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ABSTRACT 

 

Subcellular differences in redox potential are essential for intracellular protein 

dynamics, cellular entry by many viruses and intracellular pathogens, and the targeted 

delivery of macromolecular therapeutics. This study focuses on evaluation of disulfide 

reduction in the endocytic pathway in the context of macromolecules internalized as 

particles. Recently, bioconjugation employing disulfide reduction has been exploited in 

drug delivery and those conjugates are being used more frequently in protein and 

oligonucleotide systems. Disulfide-based macromolecular therapeutic agents are 

membrane-impermeant, thus typically internalized into cells via endocytosis, and 

apparently reduced at some point in endocytic compartments en route to the lysosomal 

compartments. However, little is known about the spatiotemporal dynamics of disulfide 

bond reduction at the subcellular level, especially within endolysosomal compartments. 

Direct analysis of intracellular redox conditions is limited by current redox indicators, 

which either lack the necessary sensitivity or perturb the normal subcellular physiology. 

The probe in this study was designed to address some of these challenges. A genetically 

engineered redox-sensitive fusion protein, consisting of monomeric enhanced cyan 

fluorescent protein (mECFP) and monomeric Citrine (mCit), joined by an intervening 

disulfide-bonded and protease-sensitive linker, were expressed and characterized in vitro 
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and used to measure redox potential following endocytosis by living cells. FRET 

microscopy revealed that disulfide bond reduction began in the early endosome and 

continued throughout endolysosomal maturation. Phagocytic oxidase activity slowed 

reduction, while expression of gamma-interferon inducible lysosomal thiol reductase 

(GILT) accelerated reduction, indicating at least one mechanism of regulation of 

reduction in endocytic compartments. The information obtained from this study 

demonstrated not only the potential utility of this reporter for the design of targeted 

delivery systems, but also for studying cell type-dependent variations in the disufide 

reduction mechanism of endocytosed macromolecules and cellular factors modulating the 

reduction processes. There were differential rates of disulfide reduction by BMDCs, 

fibroblasts, cancer cells and BMMs, suggesting that further investigation in other cell 

types in various states will provide critical information that can be used to investigate the 

impact of novel treatments, as well as informing the design of targeted pharmaceutical 

agents that rely on disulfide bonds. 
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CHAPTER I 

REDUCTION OF DISULFIDE BONDS IN THE                 
ENDOCYTIC COMPARTMENT AND IMPLICATIONS                                          

FOR DRUG DELIVERY SYSTEMS 

!

INTRODUCTION 

The overall intracellular redox status exerts a profound influence on the normal 

cellular processes of protein folding, gene expression, enzyme activity, metabolism, cell 

cycle proliferation and apoptosis [1-3]. Therefore, measuring the status of intracellular 

redox potentials is important for understanding and manipulating homeostatic cellular 

processes as potential tools within the biomedical arena [4, 5]. Currently the disulfide 

bond is one of the most popular linkers, while in a parallel research concerning redox 

biochemistry is increasingly recognized as an integral component within the cellular 

signaling [6]. Disulfide bonds play an important role in many biological processes 

contributing to the controlled cleavage in the reducing space, thereby releasing reduced 

species as a redox switch [7]. Accordingly, disulfide bonds have been exploited in drug 

delivery for bioconjugation of macromolecules such as peptides, proteins and 

oligonucleotides, all of which are typically internalized into cells via endocytosis [8-10]. 

Therefore, characterizing and understanding the redox potential within the endocytic 

pathway is an essential component of this type of macromolecular delivery system; 
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however, surprisingly little is known about the dynamics of disulfide bond reduction at 

the subcellular level, especially in the endolysosomal compartment [11]. To this end, 

designing reporters to monitor disulfide redox status in the endocytic pathway is essential 

for disulfide conjugation-based delivery strategies; once native processes are understood, 

drug delivery systems that use disulfide bonds can be more appropriately designed.  

This chapter mainly focuses on the mechanism(s) of disulfide bond reduction 

especially in the endocytic pathway after the cellular uptake to define redox control and 

identify sites of reduction, and on the related disulfide conjugation-based delivery 

strategies for macromolecules. In particular we concentrate on cellular redox mechanisms, 

from indirect evidence in the form of disulfide reduction in pathogenesis to direct 

evidence with redox biosensors that report disulfide reduction in subcellular 

compartments. 
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BACKGROUND 

Disulfide bond as a redox switch 

A disulfide bond (SS) is a single covalent bond derived from the coupling of 

sulfhydryl (SH) groups.  It is chemically formed from thiol-containing compounds or, in 

the case of proteins, may be spontaneously oxidized from thiol groups of cysteine 

residues or mediated by enzymes. Disulfide linkages are readily reversible in reducing 

environments, resulting in the linkage being converted to thiols; however, they are 

relatively stable even in acidic environments [12]. Disulfide bonds contribute to the 

folding, structure, and stability of many proteins in both prokaryotes and eukaryotes.  In 

prokaryotes, structural disulfide bonds are mostly formed in the periplasmic space after 

being translocated across the cytoplasmic membrane [7]. In eukaryotic cells, disulfide 

bonds are generally formed in the lumen of the rough endoplasmic reticulum (ER) which 

is oxidative [13]. However, the main pathway that catalyzes disulfide bond formation is 

strikingly similar between prokaryotes and eukaryotes, and is based on thiol-disulfide 

exchange reactions [14]. The disulfide bond is reversibly cleaved in the cytosol, due to 

the presence of glutathione that is primarily responsible for maintaining protein thiols 

[15]. The reversibility between thiol and disulfide is a key feature in living systems, 

although functional evidence for the cellular mechanistic details of disulfide bond 

reduction is still lacking, not only where and how reduction occurs but also what 

conditions are required for reduction in subcellular compartments.   
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Cellular reducing activities via intracellular redox agents/enzymes 

Regulation of thiol-disulfide redox in various subcellular compartments is critical 

to the maintenance and function of many cellular processes [16]. The intracellular 

distribution of glutathione in its reduced form (GSH) vs. its oxidized form (GSSG) 

contributes to the generation of different redox potentials in various subcellular 

compartments. Involvement of diverse redox enzymes also contributes to redox 

compartmentalization in cells (Fig 1.1) [17]. 

 

Glutathione (GSH) 

GSH, the most abundant thiol-source in mammalian cells, functions in cellular 

processes such as synthesis of proteins and DNA, amino acid transport, enzyme activity, 

metabolism, and protection of cells [18]. As depicted in Fig 1.1, the ratio of GSH to 

GSSG contributes to the generation of different redox potentials in various subcellular 

compartments. Usually, the concentration of glutathione in the cell is rather high (5-10 

mM), but the ratio between GSH and GSSG differs among cellular compartments. While 

the cytosol exhibits a GSH:GSSG ratio of up to 100, the ER, where disulfides are 

introduced into proteins, is more oxidizing with a ratio of 1~3 [19]. Mitochondria, the 

organelles with the greatest reducing potential, have the highest rates of electron transfer 

and are highly sensitive to oxidation [20]. Extracellular compartments are stably 

maintained at oxidizing potentials principally by cysteine/cystine (Cys/CySS) [21]. 

However, there is not much information about the endosomal compartments, even though 
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previous studies suggest evidence (will be discussed later) for reductive activity within 

the endocytic pathway.  

!

Thioredoxin (Trx) 

Another important redox enzyme is Trx, a 12 kD oxidoreductase containing a 

dithiol-disulfide active site [3]. It is ubiquitous and found in many organisms from plants 

and bacteria to mammals [22]. It facilitates the refolding of disulfide-containing proteins 

and reduces several transcription factors therefore it regulates the DNA binding activity 

and gene expression [23]. While the GSH/GSSG couple provides a major cellular redox 

buffer, Trx serves a more specific function as hydrogen donors for ribonucleotide 

reductase in regulating redox-sensitive proteins by changing the reduced/oxidized 

thioredoxin ratio [24]. However, the redox equilibrium both in Trx and GSH is driven by 

NADPH-dependent reaction; thus, they are thermodynamically connected to each other 

[2, 25].  The majority of these enzymes are functional at neutral or slightly alkaline 

conditions, they have similar three-dimensional structures, and all feature a highly 

conserved active site loop containing two cysteines in the sequence -CGPC- [26]. GILT 

is a unique and unusual member of the thiol reductase family because its optimal 

enzymatic activity is at a low pH and has an atypical active site (-CGAC-) [27]. However, 

the active site, determined by mutagenesis, still consists of a pair of cysteine residues 

separated by two amino acids, similar to other enzymes of the thioredoxin family [28].  
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Protein disulfide isomerase (PDI) 

PDI was initially characterized by Christian Anfinsen in the 1960’s as an enzyme 

that catalyzes the refolding of ribonuclease A [29]. It is a unique thiol-disulfide 

oxidoreductase that catalyzes substrate proteins via the active-site cysteines, facilitating 

protein folding in the lumen of the ER and disulfide bond formation, and also ironically 

catalyzing disulfide reduction. PDI reduces disulfide bonds in the cytosol, endosomes, 

and at the plasma membrane as a consequence of the more reducing environments 

through expressed on cell surface or secreted by cells (Fig 1.2) [11]. Cell-surface PDI has 

been implicated in reduction of the disulfide-linked diphtheria toxin heterodimer [29], 

and also controls the redox state of cell-surface protein thiols/disulfides [30].  

Taken together, these redox enzymes and redox agents, which are capable of 

reducing disulfide bonds, exist at different intracellular locations within a cell. GILT is a 

unique member with its optimal enzymatic activity at pH 4.5–5.5, as described in detail 

later. 

 

Indirect evidence for reductive activity in the endocytic pathway: disulfide 

reduction in pathogenesis 

A specific subset of toxins consist of an active subunit (A) that has enzymatic 

activity linked to a binding subunit (B) through a disulfide bridge that confers specificity 

to a particular mechanism of toxin entry (Fig 1.3) [31]. The mechanism of bacterial 

toxins has contributed to the understanding of important cellular pathways including 

cytosolic delivery of a catalytic domain linked to a receptor binding domain via a 
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disulfide bond through plasma membrane permeabilization [32].  Since some bacterial or 

plant toxins have a disulfide bond between two subunits, they take advantage of its 

reversible thiol-disulfide interchange reactions.  For example, when cholera toxin binds 

to the cell surface and transports to the ER, PDI dissociates the disulfide bond between A 

and B subunits before translocation into the cytosol [33].  Similarly, diphtheria toxin and 

botulinum toxin are cytotoxic only after reduction of the disulfide bond to release the A 

subunit from the endosome into the cytosol [34, 35].  Reversible cleavage of the disulfide 

bond and controlled release of reduced components in the process of translocation are 

essential mechanisms that toxins employ for cell entry.  Therefore, the study of transport 

pathways in pathogenesis plays an important role in understanding of disulfide bond 

reduction in the intracellular redox environment.  

 

Diphtheria toxin (DT) 

DT, secreted by the bacteria Corynebacterium diphtheriae, is an exotoxin that 

functions to terminate host cell functions [35]. DT is composed of two subunits; subunit 

A has the catalytic domain which is responsible for inhibiting protein synthesis, and 

subunit B has the receptor binding region and the translocation region for getting the 

toxin into the cytoplasm [36]. Subunit B is separated into two domains, the 

transmembrane (T) domain and the receptor-binding (R) domain. After proteolytic 

cleavage of DT, the T domain promotes the formation of a channel and then releases the 

A domain into the cytoplasm after reduction of the disulfide bond (Fig. 1.4) [35, 37]. The 

physiological dynamics of DT support the hypothesis that reduction occurs within 
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endocytic compartments. Following endocytosis, reduction of the disulfide bond allows 

one of the subunits to penetrate the endosomal membrane and inhibit protein translation 

[38].!!

!

Botulinum Toxin (BoNT) 

BoNT is one of the most potent substances expressed by Clostridium botulinum, a 

Gram positive aerobic bacterium composed of disulfide linked heavy chain (HC) and 

light chain (LC) (Fig 1.5) [34]. There are two main steps for BoNT action, one is 

transcytosis across the transport cell and the other is receptor-mediated endocytosis into 

the target cell. First, BoNT binds to the lumen of the gut, and then escapes by transcytosis 

to the interstitial fluid where it reaches the general circulation. During the second step, 

BoNT penetrates the cell membrane of peripheral cholinergic nerve endings at the 

neuromuscular junction by receptor-mediated endocytosis [39]. Aside from the initial 

binding event of both steps, the toxin’s behavior in gut cells and target cells is 

fundamentally different.  In gut cells, the toxin is transported in an unmodified form from 

one cell surface to the other, where it is released to the cell exterior. In target cells, the 

toxin is transported to the interior of the nerve ending, where it undergoes pH-induced 

translocation to reach the cytosol. At some point in this migration, the interchain disulfide 

bond of the toxin is reduced so that the enzymatic LC becomes fully active [40]. Fischer 

et al. demonstrated that replacement of a disulfide bond by a peptide linkage between LC 

and HC resulted in nonproductive LC translocation, indicating that the disulfide bond is 

critical for the outcome of translocation [41]. BoNT activity in which BoNT have 
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cytotoxicity only after reduction of the disulfide bond to release the A subunit from the 

endosome into the cytosol appears the possibility that reduction of the disulfide bond  

involves within the endosome. Within the peripheral nerve endings the light chain 

prevents the release of acetylcholine, leading to neuromuscular paralysis [42].  Most 

cases of botulism originate from ingestion, and thus BoNT is able to escape the lumen of 

the gut due to its transcytosis transport system [43]. Therefore, BoNT may serve as a 

delivery vehicle because native BoNT can survive the harsh conditions of the 

gastrointestinal system [44]. The translocation domain of BoNT is known to participate 

in the pH-dependent translocation of the enzymatic LC across the endosomal membrane; 

however, its mechanism of action and whether cellular redox proteins are required for 

this process remain unknown.  

 

Listeriolysin O (LLO) 

LLO is a sulfhydryl-activated pore-forming protein of the cholesterol-dependent 

cytolysin (CDC) family from the Gram-positive facultative intracellular bacteria, Listeria 

monocytogenes (L. monocytogenes) [45]. Once L. monocytogenes is phagocytosed, it 

secretes LLO into the endosomal compartment where LLO exhibits optimal activity at 

pH 5.5 - 5.9. LLO forms pores to breach the endosomal membrane to escape into the 

cytosol where cytosolic delivery of macromolecules using LLO can be achieved without 

severe cytotoxicity since its activity gets attenuated at pH ~7.2 [45, 46].  

The hemolytic activity of LLO has been shown to be abolished upon modification 

of the unique cysteine residue by oxidation of the sulfhydryl group [9]. This interesting 
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feature allows one to regulate the hemolytic activity of LLO as well as to reversibly 

conjugate LLO with lipids or polymers through a disulfide bridge without affecting its 

pore-forming ability. Although it is known to be pH-dependent and requires reduction for 

activation, the molecular mechanism of its reduction is not clearly understood; 

specifically, the temporal and spatial reduction of the unique single cysteine is not clear.  

 

Direct evidence for reductive activity in the endocytic pathway 

Previous studies to explore the reductive process in the endocytic pathway 

Shen et al. used poly (D-lysine) linked to methotrexate through a disulfide linker 

to show that reduction of endocytosed ligand to release methotrexate from the disulfide 

spacer occurs in a prelysosomal intracellular compartment in Chinese hamster ovary 

(CHO) cells [47]. A similar study was performed by Feener et al. [48] using a disulfide 

conjugate between poly (D-lysine) and [125I]-tyramine. Disulfide reduction started 

immediately and continued over 6 hr in CHO cells, indicating that reduction takes place 

after uptake via endocytosis. Further evidence and potential mechanisms for the reduction 

are proposed through antigen presentation. For many antigens, the rate-limiting step in 

unfolding may involve reduction of disulfide bonds in antigen presenting cells [49]. 

Collins et al. showed disulfide reducing activity for lysosomes in the processing of 

antigen presentation to T cells using conjugation of [125I]-tyrosine to [131I]-!2-

macroglobulin through disulfide spacer! by primary cultures of mouse peritoneal 

macrophages [50]. To directly monitor disulfide reduction during endocytosis, a 4,4-

difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionic acid (BODIPY) 
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fluorescent (488ex/520em nm), which is linked to folate via an amide bond, disulfide 

linked to tetraethyl rhodamine (545ex/595em nm) (BODIPY folate-SS-rhodamine) was 

designed and characterized to demonstrate fluorescence changes from red to green upon 

reduction after receptor-mediated endocytosis [51].  

Gamma interferon-inducible lysosomal thiol reductase (GILT) 

GILT is the first identified and characterized redox enzyme in endosomes and 

lysosomes. It is synthesized as a 35 kDa soluble glycoprotein precursor and processed 

into the mature form (30 kDa), therefore initially named IP-30, by proteolytic removal of 

N- and C-terminal peptides [52]. The lysosomal thiol reductase is a soluble glycoprotein 

that is synthesized as a precursor. After delivery into the endosomal/lysosomal system by 

the mannose 6-phosphate receptor, N- and C-terminal prosequences are removed [53]. 

The enzyme is expressed constitutively in antigen-presenting cells and induced by IFN-, 

in other cell types, suggesting a potentially important role in antigen processing [54]. 

GILT is an enzyme involved in facilitating MHC class II-restricted antigen processing, 

which generates cell surface MHC class II-peptide complexes essential for the activation 

of CD4+ T cells; GILT catalyzes initial unfolding of antigenic protein that becomes more 

accessible for further processing through proteolysis to initiate the adaptive immune 

response [55, 75]. GILT can also facilitate the transfer of disulfide-containing antigens 

into the cytosol, enhancing their cross-presentation, the processing of exogenous antigens 

for presentation by MHC class I molecules to CD8+ T cells [56]. GILT is constitutively 

expressed in T cells, involved in the regulation of T cell activation, indicating that GILT 

has a more fundamental role in cellular processes [76]. Recently, GILT has been found to 

regulate the cellular redox state, regulating the expression of superoxide dismutase 2 
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(SOD2), a mitochondrial enzyme responsible for the conversion of superoxide radical 

into hydrogen peroxide [57]. Finally, GILT has been shown to be a critical host factor 

that facilitates the activity of bacterial hemolysins such as LLO and streptolysin O [58]. 

The use of GILT-/- mice will be explored further in Chapter III. 

Limitations of reduction studies 

Given that the study of redox processes in biological systems is a very broad field, 

it is not surprising that a variety of redox probes have been developed. Direct analysis of 

intracellular redox conditions, however, is limited by current redox indicators, which 

either lack the necessary sensitivity or perturb the normal subcellular physiology induced 

by the process of imaging itself.  

Redox biosensors 

Historically, measurements of GSH or Trx concentration by use of enzymatic 

assays, HPLC, and gel mobility have the advantage of high specificity; however, these 

cannot deliver information about the redox state, typically pursued by subcellular 

fractionation by cell homogenization and gradient separation, which results in the loss of 

cellular integrity. Conventional methodologies using the redox-active fluorescent dyes 

have also encountered difficulty when used to measure oxidative stress due to the 

formation of reactive oxygen species (ROS) [59]. One of the most promising methods for 

investigating intracellular redox conditions involves the use of disulfide bonds engineered 

into the GFP "-barrel, redox-sensitive yellow fluorescent proteins (rxYFP) and redox-

sensitive green fluorescent proteins (roGFPs) [60, 61]. These genetically encoded probes 

have advantages over more traditional methods and have contributed greatly to the 
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understanding of structural and chemical aspects of cellular functions that depend upon 

thiol/disulfide exchange elements. The endoplasmic reticulum (ER) is indeed more 

oxidizing than cytosol as determined using roGFP variants [62]. Moreover, the fusion of 

human glutaredoxin to roGFP was demonstrated to increase the sensitivity of probes on a 

scale of time and redox changes to directly overcome some limitations [63]. Despite the 

information gained by studies detailing redox conditions for certain subcellular 

compartments, a well-defined picture of reduction-oxidation dynamics and kinetics for 

the endocytic pathway remains elusive.  

Drug delivery strategy utilizing disulfide bonds 

Recent discoveries regarding the disulfide reduction in the endocytic pathway have 

exploited these attributes of disulfide bonds for bioconjugation purposes.!Recently, the 

use of disulfide bonds for target-specific release of macromolecular drugs has emerged as 

an important contributor to anti-cancer drug delivery systems as exemplified by the 

development of the immunoconjugate gemtuzumab ozogamicin (GO; MylotargTM) to 

target acute myelogenous leukemia [64]. Also captopril, an orally active inhibitor of the 

angiotensin-converting enzyme (ACE) for the treatment of hypertension and congestive 

heart failure, was converted into prodrugs by conjugating via disulfide to polyethylene 

glycol (captopril-SS-PEG), which did not inhibit ACE activity but regained this ability 

after reduction [81], or to lysozyme for specific targeting to kidney [82]. The disulfide 

linkage was used to release drugs under specific conditions and cleavage was triggered 

by the mildly reducing environment found in intracellular fluids [65]. Disulfide cross-

linked copolymer was also used for intracellular drug delivery [66-68]. Bacterial toxins 

have contributed to the discovery of important pathways in cellular processes and some 
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of them have been approved in drug delivery systems. They take advantage using their 

intrinsic disulfide bond by virtue of its reversible nature in cellular redox systems [32]. 

Bade et al. explored the full-length BoNT as a potential carrier for targeted delivery of 

biomolecules [69]. Recent studies have altered the BoNT by mutation or deletion of the 

LC such that it retains the capabilities to bind and transcytose across gut, still utilizing the 

disulfide bridge [70]. The general concept for use of a modified BoNT, genetically 

engineered HC without LC subunit, maintains its capability of transcytosis through 

epithelial cells but is nontoxic. The study of intracellular transport pathways of toxins 

plays an important role in understanding of disulfide bond reduction in the intracellular 

redox environment. LLO, another sulfhydryl-mediated bacterial protein, has been 

considered for its possible use in drug delivery when encapsulated with a drug and taken 

up by the cell via endocytosis. Previously, LLO-containing liposomes efficiently 

delivered model antigen, ovalbumin (OVA) to the cytosol in vitro, as measured by OVA-

specific MHC class I-restricted antigen presentation [71]. Dramatic enhancement of gene 

delivery was observed with disulfide-linked LLO and protamine (PN) condensed DNA 

complexes without apparent cytotoxicity [9]. Similarly, Choi et al. demonstrated high 

levels of gene transfection efficiency but low cell toxicity using polyethylenimine 

disulfide conjugated with LLO [8]. More recently, LLO has been reported as an efficient 

delivery carrier in in vivo reporter gene transfections using LLO-containing pH-sensitive 

anionic liposomes [72]. The mechanism to escape the endocytic compartment can be 

used to deliver macromolecules, such as antigens, to the cytosol of cells. LLO can also be 

co-encapsulated with antigens in pH-sensitive liposomes to enhance the efficiency of 
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cytosolic delivery by demonstrating an enhanced cellular immune response compared to 

pH-sensitive liposomes without LLO [73, 74]. 

 

CONCLUSIONS 

The presence of subcellular redox differences makes the disulfide bond attractive 

as a potential delivery tool. Recently, bioconjugation employing disulfide reduction has 

been exploited in drug delivery in protein and oligonucleotide system [77-79], typically 

internalized by endocytosis by cells. Although controversial [80], a reductive activity has 

been evidenced in the endocytic pathway. As the reduction of disulfide bonds in the 

endocytic pathway is prerequisite in many cases of pathogenesis and drug delivery 

systems, characterizing and understanding the endolysosomal redox potential is 

extremely important. The primary goal of this research is to develop a redox-sensitive 

reporter that is able to monitor reducing environments to define redox mechanisms and 

identify spatiotemporal disulfide reduction, particularly in the endosomal compartments. 

Recent!development of redox biosensors and study of redox enzymes localized in the 

endosomal compartments have generated more excitement for our approach. With the 

recognition of reductive activity in the endocytic pathway, we then evaluate disulfide 

reduction in the endocytic pathway to investigate key cellular factors modulating the 

redox potential, likely dependent on cell types, demonstrating the potential utility of this 

reporter for the design of drug delivery systems utilizing disulfide bonds.  
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Figure 1.1 Redox compartmentalization according to the ratio of GSH to GSSG. 

Maintaining redox potentials in the cell is regulated by the ratio of GSH/GSSG. The gradient 
indicating redox potentials starts from light color, most reducing and as it gets darker, it becomes 
more oxidizing. The redox potential in a subcellular compartment plays an important role in how 
it functions, and has been found to be variant in different subcellular compartments. Figure 
modified from Kemp et al [17].  
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Figure 1.2 Various cellular redox enzymes and redox agents at different sites.  

The endocytosed macromolecules contact various redox enzymes and redox agents such as 
protein disulfide isomerase (PDI), gamma interferon-inducible lysosomal thiol reductase (GILT), 
and cysteine. These cellular redox enzymes/agents and various ratios of glutathione and oxidized 
glutathione (GSH/GSSG) are localized at different subcellular locations. Figure adapted from 
Saito et al. [11] 
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Figure 1.3 Schematic structures of protein toxins with their disulfide bond between the A 
and B moieties.  

Toxins have several common characteristics with the active domain (A) and binding domain (B) 
linked by a disulfide bond. They utilize the disulfide bridge in their pathogenesis process by 
disulfide cleavage and controlled release of reduced components. Reduction of the disulfide bond 
is required for optimal enzymatic activity of these toxins. Figure modified from Sandvig et al. [31] 
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Figure 1.4 Chimeric toxin molecules made by replacing the B domain of DT with an 
antibody by recombinant DNA techniques.  

DAB389IL2 (denileukin diftitox) is composed of the A and T domains of DT fused to human 
interleukin 2 (IL2). Denileukin diftitox binds with cell-surface receptors and then enters cells 
through endocytosis. The acidic pH in the endocytic compartment causes a conformational 
change that enables the translocation of the A chain of DT to the cytosol. Figure adapted from 
Pastan et al. [37] 
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Figure 1.5 Schematic representation in linear structure (A) and three-dimensional structure 
(B) of botulinum toxin.  

The purple region indicates the LC with an enzymatic domain with a zinc molecule (black 
sphere). The green portion represents the translocation domain with its belt-like encirclement of 
the LC, whereas the yellow and the orange regions show, respectively, the N-terminal and C-
terminal portions of the binding domain within the HC. Figure adapted from Simpson et al. [34]. 
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CHAPTER II 

DESIGN AND EXPRESS OF RECOMBINANT                          
REDOX-SENSITIVE FRET REPORTER 

!

SUMMARY 

A genetically engineered redox-sensitive probe, composed of a thrombin-

cleavable monomeric enhanced cyan fluorescent protein (mECFP) and monomeric 

Citrine (mCit) fusion protein, was generated through modified constructs and 

successfully expressed in bacteria. When incubated with DTT and thrombin, the single 

polypeptide was specifically cleaved at the thrombin recognition sequence bordered on 

both sides by cysteine and produced a dynamic change of up to 5-fold in the ratio of 

fluorescence emission upon disulfide reduction. Liposome-encapsulated probes were 

successfully monitored for sensitivity to redox changes without significant sensitivity to 

changes in pH. The recombinant fusion protein between mECFP and mCit shows great 

promise for the determination of redox status in vitro as well as the possibility for live-

cell imaging.  
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INTRODUCTION 

Direct analysis of intracellular redox potential, the ability of a given protein or 

molecule to gain or donate electrons [1], exerts a profound influence on the design and 

interactions of disulfide-conjugated macromolecular drug delivery [2]. The ability to 

sense the redox potential in live cells has far-reaching implications for understanding and 

manipulating drug delivery systems that underlie complex biomedical problems [2, 3]. 

Therefore, development of genetically encoded biosensors that enable real-time and 

extended assessment of alterations in intracellular metabolism without cellular disruption 

is essential [4]. One of the most promising applications involves the use of GFP [5], with 

major advantages being efficient fluorescence properties!and resistance to proteases [6]. 

GFP possesses excellent targeting performance to specific organelles as GFP-fusion 

proteins in tagging applications [7], and can also be modulated as an indicator by 

mutagenesis [8]. One method for making biochemically sensitive GFPs exploits 

fluorescence resonance energy transfer (FRET) between variants of GFP [9, 10]; however, 

currently available redox biosensors mostly employ single GFP variants in non-FRET-

based applications [11-14]. A FRET-based approach can be implemented to achieve 

maximum sensitivity within the physiological redox range based on dynamic ratiometric 

measurements. FRET is a quantum mechanical process whereby the excited state energy 

of a fluorescent donor molecule is transferred to a ground state acceptor molecule [15]. 

There are three requirements for FRET: (i) donor and acceptor molecules must be in 

close proximity, typically 10–100 Å, (ii) the absorption spectrum of the acceptor must 

overlap the fluorescence emission spectrum of the donor, and (iii) donor and acceptor 

transition dipole orientations must be approximately parallel. Although the orientation of 
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the dipole alignment should be appropriate to create an efficient energy transfer, the 

wavelength and distance are the only factors that can be controlled [16, 17].  

In this study, we explored the use of FRET-based biosensors consisting of the 

common FRET-compatible pair of GFP variants, mECFP and mCit, a variant of yellow 

fluorescent protein (YFP) with reduced pH sensitivity [18]. We hypothesized that this 

fusion protein can be incorporated into the endolysosomal compartments in order to 

monitor redox environments with a detectable change in FRET efficiency as measured by 

changes in the redox profiles in vitro as well as in living cells. The redox-sensitive fusion 

protein was developed and expressed as a His-tagged polypeptide in E. coli and its ability 

to sense redox changes was characterized biochemically through its response to reduction 

with various ratios of oxidized and reduced forms of dithiothreitol (DTT).  
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MATERIALS AND METHODS 

Expression and purification of mECFP-Th-mCit fusion protein 

mECFP was transferred from Bluescript cloning vector (Bsk, Stratagene) to 

bacterial expression vector pET-29b (Novagen) using the XbaI and BamHI restriction 

sites and ligated to GDPCLVPRGSC-mCit by BamHI and XhoI resctriction sites using 

polymerase chain reaction (PCR). The expression construct was transformed into E. coli 

strain BL21 (DE3) RIPL (Stratagene, Santa Clara, CA). A starting culture from a single 

colony was grown in 50 mL LB media at 37°C overnight with 30 µg/mL kanamycin. The 

culture was diluted 1:50 into 2 L LB media, and then incubated at 37°C until the 

absorbance at 600 nm reached ~0.7. The culture was induced at 30°C for 10 h with 1 mM 

IPTG, and then centrifuged at 7,000 # g for 10 min at 4°C. The bacterial pellet was 

resuspended in wash buffer (50 mM sodium phosphate, 300 mM NaCl, 20 mM imidazole, 

pH 8.0) and incubated on ice for 30 min with 1 mg/mL lysozyme and lysed using a 

French press (Thermo Spectronic) or a micro ultrasonic cell disrupter (Kontes). The 

lysate was centrifuged at 10,000 # g for 30 min followed by binding to nickel-

nitrilotriacetic acid (Ni-NTA) agarose (Qiagen, Valencia, CA) up to 3 h. The Ni-NTA 

agarose was washed with a total of 500 mL wash buffer containing 0.03% hydrogen 

peroxide (H2O2, Fisher Scientific) by gravity-flow, and then eluted with wash buffer 

containing 250 mM imidazole (elution buffer, EB). The purified recombinant proteins 

were buffer-exchanged into HBS (20 mM HEPES, 150 mM NaCl, pH 7.4) using PD10 

desalting columns (Amersham Biosciences). 
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Expression and purification of mECFP-G4STh-mCit fusion protein 

Separating the coding domains of the two proteins was the sequence 

GDPCGGGGSLVPRGSC, of which GDP resulted from the vector backbone (in order to 

retain the BamHI site), while CLVPRGSC was inserted by overlap extension PCR, and 

GGGGS was subsequently inserted by Site-directed, Ligase-Independent Mutagenesis 

(SLIM) PCR [19, 20]. SLIM PCR was also used to replace the S-Tag affinity sequence in 

pET-29b with the Strep-tag II affinity sequence (WSHPQFEK). The construct was 

expressed in E. coli BL21 (DE3) as a single polypeptide and purified via Ni-NTA and 

hexahistidine affinity chromatography. 

 

Thrombin cleavage 

Proteolytic cleavage experiments were performed in the cleavage buffer (50 mM 

Tris, 150 mM NaCl, 2.5 mM CaCl2 and 0.1% "-mercaptoethanol, pH 8.0) according to 

Zhang [21]. To determine optimal conditions for proteolysis by thrombin, different 

amounts of thrombin (0, 0.1, 0.25 and 0.5 U/ug) were incubated with the fusion protein at 

room temperature. Each aliquot was taken out at various time points (0, 3, 6, 9, 12, 24 hr) 

and frozen until analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) and imperial protein stain (Thermo Scientific). Gels were digitally recorded 

using a KODAK Digital Sciences Electrophoresis Documentation and Analysis System. 

!

!
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Ellman’s assay 

Ellman’s assay is a sulfhydryl assay using the specificity for free thiol groups of 

Ellman’s reagent (5,5'-Dithio-bis-(2-nitrobenzoic acid), DTNB, Pierce) at neutral pH 

with short reaction time. For quantification of sulfhydryl groups, a cysteine standard was 

made by serial dilution in the reaction buffer (0.1 M sodium phosphate, pH 8.0, 

containing 1 mM EDTA) and 4 mg Ellman-s reagent was dissolved in 1 ml of reaction 

buffer to make a reagent solution. Each test sample was prepared with 50 µl of Ellman-s 

reagent solution, 2.5 ml of reaction buffer and 250 µl of each standard or unknown. After 

incubation at room temperature for 15 minutes, the absorbance was measured at 412 nm 

using an Emax microplate reader (Molecular Devices). The experimental sample 

concentrations were determined from the cysteine standard curve. 

 

Liposome preparation 

For liposome preparation, probes were encapsulated inside pH-sensitive 

liposomes composed of phosphatidylethanolamine (PE, Avanti, Alabaster, AL) and 

cholesteryl hemisuccinate (CHEMS, Sigma-Aldrich, St. Louis, MO) in a 2:1 molar ratio, 

respectively, by a thin lipid film hydration and freeze/thaw method [22]. Liposomes were 

extruded through 0.4 µm Whatman Nuclepore polycarbonate filters (GE Healthcare) and 

unencapsulated probes were removed from liposomes by size-exclusion chromatography 

using a 1 x 25 cm Sepharose CL-4B column (GE Healthcare).! Concentrations of 

encapsulated unnicked or nicked probes were analyzed by measuring fluorescence 

intensities using standard curve based on known concentrations of the proteins with the 
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bicinchoninic acid assay (BCA, Thermo Scientific) using bovine serum albumin as a 

standard. 

 

Redox buffer preparation 

The oxidized fusion protein (0.5 µM) was incubated in reaction buffer consisting 

of sodium phosphate, pH 7.4 or 5.5, to which varying concentrations of DTTred and 

DTTox were added.  Mixed forms of DTT were reciprocally varied from 0:0.5 to 0.5:0 

mM in 0.1 mM increments, where total concentration was kept 0.5 mM. 

 

Redox titration and Nernst equation 

Titration of FRET-reporters in redox buffers was performed to generate a 

standard curve to determine the redox potential according to fluorescence changes by 

fluorescence spectroscopy (Jobin Yvon-Spex Instruments SA., NJ).  RFRET is defined by 

dividing the intensity of mCit emission (525 nm) by mECFP emission (475 nm) at 435 

nm CFP excitation. To determine the probe’s sensitivity to redox and pH changes, the 

probe was incubated in redox buffers containing mixtures of oxidized and reduced DTT 

at room temperature for 15 min. The redox potential of a protein is most often expressed 

as an electrochemical potential in units of volts using the following Nernst equation: 

 [12], where E0’
DTT is the standard potential of the 

DTTred/DTTox couple (-323 mV at pH 7 and 30°C [23]), R is the gas constant (8.315 J K-1 
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mol-1), T is the absolute temperature (303.15 K), n is the number of transferred electrons, 

and F is the Faraday constant (9.649 ! 104 C mol-1). 

!
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RESULTS 

Genetic coupling: mECFP-Th-mCit 

mECFP and mCit were cloned into pET-29b using canonical methods [24]. After 

verification by DNA sequencing, mECFP-Th-mCit fusion proteins were expressed in E. 

coli BL21(DE3) (Stratagene), and purified using Ni-NTA agarose with an average yield 

of 6 mg/L. The peptide sequence is shown in Fig 2.1. Fluorescence spectroscopy and 

SDS-PAGE were used to characterize the probe. A linker containing a redox switch and a 

proteolytic recognition site was inserted between the FRET pair consisting of mECFP 

and mCit (unnicked, Fig 2.2). When incubated with thrombin, the single polypeptide is 

specifically cleaved at the thrombin recognition sequence (nicked), yet still produces 

FRET at a similar efficiency due to the disulfide bond between two cysteines. However, a 

dramatic change in the fluorescence emission ratio results upon disulfide reduction after 

incubation with DTT (reduced). The fusion protein mECFP-Th-mCit had a high level of 

FRET efficiency and the linker had thrombin specificity and redox sensitivity. A 

significant change in the fluorescence emission ratio resulted upon disulfide reduction 

and consequent separation of the FRET pair proteins (Fig. 2.3a), as independently 

confirmed by non-reducing SDS-PAGE (Fig. 2.3b). The fusion protein was expressed as 

a single polypeptide (lane I), and treatment with DTT or thrombin alone resulted in 

barely detectable cleavage (lanes II and III, respectively), and both DTT and thrombin 

produced the cleavage products of mECFP and mCit as shown in lane IV. The last lane 

(V) contains thrombin alone, MW 45 kDa. The graded response of the fluorescence 

emission spectra is ratiometric with an isosbestic point separating the two peaks at 510 
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nm, consistent with two molecular species in redox equilibrium and validation that the 

change in ./.01 was dependent exclusively on redox changes. 

 

Optimization of thrombin cleavage 

 Optimization of proteolytic cleavage experiments was performed according to 

Zhang [21]. The single peptide of mECFP-Th-mCit started to be specifically cleaved 

after application of various amounts of thrombin (Fig. 2.4), more efficiently cleaved at 

the higher concentrations and longer incubation of proteolytic reaction. To confirm the 

stability of fusion proteins throughout the incubation, the reaction mixtures were resolved 

in SDS-PAGE at the indicated times. Compared to control (0 U/ug thrombin), no 

significant amounts of non-specific cleavage products were observed. These results 

indicated that the fusion proteins could be cleaved specifically by thrombin, and also that 

the activity of thrombin is most efficient at 0.5 U/ug for 24 h in thrombin cleavage buffer 

at room temperature.  

 

Improvements by conformational modification : mECFP-G4STh-mCit 

Briefly, the construct was modified by SLIM PCR to insert a polypeptide spacer 

(GGGGS) between cysteine and the thrombin recognition sequence, and to replace the S-

Tag with the Strep-tag II affinity sequence (Fig. 2.5). Through consecutively modified 

sequence, the single polypeptide is predicted to become more flexible so that the 

fluorescent proteins remained tethered by a disulfide bond with a greater chance of 
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disulfide bonds following cleavage in the linker region that is easily accessible to 

thrombin by reducing steric hindrance. The recombinant fusion protein has extraneous 

amino acids (aa) on either side of each protein; upstream of mECFP is a Strep-tag II (8 aa) 

plus 8 aa from the vector backbone, and downstream is the C-GGGGSLVPR using SLIM 

PCR plus 3 aa from the vector backbone. Upstream of mCit is GSC that we cloned in and 

downstream is the His-tag plus 2 aa from the vector backbone. The recombinant form of 

mECFP is 18 aa longer than mCit which results in a larger apparent MW in SDS-PAGE 

and hence two bands (Fig 2.6). With the same ratio of thrombin to protein, construct 

modification resulted in more efficient cleavage to save the amount of thrombin. 

Following thrombin proteolysis, nicked probes carrying both His-tag and Strep-tag II 

were purified sequentially in Ni-NTA agarose and Strep-Tactin sepharose columns (IBA) 

to remove the untethered mECFP and mCit that would otherwise have contributed to an 

elevated fluorescence background signal.  

 

Fluorescence emission analysis of probes against DTT redox buffer 

Fluorescence spectroscopy was used to characterize the new structure through 

specific cleavage after proteolysis and disulfide reduction. Even though the construct was 

modified, RFRET was identical based on the degree of disulfide reduction as determined 

by the ratio of the two fluorescent intensities (mCitem/mECFPem = F525/F475). In Fig. 2.7, a 

graded response of the fluorescence emission spectra was observed in the presence of 

various ratios of redox buffers. At the highest concentration of DTTred, the disulfide bond 

between the two fluorescent proteins is reduced, leading to a loss in FRET as indicated by 
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an increase in the 475 nm emission peak (mECFP donor) and a decrease in the 525 nm 

emission peak (mCit acceptor). The emission spectra are ratiometric, thus minimizing 

measurement errors and allowing convenient calculation of RFRET by dividing the mCitem 

by mECFPem. An increase in the amount of DTTred led to a decrease in FRET signal, 

suggesting that the RFRET of the probe was indicative of the reducing environment.  

 

Liposomes 

The next step was preparation of pH-sensitive liposomes composed of 

PE:CHEMS in a  2:1 molar ratio to encapsulate probes. Average encapsulation efficiency 

of probes was 14~17 %. To investigate the redox-sensing properties of liposomes, 

fluorescence kinetics of disulfide reduction and pH effects were tested (Fig. 2.8). In Fig. 

2.8a, RFRET was plotted as a function of time; in the presence of DTT, the FRET ratio 

decreased rapidly and reached steady state within 10 min. Although fluorescence 

emission was scanned at 435 nm (CFP excitation) immediately after adding reducing 

agent, reduction had already begun as indicated by the lower level of RFRET at time 0, an 

aspect of probes’ fast response (Fig. 2.8a). To investigate the effect of pH on redox 

measurement when the probe is internalized from the cell surface (pH 7.4) along the 

endocytic pathway to acidic lysosomes (pH 2 5.5), RFRET was measured as a function of 

redox potential at two different pHs using liposome-encapsulated nicked or unnicked 

probes  (Fig. 2.8b). The RFRET of unnicked (control) probes remained constant regardless 

of the redox potential, while the RFRET of nicked probes decreased with increasing 

reduction potential. Using the Nernst equation and nonlinear regression to calculate redox 
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potential (Fig. 2.9), it was determined that the probe was sensitive to small changes in 

redox potential between -350 mV and -280 mV, a slightly lower range within 

physiologically relevant redox potential values between -320 mV and -240 mV, which 

offers advantageous use in reducing compartments [25]. This standard curve generated by 

observing FRET signal in different redox buffers can be used to directly investigate redox 

potentials in the subcellular compartments without destructive sampling and chemical 

analysis [26].  
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DISCUSSION 

The goal of this study was to develop a probe to report the redox potential. A  

redox-sensitive FRET reporter was designed as a disulfide bond-containing recombinant 

fusion protein and encapsulated in liposomes. To this end we designed and successfully 

expressed a genetically engineered redox-sensitive fusion protein in E. coli consisting of 

the FRET pair, mECFP and mCit, joined by an intervening disulfide-bonded and 

protease-sensitive linker. The single polypeptide included cysteine residues immediately 

bordering a thrombin-specific linker, which allowed the fluorescent proteins remained 

tethered by a disulfide bond following cleavage in the linker region. This conjugation 

conferred the necessary proximity of donor and acceptor molecules in order for FRET to 

occur, and a significant change in the fluorescence emission ratio was indeed observed. 

However, we realized that the amount of thrombin used was much larger than unit 

definition (one unit of enzyme cleaves > 90% of 100 µg of a test GST fusion protein 

when incubated in 1X PBS at 223C for 16 h) during optimization of thrombin cleavage. 

One possibility is that the relatively short linker resulted in insufficient enzyme access; 

due to the bulky substrate components, either thrombin activity or the efficiency of 

disulfide bond formation might be reduced. With improving the yield of disulfide 

formation and decreasing the ratios of thrombin to proteins, site-specific modification 

was shown to be successful without any significant change in the FRET ratio. Using the 

Ellman’s assay (Fig. 2.10), we quantified free thiol concentrations before and after 

modification, also tested mECFP-G4STh-mCit transformed into Origami competent cells 

(DE3, Novagen), which have mutations in both the thioredoxin reductase and glutathione 

reduactase genes to greatly enhance disulfide bond formation in the E. coli cytoplasm,!
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therefore providing an oxidizing environment conducive to disulfide formation [27]. 

Based on the assumption that cysteines bordered on the side of linker are completely 

oxidized, the theoretical concentration of free thiol was 18 µM. The oxidizing E. coli did 

not significantly improve disulfide formation, although a 40% decrease in free thiols 

revealed that there was some improvement after construct modification. The difference 

between the theoretical and experimental values may be explained by the possibility that 

either mECFP or mCit formed intramolecular disulfide bonds between conserved 

cysteines (one is buried and one is surface-located) [28]. In addition to linker flexibility, 

SLIM PCR was used to replace the S-Tag with a Strep-tag II affinity sequence. Through 

high-affinity binding of Strep-Tactin sepharose, nicked probes were prepared with > 99% 

exclusively disulfide-mediated protein cross-linking. Furthermore, Ni-NTA agarose resin 

was exposed to hydrogen peroxide during protein purification in order to promote 

disulfide bond formation between cysteine residues. These methods ensured that the 

change in FRET signal was not caused by mechanisms other than disulfide reduction of 

the nicked probes. A significant change in the fluorescence emission ratio resulted upon 

disulfide reduction, while that of unnicked probes remained constant regardless of the 

redox potential, independently confirmed by SDS-PAGE. An isosbestic point separating 

the two peaks is observed at 510 nm, consistent with two molecular species in redox 

equilibrium and validation that the change in RFRET is exclusively dependent on redox 

changes.  

To compare redox buffer capacities between DTT and other cellular reducing 

agents, GSH, "-merceptoethanol and cysteine were tested in the various concentrations 

and the FRET ratios were measured by fluorescence spectroscopy (Fig. 2.11). Probes 
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reacted readily with more strongly reducing agents, so they will primarily reflect the 

potential of the most strongly reducing redox buffers. There are membrane-permeant 

reducing agents such as DTT, "-mercaptoethanol and dihydrolipoic acid, while cysteine, 

tris (2-carboxyethyl) phosphine (TCEP), and GSH are membrane-impermeant reducing 

agents [12]. DTT was chosen for redox buffers not only by almost complete reduction but 

also by membrane permeability.  

Initially we sought to compare two different formulations of liposomes: one has 

protein encapsulated inside liposomes and in the other one protein is immobilized on the 

liposome surface using Ni-chelating lipid to characterize both species in terms of specific 

activity. Since the probe has a His-tag on the C-terminus of mCit, it could be 

immobilized on lipid film by mixing 2-5mol% 1,2-di-(9Z-octadecenoyl)-sn-glycero-3-

[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] (nickel salt) (DGS-NTA-Ni, 

Avanti) with 2:1 molar ratio of PE:CHEMS. However, we found that surface-conjugated 

probes were not efficiently taken up by cells compared to liposome-encapsulated probes 

(Fig. 2.12). Though the different efficiency may be at least partly explained by reducing 

non-specific binding, inconsistent data from pH study due to protonated His-tags 

competing off with the Ni ion [29] leads us to use liposome encapsulation. 

Taken together, the FRET reporter was designed as a disulfide bond-containing 

recombinant fusion protein encapsulated into liposomes and characterized. When 

incubated with DTT and thrombin, the single polypeptide was more specifically cleaved 

at the thrombin recognition sequence after sequence modification and produced a 

fluorescence dynamic range between the fully oxidized and fully reduced forms of the 

probe corresponding to a 5-fold change in the ratiometric spectroscopic signal, which led 
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to better discrimination of the redox states in complex biological specimens. Liposome-

encapsulated probes were shown to be well-suited for measuring redox conditions by 

successfully monitored for sensitivity to redox changes in vitro without significant 

sensitivity to changes in pH, suggested the potential for utility in for cell imaging. 

Furthermore, using the Nernst equation and nonlinear regression, the midpoint redox 

potential was estimated to be as low as -315 mV vs the apparent midpoint potential of 

roGFPs that were found to be in the more oxidizing range of -270 to -290 mV [12]. 

Taken together, these characteristics make our FRET-based probe very promising for 

monitoring redox changes in environments that are relatively acidic and reducing. 
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Figure 2.1 Peptide sequcence of mECFP-Th-mCit 

Amino acids in bold characters correspond to expressed part of cloning vector backbone pET-29b, 
underlined amino acids to protein tag, S-tag and His-tag, and dotted underline to a linker 
containing thrombin recognition sequence and two cysteines. 
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Figure 2.2 Schematic representation of the redox-sensitive FRET reporter.  

A single polypeptide was designed such that the donor and acceptor are linked by both a 
thrombin-cleavable peptide and a reducible disulfide bond for efficient intramolecular energy 
transfer (unnicked). When incubated with thrombin, the single polypeptide is specifically cleaved 
at the thrombin recognition sequence (nicked), yet still produces FRET at a similar efficiency due 
to the disulfide bond between two cysteines. However, a dramatic change in the fluorescence 
emission ratio results upon disulfide reduction after incubation with DTT (reduced). 
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Figure 2.3 Fluorescence emission analysis (a) and SDS-PAGE analysis (b) of the mECFP-
Th-mCit.  

Each fluorescence emission spectrum (I~IV) corresponds to each of SDS-PAGE lane. I, mECFP-
Th-mCit; II, mECFP-Th-mCit w/ DTT; III, mECFP-Th-mCit w/ Thrombin; IV, mECFP-Th-mCit 
w/ DTT+Thrombin; V, Thrombin. 
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Figure 2.4 Proteolytic analysis of mECFP-Th-mCit fusion protein to thrombin. 

Various amounts of thrombin were added to samples containing 30 µg of fusion proteins in 
thrombin cleavage buffer. At times indicated in the figure, aliquots of the reaction mixture were 
removed and frozen at -80°C until analysis by SDS-PAGE. 

 

 

 

 

 

 

 

 



%)"
"

 

 

 

 

    

 

 

Figure 2.5 Modified peptide sequence of mECFP-G4STh-mCit 

Amino acids in bold characters correspond to expressed part of cloning vector backbone pET-29b, 
underlined amino acids to protein tag, Strep-tag and His-tag, and dotted underline to a linker 
containing thrombin recognition sequence and two cysteines plus spacer. 
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Figure 2.6 Improvement by construct modification 

SDS-PAGE analysis with equal ratios of thrombin to fusion proteins. Lane I, mECFP-Th-mCit 
w/o DTT; II, mECFP-Th-mCit w/ DTT; III, mECFP-G4STh-mCit w/o DTT; IV, mECFP-G4STh-
mCit w/ DTT. With the same ratio of thrombin to protein (0.01 U/µg), construct modification 
resulted in more efficient cleavage. 
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Figure 2.7 Emission spectra of nicked probe through titration of reduced to oxidized DTT.  

Nicked and disulfide-bonded probe emissions were scanned at 435 nm CFP excitation with mixed 
forms of oxidized and reduced DTT. Legends indicate the concentrations (mM) of DTTox : 
DTTred buffers with reciprocally varied concentrations from 0 to 0.5 mM in 0.1 mM increments 
(total 0.5 mM). 
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Figure 2.8. RFRET of liposome-encapsulated probe as a function of time (a) and ratios of 
reduced to oxidized DTT in different pHs (b). 

(a) Fluorescence kinetics of disulfide reduction using fluorescence spectroscopy. Fluorescence 
emission started to be scanned (at 435 nm CFP excitation) immediately after adding reducing 
agent. (b) Redox equilibria of liposome-encapsulated unnicked (upper data points) and nicked 
probes (lower) at pH 7.4 and 5.5 and against the DTTred: DTTox ratios indicated on the x-axis. 
Liposome-encapsulated probes were diluted in sodium phosphate buffer at the two pH values and 
incubated 15 min at room temperature, at which point reduction had reached a plateau and 
fluorescence emission at 525 nm (mCitem) and 475 nm (mECFPem) were recorded. The RFRET 
(mCitem/mECFPem) values were normalized to that of the initial RFRET measurement, (RFRET)0. A 
higher FRET ratio indicates an oxidizing environment while a lower FRET ratio indicates a 
reducing environment. Error bars represent standard deviations from the mean, based on 
triplicates. 
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Figure 2.9. Standard redox titration curve. 

Redox potential values were obtained by fitting the data to a titration curve following the Nernst 
equation using the plot of the RFRET for liposome-encapsulation nicked probes versus the ratio of 
molar concentrations of DTTred to DTTox. !
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Figure 2.10 Comparison of free thiols using Ellman’s assay 

Comparison of free thiol concentrations (4M) before and after construct modification by Ellman-s 
assay.  
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Figure 2.11 Comparison of reducing efficiencies of various reductants 

RFRET (defined as a the ratio of fluorescence from emission at 520 nm versus 475 nm and 
normalized to the untreated case) treated with the indicated concentration of DTT or other 
reductants. Data represent mean +/- SD from three independent experiments. 
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Figure 2.12 Uptake study 

Raw cells were cultured in DMEM with 10% FBS and plated at a density of 2.5E06 in 12-well 
plates 20 h before the experiments. Liposomes were diluted with serum-free media to a 
concentration of 0.2 mM and 1.0 ml was added to each well. After 4 h incubation at 37oC, cells 
were washed with PBS and treated with PBS containing 3 mM EDTA at room temp for 5 min and 
adjusted to the concentration of 1.0E06 cells in 100 uL of PBS buffer. 
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CHAPTER III 

LIVE-CELL FRET IMAGING TO MONITOR REDOX 
POTENTIALS AND CELLULAR REDOX FACTORS IN THE 

ENDOCYTIC PATHWAY IN MACROPHAGES 

 

SUMMARY 

Redox changes were successfully monitored by FRET microscopy of liposome-

encapsulated probes in a cell-free system as well as in the endocytic pathway. Live-cell 

FRET microscopy revealed that disulfide bond reduction began in the early endosome 

and continued throughout endolysosomal maturation. Phagocyte oxidase activity slowed 

reduction in endocytic compartments. In contrast, expression of GILT accelerated 

reduction, indicating regulation of reduction in endocytic compartments and 

demonstrating the potential utility of this reporter for the design of targeted delivery 

systems. 
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INTRODUCTION 

Live-cell imaging currently offers the best possible solution when redox 

measurements are required at the level of organelles [1, 2]. More recently, several studies 

have attempted to gather functional information from dynamic imaging of redox 

processes at sites of endocytosis [3, 4]. Even so, quantitative live-cell imaging in the 

endocytic pathway is technically challenging due to a lack of redox sensors in terms of 

not only pH-sensitivity but also dynamics. Endocytosis is an uptake mechanism of 

material into a cell by an invagination of the plasma membrane and its internalization in a 

membrane-bounded vesicle [5]. In the endocytic pathway molecules are ingested in 

vesicles derived from the plasma membrane and delivered to early endosomes and then 

via late endosomes to lysosomes. The dynamic network of routes that lead inward to 

lysosomes from the cell surface start with the process of endocytosis, which begin as 

early endosomes that are slightly acidic (pH 6.2-6.5) due to ATP-dependent proton 

pumps, then becomes more acidified and matures to a late endosome (pH 5-6), and 

finally merges into the lysosome, with an estimated pH in the range of 4-5 [6]. Two main 

types of endocytosis are distinguished on the basis of the size of the endocytic vesicles 

formed: pinocytosis (‘cellular drinking’), which involves the ingestion of fluid and 

solutes via small vesicles ($150 nm in diameter), and phagocytosis (‘cellular eating’), 

which involves the ingestion of large particles, such as microorganisms or cell debris, via 

large vesicles called phagosomes (generally >250 nm in diameter) [5]. Specifically, 

endocytosis can be divided into more categories such as clathrin-mediated endocytosis, 

caveolar-mediated endocytosis, macropinocytosis, and phagocytosis. There are two 

theories regarding the development of the endolysosomal pathway: the ‘maturation model’ 
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suggests that each organelle along the endocytic pathway is a transient, but distinct, 

compartment that matures into the next organelle along the pathway. In the ‘pre-existing 

compartment model’, the early and late endosomes are considered to be stable specialized 

compartments linked by vesicular traffic [7]. For the purpose of this study, we define 

endocytosis as the internalization of extracellular components resulting from 

invaginations along the plasma membrane in the maturation model [8]. 

The NADPH oxidase flavocytochrome b558, an integral membrane-bound 

heterodimer, is composed of a glycosylated 91-kDa glygoprotein, gp91phox, and a 

nonglycosylated 22-kDa subunit (p22phox). The NADPH oxidase components include 

flavocytochrome b558 and three cytosolic regulatory proteins (p40phox, p47phox, and 

p67phox) and a small GTP-binding protein RAC, which are translocated to the plasma 

membrane during activation [9]. Cell activation by microorganisms or inflammatory 

mediators initiates at least three biochemical triggers (phosphorylation, lipid metabolism 

and guanine-nucleotide exchange on RAC) that together result in membrane translocation 

and assembly of active enzyme complexes, as summarized in Fig. 3.1. The enzyme 

activity of gp91phox is regulated by the assembly of these regulatory subunits with 

gp91phox to form an active complex, generating large quantities of superoxide ion (O2
-), 

the precursor of hydrogen peroxide, by electron transfer from NADPH to molecular 

oxygen (O2), with the secondary production of other ROS [10]. Using immunofluorescent 

staining of gp91phox and p22phox, Casbon et al. demonstrated that flavocytochrome b was 

found in the Rab11-positive recycling endocytic compartment, as well as in Rab5-

positive early endosomes and the plasma membrane [11]. Activation of macrophages 

generates ROS and RNS primarily mediated by IFN-, but can be modulated by other 
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factors such as lipopolysaccharide (LPS) or cytokines, whereas IL-10 down-modulates 

activation [12]. The enhanced ability to kill microorganisms is largely a result of 

increased macrophage production of superoxide, nitric oxide, and their derivatives [13]. 

As discussed in Chapter I, GILT is the first identified and characterized redox 

enzyme in the endosomal compartments and plays a role in disulfide reduction, shown 

using a GILT “knock-out” mouse [14]. In this chapter, we address the possible GILT-

dependent mechanisms involved in regulation of redox levels in the endocytic pathway 

using GILT-/- bone marrow-derived macrophages (BMMs). For an artificial redox 

environment, both genetic and chemical approaches were used to investigate several key 

cellular factors that would modulate redox potential in the endocytic pathway.   
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MATERIALS AND METHODS 

Cell culture 

All tissue culture media and reagents were purchased from Invitrogen (Carlsbad, 

CA), and all cells were maintained and experimental incubations were conducted in a 

humidified incubator at 37°C and 5% CO2. BMMs were obtained from femurs and tibiae 

of female C57BL/6 mice (Jackson Laboratory, Bar Harbor, ME) in BMM media (DMEM 

supplemented with 20% HI-FBS, 30% L-cell conditioned media, 2 mM glutamine, 100 

µg/mL streptomycin, 100 U/mL penicillin and 55 µM "-mercaptoethanol) as described 

previously by Swanson [15]. BMMs were harvested on day six of culture and frozen in 

liquid nitrogen until the experiment. For experiments, BMMs were plated onto 35 mm 

glass-bottomed dishes (MatTek, Ashland, MA) in complete DMEM (10% HI-FBS, 100 

µg/mL streptomycin and 100 U/mL penicillin) one day prior to the experiment. All 

animal experiments were in accordance with and approved by the University of 

Michigan's Committee on the Use and Care of Animals (UCUCA).  

 

FRET microscopy 

The procedure using FRET microscopy imaging is illustrated in Fig. 3.5. Briefly, 

BMMs were plated at a concentration of 104 cells/mL onto 35 mm glass-bottomed dishes 

(MatTek, Ashland, MA) one day prior to incubation with liposomes for 30 min on ice. 

Cells were washed several times with cold Ringer’s buffer (RB, 155 mM NaCl, 5 mM 

KCl, 2 mM CaCl2, 1 mM MgCl2, 2 mM NaH2PO4, 10 mM HEPES, and 10 mM glucose, 

pH 7.2), followed by addition of buffer warmed to 37 °C immediately before imaging. 
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Live-cell FRET imaging was performed using an Olympus IX70 inverted microscope 

with a 100! oil immersion objective, excitation and emission filters in filter wheels 

(Filter Set Chroma 86006-spr), a temperature-controlled stage, shutters for both phase-

contrast and epifluorescence and a cooled digital charge-coupled camera (Cool Snap 

HQ2, Photometrics). The source of epifluorescent light was a mercury arc lamp (X-Cite 

series 120, Chroma). The component images consisted of epifluorescence filter 

combinations for CFP (ID: excitation 435 nm; emmission 490 nm), Cit (IA: excitation 505 

nm; emission 540 nm), and FRET (IF: excitation 435 nm; emission 540 nm), as well as 

phase-contrast images. Coefficients for image processing were determined from COS-7 

cells expressing acceptor only (!), donor only ("), and a linked chimera (%, &" after 

masking to remove some of the background by selecting only interested pixel intensities 

for analysis. FRET ratios (RFRET) were calculated by dividing IF (excitation 435 nm, 

emission 540 nm) by ID (excitation 435 nm, emission 490 nm), both background-

subtracted. The FRET microscope was calibrated using FRET parameters by correcting 

for shade and bias offset for control of variations in excitation intensity across the field of 

view that differ between illumination conditions and camera bias. Image acquisition and 

processing were performed using MetaMorph software version 7.7 (Molecular Devices, 

Sunnyvale, CA). A region of interest was traced as a circle large enough to include 

liposome-containing vesicles and transferred to the corresponding fluorescent images, 

and the average intensity from selected regions was measured with MetaMorph. 
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Redox kinetics under the microscope 

Liposomes (0.3 "mole) were transferred onto a glass-bottomed dish on ice and 

washed with RB, followed by addition of redox buffers immediately before imaging. 

Images were collected at 1-min intervals for titration of FRET-reporters in redox buffers 

using FRET microscopy.   

 

Liposome preparation  

Texas Red-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (TR-DHPE, 

Molecular Probes, Eugene, OR) was incorporated at 0.5 mol % to label the membranes of 

pH-sensitive liposomes composed of PE:CHEMS in a 2:1 molar ratio, made by a thin 

lipid film hydration and freeze/thaw method for uptake by BMMs [16]. Liposomes were 

extruded through 0.6 4m Whatman Nuclepore polycarbonate filters (GE Healthcare) for 

the preparation of a defined-size distribution and improved fluorescence signals.  

 

Photobleaching study 

Images were collected with liposomes in a cell-free system to test acceptor 

photobleaching; an exposure time of 200 ms and the use of a neutral density filter (ND-

0.6, 25% transmission) were found to be optimal to minimize photobleaching. To correct 

for the acceptor photobleaching, we multiplied RFRET by the correction factor IA
0 / IA

T, 

where IA
0 = fluorescence of mCit at time zero and IA

T = fluorescence of mCit at a given 

time point [17].  
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Endolysosomal markers 

BMM were transfected using a mouse macrophage Nucleofector kit (Amaxa 

Biosystems) with 5 "g of plasmid encoding mCherry-Rab5a [18], a fluorescent protein 

marker of early endosomes. After transfection, cells were transferred to MatTek dishes 

and incubated in DMEM overnight. To label lysosomes, BMMs were incubated with 

Texas Red dextran (TRD), MW 10,000 (Molecular Probes) at 0.5 mg/ml in DMEM for 

60 min at 37 °C, washed with RB, and incubated in RB for 60 min at 37 °C. For the 

overall analysis of fluorophore distributions, the average integrated intensities of the 

mCherry-Rab5a and TRD emission were divided by each of maximum fluorescence and 

plotted with the RFRET from nicked probes against time. 

 

Cellular redox factors 

BMM activation was performed by incubation with growth factors and cytokines 

as previously described [19]. Briefly, media containing 100 U/mL IFN-, (R&D Systems, 

Minneapolis, MN), 100 ng/mL LPS (List Biological, Campbell, CA) and 5 4g/mL anti-

IL-10 (R&D Systems) was added to BMMs that had adhered to glass-bottom dishes. 

Cells were incubated for 16-24 hours and washed with RB and then replaced with 

activation media containing 5 4g/mL anti-IL-10 and 5 ng/ml IL-6 (Calbiochem, San 

Diego, CA) for the duration of the experiment. The gp91phox-/- mice, which are unable to 

generate superoxide, were purchased from the Jackson Laboratory. GILT-/- BMMs were 

kindly provided by Dr. Peter Cresswell (Yale University, New Haven, CT). pH 

manipulation was performed by increasing endolysosomal pH with 0.5 4M bafilomycin 



'("
"

A1 (Sigma-Aldrich, St. Louis, MO) added to cells in RB 30 min prior to the incubation 

with liposomes and throughout the experiment. Fluorescent images of liposome-

encapsulated HPTS (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, Invitrogen), a 

pH-sensitive, water-soluble fluorescent dye, were acquired using 405 nm and 440 nm 

excitation, and 535 nm emission filters.  
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RESULTS AND DISCUSSION 

Image acquisition and processing 

FRET parameters (!, ", %, and &) were obtained to calibrate objective, excitation 

and emission filters, and camera since images contain contaminating signals from camera 

background noise and uneven illumination (Fig. 3.2). The level of background signal was 

determined by capturing images without a coverslip mounted on the stage and these 

values were subtracted from all experimental and calibration images. Shading correction 

was performed by collecting images of an even layer of fluorophore sandwiched between 

two coverslips and images were normalized for illumination levels. Experimental images 

were analyzed by Matlab-based FRET calculator (available from the Center for Live Cell 

Imaging at the University of Michigan) after shading correction and bias offset using 

calibration constants [20]. The RFRET was determined by dividing IF by ID to obtain the 

average intensity from the region tool used to draw a circle and adjust it around the 

liposome.  

 

Redox kinetics and titration with FRET microscopy  

In order to examine redox kinetics and sensitivity of liposomes, fluorescence from 

unnicked vs nicked liposome-encapsulated probe particles were monitored by collecting 

images in various concentrations of DTT redox buffers via a cell-free system (Fig. 3.3). 

Pseudo-color ratiometric images of the liposomes at indicated time points and DTT redox 

concentrations (mM) showed the fully oxidized or fully reduced images based on the 

color bar in which the red range indicated a high RFRET and the blue range indicated a low 



'*"
"

RFRET (Fig. 3.3a). The RFRET from nicked probes started to decrease within 15 min as a 

result of reducing conditions, yet remained constant at the highest DTTox concentrations 

(Fig. 3.3b). The averages of all the data points that were taken at the plateau level from 

the kinetics (Fig. 3.3b) were plotted against DTT redox buffers (Fig. 3.3c); the RFRET of 

unnicked probes remained constant regardless of the redox potential, while the RFRET of 

nicked probes decreased with increasing reduction potential.  

 

Photobleaching correction and image resolution  

Photobleaching is the photochemical destruction of a fluorophore that leads to a 

steady decrease in fluorescence intensity over time [21]. Because mCit is less photostable 

than mECFP [22], a decrease in the RFRET independent of disulfide reduction was 

observed (Fig. 3.4a, diamonds). To compensate for this effect, the FRET ratio was 

rectified by the correction factor IA
0/ IA

T [17]. After photobleaching correction during 

timelapse FRET imaging, the corrected data (squares) demonstrated improvement over 

the data before correction (diamonds). To optimize resolution, the mean liposome 

fluorescence intensities were compared after extruding liposomes through filter 

membranes having different pore sizes. The overall fluorescence signal increased by ~30% 

when the 0.6 µm extrusion filter membrane was used compared to 0.2 µm (Fig. 3.4b). To 

track the particle, liposomal membranes were labeled with TR-DHPE (illustrated in Fig. 

3.5), which is bright enough to track the particle to ensure but  has little-to-no spectral 

overlap with the probe (TRDex = 560, TRDem = 645 nm) [23]. With the use of TR-DHPE, 

cellular uptake of liposomes can be efficiently demonstrated to efficiently identify phase-
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contrast and TRD, thus allowing the probes to be easily monitored during morphological 

transitions such as membrane ruffling (Fig 3.6).  !

Time course of disulfide reduction in BMMs 

Redox changes in the endocytic pathway were monitored by live-cell FRET 

microscopy of internalized liposome-encapsulated probes. Fig. 3.7a shows the average 

RFRET of probes from 15 different cells, each normalized to the initial time point. Upon 

internalization of the control (unnicked) probe, RFRET remained constant while the RFRET 

from nicked probes decreased over time. The secondary axis shows the corresponding 

redox potential obtained from a standard titration curve in Fig. 2.9. This result suggested 

that the disulfide bond was cleaved within the endocytic pathway following 

internalization of the probes. Fig. 3.7f shows unnormalized values of RFRET, and the 

number of cells (frequency) were plotted against RFRET at time 0, (RFRET)0, to illustrate 

the cell-to-cell variability of RFRET at the initial time point (Fig. 3.7g). 

Quantitative analysis of fluorophore distribution correlated with endolysosomal 

markers 

To determine the time course and spatial localization of disulfide reduction during 

endolysosomal maturation, an early endosomal marker, mCherry-Rab5a, and an 

extracellularly applied lysosomal marker, TRD, were used (Figs. 3.7b, c). Rab5a is a 

small GTPase localized to early endosomes and endosomal membranes [18]. TRD is a 

fluid-phase endocytosis marker that accumulates within lysosomes [24]. Multispectral 

fluorescent images were obtained and overlaid onto corresponding phase-contrast images. 

Squares overlaid in the left panel indicate the co-localized area that is enlarged in the 
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right panel resulting line-scanned images through the center of the early endosome and 

corresponding quantitative analysis of fluorophore distribution along the line was plotted 

in the bottom (Fig. 3.7d). The highest mCit fluorescence value is between the two peaks 

of Rab5a-associated fluorescence, indicating that the liposome was located inside of the 

endosome. The internalized probe signal, which co-localized with Rab5a-associated 

fluorescence, increased rapidly and reached a maximum within 10 min after endocytosis 

(Fig. 3.7e). This was followed by an increase in its colocalization with TRD fluorescence, 

which reached its highest value after 20 min. This window serves as a visual guide, 

indicating that within the dynamic range of endolysosomal localization, the decrease in 

the RFRET corresponded to the time between the appearance of mCherry-Rab5a and TRD, 

suggesting that disulfide reduction began in the early endosome and continued 

throughout endolysosomal maturation.  

 

Cellular redox factors modulating the reduction processes in the endosomal 

pathway 

 We then investigated several key cellular factors that would modulate redox 

potential in the endocytic pathway, using both genetic and chemical approaches. First, 

ROS, generated via NADPH oxidase activity, would regulate the oxidative state of the 

endosomes in macrophages and thus regulate reduction dynamics [25]. To determine the 

effect of ROS, macrophages were activated with growth factors and cytokines overnight 

to produce more ROS with the assumption that this treatment would mimic conditions in 

which the redox potential of the endocytic pathway would be most heavily skewed 
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towards oxidation. Morphological changes accompanied macrophage activation, most of 

which were generally larger than nonactivated macrophages and had phase-dense 

spherical granules (Fig. 3.8). Time-lapse video revealed active ruffling and the occasional 

formation of macropinosomes. RFRET in activated wild-type macrophages decreased 

following endocytosis, although not as rapidly as in non-activated wild-type macrophages, 

demonstrating that increased ROS conditions inhibited reduction (Fig. 3.9).  The RFRET 

from control (unnicked) probes remained constant regardless of the activation conditions. 

gp91phox is a 91 kDa heme-binding glycoprotein subunit of the NADPH oxidase complex, 

which is essential for the generation of ROS [26]. The physiological significance of 

phagosomal NADPH oxidase has been illustrated by the inability of gp91phox-/- 

macrophages to generate superoxide [27], and by the enhanced LLO-dependent escape of 

L. monocytogenes in the gp91phox-/- macrophages [28]. RFRET from gp91phox-/- 

macrophages decreased rapidly, with a significantly shorter half-time compared to that of 

wild-type macrophages (7.3 min vs. 9.0 min, p<0.05). The FRET signal decreased more 

slowly in activated gp91phox-/- macrophages, although not as slowly as activated wild-

type macrophages. These results demonstrate that the oxidation level in the 

endolysosomal pathway controls disulfide bond reduction dynamics, primarily by 

gp91phox-dependent ROS production.  

GILT catalyzes disulfide reduction, with maximal reductase activity at acidic pH 

[29]. RFRET decreased in GILT-/- macrophages more slowly than in wild-type 

macrophages (Fig. 3.10), suggesting that the endolysosomal redox environment was less 

reducing due to the absence of GILT.  RFRET of the unnicked control probes remained 

constant regardless of the presence of GILT.  
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Lastly, when macrophages were treated with the proton ATPase inhibitor 

bafilomycin A1 a decrease in RFRET was detected, but no significant difference was 

discerned between bafilomycin A1-treated and non-treated cells in terms of half-time of 

reduction. Overall, RFRET decayed to a greater extent with a significantly lower RFRET 

plateau value (Fig. 3.11a). We also observed a marked overall acceleration of reduction 

with ammonium chloride, with a corresponding elevation of vacuolar pH (inset), as 

determined by measuring the ratio of the pH-sensitive fluorescence dye HPTS emission 

at 535 nm produced at two excitation wavelengths, 440 nm and 405 nm (HPTS440 / 

HPTS405) [30]. The top row images with bright fluorescence at ex 405 nm and dim 

fluorescence at 440 nm indicated low pH, whereas the bottom row images with bright 

fluorescence at ex 440 nm and dim fluorescence at ex 405 nm indicated higher pH 

(HPTS440 / HPTS405 = 0.97 vs 1.62, Fig. 3.11b). 

In this chapter, we have demonstrated that reduction of disulfide bonds begins in 

the early endosome and continues throughout endolysosomal maturation. Activation of 

macrophages typically leads to the generation of reactive nitrogen intermediates (RNI) 

such as nitric oxide and peroxynitrite, and ROI (H2O2, superoxide and hydroxyl free 

radicals) [31]. Macrophages stimulated by cytokines or growth factors have also been 

shown to inhibit endosomal escape of L. monocytogenes from phagosomes; this increase 

in their microbicidal activity is partially due to the generation of ROI by the NADPH 

oxidase complex [28]. Compared with non-activated wild-type macrophages, activated 

wild-type macrophages exhibited a slower reduction process along the endocytic pathway, 

while non-activated gp91phox-/- macrophages exhibited faster reduction. Taken together, 

these observations indicate that decreased levels of oxidative enzymes promote faster 
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kinetics of disulfide reduction during endocytosis via attenuation of ROI production. It is 

plausible that activation of gp91phox-/- macrophages could lead to compensation for the 

loss of gp91phox-/- by, for example, up-regulating other oxidase components that 

contribute to the RNI-mediated oxidation, based on the observation that both ROI and 

RNI are involved in the listericidal capacity of activated macrophages [32]. In addition, 

coexpression of gp91phox and p22phox were required to support superoxide generation 

based on the cell-free NADPH oxidase assay, indicating that the functional assembly of 

the subunits is required for the active enzyme complex [26]. Consistent with this idea, 

another cellular factor investigated for its effects on redox dynamics in the endocytic 

compartment was GILT, which has been identified as a significant host component of 

infection by L. monocytogenes [33]. The N-terminal cysteine in the active-site motif of 

GILT has been proposed to initiate nucleophilic attack on disulfides, resulting in their 

reduction and thereby assisting in the unfolding of protein antigens for presentation in the 

context of MHC class II molecules [14, 34, 35]. Although reduction of disulfide bonds is 

chemically favored and the thiol reductase family is optimally efficient at neutral pH [36], 

key structural features of GILT provide it with both stability and activity under acidic 

conditions. Indeed, it was shown that macrophages lacking GILT were greatly hindered 

in their ability to reduce the probe (Fig. 3.10), confirming that GILT activity is a 

determinant of endocytic redox potential.  

The pH-independence of the FRET probe enabled us to investigate the role of 

acidification in disulfide bond reduction dynamics in the endocytic compartments. Based 

on several lines of reasoning, including (i) the inhibition of Listeria phagosomal escape at 

basic pH [30], (ii) the low-pH maximal reductase activity of GILT [14], and (iii) the 
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increased susceptibility of disulfide bonds to enzymatic cleavage under acidic conditions 

during antigen unfolding in antigen-presenting cells [37], it was anticipated that 

increasing the endosomal pH would slow reduction dynamics in endocytic pathway even 

though Rybicka et al. found that NADPH oxidase activity controls the level of 

phagosomal proteolysis in macrophages in a manner that is independent of lumenal pH 

[25]. Our results with bafilomycin A1, however, showed a somewhat higher reduction 

rate and a slightly greater extent of reduction with inhibition of the acidification of 

endosomes. Similar trends were obtained in cells in which endosomal pH was elevated by 

ammonium chloride treatment. This apparent paradox is potentially due to the presence 

of cellular reducing factors that may still function in an unacidified endocytic 

compartment, or to the fact that disulfide reduction and exchange reactions are 

electrochemically favored at neutral pH. During this process, denaturation and unfolding 

of the antigens are facilitated by the acidic environment of endocytic compartments [37]. 

However, disulfide bonds are not susceptible to lysosomal proteolysis and remain 

chemically stable in the acidic environment; they must be cleaved instead by redox-

involved processes [38]. 

Based on the findings presented in this chapter, it seems plausible that redox 

environments would be controlled by several cellular redox factors. Further investigation 

into redox modulation by inhibiting PDI, or by delivering ROS inhibitors such as 

superoxide dismutase, an antioxidant enzyme that catalyzes the reaction of the superoxide 

anion to hydrogen peroxide [39], or by delivering sulfhydryl-blocking agents (e.g., 

DTNB) that have been shown to prevent diphtheria toxin cytotoxicity [40], will provide 

useful information for elucidating key biochemical redox regulators. 
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Figure 3.1 Activation of ROS generation by assembly of NADPH regulatory proteins  
 
Figure adapted from Lambeth [9]. 
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Figure 3.2 Cos-7 cells transfection for calibration constants  

Calibration constants were acquired from COS-7 cells transfected with CFP, Cit, and linked 
construct to calibrate FRET microscopy.  
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Figure 3.3 Redox titration from liposome-encapsulation probes using FRET microscopy in 
cell-free system  

(a) Representative results of RFRET image from liposome-encapsulation nicked probes. The top 
row images were taken at time 0 and the bottom row images after 30 min. Pseudo-color 
ratiometric images indicate different oxidized/reduced states. Color bar indicates the RFRET in the 
ratio images. (b) Kinetics of redox titration from nicked probes using DTT redox buffers. All of 
the RFRET values were normalized to that of the initial RFRET measurement. (c) Redox equilibria of 
unnicked (diamond) and nicked (square) at pH 7.4 against the DTTred : DTTox (mM) ratios 
indicated on the x-axis.  
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Figure 3.4 Photobleaching correction and improved fluorescence signal (cell-free system). 

(a) RFRET with unnicked probes after photobleaching correction. The diamonds represent the 
original data and the squares represent the corrected data after photobleaching correction. (b) 
Each assay contained 0.3 µmol of liposomes on glass-bottom dishes in Ringer’s buffer. Extrusion 
of the liposomes through 0.6 µm filters resulted in a 30% increase in fluorescence signal 
compared with that after extrusion through 0.2 µm.  
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Figure 3.5 Summary of method used to perform FRET microscopy imaging. 

BMMs were plated to 35 mm glass bottom dishes one day before the experiment, then incubated 
with liposomes for 30 min on ice. After that, cells were washed several times with a cold RB and 
a 37 °C warm RB was added immediately before starting the imaging. Images were collected 
using different filters for CFP, citrine, FRET (representative images on the bottom) and texas red 
channel for some cases. 
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Figure 3.6 Time course images in BMM using TRD-labeled liposome. 

Time series of overlaid images with TRD and phase-contrast channel after uptake of TRD-labeled 
liposome encapsulated probes (red dots). Each panel contains component overlaid images at 
indicated time point, separated from the adjacent images by time. 
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Figure 3.7 Time course of RFRET and redox potentials and quantitative analysis of 
fluorophore distributions correlated with endolysosomal markers. 

(a) Each data point represents the average of the FRET ratios ± SD from independent experiments 
using liposomes with unnicked (open circles) vs nicked (closed circles) probes in BMMs that 
were normalized to the initial time point and plotted versus time (n=15), and the secondary y-axis 
shows corresponding redox potentials obtained from a titration curve in Fig. 2.9. Times at which 
each image was taken are indicated by arrows in the x-axis. (b,c) Representative microscopy data 
using mCherry-Rab5a as an early endosomal marker and TRD to label lysosomes. Images of 
fluorescence from markers at marked time points (first row). Probes encapsulated in liposomes 
are shown as green dots in phase-mCit overlaid images (second row). The bottom row displays 
pseudocolor RFRET in magnified areas indicated by squares above. Scale bar = 2 µm. (d) For direct 
colocalization of fluorophores, overlaid images of liposome- and Rab5a-positive endosomes were 
line-scanned along the x-axis through the center of the endosome. (e) Data points of relative 
fluorescence were obtained from manually selected portions of the regions of corresponding 
images from phase-mCit overlaid images (n'3). (f) Replotted from Fig 3.7a with unnormalized 
values of RFRET, and (g) the number of cells (frequency) were plotted against RFRET at time 0, 
(RFRET)0, to illustrate the cell-to-cell variability of RFRET is displayed in the histogram for 
comparison to the data that were normalized to initial time point.  
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Figure 3.8 Morphological changes accompanying macrophage activation.  

Representative phase-contrast images for BMM activated with growth factors and cytokines. 
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Figure 3.9 Effects of oxidation level on redox environment in the endocytic pathway.  

The closed circles show the RFRET from unnicked probes with activated wild-type macrophages 
and non-activated gp91phox-/- macrophages, and the open circles show nicked probes with non-
activated wild-type macrophages. The triangles and the diamonds represent the RFRET from 
encapsulated nicked probes using activated wild-type macrophages and non-activated gp91phox-/-, 
respectively (n'5). 
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Figure 3.10 Reduction of FRET-based redox probe is attenuated in GILT-/- macrophages. 

The closed circles show the RFRET from unnicked probes with GILT-/- macrophages and the 
triangles and the open circles represent the RFRET from encapsulated nicked probes using GILT-/- 
and wild-type macrophages, respectively (n55).   
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Figure 3.11 Effects of pH modulation on redox changes in BMMs.  

(a) Fluorescent images of liposomes with encapsulated HPTS in vacuoles were taken at ex 405 
nm and ex 440 nm, and em 535 nm. The ratio of fluorescence, HPTS440 / HPTS405, from these two 
images indicated the pH of the vacuolar environment (inset). The ratio of HPTS and the RFRET 
from unnicked probes were plotted against time with and without bafilomycin A1 or ammonium 
chloride treatment. (b) BMM images after incubation with HPTS at indicated excitation 
wavelength in the presence and absence of bafilomycin A1. Scale bar = 10 µm. 
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CHAPTER IV 

CELL TYPE-DEPENDENT REDUCTION PROCESSES                     
IN THE ENDOSOMAL PATHWAY 

!

SUMMARY 

In Chapter III, the redox potential along the endocytic pathway was estimated to 

be considerably reducing, with a range between -300 and -340 mV, as revealed by FRET 

microscopy using liposome-encapsulated redox-sensitive fusion proteins in BMMs. We 

wanted to extend the range of cell types to compare FRET signals across PC-3, BT-549, 

fibroblast, and bone marrow dendritic cells (BMDCs) to draw conclusions about the 

redox potential in the endocytic pathways. We found that the redox-sensitive reporter 

used to monitor reducing environments in the endocytic pathway could be taken up by all 

cell types tested and live-tracked via FRET microscope. We also found that all of the 

endosomes have reducing potential; however, the kinetics of disulfide reduction varied 

depending on the cell types and macrophages had the most reducing environment of all 

the cells tested. Although the results are consistent with unnicked probes in that the rates 

and extents of disulfide reduction did not change much, their subsequent events of nicked 

probes differed depending on the cell types. Specifically, disulfide reduction in cancer 

cells showed a slower rate and extent, while that in fibroblasts was faster than cancer 

cells but not as fast as BMDCs. These findings may have useful implications for disulfide 
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conjugated macromolecular therapeutics across different types of cells. This study will 

provide information that can be used to investigate the impact of novel treatments as well 

as inform the design of targeted pharmaceutical agents that rely on disulfide bonds.  
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INTRODUCTION 

Through the observation of the redox states in BMMs, endosomal compartments 

are likely to be reducing; however, it has not been well studied whether the relative 

contribution from different types of cells could be similar to or different from redox 

potentials in the endocytic pathway [1]. As previously explained in Chapter I, regulation 

of redox is critical to the maintenance and function of many cellular processes, varying 

with proliferation and differentiation and is also related to diversity of cell type 

specificity [2].!Thus, cellular redox biology is inseparable from variations of cell types. !

!

Antigen Presenting Cells (APCs) 

APCs can be divided into two groups: professional or non-professional. 

Professional APCs include macrophages, B cells, and dendritic cells, all of which are 

efficient at internalizing antigen, either by phagocytosis or by receptor-mediated 

endocytosis [3]. The T cell recognizes and interacts with peptides derived from degraded 

protein antigens and molecules of the major histocompatibility complex (MHC) on the 

plasma membrane of APCs. If endogenous antigens, they tend to be presented in the 

context of MHC class I molecules, which stimulate a subpopulation of T cells (CD8+ 

cells) that can become killer or cytotoxic T lymphocytes (CTL) [4]. Exogenous antigens 

can be presented in the context of MHC class II antigens, which stimulate T-helper cells 

(CD4+ cells), and those T cells are activated by an additional co-stimulatory signals [5]. 

Expression of co-stimulatory molecules distinguishes professional and non-professional 

APCs.  A non-professional APC does not constitutively express the MHC class 
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molecules required for interaction with T cells; these are expressed only upon stimulation 

of the non-professional APC by certain cytokines, such as IFN-# [6]. Non-professional 

APCs include fibroblasts (skin), thymic epithelial cells, thyroid epithelial cells, glial cells 

(brain), pancreatic beta cells and vascular endothelial cells [3]. Since B cells, each of 

which express and secrete a specific antibody, are the least efficient professional APCs 

for most other antigens [7], DCs were included and fibroblasts were chosen due to their 

interesting redox features for comparison of redox regulation in different cell types.  

 

Dendritic Cells (DCs) 

DCs, the most efficient and exhibiting the broadest range of antigen presentation, 

play a key role in the immune system as major professional APCs. It has been reported 

that DC redox equilibrium influences their ability to induce T cell activation and 

regulation that could affect the outcome of the immune response during systemic diseases 

and aging [8]. T lymphocyte proliferation and activation require a reducing 

microenvironment in the immune response that is provided by DCs. During T cell 

activation, secretion of glutathione and accumulation of cysteine by DCs result in a 

reducing extracellular environment that changes the redox-sensitive proteins, which 

might be critical for signaling in the immune synapse and DC-T cell interaction [9]. 

 

!
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Fibroblasts 

The variation in extracellular Cys/CySS redox state has been demonstrated to 

regulate the mechanisms and functional consequences of redox changes [10]. In human 

gut epithelial (Caco-2) cells and normal human retinal pigment epithelial (hRPE) cells, 

cell proliferation was greater at a more reduced redox state [11]. Furthermore, buthionine 

sulfoximine, an inhibitor of GSH synthesis, induced a less reducing redox state and 

decreased proliferation [12]. On the other hand, a lung fibroblast model showed that 

oxidized Cys/CySS redox potential values stimulate fibroblast proliferation and matrix 

expression [13]. These results suggest that extracellular Cys/CySS redox-dependent cell 

proliferation is cell type-specific and is mediated by intracellular kinase activation. The 

cell type specificity may reflect differences in cell responses to physiologic conditions, 

wherein fibroblasts respond to proliferate for tissue repair following immune cell-induced 

oxidative conditions, while reducing conditions are most stimulatory to other cells [12]. 

In fibroblasts, a lysosomal transport system is highly specific for the amino acid cysteine 

[14]. This cysteine-specific transport route may play an important role in supporting 

lysosomal proteolysis by providing thiols for the lysosomal thiol-dependent proteases and 

by reducing protein disulfide bridges, thereby allowing proteins to unfold, which can 

facilitate their degradation. In contrast to many of the previously characterized lysosomal 

transport systems, this system appears to function for net delivery of its substrate into the 

lysosomal compartment rather than to serve for exodus of the products of lysosomal 

hydrolysis [14].!Therefore, the intracellular location of cysteine transport activity highly 

correlates with cell type specificity. Furthermore, GILT, also referred to as IP-30, was 

found to be inducible by IFN-% in human monocytes, fibroblasts, endothelial cells, and 
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keratinocytes [15]. GILT deficiency in fibroblasts leads to decreased levels of reduced 

glutathione and an increased GSSG/GSH ratio [16].!Hastings et al. showed how the 

induction level of GILT varied depending on the IFN-% that enhances the resistance of 

cells such as macrophages, endothelial cells, and fibroblasts by inducing MHC class II 

antigens [17].! 

!

Cancer redox metabolism  

Persistent oxidative stress, a main feature of cancer cells when compared to 

normal cells, results from high levels of reactive oxygen species (ROS), since cancer 

cells have an abnormal redox balance involving down-regulation of antioxidant enzymes 

and impaired mitochondrial function [18]. It is reported that ROS-mediated oxidative 

stress (either by environmental carginogenesis or by mitochondrial metabolism) and 

genomic instability compliant with cancer progression play a major role in the 

development of breast, prostate, pancreatic and colon cancer [19]. NADPH oxidase 

systems associated with ROS generation contribute to the causation and pathogenesis of 

prostate cancer [20, 21]. Carcinoma cell oxidative stress can be induced either by 

thymidine phosphorylase, an enzyme that is overexpressed in the majority of breast 

cancer cells, or lactoperoxidase, an enzyme that is involved breast-specific metabolism of 

oestrogenic hormones [22].  

There have been many attempts to determine intracellular redox state depending 

on their differentiation and pathophysiology; however, knowledge concerning cell type 

variations in redox potentials along the endocytic pathway still remains elusive. Through 
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the observation of the redox states using redox-sensitive fusion proteins, endosomal 

compartments can be elucidated by different cell types. In this chapter, we sought to 

address this issue by first investigating APCs and cancer cell lines to compare FRET 

signals using a well-established live cell imaging. !
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MATERIALS AND METHODS!

Cancer cell culture 

Cancer cells were purchased from ATCC and cell culture media were purchased 

from GIBCO. All cells were maintained at 37oC in 90% humidity with 5 % CO2. BT-549 

cells were maintained in RPMI-1640 medium supplemented with 10 % HI-FBS. PC-3 

cells were grown in DMEM medium with 10% FBS and BT-549 cells were grown in 

DMEM media with 10% FBS on T75cm2 flasks (DB Falcon). BT-549 and PC-3 cells 

were plated in glass-bottomed dishes at a density in 25,000 cells/well. For imaging with 

BT-549 and PC-3 cells, media were replaced with RB immediately prior to adding 

liposomes. 

  

Fibroblast Culture 

Fibroblast cells were obtained from C57BL/6 mice by the procedure described by 

Seluanov et al. [23] using skin specimens from the underarm area. Using two scalpels, 

the tissue fragment was cut by pulling apart, not separated into pieces but stretched thinly. 

The tissue was transferred into a sterile beaker with a stirring bar and incubated in 

DMEM with 1 mg/ml collagenase IV (Invitrogen) at 37 °C for 60-90 min. After tissue 

fragments were centrifuged, the supernatant was carefully decanted and the pellet was 

vigorously resuspended with DMEM media to plate tissue culture-treated dish. On day 7, 

the tissue pieces were transferred to a new plate for an additional 7 days. By day 14 all 

viable fibroblasts had exited the tissue fragments and cells were harvested to plate them 

on a new plate in EMEM with 15% FBS, 100 units/mL penicillin, 1 mM sodium pyruvate, 
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1X  non-essential amino acids, and sodium pyruvate for supporting growth of fibroblasts 

only. 

!

Generation of Dendritic Cells from Bone Marrow of mouse 

With minor modifications from previous method [24, 25], BMDCs were obtained 

from 7 week old female C57BL/6 mice. The femurs and tibias were removed and 

transferred into a dish of RPMI-1640 after cleaning off all tissues. Both epiphyses were 

cut with scissors and the bone marrow was washed out using RPMI-1640 with a sterile 

syringe, repeated until the bone was clean. The cells were centrifuged and the pellets 

were resuspended with ACK lysis buffer (Invitrogen) incubated 5 min at room 

temperature. Dendritic cell media was prepared with RPMI-1640 supplemented with 10% 

FBS, 100 4g/mL streptomycin, 100 units/mL penicillin, 1 mM sodium pyruvate, 2 mM 

glutamine, 50 µM "-mercaptoethanol, 10 ng/mL granulocyte-macrophage colony-

stimulating factor (GM-CSF, Peprotech), and 10 ng/ml interleukin-4 (IL-4, Peprotech). 

After red blood cells were removed, cells were spun down, resuspended in dendritic cell 

media and plated 1x107 cells per dish. The cultured cells were washed and replenished 

with fresh media every two days. On day 6, loosely adherent aggregates were removed by 

pipetting, centrifuged and plated in 1x107 cells per dish. During 24-48 hrs following 

transfer, mature BMDCs were released then collected by gently swirling the dish.  
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Liposome preparation 

For liposome preparation, probes were encapsulated inside pH-sensitive 

liposomes composed of PE:CHEMS in a 2:1 molar ratio, by a thin lipid film hydration 

and freeze/thaw method [26]. Liposomes were extruded through reduced pore size of 

membrane filters (0.2 µm) for efficient uptake [27] and unencapsulated probes were 

removed from liposomes by size-exclusion chromatography using a 1 x 25 cm Sepharose 

CL-4B column (GE Healthcare).! 

 

Quantitation of Lysosome markers  

To label lysosomes, BT-549, PC-3, fibroblasts, BMDCs were incubated with 

TRD (5 mg/ml; Molecular Probes, Inc., Eugene, OR) in medium for 60 min at 37 oC. 

Cells were washed three times with RB and incubated in warm RB without TRD for 

another 60 min. Liposomes were then incubated with cells on ice for 30 min to bind cell 

membranes without endocytosis. Cells were washed three times with cold RB and warm 

RB was added immediately before imaging. 

 

Statistical analysis 

Data were compared by the Tukey honestly significant difference (HSD) test as 

Post-ANOVA Comparisons. A p-value less than 0.05 was considered statistically 

significant.  
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RESULTS 

Morphology of cells 

Harvested BMDCs and fibroblasts were plated onto glass-bottom dishes to 

confirm their morphology under microscope. In many BMDCs, branched dendrites and 

spikes in the dendritic tree were observed and all fibroblasts were highly branched and 

extended spread by connective tissue stretch (Fig. 4.1). BT-549 and PC-3 cells were 

maintained by spread shape as morphological features.  

 

Comparison of disulfide reduction rate and extent 

As previously described, cells were incubated with nicked or unnicked liposomes 

on ice for 30 min, then washed to remove unbound liposomes. Warm RB was added 

immediately before starting to collect images on a temperature-controlled stage. To 

determine whether the intracellular redox environment is varied, and if so, how the cell 

types affect the disulfide reduction rate, we collected images every 1 min for 50 min and 

measured the FRET ratio after liposome uptake. Upon internalization of the control 

unnicked probe, RFRET remained constant regardless of cell type, while the RFRET from 

nicked probes decreased over time with similar rate and extent both in BT-549 and PC-3 

(Fig. 4.2). In fibroblasts, the RFRET decreased slightly faster than in cancer cells, but not 

as rapidly as in BMDCs (Fig. 4.3). To directly compare the kinetics of disulfide bond 

reduction, curves were fitted to one-phase exponential decay; the FRET signal from 

BMMs decreased most rapidly with a significantly shorter half-time (8.96 min, p<0.05) 

and the lowest level of plateau (0.06). BMDCs showed less reducing than macrophages; 
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however, when compared with the other cell types, BMDCs decayed to a greater extent 

(0.25) and decreased faster (14.54 min). Both BT-549 and PC-3 had a similar half-life 

(26.87 and 25 min, respectively) and plateau (0.31 and 0.29, respectively). Fibroblast 

cells showed unique features of kinetics with relatively rapid decay (16.83 min), but the 

highest level of plateau (0.40).  

 

Different rates of lysosomal maturation 

 We then investigated the kinetics of lysosomal maturation to determine whether 

the disulfide bond is reduced differently when probes are associated with differing 

degrees of continued interaction with the lysosomal compartment by different cellular 

processes. We used TRD as a lysosomal marker to determine rates of progression by 

measuring TRD-associated fluorescence signals that colocalized with liposomes at 

various time points. For the overall analysis of fluorophore distributions, the average 

integrated intensities of the TRD emission were normalized by the maximum 

fluorescence and plotted against time (Fig 4.5). Based on the analysis of fluorophore 

distribution from endocytic tracer TRD, the progression of lysosomal maturation of 

BMDCs, fibroblasts, and cancer cells was slower than BMMs. The time required to 

approach the highest value with TRD fluorescence was 40~45 min for cancer cells and 

BMDCs, and ~50 min for fibroblasts (Fig 4.6). All liposomes reached maximal TRD 

labeling for lysosomes later than did BMMs.  
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DISCUSSION 

Although knowledge concerning cell type variations in redox state is currently 

lacking, one cell type in which redox metabolism has been studied is the fibroblast. For 

example, primary murine lung fibroblasts were stimulated to proliferate when exposed to 

oxidized conditions, while reducing conditions are most stimulatory to other cells [12]. 

More broadly, lysosomal transporters are highly specific for the amino acid cysteine, 

which may support lysosomal proteolysis by reducing disulfide bonds [14]; perhaps the 

induction level of GILT is cell lineage-dependent [28]. While these studies contribute to 

understanding the key elements of redox regulation, direct comparison of redox potential 

profiles in different cell types is still not well studied. Comparison of the intracellular 

reducing environment between B cell lymphoma and macrophage hybridoma cell lines 

was revealed to be similar based on the intracellular levels of cysteine and glutathione 

[29]; however, conventional methods that were employed might lead to loss of cell 

integrity during intracellular thiol assays. To overcome these limitations, we have 

established a non-disruptive real-time imaging to determine redox comparison after 

uptake of the liposome-encapsulated redox-sensitive probes in whole live cells. To 

investigate the feasibility of this approach, we monitored the reduction mechanism of 

probes by measuring FRET signals along the endocytic pathway. The rationale for this 

strategy was that if we could observe differential redox rates in these cell lines, then this 

approach could likely be extended to include a more complete library from different 

tissue sources. 

Based on the redox standard curve in Fig. 2.9, BMMs have the most reducing 

potential with a midpoint potential of -323 mV, while cancer cells have the most 
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oxidizing potential of approximately -314 mV, and fibroblasts and BMDCs have a 

midpoint potential of -317 mV and -320mV, respectively. All cells appeared to have 

slower reduction rates than BMMs; only BMDCs decreased significantly faster in the 

endocytic pathway compared with fibroblasts and cancer cells. Previous studies showed 

that! BMMs overall presented liposomal antigen more efficiently than BMDCs, 

suggesting that efficiency of LLO-mediated endosomal escape, which may relate to 

regulation of the unique Cys of LLO by redox potential, could vary in different cell types 

[24].  Similar reduction kinetics were observed for BT-549 and PC-3, which could be 

explained by high levels of ROS arising from redox metabolism of cancer cells. To verify 

whether this progress through endolysosomal pathway can be conferred to macrophages, 

we incubated TRD with other cell types and compared the lysosomal maturation rate by 

macrophages. There was a possibility that the differences in disulfide reduction could be 

due to different fates in the endocytic process or retention of liposome uptake, while the 

endocytic uptake of conventional liposomes by macrophages is very rapid [30, 31]. The 

timing of association and dissociation of phagosomes might be displayed differently, 

whereas macrophages have invariant feature of maturation [32]. The maturation pathway 

followed by fibroblast phagosomes showed distinct kinetics that are not defined as much 

as macrophages by the sequential appearance of TRD (Fig. 4.5). In contrast to TRD 

fluorescence accumulated in macrophages or in the perinuclear region of BMDCs, 

fibroblasts have TRD-positive lysosomes seen as discrete granules along the extensive 

cell spreading all around the periphery area (Fig 4.7). The reason for this discrepancy is 

that loading or chase time might not be long enough for internalized TRD to accumulate 

in fibroblast lysosomes. Each glass-bottomed dish containing different cell types was 
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incubated with TRD in DMEM for 1 h, and incubated in RB for another 1 h to 

redistribute TRD into lysosomes. However, Nazarian et al. reported that fibroblasts were 

incubated for 16 h at 37°C in medium containing 5 mg/ml TRD followed by 4 h chase 

period in medium [33], or cultured with TRD in DMEM with 1 mg/ml BSA for 4 h at 

37°C and then incubated in normal medium for 20 h without TRD [34]. Alternatively, we 

could compare the rate of acidification using fluorescein isothiocyanate (FITC) dextran, a 

pH-sensitive dye, to obtain measurements of pH based on calibration of fluorescence 

ratio vs pH [35] since maturation of the phagosome was accompanied by luminal 

acidification [36]. Even though it is evident that the progression is slower, we speculate 

that the overall higher level of disulfide reduction by BMMs compared to other cell types 

is not simply due to a faster progression to lysosomes. Gursel et al. and Stier et al. 

similarly reported that BMMs had a greater uptake in liposomal antigen as well as 

efficiency of liposomal presentation than BMDCs [24, 37]. Although it is not well 

defined, the composition of cholesterol of the endolysosomal compartment could vary 

depending on cell type [38], which may affect redox potential [39] identified by NADPH 

oxidase redox signaling which is organized by cholesterol-enriched microdomains. 

Furthermore, the slowest disulfide to be reduced in PC-3 could be supported by data from 

higher degrees of ROS generation in the PC-3 cells than other cancer cell lines [20]. 

These observations imply that cell type-dependent variations in the disulfide reduction 

mechanism of endocytosed macromolecules could derive from a number of factors. 

Overall, BMMs reduced disulfide bonds faster than other cell types, and the trend was 

also observed by the lysosomal markers. These results combined together suggest that 

endosomal compartments may be more reduced in BMMs than in BMDCs, while cancer 
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cells exhibit somewhat oxidizing potential, and further implicated differential redox 

environmental activity and varying efficiency of redox enzymes in different cell types. 
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Figure 4.1 Representative morphology of BMDCs (a) and fibroblasts (b). 
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Figure 4.2 Time course of RFRET in cancer cells 

Liposome-encapsulated unnicked probes with average of BT-549 and PC-3 (squares) vs nicked 
probes in BT-549 (diamonds) and PC-3 (circles).  
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Figure 4.3 Time course of RFRET in fibroblasts and BMDC 

Liposome-encapsulated unnicked probes with average of fibroblasts and BMDCs (squares) vs 
nicked probes in fibroblasts (diamonds) and BMDCs (circles). 
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Figure 4.4 Comparison of disulfide reduction in different cell types.  

From the top, the RFRET curve is from BT-549, PC-3, fibroblast, BMDC, and BMM on the bottom. 
These values were obtained following the equation by Curve fitting in one-phase exponential 
decay: !Y = Span ! e-Kx + Plateau, Half-time = 0.69/K 
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Figure 4.5 Kinetics of vesicular trafficking with TRD in cancer cells. 

Data points of relative fluorescence were obtained from TRD-associated fluorescence in BMMs 
vs cancer cells from corresponding fluorescence images of liposome.  
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Figure 4.6 Kinetics of vesicular trafficking with TRD in fibroblasts. 

Data points of relative fluorescence were obtained from TRD-associated fluorescence in BMMs 
vs fibroblasts from corresponding fluorescence images of liposome.  
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Figure 4.7 Representative microscopy images using TRD to label lysosomes. 

Overlaid images of phase-contrast and TRD-associated fluorescence (red): in contrast to TRD 
fluorescence accumulated in the perinuclear region of PC3 or dendritic cell (top images), 
fibroblasts (bottom images) have TRD-positive lysosomes as discrete granules along the 
extensive cell spreading all around the periphery area. Scale bar = 5 µm.!
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

A number of biosensors have recently emerged that have contributed to the 

understanding of cellular redox dynamics [1-5]. Despite the gains made in imaging probe 

design, however, particular aspects of the redox network remain elusive. We designed a 

genetically encoded redox-sensitive fusion protein, consisting of mECFP and mCit joined 

by an intervening disulfide-bonded and protease-sensitive linker, to monitor disulfide 

reduction and measure redox potentials in the endosomal compartments. To our 

knowledge, we report the first real-time imaging of redox biosensor within the endosome 

and lysosome in live whole cells using FRET microscopy. There have been some 

attempts to determine endosomal redox activity, and FRET-based folate-conjugate 

compounds have been used to monitor receptor-mediated endocytosis [6]. However, 

synthetically conjugated molecules have often been used in redox measurements 

unsuccessfully due to their heterogeneous nature, and furthermore, there are only limited 

numbers of receptor-ligand complexes in receptor-mediated endocytosis compared to 

non-specific macropinocytosis, which will be encountered general endocytic pathway. 

Therefore, a homogeneous application of genetically encoded endogenous probes to 

monitor the cellular thiol-disulfide redox state is important to address this issue. Methods 
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for in vivo monitoring of redox changes in different cellular compartments have been 

developed in recent years; however, these sensors are limited to reducing compartments, 

and are not suited for acidic environments due to pH sensitivity [5, 7]. Currently available 

redox biosensors mostly employ single GFP variants such as roGFPs [3]. In a FRET-

based biosensor, a redox event induces a conformational change in the linker, altering the 

distance between the FRET donor-acceptor pair, which in turn results in a change in 

FRET efficiency as measured by changes in the emission spectra profiles. This specific 

and discriminatory feature of FRET is one of the driving motives behind our 

development, rather than relying only on changes in the fluorescent intensity of a single 

component. To address some of challenges in arriving at a quantitative description of the 

kinetics and dynamics of redox components, a FRET-based approach was implemented 

to achieve maximum sensitivity within the physiological redox range after construct 

modification using SLIM PCR [8]. By improving the yield of disulfide formation 

(sensitivity) and decreasing the ratios of thrombin to proteins (specificity), site-specific 

modification was shown to be successful in which the linker region is easily accessible to 

thrombin by reducing steric hindrance, confirmed by Ellman’s assay and SDS-PAGE. A 

distinct advantage of our approach is its modular and ratiometric characteristics, such that 

the dynamic range between the fully oxidized and fully reduced forms of the probe 

corresponded to a 5-fold range in spectroscopic signal when measured ratiometrically, 

which led to improved discrimination of the redox states in complex biological 

specimens. The ratiometric response was of paramount importance for dealing with 

variable expression levels, source intensity, detector sensitivities, and sample 

concentrations. Although fluorescent proteins can be inherently quenched by pH 
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sensitivity and photobleaching [9], the pH-independence of the RFRET enabled us to 

investigate disulfide reduction dynamics in the endocytic compartments and 

photobleaching correction led us to overcome a steady decrease in RFRET resulting from 

acceptor photobleaching. To improve the signal-to-noise ratio, Cerulean (a cyan 

derivative) [10] or Venus (yellow derivative) [11] were substituted for mECFP or mCit 

by site-directed mutagenesis (Fig. 5.1a). This FRET pair, Cerulean-Venus, has both high 

a donor quantum yield and a large acceptor extinction coefficient, demonstrating 

significantly increased contrast as well as an improved signal-to-noise ratio [12]. 

Nevertheless, 24% of RFRET was diminished after the mutations (Fig. 5.1b). An increase 

in F$rster distance (calculated 4.9 vs 5.4 nm) is one possible reason for the change in 

FRET efficiency [13], or alternatively an incorrect dipole-dipole interaction. Given that 

the inherent sensitivity of FRET measurements is dependent on distance and orientation, 

the precise control over changes in energy transfer could be challenging. However, the 

use of genetic engineering shows enormous potential, which is relatively straightforward 

and allows targeting to most cellular compartments by fusion with organelle-specific 

peptides [9]. 

 Liposome-encapsulated probes were also shown to be well-suited for measuring 

redox conditions in the endocytic pathway due to the propensity of cells to endocytose 

lipidic particles [28]. The high sensitivity and temporal resolution provided by ratiometric 

imaging of individual phagosomes indicated that some aspects of a redox environment 

were monitored in real time along the endocytic pathway. Quantitative analysis of single 

phagocytic events in live cells revealed!details in redox dynamics that would be missed 

in fixed cells or isolated phagosomes.  Furthermore, real-time imaging of redox dynamics 
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using exogenously applied probes provides major obvious advantages compared to static 

measurements using endogenously expressed roGFPs (such as via transfection) as it 

allows direct delivery to and monitoring of the endolysosomal pathway. Relative 

fluorescence from mCherry-Rab5a-positive endosomes or TRD-associated lysosomes 

was also used to quantify the dynamics of markers. Through the concomitant use of 

colocalized endolysosomal markers, we have demonstrated that reduction of disulfide 

bonds begins in the early endosome and continues throughout endolysosomal maturation. 

To investigate cellular factors that modulate the reduction processes, both genetic and 

chemical approaches were used in order to mimic conditions in which the endocytic 

pathway would be most heavily skewed towards either an oxidizing potential or reducing 

potential. Decreased levels of oxidative enzymes (gp91phox) promote faster kinetics via 

attenuation of ROI production, while increased ROS conditions inhibited reduction. 

Macrophages lacking GILT were greatly hindered in their ability to reduce the probe, 

confirming that GILT activity is indeed a determinant of endocytic redox potential. 

GILT, which is a critical factor for disulfide reduction for antigen presentation [14] and 

LLO [15], is constitutively expressed in most APCs, including monocytes/macrophages, 

B cells, BMDCs, and some fibroblasts [16, 17]. The induction level of GILT may be 

varied in different cell types depending on the level of IFN-%, [18]; therefore careful 

attention would be required for the choice of target cell associated with disulfide-based 

drug delivery systems. 

LLO has been utilized in drug delivery systems that mimic the Listeria invasion 

to deliver exogenous macromolecules into the cytosol. Previous studies in our laboratory 

have demonstrated enhanced gene expression and delivery using the endosomolytic pore-
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forming protein, LLO, conjugated with polycation or encapsulated in liposomes [19-22], 

which is supportive indirect evidence for reducing activity along the endocytic pathway. 

However, the regulatory mechanisms and key elements of LLO activity are still not 

completely understood. For example, while it is known that oxidation of the single 

cysteine of LLO with a sufficiently bulky molecule results in the reduction or elimination 

LLO’s activity, the redox potential required for reducing that disulfide in the endosome is 

not known. Whereas it has been reported that disulfide reduction facilitates lysosomal 

proteolysis, which in turn is promoted by the import of cysteine mediated by the cysteine-

specific lysosomal transport system [31], studies on the rate of degradation vs 

reduction/activation are currently lacking. Our study has the potential to provide insights 

as to how the unique cysteine of LLO is reduced in the endocytic pathway to activate 

LLO and how that is regulated and related to delivery strategies. This study will be 

important for the rational design of LLO-mediated delivery and macromolecule/delivery 

system conjugates and complexes that are modulated by redox potential gradients, as well 

as for the clarification of the Listeria invasion mechanism. !

To further investigate redox activity in the endocytic pathway, we sought to 

compare the intrinsic redox potential of different kinds of cells. The selected cells 

included BMDCs as one of the major APCs, and fibroblasts, as their redox-dependent 

cellular processes have been previously elucidated, and cancer cells!are frequently under 

persistent oxidative stress. The sensitivity of ratiometric FRET microscopy detected the 

redox potential during the gradual maturation of endosomal compartments, creating 

complete spatiotemporal profiles of each cell type. All of the endosomal compartments 

tested have reducing potential; however, the extent and rate of disulfide reduction varied 
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depending on the cell type. BMMs have the most reducing potential, while cancer cells 

have the most oxidizing potential. BMMs, as compared with BMDCs, are more efficient 

in acquiring liposomal antigen as well as in overall presentation of liposomal antigen to T 

lymphocytes [23], probably BMMs could reduce antigenic disulfide bond more 

efficiently before antigen processing and presentation as estimated by more reducing 

midpoint potential in BMMs than BMDCs. Cell type-dependent variations in the 

disulfide reduction mechanism of endocytosed macromolecules could derive from a 

number of factors, including kinetics of vesicular trafficking by different rates of 

maturation, induction levels of GILT [24] and expression levels of surface PDI [25], 

location of cysteine transporters in lysosomes [26], and cell proliferation and 

differentiation [27, 28]. 

Future studies could use endolysosomal enzyme-cleavable redox probes by 

replacing the thrombin cleavable site with a cathepsin D-cleavable site (LVEL|FVLS), as 

a more straightforward design to monitor disulfide reduction in the endocytic pathway 

(Fig. 5.2). Since cathepsin D (CD) is an endopeptidase that is almost exclusively 

expressed in the endocytic pathway, it would not have to be cleaved prior to incubation 

with cells [29, 30]. Endosomolytic LLO could also be incorporated either by using a 

labeled fusion protein or by co-encapsulation inside liposomes to directly report on the 

redox state of LLO, as well as investigate the rational design of LLO-mediated 

macromolecular delivery modulated by redox potentials. It is also plausible that whole 

living animals could be monitored in order to determine the localization and kinetics of in 

vivo redox imaging by incorporation of luciferin injected into luciferase-transgenic mice.  
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This study in toto underlines the importance of directly monitoring the 

spatiotemporal dynamics of the reduction-oxidation homeostasis in the endocytic 

pathway and elucidating the key biochemical redox regulators. To our knowledge, this is 

the first study using redox biosensors that have been used to monitor and compare 

reduction profiles of endocytic pathways in live cells. The control of the reduction of 

disulfide bonds in the endocytosed macromolecules would depend on cell types and their 

differentiation and pathophysiology. Further investigation in other cell types in various 

physiological states will provide critical information that can be used to investigate the 

impact of novel treatments as well as informing the design of targeted pharmaceutical 

agents that rely on disulfide bonds.  
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Figure 5.1 Peptide sequence and emission spectra of Cerulen-G4STh-Venus.  

(a) Cerulean and Venus were substituted for mECFP and mCit by site-directed mutagenesis. 
Amino acids in bold characters correspond to the expressed part of cloning vector backbone pET-
29b, underlined amino acids to protein tag, Strep-tag and His-tag, and dotted underline to a linker 
containing thrombin recognition sequence and two cysteines plus spacer. Mutants are colored as 
blue (mECFP to Cerulean : S72A, Y145A, H148D) and yellow (mCit to Venus : F46L, F64L, 
M69Q, M153T, V163A, S175G). (b) Comparison of emission profile between mECFP-G4STh-
mCit vs Cerulen-G4STh-Venus. 
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Figure 5.2 Peptide sequence of mECFP-CD-mCit.  

Amino acids in bold characters correspond to expressed part of cloning vector backbone pET-29b, 
underlined amino acids to protein tag, Strep-tag and His-tag, and dotted underline to a linker 
containing CD cleavable sequence and two cysteines plus spacer. 
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