we apply a more

general and less restrictive representation of the baseline hazards and assume them to

be piecewise constant. This inevitably gives rise to a high-dimensional optimization

problem.

We propose two artificial mixture methods for a general discrete transforma-
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tion model based on the idea of artificial random variables and the QEM algorithm

(Tsodikov (2003a)): PH mixture method and PO mixture method. Applications

of both methods are not restricted to Cox PH model or Cox-type models. Most

importantly, both methods simplify the optimization procedure. Due to its simplic-

ity, we advocate PO mixture method as a result of this study. We incorporate the

PO mixture framework with the recursive solution and DCA for discrete PO model,

proposed in Chapter III. Those two procedures are applied after missing data are

imputed. PO mixture method with either recursive solution or DCA is superior to

Quasi-Newton method, in terms of accuracy and speed for parameter estimation in

such a high-dimensional parameter space.

We introduce the idea of artificial mixtures and the survival model in 4.2 and

4.3. We then present PH and PO artificial mixture methods in Section 4.4 and 4.5

respectively. In Section 4.6, we compare our advocated PO mixture method with

Quasi-Newton method in two simulation studies, followed by discussion in Section

4.7.

4.2 Artificial Mixtures

Let p(x | z) be a family of probability distributions describing a model for the

random response X regressed on covariates z. The idea of an artificial mixture is to

represent p(x | z) as a marginal probability (a mixture model)

p(x | z) = E {p0(x | z, U)|z} , (IV.1)

where U is a mixing variable, possibly a vector, representing artificial missing data,

and p0(·|·, U) are some probabilities conditional on U that define the latent model.

The expectation is taken conditional on z implying that U is generally itself a regres-

sion on z. In other words, an artificial mixture model is considered such that one gets
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the original target model when missing data U are integrated out. Representation

(IV.1) can be considered as a form of an integral transform of r.v. U . The poten-

tial utility of (IV.1) exploited in this study lies in the simplicity of the latent model

p0 contrasted with the complexity of the original marginal model p. This paradigm

invites an application of an EM algorithm to fit the marginal model. Imputation

of U and/or some functions of U , given observed data, the E-Step, and fitting the

latent model by maximum likelihood, the M-Step, are the two steps of the iterative

procedure.

A key to simplifying the E-Step comes through recognition that imputed U is

some kind of a conditional moment. Moments of random variables can be found by

differentiating a transform (ex. a Laplace transform, L). The form of the transform

is readily available from (IV.1), and this leads to M-step expressed through L and

its derivatives. The M-Step is simplified by the design of the latent model. Partial

identifiability of univariate frailty models makes this design flexible. In the semi-

parametric framework infinitely many latent models (p0, U) satisfying (IV.1) exist for

any fixed marginal model p, and the problem is to find one associated with some

computational advantage. Keeping the development general in terms of L makes the

method applicable to a wide variety of transformation models. All of them will enjoy

the same computational advantage once a suitable base latent model p0 is found,

specific to the general form of the likelihood under study. Note that the form of the

distribution of U (inverse of the transform L) need not be known explicitly, as the

algorithm is specified in terms L and its derivatives, not the inverse.

4.3 Marginal survival model and likelihood

Define the survival model through the survival function

G(t|z) = L(H(t)|ω, z), (IV.2)
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where L is a parametrically specified survival function (with parameters ω), and time

argument t has been transformed by an arbitrary nondecreasing discrete cumulative

hazard function H .

Define the notation: ti, i = 1, 2, . . . , K, are distinct time points specifying the

support of the discrete survival distribution to be estimated; Ci is the set of subjects

who are censored at ti; Di is the set of subjects who fail at ti; Ri is the set of subjects

at risk at ti; j indexes subjects in a given set; Hi = H(ti) =
∑

k≤i ΔHk; ΔHk is the

jump of the baseline cumulative hazard at time tk that induces the discrete mass at

ti. For any function A(H|z) of arbitrary baseline cumulative hazard H and covariates

z define Aij(H) = A(H|zij), where zij is the covariate vector for the jth subject who

failed at ti if j ∈ Di or who is censored at ti if j ∈ Ci. The log-likelihood function of

a discrete (grouped) model can be written as

� =
∑

i

∑
j∈Ci

log

[
Lij

(∑
k≤i

ΔHk

)]
+
∑

i

∑
j∈Di

log

[
Lij

(∑
k<i

ΔHk

)
− Lij

(∑
k≤i

ΔHk

)]
.

Hence, the score equation for H is

∂�

∂ΔHk
=

∑
i≥k

{∑
j∈Ci

[
L

′
ij(Hi)

Lij(Hi)

]
+

∑
j∈Di

[
L

′
ij(Hi−1,j)I(i > k) − L

′
ij(Hi)

Lij(Hi−1) − Lij(Hi)

]}
= 0,

where i, k = 1, . . . , K, and L′ is the derivative of L with respect to its H argument.

Solving the above equation system presents a dimensionality challenge for large K.

4.4 PH artificial mixture method

Consider the PH mixture framework defined by the PH model chosen as a latent

base model. This corresponds to the the univariate PH frailty form of the (marginal)
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survivor function with L being the Laplace transform of U . We have (IV.1) turn into

G(t|z) = E
{

e−UH(t)
∣∣ z} = L(H(t)|z), (IV.3)

where p0 is based on the latent survival function exp{−UH(t)}, and the artificial

random variable U is regressed on covariates z. The complete-data (latent model)

log-likelihood function, conditional on subject-specific Uij and zij , can be written as

�0 =
∑

i

∑
j∈Ci

log[e−UijHi ] +
∑

i

∑
j∈Di

log[e−UijHi−1 − e−UijHi] + C, (IV.4)

where C does not depend on H .

This artificial mixture representation yields computationally efficient algorithms

in the continuous case where the contribution of failures is replaced by the first term

of the Taylor expansion (Tsodikov (2003a))

e−UijHi−1 − e−UijHi = e−UijHiUijΔHi + o(ΔHi), (IV.5)

and is therefore worth studying as a potential solution for the discrete one.

4.4.1 Parameter estimation in the PH mixture method

To estimate the hazard H and regression coefficients (hidden in the distribution

of U), we may apply a Gauss-Seidel type two-stage procedure.

Step 1: Given regression coefficients β, estimate {Hi}K
i=1 by an EM algorithm;

Step 2: Estimate β given the hazard obtained from Step 1.

Iterate between these two steps until convergence.

Step 2 is handled by the Newton-Raphson method. Alternatively, Step 1 may be

considered as nested in Step 2, the latter defined as maximization of the profile

likelihood �(β, H(β)) with H(β) defined as a solution to Step 1. In Step 1, EM-type
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algorithm is invoked, treating Uij as missing data. Taking derivative of (IV.4) with

respect to ΔHk, we obtain the k-th score equation

∂�0

∂ΔHk
=

∑
j∈Ri

(−Uij) +
∑
j∈Dk

Ukj

1 − e−UkjΔHk
= 0. (IV.6)

Once functions of Uij entering the above score equations are imputed (the E-step),

they are solved for ΔHk at the M-step. EM iterations continue until H used in the

imputation and H as a solution of (IV.6) become sufficiently close (self-consistency) at

which point it is reported as the outcome of Step 1. As a result the high-dimensional

problem is reduced to many one-dimensional ones.

Imputation in the score equation (IV.6). The bottleneck here is the E-step that

involves the imputation of functional forms of Uij , given the observed data for the sub-

ject (i, j): (1) E[Uij |censored]; (2)E[Uij |failure]; and (3) E
[
Uij/{1 − e−UijΔHi}∣∣failure

]
.

The part “censored”or “failure”in the conditional expectation represents the observed

data on the (i, j)th subject. The first two conditional expectations are obtained in

terms of derivatives of L similar to Tsodikov (2003a):

E[Uij |censored] =
E{Uije

−UijHi}
E{e−UijHi} =

−L
′
ij(Hi)

Lij(Hi)
, (IV.7)

E[Uij |failure] =
E{Uij [e

−UijHi−1 − e−UijHi]}
E{e−UijHi−1 − e−UijHi} =

−L
′
ij(Hi−1) + L

′
ij(Hi)

Lij(Hi−1) − Lij(Hi)
. (IV.8)

However, E
[

Uij

1−e−UijΔHi

∣∣∣failure
]

does not have a closed-form expression. Expand-

ing the fraction into a power series and imputing each term gives the closed form

1

1 − e−UkjΔHk
=

∞∑
s=0

e−sUkjΔHk , and, (IV.9)

E

[
Ukj

1

1 − e−UkjΔHk

∣∣∣∣failure

]
=

∞∑
s=0

−L
′
kj (sΔHk + Hk−1) + L

′
kj (sΔHk + Hk)

Lkj (Hk−1) − Lkj (Hk)
.
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However, a singularity at ΔH → 0 (small ΔH are expected in high-dimensional

discrete problems) makes the convergence of the series slow. Applying numerical

integration in (IV.7), (IV.8) is equally attractive slowing down the convergence of the

algorithm. To remedy the situation we isolate the singularity rewriting the likelihood

as

�0 =
∑

i

{ ∑
j∈Ci∪Di

(−UijHi) +
∑
j∈Di

log ΔHi −
∑
j∈Di

log
UijΔHi

eUijΔHi − 1

}
, (IV.10)

and dropping terms independent of H . Note that the term log
UijΔHi

eUijΔHi−1
does not have

the singularity any more and is zero at ΔHk = 0. Its expansion around ΔHi = 0

promises reasonable convergence rates with small ΔHk. The Power series expansion

has coefficients γk that are determined explicitly and recurrently based on so-called

Bernoulli numbers (Gradshteyn et al. (2007)) (see Appendix IV.9)

log
t

et − 1
=

∞∑
k=1

γkt
k, t = UijΔHi.

This method reduces the imputation of log
UijΔHi

eUijΔHi−1
to the imputation of powers of

Uij by

E[Us
ij |failure] = (−1)s

L
(s)
ij (Hi−1) − L

(s)
ij (Hi)

Lij(Hi−1) − Lij(Hi)
,

where L
(s)
ij (x) = ds

dxs Lij(x).

4.5 PO mixture method

Now consider the Proportional Odds (PO) model as the basis for the latent model

p0 in the general artificial mixture formulation (IV.1) resulting in the PO mixture

framework. The choice here is motivated by the widespread use of the PO model

with categorical data. We find that in this case the imputation has closed form and
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does not require costly series approximations. Also, the procedure can be specified in

terms of the Laplace transform L, not requiring any derivatives. Last but not least,

the M-step enjoys a recurrent structure of the score equation for H that ensures its

computational efficiency. All these facts make the PO mixture method the preferred

one (see below).

4.5.1 Discrete PO model

In this section we consider an algorithm to fit the base PO model as it is used at

the M-step. The survival function of the PO model takes the form

G = L(H(t)|z) =
θ(z)

θ(z) + H(t)
, (IV.11)

where θ is the odds ratio of survival relative to the baseline survival function charac-

terized by θ = 1. Here L is a Laplace transform of an exponential distribution with

rate θ. The likelihood for a discrete PO model is

�(β) =
∑

i

∑
j∈Ci

log
θij

θij + Hi
+

∑
i

∑
j∈Di

log

[
θij

θij + Hi−1
− θij

θij + Hi

]
. (IV.12)

It can be rewritten as follows:

�(β) =
∑

i

∑
j∈Di

log ΔHi +
∑

i

∑
j∈Ci∪Di

log
θij

θij + Hi
+

∑
i

∑
j∈Di

log
1

θij + Hi−1
(IV.13)

4.5.1.1 Parameter estimation

Two alternative procedures to fit the PO model are used following Tsodikov and

Wang (2011). The first procedure is a recurrent solution to the score equation derived

through Lagrange multipliers. The score equations with respect to ΔHk can be
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written as

∑
i≥k

∑
j∈Ci∪Di

−1

θij + Hi
+

dk

Hi − Hi−1
+

∑
i>k

∑
j∈Di

−1

θij + Hi−1
= 0, k = 1, . . . , K, (IV.14)

where dk is the multiplicity of failures at tk. This system of equations has recur-

rent structure in that Hk can be found when Hi, i = k + 1, . . . , K are known. We

can initially consider H0 as unrestricted and derive it as a function of HK where

H1, . . . , HK−1 are derived by solving (IV.14) for k = K − 1, K − 2, . . . , 1. With

k = K, (IV.14) involves HK and HK−1 and is solved for HK−1, given HK , resulting

in HK−1 being a function of HK . Then HK−2 is obtained as a function of HK from

(IV.14) at k = K − 2, and the previous solution. This continues until k = 1 when we

solve for H0 as a function of HK . The solution to this system of equations emerges

when the equation H0(HK) = 0 is solved enforcing the restriction. The procedure

can be interpreted as a method of Lagrange multipliers for maximizing the likelihood

over H under the restriction H0 = 0.

The second procedure is an MM algorithm Lange et al. (2000). Consider a Nelson-

Aalen-type estimator

ΔHk =
dk∑

i≥k

∑
j∈Ci∪Di

1
θij+Hi

+
∑
i>k

∑
j∈Di

1
θij+Hi−1

(IV.15)

that is a consequence of (IV.14). The MM algorithm treats the right part of (IV.15)

as based on the previous iteration copy of H and updates it getting the next iteration

copy in the left part of (IV.15). Iterations proceed until the left and the right part

of (IV.15) are self-consistent in the sense that they are based on the same H∗, the

fixed-point of (IV.15). By the MM theory and the property that the likelihood (III.8)

can be represented as a difference between two concave functions, each such iteration

will improve the likelihood.
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4.5.2 PO mixture model setting

The PO artificial mixture family emerges as we expand the PO model (IV.11) by

randomizing its predictor θ similar to the PH mixture idea (IV.1), (IV.3). Substitute

θ in (IV.11) by an artificial random variable U ∼ Pr(u|z), regressed on covariates z,

such that we can view the new model survivor function as

G(t|z) = L(H(t)|z) = E

{
U

U + H(t)

}
, (IV.16)

where H is the arbitrary baseline cumulative hazards (cumulative odds, to be precise)

function. The function L is still a Laplace transform of random variable V = W/U ,

where W has a unit exponential distribution given U . Indeed,

E
{
e−

W
U

H
}

= E
{

E
[
e−

W
U

H
∣∣∣U]}

= E

[
U

U + H

]
, (IV.17)

same as (IV.16). This means that (IV.16) could be written in the form (IV.3) with

the frailty variable V instead of U , and the PH mixture method of Section 4.4 is

still applicable. However, here we base our algorithm on the artificial mixture form

(IV.16) implying the PO base model at the M-Step.

4.5.3 Parameter estimation in the PO mixture method

4.5.3.1 Estimating hazards

With the latent survivor function at ti for the subject (i, j) Lij(Hi|Uij) =
Uij

Uij+Hi
,

the complete data log-likelihood function (omitting terms that do not depend on H)

takes the form (IV.13) with Uij instead of θij . The score equations with respect to

ΔHk, for k = 1, ..., K, become

∂�

∂ΔHk
=

dk

ΔHk
+

∑
i≥k

∑
j∈Ci∪Di

−1

Uij + Hi
+

∑
i>k

∑
j∈Di

−1

Uij + Hi−1
= 0 (IV.18)
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The E-step involves the imputation of the following functional forms of Uij . 1)

E
{

1
Uij+Hi

|censored
}

; 2) E
{

1
Uij+Hi

|failure
}

; and 3) E
{

1
Uij+Hi−1

|failure
}

. “censored”or

“failure”in the conditional expectation represents the observed data on the (i, j)th

subject. We have an imputation for censored observation as

E

{
1

Uij + Hi

∣∣∣∣ censored

}
=

E
{

1
Uij+Hi

1
Uij+H̃i

}
E
{

1
Uij+H̃i

} =
L(Hi|zij) − L(H̃i|zij)

(H̃i − Hi)L(H̃i|zij)
, (IV.19)

where tilde is used to mark a copy of H used in the missing data distribution for the

imputation.

Similarly for the failure we obtain

E

{
1

Uij + Hm

∣∣∣∣ failure

}
=

E
{

1
Uij+Hm

[
Uij

Uij+H̃i−1
− Uij

Uij+H̃i

}]
E
{

Uij

Uij+H̃i−1
− Uij

Uij+H̃i

} =

L(Hm|zij)−L(H̃i−1|zij)

(H̃i−1−Hm)L(H̃i−1|zij)
− L(Hm|zij)−L(H̃i|zij)

(H̃i−Hm)L(H̃i|zij)

L(H̃i−1|zij) − L(H̃i|zij)
, (IV.20)

m = i − 1 or m = i, dependent on whether second or third term of (IV.18) is being

imputed. Note that all the imputations in the PO mixture method have closed-form

expressions. Now, the imputed form of the score equation (IV.18) becomes

dk

ΔHk

−
∑
i≥k

∑
j∈Ci

L(Hi|zij) − L(H̃i|zij)

(H̃i − Hi)L(H̃i|zij)
−

∑
j∈Di

L(Hi|zij)−L(H̃i−1|zij)

(H̃i−1−Hi)L(H̃i−1|zij)
− L(Hi|zij)−L(H̃i|zij)

(H̃i−Hi)L(H̃i|zij)

L(H̃i−1|zij) − L(H̃i|zij)
−

∑
i>k

∑
j∈Di

L(Hi−1|zij)−L(H̃i−1|zij)

(H̃i−1−Hi−1)L(H̃i−1|zij)
− L(Hi−1|zij)−L(H̃i|zij)

(H̃i−Hi−1)L(H̃i|zij)

L(H̃i−1|zij) − L(H̃i|zij)
= 0 (IV.21)

Note that the imputed form of the score equation is not the same as in the PO model

due to the non-linear (in U) form of the terms that were imputed. Nevertheless,

solution to this equation with respect to H given β and H̃ is similar to that of the

PO model (Section 4.5.1).
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First, in terms of H , the imputed score equations (IV.21) have the form

ϕi(Hi, Hi−1) = 0, i = 1, . . . , K, (IV.22)

and the recursive procedure of Section 4.5.1.1 will work: Set HK aside, solve (IV.22)

sequentially for HK−1 with i = K−1, then for HK−2 with i = K−2 using HK−1(HK)

from the previous solution, etc. until with i = 1 the equation H0(HK) = 0 is obtained.

Solving it for HK and reconstructing all Hi(HK) gives the final solution.

Alternatively, the MM iterative procedure may be employed. As discussed in

Section 4.5.1, the score equation for the PO model (similar to (IV.18) prior to impu-

tation) has a representation as a difference between derivatives of two convex functions

A′(H) − B′(H) = 0, where H is understood as a vector of ΔHi, i = 1, . . . , K. Dif-

ference Convex Algorithm (DCA) (a version of the MM algorithm) finds the next

iteration Hm+1 as the solution to the equation A′(Hm+1) = B′(Hm), where m counts

iterations (this is what (IV.15)-based algorithm is). We note that the imputation

operator, a conditional expectation is a linear one and does not alter convexity prop-

erties. Hence, iterations based on (IV.21) written in the (IV.15) form

ΔHm+1
k =

dk

B′(Hm)
(IV.23)

will also constitute an MM algorithm monotonically improving the interim M-Step

likelihood and converging to the fixed point of the imputed score equation.

Once the EM algorithm does its job of finding H given β with either recursive or

DCA implementation of the M-Step, regression coefficients need to be estimated. This

can be done in two ways: either using Gauss-Seidel iterations alternating between

maximization over H given β and over β given H , or using the profile likelihood

approach of obtaining the H(β) solution by the EM algorithm and plugging it into

the likelihood, then maximizing the profile likelihood over β.
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Newton-Raphson method or conjugate gradient search is used to maximize over

β in any context.

4.5.4 Applications

We provide two applications as an example, both derived from the Utah Cancer

Registry (UCR) survival data, which is part of the SEER database (http://www.seer.cancer.gov/).

One is a prostate cancer dataset with stage (1=localized, 2=regional and 3=distant),

and another a breast cancer dataset of patients in localized stage with age group

as a covariate. The data are described and analyzed using continuous models in

Tsodikov (2003a) and Tsodikov (2002), respectively. In this study we recognize that

the data are grouped (coarsened) because survival time is measured in months and

apply discrete models to study the problem.

4.5.4.1 Application 1: fit a PH model using the PO mixture method

Various challenges were reported fitting a discrete proportional hazards (PH)

model. Here we use the stable algorithms of this chapter to fit the PH model by

representing it as a mixed PO model. In the sense of (IV.17) this artificial mixture

emerges when U is an exponential distribution coupled with unit-exponential W so

that the ratio W/U = θ(z) is non-random with G(t|z) = L(H(t)|z) = e−θ(z)H(t).

Two-stage iterative process is used to estimate the baseline hazards and the regres-

sion coefficients. Given estimates of regression coefficients at a previous iteration, we

apply the EM algorithm, with closed form expressions for the imputation in E-step.

Results from fitting discrete PH model using our PO mixture method are listed

in the second column in Table 4.1. Numerical derivatives are used to obtain the

standard error estimates. Results from fitting PH model using the method described

in Tsodikov (2003a) and treating the failure time data as continuous are given in the

third column for reference.

54



Table 4.1: PH model fit to UCR prostate cancer data. Standard error are shown in
parentheses.

Estimates (se) discrete model using PO mixture method continuous model
stage 2 1.23(0.04) 1.22(0.04)
stage 3 2.67(0.06) 2.66(0.06)

We are not surprised to see that the results from treating failure time as discrete

and continuous do not differ much, since the jumps of the cumulative hazard are

small. In this situation, continuous model works well as an approximation to discrete

model. However, this situation presents a challenge for discrete models because of

high dimensionality, and it makes sense to use as an example. Besides, a continuous

model is still only an approximation in this case providing a minor error in the second

digit.

4.5.4.2 Application 2: PH-PH model fit using the PO mixture method

In PH-PH model Tsodikov (2002), the survivor function has the form:

G(·|z) = exp{−θ(z)[1 − F η(z)]},

where F is an arbitrary survival function. This cure model is often used to reproduce

dissimilar long-term and short-term effects on survival, where θ(z) models the long-

term effect, while η(z) models the short-term effect. The PH-PH name comes from

the fact that PH model is used twice as a composition, once in a cure form G =

exp{−θ(z)[1 − F ]}, and then in a non-cure form F η(z) to model departures from the

proportional hazards assumption.

The same two-stage estimation procedure is used to estimate the baseline hazards

and the regression coefficients. Given regression coefficients, we estimate the baseline

hazards using the EM algorithm based on artificially random variables U . In this

example L(H|z) = exp{−θ(z)[1−exp(−η(z)H)]}. A cure model implies the restriction
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HK = ∞ to avoid unidentifiability issue. Therefore the recursive procedure starts at

k = K − 1 instead of K. Also, no imputations are done at or after K. We use the

UCR breast cancer data to illustrate our method. We restrict our analysis to patients

with localized disease and include age as a covariate. Long-term effect are removed

since Tsodikov (2002) showed that they are not significant.

Results using our PO mixture method are listed in the second column in Table

4.2, together with results from the continuous model using the method described in

Tsodikov (2003a) in the third column for reference. Numerical derivatives of the

likelihood are used for variance estimation.

Table 4.2: PH-PH model fit to UCR breast cancer data with patients at localized
stage only and age as the only covariate. Standard errors are shown in
parentheses.

Estimates (se) PO mixture method continuous model
age 46-55(ST) -0.22(0.15) -0.37(0.14)
age 56-65(ST) -0.49(0.14) -0.65(0.13)
age ≥ 66(ST) -0.54(0.13) -0.68(0.12)

long-term cure rate -1.05(0.06) -1.10(0.05)

Survival curves for all four age groups are shown in Figure 1. They provide a good

fit to the observed survival curves (Kaplan-Meier).

4.6 Simulation studies

As discussed earlier, the PO mixture method has computation advantages over

the PH mixture method. As a result, we recommend the PO mixture method. In this

section, we examine our advocated PO mixture method in two simulation studies.

We consider two scenarios where the censoring proportion is about 80% and 50%

respectively.

The simulation studies are based on the SEER prostate cancer data. We first

fit discrete PH model to the data set and obtained the estimates of the regression
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Figure 4.1: Survival curves for UCR breast cancer patients at localized stage in four
age groups

parameters and baseline hazards. We then use those estimates as the true values of

parameters in the simulation studies. For the simulation study where the average

censoring proportion is about 80%, we use Stage in the real data set as the covariate.

For the second scenario, we simulate the covariate such that the average censoring

proportion is about 50%. In both cases, the censoring is assumed to be exponentially

distributed.

For each scenario, we simulate 500 data sets, with each of sample size 11621. We

then fit a discrete PH model to those simulated data sets using PO mixture method

with recursive solution, PO mixture method with DCA and Quasi-Newton method.

The results are shown in the following two tables.

Based on the results from 500 simulations, we can see the PO mixture method
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Table 4.3: Simulation studies to compare PO mixture method with Quasi-Newton
method - fit PH model with average censoring proportion around 80%

PO Mixture PO
True with Recursive Mixture Quasi-Newton

parameter Solution with DCA Method
Regional

Vs. localized 0.606 0.607(0.067) 0.607(0.066) 0.601(0.066)
Distant

Vs. localized 2.919 2.918(0.049) 2.919(0.049) 2.911(0.049)

Table 4.4: Simulation studies to compare PO mixture method with Quasi-Newton
method - fit PH model with average censoring proportion around 50%

PO Mixture PO
True with Recursive Mixture Quasi-Newton

parameter Solution with DCA Method
Regional

Vs. localized 0.606 0.611(0.066) 0.608(0.066) 0.593 (0.065)
Distant

Vs. localized 2.919 2.927(0.056) 2.924(0.056) 2.909 (0.055)

with both recursive solution and DCA is more accurate than Quasi-newton method.

Tables 4.5 and 4.6 list the simulation results on the time used by PO mixture

method with recursive solution and Quasi-Newton method relative to that used by PO

mixture method with DCA. We examined three different accuracy levels as distances

of parameter estimates from the true parameters (estimated from PO mixture method

with DCA with tolerance being 1e-10). Among these methods, PO mixture method

with DCA in the M-step works the fastest, while the Quasi-Newton method takes the

longest time.

Table 4.5: Time used by PO mixture with recursive method and Quasi-Newton
method relative to that used by PO mixture with DCA - discrete PH
model, censoring proportion = 50%

Distance from PO mixture with Quasi-Newton
true parameters recursive method method

0.1 1.6 7.2
0.01 1.7 6.1
0.001 1.7 6.2
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Table 4.6: Time used by PO mixture with recursive method and Quasi-Newton
method relative to that used by PO mixture with DCA - discrete PH
model, censoring proportion = 80%

Distance from PO mixture with Quasi-Newton
true parameters recursive method method

0.1 1.9 8
0.01 2 10
0.001 2.8 14.2

4.7 Discussion

We proposed two methods for modeling discrete failure time data by introducing

artificial random variables to the model and treating them as missing data. EM

algorithm based on imputation of the artificial missing data is used for the parameter

estimation. Two procedures were proposed for solving the M-Step, the recursive one

and a version of the MM algorithm, both nested within the M-Step of the original

EM. We targeted a family of discrete transformation models and kept the development

general with respect to model specification that was done using a Laplace transform

L−function. The approach allowed considerable flexibility as to the choice of the basis

model. This flexibility was exploited in search for computational efficiency. We have

explored using the PH and the PO latent basis models, each giving rise to a different

family of estimation procedures. The PH mixture method reduces the dimension

of the optimization procedure. However, it requires numerical approximation in the

imputation step. For large data sets, this adds considerable computational burden to

the problem.

In the PO mixture method, on the contrary, all imputations have closed-form

expressions making the algorithm precise, simple and stable. Therefore, the PO

mixture method is recommended for use with discrete data, while the PH mixture

method is better suited for continuous survival models.

For the specification of the algorithm for a particular transformation model the
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knowledge of the specific distribution of the artificial random variables, U , is not

required, and in fact we have not defined them in the applications presented.

In fact the number of algorithms that can be built using the proposed approach is

without limits. While we believe the two classes spawned by the latent PH and PO

models are perhaps most interesting and serve the variety of discrete and continuous

models well, the optimal choice of the algorithm is an open and challenging question.

The applicability of the PO mixture framework goes beyond discrete models. The

fact that the form of the PO model likelihood is virtually the same for discrete or

continuous situation (unlike the PH model) makes it particularly useful for data

coming from a mixed discrete-continuous distribution.
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CHAPTER V

Conclusion and Discussion

The MCQEM algorithm proposed in this research is a MCEM-type algorithm with

artificial variables introduced to break the dimension of the M-step into a series of

Poisson regression sub-problems. Artificial variables slightly increase the dimension of

the E-step requiring larger MC sample size to achieve the same accuracy. Therefore,

the MCQEM algorithm is best suited for problems with smaller cluster size.

When the number of categories becomes larger, quadrature methods become pro-

hibitively slow. While our method as well as MCEM would require a larger number

of MC sample size M in this case, it still remains feasible with larger number of cat-

egories. The MCQEM algorithm converges even when the model is non-identifiable

due to empty/sparse categories.

Similar to EM algorithm, the MCQEM algorithm does not provide variance esti-

mates automatically. We propose the variance approximation method based on the

idea of Neilsen et al. (1992), which only requires knowledge of the log-likelihood func-

tion and MLE. This allows us to get variance estimates avoiding taking derivatives.

It works well when the log-likelihood function is approximately quadratic around the

MLE. When the condition is not met, the variance estimates are not reliable. The

traditional variance estimates are no good in this case either. We have examined a

few extreme cases, where the parameters are near the boundary of the parameter
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space, and the log-likelihood function is far from quadratic. Neither our method nor

numerical differentiation (SAS) is reliable in those extreme cases.

When missing observations are present, if the mechanism is missing at random

(MAR) or missing completely at random (MCAR), the method could be extended

to deal with missing observations by incorporating them into the EM framework.

If missing is not at random, delicate care may be needed. Methods proposed for

this purpose in the literature such as sensitivity analysis and multiple imputation

(Fitzmaurice et al. (2008) and Roderick J.A. Little (2002)) should apply to our setting.

We have revisited the point estimation algorithms for the discrete proportional

odds model. We found the PO model naturally suited for the discrete or grouped

data setting because the form of its likelihood function with right censored data

is invariant with respect to the type of data (continuous or grouped) in the sense

that the contribution of failures is still proportional to the jump of the baseline

cumulative hazard function. This property ensured that the artificial mixture and

MM approaches carry over with slight modification from the continuous setting and

bring their computational efficiency with them. This stands in stark contrast with

the Cox model that has seen a number of challenges with discrete data.

A novel recursive approach has been developed as an alternative method. Al-

though a little slower than the MM-type algorithms it has potentially superior accu-

racy and stability as it is based on recursive solution to algebraic equations that can

be accomplished by stable bi-section algorithms if needed.

Our approach targeted the most difficult niche of data applications when the

dimensionality was high despite the model still being discrete. Cancer registry such as

SEER gives such an example. The fact that traditional maximization methods fail to

exploit the specific likelihood structure and are subject to the curse of dimensionality

makes them slow. In particular, Newton type methods have O(n3) complexity due to

a direct or indirect (iterative) information matrix inverse. At the same time MM-type
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methods show approximately linear complexity curve with increase in the dimension

of h.

There is probably little difference between these methods if the dimensionality of

the problem is low.

The results hold much promise for the development of efficient computational

methods for the broad class of transformation models. The artificial mixture ap-

proach (Tsodikov (2003a)) allowed to extend the numerical efficiency of the Cox

model estimates to transformation models. The Cox model has shown itself poorly

in the discrete setting. The PO model, on the contrary, takes to the discrete setting

naturally because of its ordinal heritage. We used this observation to develop com-

putationally efficient procedures for a broad class of models that can be represented

as an (artificial) mixture of PO models just like continuous transformation models

are usually mixtures of PH models (univariate frailty models). We have shown that

efficient methods exist for the PO model and it is therefore a good candidate as the

base model spawning a mixture family for the discrete and grouped data setting.

We proposed two methods for modeling discrete failure time data by introducing

artificial random variables to the model and treating them as missing data. EM

algorithm based on imputation of the artificial missing data is used for the parameter

estimation. Two procedures were proposed for solving the M-Step, the recursive one

and a version of the MM algorithm, both nested within the M-Step of the original

EM.

We targeted a family of discrete transformation models and kept the development

general with respect to model specification that was done using a Laplace transform

L−function. The approach allowed considerable flexibility as to the choice of the

basis model. This flexibility was exploited in search for computational efficiency. We

have explored using the PH and the PO latent basis models, each giving rise to a

different family of estimation procedures.
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The PH mixture method reduces the dimension of the optimization procedure.

However, it requires numerical approximation in the imputation step. For large data

sets, this adds considerable computational burden to the problem.

In the PO mixture method, on the contrary, all imputations have closed-form

expressions making the algorithm precise, simple and stable. Therefore, the PO

mixture method is recommended for use with discrete data, while the PH mixture

method is better suited for continuous survival models.

For the specification of the algorithm for a particular transformation model the

knowledge of the specific distribution of the artificial random variables, U , is not

required, and in fact we have not defined them in the applications presented.

In fact the number of algorithms that can be built using the proposed approach is

without limits. While we believe the two classes spawned by the latent PH and PO

models are perhaps most interesting and serve the variety of discrete and continuous

models well, the optimal choice of the algorithm is an open and challenging question.

The applicability of the PO mixture framework goes beyond discrete models. The

fact that the form of the PO model likelihood is virtually the same for discrete or

continuous situation (unlike the PH model) makes it particularly useful for data

coming from a mixed discrete-continuous distribution.
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APPENDIX A

Derivation of power series method in artificial

mixture method in IV

The expansion of t
et−1

involves so-called Bernoulli numbers Bn and has the form

(Gradshteyn et al. (2007))

t

et − 1
=

∑∞
n=0

Bn
tn

n!
= 1 +

∑∞
n=1

Bn
tn

n!
, (A.1)

where Bn have the recursive relationship Bn =
n∑

k=0

(
n

k

)
Bk, B0 = 1. With t = UijΔHi

and a =
∑∞

n=1 Bn
tn

n!
we obtain the expansion

log(1 + a) =
∞∑

n=1

(−1)n+1an

n
, (A.2)

for −1 < a < 1. Combining the above expressions and utilizing the following formula

for powers of power series

(∑∞
k=0 akx

k
)n

=
∑∞

k=0 ckx
k, where

c0 = an
0 , cm = 1

ma0

∑m
k=1 (kn − m + k)akcm−k,

(A.3)

for m ≥ 1, see Gradshteyn et al. (2007), we can finally express log t
et−1

as a power
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series of t. Denote its coefficients by γk, so that log t
et−1

=
∑∞

k=1 γktk.
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