VELOCITY OCCUPANCY SPACE: AUTONOMOUS NAVIGATION AND DYNAMIC OBSTACLE AVOIDANCE WITH SENSOR AND ACTUATION ERROR

by

Rachael Angela Bis

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) in The University of Michigan

2012

Doctoral Committee:

Professor Huei Peng, Co-Chair Professor A Galip Ulsoy, Co-Chair Assistant Professor Edwin Olson Research Professor Johann Borenstein Matthew Castanier, Research Mechanical Engineer, TARDEC © Rachael Angela Bis 2012

This thesis is dedicated to: My parents, for their inspiration; My husband, for his encouragement; And to my daughter, Evangeline.

ACKNOWLEDGMENTS

This research was supported in part by the Ground Robotics Reliability Center (GRRC) at the University of Michigan, with funding from government contract DoD-DoA W56H2V-04-2-0001 through the Joint Center for Robotics and by an NSF Graduate Research Fellowship.

I would like to thank my wonderful advisors Professor A. Galip Ulsoy and Professor Huei Peng for their patient guidance and continual assistance. I would also like to thank Professor Johann Borenstein and Russ Miller for providing me with access to the PackBot and SuperDroid robots which were used for this research. William Westrick provided immense assistance both with making the SuperDroid robot operational and with refining the VOS algorithm. I would like to acknowledge the support of my dissertation committee members (not previously mentioned), Professor Olson and Dr. Castanier. And, for their contributions to this research, I would like to acknowledge, Elizabeth Boettler, Lisa Perez, Joshua Stephenson and Alexander Scales.

On a more personal note, I would like to thank Mark and Janice Ramirez and Cynthia Bis for their help and support during the past year. And, finally, I would like to thank my husband, Richard Bis for his steadfast and never ending support.

TABLE OF CONTENTS

DEDICATION	ii
ACKNOWLEDGEMENTS	iii
LIST OF FIGURES	vi
LIST OF TABLES	X
LIST OF APPENDICES	xi
ABSTRACT	xii

CHAPTER

1.	Intro	duction	1
	1.1.	Motivation	1
	1.2.	Review of Related Literature	3
	1.3.	Original Contributions	35
	1.4.	Purpose and Scope	37
2.	Veloc	ity Occupancy Space (VOS)	41
	2.1.	Background on VOS	42
	2.2.	Representing Obstacles and the Goal in VOS	47
	2.3.	Populating Velocity Occupancy Space	53
	2.4.	Optimization of Weights	62
	2.5.	Results	68
	2.6.	Conclusions about VOS	85

3.	Veloc	ity Occupancy Space for Differential Drive Vehicles	87
	3.1.	Differential Drive Formulation	87
	3.2.	Comparison of the Two- and Three-Step Methods	102
	3.3.	Obstacle Proximity Dependent Method	108
	3.4.	Conclusions about VOS for Differential Drive Robots	115
4.	Veloc	ity Occupancy Space for Vehicles with Actuation Error	116
	4.1.	Summary of Error Causes and Effects	117
	4.2.	Effect of Error on Velocity Obstacles	121
	4.3.	Simulation Results	130
	4.4.	Experimental Results with Super Droid	140
	4.5.	Conclusions about VOS for Vehicles with Actuation Error	147
5.	Sum	nary, Conclusions and Future Work	149
	5.1.	Summary and Conclusions	149
	5.2.	Future Work	153
PPE	NDICE	S	158

APPENDICES	158
BIBLIOGRAPHY	172

LIST OF FIGURES

FIGURE

2.1 The robot detecting an obstacle	43
2.2 Polar space occupancy grid of Figure 2.1	43
2.3 Relative time steps	44
2.4 Cartesian grid for several time steps	45
2.5 Summed Cartesian grid indicating range detection over a past horizon	46
2.6 Robot and velocity obstacles of Obstacles A and B.	47
2.7 Center of Certainty	48
2.8 Configuration space representation of the robot and an obstacle	51
2.9 Velocity space representation of the robot velocity, \vec{v}_r , and the velocity obstacle, \vec{VO}_i	52
2.10 Initial conditions of a sample scenario.	65
2.11 First six simulation steps of an example scenario	69
2.12 VOS populated with repulsive values	69
2.13 VOS populated with attractive values	70
2.14 Simulation results after fifteen time steps	70
2.15 Comparison of Normalized Evaluation Metrics between Hand Tuned	
and Optimized Weights for 10 Design Scenarios (one sigma error bars)	71

2.16 Comparison of Normalized Evaluation Metrics between Hand Tuned	
and Optimized Weights for 1000 Scenarios (one sigma error bars)	71
2.17 Example of a failed scenario.	73
2.18 Simulation results with four moving and two stationary	
obstacles for twenty-seven time steps	75
2.19 First eight motor time step	76
2.20 Motor time steps eight to seventeen	76
2.21 Motor time steps seventeen to twenty-seven	76
2.22 Robot navigating using VOS	80
2.23 Robot navigating using VFH	80
3.1 Differential drive vehicle at two, consecutive motion time steps	89
3.2 Angular wheel velocity and acceleration for two step method	92
3.3 Possible robot positions at the end of the motion time step	94
3.4 Velocity space representation of the robot, with velocity \vec{v}_R , an obstacle,	
with velocity $(\dot{x}_i(t_m), \dot{y}_i(t_m))$, and the velocity obstacle, \overline{VO}_i , where $\vec{\lambda}_{i,r}$ is the	
vector between the robot and obstacle.	96
3.5 Robot positions during three-step acceleration	100
3.6 Simulation, using two-step velocity approximation,	
of the robot (circle), obstacles (rectangles) and the goal (asterisk).	103
3.7 The same simulation as in Figure 4.6, but with the three-step	104
velocity approximation.	
3.8 Simple goal/obstacle scenario	105
3.9 Velocity search space of scenario in Figure 4.8 using the	
two-step velocity approximation	106
3.10 Velocity search space of scenario in Figure 4.8 using the	
three-step velocity approximation (the axes are an order of magnitude	
smaller than those in Figure 4.9)	106

3.11 Failed simulation using two-step velocity approximation method	107
3.12 Simulation using the proximity dependent method.	111
3.13 Time steps 13-18	111
3.14 Time steps 18–32	112
3.15 Time steps 32-39	112
3.16 Time steps 38-45	112
3.17 Simulation using the proximity dependent method.	113
3.18 Time steps 7-16	113
3.19 Time steps 15-26	113
4. 1. Two representative PackBot wheel acceleration responses for	
linear and angular velocity commands of $1\frac{m}{s}$ and $1\frac{rad}{s}$	120
4.2 SuperDroid Robot	121
4.3. Velocity obstacles based on the calculated robot position and the actual (error influenced) robot position	123
4.4. Expanded velocity obstacle using robot's positional error bounds	126
4.5. Scenario where a possible collision may occur due to the robot's current velocity error	127
4.6 Simple scenario with the robot (triangle), goal (asterisk) and	
one moving obstacle (square)	129
4.7. Velocity obstacle without considering actuation error	130
4.8. Velocity obstacle with actuation error extensions to VOS	130
4.9. Algorithm's response to a basic simulation without actuation error extension	133
4.10. Algorithm's response with actuation error extension, time steps 1-11	134

4.11. Algorithm's response with actuation error extension, time steps 11-20	134
4.12. Robot, with differential drive constraints, using the proximity	
dependent VOS extension (Case 1).	137
4.13. Holonomic robot navigating between two obstacles (Case 2).	137
4.14 Minimum distance between obstacles required to allow the robot	
to pass between for Case 2	139
4.15. Labeled SuperDroid Robot	140
4.16. SuperDroid and Create Obstacles in experimental testing environment	141
4.17. Robot and obstacles in testing environment	142
4.18. VOS Display of the scenario in Figure 4.17	143

LIST OF TABLES

TABLE

1.1 Summary of Obstacle Avoidance Algorithms from Section 1.2.	34
1.2 Desired obstacle avoidance algorithm properties	35
2.1 Evaluation Metrics	64
2.2 Coefficients /design variable values used for velocity element weighting	67
2.3 Comparison of the performance of VOS and VFH on 500 Scenarios with Stationary Obstacles	81
2.4 Comparison of the performance of VOS and VFH on 500 Scenarios with Stationary and Moving Obstacles	82
2.5 Comparison of the performance of VOS and VO on 500 Scenarios with Complete Obstacle Knowledge	83
2.6 Comparison of the performance of VOS and VO on 500 Scenarios with LRF based Position and COC Velocity Data	84
3.1 Coordinates used in derivation	90
3.2 Robot positions and wheel velocities during three-step acceleration	99
3.3 Evaluation Metrics for Three Methods	114
4.1 Simulation Specifications	132
4.2 Simulation Evaluation Metric Values for 100 Trials	134
4.3. Necessary spacing to allow for robot to pass between obstacles	138
4.4 Experimental Specifications	144
4.5 Simulation Evaluation Metric Values	145

LIST OF APPENDICES

APPENDIX

A. Results from Low Speed Obstacle Velocity Estimation	158
B. Hardware Specifications	160
C. Video Results from SuperDroid Testing	164
D. Experimental Results with SuperDroid	168

ABSTRACT

Velocity Occupancy Space: Autonomous Navigation and Dynamic Obstacle Avoidance with Sensor and Actuation Error

by

Rachael Angela Bis

Co-Chairs: Huei Peng and A Galip Ulsoy

In order to autonomously navigate in an unknown environment, a robotic vehicle must be able to sense obstacles, determine their velocities, then select and execute a collision-free path that will lead quickly to a goal. However, the perceived location and motion of the obstacles will be uncertain due to the limited accuracy of the robot's sensors. Thus, it is necessary to develop a system that can avoid moving obstacles using uncertain sensor data. The method proposed here is based on an occupancy grid —which has previously been used to avoid stationary obstacles in an uncertain environment—in conjunction with velocity obstacles—which allow a robot to avoid well-known moving obstacles. The combination of these techniques leads to *velocity occupancy space* (VOS): a search space which allows the robot to avoid moving obstacles and navigate efficiently to a goal using uncertain sensor data.

However, the basic VOS concept assumes holonomic robots that are capable of instantaneous and error free velocity changes - capabilities that are not possessed by

actual vehicles. Therefore, two extensions are derived by which VOS is adapted to work with actual robotic vehicles.

The first extension to VOS is for an acceleration controlled, differential drive robot. Two different techniques by which the differentially drive robot may approximate the velocity of a holonomic robot are derived and evaluated. They are then combined in order to allow the robot to select the best method based on the robot's current state.

The second extension to the basic VOS algorithm is designed to explicitly account for the actuation error experienced in typical robotic vehicles. The velocity obstacles are augmented to account for both the error in the robot's current position as well as the velocity error that will occur while the robot attempts to follow the command velocity so that these sources of error does not cause a collision.

Numerous simulation trials have been used to validate the original VOS concept as well as the two extensions. Experimental trials, with a typical, differentially driven robotic vehicle with actuation error, have demonstrated the success of VOS under real world conditions.