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 ABSTRACT 

Hematopoietic stem cells (HSCs) maintain themselves throughout life by 

undergoing self-renewing divisions and by differentiating to generate all the blood and 

immune system cells in the body. Tumor suppressors play an important role in regulating 

signaling pathways that maintain HSCs while avoiding leukemogenesis. Deficiency in 

the tumor suppressor Pten depletes HSCs but expands leukemia-initiating cells. 

Understanding this mechanistic difference could lead to anti-leukemia therapies with less 

toxicity to HSCs. Indeed, the mTOR inhibitor, rapamycin, blocks HSC depletion and 

leukemogenesis in Pten-deficient cells, raising the question of how mTOR activation 

depletes HSCs. In contrast to what occurs after FoxO1/3/4 deletion, we found that the 

depletion of Pten-deficient HSCs was not caused by oxidative stress and could not be 

blocked by N-acetyl-cysteine. Instead, Pten deletion induced the expression of p16
Ink4a

 

and p53 in HSCs, and p19
Arf

 and p53 in other hematopoietic cells. Rapamycin treatment 

attenuated these increases. Analysis of compound mutant mice indicated that p53 

suppressed leukemogenesis and promoted HSC depletion after Pten deletion. p16
Ink4a

 also 

promoted HSC depletion but had a limited role suppressing leukemogenesis. p19
Arf

 

suppressed leukemogenesis but did not deplete HSCs. Pten deficiency and FoxO 

deficiency therefore deplete HSCs by different mechanisms. These results provide 

functional evidence that mTOR activation depletes stem cells by inducing a tumor 

suppressor response. 



 xii 

Little is known about whether autophagic processes are active in HSCs and 

whether they contribute to HSC maintenance. FIP200 plays important roles in 

mammalian autophagy and other cellular functions, but its role in hematopoiesis has not 

been examined. We found that conditional deletion of FIP200 in hematopoietic cells led 

to impaired autophagy in the fetal liver, severe anemia, and perinatal lethality. FIP200 

was also cell-autonomously required for the maintenance of fetal HSCs as FIP200-

deleted HSCs were unable to reconstitute lethally irradiated recipients. FIP200 ablation 

increased the rate of cell-cycling in HSCs, which may have contributed to HSC depletion. 

Interestingly, FIP200-deleted HSCs exhibited increased mitochondrial mass and elevated 

reactive oxygen species levels. Our data identify FIP200 as a key intrinsic regulator of 

fetal HSCs and implicate a potential role for autophagy in the maintenance of fetal 

hematopoiesis and HSCs. 
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CHAPTER 1 

INTRODUCTION: THE REGULATION OF SIGNALING IN 

HEMATOPOIETIC STEM CELL MAINTENANCE 

 

 

 Stem cells are responsible for the regeneration of cells in tissues as diverse as 

blood, brain, breast, intestine, and skin. The regenerative demands of replacing all blood 

and immune cells by hematopoietic stem cells (HSCs) are especially astounding. It is 

estimated that over the course of our lives, HSCs are responsible for generating 10
16

 

hematopoietic cells, equivalent to roughly 10 times our body weight (MacKey, 2001) 

despite the fact that HSCs represent approximately 0.003% of bone marrow cells under 

steady-state conditions (Harrison and Zhong, 1992; Kiel et al., 2005). In certain contexts, 

such as development or response to injury, the regenerative demands are even higher.  

 HSCs maintain themselves throughout life by undergoing self-renewing divisions 

in which at least one of the daughter cells retains the multipotency of  HSCs. Age-related 

hematopoietic morbidities such as anemia, decreased immunity, and bone marrow failure 

are all thought to reflect a progressive decline of HSC function with age (Sharpless and 

DePinho, 2007). Furthermore, leukemic cells can maintain themselves through ectopic or 

over-activation of HSC self-renewal pathways (Lessard and Sauvageau, 2003). Thus, 

understanding of the mechanisms that maintain HSCs also has the potential to provide 

fundamental insights into aging and cancer. One critical signaling pathway that regulates 

HSC maintenance is the PI-3kinase pathway. 
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PI-3kinase signaling 

Cells can sense whether environmental conditions are suitable for cell growth and 

cell division by activating signaling cascades in response to ligand-receptor interactions. 

One such class of interactions involves those between growth factors and their respective 

receptor tyrosine kinases (Schlessinger, 2000). Upon growth factor binding to the 

extracellular domain of the receptor, structural changes activate these receptors by 

increased autophosphorylation of the cytoplasmic domain (Schlessinger, 2000). Activated 

receptors directly interact with and activate phosphotidylinositide 3-kinases (PI-3kinase) 

which promote cell growth, proliferation, and survival through a variety of downstream 

mechanisms (Yuan and Cantley, 2008) (see Figure 1.1 for a schematic). Activated 

receptor tyrosine kinases can also phosphorylate scaffolding adaptors such as Insulin 

Receptor Substrate 1 (IRS-1), which in turn can also activate PI-3kinases. Class I PI-

3kinases function by converting phosphatidylinositol-4,5-bisphosphate (PIP2) into 

phosphatidylinositol-3,4,5-trisphosphate (PIP3) (Yuan and Cantley, 2008) and 

downstream signaling proteins containing pleckstrin-homology domains, such as 

Phosphoinositide-Depdendent Kinase 1 (PDK1) and Akt, are then recruited to sites of 

activated PI3-kinase by directly binding to PIP3. This recruitment to the plasma 

membrane then facilitates the activating phosphorylation of the T308 residue in Akt by 

PDK1.  

 

Akt/mTOR signaling 

The serine/threonine kinase Akt represents a critical node in the promotion of cell 

growth, proliferation and survival because numerous targets are phosphorylated by Akt. 
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The function of many of these targets are inactivated by Akt phosphorylation, including 

the Tuberous Sclerosis Complex (TSC) (Inoki et al., 2002; Tang et al., 1999), which is a 

critical negative regulator of the mammalian target of rapamycin (mTOR) kinase, and is 

composed of TSC1 and TSC2. The TSC complex negatively regulates mTOR by 

hydrolyzing the active GTP-bound form of Rheb into the inactive GDP-bound form 

(Inoki et al., 2002). Inhibition of the TSC complex by Akt therefore results in the 

activation of mTOR.  

mTOR functions as the catalytic subunit in a complex formed with regulatory 

associated protein of mTOR (Raptor), mammalian lethal with Sec13 protein 8/G-protein 

b-subunit like protein (mLST8/GβL), proline-rich Akt substrate 40 kDa (PRAS40), and 

DEP-domain-containing mTOR-interacting protein (Deptor) to form mTORC1, which is 

directly inhibited by the drug rapamycin (Fingar and Blenis, 2004; Guertin and Sabatini, 

2007; Laplante and Sabatini, 2009). mTORC1 promotes cell growth and proliferation by 

inhibiting catabolic processes such as autophagy (Codogno and Meijer, 2005), and by 

activating numerous anabolic processes, including protein synthesis, by phosphorylating 

the p70 ribosomal S6 kinase and the eukaryotic initiation factor 4E-binding protein 1 

(4EBP1) (Fingar et al., 2002; Inoki et al., 2002). Activated S6 kinase can also inhibit 

IRS-1, forming a negative feedback loop that results in the attenuation of the PI-3kinase 

signaling pathway (Zick, 2005). mTOR also forms a second complex with rapamycin-

insensitive companion of mTOR (Rictor), mammalian stress-activated protein kinase 

interacting protein (mSIN1), protein observed with Rictor-1 (Proctor-1), mLST8, and 

Deptor, to form mTORC2, which can be indirectly inhibited by rapamycin in certain cell 

types, including hematopoietic cells (Fingar and Blenis, 2004; Guertin and Sabatini, 
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2007; Sarbassov et al., 2006). In comparison to mTORC1, relatively little is known about 

mTORC2, especially of the signaling pathways upstream of mTORC2 activation or 

inhibition. Regardless, growth factors can stimulate mTORC2 activity (Guertin and 

Sabatini, 2007) and activated mTORC2 also promotes cell survival and proliferation by 

positively regulating Akt through phosphorylation of the S473 residue (Sarbassov et al., 

2005).  

 

Pten and the PI-3kinase/Akt/mTOR pathway in HSC maintenance 

Phosphatase and tensin homolog (Pten) is a dual specificity protein and lipid 

phosphatase that attenuates PI-3kinase pathway signaling by dephosphorylating PIP3 to 

PIP2 (Maehama and Dixon, 1998), and its function reduces Akt, mTORC1, and S6 

kinase activities. In this way, Pten functions as a tumor suppressor, and Pten deficiency 

increases the growth, proliferation, and survival of many cells (Sun et al., 1999). 

Consistent with this, inactivating mutations or silencing of Pten are frequently observed 

in diverse cancers (Di Cristofano and Pandolfi, 2000). 

 Regulation of the PI-3kinase/Akt/mTOR signaling axis is central to the 

maintenance of HSCs. Serial transplantation experiments in lethally irradiated mice have 

demonstrated the extensive self-renewal potential of HSCs, but at steady state, most 

HSCs in adult mice are quiescent and enter the cell cycle infrequently (Cheshier et al., 

1999; Foudi et al., 2008; Kiel et al., 2007). Although the potential of HSCs to self-renew 

exceeds what is physiologically required during a normal life span, adult HSCs are 

quickly depleted when forced to undergo repeated rounds of cell division (Orford and 

Scadden, 2008). These observations are consistent with earlier reports indicating that the 
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vast majority of long-term multilineage reconstituting potential of HSCs resides within 

the quiescent fraction (Fleming et al., 1993), and with more recent reports that a slowly 

cycling population of HSCs possesses greater reconstituting activity than cycling HSCs 

(Foudi et al., 2008; Wilson et al., 2008). Activation of the PI-3kinase/Akt/mTOR 

signaling axis drives HSCs into cell cycle. 

 Conditional deletion of Pten in the mouse hematopoietic system by Mx-1-Cre 

drives HSCs into cell-cycle, leading to a transient increase in the number of HSCs 

(Yilmaz et al., 2006; Zhang et al., 2006). Over the course of several weeks, Pten-deleted 

HSCs become depleted, and unlike control HSCs, Pten-deleted HSCs are unable to 

sustain long-term multilineage reconstitution in lethally irradiated recipients (Yilmaz et 

al., 2006). Pten deletion also leads to the generation of leukemia-initiating cells as Pten-

deleted mice rapidly develop myeloproliferative disease (MPD) and transplantable acute 

myeloid leukemia (AML) and T-cell acute lymphoblastic leukemia (T-ALL) (Yilmaz et 

al., 2006; Zhang et al., 2006). Interestingly, it is possible to exploit the mechanistic 

differences between normal HSC maintenance and leukemia-initiating cell maintenance 

by administering the mTOR inhibitor rapamycin. Treatment with rapamycin immediately 

after Pten deletion prevents leukemogenesis, and restores the function of Pten-deleted 

HSCs (Yilmaz et al., 2006). This demonstrates that both leukemogenesis and HSC 

depletion following Pten-deletion are mediated by mTOR hyperactivation. 

 Activating the PI-3kinase/Akt/mTOR pathway with mutations other than Pten 

deficiency has similar effects on HSCs. Bone marrow progenitors infected with a 

constitutively active myristoylated Akt (myr-Akt) display higher rates of cell cycling, and 

become exhausted over time in transplantation models (Kharas et al., 2010). Mice 
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transplanted with myr-Akt infected bone marrow also develop MPD, AML, and T-ALL 

by 8 weeks after transplantation (Kharas et al., 2010). Loss of Tsc1 results in the acute 

loss of HSC quiescence, increased proliferation and eventual depletion of HSCs in an 

mTOR-dependent manner (Chen et al., 2008; Gan et al., 2008). In contrast to Pten 

deletion, the loss of Tsc1 does not result in leukemogenesis. Whereas Tsc1 deletion using 

Rosa26-CreER results in MPD (Gan et al., 2008), Mx-1-Cre driven deletion results in a 

curious reduction of the myeloid compartment (Chen et al., 2008). Overexpression of 

Rheb2, which is inhibited by the TSC complex, leads to increased mTORC1 activity and 

the transient expansion of progenitors but a decrease in long-term reconstituting ability 

(Campbell et al., 2009). Pml-deficient mice also display loss of HSC quiescence that 

results in a temporary increase but long-term decline in HSC activity (Ito et al., 2008). 

Consistent with the role of Pml as a negative regulator of mTOR (Bernardi et al., 2006), 

rapamycin treatment prevents the exhaustion of Pml-deficient HSCs (Ito et al., 2008). 

Although Pml loss alone does not induce leukemogenesis, the maintenance of leukemia-

initiating cells in a retrovirally tranduced BCR-ABL chronic myeloid leukemia model are 

also dependent on Pml (Ito et al., 2008). Stimulation with interferon-α also increases the 

number of HSCs that entered the cell cycle, and HSCs display a higher level of activated 

Akt by flow cytometry (Essers et al., 2009). Chronic stimulation with interferon-α also 

renders HSCs unable to compete in reconstitution experiments (Essers et al., 2009). Thus, 

activation of the PI-3kinse/Akt/mTOR pathway drives HSCs out of quiescence and 

ultimately leads to their depletion. 

Recent work suggests that hyperactivation of mTOR may be a generalized 

mechanism that depletes stem cells in tissues other than the hematopoietic system. 
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Persistent ectopic Wnt1 stimulation in the epidermis leads to acute growth of hair 

follicles, but depletes epithelial stem cells by senescence which results in the loss of hair 

growth (Castilho et al., 2009). This depletion is mediated by activated mTOR signaling as 

rapamycin restores epithelial stem cells and hair growth despite persistent Wnt1 

stimulation (Castilho et al., 2009).  

 

FoxOs and the suppression of oxidative damage in HSCs  

 Members of the Forkhead O (FoxO) subfamily of transcription factors, including 

FoxO1, FoxO3a, and FoxO4, comprise another important class of Akt targets that 

becomes inactivated upon phosphorylation by Akt (Manning and Cantley, 2007). When 

active, FoxO transcription factors reside in the nucleus and promote the expression of 

various target genes involved in cellular functions such as cell cycle arrest, stress 

resistance, apoptosis, and detoxification of reactive oxygen species (ROS). Activated Akt 

phosphorylates each of the FoxO transcription factors on conserved residues, resulting in 

a 14-3-3 protein dependent exclusion from the nucleus and subsequent degradation in the 

cytoplasm (Biggs et al., 1999; Brunet et al., 1999; Manning and Cantley, 2007). This 

reduces the expression of antioxidant enzymes and increases intracellular levels of ROS.  

HSCs are highly sensitive to the toxic effects of ROS (Ito et al., 2004; Ito et al., 

2006). When FoxO1, FoxO3a, and FoxO4 are conditionally deleted from the 

hematopoietic system, HSCs display an increase in ROS and become depleted (Tothova 

et al., 2007). Aspects of HSC function can be partially rescued by treatment with the 

antioxidant, N-Acetyl-cysteine (NAC), indicating that oxidative stress contributes to the 

depletion of HSCs after the loss of FoxO transcription factors (Tothova et al., 2007). 
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FoxO3a is especially important for HSC maintenance as the loss of FoxO3a alone can 

increase ROS levels and deplete HSCs (Miyamoto et al., 2007; Yalcin et al., 2008). 

 A central question that arose in the field as a result of these observations is 

whether PI-3kinase/Akt pathway activation depletes HSCs as a consequence of FoxO 

inactivation and increases in oxidative damage, or whether mTOR activation depletes 

HSCs through other unknown mechanisms (Orford and Scadden, 2008; Tothova and 

Gilliland, 2007). One possibility is that Pten deletion depletes HSCs through an Akt 

mediated inactivation of FoxO transcription factors that decreases the expression of 

antioxidant enzymes and results in an elevation of intracellular ROS. In support of this 

idea, deletion of Tsc1 results in an increase in mitochondrial biogenesis and ROS levels 

within HSCs, and treatment with NAC restores the reconstitution defects of Tsc1-deleted 

marrow (Chen et al., 2008). In contrast, constitutively active Akt also depletes HSCs 

without increasing ROS levels, and NAC is unable to rescue defects in colony forming 

ability (Kharas et al., 2010). Therefore, activation of specific components within the PI-

3kinase/Akt/mTOR pathway sometimes leads to the depletion of HSCs through increased 

oxidative stress, and sometimes does not. It remained to be tested whether Pten deletion 

could result in HSC depletion through oxidative stress, and whether antioxidant treatment 

could rescue the function of Pten-deleted HSCs.  

 

Tumor suppressor pathways 

 An alternative mechanism that could account for the depletion of HSCs after Pten 

deletion involves the compensatory activation of other tumor suppressors and cell-cycle 

inhibitors in response to the oncogenic stress of persistently activated PI-
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3kinase/Akt/mTOR signaling. A brief overview of major tumor suppressor pathways is 

provided below. 

 Cell-cycle progression requires the activation of cyclin-dependent kinases (CDKs) 

by association with cyclin subunits (Sherr and Roberts, 1999). Triggering exit from 

quiescence first involves the activation of CDK4 and CDK6 by D-type cyclins. Next, the 

DNA replication checkpoint is successfully negotiated by activation of CDK2/cyclin E 

and CDK2/cyclin A kinases, then activation of CDK1/cyclin B initiates mitosis. p53, 

p16
Ink4a

, and p19
Arf

 negatively regulate progression through the cell-cycle by directly 

functioning as a CDK inhibitor (like p16
Ink4a

), or by promoting the expression of other 

CDK inhibitors (like p53 and p19
Arf

) (Bringold and Serrano, 2000). These CDK 

inhibitors (CKIs) generally fall into two groups (Ink4 family and Cip/Kip family) that 

activate parallel senescence pathways (Ink4/Rb and p19
Arf

/p53/p21
Cip1

). The Ink4 family, 

which is comprised of p16
Ink4a

, p15
Ink4b

, p18
Ink4c

, and p19
Ink4d

, function by inhibiting 

CDK4 and CDK6, and therefore maintain the retinoblastoma tumor suppressor (Rb) in its 

unphosphorylated, active state (Ruas and Peters, 1998; Sherr, 2004).  

In addition to p16
Ink4a

, the Cdkn2a locus also encodes p19
Arf

, which has a distinct 

promoter and first exon, but shares the second and third exons with p16
Ink4a

 in an 

alternate reading frame. One of the most well characterized functions of p19
Arf

 is 

inhibition of Mdm2 and thus stabilization of p53, though p53-independent functions of 

p19
Arf

 exist (Kim and Sharpless, 2006; Sherr, 2006). Nevertheless, an important 

transcriptional target of p53 is p21
Cip1

 (el-Deiry et al., 1993), of the Cip/Kip family that 

also includes p27
Kip1

 and p57
Kip2

. Cip/Kip members inhibit CDK2/E-A complexes and 

thus induce cell-cycle arrest. 
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Oncogenic stresses activate tumor suppressive programs 

Functional tumor suppressor pathways successfully limit cancer growth because 

pro-growth signals in major signaling pathways often trigger mechanisms that constrain 

cell proliferation. One example is induction of p53, which promotes the activation of 

several apoptotic programs at multiple levels (Fridman and Lowe, 2003; Vogelstein et al., 

2000). Evan et al. (1992) initially demonstrated that oncogenic c-Myc activation in Rat-1 

fibroblasts induces apoptosis (Evan et al., 1992). Later studies in mouse embryonic 

fibroblasts (MEFs) showed that apoptosis occurs through the induction p19
Arf

 to stabilize 

p53 (Zindy et al., 1998). Expression of other oncogenes such as E1A in MEFs also leads 

to a p53-dependent apoptosis that also requires p19
Arf

 (de Stanchina et al., 1998). Even in 

HSCs, losing the tumor suppressor Fbxw7, which inhibits c-Myc (Minella and Clurman, 

2005), leads to increased cycling and premature HSC depletion due to p53-dependent 

apoptosis (Matsuoka et al., 2008). Thus, p53 can be activated in response to oncogenic 

stress and result in apoptosis. 

Beyond apoptosis, senescence appears to be another common response in cells 

exposed to oncogenic stress (Lowe et al., 2004). As with apoptosis, p53 is also a major 

regulator of the senescence response, along with the tumor suppressors p16
Ink4a

 and 

p19
Arf

. The first report of oncogene-induced senescence was described by Serrano et al. 

(1997) where over-expression of oncogenic Ras in cultured cells leads to a permanent 

cell cycle arrest and an accumulation of p16
Ink4a

 and p53 (Serrano et al., 1997). Cells that 

are deficient for either p16
Ink4a

/p19
Arf

 or p53 do not undergo senescence, even under 
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enforced expression of oncogenic Ras, suggesting that senescence pathways may have 

evolved as tumor suppressive mechanisms (Serrano et al., 1997).  

These observations were later confirmed in studies of multiple human and mouse 

cancers, demonstrating that senescence is tumor suppressive under physiological 

conditions in vivo. Human nevi harbor oncogenic mutations in BRAF but also show signs 

of senescence, suggesting that senescence blocks the development of melanomas from 

these lesions (Michaloglou et al., 2005). Oncogenic Ras signaling in mouse lymphoma 

and mouse lung adenoma models also triggers senescence to limit the growth of pre-

neoplastic lesions (Braig et al., 2005; Collado et al., 2005). Benign human neurofibromas 

from NF1 mutant patients are also senescent, and disrupted NF1 signaling in human 

fibroblasts leads to senescence via Ras hyperactivation (Courtois-Cox et al., 2006). Acute 

reactivation of p53 in mouse models of hepatocellular carcinoma, lymphoma, and 

sarcoma rapidly induces senescence and leads to significant regression and in some cases 

partial clearance of these lesions by immune cells (Ventura et al., 2007; Xue et al., 2007). 

In all of these studies, p16
Ink4a

 or p53 are the central mediators of senescence in the pre-

neoplastic lesions. 

 

Activation of tumor suppressor pathways after Pten deletion 

 Losing Pten is sufficient to trigger the activation or expression of various anti-

proliferative tumor suppressors. Deleting Pten from the mouse prostate leads to the 

development of benign prostatic intraepithelial neoplasia that show signs of senescence 

and elevated levels of p53 and p21
Cip1

 (Chen et al., 2005). Furthermore, follow up studies 

in MEFs distinguished the senescence response that is induced as a result of Pten 
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inactivation, termed Pten-loss-induced cellular senescence (PICS), from classical 

oncogene-induced senescence. First, the onset of PICS is characterized by an increased 

translation of p53. Second, the onset of PICS does not require a sustained 

hyperproliferative phase or a DNA damage response (Alimonti et al., 2010). Similarly, 

deletion of PTEN from human epithelial cells increases p53 and p21
CIP1

 levels and leads 

to a senescence-like growth arrest (Kim et al., 2007). In MEFS, simply activating mTOR 

signaling by Tsc1 loss also leads to p53 accumulation and sensitization to p53-dependent 

apoptosis during stress (Lee et al., 2007). Treatment with rapamycin abrogates p53 

accumulation and protects cells from apoptosis. Pten and p53 inactivation cooperate in 

the generation of bladder cancer (Puzio-Kuter et al., 2009) and also glioblastomas by 

promoting the maintenance of highly undifferentiated, self-renewing cells (Zheng et al., 

2008). Pten inactivation also collaborates with p16
Ink4a

/p19
Arf

 loss in the generation of 

multiple types of cancers, including histiocytic sarcoma in both mice and humans 

(Carrasco et al., 2006; You et al., 2002). Therefore, inactivation of Pten is sufficient to 

induce tumor suppressors in the p16
Ink4a

 and p19
Arf

/p53/p21
Cip1

 pathways in multiple 

tissues. This raises the question of what consequences this might have for stem cell 

function. 

 

Tumor suppressors and stem cell maintenance 

Although tumor suppressors are known for their ability to suppress cancer 

development, many also limit stem cell function. Specifically, gatekeeping tumor 

suppressors reduce stem cell function by promoting senescence, cell death, or other 

unknown mechanisms (Pardal et al., 2005). Alternatively, oncogenes and proto-
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oncogenes tend to promote stem cell function by endowing cells with the ability to cycle. 

Thus, a careful balance of tumor suppressor and proto-oncogene activity is essential to 

provide sufficient protection against tumorigenesis while retaining the regenerative 

capacity of stem cells.  

Some proto-oncogenes promote stem cell self-renewal by negatively regulating 

the expression of gatekeeping tumor suppressors. In neural stem cells, one way Bmi-1 

promotes self-renewal is by inhibiting the expression of p16
Ink4a

 and p19
Arf

 (Molofsky et 

al., 2005; Molofsky et al., 2003). Loss of Bmi-1 triggers the upregulation of p16
Ink4a

 and 

p19
Arf

 expression in neural stem cells and results in neural stem cell depletion. Deletion 

of either p16
Ink4a

 or p19
Arf

 results in a substantial but partial rescue of Bmi-1
-/-

 neural stem 

cells, indicating that other mechanisms also deplete neural stem cells in the absence of 

Bmi-1. HSC function in Bmi-1
-/-

 mice is also limited by both p16
Ink4a

 and p19
Arf

, though 

cell extrinsic effects and perturbations in other pathways also contribute to HSC depletion 

in the absence of Bmi-1 (Lessard and Sauvageau, 2003; Liu et al., 2009a; Oguro et al., 

2006; Park et al., 2003). The high mobility group protein Hmga2 also promotes the 

maintenance of neural stem cells in fetal and young adult mice by repressing p16
Ink4a

 and 

p19
Arf

 (Nishino et al., 2008).  

Other stimuli also deplete stem cells by increasing the expression of tumor 

suppressors. Myelosuppressive treatments such as non-lethal ionizing radiation or 

busulfan exposure result in sustained damage to HSC self-renewal with a prolonged 

elevation of p21
Cip1

, p19
Arf

, and p16
Ink4a

 (Meng et al., 2003; Wang et al., 2006). 

Furthermore, oxidative damage caused by Atm loss is thought to compromise HSC 

function through p16
Ink4a

 and p19
Arf

 induction (Ito et al., 2004; Ito et al., 2006). Aging 
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also results in the increased expression of both p16
Ink4a

 and p19
Arf 

in almost all mouse 

tissues, and p16
Ink4a

 expression increases in many aged human tissues (Krishnamurthy et 

al., 2004; Zindy et al., 1997). p16
Ink4a

 expression also increases in aged HSCs, neural 

stem cells, and pancreatic β-cells, and this coincides with a decline in proliferative 

potential that is partially rescued by p16
Ink4a

 deficiency (Janzen et al., 2006; 

Krishnamurthy et al., 2006; Molofsky et al., 2006). Therefore, increased expression of 

gatekeeping tumor suppressors either by oncogene inactivation or other stimuli decreases 

stem cell function. 

Since activation of gatekeeping tumor suppressors generally results in suppression 

of stem cell activity, one could predict that the loss of these tumor suppressors would 

enhance stem cell function. Consistent with this idea, the loss of another member of the 

Ink4 family, p18
Ink4c

, results in an expansion of the HSC pool and enhanced 

competitiveness during serial reconstitution (Yu et al., 2006; Yuan et al., 2004). 

Combined loss of p16
Ink4a

 and p19
Arf 

increases the serial reconstituting capacity of HSCs, 

though losing p19
Arf

 alone does not (Stepanova and Sorrentino, 2005). The loss of p53 

increases the frequency of HSCs both by immunophenotype and function (TeKippe et al., 

2003), and hematopoietic reconstitution following myeloablative treatment is enhanced in 

the absence of p53 (Wlodarski et al., 1998). Furthermore, the gene dosage of p53 is 

inversely correlated with engraftment activity from aged p53
+/-

, p53
+/+

, and p53
+/m

 

hypermorphic mice, which express a truncated but hyperactive form of p53 (Dumble et 

al., 2007). These effects on HSCs by p53 loss may be mediated through enhanced cell 

cycling (Liu et al., 2009b). Loss of all three Rb family members, Rb, p107, and p130 

increases HSC cycling, though the effects on HSC maintenance remain uncertain 
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(Viatour et al., 2008). In contrast, loss of p21
Cip1

 promotes the exhaustion of HSCs under 

the stresses of myeloablation or serial transplantation in mice of mixed background 

(Cheng et al., 2000), though these effects appear to be minimal when assessed in 

backcrossed C57BL/6 mice (van Os et al., 2007). Overall, loss of gatekeeping tumor 

suppressors enhances HSC function, suggesting that their function is to limit HSC 

activity. 

 Taken together, activation of the PI-3kinase/Akt/mTOR pathway drives HSCs out 

of quiescence and can be oncogenic in the hematopoietic system. Gatekeeper tumor 

suppressors can be activated in response to oncogenic stress, but whether this occurs in 

HSCs in response to PI-3kinase/Akt/mTOR activation is unknown. Many gatekeeper 

tumor suppressors deplete stem cells by limiting self-renewing divisions. These 

observations raise the question of whether Pten-deletion results in HSC depletion through 

the activation of a tumor suppressor response. 

 

Diverse cellular functions are regulated by FIP200 

 The PI-3kinase pathway only represents one of many pathways that work in 

concert to promote the maintenance of HSCs. Understanding the relative contributions of 

different pathways in the physiologic regulation of HSCs has been aided by the 

systematic loss-of-function evaluations of important signaling pathways such as Notch 

(Maillard et al., 2008; Mancini et al., 2005), Wnt/β-catenin (Cobas et al., 2004; Jeannet et 

al., 2008; Koch et al., 2008), and Hedgehog (Gao et al., 2009; Hofmann et al., 2009). 

HSCs are likely maintained by signaling nodes that orchestrate a diverse array of cellular 

functions. FIP200 appears to be such a protein (Gan and Guan, 2008). Focal adhesion 
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kinase family interacting protein of 200 kD (FIP200) was originally identified as a direct 

inhibitor of proline-rich tyrosine kinase 2 (Pyk2) and the closely related focal adhesion 

kinase (FAK) (Ueda et al., 2000). Inhibition of FAK by FIP200 over-expression results in 

decreased cell spreading, cell migration, and cell cycle progression in human fibroblasts 

(Abbi et al., 2002).  

Other FAK-independent roles for FIP200 have also been identified. Studies in 

MEFs revealed that FIP200 increases cell size by binding to TSC1 and inhibiting the TSC 

complex, resulting in increased S6 kinase phosphorylation (Gan et al., 2005). FIP200 also 

induces RB expression in human leukemic cell lines (Chano et al., 2002a; Kontani et al., 

2003), and FIP200 harbors large truncating deletions in 20% of primary human breast 

cancers (also known as RB1CC1 for RB1-inducible coiled-coil 1 in these studies) (Chano 

et al., 2002b). In human breast cancer cell lines, FIP200 promotes p21
Cip1

 expression by 

binding to and stabilizing p53 (Melkoumian et al., 2005). However, conditional epithelial 

FIP200 deletion results in increased keratinocyte proliferation and the development of an 

inflammatory acanthosis resembling human psoriasis, but not mammary tumorigenesis 

(Wei et al., 2009). Mice that are completely deficient for FIP200 begin to show signs of 

apoptosis and gross structural damage to cardiac and hepatic tissues at E13.5 and die 

shortly thereafter (Gan et al., 2006). 

 

FIP200 and autophagy 

Recent studies have linked FIP200 to autophagy through its role as an essential 

component of the ULK1-mAtg13-FIP200 complex. In this way FIP200 is thought to act 

as the functional analog of Atg17 in the yeast Atg1-Atg13-Atg17 complex, though 
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sequence homology is limited (Ganley et al., 2009; Hara and Mizushima, 2009; Hara et 

al., 2008; Hosokawa et al., 2009; Jung et al., 2009). In yeast, the early steps in 

autophagosome formation require the full catalytic activity of Atg1, which is facilitated 

by stable complex formation with Atg13 and Atg17 (Glick et al.; Huang and Klionsky, 

2002). In high nutrient conditions, TORC1 phosphorylates Atg13 and prevents its 

interaction with Atg1 (Huang and Klionsky, 2002). In mammalian cells, an analogous 

working model is proposed for the regulation and function of the ULK1-mAtg13-FIP200 

complex where nutrient rich conditions suppress autophagosome formation through 

phosphorylation of ULK1 and mAtg13 by mTORC1 (Chan, 2009; Ganley et al., 2009; 

Hosokawa et al., 2009; Jung et al., 2009). FIP200 is required for complex stability and 

full catalytic activity of ULK1, as loss of FIP200 results in complete blockage of 

autophagosome formation (Ganley et al., 2009; Hara et al., 2008). Specific deletion of 

FIP200 from the central nervous system results in defective autophagosome formation in 

cerebellar Purkinje cells, accumulation of damaged mitochondria and protein aggregates, 

and the progressive death of cerebellar neurons, leading to ataxia and the death of all 

mice by 8 weeks of age (Liang et al., 2010). Thus, FIP200 is a regulator of autophagy in 

vivo, at least in certain cell types. 

In unicellular organisms faced with nutrient starvation, autophagy can temporarily 

satisfy energy requirements by providing building blocks from the digestion of existing 

proteins and organelles (Levine and Klionsky, 2004; Lum et al., 2005; Tsukada and 

Ohsumi, 1993). Autophagy also fulfills similar nutritional roles during the neonatal 

starvation period between birth and maternal nursing in mice, and even for meeting 

metabolic demands between meals in mice and humans (Kuma et al., 2004; Mizushima 
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and Klionsky, 2007). Beyond its originally described role as a response against nutrient 

deprivation, autophagy is now linked to diverse nutrition-independent cellular processes 

including cell survival, cell death, immunity, tumor suppression, and development so that 

too much or too little autophagy is detrimental (Lum et al., 2005; Mizushima et al., 

2008). Thus, a carefully regulated basal level of autophagy maintains intracellular 

homeostasis (Hara et al., 2006; Komatsu et al., 2006). One hypothesized model involves 

the autophagic clearance of aged or damaged organelles, particularly damaged 

mitochondria, which increase the production of harmful ROS (Lang-Rollin et al., 2003). 

A similar model has been proposed to mediate the fatal anemia observed in mice lacking 

an essential autophagy gene Atg7. Erythroid cells from Atg7-deleted mice fail to clear 

mitochondria from cells during the maturation of erythroblasts into mature red blood 

cells, which results in the accumulation of damaged mitochondria, increased ROS, and 

death of erythroid cells (Mortensen et al., 2010). Several other autophagy defects in 

mitochondrial clearance and the development of anemia have also been reported (Kundu 

et al., 2008; Sandoval et al., 2008).  

 

Stem cell maintenance and autophagy 

Given the exquisite sensitivity of HSCs to ROS (Ito et al., 2004; Ito et al., 2006), 

it is possible that autophagy defects lead to mitochondrial accumulation and elevated 

ROS levels that deplete HSCs. To date, the role of autophagy in HSC maintenance has 

never been investigated. In fact, very little is known about whether autophagy plays a role 

in the maintenance of any stem cell population, though a limited number of studies 

suggest this possibility. In Drosophila, the decline of neuroblasts from larval 
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development into adulthood is thought to be mediated by a combination of FoxO-induced 

apoptosis and autophagy, demonstrating that autophagy can negatively regulate these 

stem cells (Siegrist et al., 2010). In malignant gliomas, autophagy appears to play a 

cytoprotective role by conferring radioresistant properties (Lomonaco et al., 2009) to a 

subpopulation of CD133
+
 glioma-initiating cells (Singh et al., 2003; Singh et al., 2004). 

Similarly, leukemia-initiating cells that maintain chronic myeloid leukemias are resistant 

to tyrosine kinase inhibition (Copland et al., 2006; Jiang et al., 2007; Oravecz-Wilson et 

al., 2009), and induction of autophagy appears to be one mechanism by which these cells 

enhance their survival (Bellodi et al., 2009). Also, human CD34
+
 cord blood cells show 

increased autophagy in response to heavy metal poisoning, though it is unknown whether 

this is a cytoprotective response or a mechanism of cell death (Di Gioacchino et al., 

2008). Taken together, these results raise the possibility that HSC maintenance is 

influenced by autophagy.  
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Figure 1.1: A schematic of PI-3kinase pathway signaling adapted from previously 

published reviews (Laplante and Sabatini, 2009; Soulard and Hall, 2007). See text 

for details. 
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CHAPTER 2

MTOR ACTIVATION INDUCES TUMOR SUPPRESSORS THAT INHIBIT
LEUKEMOGENESIS AND DEPLETE HEMATOPOIETIC STEM CELLS

AFTER PTEN DELETION1

SUMMARY

Pten deficiency depletes hematopoietic stem cells (HSCs) but expands leukemia-

initiating cells. Understanding this mechanistic difference could lead to anti-leukemia

therapies with less toxicity to HSCs. Indeed, the mTOR inhibitor, rapamycin, blocks HSC

depletion and leukemogenesis after Pten deletion, raising the question of how mTOR

activation depletes HSCs. In contrast to what occurs after FoxO1/3/4 deletion, we found

that the depletion of Pten-deficient HSCs was not caused by oxidative stress and could

not be blocked by N-acetyl-cysteine. Instead, Pten deletion induced the expression of

p16Ink4a and p53 in HSCs, and p19Arf and p53 in other hematopoietic cells. Rapamycin

treatment attenuated the increased expression of these tumor suppressors. Analysis of

compound mutant mice indicated that p53 suppressed leukemogenesis and promoted

HSC depletion after Pten deletion. p16Ink4a also promoted HSC depletion but had a

limited role suppressing leukemogenesis. p19Arf strongly suppressed leukemogenesis but

did not deplete HSCs. Pten deficiency and FoxO deficiency therefore deplete HSCs by

1This work is currently in review as of June 2010 with authors listed as *Lee, J.Y.,
*Nakada, D., Yilmaz, O.H., Tothova, Z., Joseph, N.M., Lim, M.S., Gilliland, D.G., and
Morrison, S.J. (*equal contribution)
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different mechanisms. These results provide functional evidence that mTOR activation

depletes stem cells by inducing a tumor suppressor response.

INTRODUCTION

Phosphatidylinositol 3-kinase (PI-3kinase) pathway signaling promotes cell

growth, proliferation, and survival through a variety of downstream mechanisms

(Wullschleger et al., 2006; Yuan and Cantley, 2008). Tyrosine kinase receptors and other

signaling pathways activate PI-3kinase, which generates phosphatidylinositol-3,4,5-

trisphosphate (PIP3) (Yuan and Cantley, 2008). PIP3 activates Akt, which promotes cell

growth, proliferation, and survival by phosphorylating diverse substrates (Manning and

Cantley, 2007), including the Tuberous Sclerosis Complex (TSC) (Inoki et al., 2002;

Tang et al., 1999). Phosphorylation by Akt negatively regulates TSC, leading to the

activation of the mammalian target of rapamycin (mTOR) kinase (Inoki et al., 2002).

mTOR functions in two distinct complexes, mTORC1, which is directly inhibited by

rapamycin, and mTORC2, which can be indirectly inhibited by rapamycin (Guertin and

Sabatini, 2007; Sarbassov et al., 2006). mTORC1 promotes cell growth and proliferation

by activating S6 kinase and inactivating 4EBP1, promoting protein synthesis (Inoki et al.,

2002). mTORC2 regulates Akt activation (Guertin and Sabatini, 2007). PI-3kinase

pathway signaling is attenuated by Pten, which dephosphorylates PIP3 (Maehama and

Dixon, 1998), reducing the activation of Akt, mTORC1, and S6 kinase. As a result, Pten

deficiency increases the growth, proliferation, and survival of many cells (Sun et al.,

1999) and Pten is commonly deleted in diverse cancers (Di Cristofano and Pandolfi,

2000).
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PI-3kinase pathway signaling has divergent effects on stem cells. Conditional

deletion of Pten from embryonic stem cells and neural stem cells increases PI-3kinase

pathway activation, cell cycle entry, self-renewal, and survival (Gregorian et al., 2009;

Groszer et al., 2006; Groszer et al., 2001; Sun et al., 1999). In contrast, Pten deletion

from adult HSCs increases PI-3kinase pathway signaling and cell cycle entry, but this

leads to rapid HSC depletion (Yilmaz et al., 2006; Zhang et al., 2006). We showed that

this depletion was mediated by mTOR activation as rapamycin blocked the depletion of

Pten-deficient HSCs (Yilmaz et al., 2006). Subsequent studies of Tsc1-deficient HSCs

confirmed that increased PI-3kinase pathway signaling can drive HSCs into cycle but that

this is deleterious for HSC maintenance and leads to mTOR-mediated HSC depletion

(Chen et al., 2008; Gan et al., 2008). Similar results were obtained as a result of Pml

deletion, which also leads to increased HSC cycling and mTOR-mediated HSC depletion

(Ito et al., 2008). Activation of mTOR by Wnt signaling in the epidermis also leads to

stem cell depletion (Castilho et al., 2009). mTOR is thus a critical modulator of stem cell

maintenance in multiple tissues, raising the question of how mTOR activation leads to

stem cell depletion.

This question gains added importance from the observation that mTOR activation

can have opposite effects on cancer cells as compared to normal stem cells. While Pten

deletion and mTOR activation lead to the depletion of normal HSCs, this leads to the

generation and expansion of leukemia-initiating cells (Yilmaz et al., 2006). This makes it

possible to deplete leukemia-initiating cells while rescuing normal HSC function using

rapamycin in Pten mutant mice (Yilmaz et al., 2006). A sophisticated understanding of
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stem cell self-renewal mechanisms, and PI-3kinase pathway signaling in particular, can

lead to therapies that eliminate cancer cells without toxicity to normal stem cells.

 One mechanism by which Pten deletion and PI-3kinase pathway activation could

deplete stem cells involves the activation of a tumor suppressor response. Sustained

oncogenic signaling can induce tumor suppressors in the p53 and Rb pathways that cause

cellular senescence (Lin et al., 1998; Serrano et al., 1997). p16Ink4a/p19Arf deficiency

increases the incidence of tumors in Pten heterozygous mice, implying that p16Ink4a and

p19Arf suppress the neoplastic proliferation of Pten mutant cells in certain tissues (You et

al., 2002). Conditional inactivation of Pten in prostate leads to the induction of p53-

mediated senescence, impeding the development of prostate cancer (Chen et al., 2005).

These studies raise the question of whether a similar tumor suppressor response occurs

after Pten deletion in the hematopoietic system, and whether this could suppress

leukemogenesis or deplete HSCs.

Another mechanism by which Pten deletion could deplete HSCs involves the

inactivation of FoxO family transcription factors. When localized to the nucleus, FoxO

transcription factors promote the expression of enzymes that eliminate reactive oxygen

species (ROS). However, activated Akt phosphorylates FoxO proteins, leading to their

retention in the cytoplasm (Biggs et al., 1999; Brunet et al., 1999), reducing the

expression of these enzymes and increasing ROS levels. HSCs are particularly sensitive

to the toxic effects of ROS (Ito et al., 2004; Ito et al., 2006). Indeed, deletion of

FoxO1/3/4 from adult HSCs leads to increased ROS levels and HSC depletion (Tothova

et al., 2007). The depletion of FoxO1/3/4-deficient HSCs can be at least partially rescued

by the antioxidant N-Acetyl-cysteine (NAC), proving that oxidative stress contributes to
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the depletion of these HSCs (Tothova et al., 2007). FoxO3a is particularly important for

stem cell maintenance as deletion of FoxO3a alone leads to increased ROS levels and

HSC depletion (Miyamoto et al., 2007; Yalcin et al., 2008). FoxO transcription factors

are also important for the maintenance of neural stem cells (Paik et al., 2009; Renault et

al., 2009).

These results raise the possibility that Pten deletion depletes HSCs by increasing

Akt activation, which reduces FoxO function and increases oxidative stress. Consistent

with this possibility, the depletion of Tsc1-deficient HSCs is mediated partly by oxidative

stress and rescued by NAC treatment (Chen et al., 2008). On the other hand,

constitutively active Akt did not increase ROS levels in HSCs and the depletion of these

HSCs could not be rescued by NAC treatment (Kharas et al., 2010). It would appear that

activation of PI-3kinase pathway intermediates sometimes leads to HSC depletion as a

consequence of oxidative stress but in other cases HSCs are depleted by other, unknown,

mechanisms.

These results raise the question of whether Pten deficiency and FoxO deficiency

deplete HSCs by similar mechanisms. We were unable to detect FoxO3a inactivation or a

significant increase in ROS levels in HSCs after Pten deletion. We were not able to

rescue the depletion of Pten-deficient HSCs by treating with NAC. Pten deficiency and

FoxO1/3/4 deficiency therefore lead to HSC depletion by different mechanisms. Indeed,

Pten deletion induced the expression of p16Ink4a and p53 in HSCs, and p19Arf and p53 in

other hematopoietic cells. Analysis of compound mutant mice revealed that deficiency

for p19Arf, or p16Ink4a/p19Arf, or p53 (but not p16Ink4a) accelerated leukemogenesis after

Pten deletion. Moreover, deficiency for p16Ink4a, or p16Ink4a/p19Arf, or p53 (but not p19Arf)
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autonomously prolonged the reconstituting capacity of HSCs after Pten deletion. Our

results demonstrate there are multiple distinct mechanisms by which increased PI-3kinase

pathway signaling can lead to stem cell depletion, including an mTOR-mediated tumor

suppressor response that occurs in HSCs after Pten deletion.
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MATERIALS AND METHODS

Mice

C57BL/Ka-Thy-1.1 (CD45.2) and C57BL/Ka-Thy-1.2 (CD45.1) mice were used

in hematopoietic reconstitution experiments. Mx-1-Cre+ mice (Kuhn et al., 1995), Ptenfl/fl

mice (Groszer et al., 2001), Ink4a+/- mice (Sharpless et al., 2001), Arf+/- mice (Kamijo et

al., 1997), Ink4a/Arf+/- mice (Serrano et al., 1996), and p53+/- mice (Jacks et al., 1994)

were backcrossed for at least ten generations onto a C57BL/Ka background. All mice

were housed in the Unit for Laboratory Animal Medicine at the University of Michigan

in accordance with the National Research Council’s guide for the care and use of

laboratory animals.

pIpC, rapamycin, and N-Acetyl-L-cysteine administration

For experiments involving Pten deletion, polyinosine-polycytidine (pIpC) and

rapamycin were administered as previously described (Yilmaz et al., 2006). Briefly, pIpC

from Sigma (St. Louis, MO) or from Amersham (Piscataway, NJ) was resuspended in

Dulbecco's phosphate-buffered saline (D-PBS) at 2 mg/ml (for Sigma) or 50 μg/ml (for

Amersham), and mice were injected intraperitoneally (IP) with 25 μg/gram (for Sigma) or

0.5 μg/gram (for Amersham) of body mass every other day for 6-14 days. Rapamycin

(LC Laboratories, Woburn, MA) was dissolved in absolute ethanol at 10 mg/ml and

diluted in 5% Tween-80 (Sigma) and 5% PEG-400 (Hampton Research, Aliso Viejo, CA)

before being administered daily by IP injection at a dose of 4 mg/kg. N-Acetyl-L-cysteine

(NAC; Sigma) was administered daily by subcutaneous injection at 100 mg/kg (pH 7.0)

starting one day after the final dose of pIpC.
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Flow cytometry and HSC isolation

Bone marrow cells were obtained by crushing the long bones (tibias and femurs),

pelvic bones, and vertebrae in a mortar and pestle with Hank's buffered salt solution

without calcium or magnesium, supplemented with 2% heat-inactivated calf serum

(GIBCO, Grand Island, NY; HBSS+). Cells were triturated and filtered through nylon

screen (45 μm, Sefar America, Kansas City, MO) to obtain a single-cell suspension. For

isolation of c-Kit+Flk2−Lin−Sca-1+CD48− cells, whole bone marrow cells were incubated

with FITC-conjugated monoclonal antibodies to lineage markers including B220 (6B2),

CD3 (KT31.1), CD4 (GK1.5), CD5 (53-7.3), CD8 (53-6.7), Gr-1 (8C5), Mac-1 (M1/70),

and Ter119 (TER-119) in addition to APC-conjugated anti-Sca-1 (Ly6A/E; E13-6.7) and

biotin-conjugated anti-c-Kit (2B8). A PE/Cy5-conjugated antibody against Flk-2

(A2F10.1) was used to isolate Flk-2− progenitors. Biotin-conjugated c-Kit staining was

visualized using streptavidin APC-Cy7.

For isolation of CD150+CD48-CD41-Lin-Sca-1+c-kit+ HSCs, bone marrow cells

were incubated with PE-conjugated anti-CD150 (TC15-12F12.2; BioLegend, San Diego,

CA), FITC-conjugated anti-CD48 (HM48-1; BioLegend), FITC-conjugated anti-CD41

(MWReg30; BD PharMingen, San Diego, CA), APC-conjugated anti-Sca-1 (Ly6A/E;

E13-6.7), and biotin-conjugated anti-c-Kit (2B8) antibody, in addition to antibodies

against the following FITC-conjugated lineage markers: CD2 (RM2-5), B220 (6B2),

CD3 (KT31.1), CD5 (53-7.3), CD8 (53-6.7), Gr-1 (8C5), and Ter119 (TER-119). Biotin-

conjugated c-Kit was visualized using streptavidin-conjugated APC-Cy7. HSCs were

sometimes pre-enriched by selecting c-Kit+ cells using paramagnetic anti-biotin
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microbeads and autoMACS (Miltenyi Biotec, Auburn, CA). Dead cells were excluded

using the viability dye 4',6-diamidino-2-phenylindole (DAPI) (1 μg/ml).

To measure ROS levels, bone marrow cells were isolated and stained as above

except that the HSC stain was modified to make the FITC channel available for DCFDA

(2’-7’-dichlorofluorescein diacetate, Molecular Probes, Eugene, OR) staining. Antibodies

for HSC isolation were as described above except for the following antibodies: PE/Cy5-

conjugated anti-CD150 (TC15-12F12.2; BioLegend), PE-conjugated anti-CD48 (HM48-

1; BioLegend), PE-conjugated anti-CD41 (MWReg30; BD PharMingen), and PE-

conjugated antibodies against lineage markers. After antibody staining, thymus cells,

whole bone marrow cells, or c-Kit+ enriched cells were incubated with 5 μM DCFDA for

15 min at 37°C followed by flow cytometry.

Competitive repopulation and leukemogenesis assays

Wild-type adult recipient mice (CD45.1) were irradiated using a Cesium137

GammaCell40 Exactor Irradiator (MDS Nordia, Kanata, ON) delivering 110 rad/min in

two equal doses of 570 rad, delivered at least 2 hr apart. Cells were injected into the

retro-orbital venous sinus of anesthetized recipients. Each recipient mouse received 10

CD150+CD48-CD41-Lin-Sca-1+c-kit+ HSCs from CD45.2 donor mice (after pIpC

treatment) along with 300,000 CD45.1 bone marrow cells for radioprotection. NAC

treatment, when tested, started one day after transplantation. Beginning four weeks after

transplantation and continuing for at least 16 weeks, blood from the tail veins of recipient

mice, was subjected to ammonium-chloride potassium red cell lysis and stained with

directly conjugated antibodies to CD45.2 (104), B220 (6B2), Mac-1 (M1/70),
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CD3(KT31.1), and Gr-1(8C5) to quantitate donor cell engraftment. For leukemogenesis

assays, 1x106 unexcised donor bone marrow cells were co-injected with 500,000

recipient bone marrow cells into irradiated wild-type recipient mice. Six weeks after

transplantation, recipient mice were treated with seven injections of pIpC over 14 days

and their survival was monitored over time. NAC treatment, when tested, was started

after the final dose of pIpC.

Immunofluorescence assay

Immunofluorescence assays on sorted cells were performed as previously

described (Ema et al., 2006). Cells were sorted into drops of PBS on poly-D-lysine

coated slides and fixed with 2% paraformaldehyde for 10 minutes. In some experiments,

cells were sorted into medium (IMDM + 10% fetal bovine serum) with or without SCF

(20 ng/ml) and TPO (50 ng/ml), then incubated for 24 hours at 37°C and fixed. After

washing, cells were permeabilized with PBS containing 0.3 % Triton X-100 and blocked

with PBS containing 10% goat serum. Slides were stained with anti-FoxO3a (#2497) and

anti-phospho-S6 (#2215) antibodies (Cell Signaling Technology, dilution 1:200) at 4°C

overnight. After washing, slides were incubated with secondary antibodies conjugated

with AlexaFluor 488 or 555 (Invitrogen) together with DAPI and analyzed with an FV-

500 confocal microscope (Olympus).

Immunoprecipitation

Two million Lineage-c-Kit+ progenitor cells were sorted and proteins were

extracted by incubating on ice in lysis buffer (50 mM Tris-HCl, pH7.5, 150 mM NaCl,
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1% Triton-X 100, 1mM EDTA) supplemented with complete EDTA-free protease

inhibitor cocktail (Roche), 1mM PMSF and Halt phosphatase inhibitor cocktail (Pierce)

with brief sonication. All extracts were precleared with Protein-L agarose (Santa Cruz

Biotechnology) and incubated with Protein-L agarose bound with antibodies against p53

(#2524, Cell Signaling Technology), p19Arf (ab26696, Abcam) and p16Ink4a (sc-1207,

Santa Cruz Biotechnology) or control IgG from mouse, rat, and rabbit for 12 hours at

4°C. Immunoprecipitates were washed four times with lysis buffer and heated to 70°C for

10 minutes in 1X LDS sample buffer (Invitrogen). The eluted proteins were separated on

a Bis-Tris gel (Invitrogen) and immunoblotted with the antibodies indicated above. To

detect p53, secondary antibodies against mouse IgG light chain (Jackson

Immunoresearch) were used to prevent the IgG heavy chain from obscuring p53

detection.

Western blotting

The same number (25,000-50,000 depending on the experiment) of c-

Kit+Flk2−Lin−Sca-1+CD48− HSCs or whole bone marrow cells were sorted into

microcentrifuge tubes with PBS and then protein was extracted by adding TCA to a final

concentration of 10%. Extracts were incubated on ice for 15 minutes and spun down for

10 minutes at 16.1 rcf at 4°C. The supernatant was removed and the pellets were washed

with acetone twice then dried. The protein pellets were solubilized with Solubilization

buffer (9M Urea, 2% Triton X-100, 1% DTT) before adding LDS loading buffer

(Invitrogen, Carlsbad, CA). For spleen samples, equivalent numbers of cells were

pelleted, then lysed in RIPA buffer (50mM Tris, 150mM NaCl, 0.1% SDS, 0.5% Na
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deoxycholate, 1% Triton X-100) supplemented with complete EDTA-free protease

inhibitors (Roche Applied Science, Indianapolis, IN), 1mM DTT, Halt phosphatase

inhibitor cocktail (Thermo Fisher Scientific, Rockford, IL), and 1

for 10 minutes at 16.1 rcf at 4°C. LDS loading buffer (Invitrogen) was added to the

cleared supernatant. Proteins were separated on a Bis-Tris polyacrylamide gel

(Invitrogen) and transferred to a PVDF membrane (Millipore, Billerica, MA). Antibodies

used for Western blotting were anti-phospho Akt T308 (#4056), anti-Akt (#9272), anti-

phospho-S6 (#2215), anti-S6 (#2217), anti-phospho-4E-BP1 (Thr37/46) (#2855), anti-

4E-BP1 (#9452), anti-FoxO3a (#2497), and anti-p53 (#2524) (all from Cell Signaling

Technology, Danvers, MA), and anti-p16Ink4a (sc-1207, Santa Cruz, Santa Cruz, CA),

anti-p19Arf (ab26696, Abcam), anti-p21Cip1 (sc-6246, Santa Cruz), and anti-ß-actin

(A1978, Sigma).

Quantitative (real-time) reverse-transcriptase PCR

A total of 2000 HSCs or 20,000 unfractionated bone marrow cells were sorted

into Trizol (Invitrogen) and RNA was isolated using chloroform extraction and

isopropanol precipitation. cDNA was made with random primers and SuperScript III

reverse transcriptase (Invitrogen). Quantitative PCR was performed with cDNA from 200

cell equivalents using a SYBR Green Kit and a LightCycler 480 (Roche Applied

Science). Each sample was normalized to β-actin. Primer sequences were as follows:

β-actin F, CGTCGACAACGGCTCCGGCATG;

β-actin R, GGGCCTCGTCACCCACATAGGAG;

Nfe2 F, TGGCCATGAAGATTCCTTTC; Nfe2 R, TAGCGGATACTGTGCCAACA;
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Nrf1 F, GTCACCATGGCCCTCAAC; Nrf1 R, GGACTATCTGTCTCCCACCTTG;

Nrf2 F, CATGATGGACTTGGAGTTGC; Nrf2 R, CCTCCAAAGGATGTCAATCAA;

catalase F, CCTTCAAGTTGGTTAATGCAGA;

catalase R, CAAGTTTTTGATGCCCTGGT;

SOD1 F, GTGACTGCTGGAAAGAACG; SOD1 R, TCTCGTGGACCACCATTGTA;

SOD2 F, GGCTTGGCTTCAATAAGGAG;

SOD2 R, ATACTGAAGGTAGTAAGCGTG;

Ink4a F, CGAACTCTTTCGGTCGTACCC;

Ink4a R, CGAATCTGCACCGTAGTTGAGC;

Arf F, GTTCTTGGTCACTGTGAGGATTCAG;

Arf R, CCATCATCATCACCTGGTCCAG;

Cip1 F, TCCACAGCGATATCCAGACA; Cip1 R, AGACAACGGCACACTTTGCT;

Trp53 F, AAAGGATGCCCATGCTACAG;

Trp53 R, TATGGCGGGAAGTAGACTGG.

Annexin V, BrdU, and senescence-associated β-galactosidase staining

Annexin V was detected by flow-cytometry using Annexin V APC (BD

PharMingen) and Annexin V Binding Buffer (BD PharMingen) as described by the

manufacturer. BrdU incorporation was measured by flow-cytometry (BD PharMingen).

As described previously (Cheshier et al., 1999), mice were given an intraperitoneal

injection of 0.1 mg of BrdU/g of body mass in Dulbecco’s phosphate buffered saline (D-

PBS, Gibco). For senescence-associated β-galactosidase staining, cells were sorted into
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drops of PBS on a poly-lysine coated slide and stained using the senescence-associated β-

gal Staining Kit (#9860, Cell Signaling Technology).

Histopathology

Spleen, liver, and thymus samples were fixed in 10% neutral buffered formalin

and paraffin embedded. Thin sections (5 μm) were cut on a microtome and stained with

hematoxylin and eosin using standard protocols. The slides were then analyzed with a

hematopathologist and classified according to the Bethesda protocols for the

classification of hematopoietic neoplasms in mice (Kogan et al., 2002; Morse et al.,

2002).
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RESULTS

Akt activation after Pten deletion activates mTORC1 but does not inactivate

FoxO3a

We conditionally deleted Pten from HSCs and other hematopoietic cells in young

adult Ptenfl/flMx-1-Cre+ mice and Pten+/flMx-1-Cre+ littermate controls by administering

seven doses of polyinosine-polycytidine (pIpC) over 14 days (Yilmaz et al., 2006). Pten-

deleted mice and littermate controls were then treated for a week with daily injections of

rapamycin or vehicle to assess the effects of Pten deletion and rapamycin treatment on

the activation of signaling molecules in the PI-3kinase pathway. The analyses were

performed by western blotting of protein from bone marrow cells or c-kit+Flk-2-Lin-Sca-

1+CD48- cells, a population highly enriched for HSCs (Christensen and Weissman, 2001;

Kiel et al., 2005). Rapamycin treatment and Pten deletion both appeared to increase Akt

activation based on T308 phosphorylation in bone marrow cells and in HSCs (Fig. 2.1A,

B). The increase in Akt phosphorylation after rapamycin treatment is consistent with the

attenuation of a negative feedback loop from S6 kinase to IRS-1 as a result of reduced

mTORC1 activation (Harrington et al., 2004). Rapamycin does not, therefore, rescue the

reconstituting activity of Pten-deficient HSCs by normalizing Akt activation.

Since rapamycin failed to normalize Akt activation, our data suggested that

effects of Akt activation on FoxO function were unlikely to mediate HSC depletion after

Pten deletion. Consistent with this, neither Pten deletion nor rapamycin treatment

appeared to significantly affect total FoxO3a levels in c-kit+Flk-2-Lin-Sca-1+CD48- cells

(Fig. 2.1B). Neither Pten deletion nor rapamycin treatment appeared to affect phospho-

Foxo3a levels, total FoxO1 levels, or phospho-H2AX levels in c-kit+Lin-Sca-1+ cells
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either (Fig. 2.8). Since FoxO3a is excluded from the nucleus upon phosphorylation by

Akt, we also analyzed its subcellular localization by immunohistochemistry in

CD150+CD48-CD41-Lin-c-Kit+Sca-1+ cells, which are very highly purified HSCs (Kiel et

al., 2005). To validate this assay, HSCs were sorted from control and Pten-deleted mice

and stimulated with high levels of SCF and TPO in culture for 24 hours before staining.

Under these conditions, HSCs from control and Pten-deleted mice showed an overall

decrease in FoxO3a staining as well as strongly decreased nuclear staining and increased

cytoplasmic staining (Fig. 2.9). In contrast, when HSCs were stained immediately after

isolation from mice rather than after stimulation with growth factors in culture, we

detected no change in FoxO3a expression levels or subcellular localization (Fig. 2.1F-H).

FoxO3a continued to localize to the nucleus in uncultured HSCs after Pten deletion.

These results suggest that Pten deletion is unlikely to significantly reduce FoxO3a

function in HSCs.

In contrast to our failure to detect clear effects of Pten deletion on FoxO3a,

mTORC1 activity was clearly elevated after Pten deletion based on the increased

phospho-S6 levels in freshly isolated bone marrow cells and HSCs (Fig. 2.1A, 1B, 1D,

1E, 1H). This increase in phospho-S6 levels was attenuated by rapamycin treatment (Fig.

2.1A, 1B). These changes were further confirmed by the observation of increased

phospho-4EBP1 levels in bone marrow cells after Pten deletion (Fig. 2.1A). This increase

in phospho-4EBP1 levels was also attenuated by rapamycin treatment (Fig. 2.1A). Thus,

Pten deletion increased mTORC1 and S6 kinase activation in a manner that was reversed

by rapamycin, suggesting that the changes that lead to HSC depletion after Pten deletion

are mediated by this branch of the PI-3kinase pathway.
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Pten deletion increases ROS levels in the thymus but not in HSCs or bone marrow

cells

Although FoxO3a did not appear to have been inactivated after Pten deletion, we

examined ROS levels to assess whether changes in ROS might contribute to HSC

depletion. We assessed the intracellular levels of ROS in CD150+CD48-CD41-Lin-c-

kit+Sca-1+ HSCs, CD150-CD48-CD41-Lin-c-Kit+Sca-1+ transiently reconstituting

multipotent progenitors (MPPs) (Kiel et al., 2008), bone marrow cells, and thymus cells

from Pten-deleted mice and littermate controls one week after finishing pIpC treatment.

ROS levels were quantitated by flow-cytometry using 2’-7’-dichlorofluorescein diacetate

(DCFDA) staining (Fig. 2.2). After Pten deletion, we detected a significant increase in

ROS levels in thymocytes (Fig. 2.2C, D; 2.8-fold, p<0.05) but we did not consistently

detect changes in ROS levels within unfractionated bone marrow cells, HSCs, or MPPs

(Fig. 2.2B, D). We also did not detect an increase in ROS levels within unfractionated

bone marrow cells, HSCs, or MPPs three weeks after finishing pIpC treatment (Fig. 2.2E,

F). Only mice showing no signs of neoplasms were used in these experiments.

The increase in ROS levels in the thymus after Pten deletion was attenuated by

daily subcutaneous injection of the anti-oxidant NAC, but NAC did not affect ROS levels

in bone marrow cells, HSCs, or MPPs (Fig. 2.2F). We do not know why Pten deletion

increased ROS levels in thymocytes but not in HSCs or WBM cells, but ROS regulation

is known to differ among hematopoietic cells (Ito et al., 2004; Ito et al., 2006; Tothova et

al., 2007). These data demonstrate that Pten deletion had a limited effect on ROS levels

in HSCs, consistent with our failure to detect any effect of Pten deletion on FoxO1 or
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FoxO3a expression or localization. We were also unable to detect significant effects of

Pten deletion on the expression of known FoxO target genes (Tothova et al., 2007) or

antioxidant response genes (Nguyen et al., 2009) in bone marrow cells, HSCs, or MPPs

(Fig. 2.10). Tested genes included Nfe2 (nuclear factor, erythroid derived 2), Nrf1

(nuclear respiratory factor 1), Nrf2, catalase, Sod1 (superoxide dismutase 1), and Sod2.

NAC does not rescue major hematopoietic defects after Pten deletion

Although we did not detect an increase in ROS levels in HSCs using DCDFA

staining, HSCs might still experience oxidative stress after Pten deletion. To directly

assess whether HSC depletion could be rescued by attenuating oxidative stress, we

treated mice with daily subcutaneous injections of NAC beginning the day after pIpC

treatment ended. Three weeks after finishing pIpC treatment, splenic mass (normalized to

body mass) was 3-fold higher (p<0.005), and thymic mass (normalized to body mass)

was 2-fold higher (p<0.005) in Pten-deleted mice as compared to littermate controls (Fig.

2.3A). Consistent with this, the number of cells in spleen and thymus were also

significantly greater in Pten-deleted mice as compared to littermate controls (Fig. 2.3B).

Daily treatment with NAC for 3 weeks after pIpC treatment did not rescue these changes

in spleen or thymus size or cellularity in Pten-deleted mice (Fig. 2.3A, B).

In contrast to the increase in spleen and thymus cellularity, bone marrow

cellularity declined significantly three weeks after Pten deletion (Fig. 2.3B, p<0.005).

NAC treatment also did not rescue this change after Pten deletion. The failure of NAC

treatment to rescue changes in the cellularity of hematopoietic organs after Pten deletion
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contrasts with the ability of rapamycin treatment to rescue all of these phenotypes

(Yilmaz et al., 2006).

Three weeks after pIpC treatment, HSC frequency and number in the bone

marrow were significantly reduced in Pten-deleted mice as compared to littermate

controls (Fig. 2.3C, F), as we reported previously (Yilmaz et al., 2006). NAC did not

rescue the depletion of bone marrow HSCs (Fig. 2.3C, F). MPP frequency and number in

the bone marrow was not significantly affected by Pten deletion or NAC treatment (Fig.

2.3D, G). The frequency and absolute number of HSCs and MPPs increased significantly

in the spleen three weeks after pIpC treatment (Fig. 2.3E, H), consistent with the

extramedullary hematopoiesis that arises after Pten deletion (Yilmaz et al., 2006). NAC

attenuated the increase in splenic HSCs, though HSC frequency and number still

increased significantly in the spleen (Fig. 2.3E, H). NAC did not significantly affect MPP

frequency or number in the spleen after Pten deletion (Fig. 2.3E, H). NAC also had little

effect on other changes in hematopoiesis after Pten deletion (Fig. 2.11). These results

indicate that NAC treatment had little effect on the changes in HSC frequency and

localization after Pten deletion, in contrast to rapamycin which rescues all of these

phenotypes (Yilmaz et al., 2006).

NAC does not prevent the loss of HSCs or leukemogenesis after Pten deletion

To formally test whether NAC rescues the function of Pten-deleted HSCs, we

treated Ptenfl/flMx-1-Cre+ and Pten+/flMx-1-Cre+ mice with 7 doses of pIpC over 14 days,

then transplanted 10 donor CD150+CD48-CD41-Lin-c-Kit+Sca-1+ HSCs along with a

radioprotective dose of recipient bone marrow cells into lethally irradiated recipients.
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Half of the recipients then received daily subcutaneous injections of NAC, while the

other half received daily saline injections, starting on the day of transplantation. In three

independent experiments, all recipients of control HSCs, whether they were treated with

NAC or vehicle, were long-term multilineage-reconstituted by donor cells (Fig. 2.4A-E).

All of the recipients of Pten-deleted HSCs showed transient multilineage reconstitution,

irrespective of whether they were treated with NAC (Fig. 2.4A-E). Daily treatment of

transplanted mice with NAC therefore did not significantly affect the loss of HSC

reconstituting capacity after Pten deletion. The inability of NAC treatment to rescue

changes in HSC frequency or function after Pten deletion suggests that oxidative stress is

unlikely to be the primary determinant of HSC depletion after Pten deletion in contrast to

what has been observed after FoxO1/3/4 deletion (Tothova et al., 2007).

To assess whether NAC treatment reduces leukemogenesis after Pten deletion, we

transplanted 1x106 bone marrow cells from untreated Ptenfl/flMx-1-Cre+ mice or

Pten+/flMx-1-Cre+ controls along with 500,000 recipient bone marrow cells into irradiated

recipients. Six weeks later, we treated the recipients with seven doses of pIpC over 14

days. The recipients were then treated with NAC or vehicle daily. In two independent

experiments, recipients of control cells became long-term multilineage reconstituted by

donor cells. All survived for 120 days and showed no signs of leukemogenesis (n=20,

Fig. 2.4F). In contrast, all 20 recipients of Pten-deleted bone marrow died with

myeloproliferative disease (MPD) and/or T-cell acute lymphoblastic leukemia (T-ALL)

33 to 112 days after pIpC treatment, irrespective of whether they were treated with NAC

(Fig. 2.4F; Fig. 2.12). NAC treatment did not significantly affect the lifespan of mice
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after Pten deletion (Fig. 2.4F) in contrast to rapamycin, which prevents leukemogenesis

and extends the lifespan of Pten-deleted mice (Yilmaz et al., 2006).

Pten deletion leads to a tumor suppressor response in HSCs

Since oxidative stress did not explain the major changes in hematopoiesis after

Pten deletion we tested whether Pten deletion induced a tumor suppressor response. We

first assessed the expression of p16Ink4a, p19Arf, p53, and p21Cip1 tumor suppressors in

splenocytes. We did not detect p16Ink4a protein expression in splenocytes with or without

Pten deletion (Fig. 2.5A). We did detect very low levels of p16Ink4a transcript in

splenocytes, but transcript levels were not significantly affected by Pten deletion or

rapamycin treatment (Fig. 2.13A). In contrast, we observed clear increases in p19Arf, p53

and p21Cip1 protein after Pten deletion (Fig. 2.5A). These increases in p19Arf, p53 and

p21Cip1 were attenuated or eliminated by rapamycin treatment, suggesting that the

expression of these tumor suppressors was elevated as a consequence of mTOR

activation (Fig. 2.5A). At the RNA level we confirmed significantly increased expression

of p19Arf (Fig. 2.5B) and p21Cip1 (Fig. 2.13B) by qPCR in Pten-deficient splenocytes, and

that these increases were eliminated by rapamycin treatment. We observed no effect of

Pten deletion or rapamycin treatment on p53 transcript levels (Fig. 2.13C), consistent

with the observation that p53 expression is mainly regulated post-transcriptionally

(Jimenez et al., 1999; Lee et al., 2007; Takagi et al., 2005). Increased mTOR activation as

a result of Pten deletion induces a tumor suppressor response in hematopoietic cells.

We hypothesized that this response suppressed leukemogenesis but promoted the

depletion of HSCs after Pten deletion, and that rapamycin rescued HSC depletion by
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attenuating the tumor suppressor response in HSCs. p16Ink4a and p19Arf are expressed at

extraordinarily low levels in non-transformed primary somatic cells and are notoriously

difficult to detect, even in circumstances in which genetic analysis demonstrates that they

are functionally important (Bertwistle and Sherr, 2006; Krishnamurthy et al., 2004;

Molofsky et al., 2003; Molofsky et al., 2006; Zindy et al., 1997; Zindy et al., 2003). This

problem is compounded in rare HSCs, from which only limited amounts of protein are

available. Therefore, to test this we sorted 2x106 Lineage-c-kit+ hematopoietic

stem/progenitor cells, immunoprecipitated p16Ink4a, p19Arf, and p53, then performed

Western blots to assess the levels of p16Ink4a, p19Arf, and p53 in the protein extract from

Lineage-c-kit+ cells. We used wild type and p16Ink4a/p19Arf–deficient mouse embryonic

fibroblasts for positive and negative controls. We observed p16Ink4a and p53 expression in

the Pten-deficient Lineage-c-kit+ cells but not in wild-type cells or cells treated with

rapamycin, but did not detect p19Arf expression in wild-type or Pten-deficient Lineage-c-

kit+ cells (Fig. 2.5C).

To independently verify the increases in p16Ink4a and p53 expression within HSCs

we performed qPCR or immunohistochemistry on highly purified HSCs. We confirmed

that p16Ink4a transcript levels increased in CD150+CD48-CD41-Lin-c-Kit+Sca-1+ HSCs

after Pten deletion and that this increase was attenuated by rapamycin treatment (Fig.

2.5D). p16Ink4a transcript could only be amplified from 2 of 10 samples of wild-type

CD150+CD48-CD41-Lin-c-Kit+Sca-1+ HSCs (with or without rapamycin treatment) but

was detected in 5 of 5 samples of Pten deficient CD150+CD48-CD41-Lin-c-Kit+Sca-1+

HSCs and in 2 of 5 Pten deficient CD150+CD48-CD41-Lin-c-Kit+Sca-1+ HSCs treated

with rapamycin (Fig. 2.5D). We were able to amplify p19Arf transcript from only 4 of 10
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wild-type and 6 of 10 Pten deficient CD150+CD48-CD41-Lin-c-Kit+Sca-1+ HSCs (Fig.

2.5D). We also stained CD150+CD48-CD41-Lin-c-Kit+Sca-1+ HSCs with anti-p53

antibody on slides to assess the level of p53 expression on a cell-by-cell basis. Pten

deficient HSCs that had not been treated with rapamycin exhibited significantly increased

p53 staining (Fig. 2.5E, F), consistent with what we had observed by western blot (Fig.

2.5C). Together, our results suggest that p16Ink4a and p53, but not p19Arf, are induced in

HSCs after Pten deletion. To definitively test whether these tumor suppressors

contributed to HSC depletion or leukemia suppression after Pten deletion we functionally

tested whether they modulated these phenotypes (see below).

Deficiency for p19Arf or p53, but not p16Ink4a, accelerates leukemogenesis

To test if p16Ink4a, p19Arf, or p53 suppressed the development of leukemia after

Pten-deletion we generated compound mutant mice from which we could conditionally

delete Pten in backgrounds that lacked p16Ink4a, p19Arf, p16Ink4a/p19Arf or p53. In initial

experiments, we found that conditional deletion of Pten from p16Ink4a/p19Arf-deficient or

p53-deficient backgrounds led to leukemogenesis (T-ALL, MPD, and/or histiocytic

sarcoma) and to the death of mice within 14 days after the start of pIpC treatment (data

not shown). This indicated that elimination of these tumor suppressors accelerated

leukemogenesis because conditional deletion of Pten from mice with wild-type tumor

suppressors caused the mice to die with leukemia (T-ALL, MPD) 30 to 46 days after the

start of pIpC treatment (data not shown).

To avoid the rapid death of compound mutant mice and to compare the rates of

leukemogenesis from limited numbers of mutant cells in wild-type mice, we transplanted
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1x106 unexcised donor (CD45.2+) bone marrow cells from wild-type, p16Ink4a/p19Arf-/-,

Ptenfl/flMx-1-Cre+, and Ptenfl/flMx-1-Cre+p16Ink4a/p19Arf-/- mice into irradiated wild-type

recipient mice along with 500,000 recipient (CD45.1+) bone marrow cells. Six weeks

after transplantation, when the donor cells had stably engrafted, all recipients were treated

with 7 injections of pIpC over 14 days to induce Pten-deletion. Recipients of wild-type

and p16Ink4a/p19Arf-/- bone marrow cells almost all survived for the duration of the

experiment (165 days) with no signs of leukemogenesis (Fig. 2.6A). In contrast,

recipients of Ptenfl/flMx-1-Cre+ cells died 49 to 162 days after ending pIpC treatment

(Fig. 2.6A). Recipients of Ptenfl/flMx-1-Cre+p16Ink4a/p19Arf-/- cells died significantly

(p<0.02) more quickly, 27 to 65 days after ending pIpC treatment (Fig. 2.6A). Histology

confirmed that the mice had MPD and/or histiocytic sarcoma and/or T-ALL when they

died. These data indicate that deficiency for p16Ink4a and p19Arf accelerates

leukemogenesis after Pten deletion.

To better understand the relative contributions of p16Ink4a and p19Arf to the

suppression of leukemogenesis after Pten deletion we performed the same experiment

using mice that were compound mutants for Pten and p16Ink4a (Fig. 2.6C) or Pten and

p19Arf (Fig. 2.6B). p16Ink4a deficiency did not significantly affect the rate at which mice

died after treatment with pIpC. Moreover, the spectrum of hematopoietic neoplasms did

not differ between recipients of Ptenfl/flMx-1-Cre+ cells versus Ptenfl/flMx-1-Cre+p16Ink4a-/-

cells (Fig. 2.6C). In contrast, p19Arf deficiency did significantly (p<0.02) increase the rate

at which mice died after pIpC treatment (Fig. 2.6B). These results suggest that p19Arf

suppresses leukemogenesis after Pten deletion, consistent with the increase in p19Arf

expression in splenocytes after Pten deletion (Fig. 2.5A).
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We observed no histiocytic sarcomas from Ptenfl/flMx-1-Cre+p16Ink4a-/- cells (Fig.

2.6C; 0% of mice) and few from Ptenfl/flMx-1-Cre+p19Arf-/- cells (Fig. 2.6B; 7% of mice),

but abundant histiocytic sarcomas from Ptenfl/flMx-1-Cre+p16Ink4a/p19Arf-/- cells (Fig.

2.6A; 59% of mice). This is consistent with prior reports in suggesting that the

development of histiocytic sarcomas requires loss of p16Ink4a and p19Arf in addition to

Pten (Carrasco et al., 2006; You et al., 2002).

To assess the role of p53 in suppressing leukemogenesis after Pten deletion we

performed the same experiment using mice that were compound mutant for Pten and p53

(Fig. 2.6D). Recipients of Ptenfl/flMx-1-Cre+p53-/- cells died much more quickly after

pIpC treatment as compared to recipients of Ptenfl/flMx-1-Cre+ cells (p<0.0001; Fig.

2.6D). All mice were confirmed to have MPD, AML, and/or T-ALL (but not histiocytic

sarcoma) when they died (Fig. 2.6D). These results are consistent with our observation of

an increase in p53 expression after Pten deletion (Fig. 2.5A) in suggesting that p53

suppresses leukemogenesis after Pten deletion.

p16Ink4a and p53 promote the depletion of HSCs after Pten deletion

We wondered whether the tumor suppressors that suppress leukemogenesis after

Pten deletion also contribute to the depletion of HSCs. To definitively test whether these

tumor suppressors act cell-autonomously within HSCs to promote their depletion after

Pten deletion, we transplanted 10 donor CD150+CD48-CD41-Lin-c-Kit+Sca-1+ HSCs

from mice with each of the genetic backgrounds depicted in Figure 6 into irradiated wild-

type recipient mice, along with a radioprotective dose of 300,000 recipient bone marrow

cells. The HSCs were isolated from the donor mice after they had been treated with 3
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injections of pIpC over 6 days. The low dose of donor HSCs was designed to reconstitute

the recipient mice while minimizing the incidence of leukemias. We monitored the

reconstitution of recipient mice by donor HSCs for 16 weeks after transplantation to test

whether deficiency for p16Ink4a, p19Arf, p16Ink4a/p19Arf or p53 could prolong the

reconstituting capacity of Pten-deficient HSCs.

p16Ink4a deficiency prolonged the reconstituting capacity of Pten-deficient HSCs.

Wild-type and p16Ink4a-deficient HSCs gave long-term multilineage reconstitution by

donor cells in all recipient mice (Fig. 2.7A). In contrast, Pten-deleted (Ptenfl/flMx-1-Cre+)

HSCs only gave transient multilineage reconstitution for 6 to 8 weeks after

transplantation, consistent with our prior study (Yilmaz et al., 2006). Surprisingly,

compound mutant Ptenfl/flMx-1-Cre+p16Ink4a-/- HSCs gave multilineage reconstitution for

at least 8 to 16 weeks, significantly longer than observed from Ptenfl/flMx-1-Cre+ HSCs

(p<0.002; Fig. 2.7A). Moreover, the levels of donor cell reconstitution from Ptenfl/flMx-1-

Cre+p16Ink4a-/- HSCs were significantly higher than the levels of reconstitution from

Ptenfl/flMx-1-Cre+ HSCs (Fig. 2.7A). Sixteen weeks after transplantation 4 recipients of

Ptenfl/flMx-1-Cre+p16Ink4a-/- HSCs remained alive and 2 of these mice remained

multilineage reconstituted by donor cells. In a separate experiment, we confirmed that

CD150+CD48-CD41-Lin-c-Kit+Sca-1+ donor HSCs (Fig. 2.7E) and CD150-CD48-CD41-

Lin-c-Kit+Sca-1+ donor MPPs (Fig. 2.7G) could be recovered 8 weeks after

transplantation from mice transplanted with 10 Ptenfl/flMx-1-Cre+p16Ink4a-/- HSCs but not

with 10 Ptenfl/flMx-1-Cre+ HSCs. These data indicate that p16Ink4a promotes the depletion

of Pten-deficient HSCs, consistent with our observation of p16Ink4a expression in HSCs

after Pten deletion (Fig. 2.5C, D).
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Recipient mice that were transplanted with Ptenfl/flMx-1-Cre+p16Ink4a-/- HSCs did

begin to die with MPD and/or T-ALL 12 to 16 weeks after transplantation whereas

recipients of Ptenfl/flMx-1-Cre+ HSCs did not develop neoplasms (Fig. 2.7A). This

difference partly reflects the fact that Ptenfl/flMx-1-Cre+ HSCs no longer had any donor

cell chimerism by 12 weeks after transplantation and therefore were unable to develop

donor cell leukemias (Fig. 2.7A). Therefore, p16Ink4a deficiency increased the opportunity

for leukemogenesis by prolonging the reconstituting capacity of Pten-deleted HSCs,

leading to donor cell reconstitution by compound mutant cells at late time points after

Pten-deficient hematopoietic cells had already been depleted. Nonetheless, these data

might also reflect a limited role for p16Ink4a in the suppression of leukemogenesis after

Pten deletion.

p19Arf deficiency did not rescue the depletion of Pten-deficient HSCs. Wild-type

and p19Arf-deficient HSCs gave long-term multilineage reconstitution by donor cells in all

recipient mice (Fig. 2.7B). In contrast, Pten-deleted (Ptenfl/flMx-1-Cre+) HSCs only gave

transient multilineage reconstitution for 6 to 8 weeks after transplantation. Compound

mutant Ptenfl/flMx-1-Cre+p19Arf-/- HSCs also gave multilineage reconstitution for only 4 to

8 weeks and at levels that were not significantly different from those observed from

Ptenfl/flMx-1-Cre+ HSCs (Fig. 2.7B). This indicates that p19Arf is not required for the

depletion of HSCs after Pten deletion (Fig. 2.6B), consistent with our failure to detect

p19Arf expression in Pten deficient HSCs (Fig. 2.5C, D). Only a minority of recipients of

Ptenfl/flMx-1-Cre+p19Arf-/- HSCs died with leukemia (beginning 8 weeks after

transplantation), reflecting the transient reconstitution by these cells (Fig. 2.7B). Our data

suggest that p16Ink4a contributes more than p19Arf to HSC depletion after Pten deletion.
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Consistent with the partial rescue of HSC depletion by p16Ink4a deficiency, we also

observed a partial rescue of HSC depletion by p16Ink4a/p19Arf deficiency. Wild-type and

p16Ink4a/p19Arf-deficient HSCs gave long-term multilineage reconstitution by donor cells

in almost all recipient mice (Fig. 2.7C). In contrast, Pten-deleted (Ptenfl/flMx-1-Cre+)

HSCs only gave transient multilineage reconstitution for 4 to 8 weeks after

transplantation. Compound mutant Ptenfl/flMx-1-Cre+p16Ink4a/p19Arf-/- HSCs gave

multilineage reconstitution for up to 14 weeks after transplantation, significantly longer

than observed from Ptenfl/flMx-1-Cre+ HSCs (p<0.01; Fig. 2.7C). The levels of donor cell

reconstitution from Ptenfl/flMx-1-Cre+p16Ink4a/p19Arf-/- HSCs were also significantly

higher than levels of reconstitution from Ptenfl/flMx-1-Cre+ HSCs (Fig. 2.7C). Most of the

recipients of Ptenfl/flMx-1-Cre+p16Ink4a/p19Arf-/- HSCs died with MPD, T-ALL, and/or

histiocytic sarcoma between 12 and 16 weeks after transplantation. These results are

consistent with the data above in suggesting that p16Ink4a depletes HSCs after Pten

deletion.

p53 deficiency also prolonged the reconstituting capacity of Pten-deficient HSCs.

Wild-type and p53-deficient HSCs gave long-term multilineage reconstitution by donor

cells in all recipient mice for at least 16 weeks while Pten-deleted (Ptenfl/flMx-1-Cre+)

HSCs gave transient multilineage reconstitution for 4 to 6 weeks after transplantation

(Fig. 2.7D). Compound mutant Ptenfl/flMx-1-Cre+p53-/- HSCs gave multilineage

reconstitution for up to 12 weeks, significantly longer than observed from Ptenfl/flMx-1-

Cre+ HSCs (p<0.002; Fig. 2.7D). The levels of donor cell reconstitution from Ptenfl/flMx-

1-Cre+p53-/- HSCs were also significantly higher than the levels of reconstitution from

Ptenfl/flMx-1-Cre+ HSCs (Fig. 2.7D). Most of the recipients of Ptenfl/flMx-1-Cre+p53-/-
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HSCs died with MPD, AML and/or T-ALL 8 to 12 weeks after transplantation. In a

separate experiment, we confirmed that CD150+CD48-CD41-Lin-c-Kit+Sca-1+ donor

HSCs (Fig. 2.7F) and CD150-CD48-CD41-Lin-c-Kit+Sca-1+ donor MPPs (Fig. 2.7H)

could be recovered 8 weeks after transplantation from mice transplanted with 10

Ptenfl/flMx-1-Cre+p53-/- HSCs but not with 10 Ptenfl/flMx-1-Cre+ HSCs. These data

indicate that p53 contributes to the depletion of Pten-deficient HSCs in addition to

suppressing leukemogenesis, consistent with its increased expression after Pten deletion

in splenocytes and HSCs (Fig. 2.5).

The mechanisms by which p16Ink4a and p53 promote the depletion of HSCs after

Pten deletion are uncertain. We did not detect any effect of Pten deletion or rapamycin

treatment on the frequency of whole bone marrow cells or HSCs undergoing cell death

(Fig. 2.14A). We also did not detect any effect of Pten deletion or rapamycin treatment

on the frequency of senescence-associated ß-galactosidase+ whole bone marrow cells or

HSCs (Fig. 2.14C-E). This contrasts with results from prostate in which Pten deletion

induces p53-mediated senescence marked by ß-galactosidase expression (Chen et al.,

2005) and suggests that Pten deletion promotes HSC depletion by mechanisms that are

different than those observed in prostate. Indeed, we observe an increase in the frequency

of dividing HSCs after Pten deletion (rather than a decrease as would be expected if

senescence were occurring), and this increase is rescued by rapamycin treatment (Fig.

2.14B). These results suggest that increased p16Ink4a and p53 expression in dividing HSCs

is incompatible with HSC maintenance, perhaps because these tumor suppressors

promote exit from the stem cell pool in dividing HSCs. Consistent with this possibility,

cycling HSCs have less reconstituting capacity (Fleming et al., 1993) and compound
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deficiency for p16Ink4a, p19Arf, and p53 leads to a dramatic expansion of HSCs and the

maintenance of long-term self-renewal potential among CD150-CD48-CD41-Lin-c-

Kit+Sca-1+ MPPs, which would otherwise only be capable of transient multilineage

reconstitution (Akala et al., 2008; Kiel et al., 2008). These published results demonstrate

that p16Ink4a and p53 promote the maturation of HSCs into MPPs, raising the possibility

that elevated expression of p16Ink4a and p53 in Pten-deficient HSCs leads to premature

maturation and HSC depletion.
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DISCUSSION

Pten deletion increased Akt, mTORC1, and S6 kinase activation in HSCs (Fig.

2.1B, D, E) but we could find no evidence for reduced FoxO1 or FoxO3a expression or

cytoplasmic sequestration (Fig. 2.1B, F-H; Fig. 2.8). We observed a clear increase in

ROS levels within thymocytes after Pten deletion but not in HSCs (Fig. 2.2). Consistent

with this, NAC treatment attenuated the increase in ROS levels in thymocytes but did not

rescue the changes in hematopoiesis, HSC frequency (Fig. 2.3), or HSC reconstituting

capacity (Fig. 2.4A) after Pten deletion. This contrasted with results from FoxO1/3/4-

deficient mice in which ROS levels clearly increased within HSCs and NAC treatment at

least partially rescued HSC depletion (Tothova et al., 2007). Pten deletion and FoxO1/3/4

deletion thus lead to the depletion of HSCs by different mechanisms. HSC depletion after

Pten deletion is mediated largely by mTOR activation with no evidence so far for an

important contribution by oxidative stress. In contrast, HSC depletion after FoxO1/3/4

deletion is mediated largely by oxidative stress (Tothova et al., 2007).

Pten deletion induces a tumor suppressor response in hematopoietic cells,

characterized by increased expression of p19Arf and p53 in splenocytes (Fig. 2.5A, B) and

increased expression of p16Ink4a and p53 in HSCs (Fig. 2.5C-F). Although the increase in

p16Ink4a expression in HSCs was barely detectable by western blot, it was confirmed by

qPCR and by the cell-autonomous function of p16Ink4a in HSCs (Fig. 2.7). The increased

tumor suppressor expression appeared to arise as a result of increased mTOR activation,

as these increases were attenuated by rapamycin treatment in both splenocytes (Fig. 2.5A,

B), and HSCs (Fig. 2.5C, D, F). In functional studies, we found that p16Ink4a/p19Arf

deficiency, p19Arf deficiency, or p53 deficiency significantly accelerated leukemogenesis
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after Pten deletion (Fig. 2.6A, B, D). p16Ink4a deficiency did not significantly affect the

rate of leukemogenesis after Pten deletion, though it did appear to suppress the

generation of histiocytic sarcomas (Fig. 2.6C). This suggests that hematopoietic cells

mainly rely upon tumor suppressors in the p53 pathway to suppress leukemogenesis after

Pten deletion. This is consistent with results from mouse prostate in which Pten deletion

induces p53-dependent senescence (Chen et al., 2005). Interestingly, this senescence

response is p19Arf-independent in prostate (Chen et al., 2009) but p19Arf did suppress

leukemogenesis after Pten deletion, indicating tissue-specific functions for p19Arf in

tumor suppression.

To directly test whether these tumor suppressors acted autonomously within

HSCs to regulate their depletion we transplanted 10 highly purified CD150+CD48-CD41-

Lin-c-Kit+Sca-1+ HSCs from each genetic background to test whether deficiency for

p16Ink4a, p19Arf, p16Ink4a/p19Arf, or p53 could prolong the reconstituting capacity of HSCs

after Pten deletion. p16Ink4a deficiency, p16Ink4a/p19Arf deficiency, or p53 deficiency all

significantly prolonged the ability of Pten-deficient HSCs to give multilineage

reconstitution in irradiated mice (Fig. 2.7). Interestingly, p19Arf deficiency did not

prolong the reconstituting capacity of Pten-deficient HSCs (Fig. 2.7B). Thus p19Arf is

critical for the suppression of leukemogenesis but not for HSC depletion after Pten

deletion. In contrast, p16Ink4a is critical for HSC depletion but plays a more limited role in

the suppression of leukemogenesis. The functions of tumor suppressors in the

suppression of leukemogenesis are somewhat distinct from their functions in HSC

depletion.
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Our results thus indicate that Pten deletion induces an mTOR mediated tumor

suppressor response in hematopoietic cells, suppressing leukemogenesis and depleting

HSCs. This suggests that leukemias likely arise from rare clones of Pten-deficient

hematopoietic cells that acquire secondary mutations that inactivate the tumor suppressor

response before they are depleted. However, we do not know which hematopoietic cells

are transformed after Pten deletion. Therefore, it remains uncertain whether the tumor

suppressors act in HSCs themselves to suppress leukemogenesis or whether they act in

HSCs to promote their depletion while primarily acting in downstream cells to suppress

leukemogenesis.

Although p16Ink4a and p19Arf are both encoded at the Cdkn2a locus, they are

regulated by different promoters, encoded by a combination of different exons and

alternative reading frames, have no sequence homology, and different molecular

functions (Lowe and Sherr, 2003; Sherr, 2001). p16Ink4a is a cyclin-dependent kinase

inhibitor that negatively regulates proliferation by inhibiting the interaction of CDK4/6

with D-type cyclins, thus maintaining Rb in its hypophosphorylated (active) form. p19Arf

negatively regulates proliferation by inhibiting the Mdm2-mediated degradation of p53

and through poorly understood p53-independent functions (Sherr, 2006). Our conclusion

that p16Ink4a and p19Arf have different expression patterns and functions after Pten

deletion is consistent with other examples of situations in which the proteins have

different expression patterns or functions (Baker et al., 2008; Bruggeman et al., 2005;

Lowe and Sherr, 2003; Molofsky et al., 2005; Sherr, 2001).

We did not detect any evidence that hematopoietic cells underwent senescence or

cell death after Pten deletion. For example, we did not detect senescence-associated ß-
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galactosidase activity in HSCs after Pten deletion (Fig. 2.14). We were also unable to

detect a significant increase in cell death within HSCs after Pten deletion (Fig. 2.14).

However, HSCs are depleted over a 4 to 8 week period after Pten deletion (Fig. 2.7),

suggesting that they are asynchronously lost over time. This raises the formal possibility

that HSCs asynchronously undergo cell death or senescence over a period of 4 to 8

weeks, such that very few HSCs express markers of cell death or senescence at any single

time point, rendering it undetectable. Nonetheless, we are able to clearly see increased

proliferation among HSCs after Pten deletion and this phenotype is rescued by rapamycin

treatment. Therefore, the simplest interpretation of the available data is that p16Ink4a and

p53 expression in dividing HSCs cause these cells to prematurely exist the stem cell pool,

perhaps by maturing in to transit amplifying MPPs. As this also would occur

asynchronously over time, the number of HSCs that prematurely exit the stem cell pool at

any single time point would be imperceptibly small but the cumulative effect of

premature maturation over a period of weeks would lead to HSC depletion.

Consistent with this model, cycling HSCs have less reconstituting capacity

(Fleming et al., 1993) and less self-renewal potential (Foudi et al., 2009; Wilson et al.,

2008). Deficiency for p16Ink4a, p19Arf, and p53 dramatically expands HSC frequency and

confers long-term self-renewal potential to CD150-CD48-CD41-Lin-c-Kit+Sca-1+ MPPs,

which are normally only capable of transient multilineage reconstitution (Akala et al.,

2008; Kiel et al., 2008). These tumor suppressors thus play a physiological role

promoting the transition from HSCs to MPPs and negatively regulating the self-renewal

potential of multipotent cells. Increased expression of p16Ink4a and p53 in dividing HSCs
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after Pten deletion may accelerate the normal maturation of cells out of the HSC pool,

leading to HSC depletion.

p16Ink4a, p19Arf, and p53 may not be entirely responsible for HSC depletion after

Pten deletion. Although we were able to completely rescue HSC depletion by treating

with rapamycin (Yilmaz et al., 2006), we were not able to completely rescue HSC

depletion by deleting any of the individual tumor suppressors we studied (Fig. 2.7). The

best rescue we observed came from the deletion of p16Ink4a; however, only half of the

recipients of Ptenfl/flMx-1-Cre+p16Ink4a-/- HSCs remained multilineage reconstituted 16

weeks after transplantation, in contrast to recipients of control HSCs which were all

multilineage reconstituted at the same time point (Fig. 2.7A). One possibility is that

deficiency for both p16Ink4a and p53 would completely rescue HSC depletion after Pten

deletion. Another possibility is that there are mechanisms independent of these tumor

suppressors downstream of mTOR, which contribute to HSC depletion.

The induction of p16Ink4a and p53 in Pten-deficient HSCs may also be influenced

by non-autonomous factors. Pten-deficient HSCs may be more sensitive to stresses

associated with transplantation into irradiated mice and more likely to induce tumor

suppressor expression than wild-type HSCs. Leukemogenesis in Pten-deficient mice

might also create hematopoietic stresses that contribute to the induction of tumor

suppressors in HSCs. However, neither leukemogenesis nor transplantation are necessary

for the depletion of Pten-deficient HSCs. Recipients of 10 Pten-deficient HSCs

consistently reconstituted recipient mice for less than 8 weeks after transplantation even

though all of these mice survived for the duration of the experiment (16 weeks) with no
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signs of leukemia (Fig. 2.7A-D). Pten-deficient HSCs are also depleted over time in mice

even if they are not transplanted (Fig. 2.3F) (Yilmaz et al., 2006).

The ability to rescue the hematopoietic phenotypes in Pten-deficient mice with

rapamycin suggests that these phenotypes are primarily driven by increased mTORC1

activation. However, rapamycin can also indirectly inhibit mTORC2 function (Sarbassov

et al., 2006) and mTORC2 is required for the development of prostate cancer after Pten

deletion (Guertin et al., 2009). This suggests that mTORC2 may mediate some of the

effects of Pten deletion on HSCs and other hematopoietic cells.

The depletion of HSCs (and other hematopoietic progenitors) after Pten deletion

may explain why few leukemias exhibit Pten deletion (Aggerholm et al., 2000; Chang et

al., 2006; Sakai et al., 1998). Rare clones of Pten-deficient hematopoietic progenitors

would be unlikely to have the opportunity to acquire secondary mutations before being

depleted and therefore would be unlikely to progress to leukemia. Leukemias may be

more likely to hyper-active the PI-3kinase pathway by other types of mutations that are

better tolerated by hematopoietic cells than Pten deletion. Additional studies of the PI-

3kinase pathway in stem cells will provide additional insights into stem cell regulation

and the development of cancer.
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10 CD150+CD48-CD41-Lin-c-Kit+Sca-1+ cells transplanted
Donor Total number of

recipients
Recipients

engrafted at 2
weeks

Recipients that
developed
leukemia

A 35 22 7
B 14 10 5
C 10 4 1
D 10 3 1

50 CD150+CD48-CD41-Lin-c-Kit+Sca-1+ cells transplanted
Donor Total number of

recipients
Recipients

engrafted at 2
weeks

Recipients that
developed
leukemia

E 15 10 10
F 20 18 18

Table 2.1: Transplanting increasing numbers of CD150+CD48-CD41-Lin-c-Kit+Sca-
1+ cells from Pten-deleted mice with leukemia increased the percentage of recipient
mice that developed leukemia.
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Figure 2.1
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Figure 2.1: Pten deletion activated Akt and mTORC1 signaling in HSCs but FoxO3a
was not inactivated.

(A, B) Pten deletion increased phospho-Akt (T308), phospho-S6, and phospho-4EBP1
(T37/46) levels in whole bone marrow cells (A) as well as in c-Kit+Flk-2-Lin-Sca-
1+CD48- HSCs (B) as expected. Rapamycin treatment tended to further increase
phospho-Akt levels, but decreased phospho-S6, and phospho-4EBP1 (T37/46) levels, as
expected. Quantification demonstrated that Pten deletion increased phospho-Akt levels
by 2.6-fold and phospho-S6 levels by 1.5-fold by in HSCs. Rapamycin treatment further
increased phospho-Akt levels by 1.7-fold in HSCs and decreased phospho-S6 levels by
40% in HSCs. Total protein levels of FoxO3a did not decrease with Pten deletion and
were unaffected by rapamycin treatment (B). Each lane contained protein extracted from
40,000 sorted cells. (C-H) Staining of sorted CD150+CD48-CD41-Lin-c-Kit+Sca-1+ HSCs
with secondary antibody alone (C), or primary and secondary antibody against phospho-
S6 (D-E) or FoxO3a (F-G). Phospho-S6 staining was significantly elevated in Ptenfl/flMx-
1-Cre+ HSCs as compared to Pten+/flMx-1-Cre+ control HSCs, as expected (D-E, H; *,
p<0.0001 by Student’s t-test), but the level and subcellular localization of FoxO3a
staining did not differ between Ptenfl/flMx-1-Cre+ and control HSCs (F-H). We analyzed
10-30 HSCs from 1-2 mice/genotype in each of 3 independent experiments. In a similar
assay, culture of HSCs in medium containing SCF (20 ng/ml) and TPO (50 ng/ml) for 24
hours did lead to decreased total FoxO3a levels and cytoplasmic localization (Fig. 2.9).
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Figure 2.2
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Figure 2.2: Pten deletion significantly increased ROS levels in thymocytes but not in
HSCs, MPPs, or whole bone marrow cells.

(A) Gating scheme used to assess intracellular ROS levels in CD150+CD48-CD41-Lin-c-
Kit+Sca-1+ HSCs and CD150-CD48-CD41-Lin-c-Kit+Sca-1+ MPPs. (B) 7 days after
finishing pIpC treatment (7 doses of pIpC over 14 days), DCFDA staining of whole bone
marrow cells, HSCs, and MPPs did not significantly differ between Ptenfl/flMx-1-Cre+

and Pten+/flMx-1-Cre+ control mice. (C) In contrast, thymocytes from Ptenfl/flMx-1-Cre+

mice did exhibit significantly greater DCFDA staining than thymocytes from Pten+/flMx-
1-Cre+ controls. (D) Mean DCFDA fluorescence levels showed no evidence of increased
ROS levels in HSCs, MPPs, or bone marrow cells, but a significant (*, p<0.05 by
Student’s t-test) increase in ROS levels within thymocytes. Similar experiments
performed 21 days after finishing pIpC treatment yielded similar results (E, F). Daily
subcutaneous injections of NAC after pIpC treatment did not significantly affect DCFDA
staining of HSCs, MPPs, or bone marrow cells, but did significantly reduce DCFDA
staining of thymocytes (F). Data (mean±standard deviation) are from 4 independent
experiments with 1-2 mice/genotype/treatment.
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Figure 2.3: Treatment with N-Acetyl-cysteine (NAC) did not rescue the major
effects of Pten deletion on the hematopoietic system.

All mice were injected with seven doses of pIpC over 14 days then daily subcutaneous
injections of NAC or vehicle for 21 days. Pten deletion significantly (*, p<0.005 by
Student’s t-test) increased the mass (normalized to body mass; A) and cellularity (B) of
the spleen and thymus but these changes were not affected by NAC treatment. Bone
marrow cellularity significantly declined after Pten deletion but this change also was not
affected by NAC (B). The frequency (C) and absolute number (F) of CD150+CD48-

CD41-Lin-c-Kit+Sca-1+ HSCs in the bone marrow declined significantly after Pten
deletion but was not affected by NAC. The frequency (D) and absolute number (G) of
CD150-CD48-CD41-Lin-c-Kit+Sca-1+ MPPs in the bone marrow were not affected by
Pten deletion or NAC. The frequency (E) and absolute number (H) of HSCs and MPPs in
the spleen significantly increased after Pten deletion. The increase in HSCs was slightly
but significantly (#, p<0.05) attenuated by NAC treatment but the increase in MPPs was
not significantly affected (E, H). All data represent mean±standard deviation from 4
independent experiments with 1-2 mice/genotype/treatment.
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Figure 2.4
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Figure 2.4: NAC treatment did not restore the reconstituting capacity of HSCs or
block leukemogenesis after Pten-deletion.

(A-E) After pIpC treatment, 10 donor CD150+CD48-CD41-Lin-c-Kit+Sca-1+ HSCs were
transplanted into lethally irradiated recipients along with 300,000 recipient bone marrow
cells, and recipients were maintained on daily injections of NAC or vehicle beginning the
day after transplantation. Control (Pten+/flMx-1-Cre+) HSCs gave high levels of long-
term multilineage reconstitution by donor Gr-1+ myeloid (B), CD3+ T (C), B220+ B (D),
and Mac-1+ myeloid cells (E) in all recipients, irrespective of NAC treatment. Pten-
deleted (Ptenfl/flMx-1-Cre+) HSCs gave transient multilineage reconstitution in all
recipients, and significantly (*, p<0.05 by Student’s t-test) lower levels of donor Gr-1+
myeloid cells (B), CD3+ T cells (C), B220+ B cells (D), and Mac-1+ myeloid cells (E),
irrespective of NAC treatment. NAC treatment did not significantly affect reconstitution
levels from either Pten-deleted or control HSCs. Data represent mean±SEM from 3
independent experiments. (F) In 2 independent experiments, 1x106 unexcised donor cells
from Ptenfl/flMx-1-Cre+ or Pten+/flMx-1-Cre+ mice were transplanted into irradiated
recipient mice. Six weeks later Pten was deleted by pIpC treatment, then recipients were
given daily injections of NAC or vehicle. NAC treatment did not prolong the survival of
mice or delay the onset of leukemia after Pten deletion. None of the recipients of control
cells developed neoplasms but all mice with Pten-deficient cells had MPD and/or T-ALL
when they died, irrespective of NAC treatment.
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Figure 2.5
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Figure 2.5: Pten deletion increased p19Arf, p21Cip1, and p53 expression in
splenocytes, and p16Ink4a and p53 in HSCs, and rapamycin attenuated these
increases.

(A) Levels of p16Ink4a, p19Arf, p21Cip1, and p53 were assessed by Western blot in
unfractionated spleen cells from Ptenfl/flMx-1-Cre+ mice and Pten+/flMx-1-Cre+ controls
14 days after pIpC treatment. Mice were given daily injections of rapamycin or vehicle
after pIpC treatment ended. Analysis of p53-deficient MEFs (data not shown) indicated
that the upper band (#) was not specific for p53 but the lower band was. This blot is
representative of 3 independent experiments. (B) We also observed increased p19Arf

transcript levels by qPCR in splenocytes after Pten deletion and this effect was attenuated
by rapamycin treatment (mean±SD from 3 independent experiments). (C) 4 weeks after
pIpC treatment ended, 2,000,000 Lineage-c-Kit+ stem/progenitor cells were sorted from
control and Pten-deleted mice and cell lysates were immunoprecipitated using antibodies
against p16Ink4a, p19Arf, and p53 before Western blotting. p16Ink4a and p53 levels
increased in Pten-deleted cells, but we detected no increase in p19Arf. MEFs that were
deficient or heterozygous for p16Ink4a/p19Arf were used as negative and positive controls.
(D) p16Ink4a transcript could always be amplified from Pten deficient CD150+CD48-

CD41-Lin-c-Kit+Sca-1+ HSCs (5 of 5 samples) but usually not from control (1 of 5) or
rapamycin-treated samples (2 or 5) 4 weeks after Pten deletion. p19Arf transcripts could
only be amplified from about half of the samples, irrespective of Pten deletion or
rapamycin treatment (data are from 5 independent experiments). (E, F) 4 weeks after
pIpC treatment ended, CD150+CD48-CD41-Lin-c-Kit+Sca-1+ HSCs from Pten-deleted
mice exhibited higher levels of immunofluorescence for p53 than control HSCs or Pten
deleted HSCs treated with rapamycin. (F) The average staining intensity for p53
increased 1.4-fold (*, p<0.008 by Student’s t-test) in Pten-deleted HSCs as compared to
control HSCs. Rapamycin treatment rescued this effect (#, p<0.003 by Student’s t-test;
data are from 30 HSCs per group compiled from 2 independent experiments). None of
the mice studied in this figure showed any signs of hematopoietic neoplasms.
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Figure 2.6
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Figure 2.6: Deficiency for p19Arf or p53, but not p16Ink4a, accelerated leukemogenesis
after Pten-deletion.

1x106 donor bone marrow cells from mice with the indicated genotypes were transplanted
into irradiated recipient mice along with 500,000 recipient bone marrow cells. Six weeks
after transplantation, all recipients were treated with pIpC and their survival was
monitored over time (up to 165 days after pIpC treatment ended). (A) Recipients of
Ptenfl/flMx-1-Cre+p16Ink4a/p19Arf-/- cells (displayed as Ptenp16Ink4a/p19Arf-/-) exhibited
significantly (*, p<0.02 by Student’s t-test) accelerated death as compared to recipients of
Ptenfl/flMx-1-Cre+ cells (Pten). Mice were sacrificed when moribund and their
hematopoietic tissues analyzed. The neoplasms observed in each mouse at the time of
sacrifice included myeloproliferative disease (MPD), T-ALL, MPD+T-ALL, histiocytic
sarcoma (HS), and HS+T-ALL. (B) Recipients of Ptenfl/flMx-1-Cre+p19Arf-/- cells
(Ptenp19Arf-/-) exhibited significantly (*, p<0.02 by log-rank test) accelerated death
from leukemogenesis as compared to recipients of Ptenfl/flMx-1-Cre+ cells (Pten). (C)
Recipients of Ptenfl/flMx-1-Cre+p16Ink4a (Ptenp16Ink4a) cells died at a similar rate and
with similar neoplasms as recipients of Ptenfl/flMx-1-Cre+ cells (Pten). (D) Recipients
of Ptenfl/flMx-1-Cre+p53-/- cells (Ptenp53-/-) exhibited significantly (**, p<0.0001 by
log-rank test) accelerated death from leukemogenesis as compared to recipients of
Ptenfl/flMx-1-Cre+ cells (Pten). Data are from 3 independent experiments with a total of
9 mice/genotype except for compound mutant mice, which had 14-20 mice/genotype.
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Figure 2.7
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Figure 2.7: Deficiency for p16Ink4a or p53 prolonged the reconstituting capacity of
Pten-deficient HSCs.

(A) 10 CD150+CD48-CD41-Lin-c-Kit+Sca-1+ cells were sorted from mice with each of
the indicated genotypes after pIpC treatment and co-injected with 300,000 recipient bone
marrow cells into irradiated recipient mice. The survival, donor cell reconstitution levels
(mean±SEM), and percentage of surviving recipients with multilineage reconstitution by
donor cells were monitored for 16 weeks after transplantation. In all experiments,
recipients of wild-type cells (A-D) and recipients of p16Ink4a-deficient cells (A), p19Arf-
deficient cells (B), p16Ink4a/p19Arf-deficient cells (C) or p53-deficient cells (D) survived
for the duration of the experiment and showed high levels of long-term multilineage
reconstitution by donor cells. In contrast, recipients of Pten-deficient cells showed only
transient multilineage reconstitution for 4 to 8 weeks in each experiment (A-D). HSCs
that were compound mutant for Pten in addition to p16Ink4a (A), p16Ink4a/p19Arf (C) or p53
(D) gave significantly (#, p<0.05 by Student’s t-test) higher levels of donor cell
reconstitution and multilineage reconstitution for a significantly longer period of time as
compared to HSCs that were deficient only for Pten. p19Arf deficiency did not
significantly affect the duration or level of reconstitution by Pten-deficient HSCs (B).
Compound mutant mice that died had MPD, T-ALL, and/or histiocytic sarcoma at the
time of death. All data are from 3 independent experiments with a total of 7-17 recipients
per treatment. (E-H) Mice were transplanted with mutant HSCs as described above then
sacrificed 8 weeks later to assess the frequency of donor CD150+CD48-CD41-Lin-c-
Kit+Sca-1+ HSCs and CD150-CD48-CD41-Lin-c-Kit+Sca-1+ MPPs. Donor HSCs and
MPPs were not detectable by this time point in the absence of Pten but depletion was
rescued by either p16Ink4a deficiency (E,G) or p53 deficiency (F,H; *, p<0.05 by Student’s
t-test). These data are from 3 independent experiments with a total of 3-8 recipients per
treatment. Transplantation of higher doses of Pten-deficient CD150+CD48-CD41-Lin-c-
Kit+Sca-1+ cells from leukemic donors into irradiated wild-type mice led to the
development of leukemia in a higher proportion of the recipient mice (Table 2.1).
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Figure 2.8: FoxO1, phospho-FoxO3a, and phospho-H2AX levels did not
significantly change in hematopoietic stem/progenitor cells after Pten deletion.

Control mice and Pten-deleted mice were treated with either vehicle or rapamycin for 1
week after pIpC treatment ended, then 200,000 Lin-c-Kit+Sca-1+ cells were sorted from
each treatment and subjected to Western blotting. The levels of FoxO1 did not decrease
and the levels of phospho-FoxO3a (S253) did not increase after Pten deletion. We were
not able to detect FoxO4 expression in these cells (data not shown). The extent of DNA
damage was estimated by blotting for phospho-H2AX (S139), which was detectable at
very low levels in both control and Pten-deleted cells. We did not detect any change in
phospho-p53 levels in Lin-c-Kit+Sca-1+ cells after Pten deletion. These blots are
representative of 2 independent experiments.
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Figure 2.9
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Figure 2.9: Stimulation of HSCs in culture with SCF and TPO reduced the levels of
nuclear FoxO3a staining.

CD150+CD48-CD41-Lin-c-Kit+Sca-1+ HSCs from two control (A, B; Pten+/flMx-1-Cre+)
and two Pten-deficient (C, D; Ptenfl/flMx-1-Cre+) mice were incubated at 37°C in IMDM
medium (+10% fetal bovine serum) with (B, D) or without (A, C) 20ng/ml SCF and
50ng/ml TPO. 24 hours later the cells were fixed, permeabilized, and stained for FoxO3a.
Prominent nuclear FoxO3a staining was evident in both control (A) and Pten-deficient
HSCs (C), similar to the staining observed in freshly isolated HSCs (Fig. 2.1F-G), but the
total level of FoxO3a staining, and nuclear FoxO3a staining in particular, declined
significantly (p<0.002 by Student’s t-test; E) in HSCs of both genotypes that were
stimulated with SCF and TPO (B, D). A total of 10 HSCs per treatment were imaged and
quantified.
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Figure 2.10: The expression levels of genes involved in the antioxidant response did
not significantly change one week after Pten deletion.

Expression levels of Nfe2 (A), Nrf1 (B), Nrf2 (C), catalase (D), Sod1 (E), and Sod2 (F)
were assessed by quantitative PCR in whole bone marrow (WBM) cells, CD150+CD48-

CD41-Lin-c-Kit+Sca-1+ HSCs, and CD150-CD48-CD41-Lin-c-Kit+Sca-1+ MPPs. The
RNA content of samples was normalized based on β-actin and fold-change comparisons
were made between Pten-deficient and control cells (control cells were set to 1 for
purposes of the comparison). Data represent mean±SD from 2 independent experiments.



87

Figure 2.11: Changes in hematopoiesis after Pten deletion were not rescued by
treatment with NAC.

NAC treatment did not affect the frequency of B220+ B cells (A), Mac-1+Gr-1+ myeloid
cells (B), or CD3+ T cells (C) in the bone marrow or spleen of Pten-deleted (Ptenfl/flMx-
1-Cre+) or control (Pten+/flMx-1-Cre+) mice. (A) Pten deletion significantly (*, p<0.0001
by Student’s t-test) reduced the frequency of B220+ B cells in the bone marrow and
spleen, but these decreases were not rescued by NAC treatment. All subpopulations of B-
cells including B220+sIgM-CD43- pre-B cells, B220+sIgM-CD43low pro-B cells, and
mature B220+sIgM+ cells were depleted by Pten deletion and were not rescued by NAC
treatment (data not shown). (B) Pten deletion significantly increased the frequency of
Mac-1+Gr-1+ myeloid cells in the bone marrow and spleen. NAC did not affect the
increase in myeloid cells within the bone marrow but did attenuate the increase in the
spleen (#, p<0.001 by Student’s t-test). (C) Neither Pten deletion nor NAC treatment
significantly affected the frequency of CD3+ T cells in the bone marrow or spleen. All
data represent mean±standard deviation from 4 independent experiments with 1-2
mice/genotype/treatment.
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Figure 2.12: NAC treatment did not prevent the development of T-ALL in
recipients of Pten-deficient cells.

The mice described in Figure 4F that had been transplanted with Pten-deficient or control
bone marrow cells were examined for evidence of hematopoietic neoplasms. (A) Splenic
architecture was normal in recipients of control bone marrow cells with clear boundaries
between red and white pulp. (B) In recipients of Pten-deleted bone marrow cells the
spleen was filled with lymphoid blasts and splenic architecture was completely effaced.
(C) This was not affected by NAC treatment. (D) Thymic architecture was normal, with
distinct cortex and medulla, in recipients of control cells.  (E). In recipients of Pten-
deleted bone marrow cells the thymus was filled with lymphoid blasts and thymic
architecture was completely effaced. (F) This was not affected by NAC treatment.
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Figure 2.13: Pten deletion increased the levels of p21Cip1 but not p16Ink4a or p53
transcript in splenocytes.

Splenocytes from mice described in Figure 5A were also tested for the induction of
p16Ink4a, p21Cip1, and p53 by quantitative (real-time) PCR. p16Ink4a and p53 transcript
levels were not significantly affected by Pten deletion or rapamycin treatment, but p21Cip1

transcript levels were significantly (*, p<0.05 by Student’s t-test) increased by Pten
deletion and significantly reduced by rapamycin treatment. Data represent mean±standard
deviation from 3 independent experiments.
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Figure 2.14
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Figure 2.14: Pten deletion drove HSCs into cycle but did not detectably increase cell
death or senescence in HSCs.

(A) 3 weeks after Pten deletion, the frequency of whole bone marrow (WBM) cells or
CD150+CD48-CD41-Lin-c-Kit+Sca-1+ HSCs that were Annexin V+ DAPI- was not
affected by Pten deletion or rapamycin treatment (mean±standard deviation from 3
independent experiments). (B) The rate of cell cycle entry was estimated by assessing the
percentage of cells that incorporated BrdU over a 24 hour pulse administered 3 weeks
after ending pIpC treatment. The frequency of BrdU+ cells was significantly increased by
Pten deletion and normalized by rapamycin treatment in HSCs but not significantly
affected in WBM (*, p<0.05 by Student’s t-test; data are mean±SD from 3 independent
experiments). (C-E) Neither Pten deletion nor rapamycin treatment affected the
frequency of ß-galactosidase expressing WBM cells (C; 870 to 1186 cells
counted/treatment) or HSCs (D; 581 to 683 cells counted/treatment) obtained from mice
4 weeks after pIpC treatment ended. In each treatment, uncultured cells were sorted onto
slides, then stained with X-gal, and counted. Rare X-gal stained cells (blue) were
observed in WBM but not among HSCs. Culturing WBM cells increased the frequency of
X-gal stained cells.
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CHAPTER 3 

FIP200 IS REQUIRED FOR THE CELL-AUTONOMOUS MAINTENANCE OF 

FETAL HEMATOPOIETIC STEM CELLS
1
 

 

 

SUMMARY 

Little is known about whether autophagy is active in HSCs and whether they 

contribute to hematopoietic stem cell (HSC) maintenance. FIP200 plays important roles 

in mammalian autophagy and other cellular functions, but its role in hematopoiesis has 

not been examined. We found that conditional deletion of FIP200 in hematopoietic cells 

led to impaired autophagy in the fetal liver, severe anemia, and perinatal lethality. FIP200 

was also cell-autonomously required for the maintenance of fetal HSCs as FIP200-

deleted HSCs were unable to reconstitute lethally irradiated recipients. FIP200 ablation 

increased the rate of cell-cycling in HSCs, and FIP200-deleted HSCs exhibited increased 

mitochondrial mass and elevated reactive oxygen species levels. Our data identify FIP200 

as a key intrinsic regulator of fetal HSCs and implicate a potential role for autophagy in 

the maintenance of fetal hematopoiesis and HSCs. 

 

                                                 

1
A modified version of this work is currently in review as of June 2010 with authors 

listed as Liu, F., Lee, J.Y., Wei, H., Tanabe, O., Engel, J.D., Morrison, S.J., and Guan, 

J.L. 
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INTRODUCTION 

Focal adhesion kinase family interacting protein of 200 kD (FIP200) was initially 

identified as a putative protein inhibitor of focal adhesion kinase and its related kinase 

Pyk2 (Ueda et al., 2000). Subsequent studies suggested that FIP200 regulates diverse 

cellular functions including cell size, survival, proliferation, spreading and migration 

through its interaction with multiple other proteins (Abbi et al., 2002; Chano et al., 2006; 

Gan et al., 2005; Gan et al., 2006; Melkoumian et al., 2005). FIP200 is widely expressed 

in various human and mouse tissues and is conserved throughout humans, mice, rats, 

frogs, flies and worms (Bamba et al., 2004), suggesting important functions for FIP200 

throughout evolution. Consistent with this, germline deletion of FIP200 in mice resulted 

in embryonic lethality at mid-to-late gestation associated with heart failure and liver 

degeneration (Gan et al., 2006). 

Recent reports by several groups identified FIP200 as a component of the ULK-

Atg13-FIP200 complex, prompting speculation that it acts as the mammalian counterpart 

of yeast Atg17, despite limited sequence homology. Without this complex, the ability of 

cells to form autophagosomes is severely impaired (Ganley et al., 2009; Hara and 

Mizushima, 2009; Hosokawa et al., 2009; Jung et al., 2009). Although autophagy was 

initially identified as a catabolic process to provide building blocks in response to 

starvation, it is now accepted that a basal level of autophagy occurs independently of 

nutrient stress which maintains cellular homeostasis. Consistent with an autophagic role 

for FIP200, neural-specific deletion of FIP200 resulted in abnormal accumulation of 

ubiquitinated protein aggregates, increased accumulation of p62/sequestosome-1 

(SQSTM1), increased apoptosis, and neurodegeneration (Hara et al., 2006; Komatsu et 
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al., 2006; Liang et al., 2010). It is not clear whether FIP200 or autophagy are also 

required for the maintenance of HSCs.  

Here we report experiments in which FIP200 was deleted from the hematopoietic 

system of mice through the use of Cre mediated excision. These results reveal a cell-

autonomous requirement for FIP200 in fetal HSCs. Deletion of FIP200 led to HSC 

depletion, loss of HSC reconstituting capacity, and a block in erythroid maturation. 

Within fetal HSCs, we observed an increased rate of cell cycling, increase in 

mitochondrial mass, and an increase in reactive oxygen species (ROS) levels. We also 

observed evidence for autophagic defects in fetal hematopoietic cells, consistent with a 

model in which impaired autophagy leads to abnormal accumulations in mitochondria 

and increases in ROS generation that depletes HSCs. These results illustrate the 

requirement for FIP200, perhaps through autophagy regulation, in the maintenance of 

fetal HSCs. 
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MATERIALS AND METHODS 

Mice and blood cell counts 

Floxed FIP200 and Tie2-Cre mice were described previously (Gan et al., 2006; 

Shen et al., 2005). Mx-1-Cre mice were obtained from The Jackson Laboratory (Bar 

Harbor, ME). All mice were backcrossed for at least six generations onto a C57BL/6 

background. Mice were housed and handled according to local, state, and federal 

regulations and all experimental procedures were carried out according to the guidelines 

of Institutional Animal Care and Use Committee at University of Michigan. Mice 

genotyping for FIP200 and Cre alleles were performed by PCR analysis of tail DNA, 

essentially as described previously (Gan et al., 2006). For analysis of blood counts, 

peripheral blood was collected in a heparinized microtube (SARSTEDT) and analyzed 

with a hematology analyzer (Advia 120 hematology system). 

 

Protein extraction, SDS-PAGE, and Western blotting 

The mouse fetal livers were collected from control or CKO mice at E14.5. The 

protein lysates were prepared by homogenization in CelLytic buffer (Sigma) 

supplemented with protease inhibitors (5 µg/ml leupeptin, 5 µg/ml aprotinin, and 1 mM 

phenylmethylsulfonyl fluoride). The protein extraction and western blotting procedures 

were performed as described previously (Liang et al., 2010).  

 

Histology and in situ detection of apoptosis 

Mice were euthanized using CO2. E14.5 and E16.5 embryos were dissected out 

and fixed in freshly made, pre-chilled (4 °C) PBS-buffered formalin at 4 °C. The liver 
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tissues were sectioned and then embedded in paraffin, sectioned at 6 µm, and stained with 

hematoxylin and eosin for histological examination or left unstained for TUNEL assays. 

Hematoxylin and eosin stained sections were examined under a BX41 light microscope 

(Olympus America, Inc., Center Valley, PA), and images were captured with an Olympus 

digital camera (model DP70) using DP Controller software (Version 1.2.1.10 8). For 

TUNEL assays, fetal liver sections were deparaffinized, incubated in methanol containing 

0.3% H2O2 for 30 min, washed, and incubated with proteinase K (20 µg/ml) in PBS for 

15 min at room temperature. Apoptotic cells were detected as described in the ApopTag 

Peroxidase In Situ Apoptosis Detection Kit (Millipore, Billerica, MA). Sections were 

counterstained with methyl green.  

 

Flow cytometry 

Fetal livers were triturated with Hank’s Buffered Salt Solution without calcium or 

magnesium, supplemented with 2% heat-inactivated bovine serum (Gibco, Grand Island, 

NY) and filtered through nylon screen (45 mm, Sefar America; Kansas City, MO) to 

obtain single cell suspensions. To examine the different lineages, whole fetal liver cells 

were incubated with conjugated monoclonal antibodies of lineage markers including 

Ter119(Ter119), B220(6B2), Mac1(M1/70), Gr1(8C5). For the analysis of erythroid 

maturation, whole fetal liver cells were incubated with anti-Ter119-FITC and anti-CD71-

PE (BD Biosciences). For the detection of fetal liver hematopoietic stem cells, whole 

fetal liver cells were incubated with FITC-conjugated antibody to CD41 (MWReg30; BD 

PharMingen, San Diego, CA), CD48 (HM48-1; BioLegend, San Diego, CA), Ter119 

(Ter119), PE conjugated antibody to CD150 (TC15-12F12.2, BioLegend), APC 
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conjugated Mac1 (M1/70), and biotin conjugated Sca1 (Ly6A/E-biotin), followed by 

staining with streptavidin
 
conjugated to APC-Cy7 (Becton Dickinson, San Jose,

 
CA). 

Sometimes, anti-c-Kit (2B8) was used in place of Mac1 (M1/70). Cells were resuspended
 

in 2 µg/mL DAPI to distinguish live and dead cells.  

In some experiments, BrdU (Sigma) was injected intraperitoneally into pregnant 

mice at 100 mg/kg 2 hrs before sacrificing the animals. BrdU staining was performed as 

suggested by the manufacturer. In other experiments, after labeling with various surface 

markers, cells were stained by MitoTracker (Invitrogen) at 20 nM for 15 min at 37
o
C, or 

by DCF-DA (Invitrogen) at 10 um for 15 min at 37
o
C, according to manufacturer’s 

instructions. To detect apoptotic cells, fetal liver cells were stained with surface markers 

and followed by staining with DAPI and Annexin V (BD PharMingen) and Annexin V 

Binding Buffer as described by the manufacturer. 

 

Blood cell staining 

Dried blood smears were stained with Wright-Giemsa Stain (Sigma, WG16) as 

described by the manufacturer. For neutral benzidine staining, dried smears were fixed 

for 4 min in methanol, incubated in a 1% o-dianisidine (Sigma, D9143) in methanol for 2 

min, and then in 0.9% H2O2 in 50% ethanol for 1.5 min, rinsed with water, and then air 

dried. 

 

Long term competitive repopulation assay 

Adult recipient mice (CD45.1) were irradiated using a Cesium137 GammaCell40 

Exator Irradiator (MDS Nordia, Kanata, ON) delivering 110 rad/min in two equal doses 
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of 570 rad, delivered at least 2 hr apart. Cells were injected into the retro-orbital venous 

sinus of anesthetized recipients. Each recipient mouse received 500,000 CD45.1
+
 bone 

marrow cells for radioprotection. Beginning 4 weeks after transplantation and continuing 

for at least 16 weeks, blood was obtained from the tail veins of recipient mice, subjected 

to ammonium-chloride potassium red cell lysis, and stained with directly conjugated 

antibodies to CD45.2 (104), B220 (6B2), Mac-1 (M1/70), CD3 (KT31.1), and Gr-1 (8C5) 

to monitor donor cell engraftment.  

 

pIpC adminstration 

Polyinosine-polycytidine (pIpC) (Amersham Pharmacia Biotech) was 

administered to mice as previously described (Yilmaz et al., 2006). Briefly, pIpC was 

resuspended in Dulbecco’s phosphate buffered saline (D-PBS) at 50 ug/ml and mice were 

injected with 0.4 µg per gram of body weight every other day for 10 days. 
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RESULTS 

FIP200 deletion leads to erythroblastic anemia and perinatal lethality 

To test whether FIP200 might play a role in fetal hematopoiesis, we mated floxed 

FIP200 (FIP200
fl/fl

) mice (Gan et al., 2006) with Tie2-Cre
+
 transgenic mice to generate 

FIP200
fl/fl

Tie2-Cre
+
 mice (designated as CKO mice). Tie2-Cre

+
 mice express Cre 

recombinase in hematopoietic and endothelial cells during embryonic development 

(Ulyanova et al., 2005). As shown in Table 1, CKO and littermate controls 

(FIP200
+/fl

Tie2-Cre
+
, FIP200

fl/fl
, and FIP200

+/fl
; the latter two genotypes were used as 

controls in all experiments) were observed at normal Mendelian ratios at E14.5 and 

E16.5. There was a slight decrease in the observed fraction of CKO embryos at E17.5 and 

E18.5, and virtually all CKO mice died within the first week of birth.  

To confirm the loss of FIP200 protein, we Western blotted protein lysates from 

the livers of E14.5 CKO and control embryos. A significantly reduced level of FIP200 

was found in the fetal livers of CKO mice compared to control mice, indicating effective 

FIP200 deletion (Fig. 3.1A). Next, we histologically examined fetal liver sections from 

CKO and control mice. At E14.5, no apparent differences were detected in CKO fetal 

liver sections as compared to control sections (Fig. 3.1B). In contrast, at E16.5 we 

observed robust erythropoiesis characterized by abundant sinuses filled with mature red 

blood cells (RBCs) in the fetal liver of control mice but not in CKO fetal liver sections, 

suggesting that FIP200 deletion significantly impaired fetal erythropoiesis (Fig. 3.1B). At 

E18.5, we observed numerous mature RBCs within vascular structures of control fetal 

livers, but very few erythrocytes within vascular structures of CKO fetal livers (Fig. 

3.1B). These histological features were consistent with the grossly paler appearance of 
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CKO fetal livers at E16.5 and E18.5 (but not E14.5) as compared to littermate control 

fetal livers (data not shown). Although Tie2-Cre is expressed in endothelial cells, we did 

not detect hemorrhaging or edema and immunochemical analysis also showed apparently 

normal vasculature density in the livers of CKO embryos (data not shown). There were 

no significant gross or histological defects in other major organs including the lungs and 

the heart in CKO embryos (Fig. 3.8). These results suggest disrupted fetal hematopoiesis 

as the major defect in CKO embryos. 

To further characterize the consequences of defective erythropoiesis brought on 

by FIP200 deletion, we analyzed the peripheral blood of CKO and control embryos at 

E18.5. Consistent with the reduced erythropoiesis observed in fetal livers, CKO embryos 

displayed dramatically reduced numbers of RBCs (Fig. 3.1C), decreased hemoglobin 

content (Fig. 3.1D), decreased hematocrit (Fig. 3.1E) and an elevation in the red blood 

cell distribution width (Fig. 3.1F) as compared to the circulating blood of control 

embryos, indicative of severe anemia. Analysis of the peripheral blood using the surface 

markers CD71 and Ter119 showed a significant decrease in frequency (Figs. 1G and 1H) 

and absolute number (Fig. 3.1I) of CD71
low

Ter119
+ 

mature red blood cells (R8 

population) in CKO mice as compared to control mice, further confirming the presence of 

a profound anemia. Similar analysis of the fetal liver at E14.5 (when no histological 

defects were present) suggested compromised erythroid maturation in CKO embryos. We 

observed an increase in the frequency of immature erythroid cells (R4 population: 

CD71
med

Ter119
-
 and R5 population: CD71

high
Ter119

-
) and a decrease in a maturing 

erythroid population (R6 population: CD71
high

Ter119
+
) in CKO embryos as compared to 

control embryos (Fig. 3.9). The anemia appeared to be erythroblastic as evidenced by the 
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significantly increased numbers of nucleated cells in the peripheral blood of E18.5 CKO 

mice by Wright-Giemsa staining (Fig. 3.1J). Indeed, differential counting identified 72% 

of the nucleated cells to be erythroblasts and 25% to be neutrophils. Erythroblast identity 

was further confirmed by Benzidine staining (Fig. 3.1K). Taken together, these results 

suggest a crucial role for FIP200 in fetal erythropoiesis and demonstrate that its loss in 

hematopoietic cells leads to perinatal lethality associated with severe erythroblastic 

anemia. 

 

FIP200 deletion cell-autonomously leads to fetal HSC depletion  

Although CKO fetal livers were histologically indistinguishable from control fetal 

livers at E14.5 (see Fig. 3.1B), we noted a decrease in total fetal liver cell number in 

CKO embryos at this stage and a more dramatic reduction at E18.5 as compared to 

control embryos (Fig. 3.2A). These data raised the possibility that an HSC defect might 

contribute to the anemia observed in CKO mice. We examined the frequency of 

CD150
+
CD48

-
Lin

-
Mac-1

+
Sca-1

+
 cells in the E14.5 fetal liver of CKO and control mice. 

These cells include all fetal liver HSC activity and are highly enriched for HSCs (Kim et 

al., 2006). As shown in Figs. 2B and 2C, the frequency of immunophenotypic HSCs was 

6-fold lower in CKO fetal livers as compared to control samples. Coupled with the 

overall decrease in fetal liver cellularity in CKO embryos, the absolute number of 

immunophenotypic HSCs was diminished roughly 10-fold in the fetal liver upon FIP200 

deletion. (Fig. 3.2D). We also confirmed this result with CD150
+
CD48

-
CD41

-
Lin

-
c-

Kit
+
Sca-1

+ 
HSCs (data not shown). 
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 To address whether FIP200 loss impaired fetal HSC function and to exclude the 

possibility that HSCs simply changed their immunophenotype after FIP200 deletion, we 

functionally assessed the repopulating capacity of fetal liver cells from CKO mice in 

vivo. Competitive reconstitution experiments were performed in which 200,000 E14.5 

fetal liver cells from CD45.2
+
 CKO or CD45.2

+
 control donors were coinjected with 

500,000 young adult bone marrow cells from congenic CD45.1
+
 mice into lethally 

irradiated CD45.1
+
 recipients (Fig 3A). We tracked donor cell reconstitution by analyzing 

the blood of recipients 4, 8, and 16 weeks after transplantation. Consistent with the 

relatively high proliferative potential of fetal liver cells (Morrison et al., 1995), 200,000 

control fetal liver cells competed slightly better than 500,000 adult bone marrow cells in 

reconstituting the peripheral blood (Fig. 3.3B), and contributed to the myeloid, B cell and 

T cell lineages (Figs. 3C) throughout the length of the experiment. In contrast, FIP200-

null fetal liver cells failed in multilineage reconstitution in all of the recipients, 

suggesting that FIP200 is indispensable for the repopulating ability of fetal HSCs.  

Although these transplantation results were consistent with HSC maintenance 

defects in vivo, it was possible that the failure of fetal liver cells from CKO mice to 

repopulate recipients was due to their inability to home to the bone marrow after 

transplantation. Moreover, other extrinsic mechanisms could account for the failure of 

CKO cells in transplantation. For example, FIP200 deletion in endothelial cells (as Tie2-

Cre is also expressed in this tissue) could potentially cause irreversible damage to fetal 

HSCs by disrupting an important endothelial niche, which have been suggested, at least 

for adult HSCs (Butler et al.; Kiel and Morrison, 2006; Kiel et al., 2005). Even though no 

apparent defects in vascular development were observed in CKO mice, we nevertheless 



 111 

wished to test these possibilities and to this end we generated mice from which we could 

inducibly delete FIP200 in hematopoietic cells (FIP200
fl/fl

Mx-1-Cre
+
 mice). We 

performed similar transplantation experiments as above by transplanting 200,000 fetal 

liver cells from E14.5 CD45.2
+
 FIP200

fl/fl
Mx-1-Cre

+
 or CD45.2

+
 FIP200

fl/fl
 embryos 

along with 500,000 young adult bone marrow cells from congenic CD45.1
+
 mice into 

lethally irradiated CD45.1
+
 recipients (Fig. 3.4A). In one group of recipients, we 

administered 5 doses of polyinosine-polycytidine (pIpC) every other day to induce 

deletion of FIP200 in transplanted cells from the FIP200
fl/fl

Mx-1-Cre
+
 donors five days 

after transplantation, which is sufficiently long enough for homing (Kim et al., 2007b). 

The peripheral blood was then analyzed 4 to 18 weeks after transplantation to monitor 

donor cell reconstitution. Control donor cells successfully reconstituted all recipient mice 

in all lineages throughout the length of the experiment (Fig. 3.4B-C). In contrast, we 

noted a significantly reduced reconstitution in all lineages by FIP200
fl/fl

Mx-1-Cre
+
 donor 

cells starting 4 weeks after transplantation. By 18 weeks, there was a complete loss of 

donor cell reconstitution from FIP200
fl/fl

Mx-1-Cre
+
 cells in all hematopoietic lineages 

(Figs. 4B-C). Interestingly, we noticed that B-cell reconstitution by FIP200
fl/fl

Mx-1-Cre
+
 

cells decreased more gradually than myeloid cell reconstitution, suggesting that HSCs 

were particularly sensitive to FIP200 deletion since myeloid cells are much shorter lived 

and must be regenerated frequently. In a second group of recipients, mice were not 

treated with pIpC and their peripheral blood was analyzed at 4 weeks after 

transplantation. Donor cell reconstitution levels from FIP200
fl/fl

Mx-1-Cre
+
 cells (in the 

absence of Cre recombinase induction) were roughly equal to that of control cells at 4 

weeks after transplantation (Fig. 3.4D), suggesting that reconstitution defects observed in 
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pIpC-treated FIP200
fl/fl

Mx-1-Cre
+
 donor cells was indeed due to induced FIP200 

deletion.  

Taken together, these results demonstrate that FIP200 is cell-autonomously 

required for the maintenance of fetal HSCs. This requirement is consistent with the 

phenotypic reduction in HSC frequency and number in E14.5 CKO embryos, prior to the 

onset of severe anemia, and with the functional defects in reconstitution ability of 

FIP200-deficient HSCs. It is likely that the loss of fetal HSC activity contributed 

significantly to the perinatal lethality and anemia in CKO mice. 

 

Increased HSC cycling and myeloid expansion after FIP200 deletion  

Our previous studies showed that FIP200 deletion led to increased apoptosis in 

several cell types in germline and conditional knockout mice (Gan et al., 2006; Liang et 

al., 2010). Thus, we wondered if increased apoptosis of HSCs upon FIP200 deletion led 

to the depletion of HSCs in CKO mice. We measured apoptosis of fetal liver cells in 

CKO and control embryos at E14.5 and E16.5 by performing terminal deoxynucleotidyl 

transferase dUTP nick end labeling (TUNEL) assays on fetal liver sections. Low levels 

(~5%) of apoptotic cells were observed in the livers of both CKO and control embryos 

(Fig. 3.5A). These results were further confirmed in E14.5 fetal liver cells by staining for 

annexin V and analyzing by flow cytometry (Fig. 3.5B). We also examined 

CD150
+
CD48

-
CD41

-
Lin

-
c-Kit

+
Sca-1

+ 
HSC cell death at E14.5 by annexin V staining and 

found that the levels of apoptosis in both CKO and control HSCs were, on average, 

comparably lower than in unfractionated fetal liver cells (Fig. 3.5C). These results 

suggest that FIP200 deletion in hematopoietic cells did not appreciably increase 
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apoptosis of either unfractionated fetal liver cells or HSCs and that HSC depletion in 

CKO mice may not be caused by increased cell death.   

We also evaluated the effect of FIP200 deletion on the proliferation of 

CD150
+
CD48

-
CD41

-
Lin

-
c-Kit

+
Sca-1

+ 
HSCs by BrdU incorporation assays. BrdU was 

administered intraperitoneally into pregnant mothers carrying E14.5 embryos two hours 

before sacrificing animals for analysis. Following this short pulse, we noted a slightly 

lower level of BrdU incorporation in the unfractionated fetal liver cells of CKO embryos 

compared to control embryos (Fig. 3.6A). Interestingly, a significant increase in BrdU 

incorporation was detected in FIP200-null HSCs (37.3 ± 9.9%) compared to control 

HSCs (24.3 ± 3.3%). These results suggest that FIP200 is required for cell cycle 

regulation in fetal HSCs.  

Although HSC cycling was increased in FIP200-deficient animals, HSC number 

and function was depleted and an increase in cell death was not detectable. Therefore, 

FIP200-deficient HSCs were rapidly exiting the stem cell pool by other mechanisms. One 

mechanism by which increased cycling could immediately deplete HSCs is by tipping the 

balance towards differentiation at the expense of self-renewal. Therefore, we sought to 

examine the different lineages that were produced in E14.5 control and CKO fetal livers 

by flow cytometry. While slight changes were found for erythroid and B-cell lineages, a 

dramatic increase in the myeloid lineage (4-fold) was detected in the CKO fetal liver as 

compared to control mice (Fig. 3.6C). Despite the decrease in overall liver cellularity (see 

Fig. 3.2A) there was an increase in the absolute number of myeloid cells in CKO fetal 

livers compared to that of control fetal livers (Fig. 3.6D). The increase in frequency and 

absolute number of myeloid cells suggested that myelopoiesis was enhanced in the fetal 
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liver of CKO mice. Consistent with this, Wright-Giemsa staining of peripheral blood 

from E18.5 embryos displayed an increased presence of neutrophils in CKO embryos as 

compared to control embryos (Fig. 3.6E). Further analysis of the peripheral blood by flow 

cytometry indicated a 17-fold increase in Mac-1
+
Gr-1

+
 frequency (from about 0.03% to 

0.52%) and an 8-fold increase in the number of Mac-1
+
Gr-1

+ 
cells per microliter in CKO 

embryos as compared to control embryos (Fig. 3.6F). Taken together, these data 

demonstrate a significant expansion in the myeloid lineage in CKO mice. 

 

Autophagy is disrupted in FIP200-deleted hematopoietic cells and mitochondrial 

mass and ROS levels increase in HSCs 

Several recent studies identified FIP200 as an essential component of the ULK1-

Atg13-FIP200 complex, which is involved in the generation of autophagosomes (Hara 

and Mizushima, 2009; Hara et al., 2008; Hosokawa et al., 2009; Jung et al., 2009; 

Nishida et al., 2009). Autophagy is thought to mediate the clearance of damaged and/or 

excess organelles including mitochondria, which are a major source of intracellular ROS 

(Beckman and Ames, 1998; Cumming et al., 2001; Ito et al., 2004). While normal HSCs 

contain low levels of ROS, an abnormal increase of ROS has been associated with 

increased cell cycle progression and depletion of adult HSCs (Chen et al., 2008; Ito et al., 

2006; Tothova et al., 2007). Therefore, we investigated the possibility that autophagic 

defects in hematopoietic cells after FIP200 deletion would cause an accumulation of 

mitochondria and increased ROS levels.  

Consistent with a defect in autophagy, we observed an accumulation of 

p62/SQSTM1, a selective substrate for autophagy, in CKO fetal liver cells as compared 
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to control cells (Fig. 3.7A). Moreover, we observed an increase in mitochondrial mass in 

E14.5 CKO fetal liver cells as compared to control cells by staining cells with the cell-

permeant MitoTracker Green probe and analyzing by flow cytometry (Fig. 3.7B). Lastly, 

we detected a 50% increase in ROS levels in CKO fetal liver cells by 2’-7’-

dichlorofluorscein diacetate (DCFDA) staining (Fig. 3.7C), consistent with a model in 

which impaired autophagic clearance led to the accumulation of mitochondria and 

increased ROS levels. We also observed that mitochondrial mass (Fig. 3.7D) and ROS 

levels (Fig. 3.7E) increased in Mac-1
+
Gr-1

+
 cells in the E14.5 CKO fetal liver as 

compared to controls. Importantly, we detected greater increases in both mitochondrial 

content (Fig. 3.7F) and ROS levels (Fig. 3.7G) in E14.5 CKO fetal CD150
+
CD48

-
CD41

-

Lin
-
c-Kit

+
Sca-1

+ 
HSCs as compared to control fetal HSCs. Taken together, these results 

suggest that FIP200 deletion results in the increased mitochondrial mass, perhaps through 

impaired mitochondrial autophagy, and thus results in increased ROS levels in 

hematopoietic cells, which could contribute to the various hematopoietic deficiencies in 

CKO embryos. 
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DISCUSSION 

Compared to what is known about the regulation of adult HSCs (He et al., 2009), 

relatively little is known about the pathways that regulate fetal HSC maintenance. Here, 

we present data showing that deletion of FIP200 in hematopoietic cells resulted in the 

depletion of fetal HSCs in a cell-autonomous manner. Decreased fetal liver cellularity 

was observed in CKO mice as early as E14.5 and hematopoietic perturbations became 

progressively worse, resulting in a profound anemia and the death of virtually all CKO 

mice by 1 week of age. A massive decrease in fetal HSC frequency and number was also 

found in CKO embryos. Fetal liver cells from CKO embryos completely lost their long-

term multilineage reconstitution capacity when transplanted into wild-type recipient 

mice. We confirmed an intrinsic requirement for FIP200 in fetal HSCs by demonstrating 

HSC depletion in transplantation experiments where FIP200 was deleted from donor 

cells after transplantation.   

 The mechanisms by which inactivation of FIP200 led to fetal HSC depletion are 

still not clear. Although FIP200 deletion has been shown to increase apoptosis of 

cardiomyocytes, hepatocytes and neurons in previous studies (Gan et al., 2006; Liang et 

al., 2010), we were unable to detect increased cell death in CKO fetal HSCs. We did not 

find a decrease in the proliferation of fetal HSCs compared to the control HSCs, 

indicating that HSC depletion was not caused by reduced entry into cell-cycle. In fact, we 

actually observed a significant increase in the proliferation of FIP200-null fetal HSCs 

compared to control HSCs. At this point, we are unable to distinguish whether FIP200 

deletion leads to the loss of fetal HSC quiescence or whether the increased cycling we 

observed was secondary to the dramatic reduction of fetal hematopoiesis. 
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We observed increased ROS levels and significantly increased myelopoiesis in 

CKO fetal livers. Loss of FoxO transcription factors, which normally promote the 

expression of various antioxidant enzymes, also leads to an ROS-mediated depletion of 

HSCs and a mild non-lethal myeloproliferative phenotype in adult mice (Tothova et al., 

2007), suggesting that increased ROS levels may be linked with myeloid expansion. 

Consistent with this, a recent report showed that in Drosophila, ROS could function in 

signaling, and that increasing ROS in hematopoietic progenitors beyond their basal level 

triggers their premature differentiation into myeloid-like cells (Owusu-Ansah and 

Banerjee, 2009). This raises the possibility that increased ROS levels found in FIP200-

deleted fetal HSCs increases their differentiation towards the myeloid lineage. This is 

consistent with the increased cell-cycling observed in FIP200-deleted HSCs that leads to 

HSC depletion. However, at this point, we do not know whether this lineage bias acts at 

the level of HSCs, or whether FIP200 deletion expands a currently uncharacterized fetal 

myeloid progenitor population.  

Similar to several recent reports implicating a role of autophagy in erythropoiesis 

(Kundu et al., 2008; Mortensen et al., 2010; Sandoval et al., 2008; Zhang and Ney, 2008), 

we observed a significant decrease in erythroid maturation in CKO fetal livers. Though to 

a lesser extent than fetal HSCs, mitochondrial mass was increased in unfractionated fetal 

liver cells (which are mostly composed of erythrocytes) of CKO mice. Based on our 

observations of accumulated p62/SQSTM1 in fetal liver cells, it is possible that defects in 

autophagy to clear mitochondria in FIP200-null erythroid cells is responsible for their 

compromised maturation as observed in Atg7-deficient mice (Mortensen et al., 2010; 

Zhang et al., 2009). Erythroid cells also accumulate hemoglobin as they mature and thus 
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are highly prone to oxidative damage. Therefore, adequate antioxidant responses are 

required for the maintenance of erythrocyte survival (Tsantes et al., 2006). Disruptions in 

these protective responses, by FoxO3 deficiency for example, increases ROS levels and 

shortens erythrocyte lifespan (Marinkovic et al., 2007). Both an erythroid maturation 

defect, and the sensitivity of erythrocytes to oxidative damage likely contribute to the 

anemia observed in FIP200-deleted embryos. 

Consistent with our prior observations in neurons (Liang et al., 2010), deletion of 

FIP200 in hematopoietic cells also led to increased accumulation of p62/SQSTM1, 

indicating impaired autophagic clearance. Moreover, we also observed increased 

mitochondrial mass in FIP200-null fetal liver cells, myeloid cells, and fetal HSCs, 

consistent with the accumulation of damaged mitochondria in FIP200-deficient Purkinje 

cells as visualized directly by electron microscopy (Liang et al., 2010). Autophagy 

defects and the associated accumulation of mitochondria often results in a harmful 

increase in intracellular ROS levels (Kim et al., 2007a; Sandoval et al., 2008; Tal et al., 

2009). Furthermore, increased ROS levels have also been associated with increased cell 

cycle progression and depletion of adult HSCs (Chen et al., 2008; Tothova et al., 2007). 

Our data are consistent with a model in which defective autophagy leads to mitochondrial 

accumulation and increased generation of toxic ROS that deplete fetal HSCs. 

FIP200 is also known to have numerous binding partners and thus impacts other 

cellular functions beyond autophagy. Disruptions in these interactions could also 

contribute to the hematopoietic phenotypes in CKO mice, warranting further 

investigation. Nevertheless, our study identifies FIP200 as a critical cell-autonomous 

regulator of fetal HSCs. Our results also suggest certain similarities between adult and 
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fetal HSCs in that loss of quiescence and increased ROS appear to be detrimental to both 

stem cell populations. Given the recently described function of FIP200 in autophagy, 

these results also provide the first suggestion for a potential role of autophagy in HSC 

maintenance. While several previous studies established a role for autophagy in 

hematopoiesis, particularly erythropoiesis (Kundu et al., 2008; Mortensen et al., 2010; 

Zhang and Ney, 2008), it is possible that stem cell defects also contribute to the 

phenotypes described in these mice. 
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 FIP200
+/fl FIP200

+/fl 

Tie2-Cre
+ FIP200

fl/fl FIP200
fl/fl

 

Tie2-Cre
+ 

E14.5 39 37 38 41 

E16.5 13 9 10 12 

E17.5 13 17 10 8 

E18.5 39 33 38 30 

P7 32 26 31 3 

 

 

Table 3.1: Genotypes of progeny from crosses between male FIP200
fl/fl

Tie2-Cre
+
 and 

female FIP200
fl/fl

 mice. 

 

All genotypes were present in Mendelian ratios at E14.5 and E16.5. FIP200
fl/fl

Tie2-Cre
+
 

mice declined slightly in number at E17.5 and E18.5 and the majority of these mice were 

dead by 7 days after birth. 
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Figure 3.1 
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Figure 3.1: Conditional deletion of FIP200 by Tie2-Cre results in severe anemia in 

developing embryos.  
 

(A) Lysates were prepared from E14.5 livers of control or CKO mice and analyzed by 

Western blotting using anti-FIP200 (upper) or anti-vinculin (lower) antibodies. (B) H&E 

staining of E14.5, E16.5, E18.5 fetal livers from control and CKO mice. Arrows indicate 

enucleated red blood cells. Scale bars=200µm. (C-F) Red blood cell parameters of 

peripheral blood from E18.5 control and CKO mice: red blood cell numbers (C), 

hemoglobin (D), hematocrit (E), and red blood cell distribution width (F). n=7-17, 

#p<0.01, *p<0.05. Data are mean + SE. (G) Representative FACS analysis of erythroid 

maturation in the peripheral blood of E18.5 control and CKO embryos. The cells were 

double labeled with anti-CD71 and anti-Ter119 antibodies. R8 represents the most 

mature population defined as CD71
low

Ter119
+
. (G) Representative flow cytometry plots 

showing the R8 population in control and CKO embryos. (H, I) Average values of R8 

population frequency (H) and number (I) in control and CKO embryos. n=4-15, #p<0.01. 

Data are mean + SE. (J) Wright-Giemsa staining of the blood smears from E18.5 control 

and CKO embryos. The arrowheads indicate the erythroblasts. (K) Benzidine staining of 

the blood smears as in (J). Arrowheads indicate the positively stained erythroblasts. Scale 

bars=100µm. 
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Figure 3.2: FIP200 deletion depletes fetal HSCs.  

 

(A) Cell numbers in E14.5 and E18.5 fetal livers of control and CKO mice. n=5-13, 

#p<0.01. Data are mean + SE. (B) Representative flow cytometry plots of fetal liver cells 

from E14.5 control and CKO embryos. HSCs were gated as CD150
+
CD48

-
Lin

-

Mac1
+
Sca1

+
 cells. (C, D) The frequency (C) and number (D) of fetal HSCs in control and 

CKO embryos shown in (B). 
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Figure 3.3: FIP200 is essential for the maintenance of fetal HSCs. 
 

(A) Diagram of the competitive repopulation experimental design for data in (B) and (C). 

200,000 fetal liver cells from CD45.2
+
 control or FIP200

fl/fl
 Tie2-Cre

+
 (CKO) mice were 

injected into lethally irradiated CD45.1
+
 wild type recipients along with 500,000 CD45.1

+
 

bone marrow cells. Reconstitution of peripheral blood by donor cells was monitored for 

16 weeks after transplantation. (B) Contribution of fetal liver-derived donor cells to all 

peripheral blood leukocytes in reconstituted mice. (C) Contribution of donor cells to the 

peripheral blood in different lineages, including myeloid (Mac1
+
, Gr1

+
), B-cell (B220

+
), 

and T-cell (CD3
+
). Data represent the average donor chimerism levels from three 

independent experiments with a total of 12 recipients per genotype. 

 



 125 

 

 

 
 

Figure 3.4: FIP200 is cell-autonomously required for the maintenance of fetal HSCs.  

 

(A) Diagram of the competitive repopulation experimental design for data in (B) and (C). 

200,000 fetal liver cells from CD45.2
+
 FIP200

fl/fl
Mx-1-Cre

+
 or control mice were injected 

into lethally irradiated CD45.1
+
 wild type recipients along with 500,000 CD45.1

+
 bone 

marrow cells. Five pIpC injections were administrated to one set of recipients every other 

day beginning 5 days after transplantation. Reconstitution of peripheral blood by donor 

cells was then monitored for an additional 16 weeks (at the 4
th

, 6
th

, 10
th

, and 18
th

 weeks 

after transplantation). No pIpC was administrated to another set of recipients. 

Reconstitution of peripheral blood by donor cells was examined at the 4
th 

week after 

transplantation. (B) Contribution of fetal liver-derived donor cells to all peripheral blood 

leukocytes in reconstituted mice in the group treated with pIpC. The shaded bar in B 

indicates pIpC administration. (C) Contribution of donor cells to the peripheral blood in 

different lineages, including myeloid (Mac1
+
, Gr1

+
), B-cell (B220

+
), and T-cell (CD3

+
) in 

the group treated with pIpC. (D) Contribution of donor cells to peripheral blood 

leucocytes in reconstituted mice in the group without pIpC treatment. Data represent the 

average donor chimerism levels from two independent experiments with a total of 9 

recipients per genotype. 
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Figure 3.5: FIP200 deletion did not affect fetal liver cell apoptosis.  

 

(A) Fetal liver tissue sections from control and CKO mice at E14.5 and E16.5 were 

analyzed by TUNEL assays. Arrowheads indicate positively stained apoptotic cells. 

Graphs on the right are mean + SE. n=4-5. Scale bars=200µm. (B, C) Annexin V labeling 

of fetal liver cells (B) or fetal CD150
+
CD48

-
CD41

-
Lin

-
c-Kit

+
Sca-1

+ 
HSCs (C) from 

E14.5 control and CKO embryos. Data are mean + SE. 
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Figure 3.6 
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Figure 3.6: FIP200 deletion led to increased HSC cell cycling and myeloid expansion 

(A, B) The percentage of BrdU
+
 fetal liver cells (A) and fetal CD150

+
CD48

-
CD41

-
Lin

-
c-

Kit
+
Sca-1

+ 
HSCs (B) in E14.5 control and CKO mice after a two hour BrdU pulse. 

Representative flow cytometry plots of fetal HSCs are shown to the right of (B). P4 

represents the BrdU
+
 population. (C, D) Frequency (C) and number (D) of fetal liver cells 

in various lineages from E14.5 control and CKO mice. Representative flow cytometry 

plots of the Mac1
+
Gr1

+
 population is shown to the right of (C). n=6-13, *p<0.05. Data 

are mean + SE. (E) Wright-Giemsa staining of blood smears from E18.5 control and 

CKO embryos. The arrows indicate neutrophils. (F) Number of Mac1
+
Gr1

+
 cells per µl 

peripheral blood of E18.5 control and CKO embryos. These numbers were calculated by 

multiplying the frequency data obtained by flow cytometry with complete blood count 

data from hematology analyzer data. Representative flow cytometry plots are shown to 

the right of (F). n=3-15, *p<0.05. Data are mean + SE. 
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Figure 3.7: Autophagy is disrupted in FIP200-deleted hematopoietic cells and 

mitochondrial mass and ROS levels increase in HSCs 

 

(A) Lysates from E14.5 liver of control or CKO mice were analyzed by Western blotting 

using anti-p62 (upper) or anti-vinculin (lower) antibodies. (*) indicates the p62 band. (B, 

C) Relative mitochondrial mass (B) and ROS levels (C) of E14.5 fetal liver cells as 

measured by mean fluorescence intensities of Mito-Tracker Green staining and DCFDA 

staining, respectively. (D, E) Relative mitochondrial mass (D) and ROS levels (E) in 

myeloid cells from E14.5 fetal liver. Representative flow cytometry plots of DCFDA 

staining are shown to the right of (E). (F, G) Relative mitochondrial mass (F) and ROS 

levels (G) of fetal CD150
+
CD48

-
CD41

-
Lin

-
c-Kit

+
Sca-1

+ 
 HSCs from E14.5 embryos. 

Representative flow cytometry plots of Mito-Tracker Green staining and DCFDA 

staining are shown to the right of the graphs. 
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Figure 3.8: Histological analysis of fetal heart and lungs of CKO mice.  

 

H&E staining of E18.5 fetal heart (left panels) and lung (right panels) sections from 

control and CKO mice. Scale bars=1 mm (left panels) and 200µm (right panels). 
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Figure 3.9: Impaired erythroid maturation in the fetal livers of CKO mice.  

 

(A) Representative flow cytometry plot of erythroid maturation in E14.5 fetal liver of 

control and CKO embryos. The cells were stained for CD71 and Ter119. Regions R4 to 

R8 are defined by the characteristic staining pattern of cells, and represent increasingly 

mature populations from R4 to R8. (B, C) The cell frequency (B) and number (C) of the 

R4-R8 populations. Note that there were increases in immature populations (R4 and R5) 

and decreases in more mature populations (R6 and R7) in CKO mice. n=5-8, *p<0.05. 

Data are mean + SE. 
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CHAPTER 4 

CONCLUSION 

 

This dissertation investigates the function of signaling pathways in HSC 

maintenance. Chronic activation of the PI-3kinase/Akt/mTOR pathway by genetic Pten 

ablation resulted in HSC depletion through the induction of a tumor suppressor response 

involving p16
Ink4a

 and p53 in HSCs. Loss of FIP200 resulted in the rapid depletion of 

fetal HSCs, potentially due to autophagic defects that resulted in an accumulation of 

mitochondria that increased ROS levels in HSCs. 

 The results in Chapter 2 demonstrated that a tumor suppressor response was 

activated in hematopoietic cells after Pten deletion. In unfractionated spleen cells, the 

levels of p19
Arf

, p53, and p21
Cip1

 increased after Pten deletion in a manner dependent on 

activated mTOR signaling, but p16
Ink4a

 was not induced. This tumor suppressor response 

was activated in order to suppress the development of leukemias, as further loss of p19
Arf

, 

p16
Ink4a

/p19
Arf

, or p53 (but not p16
Ink4a

) accelerated Pten-deleted leukemogenesis. 

Interestingly, a similar but slightly different tumor suppressor response was also activated 

in HSCs. Specifically, p16
Ink4a

 and p53 was induced in Pten-deleted HSCs, although 

p19
Arf

 was not. Consistent with this, further deleting p16
Ink4a

, p16
Ink4a

/p19
Arf

, or p53 (but 

not p19
Arf

) prolonged the reconstituting capacity of Pten-deleted HSCs. The restoration 

of reconstituting potential appeared to function at the level of HSCs, as p16
Ink4a

 or p53 
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deficiency reversed the depletion of Pten-deleted HSCs in primary recipients. These data 

are in contrast to observations that after Pten deletion, FoxO transcription factors are not 

inactivated, ROS levels do not increase, and NAC fails to rescue HSC function. 

Therefore, these results demonstrate there are multiple distinct mechanisms by which 

increased PI-3kinase pathway signaling can lead to stem cell depletion, including an 

mTOR-mediated tumor suppressor response that occurs in HSCs after Pten deletion. 

 

Pten and FoxO transcription factors 

The results in Chapter 2 raise many questions for the future. For example, why are FoxO 

transcription factors not inactivated in Pten-deleted HSCs, despite increased Akt 

activation? One possibility is that the physiologic level of Akt activation after Pten 

deletion is not sufficient to induce significant FoxO inactivation. Consistent with this 

possibility, we were able to observe cytoplasmic sequestration and decreases in FoxO3a 

levels in HSCs that were stimulated with SCF and TPO in vitro, but not in HSCs obtained 

freshly from mice. Furthermore, phosphorylation by Akt only represents a fraction of the 

regulatory inputs that modulate the activities of FoxOs. Many other kinases also 

negatively regulate FoxOs by phosphorylation, and FoxOs are also subject to regulation 

by acetylation and ubiquitylation (Tothova and Gilliland, 2007; van der Horst and 

Burgering, 2007). A second non-mutually exclusive possibility is that other signals that 

also regulate FoxO function simply override the increased activation of Akt found in 

Pten-deleted HSCs. For example, the stabilization and activation of FoxOs by stress 

signals through Jun N-terminal kinase (JNK) or the sirtuin SIRT1 are thought to be more 

influential than inactivation by pro-survival signals through Akt (Brunet et al., 2004; 
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Wang et al., 2005). Therefore, instead of Pten deletion resulting in the inactivation of 

FoxOs, it is possible that stressful stimuli activate FoxOs in Pten-deleted HSCs in an 

attempt to confer stress resistance (including resistance to oxidative stress) to HSCs after 

Pten deletion. This may help to explain why ROS levels were increased in Pten-deleted 

T-cells but not in HSCs. The activation of stress resistance pathways may simply be more 

robust in HSCs than in lymphocytes. It is currently unknown whether such stress 

signaling pathways are activated in Pten-deleted HSCs, but inactivation of these 

pathways might result in demonstrable FoxO exclusion from the nucleus, much more 

rapid depletion of HSCs, perhaps with dramatic elevations in ROS levels. 

 

HSC fates after inducing a tumor suppressor response 

The activation of some combination of p16
Ink4a

, p19
Arf

, and/or p53 has now been 

genetically demonstrated to deplete multiple stem cell populations in a variety of settings 

including Bmi-1 deficiency (Akala et al., 2008; Molofsky et al., 2005; Oguro et al., 

2006), Hmga2 deficiency (Nishino et al., 2008), physiologic aging (Janzen et al., 2006; 

Krishnamurthy et al., 2006; Molofsky et al., 2006), and Cited2 deficiency (Kranc et al., 

2009). After Pten-deletion, both p16
Ink4a

 and p53 are induced through activation of 

mTOR signaling. However, in all of these examples, it is still unclear exactly what 

happens to HSCs or neural stem cells upon activation of tumor suppressor pathways. Two 

of the most common consequences of tumor suppressor activation: senescence and 

apoptosis, have been reproducibly demonstrated in non stem cell populations, but current 

evidence is lacking that these fates are assumed by stem cells in vivo. Part of this may be 

reflected in the insensitivity of assays used to detect these events. In the case of Pten 
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deletion, HSCs are depleted over weeks, suggesting an asynchronous depletion such that 

only a small subset of HSCs undergoes cell death or senescence at any given time. 

Detecting rare events in a rare population may not be possible, implying that the failure to 

detect these events does not rigorously exclude these fates for HSCs.  

Alternatively, HSCs may assume fates other than senescence or cell death upon 

p16
Ink4a

 or p53 induction. In support of this possibility, we have observed increased cell-

cycling in Pten-deleted HSCs that is rescued by rapamycin treatment, but overall, these 

cell divisions do not maintain self-renewal, as these HSCs were lost in recipients and 

were unable to provide long-term multilineage reconstitution. Therefore, the combination 

of increased PI-3kinase/Akt/mTOR activity and the increased expression of p16
Ink4a

 or 

p53 in Pten-deleted HSCs may promote their exit from the stem cell pool, perhaps by 

causing them to differentiate into downstream progenitors. 

This model offers a more precise definition for the term “stem-cell exhaustion” or 

the phenomenon of HSC depletion associated with the loss of quiescence. Examples of 

this phenomenon are plentiful (see Introduction), and recent evidence implicates PI-

3kinase pathway activation in differentiation. BCR-ABL, which is known to potently 

activate the PI-3kinase pathway (Kharas and Fruman, 2005), appears to induce the 

differentiation of HSCs. In mice expressing BCR-ABL under inducible control of the 

stem cell leukemia (SCL) enhancer, the MPP:HSC ratio increases dramatically 

(Schemionek et al., 2010), and BCR-ABL
+
 marrow displays reduced reconstituting 

activity, similar to what is observed in Pten-deleted mice. Offering clues into which 

lineages may be favored by PI-3kinase/Akt-induced differentiation, transplantation of 



 

 141 

CD34
+
 human progenitor cells expressing constitutively active AKT results in the 

expansion of myeloid cells at the expense of B-lymphocytes (Buitenhuis et al., 2008).  

Both p53 and p16
Ink4a

 may also play roles in the progressive restriction of self-

renewal capacity as immature cells become more committed. The correlation of 

increasing p53 protein levels with increasing differentiation has been known for some 

time in human hematopoietic cells (Kastan et al., 1991). Similarly, in human umbilical 

cord blood, the CD34
+
 HSC-containing fraction expresses very low levels of p16

INK4A
 and 

p15
INK4B

 whereas expression of these genes increases dramatically in the mature CD34
-
 

fraction (Kheradmand Kia et al., 2009). Erythroblasts cultured from human fetal liver 

tissue also upregulates p16
INK4A

 and p15
INK4B

 as they differentiate (Kheradmand Kia et 

al., 2009). In mouse embryonic stem cells, p53 directly suppresses Nanog expression and 

thus induces differentiation at the expense of self-renewal (Lin et al., 2005). This is 

consistent with the role of p53 in limiting the reprogramming of induced pluripotent stem 

(iPS) cells (Hong et al., 2009; Kawamura et al., 2009; Li et al., 2009; Marion et al., 2009; 

Utikal et al., 2009), although inactivation of senescence also mediates this increase in 

reprogramming efficiency (Banito et al., 2009). Finally, combined loss of p16
Ink4a

, p19
Arf

, 

and p53 results in increased HSC frequency and confers long-term multilineage 

reconstituting potential to multipotent progenitors, which are normally only capable of 

transient reconstitution. Thus, increased expression of p16
Ink4a

 and p53 in dividing HSCs 

after Pten deletion may deplete HSCs by reinforcing the normal maturation process of 

HSCs to more restricted progenitors. 

Although rapamycin completely rescues Pten-deleted HSC depletion (Yilmaz et 

al., 2006), p16
Ink4a

 or p53 deficiency did not. This implies that rapamycin, in addition to 
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suppressing p16
Ink4a

 and p53 activation in HSCs, must also do other things to prevent 

HSC depletion. Genome-wide transcriptional analyses in HSCs may illuminate additional 

pathways that are perturbed upon Pten-deletion, and normalized by additional rapamycin 

treatment. It is possible that transcriptional programs that induce differentiation are 

activated. Also, pathways downstream of mTORC2 are promising candidates in 

mediating HSC depletion, since mTORC2 can also be indirectly inhibited by rapamycin 

(Sarbassov et al., 2006) and is required for the development of prostate cancer after Pten 

deletion (Guertin et al., 2009).  

 

Pten-deficient leukemogenesis and therapeutic implications 

Loss of p53 and p16
Ink4a

 significantly restored Pten-deleted HSC function, and 

loss of p53 and p19
Arf

 significantly accelerated Pten-deleted leukemogenesis. At face 

value, these results suggest that leukemias might arise from rare HSC clones that manage 

to inactivate these tumor suppressor responses before becoming depleted. However, 

evidence that HSCs are the leukemic cell-of-origin is lacking, and transplantation of a 

non-HSC (c-Kit
mid

CD3
+
Lin

-
) population can transfer T-ALL (Guo et al., 2008). 

Moreover, Pten-deletion in mature T-cells with Lck-Cre or in mature myeloid cells with 

LysM-Cre can give rise to lymphoid and myeloid neoplasms respectively (Suzuki et al., 

2001; Yu et al., 2010). However, longer leukemic latencies are observed with Lck-Cre 

and LysM-Cre mediated deletion as compared to Mx-1-Cre deletion, which deletes Pten 

from all hematopoietic cells, including HSCs. Thus, it is possible that some Pten-

deficient leukemias originate from a transformed HSC, but this does not represent the 

only path towards tumorigenesis. 
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The accumulation of p53 was involved in both the inhibition of leukemogenesis 

and the depletion of HSCs after Pten deletion. One important therapeutic implication of 

this observation is that attempts to suppress leukemia formation by enhancing p53 

function would also have the unfortunate side effect of depleting HSCs. However, stem 

cells and cancer cells may exhibit differential sensitivities to p53, presenting a therapeutic 

window of p53 stabilization that affords tumor suppression without HSC depletion. A 

conceptually similar approach has been demonstrated with Pml inhibition by arsenic 

trioxide (Ito et al., 2008). Although maintenance of both normal HSCs and BCR-ABL 

leukemia-initiating cells are dependent on Pml, moderate inhibition with arsenic trioxide 

results in selective eradication of leukemia-initiating cells. Small molecule agonists that 

stabilize p53 exist, such as Nutlin-3, and have been demonstrated to be useful in a pro-

senescence therapeutic approach to treat Pten-deleted prostate cancer (Alimonti et al., 

2010). Such compounds, in moderate doses, may also inhibit Pten-deleted 

leukemogenesis without severely compromising HSC function. 

We have also uncovered subtle differences in the tumor suppressor responses that 

may be exploited in the future. Whereas Pten-deleted HSCs were also depleted through 

the induction of p16
Ink4a

, Pten-deleted leukemogenesis was inhibited by increased p19
Arf

 

levels. This raises the interesting possibility that the specific stabilization of p19
Arf

 may 

selectively promote tumor suppression without facilitating stem cell depletion. 

Conversely, p16
Ink4a

 inhibition, perhaps through RNA interference, would be predicted to 

prolong stem cell activity without significantly accelerating leukemogenesis. Nutlin-3 

may substitute for the role of p19
Arf

 with respect to p53 stabilization, but future small 

molecule stabilizers of p19
Arf

 may illuminate further p53-independent tumor suppressive 
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functions of p19
Arf

. These approaches are distinct from the inhibition of leukemogenesis 

by rapamycin, since mTOR inhibition reversed the induction of tumor suppressors. Thus, 

the approaches outlined above represent alternative strategies that may be useful for 

neoplasms refractory to mTOR inhibition, and perhaps more clinically useful than 

rapamycin alone. Even leukemias that originate in Pten-deleted mice sustain multiple 

genetic hits (Guo et al., 2008) and become rapamycin-resistant over time (Yilmaz et al., 

2006). 

 

FIP200 and fetal HSC maintenance 

The second half of this thesis examined the consequences of disrupting the 

FIP200 signaling node on fetal HSC maintenance. The loss of FIP200 resulted in a severe 

anemia during embryonic development, perinatal death, and a cell-autonomous depletion 

of HSCs (Chapter 3). The impact of FIP200 deletion on its numerous binding partners 

(Gan and Guan, 2008) in the fetal liver has not been examined and warrants future 

investigation. However, confirming the role of FIP200 in autophagosome synthesis 

(Ganley et al., 2009; Hara and Mizushima, 2009; Hara et al., 2008; Hosokawa et al., 

2009; Jung et al., 2009), defects in autophagy were present in the fetal liver. Additionally, 

FIP200-deleted HSCs displayed increased mitochondrial mass and ROS levels, 

consistent with a model in which defects in autophagy led to the accumulation of 

damaged mitochondria that increased toxic ROS. However, we do not conclusively know 

whether autophagy is impaired in FIP200-deleted HSCs. Due to the dramatic depletion of 

an already rare fetal HSC population, traditional detection of autophagosome components 
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by western blotting in this population has proven difficult. Novel methods to assess 

autophagy in vivo may shed further light as outlined below. 

 

Approaches to study autophagy in stem cell biology 

The most widely used marker to monitor autophagy is microtubule-associated 

protein light chain 3 (LC3) (Mizushima and Yoshimori, 2007), the mammalian homolog 

of yeast Atg8. Processed LC3 exists in two forms, and during autophagy induction, 

phosphatidylethanolamine (PE) is conjugated to LC3-I to form LC3-II which is then 

targeted to autophagic membranes (Mizushima, 2007). Transgenic mice which 

ubiquitously express a fusion GFP-LC3 protein have been generated and used to 

demonstrate active autophagy in various tissues during the neonatal starvation period 

immediately after birth, and in response to starvation in adult mice (Kuma et al., 2004; 

Mizushima et al., 2004). In cells that induce autophagy, GFP-LC3 staining patterns 

appear punctate, and these dots represent autophagosomes. The GFP-LC3 transgene 

could be crossed into FIP200 mutant mice and HSCs could be examined to test whether 

autophagosomes form in fetal HSCs of control mice but not in FIP200-deleted mice. 

However, this experiment has not yet been done. 

Autophagosomes ultimately fuse with lysosomes to degrade their contents, and 

this has made it difficult to monitor the later stages of autophagy with GFP-LC3 since its 

fluorescence is extinguished in acidic environments (Kuma et al., 2007). To address this, 

transgenic mice harboring mCherry-LC3, which is resistant to lysosomal degradation, 

have also been created and used to measure autophagy in the heart (Iwai-Kanai et al., 

2008). Furthermore, injection of mice with the fluorescent label monodansylcadaverine 
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(MDC) specifically labels autophagosomes, with tight correlation to mCherry-LC3 

staining (Iwai-Kanai et al., 2008). Double transgenic mice harboring both GFP-LC3 and 

mCherry-LC3 have also been generated, and allow for the monitoring of autophagosomes 

fusing with lysosomes as puncta change color from yellow to red (Terada et al., 2010). 

Further analysis of these mice could also illuminate the role of autophagy in numerous 

additional tissues, including stem cells. Chemical library screens are rapidly identifying 

both mTORC1-dependent and mTORC1-independent inducers of autophagy (Renna et 

al., 2010), many of which are currently used therapeutically and could be used for 

autophagy rescue experiments. 

The combination of LC3 indicator mice, techniques to label autophagosomes in 

vivo with MDC, and chemical inducers of autophagy represent powerful tools offering 

unprecedented opportunities to investigate the role of autophagy in stem cell biology. To 

date, there are no reports characterizing any stem cell population utilizing these mice, and 

fundamental questions regarding stem cell properties and their regulation could be 

addressed. Furthermore, mice from which essential autophagy genes (Atg5 and Atg7) can 

be conditionally deleted display significant neural phenotypes (Hara et al., 2006; 

Komatsu et al., 2006), and in the case of Atg7, fatal hematopoietic phenotypes 

(Mortensen et al., 2010). However, it is unknown whether these neural and hematopoietic 

defects reflect defects in stem cell function in these mice. In addition to testing stem cell 

function in Atg5-deficient or Atg7-deficient mice, these mice could also be crossed with 

LC3 indicator mice to directly visualize autophagic defects in stem cells. In fact, LC3 

indicator mice could be crossed with any mutants that display stem cell phenotypes, 

particularly those impacting mTORC1 function, to test if autophagy is involved. With 
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respect to Pten-deleted HSCs, it is possible that autophagic defects also contribute to their 

depletion, since activation of mTORC1 results in the inhibition of autophagy (Codogno 

and Meijer, 2005). Treatment with rapamycin, a known inducer of autophagy (Ravikumar 

et al., 2004), may be exerting its rescue partially through restoration of autophagy. 

In closing, the work described in this thesis provides further mechanistic insight 

into how Pten maintains adult HSCs, and demonstrates the critical role for FIP200 in the 

maintenance of fetal HSCs. Young, adult, and old HSCs show different characteristics 

with respect to cell-cycle kinetics (Cheshier et al., 1999; Kiel et al., 2007; Morrison et al., 

1995; Morrison et al., 1996), and use of different self-renewal mechanisms (Levi and 

Morrison, 2009). Future work will shed further light on how HSCs are differentially 

regulated throughout age by determining the consequences PI-3kinase hyperactivation on 

young HSCs, and whether FIP200 is involved in the maintenance of adult HSCs. 
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