VELOCITY OCCUPANCY SPACE:
AUTONOMOUS NAVIGATION AND DYNAMIC OBSTACLE AVOIDANCE
WITH SENSOR AND ACTUATION ERROR

by

Rachael Angela Bis

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Mechanical Engineering)
in The University of Michigan
2012

Doctoral Committee:

Professor Huei Peng, Co-Chair
Professor A Galip Ulsoy, Co-Chair
Assistant Professor Edwin Olson
Research Professor Johann Borenstein
Matthew Castanier, Research Mechanical Engineer, TARDEC
This thesis is dedicated to:

My parents, for their inspiration;

My husband, for his encouragement;

And to my daughter, Evangeline.
ACKNOWLEDGMENTS

This research was supported in part by the Ground Robotics Reliability Center (GRRC) at the University of Michigan, with funding from government contract DoD-DoA W56H2V-04-2-0001 through the Joint Center for Robotics and by an NSF Graduate Research Fellowship.

I would like to thank my wonderful advisors Professor A. Galip Ulsoy and Professor Huei Peng for their patient guidance and continual assistance. I would also like to thank Professor Johann Borenstein and Russ Miller for providing me with access to the PackBot and SuperDroid robots which were used for this research. William Westrick provided immense assistance both with making the SuperDroid robot operational and with refining the VOS algorithm. I would like to acknowledge the support of my dissertation committee members (not previously mentioned), Professor Olson and Dr. Castanier. And, for their contributions to this research, I would like to acknowledge, Elizabeth Boettler, Lisa Perez, Joshua Stephenson and Alexander Scales.

On a more personal note, I would like to thank Mark and Janice Ramirez and Cynthia Bis for their help and support during the past year. And, finally, I would like to thank my husband, Richard Bis for his steadfast and never ending support.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xii</td>
</tr>
</tbody>
</table>

CHAPTER

1. **Introduction**
 1.1. Motivation
 1.2. Review of Related Literature
 1.3. Original Contributions
 1.4. Purpose and Scope

2. **Velocity Occupancy Space (VOS)**
 2.1. Background on VOS
 2.2. Representing Obstacles and the Goal in VOS
 2.3. Populating Velocity Occupancy Space
 2.4. Optimization of Weights
 2.5. Results
 2.6. Conclusions about VOS
3. **Velocity Occupancy Space for Differential Drive Vehicles**

 3.1. Differential Drive Formulation

 3.2. Comparison of the Two- and Three-Step Methods

 3.3. Obstacle Proximity Dependent Method

 3.4. Conclusions about VOS for Differential Drive Robots

4. **Velocity Occupancy Space for Vehicles with Actuation Error**

 4.1. Summary of Error Causes and Effects

 4.2. Effect of Error on Velocity Obstacles

 4.3. Simulation Results

 4.4. Experimental Results with Super Droid

 4.5. Conclusions about VOS for Vehicles with Actuation Error

5. **Summary, Conclusions and Future Work**

 5.1. Summary and Conclusions

 5.2. Future Work

APPENDICES

BIBLIOGRAPHY
LIST OF FIGURES

FIGURE

2.1 The robot detecting an obstacle 43
2.2 Polar space occupancy grid of Figure 2.1 43
2.3 Relative time steps 44
2.4 Cartesian grid for several time steps 45
2.5 Summed Cartesian grid indicating range detection over a past horizon 46
2.6 Robot and velocity obstacles of Obstacles A and B. 47
2.7 Center of Certainty 48
2.8 Configuration space representation of the robot and an obstacle 51
2.9 Velocity space representation of the robot velocity, \bar{v}_r, and the velocity obstacle, $\bar{v}\bar{o}_i$ 52
2.10 Initial conditions of a sample scenario. 65
2.11 First six simulation steps of an example scenario 69
2.12 VOS populated with repulsive values 69
2.13 VOS populated with attractive values 70
2.14 Simulation results after fifteen time steps 70
2.15 Comparison of Normalized Evaluation Metrics between Hand Tuned and Optimized Weights for 10 Design Scenarios (one sigma error bars) 71
2.16 Comparison of Normalized Evaluation Metrics between Hand Tuned and Optimized Weights for 1000 Scenarios (one sigma error bars) 71

2.17 Example of a failed scenario. 73

2.18 Simulation results with four moving and two stationary obstacles for twenty-seven time steps 75

2.19 First eight motor time step 76

2.20 Motor time steps eight to seventeen 76

2.21 Motor time steps seventeen to twenty-seven 76

2.22 Robot navigating using VOS 80

2.23 Robot navigating using VFH 80

3.1 Differential drive vehicle at two, consecutive motion time steps 89

3.2 Angular wheel velocity and acceleration for two step method 92

3.3 Possible robot positions at the end of the motion time step 94

3.4 Velocity space representation of the robot, with velocity \(\dot{v}_r \), an obstacle, with velocity \((\dot{x}(t_m), \dot{y}(t_m)) \), and the velocity obstacle, \(\dot{\Omega}_i \), where \(\dot{x}_{lr} \) is the vector between the robot and obstacle. 96

3.5 Robot positions during three-step acceleration 100

3.6 Simulation, using two-step velocity approximation, of the robot (circle), obstacles (rectangles) and the goal (asterisk). 103

3.7 The same simulation as in Figure 4.6, but with the three-step velocity approximation. 104

3.8 Simple goal/obstacle scenario 105

3.9 Velocity search space of scenario in Figure 4.8 using the two-step velocity approximation 106

3.10 Velocity search space of scenario in Figure 4.8 using the three-step velocity approximation (the axes are an order of magnitude smaller than those in Figure 4.9) 106
3.11 Failed simulation using two-step velocity approximation method 107
3.12 Simulation using the proximity dependent method. 111
3.13 Time steps 13-18 111
3.14 Time steps 18–32 112
3.15 Time steps 32-39 112
3.16 Time steps 38-45 112
3.17 Simulation using the proximity dependent method. 113
3.18 Time steps 7-16 113
3.19 Time steps 15-26 113

4. 1. Two representative PackBot wheel acceleration responses for
linear and angular velocity commands of $1 \frac{m}{s}$ and $1 \frac{rad}{s}$ 120
4.2 SuperDroid Robot 121
4.3. Velocity obstacles based on the calculated robot position and the actual
(error influenced) robot position 123
4.4. Expanded velocity obstacle using robot’s positional error bounds 126
4.5. Scenario where a possible collision may occur due to the
robot’s current velocity error 127
4.6 Simple scenario with the robot (triangle), goal (asterisk) and
one moving obstacle (square) 129
4.7. Velocity obstacle without considering actuation error 130
4.8. Velocity obstacle with actuation error extensions to VOS 130
4.9. Algorithm’s response to a basic simulation without actuation error extension 133
4.10. Algorithm’s response with actuation error extension, time steps 1-11 134
4.11. Algorithm’s response with actuation error extension, time steps 11-20 134
4.12. Robot, with differential drive constraints, using the proximity dependent VOS extension (Case 1). 137
4.13. Holonomic robot navigating between two obstacles (Case 2). 137
4.14 Minimum distance between obstacles required to allow the robot to pass between for Case 2 139
4.15. Labeled SuperDroid Robot 140
4.16. SuperDroid and Create Obstacles in experimental testing environment 141
4.17. Robot and obstacles in testing environment 142
4.18. VOS Display of the scenario in Figure 4.17 143
LIST OF TABLES

TABLE

1.1 Summary of Obstacle Avoidance Algorithms from Section 1.2. 34
1.2 Desired obstacle avoidance algorithm properties 35
2.1 Evaluation Metrics 64
2.2 Coefficients /design variable values used for velocity element weighting 67
2.3 Comparison of the performance of VOS and VFH on 500 Scenarios with Stationary Obstacles 81
2.4 Comparison of the performance of VOS and VFH on 500 Scenarios with Stationary and Moving Obstacles 82
2.5 Comparison of the performance of VOS and VO on 500 Scenarios with Complete Obstacle Knowledge 83
2.6 Comparison of the performance of VOS and VO on 500 Scenarios with LRF based Position and COC Velocity Data 84
3.1 Coordinates used in derivation 90
3.2 Robot positions and wheel velocities during three-step acceleration 99
3.3 Evaluation Metrics for Three Methods 114
4.1 Simulation Specifications 132
4.2 Simulation Evaluation Metric Values for 100 Trials 134
4.3 Necessary spacing to allow for robot to pass between obstacles 138
4.4 Experimental Specifications 144
4.5 Simulation Evaluation Metric Values 145
LIST OF APPENDICES

APPENDIX

A. Results from Low Speed Obstacle Velocity Estimation 158
B. Hardware Specifications 160
C. Video Results from SuperDroid Testing 164
D. Experimental Results with SuperDroid 168
ABSTRACT

Velocity Occupancy Space: Autonomous Navigation and Dynamic Obstacle Avoidance with Sensor and Actuation Error

by

Rachael Angela Bis

Co-Chairs: Huei Peng and A Galip Ulsoy

In order to autonomously navigate in an unknown environment, a robotic vehicle must be able to sense obstacles, determine their velocities, then select and execute a collision-free path that will lead quickly to a goal. However, the perceived location and motion of the obstacles will be uncertain due to the limited accuracy of the robot’s sensors. Thus, it is necessary to develop a system that can avoid moving obstacles using uncertain sensor data. The method proposed here is based on an occupancy grid—which has previously been used to avoid stationary obstacles in an uncertain environment—in conjunction with velocity obstacles—which allow a robot to avoid well-known moving obstacles. The combination of these techniques leads to velocity occupancy space (VOS): a search space which allows the robot to avoid moving obstacles and navigate efficiently to a goal using uncertain sensor data.

However, the basic VOS concept assumes holonomic robots that are capable of instantaneous and error free velocity changes - capabilities that are not possessed by
actual vehicles. Therefore, two extensions are derived by which VOS is adapted to work with actual robotic vehicles.

The first extension to VOS is for an acceleration controlled, differential drive robot. Two different techniques by which the differentially drive robot may approximate the velocity of a holonomic robot are derived and evaluated. They are then combined in order to allow the robot to select the best method based on the robot’s current state.

The second extension to the basic VOS algorithm is designed to explicitly account for the actuation error experienced in typical robotic vehicles. The velocity obstacles are augmented to account for both the error in the robot’s current position as well as the velocity error that will occur while the robot attempts to follow the command velocity so that these sources of error does not cause a collision.

Numerous simulation trials have been used to validate the original VOS concept as well as the two extensions. Experimental trials, with a typical, differentially driven robotic vehicle with actuation error, have demonstrated the success of VOS under real world conditions.