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ABSTRACT 

 

Velocity Occupancy Space: Autonomous Navigation and Dynamic Obstacle 

Avoidance with Sensor and Actuation Error 

by 

Rachael Angela Bis 

 

Co-Chairs: Huei Peng and A Galip Ulsoy 

 

 

In order to autonomously navigate in an unknown environment, a robotic vehicle 

must be able to sense obstacles, determine their velocities, then select and execute a 

collision-free path that will lead quickly to a goal. However, the perceived location and 

motion of the obstacles will be uncertain due to the limited accuracy of the robot’s 

sensors. Thus, it is necessary to develop a system that can avoid moving obstacles using 

uncertain sensor data. The method proposed here is based on an occupancy grid —which 

has previously been used to avoid stationary obstacles in an uncertain environment—in 

conjunction with velocity obstacles—which allow a robot to avoid well-known moving 

obstacles. The combination of these techniques leads to velocity occupancy space (VOS): 

a search space which allows the robot to avoid moving obstacles and navigate efficiently 

to a goal using uncertain sensor data.  

However, the basic VOS concept assumes holonomic robots that are capable of 

instantaneous and error free velocity changes - capabilities that are not possessed by 
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actual vehicles. Therefore, two extensions are derived by which VOS is adapted to work 

with actual robotic vehicles.  

The first extension to VOS is for an acceleration controlled, differential drive robot. 

Two different techniques by which the differentially drive robot may approximate the 

velocity of a holonomic robot are derived and evaluated. They are then combined in order 

to allow the robot to select the best method based on the robot’s current state. 

The second extension to the basic VOS algorithm is designed to explicitly account for 

the actuation error experienced in typical robotic vehicles. The velocity obstacles are 

augmented to account for both the error in the robot’s current position as well as the 

velocity error that will occur while the robot attempts to follow the command velocity so 

that these sources of error does not cause a collision.  

Numerous simulation trials have been used to validate the original VOS concept as 

well as the two extensions. Experimental trials, with a typical, differentially driven 

robotic vehicle with actuation error, have demonstrated the success of VOS under real 

world conditions. 

 


