
1

 Chapter 1

1. Introduction

1.1. Motivation

The ability of a robotic vehicle to safely and autonomously navigate among

stationary and moving obstacles in an unknown setting is essential to the vehicle’s

operation in most environments. Until autonomous vehicles can be assured of not

colliding with moving and stationary obstacles as they navigate towards their destination,

they cannot be widely and generally employed. Therefore, a system is needed which can

control the movement of an autonomous robot and allow it to avoid moving obstacles as

it reaches a target. This is especially important in the presence of humans (e.g.,

pedestrians); not only in terms of avoiding collisions, but also that humans will feel

comfortable in the presence of such autonomous vehicles.

The advent of autonomous vehicles in military and civilian sectors of society is

quickly approaching, and in some cases has already occurred, as demonstrated by the

Congressional and DoD mandate that one-third of all military land vehicles be unmanned

by 2015 (between 2004 and 2008, the number of robots operating in Iraq increased from

around 150 to approximately 120,000) and by the development of the Google Driverless

Car [1] [2]. However, while the issue of obstacle avoidance by an autonomous vehicle

2

has previously been addressed and (to some degree) solved in such forums as the

DARPA Grand and Urban Challenges and the Google Driverless Car, most of the

solutions that have been developed require numerous, prohibitively-expensive sensors

and vast amounts of processing power. While these resources may be available for well-

funded research projects and military ventures, in order to make more ubiquitous

autonomy possible, safe obstacle avoidance must be made possible while using a limited

set of lower-cost sensors that require a more modest amount of processing power.

The initial motivation behind this research was to improve pedestrian safety

around moving vehicles. However, throughout the course of research, the focus has

shifted from exclusively pedestrian safety to developing a method by which all types of

moving (and stationary) obstacles can be safely avoided by a lower-cost autonomous

vehicle. Building on the foundation presented in this research, pedestrian safety will be

revisited as a primary focus in future research [3].

The initial concession made towards achieving lower-cost autonomy was the

recognition that there would be only limited sensor data available with which to allow the

vehicle to avoid obstacles and that this data would contain a higher degree of error than

was desirable. In order to account for the limited and error-prone data, an autonomous

obstacle avoidance and navigation method called Velocity Occupancy Space (VOS) was

developed (see Chapter 3 and [4] [5]). However, the VOS method was initially designed

for an ideal, holonomic vehicle; so in preparation for experimental analysis, the VOS

method was extended so that it could be applied to the more common experimental

vehicle configuration of a differential drive (see Chapter 4, [6]and [7]). Later, while

transitioning VOS from the simulation to the experimental stage, the shortcomings of

3

many potential vehicle platforms became apparent. The VOS extension for a differential-

drive vehicle assumes that the vehicle will be able to quickly and repeatably obey

velocity or acceleration commands; however, it was found that many vehicles, including

some commonly used experimental platforms, do not possess this capability. The

actuation systems of these platforms appear to be designed with the assumption that there

will be some sort of feedback system—probably a human tele-operating the vehicle -

who will be able to account for the error. But, as this was not the case with the platform

used for this research, the VOS method was again extended, this time to apply to vehicles

with varying degrees of actuation error (see Chapter 5 and [8]).

1.2. Review of Related Literature

The field of robot navigation (particularly the problems of obstacle avoidance and

navigation or path planning) has been well researched over the years. Various types of

stationary and moving obstacle avoidance algorithms have been developed and

successfully implemented for a range of applications. Sensor error is not always taken

into consideration with these methods, but it is much more likely to be considered with

stationary obstacle avoidance methods than with methods that allow for the avoidance of

moving obstacles. Navigation methods also range from high level global planners to

simple reactive obstacle avoidance systems that use only local, sensor information.

Global path planners, such as those reviewed by Siegwart and Nourbakhsh, allow a robot

to navigate along a predefined path in a known environment and assume that the robot’s

environment is either stationary or that the planner has complete knowledge about the

4

movement of all obstacles [9]. As neither type of environment is very common in the real

world, local obstacle avoidance algorithms are often integrated into global planners to

allow for some degree of reactive behavior.

1.2.1. Stationary Obstacle Avoidance and Path Planning

There are two main types of configuration space path planers, topological and

metric. Topological path planning uses previously known landmarks to direct a vehicle.

As the environment assumed for this project is not well enough known for the vehicle to

navigate via landmarks, this review will focus on metric path planning, which can easily

be broken down into sub-goals for short term path planning.

There are numerous types of metric path planners, the most common of these, that

are applicable for obstacle avoidance with limited knowledge of the environment, are

roadmap, cell decomposition and artificial potential field methods. Roadmap and cell

decomposition path planners generally consist of two stages, representing the

environment in configuration space and then an algorithm to determine the best path or

roadmap through that space.

1.2.1.1. Roadmap Methods

There are several frequently utilized roadmap representation methods. Using the

generalized Voronoi diagram, points are found that are equidistant from nearby obstacles

[9]. A path along these points, directed towards the goal location, is an extremely

conservative means of obstacle avoidance. Ó’Dúnlaing and Yap described the method of

retracting free space into a Voronoi diagram where the vehicle is a disc [10]. Latombe

gives a good general description of the Voronoi diagram algorithm and possible

5

variations [11]. Choset and Burdick define the hierarchical generalized Voronoi diagram

and show how it can be used for exploration of an unknown environment [12].

Overholt et al expand on the concept of the Voronoi diagram and produce

Voronoi classifiers and regions [13]. The Voronoi classifiers play the same role in

Overholt et al’s method that obstacles play in the more traditional Voronoi method (i.e.

the Voronoi diagram is produced so that all points forming the path are equidistant from

the classifiers). However, instead of using the Voronoi diagram as a path, the authors use

it to separate configuration space into Voronoi regions. Within these regions a robot’s

trajectory is determined by the classifier. The regions and classifiers are iteratively

determined to ensure that a robot starting at any location will end up at the goal.

Unlike the Voronoi diagram, which maximizes the path’s distance from obstacles,

a Visibility graph (or shortest-path roadmap) creates a path that hugs the vertices of

obstacles in order to find the shortest path from the starting location to the goal. As the

name suggests, a Visibility graph creates path segments from a vertex of an obstacle to all

other obstacle vertices that are visible from the initial vertex. The path planning algorithm

will then select the shortest set of segments to reach the goal. Nilsson first introduced this

idea in 1969 [14]. Both Edelsbrunner and Latombe both provide a thorough description

[11, 15]. Oommen et al use visibility graphs for robot navigation in an unexplored

environment [16]. Through repeated exploration, the robot builds a visibility map of the

environment using its sensors after which, it can navigate through the environment

without sensors, assuming that all obstacles are permanent and stationary.

6

After the roadmap is created using one of these methods, or the countless other

methods mentioned in literature, a variety of algorithms exist with which to find the best

route along the roadmap to the goal. The choice of these algorithms depends greatly on

the amount and reliability of the information available to the path planner. Dijkstra’s

algorithm works by finding the lowest cost path from the initial state to a signal state,

assuming that all path costs are non negative. This algorithm does not require a heuristic

function to predict the cost from future states to the goal state. Urdiales et al use

Dijkstra’s algorithm to find the shortest path within a multi-level path planning algorithm

[17]. Qin et al use a particle swarm optimization algorithm after Dijkstra’s algorithm to

find an optimal path [18].

A*, which is an extension of Dijkstra’s algorithm, is often considered one of the

best general planners. However to use A*, the path planner must have an admissible

heuristic function to estimate (without overestimating) the cost to move from every state

to the goal state. As the heuristic function is often not available for unexplored territory,

this algorithm, while powerful, is limited in its application and can often only be used for

path planning in the local region of an unknown environment. Alexopoulos and Griffin

use a variation of A* to find the shortest-time collision free path among stationary

obstacles and collision free path among moving obstacles, assuming that the obstacles

display only linear, constant velocity movement [19]. Oriolo et al use iterative

applications of A* to generate local paths in an unknown environment. This method

requires the robot to stop periodically to collect information about its surroundings and

update its world map [20].

7

Gilbert and Johnson reformat the path planning problem into an optimal control

problem which takes into account both the orientation and the velocity of the robot [21].

They apply their method to the case of a robot manipulator, but the same technique could

be used for finding or selecting a path in configuration space that balances the need to

avoid obstacles with the ability to quickly reach the goal location.

1.2.1.2. Cell Decomposition

The environment can also be broken down, via cell decomposition, into a grid of

either regular or irregular elements. Depending on the technique used to create the grid,

this method can be referred to as fixed, adaptive, approximate variable-cell or Quadtree

cell decomposition, certainty grids or occupancy grids. For basic fixed cell

decomposition, a Cartesian grid is superimposed on the environment. Grid elements are

considered occupied if an obstacle resides in any part of the grid element; the path

planning algorithm finds a path through unoccupied cells. Lozano-Perez uses cell

decomposition for automatic planning of manipulator movement [22]. Moravec and

Elfes use wide angle sonar to map an area and classify regions as empty, occupied or

unknown [23]. They use multiple, overlapping sensor readings to create a higher

resolution map from lower resolution sonar measurements. Thrun uses data from multiple

robots to create two- or three-dimensional maps using occupancy grids [24]. Jigong et al

use cell decomposition along with LGODAM to plan a path while avoiding stationary

obstacles and obstacle traps [25].

For irregular grids, if an obstacle falls in part of a grid element, that element is

divided up into smaller and smaller segments until each segment is either fully occupied

by an obstacle or completely free. Zhu and Latombe use constraint reformulation with

8

hierarchical approximate cell decomposition to reduce the amount of area that contains a

mix of occupied and unoccupied space [26]. This method decreases the necessary

computational time by allowing large grid elements to be used (in general), without

necessitating the use of ‘mixed’ (partially occupied) elements– as individual gird

elements can be appropriately subdivided.

1.2.1.3. Artificial Potential Field Methods

Potential Field planners create a field or a gradient throughout the environment

based on an attractive force exerted by the goal location and a localized repulsive force

created by obstacles that should be avoided. The robot is then treated as a point under the

influence of this field and is smoothly guided to the goal. O. Khatib first introduces the

artificial potential field concept and uses it to control a manipulator in a complex

environment [27]. Borenstein and Koren produce a virtual force field by combining

certainty grids with an artificial potential field [28]. However, as Koren and Borenstein

[29] showed, potential field-based methods inherently cause steering oscillations when

driving between densely-spaced obstacles. To overcome this problem, they developed the

Vector Field Histogram Method [29, 30]. Hwang and Ahuja determine how to reach a

goal by searching a global graph for the shortest path, a local planner then uses the

potential field to avoid obstacles and optimize the path in real time [31]. If the local path

proves to be un-navigable, then the global planner determines the shortest detour. The use

of a global path reduces the usefulness of this technique for navigation in unknown

environments. Montano and Asensio create an artificial potential field using a 3D laser

range rotating sensor and show its usefulness on basic tasks such as avoiding obstacles or

following walls [32]. Their paper provides a good discussion of the dynamic robot model

9

used in their algorithm. Batavia and Nourbakhsh use a grid-based global potential field

to perform the planning and navigation of a personal robot [33]. To create the global

potential field, they take terrain type, whether or not the area has been explored and

obstacle proximity into account. The ability to consider the risk of navigating through

unexplored terrain in order to shorten a path makes this algorithm useful for partially

known terrain.

M. Khatib et al introduce the rotation and task potential fields, which they refer to

as the extended potential field [34]. The rotation potential field takes the vehicle’s

orientation into account when calculating an obstacle’s repulsive field. In this way, a

vehicle traveling parallel to an obstacle would not suffer from the same repulsion as a

vehicle directly approaching an obstacle. The task potential field allows the vehicle to

ignore the repulsive fields of an obstacle that it will not be approaching while completing

its tasks.

Borenstein and Koren introduce a variation on the artificial potential field method

and the occupancy grid method; the Vector Field Histogram. The Vector Field Histogram

uses polar coordinates to prevent the vehicle from assuming trajectories that will

approach obstacles while directing it to the goal [30]. This method allows vehicles to

navigate smoothly down narrow corridors or between close obstacles, when this is the

shortest path, a path that frequently causing steering oscillation with traditional potential

field methods. Later, Ulrich and Borenstein introduce VHF+, to improve reliability and

smooth the robot trajectories, and VHF*, a combination of VHF+ and A*, to deal with

traps that arise from typical short term planning methods [35, 36].

10

1.2.2. Avoidance of Moving Obstacles

The ability to avoid moving obstacles is necessary for robots that must perform

tasks in environments that contain vehicles, people or other non-stationary objects.

Dynamic obstacle avoidance, while navigating to a goal, is a rapidly growing field due to

the increasing number of situations where mobile robots or other autonomous systems are

present. Numerous papers and a few books have been published on this subject; however

no single method appears to be universally preferred, perhaps due in part to the wide

variety of environments and applications for which autonomous or semi-autonomous

robots are being used.

1.2.2.1. Adapted Static Obstacle Avoidance

Velocity Control

One of the simplest forms of motion planning in a dynamic environment involves

generating a path among any static obstacles using traditional path planning algorithms

(see the previous section on static path planning) and then modifying the robot’s velocity

along that path, in real-time, to avoid dynamic obstacles. While this method is often

successful at reaching the goal without encountering an obstacle, it cannot be guaranteed

to find a time optimal path and in certain situations proves unable to avoid the dynamic

obstacles. It does, however, reduce the computational time needed to determine a path for

the robot as dynamic obstacles that do not intersect the pre-planned path can be ignored

and obstacles that do intersect the path need only be located a short time in advance and

considered only in terms of speed adjustment.

11

Kant and Zucker present this method and use modified velocity profiles along an

original static path which was generated via a visibility graph approach [37]. Lee and

Lee, and Fujimura and Samet also use a combination of velocity control along a visibility

graph generated path [38, 39].

Re-planning

Another method that utilizes global planning methods to avoid dynamic obstacles

involves planning a path, using a very fast algorithm, around static obstacles and the

present location of dynamic obstacle (treating the dynamic obstacle as temporarily static).

As time progresses new paths are planned to take into account any change in the

environment. While these paths are not always optimal, due to the continuous re-

planning, they are well suited for environments where dynamic obstacles move

infrequently or only small distances, such as an office where a chair may be shifted or a

drawer opened. Oriolo et al generate local paths within an explored area while building a

global map [20]. Konolige uses a gradient field to locally evaluate paths and determine if

they are obstacle free [40]. This technique can easily be scaled to include more and

different sensors. Fujimori et al adapts a direct navigation algorithm to also allow a robot

to also detect and avoid obstacles in real time while respecting the dynamic limitations of

the robot [41]. However, as noted in the paper, restrictive and unrealistic conditions must

be placed on the robot and obstacles to achieve navigation and collision avoidance. A

more generalized version of this algorithm without such restrictions would have to be

developed in order for it to be of practical use.

12

Obstacle Circumvention

Zhuang et al use a path planner with a Visibility graph-like obstacle avoidance

scheme to follow a very direct path to a goal [42]. A robot, under this algorithm, follows

a straight path to a goal (without any static obstacle pre-planning). When the algorithm

detects an object within the current planning window the algorithm determines if it is a

static or dynamic obstacle. If the obstacle is static, the algorithm plots sub-goal(s) to

allow the robot to efficiently circumnavigate the obstacle and return to its original path. If

the obstacle is dynamic then the algorithm uses auto-regression to predict the obstacles

future position and the robot circumnavigates that position, updating its path in real time.

While this method does not always find a time or distance optimal path, no global

knowledge is required which drastically reduces computation time. The short-term

planning limit also makes the path planner more flexible for unknown and poorly known

obstacle dynamics. However, modifications would have to be made to adapt the planner

for uncertainty in the location of immediate obstacles.

Elastic Band Concept

Elastic bands, as proposed by Quinlan and Khatib, are intended to close the gap

between path pre-planning and obstacle avoidance [43]. As such, they can convert a path

that is planned around stationary obstacles and which contains discontinuities and other

actions that are kinematically or dynamically impossible for the robot to accomplish into

a smooth path that the robot can navigate. This is done by considering the path as an

elastic band acted on by two forces, a contraction force that removes slack from the path

and a repellant force that moves the path away from obstacles. To reduce computation,

13

the elastic band can be considered as a series of overlapping ‘bubbles’ of free space

centered on the path. In this way only the open area around the path needs to be

considered when re-planning instead of all of configuration space. The elastic bands also

allows the robot to avoid moving obstacles in real time, as the repellant force from the

obstacles will push the path away collision causing trajectories.

The elastic band concept is similar to the artificial potential field method in that it

considers obstacles as producing a repellant force that is used to direct the robot away

from the obstacles. However, the global pre-planning limits the use of elastic bands in

unknown environments. Elastic bands applied in conjunction with a simple “bug”

obstacle avoidance algorithm (where the robot moves as directly as possible towards the

goal while following the external contours of any obstacles that blocks its path) would

produce a smoother, safer path without the need for pre-planning.

1.2.2.2. Dynamic Obstacle Avoidance

Path Planning with a Time Dimension, State-Time Space

Fraichard presents a way to plan trajectories in a dynamic workspace which he

entitles the ‘state-time space’ approach [44]. If the current position of all static and

dynamic obstacles and the velocity and acceleration of all dynamic obstacles is fully

known before navigation, three dimensional path planners can plot an obstacle free path

through ‘state-time space,’ in which the environment at each time step is treated as a two

dimensional plane with time as a third dimension. Depending on the path planning

algorithm used with this method, an optimal path to the goal (if one exists) can be

guaranteed to be found.

14

However, the limitations on this method make it difficult to apply to real-world

scenarios. While, as previously mentioned, methods exist to predict future (specifically)

human movement none of these methods has nearly the certainty of performance that

would be needed in order to use the ‘state-time space’ approach to its fullest advantage.

In addition, the computational cost is prohibitive to completely up-date the path as

changes in the velocity of obstacles are detected in the three-dimensional world.

Kindel et al apply kinematic and dynamic constraints to the robot space-time

planning and apply their results to an experimental robot with an overhead vision system

[45]. Their method is effective only for static obstacles and moving obstacles with a

constant, linear velocity.

Yu and Su use a variation of ‘state-time space’ planning but limit the region of

planning by focusing on “observation space,” the area that the robot can sense, and “work

space” the obstacles that are close to the robot [46]. They also make extensive use of

path repair algorithms to deal with dynamic obstacles and the inability to completely

predict their future movement.

Genetic and Evolutionary Algorithms

Wang et al use genetic algorithms to generate a path around static obstacles and

the predicted collision points of dynamic obstacles based on a polygon representation of

the obstacles [47]. They reduce the calculation time needed for off-line planning and path

re-calculation by considering only the vertices of obstacles using vertex++.

Xiao et al develop and revise the Evolutionary Planner/ Navigator (EP/N) [48,

49]. This planner/navigator can utilize specific environment knowledge to enhance its

15

path planning performance. The planner/navigator’s ability to self tune for a given

environment is valuable; however the need to repeatedly navigate through the

environment in order to accomplish the tuning reduces the usefulness for unknown

environments.

Han et al use genetic search algorithms to generate a goal directed dynamic path

[50]. Their use of a cost function instead of global optimization decreases computational

time and allow for efficient, real-time navigation. Sugihara and Smith use a genetic

algorithm for path and trajectory planning [51]. Their method is suitable for pre-planning

as well as real-time motion planning.

Gradient Methods

The potential field method of obstacle avoidance, described by Borenstein and

Koren in the previous section on static obstacle avoidance, can be adapted for dynamic

obstacle avoidance [28]. O. Khatib in his initial artificial potential field paper surmises

that a combination of high level (global) path planning with low level (local goal)

planning could allow a manipulator to avoid moving obstacles [27].

Malik, on the other hand, develops the concept of the Extrapolated Potential

Field, which predicts an obstacle’s path and uses a time and distance weighting scheme to

generate a path, for the robot to the goal, which avoids all obstacles [52]. Similar to the

static potential field planners, this method is usually quite fast at generating a path but

will often miss potentially shorter routes between obstacles that are close together. As

Borenstein and Koren mentioned for the static case, this type of planner is also subject to

oscillation and can run into problems with local minima when confronted with a

combination of static and dynamic obstacles.

16

The Linear Programming Navigation gradient method (LPN) was originally

developed for static obstacles by Konolige, but Farinelli and Iocchi modify this method

for environments with dynamic obstacles [40, 53]. The LPN method uses numerical

artificial potential fields that take both intrinsic (situational) and adjacency (movement)

costs into account to compute a gradient using a generalization of the wavefront

algorithm. The dynamic variation (LPN-DE) computes the projected motion of the

obstacle and increases the weight of the region where the obstacle is predicted to travel to

account for future movement.

Inevitable Collision States, ICS

Fraichard and Asama propose and explore the concept of inevitable collision

states (ICS), the use of which allows a vehicle to plan safe motion around obstacles [54].

These states take into account the robot’s future positions as well as its kinematic and

dynamic properties in addition to the positions and velocities of all detectable obstacles.

In this way, the robot is assured of maintaining safety as it never reaches a position where

it cannot avoid a collision (either by changing or maintaining its current state).

Parthasarathi and Fraichard limit the set of trajectories that are considered with

ICS so that only a conservative subset of future vehicle trajectories (which are modeled

on observed behaviors from other objects in the environment) are considered [55]. They

also adapt ICS for a vehicle with car-like dynamics.

Martinez-Gomez and Fraichard develop ICS- AVOID which prevents a vehicle

from moving to ICS[56]. They also compare ICS to velocity obstacles and the dynamic

window obstacle avoidance approach and determine that the ICS approach is superior due

to the way in which it reasons about the future and is able to select safe controls.

17

Velocity Obstacles

Fiorini and Shiller develop and Shiller et al expand upon the notion of the

velocity obstacle [57, 58]. Velocity obstacles are a first-order method of motion planning

that use robot and obstacle velocities directly to avoid collisions in time-varying

environments. This method computes a collision cone of robot velocities that will lead to

probable collisions with an obstacle, based on the obstacle’s current (and in later works)

projected velocity. The velocity obstacle method takes the dynamic constraints of the

robot into consideration to narrow down the field of potential robot velocities. However,

the shape and dynamics of the obstacle must be well known in order for this method to be

effective.

In later papers, Large et al adapt the velocity obstacle concept to account for risk

and long obstacles (such as hallway walls) and non-linear velocities [59].

Yamamoto et al apply the velocity obstacle concept to situations more likely to be

encountered in the real world including obstacles that change velocity during sensor

cycles and they also introduce the idea of a collision distance index to prioritize the

avoidance of obstacles that are closer (and thus pose a more imminent threat) to the robot

[60].

Probabilistic Velocity Obstacles

Kluge and Prassler develop probabilistic velocity obstacles (PVOs) where a

probabilistic collision cone is developed for each obstacle and these are combined to

form composite probabilistic velocity obstacles [61].

Fulgenzi et al combine Probabilistic Velocity Obstacles (PVOs) with a Bayesian

Occupancy Filter (BOF) [62, 63]. These authors use the BOFs to represent the obstacles

18

and estimate their velocities in an unknown and uncertain environment and then employ

the PVOs to find safe robot velocities. More details on this method are provided in

Section 1.2.4

Dynamic Window

The dynamic window approach, which can also be used as a simplifying

adaptation on other algorithms, reduces the complexity of path planning by only

considering velocities that the robot can reach safely within a short time interval. Using

this method, all of the safe and reachable velocities of the robot make up the dynamic

window, which is represented in velocity space. On its own, the Dynamic Window

Method is best suited for static environments or environments that have few, slowly

moving dynamic obstacles. However, it can be a very powerful tool when combined with

other algorithms.

Fox et al use the dynamic window approach to account for the robot’s dynamic

constraints and applied the algorithm to their robot RHINO [64]. Brock and O. Khatib

propose the global dynamic window approach to combine path planning with real-time

obstacle avoidance in order to safely navigate in a dynamic environment while

approaching a goal [65].

Seder and Petrovic combine the dynamic window method with the D* algorithm

to enable long term path planning with obstacle avoidance [66]. Later, they also allow for

the avoidance of moving obstacles by adapting dynamic windows to avoid moving cells

with known trajectories by performing obstacle/robot collision checking at fixed time

intervals [67].More details on this method are provided in Section 1.2.4

19

Probabilistic Methods

Probability based data association methods have also been used to track multiple

moving obstacles. Schulz et al and later Almeida and Araujo use a Sample-based Joint

Probabilistic Data Association Filter (SJPDAFs)in order to accurately track the state of a

moving object and propose that this knowledge could be used for autonomous navigation

[68, 69]. While this method is fairly accurate, the computational load is very high

(necessitating a low sensor sampling rate) and grows exponentially with each additional

object that is tracked. Benenson et al, a Bayesian estimation form of SLAMMOT is used

to detect and track obstacles while a Partial Motion Planner combined with the Inevitable

Collision State formulation are used to direct the vehicle [70].

Rapidly-exploring Random Trees, RRTs

Rapidly-exploring Random Trees (RRTs) can be used to perform navigation

while avoiding obstacles and accounting for vehicle constraints by utilizing a high

dimensional state space [71, 72]. Kuwata et al adapt the RRT to perform on-line planning

for an actual vehicle in a dynamic and uncertain environment through the use of lazy

check, a risk penalty tree (as well as other extensions) [73].

Fulgenzi et al combine RRTs with Gaussian Processes to allow for the avoidance

of moving obstacles when path planning [74]. The future motion of an obstacle is

modeled as a Gaussian Process and the RRT planner avoids paths that have a high

probability of leading to a collision.

1.2.3. Detailed Literature Comparison

VOS (as developed in Chapter 2) will be compared in detail to the previously

mentioned BOF/PVO method [62, 63] and the Dynamic Window method [67]. All three

20

of these algorithms are velocity space based, reactive obstacle avoidance and navigation

methods. Because VOS has been designed to fulfill the same purpose as these algorithms

its performance and characteristics will be analyzed in comparison in order to validate the

usefulness of this contribution.

1.2.3.1. Summary of Comparison Methods

BOF/PVO

 The first comparison method is a combination of Bayesian Occupancy Filters

(BOF) and Probabilistic Velocity Obstacles (PVO) [62] and is conceptually similar to the

VOS method developed earlier in this chapter.

A BOF is used to determine the probability of occupancy of each cell in

occupancy space and create a probabilistic distribution function (pfd) of the velocities of

the obstacles that occupy these cells. The pdf is translated into a three dimensional grid,

where each slice represents a specific obstacle velocity value and then this grid is used to

estimate the obstacle’s next location so that filled cells can be tracked and clustered into

obstacles. Using this information, probabilistic velocity obstacles are created, and used to

calculate the probability of a collision for each velocity and velocities that are deemed

sufficiently safe are retained. This subset of safe velocities is then evaluated to find the

safe velocity with the lowest difference between the velocity direction and the direction

of the goal and this velocity is used as the next robot command[63].

DW

The original dynamic window (DW) [64] method is a velocity space based

stationary obstacle avoidance method. This algorithm operates by translating the

21

configuration space locations of obstacles into occupied locations in velocity space (v,ω).

A subset of admissible velocities - velocities which fall within the robot’s kinematic and

dynamic bounds and allow the robot to break before colliding with an obstacle – is then

created and from this subset a robot velocity for the next time step can be chosen. In [66]

dynamic windows were combined with the FD* (focused D*) algorithm to allow for

optimal path planning (within the bounds of sensor information). Later, in [67] the

dynamic window was again extended to allow for moving obstacle avoidance by

calculating collision points between the robot’s future locations (based on admissible

robot velocities) and future obstacle positions.

1.2.3.2. Obstacle Avoidance

BOF/PVO

Both the VOS and BOF/PVO methods only require data from a scanning range

finder in order to avoid obstacles. In addition, both methods take the uncertainty inherent

in the range finding sensor into account when building this grid. However, the BOF/PVO

method uses a probabilistic representation of occupancy space based on both the sensor

characteristics and the velocity distributions for previously observed obstacles.

The occupancy grid for the BOF/PVO method is calculated at every time step

using Bayes rule:

��(���|�(�)) = ��(�(�)|���) ∙ ∑ (��
(�)(���) ∙� ��
(�)(��))�(�(�)) 																				(1.1)

where 	��(���|�(�)) is the probability of the cell c being occupied given the sensor

observation z(t). The summation term updates the previously constructed grid using the

22

prior occupancy of the antecedent cells,	���(�)(���), and the cell’s velocity distributions,

��
(�)(��) .
The BOF/PVO method then creates a pdf for the velocity of cell c based on the

probability that the contents of an occupied cell from the previous time step,	���(�),
moved to occupy this cell. The velocities of each cell that might move to occupy the new

cell in question are normalized using the equation:

∀�. ��(��) = ���(�)(��)∑ ���(��)(���)�� 																																																				(1.2)

where �� is a velocity distribution and �′ encompasses all velocity probabilities of all

possible antecedent cells. This produces a velocity distribution associated with the

occupants of each cell. The cells are independently clustered for each time step (there is

no obstacle continuity between time steps) based on physical proximity and a similarity

in their velocity distribution and a velocity profile for the cluster is developed based on

the distributions of each member cell.

The velocity distribution for the obstacles is discretized (usually to integer values)

and limited to a specific range. In essence, this algorithm considers the probability of

every occupied cell (from the previous time step) in the occupancy space grid moving to

every reachable cell in the current time step in order to calculate the probabilities of

occupancy and the velocity distributions for the current time step. The larger the number

of obstacle velocities that must be considered, and therefore the larger the number of

23

potential new cells that the contents of each previously occupied cell might move to, the

more complex the probabilities in the grid become to calculate.

 The velocity obstacle can then be formed by determining the probability of a

collision, for each robot velocity,	�����(�). This is found by (in short) multiplying the

probability of a cell being occupied, ��(���|�(�)),	 by the probability of the contents of

that cell having the specific velocity,	��(��),	that would cause it to be part of the velocity

obstacle and then summing over all obstacles and the number of time steps into the future

that are being considered.

DW

 The DW method also uses laser range finder data to build an occupancy grid for

the positions of stationary and moving obstacles, however this algorithm requires

independent knowledge of the of the velocity vector (v,ω) and motion heading of all of

the occupied cells that comprise each moving obstacle. Presumably, the DW method

could use either of the velocity estimation techniques developed for the VOS or

BOF/PVO methods.

Using the obstacle position and velocity information, the DW algorithm computes

all future locations of the robot (based on each kinodynamically feasible robot velocity)

and the obstacles at specified time intervals. A total of Nt of these potential mutual

collisions points are computed and a collision check is performed between the robot and

all of the obstacles at each time interval. The earliest collision (if there is one) is used to

locally re-plan the FD* path, by considering all of the obstacles as stationary at the

position which they will occupy at the time of that first collision.

24

Comparison to VOS

The VOS and BOF/PVO methods both estimate the velocity of moving obstacles

and account for both the uncertainty in the sensor information and in the velocity

estimation. The BOF/PVO method creates a discretized velocity distribution for each

obstacle which decreases the precision of the obstacle velocity estimates but,

proportionally, decreases the relative computational complexity. The VOS method

calculates a single velocity value for each moving obstacle as well as a velocity

uncertainty, Vu, term for each estimated velocity (see Section 2.3). The VOS method is

significantly less computationally complex, but does not capture as much information as

the BOF/PVO method, where a broad range of possible obstacle velocities are

considered. However, the velocity estimation method used in VOS has been shown to

have relatively low amounts of error (<6%) with low speed testing (Appendix A),

therefore the more complete information captured by the BOF/PVO method is not

necessary around these types of obstacles. In addition, given the success of VOS in

simulations with higher speed obstacles (velocities up to	2��), the lower complexity,

center of certainty velocity estimation method compares very favorably with the BOF

method.

The DW method depends on external information for the velocity of the obstacles

and, while it could be modified to partially incorporate the velocity estimation techniques

developed by either the VOS or BOF methods, the use of the mutual collision points as

the obstacle avoidance method in DW means that incorporating uncertainty in obstacle

position or velocity would increase the amount of collision checking required and

therefore the computational complexity.

25

 Another difference between the algorithms is the time limited aspect of the

BOF/PVOs and DW methods versus the perpetual nature of the velocity obstacles used in

VOS. Both the BOF/PVOs and DW methods will only avoid future collisions which

occur within a given number of time steps, while the VOS method takes into account all

future collisions, regardless of how far in the future they are predicted to occur. This time

limitation will not lead to a collision in the near future, but may cause the robot to end up

in a trap situation or degrade the quality of the chosen path (as long term avoidance is not

considered). The difference between the perpetual and time-limited obstacle avoidance

becomes more pronounced for obstacles with constant velocities (or stationary obstacles),

but the difference diminishes for more erratic and unpredictable obstacles.

1.2.3.3. Goal Finding

BOF/PVO

The BOF/PVO method uses a goal finding/navigation technique that is similar to

that used for VOS. Possible robot velocities are evaluated based on a weighted

combination of goal finding and collision avoidance properties. Possible robot velocities

are ranked using the equation:

�(�) 	= 	 ∙ |�| + " ∙ ℎ(�, $%�&) (1.3)

where ℎ(�, $%�&) is the difference between the direction of the goal and the velocity

direction and and " are empirically chosen constants.

Robot velocities that produce a probability of collision (over the specified time

period,	(�', �' + ()*+) that is lower than a safety threshold (�(�����(�) ∈ (�', �' + ()*+ <
���./)	are evaluated as possibly robot velocities using the equation:

26

�∗(�) = �(�) ∗ ((1.0 − �(�����(�) ∈ (�', �' + ()*+)) ∙ 34��56(78
9:(;)). (1.4)

 The last term of this equation,
34��56(78
9:(;)), allows for velocities that will be safe over a

longer period of time to be preferred. The most favorably rated velocity is then chosen as

the robot command.

Similar to VOS, this method does not perform long term planning and is not

suitable for any type of maze situation.

DW

 The DW method has a two stage path planning strategy. In the first stage, the FD*

algorithm is used to find an optimal path to the goal in a stationary environment – if one

is visible. The environment is assumed to be stationary for this planning, with moving

obstacles located at future collision positions. However, this variation of the algorithm

also uses a ‘safety cost map’ that, in effect, enlarges the size of obstacles in configuration

space in order to encourage the FD* algorithm to plan a path that keeps the robot far

away from any obstacles. This improves the safety of the path but can lead to the robot

following very inefficient paths around groups of obstacles.

 The second stage of the path selection is similar to that used by BOF/PVO and

VOS. The DW evaluates potential velocities based on a weighted sum of safety and goal

finding priorities using the equation:

Γ(�, =) = >?��/�@ + (1 + >)?A�BC (1.5)

27

 where > is the weighting factor, ?��/�@ is a clearance measure (which is based on the

time needed for the robot to break) and ?A�BC is a measure of the velocity alignment with

the FD* path. The path planning with this version of the DW algorithm has the ability to

plan an optimal path, however it is limited (as VOS and BOF/PVO are) by the extent to

which it can perceive the environment (its planning cannot account for occluded areas)

and by the need to re-plan with the FD* due to moving obstacles and uncertain sensor

information.

Comparison to VOS

All three methods employ a tradeoff between obstacle avoidance and efficient

goal seeking when selecting a velocity. The BOF/PVO method is the only method that

takes probability explicitly into account; however the use of the ���./ threshold also

creates the potential for no robot velocity being considering sufficiently safe and the

robot performing emergency breaking. This choice may lead to additional collisions with

aggressive obstacles and prevents the robot from being able to choose the least harmful

potential velocity (this type of threshold led to simulation failures with the original

velocity obstacle method in Section 2.5.4.2.). The relative nature of the velocity

occupancy space gird in VOS means that the robot will always choose the best (or least

harmful) velocity based on the provided information, even if that velocity is just one that

leads to the lowest speed collision.

 The first stage of the DW method allows for longer term planning, which the

VOS and BOF/PVO methods lack. However, both of these methods could be adapted to

include this sort of long term planning by incorporating the FD* plan as a series of local

goals.

28

1.2.3.4. Computational Complexity

BOF/PVO

The computational complexity of the BOF/PVO method is dependent on:

1) the size and resolution of the spatial occupancy space grid

2) the resolution of velocity space (i.e. the number of different possible robot
velocities)

3) the number of discrete velocities that are in the pdf for each obstacle

4) the number of time steps for which a collision is being avoided

In order to improve the operational speed of the BOF/PVO method, the number of

discrete velocities that are considered for the obstacles are usually reduced so that the

obstacles are assumed to be moving at one of only a few different speeds in each

direction. This assumption improves the processing time of the algorithm[62], but makes

it less precise at avoiding moving obstacles.

In addition, the PVO method computes the cumulative probability (over multiple

time steps) of a collision occurring based on each specific robot velocity selection. The

more time steps in the future that are considered, the higher the complexity in calculating

this value, therefore, the PVO is usually limited to only avoiding collisions that will occur

a few time steps in the future. This might not unduly affect the algorithms performance if

the robot is surrounded by obstacles that frequently change velocities, however it does

decrease the robot’s safety for situations where the obstacle velocities are more constant

and could cause the robot to end up in a trap situation when around stationary obstacles

[62, 63].

29

DW

The computational complexity of the DW method is dependent on:

1) the size and resolution of the configuration occupancy space grid

2) the number of different possible robot velocities

3) the number of moving obstacles

4) the number of mutual collision points along each potential robot and obstacle

path (Nt, this is also a factor of the number of time steps in the future that are

being considered)

5) required path re-planning (new FD* plan) based on moving obstacles or

discrepancies in sensor information (the algorithm attempts to re-plan locally, but

sometimes needs to create an entirely new plan)

The original DW method had very low computational complexity, but the

extensions for FD* planning and moving obstacles require significantly more

computation. DW can operate more quickly if few mutual collision points (Nt) are

considered between the robot [67] and all of the moving cells that make up each obstacle,

however if too few points are considered the algorithm may miss a potential collision and

choose an unsafe velocity.

VOS

The computational complexity of VOS was designed to be low in order to allow

for quicker updates and faster responses to changes in the robot’s environment. The

computational complexity of VOS is dependent on:

1) the size and resolution of the configuration occupancy space grid (specifically,

the number of visible obstacle elements)

2) the resolution of velocity occupancy space (i.e. the number of different

potential robot velocities).

30

VOS is significantly less computational complex than the two comparison

methods. Like the other two methods, its complexity does scale up with the size and

resolution of configuration space and the number of potential robot velocities. However,

unlike these methods VOS (without increasing its computational complexity) looks ahead

an infinite number of time steps (see Section 2.3.1.1), considers all potential mutual

collision points (assuming constant velocity values) and does not limit obstacles to

having one of a specific set of velocities.

In addition, the construction of velocity occupancy space is highly parallelizable

due to the independent nature of each robot velocity and, in [3], VOS was programmed

using a graphics card and the velocity occupancy space grid was able to be constructed

and fully populated in less than 10ms. Therefore, this algorithm can operate extremely

quickly and is usually only limited by the speed at which it receives sensor data and the

speed at which the robot can receive new velocity commands.

1.2.4. Differential Drive Vehicle Obstacle Avoidance

Most of the previously mentioned obstacle avoidance and navigation methods

operate, at the most basic level, by selecting location or velocities for the vehicle in

question to assume. Even though some of these methods compensate for sensor error,

they select desired vehicle velocities under the assumption that the vehicle is holonomic

and can instantaneously accelerate to the selected velocity. While these assumptions are

acceptable in simulations, they are not realistic for experimental platforms.

Adding constraints to velocity obstacles, or to other adaptations of velocity space

based obstacle-avoidance methods, has been considered by a few different authors. Owen

31

and Montano solve for the time at which a robot (moving at a certain velocity) and a

moving obstacle will arrive at the same location in order to differentiate between safe and

collision causing robot angular velocities [75]. They model a differential drive robot’s

path as a circle (given different, constant velocities for each wheel) and the obstacle’s

path as a straight line and then solve for the locations at which the line and circle

intersect. When selecting between safe angular velocities, they choose a velocity

command that will allow the robot to reach the desired angular velocity as soon as

possible. In a later paper, Owen and Montano use the selected angular velocity as the

seed for an optimization process in which they converge on a desirable robot trajectory

[76]. Owen and Montano’s work differs from the work presented in Chapter 4, in that

they select angular velocities and assume instantaneous velocity change (though bounded

by acceleration limits), while VOS selects linear velocities and assume only

instantaneous acceleration change.

Wilkie et al develop generalized velocity obstacles in order to take the constraints

of a car-like robot into account [77]. Similar to Owen and Montano, they find the time at

which the robot and an obstacle will be at their closest point, given that the robot follows

a specific control command (based on its kinematic model). If, at this time, there is not a

collision between the robot and the obstacle then the control can be considered collision

free. While this method takes the kinematics of the vehicle into account, it does not

consider the vehicle dynamics.

Instead of developing a specific algorithm that accounts for vehicle constraints,

Minguez and Montano create an abstraction layer that can be applied to almost any

collision avoidance algorithm in order to allows the algorithm to innately take any

32

vehicle’s shape, kinematics and dynamics into account (even if the algorithm is designed

for a holonomic robot) [78]. However, while their method takes acceleration limits into

account, it does not appear to account for the time required for acceleration (a necessary

consideration for high speed navigation using the velocity obstacle method), instead it

relies on commands that are reachable within a short time period.

1.2.5. Vehicles with Actuation Error

Morales and Con Son considered heading actuation error via the interval method

that they use to control their robot Diablo [79]. They compensate for this error by

periodically adjusting their robot’s orientation so that it follows a desired path.

Widyotriatmo and Hong integrate sensor and actuation uncertainty into a Partially

Observable Markov Decision Process (POMDP) in order to obtain an optimal action

policy for a robot at each time step [80]. While using a probabilistic framework to

account for actuation error is appropriate for path planning, it is a hazardous choice for

performing obstacle avoidance. Even if there is a low probability of a large (and collision

causing) actuation error occurring, it is still necessary for the obstacle avoidance system

to assume a worst case scenario in order to assure the robot’s safety, instead of only

compensating for most probable scenario.

1.2.6. Summary of Key Obstacle Avoidance Methods

In Table 1.1, the properties of some of the more pertinent obstacle avoidance

algorithms from Section 1.2 that either account for sensor error or allow for the

avoidance of moving obstacles (or both) are summarized. The second column in the table

referrers to if the methods has been validated through experimental trials, if it has, a

33

relevant source is listed. The general computational complexity of each algorithm is

indicated by the rate at which new velocities were produced for the robot (V rate) and the

speed of the processor producing these velocities for the experimental trials (or for

simulations, if experimental results were not available). The susceptibility of each

algorithm to visible local minima is listed as well as the degree to which the method

exhibits goal oriented navigation and incorporates sensor uncertainty. If theses later

capabilities are fundamentally part of the method, then the property is listed as ‘inherent’.

However, if goal seeking or sensor uncertainty compensation is independent of the

obstacle avoidance method (e.g. a specific navigation method is not inherent to the

Inevitable Collision States (ICS) method - ICS could be combined with many different

types of navigation algorithms which would alter the amount of computation needed to

navigate with this algorithm) then the ability is simply listed as ‘yes’ and, if appropriate,

a relevant source from Section 1.2 is listed. The algorithm’s ability to avoid moving

obstacles is also summarized. If the algorithm requires knowledge of the positions or

velocities of moving obstacles from a source other than a range finder (the velocities are

not calculated based on laser range finder data and the algorithm does not account for

error in the velocities), then this knowledge is listed as ‘required’. Finally, if the

algorithm assumes that the obstacles will move in a specific way (i.e. at a specific

velocity) then this restriction is also noted.

34

Table 1.1 Summary of Obstacle Avoidance Algorithms from Section 1.2.
(Please note that this table is not exhaustive)

Method
Experimental

Results

Computational
Complexity Visible

Local
Minima

Goal
Oriented

Navigation

Sensor
Uncertainty

Moving Obstacles

V
Rate

Processor
Speed

Independent
Obstacle

Knowledge

Restricted
Obstacle

Velocities
Potential

Fields [27]
Yes [27] 100Hz 1986x Yes Inherent Yes [28]

Only Stationary
Obstacles

Vector Field
Histogram

[28-30]
Yes [28] 337Hz 20MHz Yes Inherent Inherent

Only Stationary
Obstacles

State-Time
Space[44-

46]
Yes [46]

4-
10Hz

333MHz NMD± Yes No Required No

Dynamic
Gradient
Methods

[40, 52, 53]

Yes [53] 10Hz 266MHz Yes Inherent No Required No

ICS [54-56] No 10Hz+ 1.6GHz NMD± Yes [54] No Required No
Velocity
Obstacles
[57, 58]

Yes [81] 3.3Hz 166MHz Yes Yes[82] No
Usually

Required
No [59,

83]

BOF/PVO
[62, 63]

No See Section 1.2.3 Yes Inherent Inherent
Not

required
Yes

Dynamic
Window

[64]
No See Section 1.2.3

NMD±,
No for
[67]

Yes [65] No
Required

[67]
No

SJPDAFs
[68, 69]

Yes [69]* 4Hz 2008p NMD± Yes [84] Inherent
Not

required
No

Probabilistic
RRTs [71,

72]
Yes [73] 10Hz 2.23GHz No Inherent Yes [74]

Required
[74]

Yes [85]

*Experimental results with a stationary robot, tracking obstacles only
+ Rate with an A* planner
x Processor speed not provided, research was performed in 1986
p Processor speed not provided, research was performed in 2008
± Navigation Method Dependent; susceptibility to visible local minima is dependent on the
navigation method in use

The various available algorithms have a range of strengths and weaknesses;

however, no single algorithm is generally accepted and utilized. A desirable obstacle

avoidance method should have the properties listed in Table 1.2.

35

Table 1.2 Desired obstacle avoidance algorithm properties

Experimental
Results

Computational
Complexity Visible

Local
Minima

Goal
Oriented

Navigation

Sensor
Uncertainty

Moving Obstacles

V Rate
Processor

Speed

Independent
Obstacle

Knowledge

Restricted
Obstacle

Velocities
Yes >10Hz 1-3GHz No Inherent Inherent Not required No

Unfortunately, none of the review obstacle avoidance methods possess all of these

characteristics. Most of the algorithms with low computational complexity and that

account for sensor uncertainty are only capable of avoiding stationary obstacles. Of the

algorithms that can avoid moving obstacles, those that are faster than 10Hz require

independent knowledge of the position and velocity of surrounding obstacles. The few

methods that are able to avoid moving obstacles and that account for sensor uncertainty

are either too computational complex to operate in real-time or must make very

restrictive assumptions about potential obstacles in order to accelerate the processing.

1.3. Original Contributions

Based on the need for an obstacle avoidance algorithm indicated by Table 1.1, the

initial goal of this thesis is to develop an algorithm that is successful according to all of

the categories listed in Table 1.2 – an algorithm with low computational complexity (the

algorithm should produce new robot velocities at a rate of at least 10Hz on a modern

laptop computer) that is not susceptible to local minima, which can perform goal oriented

navigation and is able to avoid moving obstacles using only uncertain sensor data without

independent knowledge of the obstacles or making restrictive assumptions about their

36

velocities. In addition, while most obstacle avoidance algorithms are designed for ideal,

holonomic/omni-directional vehicles the algorithm developed in this thesis should be

applicable to realistic (non-holonomic) kinodynamic robot configurations and this

capability should be demonstrated experimentally.

The primary original contribution of this thesis is the development of VOS which

combines the sensor noise and uncertainty representation of configuration occupancy

space [23] with the long term avoidance of moving obstacles provided by the velocity

obstacle concept [57, 82]. In order to facilitate obstacle avoidance, the ability to estimate

the velocity of moving obstacles from configuration space has been developed. Also

contributed is the relative weighting scheme between velocities that lead to various

obstacles or the goal. This allows the robot to safely avoid obstacles while ultimately

navigating towards the goal. This work is described in Chapter 2 and in [4, 5].

The two extensions to VOS, presented in Chapters 3 and 4, are also original

contributions. Velocity based navigation has been used by other researchers, but it is

almost always assumed that the vehicle being controlled is capable of just assuming

another velocity without taking time to accelerate or decelerate. The acceleration based

method developed here does take for granted that the robot can instantaneously change

accelerations, but this is a more realistic (and less error generating) assumption than

instantaneous velocity change. In addition, the acceleration based method adapts velocity

based navigation for an acceleration controlled vehicle both for the specific VOS

algorithm and for any other type of velocity based navigation. This work is detailed in

Chapter 3 and in [6, 7].

37

Finally, the adaption of VOS for actuation error is an original contribution that

allows for velocity based navigation to be used when there is uncertainty about how a

vehicle will respond to actuation commands. While the methodology created to

compensate for this error can only be used with VOS or other velocity obstacle based

obstacle avoidance methods, it does apply to any type of actuation error for which an

upper bound on velocity error can be produced. This contribution is detailed in Chapter 4

and in [8].

1.4. Purpose and Scope

The purpose of the research presented in this thesis is to provide a new method of

safe autonomous vehicle navigation in an unknown environment in the presence of

moving obstacles using uncertain sensor data. This method, termed velocity occupancy

space (VOS), combines the sensor error and uncertainty representation of certainty grid

occupancy space with the velocity obstacle representation of moving obstacles. In

addition, VOS allows for active velocity selection which will enable the robot to navigate

efficiently and autonomously, as well as perform obstacle avoidance, while moving

toward the desired destination. The VOS algorithm is developed and described in detail

in Chapter 3 and [4, 5].

VOS has also been extended in order to allow for autonomous vehicle navigation

under specific circumstances. First, while the original VOS was designed for a holonomic

vehicle, it has been adapted to control a differential drive vehicle with acceleration based

actuation. The purpose of this extension is to compensate for the non-holonomic and non-

38

instantaneous acceleration properties of a more realistic experimental vehicle without

compromising the safe and effective means of obstacles avoidance and navigation

inherent in the original VOS algorithm (see Chapter 4 and [6, 7]).

The second extension of VOS is to allow a linear and rotational velocity

controlled vehicle that suffers from a significant amount of actuation error to be

effectively operated using VOS. This error may be caused by a delayed motor response,

an ill tuned motor feedback system or uncertain terrain – anything which makes the

velocity and position of the vehicle difficult to predict and control. As long as the bounds

on this error are known, VOS can still be used to provide safe navigation (see Chapter 5

and [8]).

The goal of this research has been to design a system that is inexpensive yet

highly versatile; suitable for both military and civilian applications in structured and

unstructured environments. As such, no assumptions are made about the types of

obstacles that are likely to be encounter and it is assumed that the algorithm has almost

no prior knowledge of the environment (no map is provided, nor is a permanent map

built). The two assumptions are made is that the local environment is relatively flat so

that it can be approximated as two dimensional and that the maximum velocity of all of

the obstacles is equal to or less than the maximum velocity of the vehicle – otherwise, the

vehicle cannot be assured of avoiding a collision.

However, the scope of the research presented herein is limited to the specific

elements of autonomous navigation that are addressed by VOS and its extensions. Over

the past few decades, there has been an enormous amount of research devoted to many

39

different aspects of autonomous navigation and obstacle avoidance including sensor

development and characterization, vehicle localization, motor feedback control loop

design, etc. It is beyond the scope of this thesis to address most of these topics and while

some of these other methods have been utilized in order to allow for the simulation or

experimental testing of VOS, they do not represent an original contribution nor have they

been developed significantly beyond what has been referenced from the work of other

researchers.

In addition, VOS has also been designed as a relatively low-level (almost

reactive) obstacle avoidance algorithm, so it would not be an appropriate choice for any

sort of complex navigation or maze-type scenario. However, VOS has the potential to be

integrated with other (higher level) navigation functions that may be available on a UGV

in order to compensate for this shortcoming. For example, VOS could be combined with

a map/GPS interface – a device which has become common in many commercial

vehicles. The map and GPS would provide long term path planning or higher level

navigation, but could also provide the VOS algorithm with short-term or moving goals

which the algorithm could follow while avoiding local obstacles – a function which is

currently performed by a human operator.

In Chapter 2, background will be presented on VOS and on some of the pertinent

research from other authors that has been used in order to develop VOS and the original

VOS algorithm for a holonomic vehicle that suffers from sensor error will be developed.

In Chapter 3, the first extension of VOS for a differentially driven vehicle will be given.

The second extension, for a vehicle with actuator error will be presented in Chapter 4 as

40

well as experimental results from testing VOS on an actual vehicle. Finally, in Chapter 5

the conclusions and plans for future work will be given.

41

 Chapter 2

2. Velocity Occupancy Space (VOS)

The primary contribution of this thesis is the development of a VOS-based

obstacle avoidance algorithm, this development was inspired by the sensor noise and

uncertainty representation of configuration occupancy space [23] and the long term

avoidance of moving obstacles provided by the velocity obstacle concept [57, 82]. The

combination of these two concepts led to velocity occupancy space where, similar to a

configuration occupancy space grid, individual gird elements are given values based on

the likelihood of a collision occurring if the robot adopts the state represented by that grid

element. However, instead of each grid element representing a location, as in

configuration occupancy space, the elements represent velocities. The collision causing

properties of these velocities are determined using the velocity obstacle concept, where

all potential collision causing velocities for a robot can be found based on the relative

location and speed of surrounding obstacles.

 In order to form VOS, the locations of all detected obstacles and the robot’s goal are

first represented in velocity space based on their respective locations and velocities. Next,

velocity occupancy space is populated with repulsive and attractive weights based on the

likelihood and speed with which each specific velocity will lead the vehicle towards a

collision or towards the goal. Finally, the most advantageous velocity is selected as the

42

vehicle’s next velocity. Extensive optimization was performed in order to determine the

most desirable way to weight the velocities based on the objectives of safety, rapid and

efficient goal finding and smooth operation.

2.1. Background on VOS

In this chapter details are provided on related previous research, including a

discussion of how this research will be utilized in this thesis as well as discussion of the

implementation and extensions of these methods.

2.1.1. Background on Configuration Space and Timing

Cell decomposition and certainty grids have been used by many researchers in

order to allow a robot to navigate and avoid stationary obstacles using uncertain sensor

data. Using a distance-finding sensor, such as a laser range finder, the robot can

determine the approximate angle, θ, and distance, r, that the obstacle is from the robot

(see Figure 2.1). The accuracy and precision of the data collected is dependent on the

quality of the sensor in use. As such, when using a low cost sensor a high error rate is

unavoidable and a certainty grid can be employed in order to account for data errors.

Moravec and Elfes and later Borenstein and Koren use a certainty grid, which gives each

cell a certainty value that indicates the confidence that the cell is occupied, in order to

represent the uncertainty and error inherent in the sensor measurements [23, 28].

43

Figure 2.1 The robot detecting an obstacle

Figure 2.2 Polar space occupancy grid of Figure 2.1

A polar, configuration space grid, Figure 2.2, has been used in order to determine

the momentary occupancy of the robot’s environment. The occupancy value of each

element in the polar space grid is found based on the equation

�ADEF(��), GF(��)H = I1		%��JKLMN0		MOK�P						((2.1)

where �ADEF(��), GF(��)H	is the binary occupancy value of a region at sensor time step ts at a

radius of ri and an angle of GF from the robot. For accuracy and ease of manipulation, the location

44

of the obstacle in local, polar configuration space is converted into global, Cartesian

configuration space using the standard conversion,

��DQF(��), PF(��)H = �ADEF(��) ∙ �%RGF(��) + Q@(��), EF(��) ∙ RL�GF(��) + P@(��)H						(2.2)
where Q@(��) and P@(��) are the coordinates of the robot’s position at time ��.

Three separate time steps are used in this derivation, a motion time step, ∆tm, a

sensor time step, ∆ts, and an acceleration time step, ∆ta (which will be defined in Section

4.1). The first two time steps are related according to

sm tkt ∆⋅=∆ (2.3)

where k is an integer greater than one. The time steps are related in this way as it is

assumed that a large number of sensor measurements will be read for every motion

command that is produced by the algorithm. Figure 2.3 shows a graphical representation

of the time steps.

Figure 2.3 Relative time steps

The Cartesian grids are summed for h sensor time steps (see Figure 2.4) in order

to compute the weighted Cartesian occupancy space grid (see Figure 2.5), used for the

subsequent velocity calculations. The grids are summed using the equation

45

��DQF(��), PF(��)H = 1ℎ ∙ S T 1" ∙ (�� − *) ∙ ‖�V@‖ + 1W��DQF(*), PF(*)H
B8

4XB8YC∙∆B8
				(2.4)

where the
\C term is used to normalize the occupancy grid values so that a change in the

number of sensor time steps that are summed to form the occupancy grid does not affect

the overall weighting (as detailed later), ‖�V@‖ is the magnitude of the robot’s velocity,

and β is a user defined variable (" ∈ [0,∞)) that regulates how much influence the time-

lag and robot velocity should have on the sensor measurement from each previous time

step. By using the later two terms, the most recent sensor measurement is given its full

weight while previous measurements have reduced weights based on the time elapsed and

the velocity of the robot. These terms help both to reduce the error in the position

estimate of moving obstacles as well as compensate for error in the robot’s movements.

Figure 2.4 Cartesian grid for several time steps

Figure 2.5 Summed Cartesian grid indicating range detection over a past horizon

2.1.2. Background on

The concept of a velocity obstacle,

later expanded by Shiller

[58, 59, 82]. Under the velocity obstacle concept, all robot velocities

collision between the robot and an

velocity of �V�, are considered to be

other words, all robot velocities that fall within the

area labeled	_�`) will lead the robot to a collision with

the robot’s velocity vector,

remains constant, then the robot w

obstacles’ of multiple obstacles,

of dynamically possible robot velocities

area) in order to find a safe and dynamically feasible velocity for the robot.

46

Summed Cartesian grid indicating range detection over a past horizon
(values are shown before normalization)

Background on Velocity Obstacles

The concept of a velocity obstacle, as first introduced by Fiorini and Shiller and

later expanded by Shiller et al and Large et al, has been used in the development of VOS

the velocity obstacle concept, all robot velocities that

llision between the robot and an obstacle, Obstacle A in Figure 2.6 moving with a

, are considered to be part of the velocity obstacle, _�`, of

other words, all robot velocities that fall within the velocity obstacle (i.e. the cone shaped

) will lead the robot to a collision with Obstacle A. As long as the tip of

the robot’s velocity vector, �V@, remains outside of _�` and the obstacle’s velocity,

remains constant, then the robot will avoid a collision with Obstacle A

obstacles’ of multiple obstacles, Obstacles A and B, can be combined along with the set

of dynamically possible robot velocities (i.e. Reachable Velocities in the rhombus

afe and dynamically feasible velocity for the robot.

Summed Cartesian grid indicating range detection over a past horizon

first introduced by Fiorini and Shiller and

has been used in the development of VOS

that will lead to a

2.6 moving with a

of that obstacle. In

(i.e. the cone shaped

As long as the tip of

and the obstacle’s velocity, �V̀ ,

Obstacle A. The velocity

can be combined along with the set

in the rhombus-shaped

afe and dynamically feasible velocity for the robot.

47

Figure 2.6 Robot and velocity obstacles of Obstacles A and B.
Adapted from (Fiorini and Shiller 1998)

2.2. Representing Obstacles and the Goal in VOS

In order to produce the velocity occupancy space for a robot based on uncertain

sensor data, the approximate location and velocity of each obstacle and the goal in

configuration space must be determined. Using this information, the velocity obstacles, a

set of velocities which will lead to a collision between the robot and an obstacle, can be

found.

2.2.1. Center of Certainty

Sensor data from a laser range finder is collected in the form of robot-based, polar

coordinates of obstacles. It is then converted into global, Cartesian coordinates based on

the robot’s perceived location and used to build an occupancy grid. The specifications of

the laser range finder (LRF) that was mounted on the robot (±30mm accuracy and 0.25 º

resolution) are used when converting the scan data into the occupancy grid in order to

account for sensor errors. Occupied obstacle elements are clustered together and the

48

approximate location of each obstacle is found using a variation of the center of mass

equation, termed the Center of Certainty, 	ab,:

abDQ(��), P(��)H = ∑ (QF, PF)��DQF(��), PF(��)H�cFX'∑ ��DQF(��), PF(��)H�cFX'
 (2.5)

where (QF, PF) is the location of the element i which has the occupancy value,

��DQF(��), PF(��)H, at time st (see Figure 3.1). It should be noted that the obstacles are

numbered as	d = 1,2, … , fg, where	fg	is the number of obstacles that the robot detects

throughout the simulation. In addition, each obstacle, j, consists of	�b elements, numbered

as	L = 1,2, … , 	�b. The center of certainty equation uses the number of times that an

obstacle is detected in an element of occupancy space as the certainty of that element

being occupied. This data is used to create a weighted average and locate the approximate

center of the obstacle.

Figure 2.7 Center of Certainty

49

The velocity of the center of certainty of obstacle j, 	ahb ,	can be estimated by

calculating how far the center of certainty of the obstacle moves between sensor time

steps using simple differencing techniques. Because the configuration space is discrete,

rounding errors are produced when finding the estimated velocities, especially when a

lower resolution configuration space grid is used. To compensate for this, the velocities

are smoothed by averaging the obstacle’s velocities over a number of sensor time steps,

h, to find the obstacle velocity at motor time step, tm,

h

yxC

tyxC

m

sm

t

tht

j

mj

∑
∆⋅−=

=
τ

τ),,(

),,(

&&&

&&&

(2.6)

This method finds the center of the side(s) of the obstacle presented to the robot,

not the physical center of the obstacle. For obstacles with a large aspect ratio, this will

produce some velocity error when the obstacle turns or the robot circles the obstacle and

a new side is presented to the robot. However, using the obstacle’s center of certainty

(instead of the center of the obstacle’s observed physical dimensions) to estimate its

velocity and averaging the estimated velocities over multiple sensor time steps decreases

the error in the estimated obstacle velocity used for the formulation of VOS. Averaging

the estimated velocities does create a delay in the obstacle velocity calculation, as

historical position data is used to calculate the current velocity, and this drawback should

be considered when selecting a value for h. Low-speed experimental tests showed that the

error produced from obstacles with large aspect ratios was usually less than 6% of the

actual obstacle velocity for obstacles moving at more than 0.2�� 	(see Appendix A for

50

details). This method is similar to an approach explored by Fuerstenberg et al, but here

the ability to operate in any environment by not making any assumptions about the

properties of the obstacles is retained [86].

For ease of notation, the velocity of obstacle element i will be referred to

as	(QhF(��), PhF(��)). For this notation, the velocity DQhF(��), PhF(��)H is equal to the obstacle

velocity ahbDQh(��), Ph (��)H,	if the obstacle element i is a part of obstacle j.

The method introduced here differs significantly from the more commonly used

probability based data association methods, such as those used by Schulz et al and

Almeida and Araujo, that are used to populate occupancy grids and track obstacles [68,

69]. While these methods will almost always produce more accurate results in terms of

locating and tracking obstacles (especially occluded obstacles), most data association

techniques are very time consuming and computationally expensive, especially as the

number of obstacles that they are tracking increases.

The crude, yet fast, obstacle tracking and velocity estimation method used in the

VOS algorithm takes only around 8ms to update the occupancy grid and estimate the

obstacle locations and velocities (running in parallel with the rest of the algorithm,

described in section 2.3, on a 2.53GHz laptop). As this is faster than the scan rate of our

LRF (Hokuyo UTM-30LX, 40Hz) the algorithm is able to make use of all available

sensor data. In addition, the early loss of accuracy is compensated for by giving the

velocity weighting algorithm the ability to compensate for error and obstacle

unpredictability (see section 2.3.1). By shifting most of the computational load from the

map building stage to the velocity selection stage much more of the sensor data is

51

utilized, less odometry error is accumulated between sensor readings and the robot is able

to recognize and respond more quickly to unanticipated events.

2.2.2. Obstacles and the Goal in Velocity Space

Using the location and approximate velocity that was previously calculated for the

obstacle, the obstacle’s location in velocity occupancy space can be determined, and from

this location the velocity obstacle (i.e. the set of robot velocities that will lead to a

collision between the robot and obstacle) can be found.

Figure 2.8 shows the position and velocity,	�V@, of the robot and the position of

element i, of obstacle j, and the vector, >VF,@, between the robot and the obstacle element.

The center of certainty velocity of the obstacle that element i belongs to is	(QhF, PhF , ��).
While we have clustered the occupied elements into obstacles in order to determine their

velocity, we will still use the individual elements from configuration space to populate

velocity space so that their occupancy certainty values can be directly utilized.

Figure 2.8 Configuration space representation of the robot and an obstacle

52

In Figure 2.9, the robot and one obstacle are shown in the velocity space. The

robot is located at its velocity,	�V@, and the obstacle is located at the sum of the obstacle’s

center of certainty velocity, DQhF(��), PhF(��)H, and the vector between the robot and the

obstacle in configuration space, >VF,@DQh (��), Ph (��)H. In other words, the obstacle is

located at the velocity that the robot would need to assume in order to collide with the

obstacle in one motor time step, which takes into account both the obstacle’s distance

from the robot as well as the obstacle’s own velocity. The vector originating at

DQhF(��), PhF(��)H and intersecting, 	>VF,@DQh (��), Ph (��)H + DQhF(��), PhF(��)H in velocity

space, is the set of collision causing velocities that makes up the velocity obstacle,	_�iiiiiVF.
Any of these velocities will cause the robot to collide (at some point in time) with the

obstacle, assuming constant obstacle velocity.

Figure 2.9 Velocity space representation of the robot velocity,�V@, and the velocity

obstacle, _�iiiiiVF

53

In this research, it is assumed that the relative position and velocity of the goal are

always known. As such, locating and tracking the center of certainty is not needed to find

the velocity goal,	_jiiiiiiV, or the set of robot velocities which will lead the robot to the goal,

in the same manner that the velocity obstacle was found. However, if a sensor was

employed that could distinguish the goal from surrounding obstacles, then the same

technique used for the obstacles could be used to locate the goal, track it and determine

its location in velocity space.

2.3. Populating Velocity Occupancy Space

After the velocity obstacles and goal have been found in the velocity space, it is

necessary to populate the velocity occupancy space with values in order to select the best

robot velocity. The velocity occupancy space consists of weighted elements that

correspond to possible robot velocities. The weight of each element is based on two sets

of factors. The first set forms a repulsive weight, based on the possibility that this

velocity might lead the robot to a collision with an obstacle. The second set is based on

how quickly and directly a velocity will lead the robot to its goal.

2.3.1. Repulsive Weights

The repulsive weighting value of each element of a velocity obstacle is influenced

by a number of variables that determine how much of a threat an obstacle is and to what

degree it should be avoided over other obstacles. The repulsive value,	k, of each element

is defined by the equation

54

k = lm nom ∙ pm(l̀ m) ∙ Tl77qrra + 1aoW ∙ sg�t (2.7)

where the weights (WR, WTTC, and WAR) are defined and optimized based on the robot’s

environment, and WR is the overall repulsive weight; which is used to prioritize obstacle

avoidance over reaching a goal. The other terms in Equation (2.7) are detailed as follows.

 The term
OcE is the occupancy value,))(),((mimiC tytxO , for the obstacle element

with which each robot velocity will lead to a collision. The other terms are variables

related to the robot’s state and environment and include DR, which is the repulsive

direction term, AR, which is the repulsive angular term, TTC, which is a measure of the

time to collision and CD which is the Cartesian distance between the robot and the

obstacle. It should be noted that, unlike the other weights, AR, is a factor of WR, rather

than being multiplied by it.

2.3.1.1. Angle and Direction Equations

A VOS velocity obstacle is formed for each filled element from Cartesian

occupancy space using the observed obstacle location and estimated velocity, which are

measured as previously described. By using the information from the individual

elements, the certainty that each element is occupied can be preserved and used to find

the likelihood that a specific robot velocity will lead to a collision with the occupant of

that element. Using the VOS method, an element (robot velocity) in velocity space is

assumed to be part of the velocity obstacle if it fulfills the following criteria. First, the

velocity represented by the element must cause the robot to move with a negative speed

relative to the obstacle, as defined by:

55

om 	=
uvw
vx1	Ly	 z >VF,@DPh (��)HPh E(�O) − Ph L(�O) ∙ (1 ± _|)⋀ >VF,@DQh (��)HQh E(�O) − Qh L(�O) ∙ (1 ± _|)~ ≥ 0	
0						%�ℎME�LRM																																																																																																																																																																																																			

((2.8)

where >VF,@DPh (��)H and >VF,@DQh (��)H are the relative displacement vectors between the

robot and the obstacle element i (see Figure 2.9), Ph@(��) and Qh@(��) are the x- and y-

velocities that the velocity space element represents, and QhF(��) and PhF(��)	are the

obstacle element velocity. In other words, the direction criteria for a velocity element is

fulfilled if this velocity will cause the robot and the obstacle to approach each other. If a

value of zero is found in Eq. (2.8), then the velocity is not part of a velocity obstacle and

will therefore have no repulsive weight. The velocity uncertainty, VU, represents the

uncertainty of the estimate of the obstacle’s velocity and is found from the equation

_| = OL�D|(QhF(��), PhF(��)) − (QhF(��Y\), PhF(��Y\))|,O�Q	�D	Qh@(��), Ph@(��)H�H (2.9)

This uncertainty factor, VU is used to increase the range of obstacle velocities that

are avoided. If the currently measured velocity is the same as what was measured on the

previous time step, then only the estimated obstacle velocity is avoided. However, as the

prediction and the observation differ, the range of obstacle velocities that are assumed to

be hazardous also proportionally increases. The upper bound on this term is the robot’s

maximum velocity, as the robot cannot be guaranteed of avoiding an obstacle moving at a

higher velocity than that which the robot is capable.

The ± symbol is used throughout this thesis to represent ‘within range’. For

example, in Eq. 2.8, if there exists any values between (1 − _|) and (1 + _|) that will

cause
�iiV�,�D�h (B�)HPh E(�O)YPh L(�O)∙(\±��) and 	 �iiV�,�D5h(B�)HQh E(�O)YQh L(�O)∙(\±��)	to both be greater or equal to zero then

56

om will equal one. The values of (1 ± _|)	in the two components do not need to be the

same.

The second criterion is that the element’s velocity must move the robot into a

collision course with the obstacle as defined by the relative angles between the robot’s

and obstacle’s positions and velocities. The equation

pm	 = �1						���Y\ z>VF,@DPhF(��)H>VF,@DQhF(��)H~ = 	���Y\ �|Ph@(��) − PhF(��) ∙ (1 ± _|)| ± �̀|Qh@(��) − QhF(��) ∙ (1 ± _|)| ± �̀ � ∙ D1 ± (l̀ m − 1)H		(2.10)
	0																																										%�ℎME�LRM																																																																																																											 (

defines the angle of collision where _|	has the same role as before, only now it increases

the range of angles instead of the radial direction, based on the predictability of the

obstacle’s velocity. In other words, if the angle of the relative velocity vector between the

robot and the obstacle, 	���Y\ �|�h�(B�)Y�h �(B�))||5h�(B�)Y5h�(B�))|�, is equivalent to the angle of the relative

position between the robot and the obstacle,		���−1 �>iVL,E�Ph L(�O)�>iVL,EDQh L(�O)H�, then the element’s velocity

fulfills the repulsive angle criteria.

The weighted angular term, WAR, allows a more or less conservative range of

velocity angles that are assumed to lead to a collision to be defined based on the situation

(a WAR value of one will not affect the range). Finally, the angular proximity, PA, is

defined by

�̀ 	 = OL� ��RE(��) 	−	�DQF(��), PF(��)H − DQ@(��), P@(��)H�RE(��) �� , 1� (2.11)

57

where the term RE(��) is the robot’s sensor range at the current time step. Using this

equation in conjunction with Eq. (2.10) a larger range of angles are considered occupied

when an obstacle is close to the robot than when the obstacle is some distance away. This

helps the robot to account for additional obstacles that might be hidden behind a closer,

occluding obstacle. If one of these undetected obstacles were to unexpectedly move out

from behind an occluding obstacle that was very close to the robot a collision would very

likely result. However, if the occluding obstacle was farther away from the robot, then

the robot would have time to detect the newly revealed obstacle and respond

appropriately, so avoiding larger range of angles is not necessary.

2.3.1.2. Time To Collision and Cartesian Distance

The terms time to collision, TTC, and the Cartesian distance, CD, are variables

which measure the physical relationship between the robot and an obstacle. If a velocity

does not meet the angle and direction requirements, as described above, then the TTC and

CD are not calculated, as the overall repulsive weight, R, is already set to zero, Eq.(2.7).

Therefore, every velocity value for which TTC and CD are computed is assumed to lead

to a collision. This limitation on the set of robot velocities examined greatly reduces the

complexity of these equations. The weighting term, TTCW , is used as a ratio between the

two variables. It represents how important it is to avoid velocities that will lead to a

collision as opposed to velocities that lead to an obstacle that is close to the robot. These

priorities can be radically different for an obstacle that is close to the robot, but moving in

the opposite direction.

58

As commonly defined, the time to collision term,	rra measures the amount of

time that it will take the robot to collide with an obstacle for each element’s velocity

value,	DQh@(��), Ph@(��)H, assuming that both the robot and the obstacle maintain a

constant velocity. For this derivation, the equation for the TTC is

rra	
= 	

uvw
vx �>VF,@DQh(��), Ph (��)H��DQh@(��), Ph@(��)H − (QhF(��), PhF(��))�						�DQh@(��), Ph@(��)H − (QhF(��), PhF(��))� < �>VF,@�

											�>VF,@DQh(��), Ph (��)H�RE(��)	 														�DQh@(��), Ph@(��)H − (QhF(��), PhF(��))� ≥ �>VF,@�
((2.12)

If the magnitude of the difference between the robot velocity and the obstacle’s velocity

is less than >VF,@DQh (�O), Ph (�O)H	then the TTC value is calculated. In other words, if the

difference between the robot and obstacle’s velocities is small enough that there will not

be a collision within the next time step then the TTC value is used. If the magnitude of

the difference between the robot’s velocity and the obstacle’s velocity is greater than

>VF,@DQh (�O), Ph (�O)H, then that robot velocity will cause a collision in less than one time step

(i.e. before the robot has a chance to respond) so these velocities are given the smallest

possible value (which makes Eq. (2.7) highly repulsive). In this case the sensors range

(RE(��))	is used as the denominator as this is the greatest possible distance between the

robot and an obstacle.

The Cartesian distance,

ao	 = 	zDQF(��), PF(��)H − �Q@(��) + Qh E(�O)∆�O , P@(��) + Ph E(�O)∆�O �~�				 (2.13)

59

is a measure of how far away the obstacle will be from the robot at the end of the time

step. Obstacles will be close by, and therefore present a more imminent threat, are given

higher repulsive weightings than obstacles which will be farther away.

2.3.2. Attractive Weights

As previously mentioned, only velocity space elements that are part of a velocity

obstacle--and will therefore lead to a collision between the robot and the obstacle--are

given any repulsive weighting. All other elements are assumed to represent safe robot

velocities. However, all elements in velocity occupancy space are given distinct attractive

weightings in order to prevent large portions of VOS from being equally weighted when

the elements do not represent equally advantageous velocities. The attractive value for

each VOS element is found from the equation

p = [l�� ∙ _o + _a + l̀ ∙ p`+

(2.14)

where the weights, l�� and l̀ , are defined based on the robot’s objectives. The velocity

difference term, VD, is found from the equation

_o	 = 	− � ��Qh E(�O), Ph E(�O)� − "�2 ∙ �max �Qh E(�O), Ph E(�O)� − min�Qh E(�O), Ph E(�O)�� − 1�� (2.15)

where the " is defined as

"
=
uvw
vxmaxDQh@(��), Ph@(��)H																		Ly			maxDQh@(��), Ph@(��)H < 	 �>V�,@ + DQh�(��), Ph�(��)H�																											>V�,@ + DQh�(��), Ph�(��)H			Ly				maxDQh@(��), Ph@(��)H ≥ �>V�,@ + (Qh� , Ph�)� ≥ minDQh@(��), Ph@(��)HminDQh@(��), Ph@(��)H														Ly			 �>V�,@ + DQh�(��), Ph�(��)H� < minDQh@(��), Ph@(��)H																									

((2.16)

60

where �>V�,@ + Qh�(��), Ph�(��)� is the location of the goal in velocity space, and

maxDQh@(��), Ph@(��)H and minDQh@(��), Ph@(��)H are the maximum and minimum

velocities that the robot can reach during this time step. The " term is used in the velocity

difference equation so that a consistent weighting can be maintained no matter how far

the goal is from the robot. In other words, it is desirable that the velocity which will lead

most quickly to the goal will always have the same attractive weighting no matter how

far the goal is from the robot.

 The next term, velocity change, VC, is given by the equation

_a = ��Qh E(�O−1), Ph E(�O−1)� − �Qh E(�O), Ph E(�O)��max �Qh E(�O), Ph E(�O)� − min �Qh E(�O), Ph E(�O)� − 1 (2.17)

The purpose of this term is to discourage frequent accelerations and decelerations

so it gives velocities closer to the robot’s current velocity a more attractive weight than

velocities which require more acceleration to reach.

Finally the cosine of the angle between the goal’s location in velocity space and

the velocity element in question, is found from

α = tanY\ �>Vj,EDPh (�O)H + Phj(�O)>Vj,EDQh (�O)H + Qhj(�O)� − tanY\ �Ph E(�O)Qh E(�O)� (2.18)

and the attractive angle term, AA, is set as the negative of that angle or zero, if the angle is

large enough that the velocity would no longer be leading in the direction of the goal

61

p` = �−�%R()				Ly	| | 	≤ 2	0					Ly	| | 	> 2 ((2.19)

Similar to the " term in Eq. (2.15), the contents of the first inverse tangent term in Eq.

(2.18) are replaced with the maximum or minimum reachable robot velocity

(maxDQh@(��), Ph@(��)H or minDQh@(��), Ph@(��)H) if the goal’s location in velocity space is

outside of these bounds. This prevents the preferred angle from decreasing too much to

encourage circumnavigation of an obstacle if the robot is far from the goal.

The equations shown in this section form the basis of velocity occupancy space.

Other logic was included to avoid numerical contingencies, such as division by zero, in

the actual program, but is omitted here for brevity.

2.3.3. Velocity Selection and Navigation

In simulations, negative values are used to represent how attractive an element of

VOS is, A from Eq. (2.14), and positive values to represent how repulsive the element is,

R from Eq. (2.7). This allows the attractive and repulsive values of a single element to be

summed so that the final value of a single element in velocity occupancy space can be

influenced by multiple factors. The value of each element indicates the desirability of that

robot velocity and the element with the lowest value (i.e. the most desirable velocity) can

be found by minimization with a simple gradient search.

The weights in Eqs. (2.7 and 2.14) can be adjusted both to influence how the

various terms should rank relative to each other, as well as to govern the interplay

between the attractive and repulsive values. These weights are pre-calculated by the

process outlined in Section 2.4.

62

After the robot velocity has been chosen for a motor time step, the process

described in the previous two sections is repeated so as to allow the robot to continuously

adjust its velocity to deal with non-constant obstacle velocities and newly detected

obstacles. The processes described in Sections 2.2 (building the occupancy space grid and

estimating obstacle locations and velocities) and 2.3 (populating velocity occupancy

space and selecting the next velocity) are performed in parallel.

2.4. Optimization of Weights

The value of each element in the velocity occupancy space is defined by the sum

of Eqs. (2.7 and 2.14):

_�¢DQh@(��), Ph@(��)H = k + p =

lm £om ∙ pm(l̀ m) ∙ �¤¥¦¦77q + \q�� ∙ sg�§ + [l�� ∙ _o + _a + l̀ ∙ p`+ (2.20)

Along with defining the value of the individual terms based on the physical

properties of the system and environment, the individual weights (W terms) must be

determined in order to effectively prioritize the various aspects of obstacle avoidance and

goal finding. Initially, these weights were hand-tuned based on empirical knowledge and

observation of the system [4]. In this section a combination of an exhaustive search and

an optimization process, which produced significantly better weights, is described.

2.4.1. Evaluation Criteria

Four evaluation metrics were used in order to judge the quality of the path that the

robot followed given each set of weights. During each time step the position of the robot,

63

the robot’s velocity and the relative position with respect to the robot of each obstacle to

the robot was recorded. The magnitude of the robot’s change in position (the distance that

it traveled during the simulation), change in velocity and the square of the inverse of the

closest obstacle’s proximity to the robot were each summed for every time step and used

for the first three evaluation metrics: distance traveled, acceleration and obstacle

proximity. In addition, the number of time steps required for the robot to reach the goal

and two binary values that indicated if a collision occurred during the scenario and if the

robot was successful at reaching the goal were also used as evaluation metrics.

The number of collisions and the number of times that the robot successfully

reaches that goal are the most important measures of the algorithm’s performance,

however, the other evaluation metrics, shown in Table 2.1, were also recorded in order to

compare the quality of the paths that the robot chooses using each set of weights.

64

Table. 2.1 Evaluation Metrics

N = number of iterations, Tn = number of time steps in iteration n, J = number of
obstacles, Cr = robot position, Co = obstacle position, Vr = robot velocity

Evaluation Metrics Equations

Obstacle Proximity T 1O�W

1f ∙SS 1∑ �a@(*) − agb(*)��b̈
7©
4X\

ª
�X\

Change in Velocity �OR �

1f ∙SS|_@(*) − _@(* − 1)|7©
4X\

ª
�X\

Distance Traveled (O) 1f ∙SS|a@(*) − a@(* − 1)|7©
4X\

ª
�X\

 Time (R) 1f ∙Sr�ª
�X\

A random scenario generator was used in order to produce a broad range of

situations in which the algorithm’s ability to successfully guide a robot could be tested.

The scenario generator produced a number of obstacles (between one and eight) with a

range of velocities and starting positions, as well as different positions for the goal.

Impossible scenarios (e.g. if the scenario started with a collision) were removed. An

example of the initial conditions of one of these scenarios is shown in Figure 2.10. While

Figure 2.10 (and later figures) shows an overhead view of the robot and obstacles, for all

of the simulations the robot only had access to the simulated noisy LRF data that would

have been produced from the environment. The LRF data was simulated to have a 20%

65

chance of producing a radial error of ±0.1m. Using the simulated LRF the robot was only

able to ‘see’ the nearest edges of obstacles that were within the range of the LRF (set at

20m for the simulations).

It should be noted that while some error was considered when simulating the LRF

data there are other difficulties inherent to laser range finders that were not accounted for

in this simulation, such as specular reflections and obstacles with variable cross-sections

(such as the legs verse torso on a human). However, these difficulties have been

addressed by other researchers, such as [87] and [88].

Figure 2.10 Initial conditions of a sample scenario. Figure contains the robot (circle),
obstacles (rectangles with velocity vectors) and the goal (asterisk)

The performance measures for ten different scenarios were used for the

optimization process so that the results of the optimization would be appropriate for a

more general environment, instead of being overly specific for a single scenario. In

addition, the same set of ten scenarios was used throughout the optimization processes so

that the results could be accurately compared.

66

2.4.2. Optimization

A coarse exhaustive search was performed in order to find a selection of better

initial design variables that could avoid some of the less desirable local minima. The

coarse exhaustive search showed that there were a significant number of non-optimal

local minima and also some discontinuities within the design variable search space.

However, using some of the better sets of variables from the exhaustive search as the

initial set of design variables, the optimization process produced improved results. For

validation, the results of the optimization process were tested on a set of one thousand

scenarios, from the random obstacle scenario generator, in order to verify that the VOS

algorithm would operate acceptably for almost any scenario.

Optimization was performed using MATLAB’s fgoalattain function. This

function uses sequential quadratic programming to reduce a set of nonlinear functions to

below a given goal level. It was used for this research in the following manner:

OL�LO�Q«¬¬­¬¬®5,¯ 	°		RJ�ℎ	�ℎ�� I±(²) − �ML$ℎ� ∙ ° ≤ ±³(²)´(²) = 0 ((2.21)
 where the design variables, x, were the weights: µlm ,(l77q , l̀ m ,l�� , (l̀ ¶. The equality

constraints, ´(²), were set so that the number of collisions and the number of times that

the robot was unsuccessful at reaching the goal had to equal zero. The hand tuned

weights and the optimized weights are compared in Table 2.2.

67

Table 2.2. Coefficients / design variable values used for velocity element weighting

 Hand-tuned Weights Optimized Weights

Repulsive Weights

Repulsive Weight, WR 1.0 0.4

Time to Collision, WTTC 3.5 7.0

Angular Range,	l̀ m 1.0 1.0

Attractive Weights
Velocity Distance, WVD 2.7 3.2

Angle, WA 0.3 2.2

For the optimization, each of the design variables was constrained to be positive

and less than ten (ten was chosen as a reasonable upper bound based on previous

experience with hand-tuning). The evaluation metrics of obstacle proximity and time

were given twice the weight of the other as they are more indicative of a successfully

completed simulation than acceleration and distance traveled. The optimization was run

for either six hundred iterations or until the function value (±(²) in Eq. (2.18)) varied by

less than 10-20.

The optimization process did not neatly converge to a global minimum that was

the optimal set of weights for any situation. The inability of the optimization to find a

global optimum is probably the result of two aspects of the system. First, this is a five-

dimensional design problem; the function is non-convex and has some discontinuities. As

such, finding the global minimum, even for a set of ten scenarios, is an extremely

challenging and time consuming optimization process. Second, some of the solutions

obtained using optimization appear to have been overly designed for and narrowly

focused on for the ten design scenarios that were used for the optimization process, as

68

they failed to cause the VOS algorithm to work acceptably for a broader range of

scenarios. Ideally, a much larger set of scenarios should be used for both the initial

exhaustive search and the later optimization, however, even using just ten scenarios made

for an extremely time consuming processes (weeks of dedicated CPU time on a laptop

computer), so optimizing with a more complete set of scenarios would not be practical

without access to parallel computing resources.

If such resources were available, then the optimization process could, in theory,

be applied to not just the weight factors but to the exponential relationship between the

various terms in Eq. (2.20). For instance, through optimization it might be revealed that a

cubing the time to collision term leads to better robot performance than just increasing its

weight.

2.5. Results

2.5.1. Initial VOS Results

An example of the VOS algorithm run with a fairly simple scenario is shown in

Figures 2.11 – 2.14. In Figure 2.11, the robot is avoiding two moving and two stationary

obstacles. The simulation covers the first six motor time steps. The robot is initially

stationary so that it can locate surrounding obstacles and make an initial estimate of their

velocities before selecting its first velocity.

69

Figure 2.11 First six simulation steps of an example scenario

The velocity occupancy space representation of the obstacles in Figure 2.11 is

shown in Figure 2.12 where the velocity values (on the x- and y-axes) that will lead to a

collision can be seen as the cones of repulsive values (positive values on the z-axis) in

velocity occupancy space.

Figure 2.12. VOS populated with repulsive values

All of the velocity occupancy space elements are given attractive values (negative

values on the z-axis) in proportion to how effectively each velocity will lead the robot to

the goal. In Figure 2.13, velocity occupancy space is shown populated with attractive

values based on the scenario in Figure 2.11.

70

Figure 2.13. VOS populated with attractive values

After fifteen time steps the robot has successfully reached the goal while avoiding

all obstacles, as shown in Figure 2.14.

Figure 2.14. Simulation results after fifteen time steps

2.5.2. Performance with Optimization

The set of weights that resulted from the optimization process are shown in Table

2.2, and results from the algorithm run with these weights are shown in Figures 2.15 and

2.16.

Figure 2.15. Comparison of Normalized Evaluation Metrics between Hand Tuned and
Optimized Weights for 10 Design Scenarios (one

Figure 2.16. Comparison of Normalized Evaluation Metrics between Hand Tuned and
Optimized Weights for 1000 Scenarios (one sigma error bars)

73.19%

0

0.5

1

1.5

2

2.5

3

3.5

4

Obstacle Distance Acceleration Time Failures

Proximity Traveled

5.00%

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Obstacle Distance Acceleration Time Failures

Proximity Traveled

71

Comparison of Normalized Evaluation Metrics between Hand Tuned and
Optimized Weights for 10 Design Scenarios (one sigma error bars)

Comparison of Normalized Evaluation Metrics between Hand Tuned and
Optimized Weights for 1000 Scenarios (one sigma error bars)

73.19% 13.09% 16.75% 9.51% 0%

Obstacle Distance Acceleration Time Failures

Proximity Traveled

Optimized Weights

Hand Tuned Weights

% Improvement using

Optimized Weights:

5.00% 6.89% 11.85% 7.06% 55.55%

Obstacle Distance Acceleration Time Failures

Proximity Traveled

Optimized Weights

Hand Tuned Weights

% Improvement using

Optimized Weights:

Comparison of Normalized Evaluation Metrics between Hand Tuned and
sigma error bars)

Comparison of Normalized Evaluation Metrics between Hand Tuned and
Optimized Weights for 1000 Scenarios (one sigma error bars)

Obstacle Distance Acceleration Time Failures

Optimized Weights

Hand Tuned Weights

Obstacle Distance Acceleration Time Failures

Optimized Weights

Hand Tuned Weights

72

In Figure 2.15, the performance of the algorithm using the original hand-tuned

weights versus the performance with the optimized weights is shown for the set of ten

design scenarios which were used to perform the optimization. In Figure 2.16, the

performance of the algorithm with the different sets of weights is again compared, but

this time for the one thousand randomly generated scenarios, which were used to validate

the results of the optimization. The values of the evaluation metrics were normalized

independently for the two sets of scenarios against the values found using the hand tuned

weights; the lower the value of the evaluation metrics, the better the performance of the

algorithm. Neither set of weights caused a failure (either due to a robot collision or the

inability of the robot to reach the goal within a specified amount of time) of the

simulation for the set of ten design scenarios. For the one thousand validation scenarios,

there were nine failures (0.9%) for the hand-tuned weights and four failures (0.4%) for

the optimized weights. The simulations in which failures did occur where usually

situations that even a human driver would have had difficulty successfully navigating.

For example, one of the failures using the optimized weights occurred when a couple of

obstacles converged almost immediately on the robot, see Figure 2.17. An omniscient

agent would have been able to find a successful path; however the algorithm had very

little time to collect velocity data on the surrounding obstacles and there were a very

limited number of velocity choices that would have allowed the robot to successfully

avoid all of the obstacles.

73

Figure 2.17 Example of a failed scenario. Collision occurs after three motion time steps.

The optimization process significantly improved the algorithm’s performance for

the design scenarios that were used in the optimization. While the overall improvement

for the validation scenarios was not as large, it was still statistically significantly for three

of the evaluation metrics: the distance traveled, acceleration, time (p < 0.005, on a two-

tailed, paired t-test) and for the number of simulation failures (p < 0.025).

While the obstacle proximity evaluation metric did not see a significant

improvement using the optimized weights, the true improvement may be covered up by

the improvement in the collision failure rate. The values of the evaluation metrics for a

simulation in which a failure occurred where not included in the statistics. Therefore,

improvements in the performance of the algorithm with the optimized weights which

allowed the robot to avoid a collision (presumably by decreasing the robot’s proximity to

the obstacles) while the hand tuned weights led to a collision would not influence the

final value of the obstacle proximity for either set of weights. In other words, the

simulations where the obstacle proximity metric would have been the worst (due to a

74

collision) for the hand tuned weights, were removed from the analysis, which may have

improved the value of the obstacle proximity for the hand tuned weights when compared

to the optimized weights. To make the comparison more fair, if there are a significantly

different number of failures (collisions and time outs) than this should be considered of

more importance than the difference in the evaluation metrics. The evaluation metrics

become more meaningful, between two tests, as the number of failures between the two

tests becomes closer.

2.5.3. Results for Obstacles with Variable Velocities

The VOS algorithm works most effectively when the obstacles maintain a

constant velocity and the optimization was performed using constant velocity obstacles.

However, the algorithm was also tested using obstacles with variable velocities. In this

situation, every sensor time step the obstacles that had a 20% chance of altering their x-

or y- velocity by a value (randomly generated) in the range of	£−0.5�� , 0.5�� §. The

obstacles’ velocities were still bound to be within the robot’s velocity range

of	£−2.0�� , 2.0�� §.
Using the optimized weights and the one thousand validation scenarios (with

random obstacle velocity changes), eight simulation failures where recorded (0.8%

failure rate). There was also no statistically significant difference between three of the

four evaluation metrics (obstacle proximity, distance and time) between the scenarios

where the obstacles all had constant velocities and the scenarios where the velocities

randomly changed.

75

Figure 2.18 shows a representative scenario where the algorithm allows a robot to

navigate around stationary and moving obstacles and reach a goal. Figures 2.19 through

2.21 show sequential segments of the robot navigation in this scenario. In Figure 2.19, the

robot starts to accelerate in the positive x- and y-directions to avoid Obstacles A and B.

In Figure 2.20, the robot speeds up to circle around Obstacle C and starts moving in the

positive y-direction to avoid Obstacle D. Finally, Figure 2.21, the robot outpaces

Obstacle A and then continues on its course to avoid Obstacle E and reach the goal.

Figure 2.18 Simulation results with four moving and two stationary obstacles
for twenty-seven time steps

76

Figure 2.19 First eight motor time steps Figure 2.20 Motor time steps eight to seventeen

Figure 2.21 Motor time steps seventeen to twenty-seven

77

2.5.4. Comparison of VOS to other Obstacle Avoidance Algorithms

In order to validate the performance of VOS, it will be compared via simulation to

the VFH method [35] and the original Velocity Obstacle (VO) concept [57, 58] by testing

all three algorithms against a range of obstacle/goal scenarios. These two methods were

chosen for comparison as they were the initial inspiration for VOS. VOS uses the same

method to build configuration occupancy space that is fundamental to VFH and utilizes

the concept of velocity obstacles to avoid moving obstacles.

VOS is not being compared in detail to the other algorithms on the table as most

of these algorithms either require additional or different environmental information from

VOS (i.e. Probabilistic RRTs require training samples, State-Time Space requires

complete environmental knowledge and) or produce different types of paths (i.e. State-

Time Space can find an optimal path and Probabilistic RRTs plan a significantly longer

path than the reactive VOS algorithm).

2.5.4.1. Comparison of VOS and VFH

Background on the VF

The VFH [30] method of obstacle avoidance is a well tested method of static

obstacle avoidance. For the comparison between VOS and VFH, the VFH+ method [35],

an extension of the basic Vector Field Histogram will be used. This extension decreases

the need to hand tune specific parameters of the algorithm and also, according to the

authors, produces more reliable results.

78

The VFH converts ranging sensor data into a Cartesian gird using the same

method as VOS (detailed in Section 2.1), and then uses this grid to build a histogram of

all of the angles of navigation around the robot. The equation,

"F,b = �E���� ��cY�¸5�Y5¸� (2.23)

is used to find the angle that each filled element in the Cartesian grid is from the robot,

where (QF, Pb) are the coordinates of the filled element and	(Q�, P�) are the coordinates of

the robot. The magnitude of each element is based both on the of the certainty of element

being occupied, �F,b, as well as the distance between the element and the robot, NF,b and is

found from the equation,

OF,b = �F,b� ∙ (1 + RE − NF,b)�, (2.24)

where sr is the robot’s sensor range. The equation was formulated to fulfill the

requirements given in [35] and tuned in order to allow the VFH algorithm to operate as

effectively as possible for the comparison simulations.

 The robot is treated as a point so the angle that each obstacle fills must be

increased by the radius of the robot, r, as well as the minimum distance that the robot

should maintain between itself and obstacles, dº»¼. Therefore each angle is increased by

°F,b = �E�RL� T@½¾¿ÀÁÂ�,c W. (2.25)

A histogram can then be computed for each robot navigation angle using the equation

79

ÃÄ = ∑ OF,b ∙ ℎF,bF,bÅq (2.26)

where

ℎF,b = Æ10(Ly	G ∈ Ç"F,b − °F,b, "F,b + °F,bÈ	Ly	G ∉ Ç"F,b − °F,b , "F,b + °F,bÈ . (2.27)

The histogram can be converted into binary form by apply a two stage threshold, where

angles are given a value of one, or filled, if they have an ÃÄ value above a certain

threshold, τhigh, and angles are given a value of zero, or open, if they have an ÃÄbelow

τlow. If the ÃÄ value is between the two thresholds, then the angle remains at its value

from the previous time step. This double threshold prevents angles from frequently

oscillating between filled and empty.

 Each open navigation angle is given a cost based on its difference from the goal

angle,	GÊ, as well as the difference from the robot’s current heading,	Gm , using the

equation,

$(G) = Ë\ ∙ D�G − GÊ�H + Ë� ∙ (|G − Gm|) (2.28)

Based on the guidelines detailed in [35], the terms of the cost function were weighted as

Ë\ = 5 and Ë� = 4; this produced a goal seeking algorithm that tends to avoid oscillation

and follow a steady path to the goal.

80

Simulation Comparison of VOS and VFH

The performance of VOS was compared to that VFH over 1000 randomly

generated scenarios (identical sets of scenarios were used to test each algorithm). The

first 500 scenarios each included ten stationary obstacles and the second scenarios 500

had a mix of ten moving and stationary obstacles. The moving obstacles and the robot

had a top speed of	2�� . The scenarios were designed to be challenging in order to better

differentiate between the two algorithms. Both VOS and VFH build a similar

configuration occupancy space map; however the VFH method then selects safe headings

that lead towards the goal based on the occupancy space data, while the VOS method

builds a velocity occupancy space map and selects safe velocities that will lead to the

goal.

In Figures 2.22 and 2.23, the VOS and VFH algorithms are shown navigating

around the same set of ten stationary obstacles. They take different paths, but both

manage to reach the goal after 14 time steps. However, the VFH algorithm follows a

slightly shorter path.

 Figure 2.22 Robot navigating using VOS Figure 2.23 Robot navigating using the VFH

81

As shown in Table 2.3, for the 500 scenarios with only stationary obstacles, the

VOS and VFH methods performed very similarly; both experienced a single collision and

the VOS method experienced one timeout while the VFH method had none. The timeout

occurred when the goal was very close to an obstacle. The VFH method was successful at

reaching the goal, but the VOS method, due to the increased safety margin that it keeps

around obstacles due to the chance that they might start to move, was not able to reach

the goal.

Table 2.3 Comparison of the performance of VOS and VFH on 500 Scenarios with
Stationary Obstacles

 Collisions Timeouts

Obstacle

Proximity � ÌÍÎ�

Distance

Traveled (Í)
Change in

Velocity�ÍÏ �

Time (Ï)
VOS 1 1 3.22 25.20 5.76 15.53
VFH 1 0 5.59 24.64 3.35 13.94

Simulations where either method experienced a failure (either due to a collision or

timeout) were removed from the data set for the calculation of the of the four evaluation

metrics (this was done for all algorithm comparisons in this chapter). The VOS method

maintained a greater distance from obstacles, but the VFH method was able to (on

average) find slightly shorter routes and reach the goal more quickly with fewer changes

in velocity. The difference in time and change in velocity is due to the VFH method

always attempting to operate at the robot’s highest velocity while the VOS method

frequently chooses slower, more cautious velocities.

82

For the 500 scenarios with both moving and stationary obstacles, the VOS both

experienced seven collisions while the VFH method experienced 73 collisions, as shown

on Table 2.4. Because the VFH method selects a new heading each time step based on

current sensor data, it was able to avoid moving obstacles in the majority of scenarios,

however the VFH’s inability to detect or respond to moving obstacles still caused it to

experience a statistically significant higher number of collisions (p < 0.001) than the VOS

method.

Table 2.4 Comparison of the performance of VOS and VFH on 500 Scenarios
with Stationary and Moving Obstacles

 Collisions Timeouts

Obstacle

Proximity � ÌÍÎ�

Distance

Traveled (Í)
Change in

Velocity �ÍÏ �

Time (Ï)
VOS 7 0 3.23 25.18 5.02 15.33
VFH 73 0 4.27 24.69 3.81 13.97

Again, the VOS method maintained a greater distance from obstacles, but the

VFH method was able to find slightly shorter routes and reach the goal more quickly with

fewer changes in velocity when it did not encounter a collision. However, the large

difference in the number of collisions between the two methods outweighs the

performance of the algorithms in successful simulations (as it would be irresponsible to

choose a navigation method that had an order of magnitude greater chance of colliding

with an obstacle in order to decrease the time it would take to reach a goal by a few

seconds). Therefore, this data demonstrates that VOS performs comparably to the VFH

method in environments with only stationary obstacles and performs superiorly in

environments where there are both stationary and moving obstacles.

83

2.5.4.2. Comparison of VOS and VO

The performance of VOS was also compared to that of the original velocity

obstacle (VO) method (described in Section 2.1.2) using 500 randomly generated

scenarios with both stationary and moving obstacles. The Th was tuned, for the

comparison simulations, to a value of nine seconds, as this produced the best simulation

results for the VO algorithm in the given scenarios. Initially (Table 2.5), both algorithms

had access to perfect environmental data (both obstacle position and velocity data) about

the 500 scenarios, then both algorithms were tested again with the same 500 scenarios but

only given laser range finder position data and obstacle velocities calculated using the

center of certainty (COC) method detailed in Section 2.2.1 (Table 2.6). Again, the

scenarios were designed to be very challenging in order to better differentiate between

the two algorithms.

Table 2.5 Comparison of the performance of VOS and VO on 500 Scenarios with
Complete Obstacle Knowledge

 Collisions Timeouts

Obstacle

Proximity � ÌÍÎ�

Distance

Traveled (Í)
Change in

Velocity �ÍÏ �

Time (Ï)
VOS 2 0 2.35 25.22 4.77 15.18
VO 4 0 3.86 26.97 6.62 16.82

For the 500 scenarios where the algorithms had complete knowledge of the

obstacles, the VOS method experienced two collisions while the VO method experienced

four (this is not a statistically significant difference) and neither algorithm experienced a

timeout. The VOS method performed somewhat better than the VO method according to

84

the four evaluation metrics; this is probably due to the weights of the VOS method being

turned according to these metrics.

Table 2.6 Comparison of the performance of VOS and VO on 500 Scenarios with
LRF based Position and COC Velocity Data

 Collisions Timeouts

Obstacle

Proximity � ÌÍÎ�

Distance

Traveled (Í)
Change in

Velocity �ÍÏ �

Time (Ï)
VOS 4 0 3.08 25.26 4.97 15.26
VO 20 3 3.93 26.19 7.23 15.74

For the 500 scenarios where the algorithms used position data from a simulated

laser range finder and obstacle velocity data calculated from the laser range finder data

using the COC method, the VOS method experienced four collisions while the VO

method experienced twenty collisions (this was a statistically significant difference, p >

0.001).

The timeouts using the VO method were due to the Boolean nature of this

method. Velocities are labeled as safe (admissible) or unsafe based on a specific

threshold (time to collision) and a goal directed velocity is chosen from the set of safe

velocities. If no safe velocity exists, then the robot performs emergency breaking in order

to avoid a collision. The three timeouts and a number of the collisions occurred when the

robot reached a position where it considered none of the velocities to be sufficiently safe

and the robot would remain stationary until the simulation ended or a moving obstacle

collided with the robot. This shortcoming is also mentioned in [56], where the author

notes the difficulty in setting a threshold that maintains the safety of the robot without

leading to too many situations where there are no admissible velocities. With the VOS

85

algorithm, even if all possibly velocities are somewhat dangerous, the algorithm is still

able to select the safest velocity and therefore has a better chance at avoiding aggressive

obstacles and reaching the goal.

Based on the comparable performance of VOS and VO algorithms in simulations

with complete obstacle knowledge and the superior performance of VOS in simulations

without complete obstacle knowledge, VOS is again shown to be a useful addition to the

literature.

2.6. Conclusions about VOS

In this chapter velocity occupancy space (VOS), a navigation algorithm which

allows a robot to operate using only a range finding sensor with uncertainty in an

unknown environment and successfully avoid stationary and moving obstacles while

navigating towards a goal, has been developed and presented. This method uses the

uncertain obstacle representation of occupancy space to estimate the location of each

obstacle and finds the center of certainty, a variation of the center of mass, for each

obstacle. The center of certainty of each obstacle is tracked over multiple time steps and

the movement of the center of certainty is used to estimate the obstacle’s velocity. This

basic obstacle information is then converted into velocity obstacle form and used to

calculate variables that describe the benefits or detriments of each possible robot velocity.

The relative weights that each of these variables should have, in comparison to the other

variables, were then optimized and used to form VOS. From this space, the robot can find

a velocity that is both safe and that will lead it towards the goal, if such a velocity exists.

While the choice of velocity using the optimized weights may not always be ideal, it has

86

been shown that, in general, the weights will allow the robot to avoid a collision and

reach its destination in the vast majority of situations. The obstacle avoidance and goal

finding abilities of VOS were also evaluated against two other obstacle avoidance

algorithms and VOS was shown to have at least comparable capabilities as these

algorithms.

87

Chapter 3

3. Velocity Occupancy Space for Differential Drive Vehicles

The Velocity Occupancy Space (VOS) algorithm, which was introduced and

described in the previous chapters, selects robot velocities under the assumption that the

robot is holonomic and is able to instantaneously accelerate to the desired velocity.

Unfortunately, this assumption is not valid for real-world robots, and therefore the

algorithm cannot ensure robot safety under realistic experimental conditions, especially at

high speeds.

Therefore, this chapter will focus on a method by which VOS (and the use of

velocity obstacles, in general) can be extended to accommodate non-holonomic robots

with acceleration constraints. Specifically, this chapter focuses on how a sequence of

accelerations can be used to approximate a desired velocity and how the velocity

selection in VOS can be restricted in order to accommodate the constraints of a

differential drive robot.

3.1. Differential Drive Formulation

In this section it is shown how a series of accelerations can be generated in order

to approximate a desired instantaneously change in velocity for a differential drive

88

vehicle. Intuitively, when a path is planned for a differentially driven robot, the path

would consist of a series of arcs of various radii (when the two wheels have different

velocities) and straight lines (when the wheels have the same velocity). However, the

holonomic robot assumption in VOS implies a series of constant, discontinuous, linear

velocities. This series of constant linear velocities can be approximated with a

kinodynamically feasible set of arcs and lines by a) considering only the robot’s initial

and final position and velocity (at the beginning and end of each motion time step), and

b) selecting a series of piecewise-continuous accelerations that will produce a

differentiable and continuous velocity profile. This series of accelerations will allow the

robot to reach the same approximate velocity and (for the three-step approximation)

position at the end of each motion time step as the velocity chosen from the VOS search

space for a holonomic vehicle.

The piecewise constant acceleration approximation of a holonomic velocity is

necessary because, in VOS, the velocity obstacles cannot be simply altered to take the

robot dynamics into account. Currently, a single velocity obstacle is created for each

physical obstacle and is used to determine the relative safety of each robot velocity. In

order to take the robot’s dynamics into account, a separate velocity obstacle would have

to be made for every potential robot velocity. Depending on the velocity space resolution,

this could increase the computational complexity of populating VOS by over a thousand

fold at each motion time step.

When calculating the piecewise accelerations it is acceptable to consider only the

robot’s position and velocity at the beginning and end of each motion time step, with

length ∆tm, as long as each time step is short enough that significant movement of the

89

robot, or of surrounding obstacles, would not be expected. In VOS, the robot is always

required to maintain a safe distance from any surrounding obstacles due to the error

present in the system which makes exact localization and velocity prediction for the

obstacles impossible. If ∆tm is short enough, the robot’s position will not deviate

significantly from the position that it is attempting to reach so the risk of a collision is

minimal.

One of the most common kinematic configurations for robots used as

experimental platforms is a basic differential drive vehicle (usually with a third caster

wheel for stability). In Figure 3.1, a simple differential drive vehicle is shown at two

consecutive time steps. The vehicle has a wheel radius d and the distance between the

two wheels is L. When calculating the movement of the vehicle between two times steps,

the vehicle’s initial position is considered to be oriented along the x-axis (in a vehicle

based coordinate frame) and the vehicle’s heading in its final position, ψ, is given relative

to this axis.

Figure 3.1 Differential drive vehicle at two, consecutive motion time steps

90

ISO orientation and SAE coordinates are used to define the position, rate of

change and acceleration of the vehicle’s heading and wheels angles. These coordinates

are shown in Table 3.1.

Table 3.1 Coordinates used in derivation

Angle Rate Acceleration

θ Ð = (Ð� + Ð@)2 Ñ = (Ñ� + Ñ@)2

Ò = tanY\ T����5�W E = NÓ (Ð@ − Ð�) k = NÓ (Ñ@ − Ñ�)

The subscripts l and r are used to differentiate between the left and right wheels. The

vehicle is defined to be initially moving in only the x-direction,	�� = 0, and the velocity

at the beginning and end of each motion time step is assumed to be constant (i.e Ð� = Ð@

and Ñ� = Ñ@ = 0). These assumptions allow the vehicle’s movement to more closely

mimic that of a vehicle that is able to instantaneously change velocities.

The third time step, the acceleration time step, ta, is used when calculating

accelerations for a differential drive vehicle. The acceleration time step has a lower

bound of the frequency with which the vehicle’s actuators can respond to acceleration

commands, while the motion time step is the time allotted for the vehicle to execute the

series of accelerations and attain the desired velocity. The acceleration time step and the

sensor time step are only related to each other through their relationships to the motion

time step; they are not directly dependent on each other.

91

For this derivation, it is assumed that the vehicle cannot instantaneously change

velocity, but that it can instantaneously change acceleration: jerk limits are not

considered. The length of the acceleration time step is either one half (for the two-step

method) or one third (for the three-step method) of the length of the motion time step,

Eq.(3.1). It is assumed that the vehicle can accelerate quickly enough that the vehicle

acceleration can be approximated as constant over the acceleration time step.

∆�� = �∆B�� 							r�% − ¢�MK∆B�Ô 				rℎEMM − ¢�MK((3.1)

3.1.1. Two-step Velocity Approximation Method

The first method considered is a naïve approximation of the selected velocity

using a two-step series of accelerations for each of the two wheels (see Figure 3.2). That

is the motion time step, ∆tm, is divided into two equal segments, and constant wheel

accelerations (for each wheel) are specified during each segment. These wheel

accelerations allow the robot to change its heading and speed in order to match the

desired command velocity by the end of the motion time step. However, the robot’s final

position does not necessarily match that of a robot that instantaneously started moving at

the desired velocity.

As shown in Figure 3.2, the initial and final angular wheel velocities must be

equal (i.e. Ð�\ = Ð@\ = ÐB� 	and	Ð�� = Ð@� = ÐB�½\) in order for the robot change from its

previous command (constant, linear) velocity to the new command (constant, linear)

92

velocity. As the acceleration time step length is fixed (∆�� = ∆B��) this constrains the

angular wheel accelerations to maintain the relationships:

Ñ�\ = Ñ@� (3.2)

and

Ñ�� = Ñ@\ (3.3)

where Ñ@\	is the angular acceleration of the right wheel during the first acceleration time

step (the first half of the motion time step). The other angular accelerations are similarly

distinguished.

Figure 3.2 Angular wheel velocity and acceleration for two step method.
(Note, figures are not to scale)

In addition, basic equations of motion and the equations in Table 3.1 produce the

relationship:

ÐB�½\ − ÐB� = Õ(Ñ�\ + Ñ��)2 + (Ñ@\ + Ñ@�)2 Ö ∆��																														(3.4)
between the initial and final angular wheel velocities.

93

The change in the robot’s heading, ψ, also puts further constraints on the angular

wheel accelerations which (again using basic equations of motion and the equations in

Table 3.1), generates the relationship:

ÒB�½\ = 12 Õ(Ñ@\ − Ñ�\)2 + (Ñ@� − Ñ��)2 Ö ∆���.																																	(3.5)

Solving Eqs. (3.2-3.5) simultaneously for the angular accelerations of each wheel

produces the following equations:

Ñ@\ = Ñ�� = ÐB�½\ − ÐB�∆�� + 2ÒÓN(∆��)� 																																																			(3.6)
Ñ@� = Ñ�\ = ÐB�½\ − ÐB�∆�� − 2ÒÓN(∆��)� .																																																		(3.7)

The offset error in the robot’s position at the end of the motion time step arises

due to the difference in magnitude and direction between the initial and final velocities.

As shown in Figure 3.3, the desired final robot position is equal to the (holonomic)

velocity command D�5�, ���H multiplied by the length of the motion time step	(∆��).
Using the two-step acceleration method, the robot will reach the desired velocity

D�5�, ���H and therefore will also be oriented along the desired heading, ψ, but it will not

(in general) reach the desired position unless the new command velocity is the same as

the robot’s current velocity.

94

Figure 3.3 Possible robot positions at the end of the motion time step

The robot’s position at the end of the time step can be calculated using:

Q(�� + 1) = Q(��) + Ú ÇÐB�N + Ñ*NÈ�%R £\�k*�§ N*
∆B

' 	

+ Ú ÇÐB�½∆Û
N + Ñ�*NÈ�%R £ÒB�½∆Û
 + EB�½∆Û
* + \�k�*�§ N*
∆Û�
∆B
 																				(3.8)

and

P(�� + 1) = P(��) + Ú ÇÐB�N + Ñ*NÈRL� £\�k*�§ N*
∆B

'

+ Ú ÇÐB�½∆Û
N + Ñ�*NÈRL� £ÒB�½∆Û
 + EB�½∆Û
* + \�k�*�§
∆Û�
∆B
 N*																		(3.9)	

where the variables are defined in Table 3.1 and the subscripts refer to the first and

second acceleration time steps. The first integral in each equation calculates the distance

that the robot travels (in the respective direction) during the first acceleration time step

(0	�%	∆��) and the second integral is the distance that the robot travels during the second

acceleration time step(∆��	�%	∆�O).

95

The error in the robot’s position is therefore:

QÞ = �5�∆�� + Q(��) − Q(�� + 1)																																																							(3.10)

PÞ = ���∆�� + P(��) − P(�� + 1)																																																					(3.11)	
The robot’s position at the end of the motion time step (see Figure 3.3) will be

somewhere between the position that it would have reached had it continued at its

previous velocity D�5\∆��, ��\∆��	H and the desired position based on the new command

velocity,	D�5�∆��, ���∆��	H, therefore the greater the change between the initial and final

velocity (magnitude and heading), the more offset error,	(QÞ, PÞ), there will be in the

robot’s final position.

The calculated velocity obstacle (as constructed in Figure 2.9) is based on both

the distance between the robot and the obstacle,	>VF,@	, as well as the obstacle’s velocity.

Therefore, regardless of the robot’s ability to reach the desired velocity within one

motion time step, if the robot’s position at the end of that time step is different from what

it would have been had it instantaneously changed velocities, then there is an offset in

velocity space. This offset invalidates the assumption of continuous obstacle avoidance

for velocities outside of the velocity obstacle.

In Figure 3.4 the construction of a velocity obstacle, _�iiiiiVF, is shown both as it

would be calculated assuming that the robot could instantaneously change velocity

(shown in solid lines), as well as what the actual velocity obstacle would be if

acceleration constraints were taken into account (shown in bold and dashed lines). It

should be remembered that the velocity obstacle consists of all of the robot velocities that

96

will lead to a collision between the robot and the obstacle at some point in time. Under

the instantaneous acceleration assumption, almost all of the velocities along the actual

velocity obstacle are considered safe. This assumption may cause real-world robots to

inadvertently collide with an obstacle.

Figure 3.4 Velocity space representation of the robot, with velocity	�Vm, an

obstacle, with velocity DQhF(��), PhF(��)H,	 and the velocity obstacle,	_�iiiiiVF, where >VF,@ is the

vector between the robot and obstacle. The velocity obstacles and components are
calculated both with instantaneous acceleration assumptions (solid lines) and with actual

robot dynamics (bold, dashed lines).

The effects of this offset may range from negligible to catastrophic depending on

many factors. For instance, if the obstacle position and velocity estimation error is

significantly greater than the offset error, then it is very likely that the offset error will not

cause a collision. In this situation, because the error inherent to the system is already

forcing the VOS algorithm to choose overly-cautious velocities that avoid obstacles by a

large margin, the offset will probably not be enough to cause a collision. However, in a

97

system with less error or with more quickly moving obstacles, this offset could cause

problems. The motion time step, ��, also plays a role in the offset error. As �� decreases,

the offset error and overall distance traveled also proportionally decrease. However, a

shorter �� also means that the robot requires much greater accelerations to reach the

same desired velocity.

3.1.2. Three-step Approximation Method

Due to the offset error produced by the two-step velocity approximation method,

a three-step velocity approximation method, which will both accelerate the robot to the

desired velocity and move it to the position that it would have reached had it been

moving at the desired velocity for the entire time step, will be considered. In this case,

the motion time step, ∆tm, is divided into three equal segments, and the left and right

wheel accelerations are determined for each segment.

The three-step method requires the angular wheel accelerations to fulfill the

constraints used in the two-step method (final velocity and turn rate, and change in

heading) but also constrains the final position of the robot in the x- and y-directions. To

simplify this approximation, the required change of heading is accomplished by the first

two sets of accelerations and the final set of accelerations, 	ÑÔ,	is the same for both

wheels. The accelerations can be found from the following equation:

98

where the variables a through f are defined as follows:

� = �%R(0.163Ò) ß = �%R(0.837Ò) � = �%R(Ò) N = RL�(0.163Ò) M = RL�(0.837Ò) y = RL�(Ò)

(3.13)

In Eq. (3.12), the first row of the matrix forces the final robot speed to be equal to

the command speed. The equation that comprises this row is very similar to Eq. (3.4),

only modified so that the command speed is reached after three time steps, instead of

two. The second row of Eq. (3.12) constrains the final robot heading to equal the angle ψ.

The equation in this row has the same purpose and is analogous to Eq. (3.5), except here

it is modified to account for the three sets of accelerations. ÑÔ is multiplied by zero in this

row because all of the heading change occurs during the first two accelerations. The third

row of Eq. (3.12) is used to make the turn-rate of the robot equal to zero (i.e Ð� = Ð@ and

Ñ� = Ñ@ = 0) at the end of the time step. This line is produced by combining Eqs. (3.2

and 3.3).

The last two rows of Eq. (3.12) constrain the change in the robot’s position, during

the motion time step, to be approximately equal to the distance that a holonomic,

àáá
áâ 1 1 1 1 21 −1 −1 1 01 −1 1 −1 0� + 2ß � + 2ß ß ß −2�M + 2y M + 2y y y −2$ãää

äå
àáá
áâÑ@\Ñ�\Ñ@�Ñ��ÑÔ ãä

ääå =
àá
áá
áá
áá
áâ DÐB�½\ − ÐB�H T 6∆��W2Ò T 3∆��W� TÓNW0T6�5�N − 2ÐB�(� + ß) − 2�ÐB�½\W T 6∆��WT6���N − 2ÐB�(M + y) − 2$ÐB�½\W T 6∆��W

		
ãä
ää
ää
ää
äå
					(3.12)	

99

instantly accelerating robot would travel during that time step

	DL. M. ∆Q ≈ �5�∆��	��N	∆P ≈ ���∆��H, see Figure 3.5. However, as integration would

be required in order to calculate the exact distance that the robot travels while it is

accelerating the distance is estimated with Euler approximations and by using the average

robot heading and speed for each acceleration time step. This is done because it would

not be possible to explicitly solve the matrix for the wheel accelerations if they were

contained within an integral.

The robot’s position during each acceleration time step can be calculated using the

average angular wheel velocity and heading from that time step. In Table 3.2 the robot’s

position (in the x-dimension) and angular wheel velocities are given over the course of

the acceleration time step shown in Figure (3.5).

Table 3.2 Robot positions and wheel velocities during three-step acceleration

Interval x-Position
(at end of time step)

Average
heading

(during time
step)

Angular wheel
velocity

(at end of time step)

0	to	Δ�� Q\ = £Âéê½Âéë� § ìB
Ô �%RÒí\ Òí\ = 0.162Ò Ð\ = ÐB� + (î�ë½îïë)� ìB
Ô

Δ��	to	2Δ��
Q� =Q\ + N £éë½éð� § ìB
Ô �%RÒí� Òí� = 0.837Ò Ð� = Ð\ + (î�ð½îïð)� ìB
Ô

2Δ��	to	3Δ��
QÔ =Q� + N £éð½éñ� § ìB
Ô �%RÒÔ

ÒÔ = Ò ÐÔ = Ð� + ÑÔ ìB
Ô

100

Figure 3.5 Robot positions during three-step acceleration
Coordinates are based on initial, local robot frame for simplicity

The robot position at the end of the motion time step is Q3 and the relationship

�5�∆�� = QÔ (3.14)

can be rearranged to form the fourth row of Eq. (3.12) (after the appropriate angular

wheel accelerations have been substituted into the equation). The same process can be

used to form the fifth row of Eq. (3.12), if all of the cosine functions are replaced with

sine functions and x replaced with y.

The variables a through f, Eq. (3.13), utilize the average robot heading during the first

third of (a and d), the second third (b and e) and the final third (c and f) of the motion

time step. These values were determined empirically, and found to be constant through

all possible velocity changes that could occur between velocities of	£−4OR , 4OR § in both

directions.

101

This distance approximation still includes some error, which increases with

greater changes of the robot heading, Ò. This error can be reduced by breaking each

actuator time step down into smaller components (thus more closely approximating the

integral) and solving for the distance traveled in each direction during each of these

smaller components. However, it was found in simulation that the error with the three-

part approximation was usually a few orders of magnitude smaller than the actual

distance traveled during the motion time step, which made the risk of a collision (due to

positional error arising from the lack of integration) negligible. The change in the length

of	∆��, again, has an effect on both the acceleration and position error. Smaller values of

∆�� necessitate higher accelerations to reach the same velocity. However smaller values

of ∆�� also produce proportionally smaller overall position changes as well as error in

the final position. The opposite is true for larger values of	∆��.

The set of linear equations, Eq. (3.12), can be solved explicitly for the five

accelerations (i.e., Qr1, Ql1, Qr2, Ql2, and Q3).

In the case where Ò = 0 (i.e. there is no change in heading, ��� = 0) the matrix

in Eq. (3.12) becomes singular and it is necessary to use another method to find the

required accelerations. Conveniently, if no change in heading is required, there are only

two constraints on the required accelerations (final velocity and distance traveled in the

x-direction) so only two sets of accelerations are needed in order to approximate the

change in velocity and position. The accelerations are the same for both wheels and there

is no error in the final position (because the distance traveled can be found without

approximate integration). The accelerations then are:

102

Ñ@\ = Ñ�\ = 3 ∙ TÐB�½\ − ÐB�∆�� W

Ñ@� = Ñ�� = TÐB� − ÐB�½\∆�� W

(3.15)

(3.16)

3.2. Comparison of the Two- and Three-Step Methods

3.2.1. Modified Velocity Occupancy Space

The kinodynamic velocity approximations were included in the VOS algorithm in

two places. First, the simulation was augmented so that the robot’s movement was

restricted by differential drive constraints and the robot’s position and velocity were

found by integrating over each of the acceleration time steps. Second, the kinodynamic

velocity approximations where used to restrict the velocity search space so that the

algorithm could only choose velocities for which the robot had sufficient acceleration

capability. In other words, accelerations necessary to mimic each velocity in the velocity

search space of VOS were computed. If the accelerations were outside the bounds of the

robot capabilities, then that velocity was deemed unreachable and would not be

considered for the robot at that time step. Initially, this greatly increased the

computational cost of populating VOS (especially when using the three step acceleration

method), however, the net effect on the computational load was almost insignificant as it

was no longer necessary to compute the attractive and repulsive weight for each velocity

which was considered unreachable and this greatly reduced the computational cost of

populating VOS.

103

3.2.2. Results and Comparison of Methods

Figures 3.6 and 3.7 show simulations of a robot avoiding moving and stationary

obstacles as it navigates to a goal, all while operating under the constraints of an

acceleration limited, differential drive robot. The same simulation parameters (i.e.

obstacle locations and velocities, robot acceleration constraints, etc.) were used for the

simulations shown in both figures. Using both methods, the robot is able to successfully

find a collision free path to the goal. In both figures, the grey line originating from the

robot is the robot’s velocity vector for each motion time step (see Figure 3.6). The vector

also points to the location that the algorithm expects the robot to move to over the course

of the next time step. Using the two-step approximation, the robot frequently does not

end up exactly where the algorithm expects. However, as the desired velocity is

recomputed after every time step, the robot is still able to quickly find the goal.

Figure 3.6 Simulation, using two-step velocity approximation, of the robot
(circle), obstacles (rectangles) and the goal (asterisk). The robot takes 12 motion time

steps to reach the goal.

Using the three-step approximation, Figure 3.7, the robot’s final position at the

end of each time step is almost indistinguishable from the expected position. However, it

104

takes the robot almost twice as long to reach the goal. This extra time is due to the more

restricted velocity search space. Using the three-step approximation, when the robot

needs to turn, it is usually required to slow down substantially in order to change its

heading (and still end up at the desired position velocity) while not exceeding the

acceleration constraints. However, the three-step method reduces the error in the robot’s

position at the end of each motion time step by (on average) 84.33% over the robot

position found using the two-step method. If the robot is close to an obstacle, this

improvement could make the difference between safety and a collision. However, in

order to improve the position, the three step method requires (on average) 44.57% higher

acceleration to reach the same velocity, and must therefore frequently use lower

velocities than the two-step method due to the robot’s acceleration constraints.

Figure 3.7 The same simulation as in Figure 3.6, but with the three-step velocity
approximation. The robot takes 22 motion time steps to reach the goal.

In Figures 3.9 and 3.10, the velocity search space of the very simple scenario in

Figure 3.8 is shown for both the two- and three- step approximations. In these figures,

positive weights indicate repulsive regions in velocity space (i.e., velocities which are

dangerous as they may lead to a collision) and negative weights indicate attractive

105

regions (i.e., velocities which should safely avoid a collision). Kinodynamically

unreachable velocities were given a repulsive weight slightly higher than the most

repulsive (but reachable) velocity so that they would never be selected by the algorithm

(in Figure 3.10, the majority of the velocities, shown in white, are unreachable). In

Figures 3.5 and 3.6, the velocity obstacles of these two obstacles shown in Figure 3.8 can

be seen as the cones of repulsively-weighted velocities (weighted a little under thirty) in

Figure 3.9. It should be noted that x- and y-axes in Figure 3.10 are an order of magnitude

smaller than those in Figure 3.9. This scaling choice was made to increase the scale of

Figure 3.10 so that the reachable velocities could be more easily seen.

Figure 3.8 Simple goal/obstacle scenario

106

Figure 3.9 Velocity search space of scenario in Figure 3.8 using the two-step
velocity approximation

Figure 3.10 Velocity search space of scenario in Figure 3.8 using the three-step
velocity approximation (the axes are an order of magnitude smaller than those in

Figure 3.9)

The two-step approximation provides a much richer velocity search space for the

algorithm (as shown in Figure 3.9) and the robot is generally able to move more quickly

to the goal. The constraint of having to reach a specific position as well as velocity for the

three-step approximation method means that much greater accelerations are required

107

using this method, than are required using the two-step method, in order to approximate

the same desired velocity. However, the loss of accuracy in the final position, using the

two-step method, can have highly undesirable consequences.

In Figure 3.11, a slightly different simulation than that shown in Figures 3.6 and

3.7 is presented using the two-step velocity approximation method. By the fifth motion

time step, the algorithm has detected Obstacle A and attempts to speed up the robot in

order to cross in front of the obstacle (in the negative y-direction). However, the robot

does not reach the desired position by the end of the time step, so, in the next time step,

the algorithm chooses a velocity that will allow the robot to turn sharply and move in the

positive y-direction and avoid the obstacle. Unfortunately, again the robot does not end

up in the desired position and this leads to a collision. Although not shown here, the

three-step method was able to safely reach the goal under the same simulation conditions.

Figure 3.11 Failed simulation using two-step velocity approximation method

108

3.3. Obstacle Proximity Dependent Method

The two- and three-step acceleration methods have complementary strengths; the

two-step method enables the robot to move efficiently to a goal, but with a greater

possibility of a collision, while the three-step method is safer, but much less efficient at

reaching the goal. Therefore, a combination of the two methods that utilizes the strengths

of each has been developed. This method allows the algorithm to alter is velocity

selection method based on the proximity of surrounding obstacles.

3.3.1. Proximity Dependent Method

The proximity dependent method was initially designed so that the algorithm

selected the method (two- or three-step) solely based on the distance to the nearest

obstacle. However, it was found that this method frequently led to over-conservative

(unnecessarily switching to the three-step method) or reckless (unsafely switching to the

two-step method) switching. The amount of positional error possible at each time step

using the two-step method varies greatly - based on the robot’s current velocity, the

maximum velocity of which it is capable and its acceleration capabilities - so a switch in

methods may be overly-conservative or reckless during one part of a simulation, but

appropriate during another, even if an obstacle is the same distance away. Therefore, in

order to more precisely tune the selection of the method to the specific scenario, the

expected positional error for a possible velocity change was used.

Ideally, the (two-step) positional error would be found for every possible velocity

change, while building VOS, and if that error for any velocity change was greater than

the distance between the robot and the nearest obstacles then that velocity change would

109

be considered unreachable and the three-step method would be used instead to ensure

safety. However, as it would be extremely computationally expensive to determine all

the potential positional errors while building velocity occupancy space at every time step,

the maximum positional errors were pre-computed off-line and built into look-up tables.

In this manner, the maximum positional error could be quickly found and used to

determine the appropriate acceleration method based on the current proximity to the

closest obstacle. This is a less precise approximation than considering the position error

for every possible velocity change, but it greatly decreases the required computational

time while still allowing the robot’s current state (velocity and acceleration) to be

considered.

Tables were built for a range of possible maximum robot velocities and

accelerations. For each table, the current robot x- and y-velocities were used along with

the maximum robot velocities and wheel accelerations to create an array of every

possible subsequent robot velocity. Using this array, and Eq (3.10 and 3.11), the

positional error for every velocity change was found and the maximum positional error

was added to the table.

The maximum positional error was found so that the acceleration method could be

selected before constructing VOS for each time step. Because the next velocity to be

selected could not be known at this point, it was necessary to use the maximum position

error.

110

The maximum position error ranged from 0.2m for low speed, low acceleration

cases (maximum velocity = 0.5�� , maximum acceleration =|1|��ð) to 3.47m for high

speed, high acceleration cases (maximum velocity = 2�� , maximum acceleration =|6|��ð).
The proximity dependent method was run with the two-step method as the default

acceleration method, unless the following inequality was satisfied:

�DQF(��), PF(��)H� − DQ@(��), P@(��)H� − �maxDQÞ(��), PÞ(��)H� <
																																																																																			�maxDQh@(��½\), Ph@(��½\)H� ∙ ∆��																					 (3.8)

where DQF(��), PF(��)H� is the position of the closest obstacle, DQ@(��), P@(��)H	is the

robot’s current position, O�QDQ̂(�O), PÞ(�O)H	is the maximum position error that is possible

at the next time step (obtained from the pre-computed look-up table) and

O�QDQh@(��½\), Ph@(��½\)H	is the maximum possible velocity of which the robot is

capable during the next time step.

Therefore, if during each motion time step, the magnitude of the distance between

the robot and the closest obstacle minus the maximum positional error was less than the

distance that the robot could travel during that time step, then the three-step method was

used.

3.3.2. Simulation Results

Two sample simulations using the proximity dependent method are shown below.

In both sets of figures, the algorithm uses the two-step method when the robot is shown

in green and the three-step method when the robot is shown in blue.

111

In the first set of figures (Figures 3.12 – 3.16), due to the cluttered environment in

this simulation, the algorithm is mostly dependent upon the three-step method. The two-

step method is used for the first five time steps (Figure 3.12). Until, at time step five,

Obstacle A approaches closely enough that the algorithm switches to the three-step

method. The change in methods is due both to the obstacles proximity as well as to the

relatively high speed at which the robot was moving. In Figure 3.13, the algorithm briefly

uses the two-step method (time step 13), but then relies on the three-step method to avoid

Obstacle B.

 Figure. 3.12 Simulation using the proximity Figure 3.13 Time steps 13-18
 dependent method. Time steps 1 – 11

Between time steps 18 and 32, Figure 3.14, the algorithm occasionally uses the

two-step method, but is mostly dependent on the three-step as the robot is moving almost

parallel to Obstacle C. In Figure 3.15, the robot is carefully avoiding both Obstacles C

and D, and therefore exclusively using the three-step method. Finally, in Figure 3.16, the

robot is able to reach the goal fairly efficiently – though the proximity of Obstacle E at

the end of the simulation forces the algorithm to again mostly use the three-step method.

112

Figure. 3.14 Time steps 18–32

Figure 3.15 Time steps 32-39 Figure 3.16 Time steps 38-45

For the next simulation, shown in Figures 3.17 though 3.19, which is less

cluttered, the algorithm depends more heavily on the two-step method in order to

navigate to the goal. In Figure 3.17, the algorithm almost exclusively uses the two-step

method, except briefly when the robot is close to Obstacles A and B., Next, in Figure

3.18, the three-step method is used to avoid a collision while the robot is navigating

113

between Obstacles A and C. Finally, after the robot clears Obstacle C, it is able to reach

the goal using the two-step method, Figure 3.19.

Figure. 3.17 Simulation using the proximity dependent method.

Time steps 1-7

Figure 3.18 Time steps 7-16 Figure 3.19 Time steps 15-26

3.3.3. Comparison of the Three Methods

Using a random obstacle generator, similar to that described in Section 2.5, the

three different methods (two-step, three-step and proximity dependent) were tested

114

against the same set of 500 randomly generated simulations. The results were analyzed

using the evaluation metric equations in Table 2.1 and are displayed in Table 3.3.

Table 3.3 Evaluation Metrics for Three Methods

In general, the performance of the proximity dependent method was between that

of the two- and three-step method. The proximity dependent method suffers from fewer

collisions and maintains a larger distance between the robot and the nearest obstacle than

the two-step method (note: the four evaluation metrics do not include data from scenarios

that failed due to a collision or a time-out). However, the proximity dependent method

does take a longer time to reach the goal with more acceleration (on average) than the

two-step method. In contrast, the proximity dependent method is able to reach the goal

more quickly and with fewer time-outs than the three-step method while maintaining a

similar distance between the robot and obstacles, though the proximity dependent method

does suffer from more collisions.

The one evaluation metric that the proximity dependent method performed

consistently poorly on was the amount of acceleration. The increase in acceleration is due

to the switching of methods since, when the method is switched, the feasibility of many

 T 1O�W

Obstacle
Proximity

Distance
Traveled

(m) �OR �

Velocity
Change Time

(s)
Collisions Time-outs

Two-Step 18.29 25.08 4.89 30.69 7 (1.4%) 0

Three-Step 5.73 25.47 5.80 37.19 2 (0.4%) 2
Proximity

Dependent 5.74 25.35 6.23 33.71 5 (1.0%) 0

115

potential robot velocities changes and often velocities that require only a small

acceleration or deceleration are no longer available. However, given the general

improvement over both component methods, the proximity dependent method is a good

choice when both safety and efficiency need to be considered for robot navigation.

3.4. Conclusions about VOS for Differential Drive Robots

In this chapter, VOS has been augmented so that it can be used by a differential

drive robot that is not capable of instantaneous change in velocity. Two basic methods

have been derived and simulated. The first is a two-step velocity approximation method

that provides the algorithm with a wide range of velocities to select from. But, while the

robot does end up moving at the correct velocity, the robot does not move to the correct

position by the end of the time step. The second is a three-step velocity approximation

method which is more computationally complex and greatly reduces the selectable set of

robot velocities, but causes the robot to end up at both the correct position and velocity.

The combination of the two- and three-step methods into a proximity dependent

method allows the complementary strengths of both methods to be utilized: the two-step

method allows for faster navigation (when the robot is not avoiding dangerously close

obstacles) and the three-step method allows for slower, but predictable and safe, obstacle

avoidance. The proximity dependent method has been shown to be almost as safe as the

three-step method and almost as fast as the two-step.

116

Chapter 4

The derivation of VOS for differential drive vehicles (Chapter 3) was developed

in order to allow an experimental vehicle to be controlled using the VOS algorithm. One

of the main assumptions made in that derivation was that the experimental vehicle in

question would exhibit relatively repeatable acceleration responses when given the same

acceleration command. However, the two vehicles that were available for

experimentation were an iRobot PackBot and a SuperDroid ATR – both of which are

controlled via linear and angular velocity commands. Therefore substantial testing was

performed in order to determine what accelerations would be produced for a specific

velocity (or changes in velocity) command.

Both available vehicles exhibited a significant amount of variation in the

acceleration response for a given velocity command (probably due, at least in part, to the

motor controllers). This variation is primarily due to errors in the vehicles’ internal

control system in attempting to follow a velocity command. Since unmanned ground

vehicles (UGVs) are typically tele-operated, rather than operated autonomously, the

operator provides another level of feedback (e.g. using a joystick). When operated

autonomously, significant errors were observed in the UGVs response to motion

commands. However, the two vehicles in question are both commonly used platforms

4. Velocity Occupancy Space for Vehicles with Actuation Error

117

and, thus, such actuation errors are typical of UGVs. This realization led to an additional

research extension to VOS, where such actuation (in addition to sensing) uncertainties are

accounted for.

As mentioned in the previous chapter, even though VOS is a velocity based

navigation method, it is not possible to control a velocity commanded vehicle with VOS

unless the vehicle is capable of instantaneous velocity changes (a capability which is

decidedly rare among vehicles having mass). To compensate for this shortcoming, VOS

was extended to apply to velocity-commanded vehicles that suffer from actuation error.

While the actuation error that this extension is primarily designed for is delayed

velocity change, the method described in this chapter is capable of compensating for

multiple types of actuation error, including slip (either due to the kinematics of the

vehicle or to the terrain), poor motor control or a (well-known, e.g. one motor has

partially lost power) malfunction of the vehicle: this method can be used as long as the

effects of the actuation error can be bounded.

4.1. Summary of Error Causes and Effects

4.1.1. PackBot Specific Error Profiles

The first vehicle that was tested was the iRobot PackBot. The PackBot is a skid-

steered, tracked vehicle that is typically tele-operated by a human. However, for this

research, it was operated autonomously and controlled via linear and angular velocity

commands produced by an onboard computer running the VOS algorithm. The PackBot

118

is able to receive commands and return packets of information (including encoder

positions, encoder-based velocity measurements, etc.) at a rate of 10Hz.

In order to convert desired acceleration responses into acceptable velocity

commands, the PackBot was initially given a range of different velocity commands, and

the resulting acceleration profiles were recorded. The purpose of this calibration was to

produce a look-up table that would allow the algorithm to translate desired vehicle

accelerations into actual vehicle velocity commands. To use the VOS algorithm, the

vehicle must be able to accept and follow a new VOS-generated velocity every motion

time step - which should typically be no longer than one second (though, much shorter

response times would lead to better performance). Because the acceleration based VOS

method requires the vehicle to change its acceleration up to three times during each

motion time step, in order to replicate each VOS generated velocity, the vehicle

accelerations were averaged over the first one-third of a second after the vehicle started to

respond to the vehicle velocity command.

To clarify, two different velocity commands are being discussed. The first is the

VOS generated velocity command (generated by the process described in Chapter 2) that

will allow the vehicle to avoid obstacles and navigate towards a goal. This VOS

generated velocity command can be broken into two or three acceleration commands (as

described in Chapter 3) that allow an acceleration controlled vehicle to approximate an

instantaneous velocity change. The second type of velocity commands are individual

vehicle velocity reference commands to the UGV controller which are being analyzed to

determine what accelerations they will generate in a given vehicle.

119

However, it was found that the Packbot did not repeatably generate the same

accelerations for a given velocity reference command to the UGV. Specifically, for linear

and rotational velocity commands of 1�� and	1 @�Â� , there was up to a 56% difference in

the encoder-measured track acceleration averaged over the first one-third of a second

after the vehicle had started to respond to the command. In addition, the tracks (due to the

skid-steered configuration) were also subject to a good deal of slip which made the

difference in average accelerations as measured by an IMU (accelerometers and

gyroscopes mounted on the PackBot) as much as 186%.

An additional difficulty that was uncovered with the PackBot was a time-delay in

the robot’s response to a reference command. Due to the non-real-time PackBot operating

system, the robot would unpredictably take between 0.1s and 0.4s to start to respond to a

command (after it had been confirmed that the command had been received), see Figure

4.1. Given that it was necessary to update the velocity command every third of a second,

this variable delay prevented the PackBot from being an acceptable platform for use with

the acceleration based method.

120

Figure 4.1. Two representative PackBot wheel acceleration responses for

linear and angular velocity commands of 1�� and	1 @�Â�

4.1.2. SuperDroid Specific Error Profiles

The second vehicle that was considered for experimental testing was a

SuperDroid with two driven, heavily treaded front wheels and one omni-directional back

wheel (see Figure 4.2). Similar to the PackBot, the SuperDroid receives linear and

rotational velocity commands that it translates into individual motor commands at a rate

of 10Hz. However, the SuperDroid was able to return encoder and gyro information at a

rate of 50Hz, significantly faster than the Packbot. Unfortunately, the SuperDroid was not

able to be equipped with an independent accelerometer (vibration issues caused too much

error in the accelerometer’s reading for the data to be of any use) so independent

acceleration information was not available.

121

Figure 4.2 SuperDroid Robot

The SuperDroid exhibited less variation in the acceleration response to a velocity

command (33% difference for linear and rotational velocity commands of 1�� and	1 @�Â�)

probably due to the dual wheel configuration instead of the track configuration. While

this variation was significantly better than the PackBot, it was still not sufficient for use

directly with the acceleration based VOS method, except at low speeds.

4.2. Effect of Error on Velocity Obstacles

As neither of the available robotic platforms was suitable for use directly with the

acceleration based VOS method, a new extension of VOS was developed in order to

control a linear and rotational velocity commanded vehicle with a degree of actuation

error (both from non-instantaneous velocity changes and vehicle slip) similar to that seen

122

with the PackBot and the SuperDroid. With regards to accurately building velocity

occupancy space the actuation error led to several difficulties in ensuring a safe and

effective robot velocity selection.

4.2.1. Positional Error

The first type of error was in the robot’s position. The VOS algorithm operates in

two parallel loops. The first loop acquires sensor data, builds configuration space, tracks

the obstacles and estimates their velocities. The second loop uses the obstacle and robot

information in order to build velocity occupancy space. By necessity, the second loop

must project the locations of the obstacles and robot ahead by one motion time step as it

is building velocity occupancy space while the robot is in the process of carrying out the

last velocity command. Because the actuation error causes the robot’s actual position at

the end of that time step to be uncertain, the >VF,@DQh (��), Ph (��)H term used to compute the

velocity obstacles may be incorrect and therefore the velocity obstacle cannot be

accurately constructed.

For example, in Figure 4.3, the algorithm will assume, based on the calculated

lambda, that �V@ will lead to a collision (and therefore that velocity will be avoided).

However, if >VF,@` is the actual distance then	�V@`, and not	�V@, will lead to a collision. In

this scenario, the algorithm may mistakenly choose an unsafe robot velocity due to the

error in the robot’s position.

123

Figure 4.3. Velocity obstacles based on the calculated robot position and
the actual (error influenced) robot position

To compensate for the positional error, the maximum error in the average robot

linear and angular velocities were found over the course of one motion time step. The

error for the SuperDroid was due primarily to the non-instantaneous velocity change and

therefore the pervious and current velocity commands where used as the basis for

calculating the positional error. The dependence of the actual, measured velocity on the

current and previously commanded velocities was found from the SuperDroid test data

using the equation

ó;(��Y\) = �̅�Y\ − ��Y���Y\ − ��Y� 																																																												(4.1)
where ��Y\is the current linear velocity command and �̅�Y\is the average of the

measured velocities over one motion time step. It should be remembered that the VOS

algorithm is computing �� while executing	��Y\, so ��Y� is the previously commanded

124

linear velocity. The maximum linear velocity error for a specific motion time step can

therefore be calculated using the equation

M;(��Y\) = D1 − ó;(��Y\)H ∙ ��Y� + ó;(��Y\) ∙ ��Y\																															(4.2)
The same two equations can also be used to find, óõ and Mõ, the maximum error for the

angular velocity, by substituting = for � .

Based on the test data from the SuperDroid it was found that ó; = 0.51 and

óõ = 0.44. Using these values, M;(��Y\) and Mõ(��Y\) will bound the maximum error

for 98% of velocity changes (based on the experimental test data). For most of the other

2% of velocity changes, the actual change was typically so slight, that the error was due

more to the steady state variation in the average velocity than to error from acceleration

and including these more extreme values would make ó; and óõ unnecessarily

conservative.

 After the maximum velocity errors have been found they can be used to determine

the maximum positional errors in the x- and y-directions using

M5(��) = Ú M;(��Y\) ∙ �%R(Mõ(��Y\) ∙ *)∆B�
' N* − Ú �(��Y\) ∙ �%R(=(��Y\) ∙ *)∆B�

' N*														(4.3)
and

M�(��) = Ú M;(��Y\) ∙ RL�(Mõ(��Y\) ∙ *)∆B�
' 	N* − Ú �(��Y\) ∙ RL�(=(��Y\) ∙ *)N*															(4.4)∆B�

'

where ∆�� is the length of one motion time step.

125

 The maximum positional errors were then applied to the >VF,@ term in the direction

and angle equations in order to ensure that the actual robot position at the end of the

current time step would be considered. The directional equation (see Eq. (2.8)) was

augmented using the calculated M�(��)	 and M5(��)	in the following manner

om 	=
uvw
vx1	Ly	 ö >VF,@DPh (��)H ± M�(��)∆��Ph E(�O) − Ph L(�O) ∙ (1 ± _|)⋀ >VF,@DQh (��)H ± M5(��)∆��Qh E(�O) − Qh L(�O) ∙ (1 ± _|)÷ ≥ 0
0						%�ℎME�LRM																																																																																																																																																																																																			

(.								(4.5)

The >VF,@ term in the angular equation (see Eq. (2.10)) was likewise increased,

pm	 =
�1			Ly	���Y\ z�iiV�,�D�h �(B�)H±:ø(Û�)∆Û��iiV�,�D5h�(B�)H±:ù(Û�)∆Û� ~ = 	���Y\ �|�h�(B�)Y�h �(B�)∙(\±��)|±úû|5h�(B�)Y5h�(B�)∙(\±��)|±úû� ∙ D1 ± (l̀ m − 1)H
0										%�ℎME�LRM																																																																																																																																 ((4.6)

Please see Chapter 2 for definitions and a detailed description of the other

variables in these equations.

Using the modified angle and direction equations, an expanded velocity obstacle

was formed that took into account possible error in the robot’s position at the end of the

time step. As shown in Figure 4.4, the velocity obstacle has been expanded to include

additional velocities that may lead to a collision, based on the uncertainty in the robot’s

position.

126

Figure 4.4 Expanded velocity obstacle using robot’s positional error bounds

This method may seem overly conservative as it expands the velocity obstacle in

both directions – instead of only in the direction corresponding to the change in the

robot’s velocity. However, it was found that the experimental robot would sporadically

over- or undershoot the command velocity by accelerating or decelerating too rapidly. By

the end of the time step, the robot’s velocity had settled to the command velocity, but the

positional error was now the opposite of what was expected (based on Eq. (4.1-4.4)). This

error occurred frequently enough that it was considered prudent to allow the velocity

obstacle to be expanded in both directions as a conservative velocity choice around

obstacles was considered preferable to a possible collision.

4.2.2. Velocity Error

The second type of error was in the robot’s selected velocity. Each velocity

obstacle is composed of all of the robot velocities that will lead to a collision between the

robot and a specific obstacle – velocities which must be avoided. However, given the

127

actuation error, the robot’s actual velocity frequently differed from the command velocity

selected by the algorithm. Therefore the robot might inadvertently move at a dangerous

velocity. For example, in Figure 4.5, the algorithm has selected �V@	as a safe velocity at

which the robot may operate, however, the actuation error causes the robot to actually

move at	�iiVEp, which is along a velocity obstacle and places the robot at risk of a collision.

In this scenario, the algorithm correctly selects a safe velocity, but the robot is unable to

obey the commanded velocity.

Figure 4.5. Scenario where a possible collision may occur due to the robot’s
current velocity error. Please note, for simplicity, this figure does not show the positional

error from Section 4.2.1.

To compensate for the error in the robot’s current velocity, the maximum

variations in the robot’s linear and angular velocity, Eqs. (4.2 and 4.3), were again used.

However, this time, the error terms were found using the currently commanded linear and

angular velocities (��Y\ and =�Y\) and the linear and angular velocity commands that

128

the algorithm was currently selecting using VOS (�� and =�). Therefore the error

dependency equation is slightly altered from Eq. (4.1) to

ó;(��) = �̅� − ��Y\�� − ��Y\ 																																																																	(4.7)
and the maximum linear velocity error is likewise slightly altered from Eq. (4.2) to be

M;(��) = D1 − ó;(��)H ∙ ��Y\ + ó;(��) ∙ ��																																			(4.8)
Again, the angular velocity error terms, óõ and Mõ, can also be found by substituting =

for �.

The upper bounds on the directional velocity errors are

M;5(��) = M;(��) ∙ �%R(Mõ(��) ∙ ∆��) (4.9)

and

M;�(��) = M;(��) ∙ RL�(Mõ(��) ∙ ∆��). (4.10)

These terms were also used to augment the direction and angle equations (see

Eqs. 3.5 and 3.7), but this time they increase the range of the robot’s selected velocity.

The direction and angle terms, with both the position error terms from Section 4.2.1 and

the velocity error terms from this section are

om 	=
uvw
vx 1	Ly	ö >VF,@(Ph) ± M�∆��DPh E±M;�H − Ph L ∙ (1 ± _|)⋀ >VF,@(Qh) ± M5∆��(Qh E±M;5) − Qh L ∙ (1 ± _|)÷ ≥ 0
0						%�ℎM�LRM																																																																																																																																																																																																			

((4.11)						

and

129

pm	
=
uvw
vx1			Ly	���Y\ö>VF,@(PhF)± MP∆�O>VF,@(QhF)± MQ∆�O÷ = 	���Y\ z�DPh@±M�PH − PhF ∙ (1 ± _|)� ± �̀�(Qh@±M�Q) − QhF ∙ (1 ± _|)� ± �̀ ~ ∙ D1 ± (l̀ m − 1)H
	0																																										%�ℎME�LRM																																																																																																											

((4.12)

where all time dependent variables are from time tm (tm has been removed for brevity).

Using the expanded angle and direction terms, the velocity obstacles will now

take into account both the error in the robot’s position as well as the potential for error in

the velocity that is selected for each motion time step.

An example of an actual extended velocity obstacle can be seen in the following

figures. Figures 4.7 and 4.8 show the velocity obstacle for the simple scenario in Figure

4.6. The velocity obstacle is notably broader, especially at velocities that are further away

from the robot’s current velocity (which thus may produce more error). It should be noted

that the magnitude of the repulsive values assigned to velocities in the obstacles do not

increase, just the number of velocities that are considered repulsive.

Figure 4.6 Simple scenario with the robot (triangle), goal (asterisk)
and one moving obstacle (square)

130

Figure 4.7. Velocity obstacle without Figure 4.8. Velocity obstacle with
 considering actuation error actuation error extensions to VOS

4.3. Simulation Results

4.3.1. Actuation Error Simulation Results

An environment of approximately the same size and shape as the experimental

testing area was simulated in order to exhaustively test the algorithm and analyze its

performance with and without the actuation error extension. In order to cause the

simulated robot to perform comparably to the experimental robot, error was added to the

simulated robot’s position, following the same trend as was observed with the

experimental robot, using the equations

Q(��) = Q(��Y\) +

D�(��) + M;(��) ∙ kf(0 − 1.1)H ∙ �%R �D=(��) + Mõ(��) ∙ kf(0 − 1.1)H ∙ ∆��� ∙ ∆�� (4.13)

and

131

y(��) = y(��Y\) +

D�(��) + M;(��) ∙ kf(0 − 1.1)H ∙ RL� �D=(��) + Mõ(��) ∙ kf(0 − 1.1)H ∙ ∆��� ∙ ∆��. (4.14)

where the maximum linear and angular velocity errors, M;(��)	and	Mõ(��), were

calculated according to Eq.(4.2) (using the current and previous velocity commands) and

RN(0 − 1.1) is a random number between 0 and 1.1. This random number was obtained

using a uniform distribution and was used for two reasons. First, the observed velocity

error was relatively evenly distributed between zero and the maximum velocity error

bound so the random number reproduced the actual robot behavior fairly accurately.

Second, an upper bound of 1.1 was used instead of 1.0 both to represent additional

sources of error that had not been quantified (such as inexact timing of robot commands)

and error from wheel slip that was not captured by the gyroscope and encoder data used

to calculate the experimental robot’s velocity error.

 A total of six sets of 100 simulations each were performed, with different velocity

limits on the robot and the obstacles. Each simulation consisted of six randomly

generated obstacles (in addition to the walls of the testing environment), with between

one and four obstacles - moving at constant velocities randomly generated between the

bounds shown in Table 4.1. The robot’s maximum linear velocity and accelerations for

the simulations are also shown in this table (the maximum angular velocity was

always	1 @�Â�).

132

Table 4.1 Simulation Specifications

Simulation

Set #

Actuation

Error

Extension

Robot Maximums Obstacles

Linear
Velocity

Linear
Acceleration

Velocity Range

1 Yes 0.5OR 0.5 OR� −0.3	�%	0.3OR

2 No 0.5OR 0.5 OR� −0.3	�%	0.3OR

3 Yes 0.7OR 0.7 OR� −0.4	�%	0.4OR

4 No 0.7OR 0.7 OR� −0.4	�%	0.4OR

5 Yes 1.0OR 1.0 OR� −0.5	�%	0.5OR

6 No 1.0OR 1.0 OR� −0.5	�%	0.5OR

Figures 4.9-4.11 show the algorithms response with and without the actuation

error extension to the same simulation.

In Figure 4.9, the algorithm has not increased the velocity obstacles based on the

actuation error derivation, but the robot’s velocity response still suffers from the

actuation error. The algorithm starts out moving the robot quickly towards the goal.

However, at time step 7, the algorithm unsuccessfully attempts to evade an obstacle by

selecting a velocity that is up and to the left (relative to the image’s orientation).

Actuation error causes the robot not to respond in the desired manner and the robot

collides with the obstacle at time step 8.

133

Figure 4.9. Algorithm’s response to a basic simulation without actuation error extension

In Figures 4.10 and 4.11 the actuation error extension was applied to the velocity

obstacles. In Figure 4.10, the robot does not initially move as quickly towards the goal as

in the previous simulation, as the extended velocity obstacles react to the presence of

approaching obstacles and cause more of the faster robot velocities to have a repulsive

value. However, as an obstacle gets closer the algorithm selects more conservative

velocities and waits for the obstacle to pass, instead of attempting to pass in front of the

obstacle. In Figure 4.11, once the obstacle is no longer threatening the robot, the

algorithm selects faster velocities as it successfully directs the robot to the goal.

134

In Table 4.2, the values of the evaluation metrics for the simulations are tabulated.

The evaluation metrics were calculated using the equations from Table 2.1 of Chapter 2.

However, the obstacle proximity and the acceleration were divided by the number of

motion time steps in each simulation so that the results could be more accurately

compared between simulation and experimental scenarios with different goal locations.

Table 4.2 Simulation Evaluation Metric Values for 100 Trials

Simulation

Set #

Evaluation Metrics

Obstacle
Proximity � \�ð�

Distance
Traveled

(m)

Velocity
Change �OR �

Time
(s)

of
Collisions/

% of
Collisions

of
Timeouts/

% of
Timeouts

1 3.15 8.26 0.082 29.52 3 / 3% 3 / 3%
2 2.50 8.28 0.080 28.81 5 / 5% 2 / 2%
3 1.62 8.79 0.285 31.95 4 / 4% 0
4 1.80 8.93 0.345 27.46 7 / 7% 0
5 1.41 8.92 0.173 26.09 3 / 3% 0
6 2.13 9.13 0.292 15.31 11 / 11% 1 / 1%

Figure 4.10. Algorithm’s response with
actuation error extension, time steps 1-11

Figure 4.11. Algorithm’s response with
actuation error extension, time steps 11-20

135

As summarized in Table 4.2, the difference between the algorithm’s performance

with and without the actuation error extension diminished as the robot’s and obstacle’s

maximum velocity decreased. For simulations sets 5 and 6 (where the obstacles and robot

had the highest velocities), the actuation error extension made a statistically significant

improvement in the number of collisions (p < 0.011, on a two-tailed, paired t-test) and in

the robot’s acceleration (p < 0.005) between the two sets. However, the actuation error

extension also significantly increased the average amount of time that it took the robot to

reach the goal (p < 0.005), probably due to the more conservative velocity selection.

For simulation sets 4 and 5, there was a smaller difference in the number of

collisions (p < 0.181) and the statistical difference between the sets for time and

acceleration were the same as for sets 5 and 6. Finally, for simulation sets 1 and 2, there

was not a statistically significant difference in the number of collisions. However, the

simulations with the actuation error extension experienced more timeouts (being unable

to reach the goal within 100 motion time steps) than the simulations without the

extension. Two of these timeouts occurred in the simulation where the extension-less

simulation experienced a collision. While, from a safety perspective, timing out is

preferable to a collision, it still means that the robot failed to reach the goal.

The actuation error extensions significantly improved the robot’s ability to avoid

collisions at higher speeds, but had more negligible effect at lower speeds. At higher

speeds the robot accumulated more positional error within one time step and the possible

difference in velocities was also higher (leading to additional error). However, while the

136

robot was more careful in its avoidance of obstacles it also selected more conservative

velocities which resulted in the robot to taking a longer time to reach the goal.

For lower speeds, there was less possible position and velocity error and while

Eq. (4.1) takes this into account, the normal precautions that the traditional VOS

algorithm takes to compensate for sensor error appeared to be sufficient to keep the robot

safe even with additional actuation error. The more conservative velocity selection that

was produced using the actuation error extension was not necessary and served only to

increase the time needed for the robot to reach the goal.

4.3.2. Evaluation of VOS in Scenarios with Narrow Passageways

An important capability of any navigation algorithm is the ability to safely direct

a robot through a narrow opening, such as a doorway or between two closely spaced

obstacles, if this is the most efficient route to the goal. The VOS algorithm was tested in

simulation to determine the narrowest gap (relative to the robot’s size, n) through which

it would reliably pass. The original VOS method (developed in Chapter 2), as well as the

proximity dependent, acceleration based VOS method for differentially driven vehicles

(developed in Chapter 3) and VOS for vehicles with actuation error (developed in this

chapter) were all tested in the narrow passageway scenarios.

Two specific scenarios were evaluated; the first (Case 1), occurred when the robot

was required to pass between two relatively small obstacles in order to reach the goal as

quickly as possible (Figure 4.12). The second scenario (Case 2) occurred when the robot

needed to pass between two significantly larger obstacles that completely blocked the

137

robot from the goal; if the robot failed to pass between these obstacles it would not reach

the goal (Figure 4.13).

Figure 4.12. Robot, with differential drive constraints, using the proximity dependent
VOS extension (Case 1). Distance between obstacles is 1.55n, where n is the diameter of
the robot. When robot is green, the algorithm is using the two-step method and when it is

blue, the three-step.

Figure 4.13. Holonomic robot navigating between two obstacles (Case 2). Distance
between obstacles is 1.5n.

In Table 4.3, the minimum opening through which the robot was able to regularly

pass (at least 95% of the time) is listed for both cases for the original VOS algorithm

138

(Holonomic) and the two extensions. The holonomic robot was the most successful at

passing through narrow openings and, when necessitated by the Case 2 configuration,

could regularly pass through openings of only 1.4n. Using the proximity dependent

method the robot was also successful at passing between two obstacles spaced 1.6n apart

when there was no other way to reach the goal, Case 2. However, for the Case 1

configuration, the robot would frequently take a less efficient route around the obstacles

unless they were spaced 2n apart. The larger required spacing for Case 1 was mostly due

to the use of the two-step method. If the robot did not approach the obstacles/goal from a

favorable angle, it would need to back away from the opening in order to reorient itself.

During this process the robot would sometimes overshoot its desired position (due to the

inexact positioning of the two-step method) and end up in a location far enough from the

opening that it would circle around the obstacles instead of passing between them.

Finally, when the robot was operating with the actuation error extension, for Case

1 it was able to pass reliably between the obstacles when they were spaced 1.6n apart and

for Case 2 between obstacles spaced 1.55n apart. The unexpected variations in velocity

caused by the (simulated) robot actuation error sometimes led to a collision between the

robot and the blocking obstacles – which is why the robot with actuation error required a

larger opening than the ideal, holonomic robot.

Table 4.3. Necessary spacing to allow for robot to pass between obstacles
(at least 95% of the time)

 Holonomic
Proximity
Dependent

Actuation
Error

Case 1 1.5n 2n 1.6n
Case 2 1.4n 1.6n 1.55n

139

Figure 4.14 shows the minimum opening through which the robot was able to

successfully pass 95% of the time for Case 2 scenarios. The holonomic robot was the

most successful at passing through narrow openings, but the performance of all three of

the algorithms dropped off quickly when the opening was less than 1.35n.

Figure. 4.14 Minimum distance between obstacles required to allow the robot to pass
between for Case 2

The results for Case 1 were very similar to those shown in Figure 4.14, with the

exception of the proximity dependent method. The proximity dependent method required

an opening of 2n in order to reliably pass between two obstacles for Case 1 and was only

able to pass through an opening of 1.6n (as it did reliably for Case 2) 60% of the time –

the remainder of the time the robot tended to circumnavigate the obstacles to reach the

goal.

0

10

20

30

40

50

60

70

80

90

100

1.21.31.41.51.6

P
re

ce
n

ta
tg

e
 o

f
su

ce
ss

fu
l

o
b

st
a

cl
e

 t
ri

a
ls

Opening Size (*n)

Holonomic

Proximity Dependent

Actuation Error

140

4.4. Experimental Results with SuperDroid

The SuperDroid, shown labeled in Figure 4.15, was used for the experimental

testing of VOS. As previously mentioned, it had a motor command update rate of 10Hz

and reported gyroscope and encoder data at 50Hz. It was equipped with a Hokyuo UTM

30-LX laser range finder (see Appendix B for additional hardware specifications for the

robot, computer, the Create robots and laser range finder). The robot received linear and

angular velocity commands and ran a simple control loop (using the encoders) to produce

motor commands. This loop had a settling time of about one second, which dictated the

rate at which VOS could send velocity commands to the SuperDroid. The SuperDroid

was also equipped with a Dell Latitude E6400 laptop running VOS in NI’s LabVIEW.

Figure 4.15. Labeled SuperDroid Robot

Three iRobot Create robots were used as the moving obstacles. The Create robots

are capable of linear speeds of up to

height of the Create robots so that they would be detectible by the laser range finder.

Figure 4.16.

Over one hundred different experimental scenarios were tested using t

SuperDroid and Create robots. It proved to be extremely difficult to exactly recreate

specific scenarios in order to produce comparable or statistically significant results so that

the effect of the actuation error extension could be clearly demonstrate

a number of factors. First, the Create robots did not generally adhere to a constant

velocity and also had variable lag time in responding to a command. Second, it was

difficult to position the robot at exactly the same location and orie

and even a slight variation was enough to affect the respective locations of observed

obstacles and therefore alter the robot’s performance. Finally, the robot navigated to the

goal position based on dead reckoning with the encoders

141

Three iRobot Create robots were used as the moving obstacles. The Create robots

are capable of linear speeds of up to	0.5�� . Cardboard tubes were used to

height of the Create robots so that they would be detectible by the laser range finder.

Figure 4.16. SuperDroid and Create Obstacles in
experimental testing environment

Over one hundred different experimental scenarios were tested using t

SuperDroid and Create robots. It proved to be extremely difficult to exactly recreate

specific scenarios in order to produce comparable or statistically significant results so that

the effect of the actuation error extension could be clearly demonstrated. This was due to

a number of factors. First, the Create robots did not generally adhere to a constant

velocity and also had variable lag time in responding to a command. Second, it was

difficult to position the robot at exactly the same location and orientation for each test,

and even a slight variation was enough to affect the respective locations of observed

obstacles and therefore alter the robot’s performance. Finally, the robot navigated to the

goal position based on dead reckoning with the encoders and gyroscope. The amount of

Three iRobot Create robots were used as the moving obstacles. The Create robots

. Cardboard tubes were used to increase the

height of the Create robots so that they would be detectible by the laser range finder.

SuperDroid and Create Obstacles in

Over one hundred different experimental scenarios were tested using the

SuperDroid and Create robots. It proved to be extremely difficult to exactly recreate

specific scenarios in order to produce comparable or statistically significant results so that

d. This was due to

a number of factors. First, the Create robots did not generally adhere to a constant

velocity and also had variable lag time in responding to a command. Second, it was

ntation for each test,

and even a slight variation was enough to affect the respective locations of observed

obstacles and therefore alter the robot’s performance. Finally, the robot navigated to the

and gyroscope. The amount of

142

error in the robot’s perceived final goal position ranged from a few centimeters to over

two meters (in one case), with typical errors in the final robot position of around half a

meter.

In Figure 4.17, the robot is shown with three moving obstacles in one of the

experimental scenarios. Obstacles C, D and E are moving at 0.3�� towards the center of

the testing area and the robot is capable of linear and angular speeds of up

to	1.0�� 	and	1.0	
@�Â
� , respectively.

Figure 4.17. Robot and obstacles in testing environment
(Obstacle D is not visible in the image)

In Figure 4.18, the VOS display for Figure 4.17 is shown. The lower, right hand

corner shows the laser range finder output (this is the entirety of the external sensor data

with which the robot is provided). The upper, left hand corner shows the configuration

143

space occupancy grid that is built from this data – obstacles are labeled to correspond

with Figure 4.17. The unlabeled obstacles are either walls, or stationary obstacles that are

not visible in Figure 4.17. The lower left and middle images are the obstacle-based

(repulsive) and goal-based (attractive) velocity spaces that are built using the obstacle’s

locations and estimated velocities. Finally, the upper, right hand corner shows the

combined velocity occupancy space from which the next robot velocity is selected. The

combined occupancy space grid is shown in white color for velocities that are not

dynamically feasible for the robot (and therefore, cannot be selected).

Figure 4.18. VOS Display of the scenario in Figure 4.17

144

In the obstacle-based velocity space, the most repulsive velocities are shown in

red. Velocities that will move the robot towards Obstacle A (the closest obstacle) are

shown to be highly repulsive, and velocities that will move the robot towards the more

distant moving Obstacle E, Pole 3 or the wall also have relatively high repulsive values.

In the goal-based velocity space, the most attractive values (in black) can be seen to move

the robot directly towards the goal (as would be expected).

The robot was able to successfully avoid the moving and stationary obstacles and

reach the goal location. The video results for this test and others can be seen in Appendix

C.

In Table 4.4, the specifications for the experimental tests sets are shown. As with

the simulations, the robot’s maximum angular velocity was always 1.0 @�Â� .

Table 4.4 Experimental Specifications

Experimental

Set #

Actuation

Error

Extension

Robot Maximums Obstacles

Linear
Velocity

Linear
Acceleration

Velocity Range

1 Yes 0.5OR 0.5 OR� −0.35	�%	0.35OR

2 No 0.5OR 0.5 OR� −0.35	�%	0.35OR

3 Yes 0.7OR 0.7 OR� −0.40	�%	0.40OR

4 No 0.7OR 0.7 OR� −0.40	�%	0.40OR

5 Yes 1.0OR 1.0 OR� −0.50	�%	0.50OR

In Table 4.5, the results from the experiments are listed. The results from the

experimental tests with the fastest robot and obstacle velocities, but without the actuation

145

error extension (Set #6), proved to suffer from too many collisions to produce useful data,

so the experimental results are not included here. Specific results for the various tests can

be seen in Appendix D.

Table 4.5 Simulation Evaluation Metric Values

Experimental

Set #

Evaluation Metrics
Obstacle
Proximity

� \
�ð�

Distance
Traveled

(m)

Velocity
Change

 ��� �

Time
(s)

1 1.02 12.51 0.114 51.38
2 0.93 9.18 0.103 42.13
3 1.75 12.61 0.116 34.18
4 0.92 13.52 0.131 33.44
5 0.86 12.28 0.125 27.46

It is difficult to draw definitive conclusions from the experimental data, as the

testing conditions unavoidably varied (sometimes substantially) between different tests.

However, all of the obstacle proximity experimental result metrics fell within one-half of

one standard deviation of the simulation results and acceleration experimental result

metrics were within 1.5 standard deviations of the simulation results (the variation in the

goal location makes the distance traveled and the time not meaningfully comparable).

Therefore, as the performance of the VOS algorithm is statistically similar under

experimental and simulation conditions, the statistical conclusions that were drawn from

the (much larger) set of simulation results can be applied to the experimental results.

It was also not possible to produce an accurate failure rate for the experimental

tests because a significant number of failures occurred due to conditions outside of the

algorithms control. First, the SuperDroid was equipped with a remote emergency stop

button which was used whenever it appeared that a collision might occur. It ended up

146

being used much more liberally then was actually required in order to safeguard the

robots. This was usually determined after the robot had been stopped and the data

reviewed, as it was frequently the case the robot was aware of the obstacle and

responding appropriately – and what was thought to be a threatened collision was due

more to the angle and distance from which the robot had been viewed than to any actual

danger.

Second, as can be seen in Figures 4.16 and 4.17, the cardboard tubes on the

Create robots are significantly smaller then the Creates. As the algorithm is only able to

sense the width of the tube (via the laser range finder) it would occasionally nick (or be

stopped before it could hit) the end of a Create. Some thought was given to virtually

increasing the perceived size of all of the obstacles in the configuration space by the

difference in size between the Creates and the cardboard tubes. However, the testing

environment frequently required the robot to navigate through somewhat close fitting

areas, which this increased size would have severely limited the robot’s ability to do. It

was determined that the decrease in overall performance was not worth fixing a few

specific cases.

Finally, the dead reckoning error that was accumulated throughout the test

frequently moved the robot’s intended goal to an unreachable location (such as within a

wall). This made a number of tests impossible for the robot to successfully complete.

Out of the over one hundreds tests that were performed, if all of the cases where

the there was a failure due to one of the scenarios previously mentioned (or, an all too

common, hardware failure) were removed then there would only be a very small subset

147

of tests available for analysis. In order to produce a larger set of test data so that more

representative results could be derived, the data from as many (even partially successful)

tests as was possible was included in the experimental test evaluation and the calculation

of the evaluation metrics.

4.5. Conclusions about VOS for Vehicles with Actuation Error

The actuation extension for VOS has been shown to significantly improve the

algorithm’s performance at higher speeds �0.7��ð 	to	1	
�
�ð�	over the original VOS

algorithm. However, this improvement comes at the cost of increasing the time that it will

take the robot to reach its goal. As has been the theme throughout the development of

VOS, there are always tradeoffs between performance and safety for the algorithm and as

safety must be the priority if the robot is to interact with other vehicles, it has been

necessary to accept slightly degraded performance in order to improve the algorithm’s

ability to avoid collisions.

Conversely, at lower speeds there is not a significant advantage (or disadvantage)

to using the actuation error extension with VOS. This is due to the smaller amount of

accumulated positional error that can occur within one time step as well as the smaller

possible change in the robot’s velocity. The original VOS algorithm is sufficient to

compensate for the lesser amount of actuation errors that may occur under these

circumstances. However, this change implies that at velocities higher than those tested for

this research, the actuation error extension will be even more critical to ensuring the

safety of a robot operating with VOS.

148

The work in this chapter points clearly to the need to improve the motion control

of UGVs for autonomous operation. Whereas current UGVs are adequately designed for

their intended use as tele-operated vehicles, for reliable autonomous operation of UGVs,

more stringent motion control specifications are necessary.

149

Chapter 5

5. Summary, Conclusions and Future Work

5.1. Summary and Conclusions

In this thesis velocity occupancy space (VOS), an algorithm that allows a robot to

operate in an unknown environment and, with the use of only a range finding sensor with

uncertainty, successfully avoid stationary and moving obstacles while navigating towards

a goal, has been developed. In addition, extensions to VOS that allow the algorithm to

safely operate on an acceleration controlled, differential drive vehicle or on a velocity

controlled vehicle with actuation error are also presented.

In Chapter 1, literature related to obstacle detection and avoidance was presented

and this literature demonstrated the need for an obstacle avoidance method with the key

properties (and original contributions) of VOS. VOS was also compared to two

algorithms that were also designed for the avoidance of moving obstacles, specifically the

PVO/BOF method and the Dynamic Window method. VOS was shown to have

comparable obstacle avoidance and goal reaching capabilities as these two algorithms

with significantly less computational complexity.

In Chapter 2, background information was given on occupancy space and velocity

obstacles (two of the main elements of the original VOS algorithm) as well as on some of

150

the fundamental concepts utilized by the VOS derivation. Then the basic VOS algorithm

was derived and presented for a holonomic robot with the ability to instantaneously

change its velocity. The VOS algorithm utilizes occupancy space to estimate the location

of each obstacle and to find each obstacle’s center of certainty. The centers of certainty

are then tracked in order to approximate each obstacle’s velocity over multiple time steps.

Next, the obstacle information is converted into velocity obstacle form and used to

calculate a set of variables that describe the advantage or disadvantage of each possible

robot velocity. The relative weights of these variables are determined either by hand-

tuning or through an optimization process (using a set of obstacle/goal scenarios) and the

results are used to form VOS. From this space, the algorithm can find a velocity that is

both safe and that will lead it towards the goal. While the choice of velocity using the

optimized weights may not always be ideal, it has been shown that, in most simulations,

those weights will allow the robot to avoid a collision and reach its destination.

VOS was also compared to two reference obstacle avoidance algorithms from

literature. The comparisons involved the two reference algorithms, the VFH and the

velocity obstacle concept, being tested on the same scenarios as VOS. Based on these

comparisons, it was found that VOS performs comparably to these algorithms in the

scenarios that the reference algorithms were designed for (stationary obstacles or

complete environmental knowledge) and VOS performs superiorly for the scenarios that

it was designed for (moving obstacles with uncertain sensor data).

In short, VOS has the characteristics from Table 1.2 that were determined to be

needed in an obstacle avoidance algorithm based on the literature review summarized in

Table 1.1. Specifically, VOS has comparatively low computational complexity as

151

demonstrated by the fact that the velocity occupancy space gird can be built and fully

populated in less than 10ms (Section 1.2.3.). The algorithm is not susceptible to visible

local minima due to the perpetual nature of the relative velocity obstacles that are used

(Section 1.2.4.). VOS also possess inherent goal navigation (Section 2.3.2.) and

automatically incorporates sensor uncertainty through the use of occupancy space

(Section 2.2.1.). The center of certainty technique allows VOS to estimate obstacle

velocities from laser range finder data (as derived in Section 2.2.1. and tested

experimentally in Appendix A) and VOS accounts for velocity uncertainty and possible

occlusions using the VU and PA terms (Section 2.3.1.) so the algorithm does not require

any independent obstacle knowledge. Finally, while VOS assumes that obstacles will

have constant velocities (at least in the short term), the fast update rate and the

accommodations for obstacle position and velocity uncertainty built into the algorithm

free VOS from being dependent on restricted obstacle velocities, as shown by its 0.8%

failure rate around obstacles with variable velocities (Section 2.5.3.).

In Chapter 3, the basic VOS algorithm was augmented so that it could be used by

a non-holonomic, differential drive vehicle without the ability to instantaneously change

its velocity. Two different methods that allow a differential drive vehicle to ‘mimic’ a

holonomic vehicle were derived and simulated. The first was a two-step velocity

approximation method that provides the VOS algorithm with a wide range of velocities

from which to select. However, when using this method, the vehicle does not move to the

correct position by the end of the motion time step – though it does end up moving at the

correct velocity. The second method was a three-step velocity approximation method

which is more computationally complex and greatly reduces the selectable set of vehicle

152

velocities, but causes the vehicle to end up at both the correct position and velocity.

These two methods were combined to form a proximity dependent method that allows the

algorithm to select the most appropriate (two- or three-step) method based on the robot’s

current state as well as the locations of surrounding obstacles. The material presented in

this chapter show that the VOS algorithm is suitable for a non-holonomic robot with a

realistic kinodynamic configuration.

In Chapter 4, VOS was again extended, this time to compensate for the actuation

error in experimental vehicles. The velocity error of a SuperDroid robot was

characterized, and this data was used to augment each velocity obstacle so that the

robot’s actuation error would not cause a collision. Using the actuation error extension,

the simulated robot suffered from fewer collisions and, in general, maintained more

distance between the robot and nearby obstacles. However, the robot generally took

longer to reach the goal due to the more conservative velocity selection. This extension of

VOS was tested extensively in simulation and also shown to be effective in an

experimental setting via numerous trials with the SuperDroid robot. Videos of some of

these experiments can be viewed on-line at:

https://sites.google.com/site/rachaelbis/thesis-appendix-c

VOS, along with its extensions, has been shown to be an effective algorithm to

control autonomous robot navigation in an unknown environment with moving obstacles

where there is error both from the sensor data that the algorithm receives as well as from

the robot’s actuators’ response to the algorithms commands. The performance of VOS

153

has been validated statistically through numerous simulations and it has been shown to be

successful under real-world conditions through experimental trails.

VOS is not meant as a complete and independent robot navigation system. It is

designed to perform low level robot navigation and obstacle avoidance. While it can

operate independently in many types of environments, it would not be suitable to plan

long, complex paths. As such, VOS would ideally be integrated with other algorithms to

allow for higher level planning and navigation. For example, integration with an

algorithm such as SLAMMOT [47] would allow the robot to respond quickly to avoid

moving and stationary obstacles (while still choosing desirable, goal approaching

velocities) using VOS, but also build a map of and recognize an environment so that it

could make more complex navigation decisions. A higher level algorithm could break

down a long, but desirable, route to a destination and provide VOS with more direct,

intermediate goals.

5.2. Future Work

5.2.1. Modifications of the original VOS

In the future, as previously mentioned, VOS could be adapted to be directly

integrated with different types of high level planners. Different sets of variable weights

could be optimized for various types of specific environments, such as structured roads or

uncluttered areas. During navigation, the algorithm could identify what type of

environment it was in (structured, cluttered, etc.) and then select the weights that had

been optimized for such a situation.

154

In addition, the linear combination of terms and weights in Eq. (2.20) has not

been shown to be better than other possible arrangements. Through more extensive

optimization, the exponential values of these terms could be evaluated to see if a different

relationship between the powers of these terms would lead to superior performance.

Additional terms and relationship could also be experimented with to see how they affect

the algorithm.

The computational complexity of VOS is dependent on the resolution of the

configuration and velocity occupancy space grids. Fairly high resolutions were used for

the simulation and experimental work in this thesis; the configuration resolution was set

at 0.1O	and the velocity resolution was between 0.05�� and	0.10�� . A lower resolution

would decrease the precision with which the algorithm could avoid obstacles but would

also decrease the processing time. The resolutions should be selected based on the

environment (e.g., obstacle size and spacing) and the robot’s capabilities (e.g., how

precisely the robot can follow a specific velocity) and could be determined through more

extensive testing or possibly through an optimization process.

Finally, VOS accounts for sensor error based on the error characteristics of the

Hokuyo laser range finder which was used for the experimental trials. Additional

research with lower cost (and more error prone) laser range finders would indicate the

extent to which VOS can accommodate sensor uncertainty.

5.2.2. Additional Acceleration Method Selection Criteria

155

The proximity dependent combination of the two- and three-step acceleration

methods could also be modified to possibly improve the algorithm. While proximity

dependence has proven to be an adequate way to combine the two acceleration methods,

they could also be combined using any number of factors. For example, the results may

be improved by determining if the previously selected robot velocity was a part of a

velocity obstacle and, if so, what the time to collision was for that velocity. If the robot

velocity was not part of a velocity obstacle (or if there was a very high time to collision)

then this would indicate that the current velocity is relatively safe and the robot is not

headed towards any obstacles and this information may alter the proximity at which the

three-step method should be selected over the two-step method. An optimization

processes could be employed to find the ideal combination.

In addition, if a higher level planner were being used, the proximity dependent

method could consider information from this planner when selecting the acceleration

method. For example, if the higher level planner is aware that the robot will soon be

entering a more cluttered region then the three-step method could be employed earlier to

improve the initial alignment of the robot’s path. Conversely, if the robot was about to

exit a cluttered region, the higher level planner could indicate that the two-step method

was a safe option, even if there were obstacles close behind the robot.

5.2.3. Additional Sensor Data

The VOS framework also lends itself well to the inclusion of data from additional

sensors, such as infrared or visible light cameras, which could be used to identify

different types of obstacles. If vulnerable obstacles, such as pedestrians, were identified

156

then the velocities that led to a collision with these vulnerable obstacles could be assigned

more repulsive weights so that the avoidance of these obstacles would be prioritized.

Other researchers are currently exploring the possibility of adapting VOS so that it will

respond in a safe and non-threatening manner to any pedestrians that it may encounter

[3].

5.2.4. Modifications for Different Terrain and Vehicle Types

One of the first assumptions in the formation of VOS was that the terrain was flat

and could therefore be assumed to be 2D. This is not the case for many experimental

environments, so it would be useful to also explore how VOS would operate in a more

complex terrain. Other researchers have considered terrain when developing robot

navigation algorithms, and some of their results may be able to be adapted for VOS [89].

It would also be interesting to expand the VOS algorithm so that it could be used for 3D

navigation on an UAV. While the 3D VOS would have substantially higher

computational complexity, the velocity obstacle concept has been applied to a 3D

workspace [90] with complete obstacle knowledge, so VOS may be a logical extension

when sensor error is present.

In addition, while VOS has been extended from its original holonomic derivation,

to operate with acceleration and velocity commanded vehicles, it could also be extended

to operate with additional types of vehicles with other kinodynamic configurations, such

as steered-cars.

157

Finally, the actuation error extension can compensate for error induced from both

the environment as well as from the vehicle – as long as the extent of the error can be

bounded. In the future, the error caused by various types of unstable terrain (e.g. sandy or

muddy soil) and possible vehicle malfunctions (such as partial loss of power) could be

characterized and the compensation for these errors could be integrated into the VOS

actuation error framework.

158

Appendix A

Results from Low Speed Obstacle Velocity Estimation

Three obstacles with different aspect ratios were mounted on top of an iRobot

Create robot and driven across a room at eight different command velocities. The

obstacles were tracked over a distance of approximately 10m with a stationary laser range

finder. Laser range finder data from the middle portion of the test, when the obstacle was

at a mostly steady state velocity, was analyzed to determine the obstacles’ velocities.

The obstacles’ velocities were calculated from this data in two ways. First, they

were calculated by hand from the raw laser range finder data. The obstacle was located in

the laser range finder data and its position was measured and recorded at regular intervals

in order to calculate the obstacle’s velocity. This was a tedious but accurate way to

measure the velocity, and the results from these measurements can be seen in Table A1 in

the column Measured Velocity. Second, the obstacle velocities were calculated using the

center of certainty method described in Section 3.1.1 and the results from this calculation

are shown in Table A1 in the column COC Calculated Velocity.

As can be seen from the table, there was a significant amount of error in the COC

velocity calculation at lower velocities, but (with one exception) the velocity error was

less than 6% for all of the tests where the obstacle was moving at over 0.2�� .

159

Table A1. Low Speed Obstacle Velocity Estimation

Command

Velocity (m/s)
Test

Measured

Velocity

(m/s)

% Error from

Command

Velocity

Standard

Deviation

COC

Calculated

Velocity

(m/s)

% Error from

Measured

Velocity

Standard

Deviation

0.10

1 0.095 4.507 0.134 0.129 35.330 0.081

2 0.094 5.669 0.158 0.108 14.023 0.049

3 0.094 6.401 0.172 0.107 14.035 0.047

AVG 0.094 5.526 0.155 0.115 21.130 0.059

0.15

1 0.144 4.225 0.151 0.154 7.455 0.043

2 0.144 3.704 0.180 0.153 6.117 0.056

3 0.144 3.937 0.205 0.160 10.913 0.066

AVG 0.144 3.955 0.179 0.156 8.162 0.055

0.20

1 0.195 2.386 0.227 0.205 5.087 0.061

2 0.195 2.486 0.247 0.206 5.399 0.067

3 0.196 1.882 0.219 0.207 5.443 0.066

AVG 0.195 2.251 0.231 0.206 5.310 0.065

0.25

1 0.244 2.564 0.250 0.252 3.604 0.072

2 0.246 1.657 0.287 0.253 2.951 0.071

3 0.243 2.692 0.256 0.254 4.365 0.080

AVG 0.244 2.304 0.264 0.253 3.640 0.075

0.30

1 0.292 2.828 0.267 0.308 5.550 0.076

2 0.295 1.514 0.262 0.329 11.428 0.126

3 0.295 1.731 0.275 0.302 2.408 0.071

AVG 0.294 2.024 0.268 0.313 6.462 0.091

0.35

1 0.346 1.066 0.292 0.356 1.664 0.085

2 0.349 0.216 0.278 0.359 2.554 0.098

AVG 0.348 0.641 0.285 0.355 2.109 0.091

0.40

1 0.397 0.657 0.301 0.408 2.693 0.088

2 0.395 1.158 0.268 0.406 2.657 0.078

3 0.391 2.254 0.258 0.407 3.983 0.086

AVG 0.395 1.357 0.276 0.407 3.111 0.084

0.45

1 0.450 0.062 0.257 0.463 2.914 0.091

2 0.458 1.683 0.262 0.464 1.466 0.077

3 0.459 1.989 0.294 0.464 1.109 0.084

AVG 0.455 1.245 0.271 0.464 1.830 0.080

160

Appendix B

Hardware Specifications

2.7. B.1 Specifications for robot used for the experimental testing: SuperDroid

• Chassis: SuperDroid ATR Enclosed Heavy Duty 4WD Chassis with Acrylic
Covers
o Modified to front 2WD with third omi-directional wheel

• Motor Controller: Pololu 18V25 High-Power Motor Driver
• Battery: 26V 9.9Ah LiFePO4
• Motors: SuperDroid IG42 24VDC 252 RPM Gear Motor

Table B1. SuperDroid Motor Specifications

Rated voltage 24 V
Gear reduction ratio 1:24
Rated torque 10 kgf-cm
Rated speed 252 rpm
Rated current < 2300 mA
No load speed 290 rpm
No load current < 650 mA

161

B.2 Specifications for Gyroscope: MicroInfinity Cruizcore XA3300

Table B2. Gyroscope Specifications

Performance

Input Range
± 100 ˚/sec (Continuous)

± 300 ˚/sec (Instantaneous)

Roll, Pitch Accuracy
Static Error < 0.5 ˚

Dynamic Error < 2 ˚

Heading Accuracy Static Error < 1 ˚

Resolution 0.05 ˚

Bandwidth 20 Hz

Update Rate > 100 Hz (USB, RS-232)

Physical
Weight 20 g (Including case)

Size (L, W, H) 53.9 mm X 35.9 mm X 17 mm

Electrical
Power Consumption < 400 m W

Input voltage 4.75 ~ 5.25 V

Environmental
Operating temperature -40 ~ 70 °C

Shock 200 gRMS

162

B.3 Specifications for Laser Range Finder: Hokuyo UTM-30LX

Table B3. Laser Range Finder Specifications

Voltage 12.0 V ±10%
Current 0.7 A (Rush current 1.0 A)

Detection range 0.1 m to approximately 60 m (<30 m guaranteed)
Laser wavelength 870 nm, Class 1

Scan angle 270°
Scan time 25 ms/scan (40.0 Hz)

Angular resolution 0.25°
Interface USB 2.0
Weight 8.2 oz (233 g)

B.4 Specifications for moving obstacles: iRobot Create

Table B4. iRobot Create Relevant Specifications

Driven wheels two; left and right

Caster wheels two; front and back

Wheel velocity range −0.5OR 	�%	0.5
O
R

Communication Bluetooth®

163

B.5 Specifications for on-board laptop computer: Dell Latitude E6400

Table B5. Computer Specifications

Operating System Windows Vista

Processor Intel® Core™2 Duo CPU 2.54 GHz

Memory (RAM) 4.00GB

System type 32-bit Operating System

164

Appendix C

Video Results from SuperDroid Testing

Video results from many of the experimental trials are available at

www.youtube.com at the URLs listed in Tables C1-C3. A list of all of the videos (with

links) is available at:

 https://sites.google.com/site/rachaelbis/thesis-appendix-c

There are two videos available for each trial. The first is video recorded of the

robot and environment during the trial (Figure 4.17 is a single frame taken from one of

these videos) and the second is the VOS display (Figure 4.18 is a single frame taken from

one of these videos).

In the VOS display, the lower, right hand corner shows the laser range finder

output (this is the entirety of the external sensor data with which the robot is provided).

The upper, left hand corner shows the configuration space occupancy grid that is built

from this data. The lower left and middle images are the obstacle-based (repulsive) and

goal-based (attractive) velocity spaces that are built using the obstacle’s locations and

estimated velocities. Finally, the upper, right hand corner shows the combined velocity

occupancy space from which the next robot velocity is selected.

165

Table C1. Experimental Results from fast SuperDroid test with
Actuation Error Extension

 O�Q	�	 = 	1.0�� , O�Q	�	 = 1.0 @�Â� 	

Test # Video URL VOS URL

F1
http://www.youtube.com/watch?v=dolZdmnaE

68

http://www.youtube.com/watch?v=TJLT4JR
5-rw

F2
http://www.youtube.com/watch?v=SPTGMaTs

VOs

http://www.youtube.com/watch?v=WWyCb
WFP_mo

F3
http://www.youtube.com/watch?v=jHZxBF9K

CTw

http://www.youtube.com/watch?v=rj2XEmP
9Dlo

F4 http://www.youtube.com/watch?v=HMey7DfsoOE
http://www.youtube.com/watch?v=yNz2cyyQUg

4

F5
http://www.youtube.com/watch?v=wkRstzR3P

9M

http://www.youtube.com/watch?v=GAkDL9
utM8Y

F6 http://www.youtube.com/watch?v=BvyW_Iyv0Xw
http://www.youtube.com/watch?v=BWEBw0Iim

PM

F7 http://www.youtube.com/watch?v=W2gZxQnk4dE
http://www.youtube.com/watch?v=et0hqHCxDU

0

F9
http://www.youtube.com/watch?v=9zNHCA_0

gXE

http://www.youtube.com/watch?v=2yYLsRs
CSFw

F10 http://www.youtube.com/watch?v=JW6CfqyTa4E
http://www.youtube.com/watch?v=MdFKcCskM

Fs

F11
http://www.youtube.com/watch?v=jYmzmSAZ

fNs

http://www.youtube.com/watch?v=0LiRFp5
CrbI

F12
http://www.youtube.com/watch?v=8Iq4OZzjDj

k

http://www.youtube.com/watch?v=iwrIsJJV
lsM

F13
http://www.youtube.com/watch?v=CQFBgPlT

Z4M

http://www.youtube.com/watch?v=72T3cBb
dzsY

F14
http://www.youtube.com/watch?v=3UI0BV4H

lpM
http://www.youtube.com/watch?v=47q5DH

kPYr0

166

Table C2. Experimental Results from medium SuperDroid test with
Actuation Error Extension

 O�Q	�	 = 	0.7�� , O�Q	�	 = 1.0 @�Â� 	

Tes

t #
Video URL VOS URL

M1
http://www.youtube.com/watch?v=b4eHIh2

m5tY
http://www.youtube.com/watch?v=K3UaqJ

RVrTk

M2
http://www.youtube.com/watch?v=9aj_mc5

sRbk
http://www.youtube.com/watch?v=cCivH32

N6kE

M4
http://www.youtube.com/watch?v=bU8T4t

9pP0k
http://www.youtube.com/watch?v=nUna2w

cfU20

M5
http://www.youtube.com/watch?v=qS2rVp

EvI54
http://www.youtube.com/watch?v=q1Uru_d

oe5w

167

Table C3. Experimental Results from slow SuperDroid test with
Actuation Error Extension

 O�Q	�	 = 	0.5�� , O�Q	�	 = 1.0 @�Â� 	

Test # Video URL VOS URL

S1
http://www.youtube.com/watch?v=Q8d

y0mEIaDg
http://www.youtube.com/watch?v=aQnvhgK

tAKA

S2
http://www.youtube.com/watch?v=-

fVS2-JXsjQ
http://www.youtube.com/watch?v=RFBE79

1XDXo

S3
http://www.youtube.com/watch?v=crZ

BgRRkK18
http://www.youtube.com/watch?v=3STjAtL

1L-g

S4
http://www.youtube.com/watch?v=mjT

LjKI84Rk
http://www.youtube.com/watch?v=0TgrSNz

kdlo

S5
http://www.youtube.com/watch?v=-

kFAcEo3fzw
http://www.youtube.com/watch?v=cpX2eS

W5G0A

S6
http://www.youtube.com/watch?v=Wg

L3ayrOJ1g
http://www.youtube.com/watch?v=R-OI8La-

RZU

S7
http://www.youtube.com/watch?v=ifF

QH1h2quQ
http://www.youtube.com/watch?v=BoRP0Q

EYgKc

S8
http://www.youtube.com/watch?v=-

RoORS_70ww
http://www.youtube.com/watch?v=864Fbhe

pHFw

S9
http://www.youtube.com/watch?v=x0_

3xRTLVVM
http://www.youtube.com/watch?v=AJ5kXm

x97io

S10
http://www.youtube.com/watch?v=Pb5

o2xKnpOk
http://www.youtube.com/watch?v=vljXPYE

mW6s

S11
http://www.youtube.com/watch?v=h7z

aC_uEz04
http://www.youtube.com/watch?v=Mpn7oF4

QaVg

S12
http://www.youtube.com/watch?v=Y-

Wm6n2Ane0
http://www.youtube.com/watch?v=1d3h-

F_Xlec

S13
http://www.youtube.com/watch?v=435

IySAvek8
http://www.youtube.com/watch?v=-

l50z_YfjZg

S14
http://www.youtube.com/watch?v=Wy

Clf8zHCBA
http://www.youtube.com/watch?v=paXgV5l

Jr3M

168

Appendix D

Experimental Results with SuperDroid

Table D1. Experimental Results from fast SuperDroid test with
Actuation Error Extension

 O�Q	�	 = 	1.0�� , O�Q	�	 = 1.0 @�Â� 	

Test #

Evaluation Metrics

Obstacle
Proximity

� \
�ð�

Distance
Traveled

(m)

Acceleration

�OR��
Time

(s)

of
Moving

Obstacles

Obstacle
Velocity

�OR��

F1 0.842 10.69 0.132 26.50 3 ±0.4
F2 0.615 9.25 0.137 22.47 1 ±0.5
F3 0.739 13.18 0.133 22.58 3 ±0.4
F4 1.080 11.48 0.141 20.23 3 ±0.3
F5 1.283 18.44 0.127 35.39 3 ±0.3
F6 1.250 10.78 0.125 18.50 3 ±0.5
F7 0.931 10.68 0.121 17.14 3 ±0.5
F8 0.747 11.69 0.109 55.85 1 ±0.3
F9 0.702 12.41 0.135 19.94 0 N/A

F10 0.610 12.56 0.113 20.40 0 N/A
F11 0.890 11.30 0.130 21.69 1 ±0.5
F12 0.735 16.71 0.091 55.04 0 N/A
F13 0.796 10.47 0.134 21.29 1 ±0.5
F14 1.476 7.80 0.107 40.35 3 ±0.5

Average 0.907 11.96 0.124 28.38

169

Table D2. Experimental Results from medium SuperDroid test
with Actuation Error Extension

 O�Q	�	 = 	0.7�� , O�Q	�	 = 1.0 @�Â� 	

Test #

Evaluation Metrics

Obstacle
Proximity

� \
�ð�

Distance
Traveled

(m)

Acceleration

�OR��
Time

(s)

of
Moving

Obstacles

Obstacle
Velocity

�OR��

M1 0.617 10.47 0.102 23.33 1 ±0.5
M2 0.747 10.96 0.133 26.58 3 ±0.4
M3 3.451 7.98 0.091 37.52 1 ±0.3
M4 2.747 16.27 0.128 40.09
M5 1.180 17.35 0.124 43.40 1 ±0.3

Average 1.749 12.61 0.116 34.18

Table D3. Experimental Results from slow SuperDroid test
with Actuation Error Extension

 O�Q	�	 = 	0.5�� , O�Q	�	 = 1.0 @�Â� 	

Test #

Evaluation Metrics

Obstacle
Proximity

� \
�ð�

Distance
Traveled

(m)

Acceleration

�OR��
Time

(s)

of
Moving

Obstacles

Obstacle
Velocity

�OR��

S1 1.167 10.16 0.109 44.63 0 0
S2 0.856 9.65 0.119 33.27 0 0
S3 0.984 10.95 0.099 52.96 0 0
S4 1.646 14.76 0.117 72.47 0 0
S5 1.267 8.92 0.106 44.38 0 0
S6 0.839 9.18 0.128 24.15 1 ±0.3
S7 0.631 16.55 0.123 64.98 0 0
S8 0.656 23.42 0.128 97.69 0 0
S9 1.399 13.10 0.114 46.68 3 ±0.3

S10 0.829 11.47 0.113 38.78 0 0
S11 1.179 10.56 0.111 41.46 2 ±0.35
S12 0.865 13.05 0.117 54.59 3 ±0.45
S13 0.703 11.46 0.128 44.08 3 ±0.45
S14 1.459 18.30 0.120 72.30 2 ±0.35
S15 0.792 6.24 0.077 38.24 1 ±0.25

Average 1.018 12.52 0.144 51.38

170

Table D4. Experimental Results from fast SuperDroid test
without Actuation Error Extension

 O�Q	�	 = 	1.0�� , O�Q	�	 = 1.0 @�Â� 	

Test #

Evaluation Metrics

Obstacle
Proximity

� \
�ð�

Distance
Traveled

(m)

Acceleration

�OR��
Time

(s)

of
Moving

Obstacles

Obstacle
Velocity

�OR��

F1, NAE 9.200 2.67 0.020 32.69 3 ±0.5
F2, NAE 2.527 11.95 0.079 50.88 3 ±0.5
F3, NAE 2.256 6.98 0.045 44.02 3 ±0.5
F4, NAE 2.069 5.09 0.054 26.88 3 ±0.5
F5, NAE 2.353 11.16 0.137 17.93 3 ±0.5
Average 2.301 8.79 0.079 34.93

Table D5. Experimental Results from medium SuperDroid test
without Actuation Error Extension

 O�Q	�	 = 	0.7�� , O�Q	�	 = 1.0 @�Â� 	

Test #

Evaluation Metrics

Obstacle
Proximity

� \
�ð�

Distance
Traveled

(m)

Acceleration

�OR��
Time

(s)

of
Moving

Obstacles

Obstacle
Velocity

�OR��

M1, NAE 0.918 13.52 0.131 33.44 3 ±0.4
M2, NAE 1.416 12.06 0.130 28.71 3 ±0.4
M3, NAE 6.381 14.45 0.100 44.29 3 ±0.4
M4, NAE 0.912 7.80 0.064 40.35 3 ±0.4
Average 2.407 11.96 0.106 36.70

171

Table D6. Experimental Results from slow SuperDroid test
without Actuation Error Extension

 O�Q	�	 = 	0.5�� , O�Q	�	 = 1.0 @�Â� 	

Test #

Evaluation Metrics

Obstacle
Proximity

� \
�ð�

Distance
Traveled

(m)

Acceleration

�OR��
Time

(s)

of
Moving

Obstacles

Obstacle
Velocity

�OR��

S1, NAE 0.727 10.85 0.110 50.09 3 ±0.3
S2, NAE 0.836 11.07 0.119 43.15 3 ±0.3
S3, NAE 1.235 5.62 0.079 33.15 3 ±0.3
Average 0.933 9.18 0.103 42.13

172

Bibliography

[1] P. W. Singer, "Military Robots and the Laws of War," The New Atlantis, pp. 27-

47, 2009.
[2] S. Thrun, "Google's Driverless Car," Ted Talk, Ed., March 2011.
[3] W. Westrick, "Improving Pedestrian Safety and Comfort around UGVs through

the Enhancement of Velocity Occupancy Space," Masters, Mechanical
Engineering, University of Michigan, Ann Arbor, 2011.

[4] R. Bis, H. Peng, and G. Ulsoy, "Velocity Occupancy Space: Robot Navigation
and Moving Obstacle Avoidance with Sensor Uncertainty," presented at the
Dynamic Systems and Controls Conference, Hollywood, CA, 2009.

[5] R. Bis, H. Peng, and A. G. Ulsoy, "Velocity Occupancy Space: Autonomous
Navigation in an Uncertain, Dynamic Environment," International Journal of

Vehicle Autonomous Systems, 2012.
[6] R. Bis, H. Peng, and A. G. Ulsoy, "Velocity Occupancy Space for Differential

Drive Vehicles," presented at the Dynamic Systems and Controls Conference,
Cambridge, MA, 2010.

[7] R. Bis, H. Peng, and A. G. Ulsoy, "Velocity Occupancy Space for Acceleration
Controlled, Differentially Driven Vehicles," International Journal of Vehicle

Autonomous Systems, In preparation, 2012.
[8] R. Bis, H. Peng, and A. G. Ulsoy, "Velocity Occupancy Space Based Navigation

for Vehicles with Actuation Error," Autonomous Robotics, In preparation, 2012.
[9] R. Siegwart and I. Nourbakhsh, Introduction to Autonomous Mobile Robots.

Cambridge: The MIT Press, 2004.
[10] C. O’Dunlaing and C. K. Yap, "Retraction method for planning the motion of a

disc," Journal of Algorithms, vol. 6, pp. 104–111, 1982.
[11] J.-C. Latombe, Robot Motion Planning. Boston: Kluwer, 1991.
[12] H. Choset and J. Burdick, "Sensor-based exploration: The hierarchical

generalized Voronoi graph," International Journal of Robotics Research, vol. 19,
pp. 96-125, 2000.

[13] J. Overholt, G. Hudas, G. Fiorani, M. Skalny, and A. Tucker, "Dynamic waypoint
navigation using voronoi classifier methods," U. S. A. R.-T. R. M. Laboratory,
Ed., ed. Warren, 2004.

[14] N. Nilsson, "A mobile automaton: an application of artificial intelligence
techniques," presented at the Proceedings IJCAI-I, Washington, DC, 1969.

[15] H. Edelsbrunner, Algorithms in Combinatorial Geometry. Berlin,: Springer-
Verlag, 1988.

173

[16] B. Oommen, S. Iyengar, N. Rao, and R. Kashyap, "Robot navigation in unknown
terrains using learned visibility graphs. Part I: The disjoint convex obstacle case,"
IEEE Journal of Robotics and Automation, vol. 3, pp. 672-681, 1987.

[17] C. Urdiales, A. Bandera, F. Arrebola, and F. Sandoval. (1998, Multi-level path
planning algorithm for autonomous robots. Electronics Letters 34(2), 223-224.

[18] Y. Qin, D. Sun, N. Li, and CenY., "Path planning for mobile robot using the
particle swarm optimization with mutation operator," presented at the Proceedings
of 2004 International Conference on Machine Learning and Cybernetics, 2004.

[19] C. Alexopoulos and P. Griffin, "Path planning for a mobile robot," IEEE

Transactions on Systems, Man and Cybernetics, vol. 22, pp. 318-322, 1992.
[20] G. Oriolo, G. Ulivi, and M. Vendittelli, "Real-time map building and navigation

for autonomous robots in unknown environments," IEEE Transactions on

Systems, Man and Cybernetics, vol. 28, pp. 316-333, 1998.
[21] E. Gilbert and D. Johnson, "Distance functions and their application to robot path

planning in the presence of obstacles," IEEE Journal of Robotics and Automation,

vol. 1, pp. 21-30, 1985.
[22] T. Lozano-Perez, "Automatic planning of manipulator transfer movements," IEEE

Transactions on Systems, Man and Cybernetics, vol. 11, pp. 681-698, 1981.
[23] H. Moravec and A. Elfes, "High resolution maps from wide angle sonar," in

Robotics and Automation. Proceedings. 1985 IEEE International Conference on,
St. Louis, Missouri, 1985, pp. 116-121.

[24] S. Thrun, "A probabilistic online mapping algorithm for teams of mobile robots,"
International Journal of Robotics Research, vol. 20, pp. 335-363, 2001.

[25] Li Jigong, F. Yiwei, and Z. Chaoqun, "A Novel Path Planning Method Based on
Certainty Grids Map For Mobile Robot," presented at the Chinese Control
Conference, 2007.

[26] D. J. Zhu and J. Latombe, "New heuristic algorithms for efficient hierarchical
path planning," IEEE Transactions on Robotics and Automation, vol. 7, pp. 9-20,
1991.

[27] O. Khatib, "Real-time obstacle avoidance for manipulators and mobile robots," in
Robotics and Automation. Proceedings. 1985 IEEE International Conference on,
1985, pp. 500-505.

[28] J. Borenstein and Y. Koren, "Real-Time Obstacle Avoidance For Fast Mobile
Robots," Ieee Transactions on Systems Man and Cybernetics, vol. 19, pp. 1179-
1187, 1989.

[29] Y. Koren and J. Borenstein, "Potential field methods and their inherent limitations
for mobile robot navigation," in Robotics and Automation, 1991. Proceedings.,

1991 IEEE International Conference on, 1991, pp. 1398-1404 vol.2.
[30] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance

for mobile robots," Robotics and Automation, IEEE Transactions on, vol. 7, pp.
278-288, 1991.

[31] Y. K. Hwang and N. Ahuja, "A potential field approach to path planning," IEEE

Transactions on Robotics and Automation, vol. 8, pp. 23-32, 1992.
[32] L. Montano and J. R. Asensio, "Real-time robot navigation in unstructured

environments using a 3D laser rangefinder," in Proceedings of the 1997 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 1997, pp. 526-532.

174

[33] P. Batavia and I. Nourbakhsh, "Path Planning for the Cye Robot," in Proceedings

of IROS, 2000, pp. 15 - 20.
[34] M. Khatib, H. Jaouni, R. Chatila, and J. P. Laumod, "Dynamic Path Modification

for Car-Like Nonholonomic Mobile Robots," presented at the IEEE International
Conference on Robotics and Automation, Albuquerque, USA, 1997.

[35] I. Ulrich and J. Borenstein, "VFH+: reliable obstacle avoidance for fast mobile
robots," in Robotics and Automation, 1998. Proceedings. 1998 IEEE

International Conference on, 1998, pp. 1572-1577 vol.2.
[36] I. Ulrich and J. Borenstein, "VFH*: local obstacle avoidance with look-ahead

verification," in IEEE International Conference on Robotics and Automation,
2000, pp. 2505-2511.

[37] K. Kant and S. Zucker, "Toward efficient trajectory planning: The path-velocity
decomposition," International Journal of Robotics Research, vol. 5, pp. 72-89,
1986.

[38] B. Lee and C. Lee, "Collision-free motion planning of two robots," IEEE

Transactions on Systems, Man and Cybernetics, vol. 17, pp. 21-32, 1987.
[39] K. Fujimura and H. Samet, "Planning a time-minimal motion among moving

obstacles," Algorithmica, vol. 10, pp. 41-63, 1993.
[40] K. Konolige, "A gradient method for real time robot control," in IEEE/RSJ

International Conference on Intelligent Robots and Systems, Takamatsu, Japan,
2000, pp. 639-646.

[41] A. Fujimori, P. N. Nikiforuk, and M. M. Gupta, "Adaptive navigation of mobile
robots with obstacle avoidance," IEEE Transactions on Robotics and Automation,

vol. 13, pp. 596-601, 1997.
[42] H. Zhuang, H. Li, and D. S., "Real-time Path Planning of Mobile Robots in

Dynamic Uncertain Environment," presented at the The Sixth World Congress on
Intelligent Control and Automation, 2006.

[43] S. Quinlan and O. Khatib, "Elastic bands: connecting path planning and control,"
in Robotics and Automation, 1993. Proceedings., 1993 IEEE International

Conference on, 1993, pp. 802-807 vol.2.
[44] T. Fraichard, "Trajectory Planning Amidst Moving Obstacles: Path-Velocity

Decomposition Revisited," Journal of the Brazilian Computer Society, vol. 4,
1998.

[45] R. Kindel, D. Hsu, J.-C. Latombe, and S. Rock, "Kinodynamic motion planning
amidst moving obstacles," in IEEE International Conference on Robotics and

Automation, 2000, pp. 537-543.
[46] H. Yu and T. Su, "A destination driven navigator with dynamic obstacle motion

prediction," in IEEE International Conference on Robotics and Automation, 2001,
pp. 2692-2697.

[47] Y. Wang, I. P. W. Sillitoe, and D. J. Mulvaney, "Mobile Robot Path Planning in
Dynamic Environments," presented at the IEEE International Conference on
Robotics and Automation, 2007.

[48] J. Xiao, Z. Michalewicz, and L. Zhang, "Evolutionary planner/navigator: Operator
performance and self-tuning," in Proceedings 3rd IEEE International Conference

Evolutionary Computation, Nagoya, Japan, 1996, pp. 366-371.

175

[49] J. Xiao, Evolutionary planner/navigator in a mobile robot environment. New
York: Oxford Univ. Press and Institute of Physics, 1997.

[50] W. Han, S. Baek, and T. Kuc, "Genetic algorithm based path planning and
dynamic obstacle avoidance of mobile robots," presented at the IEEE
International Conference on Systems, Man, and Cybernetics, 1997.

[51] K. Sugihara and J. Smith, "Genetic Algorithms for Adaptive Planning of Path and
Trajectory of a Mobile Robot in 2D terrains," IEICE Transactions Information

and Systems, vol. E82-D, pp. 309--316, 1999.
[52] W. Malik, "Motion planning of mobile robot in dynamic environment using

potential field and roadmap based planner," Texas A&M University, 2003.
[53] A. Farinelli and L. Iocchi, "Planning trajectories in dynamic environments using a

gradient method," in Proceedings of RoboCup Symposium, Padua, Italy, 2003.
[54] T. Fraichard and H. Asama, "Inevitable collision states. A step towards safer

robots?," in Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings.

2003 IEEE/RSJ International Conference on, 2003, pp. 388-393 vol.1.
[55] R. Parthasarathi and T. Fraichard, "An Inevitable Collision State-Checker for a

Car-Like Vehicle," in Robotics and Automation, 2007 IEEE International

Conference on, 2007, pp. 3068-3073.
[56] L. Martinez-Gomez and T. Fraichard, "Collision avoidance in dynamic

environments: An ICS-based solution and its comparative evaluation," in
Robotics and Automation, 2009. ICRA '09. IEEE International Conference on,
2009, pp. 100-105.

[57] P. Fiorini and Z. Shiller, "Motion planning in dynamic environments using the
relative velocity paradigm," in IEEE International Conference on Robotics and

Automation, 1993, pp. 560-565.
[58] Z. Shiller, F. Large, and S. Sekhavat, "Motion planning in dynamic environments:

Obstacles moving along arbitrary trajectories," in 2001 IEEE International

Conference on Robotics and Automation, Vols I-IV, Proceedings, Seoul, Korea,
2001, pp. 3716-3721.

[59] F. Large, C. Laugier, and Z. Shiller, "Navigation among moving obstacles using
the NLVO: Principles and applications to intelligent vehicles," Autonomous

Robots, vol. 19, pp. 159-171, 2005.
[60] M. Yamamoto, M. Shimada, and A. Mohri, "Online navigation of mobile robot

under the existence of dynamically moving multiple obstacles," in Assembly and

Task Planning, 2001, Proceedings of the IEEE International Symposium on,
2001, pp. 13-18.

[61] B. Kluge and E. Prassler, "Reflective navigation: individual behaviors and group
behaviors," in Robotics and Automation, 2004. Proceedings. ICRA '04. 2004

IEEE International Conference on, 2004, pp. 4172-4177 Vol.4.
[62] C. Fulgenzi, A. Spalanzani, and C. Laugier, "Dynamic Obstacle Avoidance in

uncertain environment combining PVOs and Occupancy Grid," in Robotics and

Automation, 2007 IEEE International Conference on, Roma, Italy, 2007, pp.
1610-1616.

[63] C. Fulgenzi, "Autonomous navigation in dynamic uncertain environment using
probabilistic models of perception and collision risk prediction," Ph.D.,

176

Engineering, Institut National Polytechnique de Grenoble, Rhne-Alpes, France,
2009.

[64] D. Fox, W. Burgard, and S. Thrun, "The dynamic window approach to collision
avoidance," Ieee Robotics & Automation Magazine, vol. 4, pp. 23-33, 1997.

[65] O. Brock and O. Khatib, "High-speed navigation using the global dynamic
window approach," in IEEE International Conference on Robotics and

Automation, 1999, pp. 341-346.
[66] M. Seder, K. Macek, and I. Petrovic, "An integrated approach to real-time mobile

robot control in partially known indoor environments," in Industrial Electronics

Society, 2005. IECON 2005. 31st Annual Conference of IEEE, 2005, p. 6 pp.
[67] M. Seder and I. Petrovic, "Dynamic window based approach to mobile robot

motion control in the presence of moving obstacles," in Robotics and Automation,

2007 IEEE International Conference on, 2007, pp. 1986-1991.
[68] D. Schulz, W. Burgard, D. Fox, and A. B. Cremers, "People Tracking with

Mobile Robots Using Sample-Based Joint Probabilistic Data Association Filters,"
The International Journal of Robotics Research, vol. 22, pp. 99-116, February 1,
2003 2003.

[69] J. Almeida and R. Araujo, "Tracking multiple moving objects in a dynamic
environment for autonomous navigation," in Advanced Motion Control, 2008.

AMC '08. 10th IEEE International Workshop on, 2008, pp. 21-26.
[70] R. Benenson, S. Petti, T. Fraichard, and M. Parent, "Towards urban driverless

vehicles," International Journal of Vehicle Autonomous Systems, vol. 6, pp. 4-23,
2008.

[71] S. M. LaValle and J. J. Kuffner, Jr., "Randomized kinodynamic planning," in
Robotics and Automation, 1999. Proceedings. 1999 IEEE International

Conference on, 1999, pp. 473-479 vol.1.
[72] S. M. LaValle and J. J. Kuffner, "Randomized Kinodynamic Planning," The

International Journal of Robotics Research, vol. 20, pp. 378-400, 2001.
[73] Y. Kuwata, G. A. Fiore, J. Teo, E. Frazzoli, and J. P. How, "Motion planning for

urban driving using RRT," in Intelligent Robots and Systems, 2008. IROS 2008.

IEEE/RSJ International Conference on, 2008, pp. 1681-1686.
[74] C. Fulgenzi, C. Tay, A. Spalanzani, and C. Laugier, "Probabilistic navigation in

dynamic environment using Rapidly-exploring Random Trees and Gaussian
processes," in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ

International Conference on, 2008, pp. 1056-1062.
[75] E. Owen and L. Montano, "Motion planning in dynamic environments using the

velocity space," in Intelligent Robots and Systems, 2005. (IROS 2005). 2005

IEEE/RSJ International Conference on, 2005, pp. 2833-2838.
[76] E. Owen and L. Montano, "A Robocentric Motion Planner for Dynamic

Environments Using the Velocity Space," in Intelligent Robots and Systems, 2006

IEEE/RSJ International Conference on, 2006, pp. 4368-4374.
[77] D. Wilkie, J. van den Berg, and D. Manocha, "Generalized velocity obstacles," in

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International

Conference on, 2009, pp. 5573-5578.

177

[78] J. Minguez and L. Montano, "Extending Collision Avoidance Methods to
Consider the Vehicle Shape, Kinematics, and Dynamics of a Mobile Robot,"
Robotics, IEEE Transactions on, vol. 25, pp. 367-381, 2009.

[79] D. Morales and T. C. Son, "Interval Methods in Robot Navigation," Reliable

Computing, vol. 4, pp. 55-61, 1998.
[80] A. Widyotriatmo and H. Keum-Shik, "Decision making framework for

autonomous vehicle navigation," in SICE Annual Conference, 2008, 2008, pp.
1002-1007.

[81] E. Prassler, J. Scholz, and P. Fiorini, "Navigating a Robotic Wheelchair in a
Railway Station during Rush Hour," The International Journal of Robotics

Research, vol. 18, pp. 711-727, July 1, 1999 1999.
[82] P. Fiorini and Z. Shiller, "Motion planning in dynamic environments using

velocity obstacles," International Journal of Robotics Research, vol. 17, pp. 760-
772, 1998.

[83] F. Large, S. Sekhavat, Z. Shiller, and C. Laugier, "Towards real-time global
motion planning in a dynamic environment using the NLVO concept," 2002

IEEE/RSJ International Conference on Intelligent Robots and Systems, Vols 1-3,

Proceedings, pp. 607-612, 2002.
[84] R. Benenson, S. Petti, T. Fraichard, and M. Parent, Towards urban driverless

vehicles. Olney, SUISSE: Inderscience Enterprises, 2008.
[85] C. Fulgenzi, A. Spalanzani, and C. Laugier, "Probabilistic motion planning

among moving obstacles following typical motion patterns," in Intelligent Robots

and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, 2009, pp.
4027-4033.

[86] K. C. Fuerstenberg, D. T. Linzmeier, and K. C. J. Dietmayer, "Pedestrian
recognition and tracking of vehicles using a vehicle based multilayer
laserscanner," in ITS 2003, 10th World Congress on Intelligent Transport

Systems, Madrid, Spain, 2003, pp. 31- 35.
[87] A. M. Flynn, "Combining Sonar and Infrared Sensors for Mobile Robot

Navigation," The International Journal of Robotics Research, vol. 7, pp. 5-14,
1988.

[88] S. A. Niyogi and E. Adelson, "Analyzing and recognizing walking figures in
XYT," in IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 1994, pp. 469-474.
[89] C. Urmson, C. Ragusa, D. Ray, J. Anhalt, D. Bartz, T. Galatali, A. Gutierrez, J.

Johnston, S. Harbaugh, H. “Yu” Kato, W. Messner, N. Miller, K. Peterson, B.
Smith, J. Snider, S. Spiker, J. Ziglar, W. “Red” Whittaker, M. Clark, P. Koon, A.
Mosher, and J. Struble, "A robust approach to high-speed navigation for
unrehearsed desert terrain," Journal of Field Robotics, vol. 23, pp. 467-508, 2006.

[90] J. Snape and D. Manocha, "Navigating multiple simple-airplanes in 3D
workspace," in Robotics and Automation (ICRA), 2010 IEEE International

Conference on, 2010, pp. 3974-3980.

