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    Chapter 1 

1. Introduction 

1.1. Motivation 

The ability of a robotic vehicle to safely and autonomously navigate among 

stationary and moving obstacles in an unknown setting is essential to the vehicle’s 

operation in most environments. Until autonomous vehicles can be assured of not 

colliding with moving and stationary obstacles as they navigate towards their destination, 

they cannot be widely and generally employed. Therefore, a system is needed which can 

control the movement of an autonomous robot and allow it to avoid moving obstacles as 

it reaches a target.  This is especially important in the presence of humans (e.g., 

pedestrians); not only in terms of avoiding collisions, but also that humans will feel 

comfortable in the presence of such autonomous vehicles. 

The advent of autonomous vehicles in military and civilian sectors of society is 

quickly approaching, and in some cases has already occurred, as demonstrated by the 

Congressional and DoD mandate that one-third of all military land vehicles be unmanned 

by 2015 (between 2004 and 2008, the number of robots operating in Iraq increased from 

around 150 to approximately 120,000) and by the development of the Google Driverless 

Car [1] [2]. However, while the issue of obstacle avoidance by an autonomous vehicle 
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has previously been addressed and (to some degree) solved in such forums as the 

DARPA Grand and Urban Challenges and the Google Driverless Car, most of the 

solutions that have been developed require numerous, prohibitively-expensive sensors 

and vast amounts of processing power.  While these resources may be available for well-

funded research projects and military ventures, in order to make more ubiquitous 

autonomy possible, safe obstacle avoidance must be made possible while using a limited 

set of lower-cost sensors that require a more modest amount of processing power.  

The initial motivation behind this research was to improve pedestrian safety 

around moving vehicles. However, throughout the course of research, the focus has 

shifted from exclusively pedestrian safety to developing a method by which all types of 

moving (and stationary) obstacles can be safely avoided by a lower-cost autonomous 

vehicle.  Building on the foundation presented in this research, pedestrian safety will be 

revisited as a primary focus in future research [3]. 

The initial concession made towards achieving lower-cost autonomy was the 

recognition that there would be only limited sensor data available with which to allow the 

vehicle to avoid obstacles and that this data would contain a higher degree of error than 

was desirable. In order to account for the limited and error-prone data, an autonomous 

obstacle avoidance and navigation method called Velocity Occupancy Space (VOS) was 

developed (see Chapter 3 and [4] [5]). However, the VOS method was initially designed 

for an ideal, holonomic vehicle; so in preparation for experimental analysis, the VOS 

method was extended so that it could be applied to the more common experimental 

vehicle configuration of a differential drive (see Chapter 4, [6]and [7]). Later, while 

transitioning VOS from the simulation to the experimental stage, the shortcomings of 
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many potential vehicle platforms became apparent.  The VOS extension for a differential-

drive vehicle assumes that the vehicle will be able to quickly and repeatably obey 

velocity or acceleration commands; however, it was found that many vehicles, including 

some commonly used experimental platforms, do not possess this capability. The 

actuation systems of these platforms appear to be designed with the assumption that there 

will be some sort of feedback system—probably a human tele-operating the vehicle - 

who will be able to account for the error. But, as this was not the case with the platform 

used for this research, the VOS method was again extended, this time to apply to vehicles 

with varying degrees of actuation error (see Chapter 5 and [8]).  

 

1.2. Review of Related Literature 

The field of robot navigation (particularly the problems of obstacle avoidance and 

navigation or path planning) has been well researched over the years. Various types of 

stationary and moving obstacle avoidance algorithms have been developed and 

successfully implemented for a range of applications. Sensor error is not always taken 

into consideration with these methods, but it is much more likely to be considered with 

stationary obstacle avoidance methods than with methods that allow for the avoidance of 

moving obstacles. Navigation methods also range from high level global planners to 

simple reactive obstacle avoidance systems that use only local, sensor information. 

Global path planners, such as those reviewed by Siegwart and Nourbakhsh, allow a robot 

to navigate along a predefined path in a known environment and assume that the robot’s 

environment is either stationary or that the planner has complete knowledge about the 
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movement of all obstacles [9]. As neither type of environment is very common in the real 

world, local obstacle avoidance algorithms are often integrated into global planners to 

allow for some degree of reactive behavior.  

1.2.1. Stationary Obstacle Avoidance and Path Planning 

There are two main types of configuration space path planers, topological and 

metric. Topological path planning uses previously known landmarks to direct a vehicle. 

As the environment assumed for this project is not well enough known for the vehicle to 

navigate via landmarks, this review will focus on metric path planning, which can easily 

be broken down into sub-goals for short term path planning.  

There are numerous types of metric path planners, the most common of these, that 

are applicable for obstacle avoidance with limited knowledge of the environment, are 

roadmap, cell decomposition and artificial potential field methods. Roadmap and cell 

decomposition path planners generally consist of two stages, representing the 

environment in configuration space and then an algorithm to determine the best path or 

roadmap through that space. 

1.2.1.1.  Roadmap Methods 
 

There are several frequently utilized roadmap representation methods. Using the 

generalized Voronoi diagram, points are found that are equidistant from nearby obstacles 

[9]. A path along these points, directed towards the goal location, is an extremely 

conservative means of obstacle avoidance. Ó’Dúnlaing and Yap described the method of 

retracting free space into a Voronoi diagram where the vehicle is a disc [10]. Latombe 

gives a good general description of the Voronoi diagram algorithm and possible 
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variations [11]. Choset and Burdick define the hierarchical generalized Voronoi diagram 

and show how it can be used for exploration of an unknown environment [12].  

Overholt et al expand on the concept of the Voronoi diagram and produce 

Voronoi classifiers and regions [13]. The Voronoi classifiers play the same role in 

Overholt et al’s method that obstacles play in the more traditional Voronoi method (i.e. 

the Voronoi diagram is produced so that all points forming the path are equidistant from 

the classifiers). However, instead of using the Voronoi diagram as a path, the authors use 

it to separate configuration space into Voronoi regions. Within these regions a robot’s 

trajectory is determined by the classifier. The regions and classifiers are iteratively 

determined to ensure that a robot starting at any location will end up at the goal. 

Unlike the Voronoi diagram, which maximizes the path’s distance from obstacles, 

a Visibility graph (or shortest-path roadmap) creates a path that hugs the vertices of 

obstacles in order to find the shortest path from the starting location to the goal. As the 

name suggests, a Visibility graph creates path segments from a vertex of an obstacle to all 

other obstacle vertices that are visible from the initial vertex. The path planning algorithm 

will then select the shortest set of segments to reach the goal. Nilsson first introduced this 

idea in 1969 [14]. Both Edelsbrunner and Latombe both provide a thorough description 

[11, 15]. Oommen et al use visibility graphs for robot navigation in an unexplored 

environment [16]. Through repeated exploration, the robot builds a visibility map of the 

environment using its sensors after which, it can navigate through the environment 

without sensors, assuming that all obstacles are permanent and stationary.  
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After the roadmap is created using one of these methods, or the countless other 

methods mentioned in literature, a variety of algorithms exist with which to find the best 

route along the roadmap to the goal. The choice of these algorithms depends greatly on 

the amount and reliability of the information available to the path planner. Dijkstra’s 

algorithm works by finding the lowest cost path from the initial state to a signal state, 

assuming that all path costs are non negative. This algorithm does not require a heuristic 

function to predict the cost from future states to the goal state. Urdiales et al use 

Dijkstra’s algorithm to find the shortest path within a multi-level path planning algorithm 

[17]. Qin et al use a particle swarm optimization algorithm after Dijkstra’s algorithm to 

find an optimal path [18]. 

A*, which is an extension of Dijkstra’s algorithm, is often considered one of the 

best general planners. However to use A*, the path planner must have an admissible 

heuristic function to estimate (without overestimating) the cost to move from every state 

to the goal state. As the heuristic function is often not available for unexplored territory, 

this algorithm, while powerful, is limited in its application and can often only be used for 

path planning in the local region of an unknown environment. Alexopoulos and Griffin  

use a variation of A* to find the shortest-time collision free path among stationary 

obstacles and collision free path among moving obstacles, assuming that the obstacles 

display only linear, constant velocity movement [19]. Oriolo et al use iterative 

applications of A* to generate local paths in an unknown environment. This method 

requires the robot to stop periodically to collect information about its surroundings and 

update its world map [20]. 
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Gilbert and Johnson reformat the path planning problem into an optimal control 

problem which takes into account both the orientation and the velocity of the robot [21]. 

They apply their method to the case of a robot manipulator, but the same technique could 

be used for finding or selecting a path in configuration space that balances the need to 

avoid obstacles with the ability to quickly reach the goal location. 

1.2.1.2. Cell Decomposition 
 

The environment can also be broken down, via cell decomposition, into a grid of 

either regular or irregular elements. Depending on the technique used to create the grid, 

this method can be referred to as fixed, adaptive, approximate variable-cell or Quadtree 

cell decomposition, certainty grids or occupancy grids. For basic fixed cell 

decomposition, a Cartesian grid is superimposed on the environment. Grid elements are 

considered occupied if an obstacle resides in any part of the grid element; the path 

planning algorithm finds a path through unoccupied cells. Lozano-Perez uses cell 

decomposition for automatic planning of manipulator movement [22].  Moravec and 

Elfes use wide angle sonar to map an area and classify regions as empty, occupied or 

unknown [23]. They use multiple, overlapping sensor readings to create a higher 

resolution map from lower resolution sonar measurements. Thrun uses data from multiple 

robots to create two- or three-dimensional maps using occupancy grids [24]. Jigong et al 

use cell decomposition along with LGODAM to plan a path while avoiding stationary 

obstacles and obstacle traps [25]. 

For irregular grids, if an obstacle falls in part of a grid element, that element is 

divided up into smaller and smaller segments until each segment is either fully occupied 

by an obstacle or completely free. Zhu and Latombe use constraint reformulation with 
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hierarchical approximate cell decomposition to reduce the amount of area that contains a 

mix of occupied and unoccupied space [26]. This method decreases the necessary 

computational time by allowing large grid elements to be used (in general), without 

necessitating the use of ‘mixed’ (partially occupied) elements– as individual gird 

elements can be appropriately subdivided.  

1.2.1.3. Artificial Potential Field Methods 
 

Potential Field planners create a field or a gradient throughout the environment 

based on an attractive force exerted by the goal location and a localized repulsive force 

created by obstacles that should be avoided. The robot is then treated as a point under the 

influence of this field and is smoothly guided to the goal. O. Khatib first introduces the 

artificial potential field concept and uses it to control a manipulator in a complex 

environment [27]. Borenstein and Koren produce a virtual force field by combining 

certainty grids with an artificial potential field [28]. However, as Koren and Borenstein 

[29] showed, potential field-based methods inherently cause steering oscillations when 

driving between densely-spaced obstacles. To overcome this problem, they developed the 

Vector Field Histogram Method [29, 30]. Hwang and Ahuja determine how to reach a 

goal by searching a global graph for the shortest path, a local planner then uses the 

potential field to avoid obstacles and optimize the path in real time [31]. If the local path 

proves to be un-navigable, then the global planner determines the shortest detour. The use 

of a global path reduces the usefulness of this technique for navigation in unknown 

environments. Montano and Asensio create an artificial potential field using a 3D laser 

range rotating sensor and show its usefulness on basic tasks such as avoiding obstacles or 

following walls [32]. Their paper provides a good discussion of the dynamic robot model 
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used in their algorithm.  Batavia and Nourbakhsh use a grid-based global potential field 

to perform the planning and navigation of a personal robot [33]. To create the global 

potential field, they take terrain type, whether or not the area has been explored and 

obstacle proximity into account. The ability to consider the risk of navigating through 

unexplored terrain in order to shorten a path makes this algorithm useful for partially 

known terrain.  

M. Khatib et al introduce the rotation and task potential fields, which they refer to 

as the extended potential field [34]. The rotation potential field takes the vehicle’s 

orientation into account when calculating an obstacle’s repulsive field. In this way, a 

vehicle traveling parallel to an obstacle would not suffer from the same repulsion as a 

vehicle directly approaching an obstacle. The task potential field allows the vehicle to 

ignore the repulsive fields of an obstacle that it will not be approaching while completing 

its tasks.  

Borenstein and Koren introduce a variation on the artificial potential field method 

and the occupancy grid method; the Vector Field Histogram. The Vector Field Histogram 

uses polar coordinates to prevent the vehicle from assuming trajectories that will 

approach obstacles while directing it to the goal [30]. This method allows vehicles to 

navigate smoothly down narrow corridors or between close obstacles, when this is the 

shortest path, a path that frequently causing steering oscillation with traditional potential 

field methods. Later, Ulrich and Borenstein introduce VHF+, to improve reliability and 

smooth the robot trajectories, and VHF*, a combination of VHF+ and A*, to deal with 

traps that arise from typical short term planning methods [35, 36].  
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1.2.2. Avoidance of Moving Obstacles 

The ability to avoid moving obstacles is necessary for robots that must perform 

tasks in environments that contain vehicles, people or other non-stationary objects. 

Dynamic obstacle avoidance, while navigating to a goal, is a rapidly growing field due to 

the increasing number of situations where mobile robots or other autonomous systems are 

present. Numerous papers and a few books have been published on this subject; however 

no single method appears to be universally preferred, perhaps due in part to the wide 

variety of environments and applications for which autonomous or semi-autonomous 

robots are being used.  

1.2.2.1.  Adapted Static Obstacle Avoidance  

Velocity Control  

One of the simplest forms of motion planning in a dynamic environment involves 

generating a path among any static obstacles using traditional path planning algorithms 

(see the previous section on static path planning) and then modifying the robot’s velocity 

along that path, in real-time, to avoid dynamic obstacles. While this method is often 

successful at reaching the goal without encountering an obstacle, it cannot be guaranteed 

to find a time optimal path and in certain situations proves unable to avoid the dynamic 

obstacles. It does, however, reduce the computational time needed to determine a path for 

the robot as dynamic obstacles that do not intersect the pre-planned path can be ignored 

and obstacles that do intersect the path need only be located a short time in advance and 

considered only in terms of speed adjustment. 
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Kant and Zucker present this method and use modified velocity profiles along an 

original static path which was generated via a visibility graph approach [37]. Lee and 

Lee, and Fujimura and Samet also use a combination of velocity control along a visibility 

graph generated path [38, 39].  

Re-planning 

Another method that utilizes global planning methods to avoid dynamic obstacles 

involves planning a path, using a very fast algorithm, around static obstacles and the 

present location of dynamic obstacle (treating the dynamic obstacle as temporarily static). 

As time progresses new paths are planned to take into account any change in the 

environment. While these paths are not always optimal, due to the continuous re-

planning, they are well suited for environments where dynamic obstacles move 

infrequently or only small distances, such as an office where a chair may be shifted or a 

drawer opened. Oriolo et al generate local paths within an explored area while building a 

global map [20]. Konolige uses a gradient field to locally evaluate paths and determine if 

they are obstacle free [40]. This technique can easily be scaled to include more and 

different sensors. Fujimori et al adapts a direct navigation algorithm to also allow a robot 

to also detect and avoid obstacles in real time while respecting the dynamic limitations of 

the robot [41]. However, as noted in the paper, restrictive and unrealistic conditions must 

be placed on the robot and obstacles to achieve navigation and collision avoidance. A 

more generalized version of this algorithm without such restrictions would have to be 

developed in order for it to be of practical use. 
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Obstacle Circumvention 

Zhuang et al use a path planner with a Visibility graph-like obstacle avoidance 

scheme to follow a very direct path to a goal [42]. A robot, under this algorithm, follows 

a straight path to a goal (without any static obstacle pre-planning). When the algorithm 

detects an object within the current planning window the algorithm determines if it is a 

static or dynamic obstacle. If the obstacle is static, the algorithm plots sub-goal(s) to 

allow the robot to efficiently circumnavigate the obstacle and return to its original path. If 

the obstacle is dynamic then the algorithm uses auto-regression to predict the obstacles 

future position and the robot circumnavigates that position, updating its path in real time.  

While this method does not always find a time or distance optimal path, no global 

knowledge is required which drastically reduces computation time.  The short-term 

planning limit also makes the path planner more flexible for unknown and poorly known 

obstacle dynamics. However, modifications would have to be made to adapt the planner 

for uncertainty in the location of immediate obstacles.  

Elastic Band Concept 

Elastic bands, as proposed by Quinlan and Khatib, are intended to close the gap 

between path pre-planning and obstacle avoidance [43]. As such, they can convert a path 

that is planned around stationary obstacles and which contains discontinuities and other 

actions that are kinematically or dynamically impossible for the robot to accomplish into 

a smooth path that the robot can navigate. This is done by considering the path as an 

elastic band acted on by two forces, a contraction force that removes slack from the path 

and a repellant force that moves the path away from obstacles. To reduce computation, 
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the elastic band can be considered as a series of overlapping ‘bubbles’ of free space 

centered on the path. In this way only the open area around the path needs to be 

considered when re-planning instead of all of configuration space. The elastic bands also 

allows the robot to avoid moving obstacles in real time, as the repellant force from the 

obstacles will push the path away collision causing trajectories.   

The elastic band concept is similar to the artificial potential field method in that it 

considers obstacles as producing a repellant force that is used to direct the robot away 

from the obstacles. However, the global pre-planning limits the use of elastic bands in 

unknown environments. Elastic bands applied in conjunction with a simple “bug” 

obstacle avoidance algorithm (where the robot moves as directly as possible towards the 

goal while following the external contours of any obstacles that blocks its path) would 

produce a smoother, safer path without the need for pre-planning.  

1.2.2.2. Dynamic Obstacle Avoidance  
 

Path Planning with a Time Dimension, State-Time Space  

Fraichard presents a way to plan trajectories in a dynamic workspace which he 

entitles the ‘state-time space’ approach [44]. If the current position of all static and 

dynamic obstacles and the velocity and acceleration of all dynamic obstacles is fully 

known before navigation, three dimensional path planners can plot an obstacle free path 

through ‘state-time space,’ in which the environment at each time step is treated as a two 

dimensional plane with time as a third dimension. Depending on the path planning 

algorithm used with this method, an optimal path to the goal (if one exists) can be 

guaranteed to be found. 
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However, the limitations on this method make it difficult to apply to real-world 

scenarios.  While, as previously mentioned, methods exist to predict future (specifically) 

human movement none of these methods has nearly the certainty of performance that 

would be needed in order to use the ‘state-time space’ approach to its fullest advantage.  

In addition, the computational cost is prohibitive to completely up-date the path as 

changes in the velocity of obstacles are detected in the three-dimensional world.  

Kindel et al apply kinematic and dynamic constraints to the robot space-time 

planning and apply their results to an experimental robot with an overhead vision system 

[45]. Their method is effective only for static obstacles and moving obstacles with a 

constant, linear velocity.   

Yu and Su use a variation of ‘state-time space’ planning but limit the region of 

planning by focusing on “observation space,” the area that the robot can sense, and “work 

space” the obstacles that are close to the robot [46].  They also make extensive use of 

path repair algorithms to deal with dynamic obstacles and the inability to completely 

predict their future movement.  

Genetic and Evolutionary Algorithms 

Wang et al use genetic algorithms to generate a path around static obstacles and 

the predicted collision points of dynamic obstacles based on a polygon representation of 

the obstacles [47]. They reduce the calculation time needed for off-line planning and path 

re-calculation by considering only the vertices of obstacles using vertex++.  

Xiao et al develop and revise the Evolutionary Planner/ Navigator (EP/N) [48, 

49]. This planner/navigator can utilize specific environment knowledge to enhance its 
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path planning performance. The planner/navigator’s ability to self tune for a given 

environment is valuable; however the need to repeatedly navigate through the 

environment in order to accomplish the tuning reduces the usefulness for unknown 

environments.  

Han et al use genetic search algorithms to generate a goal directed dynamic path 

[50]. Their use of a cost function instead of global optimization decreases computational 

time and allow for efficient, real-time navigation. Sugihara and Smith use a genetic 

algorithm for path and trajectory planning [51]. Their method is suitable for pre-planning 

as well as real-time motion planning.   

Gradient Methods 

The potential field method of obstacle avoidance, described by Borenstein and 

Koren in the previous section on static obstacle avoidance, can be adapted for dynamic 

obstacle avoidance [28]. O. Khatib in his initial artificial potential field paper surmises 

that a combination of high level (global) path planning with low level (local goal) 

planning could allow a manipulator to avoid moving obstacles [27]. 

Malik, on the other hand, develops the concept of the Extrapolated Potential 

Field, which predicts an obstacle’s path and uses a time and distance weighting scheme to 

generate a path, for the robot to the goal, which avoids all obstacles [52]. Similar to the 

static potential field planners, this method is usually quite fast at generating a path but 

will often miss potentially shorter routes between obstacles that are close together.  As 

Borenstein and Koren mentioned for the static case, this type of planner is also subject to 

oscillation and can run into problems with local minima when confronted with a 

combination of static and dynamic obstacles.   
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The Linear Programming Navigation gradient method (LPN) was originally 

developed for static obstacles by Konolige, but Farinelli and Iocchi modify this method 

for environments with dynamic obstacles [40, 53]. The LPN method uses numerical 

artificial potential fields that take both intrinsic (situational) and adjacency (movement) 

costs into account to compute a gradient using a generalization of the wavefront 

algorithm.  The dynamic variation (LPN-DE) computes the projected motion of the 

obstacle and increases the weight of the region where the obstacle is predicted to travel to 

account for future movement.  

Inevitable Collision States, ICS 

Fraichard and Asama propose and explore the concept of inevitable collision 

states (ICS), the use of which allows a vehicle to plan safe motion around obstacles [54]. 

These states take into account the robot’s future positions as well as its kinematic and 

dynamic properties in addition to the positions and velocities of all detectable obstacles. 

In this way, the robot is assured of maintaining safety as it never reaches a position where 

it cannot avoid a collision (either by changing or maintaining its current state).   

Parthasarathi and Fraichard limit the set of trajectories that are considered with 

ICS so that only a conservative subset of future vehicle trajectories (which are modeled 

on observed behaviors from other objects in the environment) are considered [55]. They 

also adapt ICS for a vehicle with car-like dynamics.  

Martinez-Gomez and Fraichard develop ICS- AVOID which prevents a vehicle 

from moving to ICS[56]. They also compare ICS to velocity obstacles and the dynamic 

window obstacle avoidance approach and determine that the ICS approach is superior due 

to the way in which it reasons about the future and is able to select safe controls. 
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Velocity Obstacles 

Fiorini and Shiller develop and Shiller et al expand upon the notion of the 

velocity obstacle [57, 58]. Velocity obstacles are a first-order method of motion planning 

that use robot and obstacle velocities directly to avoid collisions in time-varying 

environments. This method computes a collision cone of robot velocities that will lead to 

probable collisions with an obstacle, based on the obstacle’s current (and in later works) 

projected velocity. The velocity obstacle method takes the dynamic constraints of the 

robot into consideration to narrow down the field of potential robot velocities. However, 

the shape and dynamics of the obstacle must be well known in order for this method to be 

effective.   

In later papers, Large et al adapt the velocity obstacle concept to account for risk 

and long obstacles (such as hallway walls) and non-linear velocities [59]. 

Yamamoto et al apply the velocity obstacle concept to situations more likely to be 

encountered in the real world including obstacles that change velocity during sensor 

cycles and they also introduce the idea of a collision distance index to prioritize the 

avoidance of obstacles that are closer (and thus pose a more imminent threat) to the robot 

[60].  

Probabilistic Velocity Obstacles 

Kluge and Prassler develop probabilistic velocity obstacles (PVOs) where a 

probabilistic collision cone is developed for each obstacle and these are combined to 

form composite probabilistic velocity obstacles [61]. 

Fulgenzi et al combine Probabilistic Velocity Obstacles (PVOs) with a Bayesian 

Occupancy Filter (BOF) [62, 63]. These authors use the BOFs to represent the obstacles 
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and estimate their velocities in an unknown and uncertain environment and then employ 

the PVOs to find safe robot velocities. More details on this method are provided in 

Section 1.2.4 

Dynamic Window 

The dynamic window approach, which can also be used as a simplifying 

adaptation on other algorithms, reduces the complexity of path planning by only 

considering velocities that the robot can reach safely within a short time interval. Using 

this method, all of the safe and reachable velocities of the robot make up the dynamic 

window, which is represented in velocity space. On its own, the Dynamic Window 

Method is best suited for static environments or environments that have few, slowly 

moving dynamic obstacles.  However, it can be a very powerful tool when combined with 

other algorithms. 

Fox et al use the dynamic window approach to account for the robot’s dynamic 

constraints and applied the algorithm to their robot RHINO [64]. Brock and O. Khatib 

propose the global dynamic window approach to combine path planning with real-time 

obstacle avoidance in order to safely navigate in a dynamic environment while 

approaching a goal [65]. 

Seder and Petrovic combine the dynamic window method with the D* algorithm 

to enable long term path planning with obstacle avoidance [66]. Later, they also allow for 

the avoidance of moving obstacles by adapting dynamic windows to avoid moving cells 

with known trajectories by performing obstacle/robot collision checking at fixed time 

intervals [67].More details on this method are provided in Section 1.2.4 
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Probabilistic Methods 

Probability based data association methods have also been used to track multiple 

moving obstacles. Schulz et al and later Almeida and Araujo use a Sample-based Joint 

Probabilistic Data Association Filter (SJPDAFs )in order to accurately track the state of a 

moving object and propose that this knowledge could be used for autonomous navigation 

[68, 69]. While this method is fairly accurate, the computational load is very high 

(necessitating a low sensor sampling rate) and grows exponentially with each additional 

object that is tracked. Benenson et al, a Bayesian estimation form of SLAMMOT is used 

to detect and track obstacles while a Partial Motion Planner combined with the Inevitable 

Collision State formulation are used to direct the vehicle [70]. 

Rapidly-exploring Random Trees, RRTs 

Rapidly-exploring Random Trees (RRTs) can be used to perform navigation 

while avoiding obstacles and accounting for vehicle constraints by utilizing a high 

dimensional state space [71, 72]. Kuwata et al adapt the RRT to perform on-line planning 

for an actual vehicle in a dynamic and uncertain environment through the use of lazy 

check, a risk penalty tree (as well as other extensions) [73]. 

Fulgenzi et al combine RRTs with Gaussian Processes to allow for the avoidance 

of moving obstacles when path planning [74]. The future motion of an obstacle is 

modeled as a Gaussian Process and the RRT planner avoids paths that have a high 

probability of leading to a collision. 

1.2.3. Detailed Literature Comparison 

VOS (as developed in Chapter 2) will be compared in detail to the previously 

mentioned BOF/PVO method [62, 63] and the Dynamic Window method [67]. All three 
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of these algorithms are velocity space based, reactive obstacle avoidance and navigation 

methods. Because VOS has been designed to fulfill the same purpose as these algorithms 

its performance and characteristics will be analyzed in comparison in order to validate the 

usefulness of this contribution. 

1.2.3.1. Summary of Comparison Methods 

BOF/PVO  

 The first comparison method is a combination of Bayesian Occupancy Filters 

(BOF) and Probabilistic Velocity Obstacles (PVO) [62] and is conceptually similar to the 

VOS method developed earlier in this chapter.  

A BOF is used to determine the probability of occupancy of each cell in 

occupancy space and create a probabilistic distribution function (pfd) of the velocities of 

the obstacles that occupy these cells. The pdf is translated into a three dimensional grid, 

where each slice represents a specific obstacle velocity value and then this grid is used to 

estimate the obstacle’s next location so that filled cells can be tracked and clustered into 

obstacles. Using this information, probabilistic velocity obstacles are created, and used to 

calculate the probability of a collision for each velocity and velocities that are deemed 

sufficiently safe are retained. This subset of safe velocities is then evaluated to find the 

safe velocity with the lowest difference between the velocity direction and the direction 

of the goal and this velocity is used as the next robot command[63]. 

DW 

The original dynamic window (DW) [64] method is a velocity space based 

stationary obstacle avoidance method. This algorithm operates by translating the 
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configuration space locations of obstacles into occupied locations in velocity space (v,ω).  

A subset of admissible velocities - velocities which fall within the robot’s kinematic and 

dynamic bounds and allow the robot to break before colliding with an obstacle – is then 

created and from this subset a robot velocity for the next time step can be chosen.  In [66] 

dynamic windows were combined with the FD* (focused D*) algorithm to allow for 

optimal path planning (within the bounds of sensor information). Later, in [67] the 

dynamic window was again extended to allow for moving obstacle avoidance by 

calculating collision points between the robot’s future locations (based on admissible 

robot velocities) and future obstacle positions. 

1.2.3.2. Obstacle Avoidance 

BOF/PVO 

Both the VOS and BOF/PVO methods only require data from a scanning range 

finder in order to avoid obstacles. In addition, both methods take the uncertainty inherent 

in the range finding sensor into account when building this grid. However, the BOF/PVO 

method uses a probabilistic representation of occupancy space based on both the sensor 

characteristics and the velocity distributions for previously observed obstacles. 

The occupancy grid for the BOF/PVO method is calculated at every time step 

using Bayes rule: 

��(���|�(�)) = ��(�(�)|���) ∙ ∑ (��
(�)(���) ∙� ��
(�)(��))�(�(�)) 																				(1.1) 
 

where 	��(���|�(�)) is the probability of the cell c being occupied given the sensor 

observation z(t). The summation term updates the previously constructed grid using the 
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prior occupancy of the antecedent cells,	���(�)(���), and the cell’s velocity distributions, 

��
(�)(��) . 
The BOF/PVO method then creates a pdf for the velocity of cell c based on the 

probability that the contents of an occupied cell from the previous time step,	���(�),  
moved to occupy this cell. The velocities of each cell that might move to occupy the new 

cell in question are normalized using the equation: 

 

∀�. ��(��) = ���(�)(��)∑ ���(��)(���)�� 																																																				(1.2) 
 

where �� is a velocity distribution and �′ encompasses all velocity probabilities of all 

possible antecedent cells. This produces a velocity distribution associated with the 

occupants of each cell. The cells are independently clustered for each time step (there is 

no obstacle continuity between time steps) based on physical proximity and a similarity 

in their velocity distribution and a velocity profile for the cluster is developed based on 

the distributions of each member cell.  

The velocity distribution for the obstacles is discretized (usually to integer values) 

and limited to a specific range. In essence, this algorithm considers the probability of 

every occupied cell (from the previous time step) in the occupancy space grid moving to 

every reachable cell in the current time step in order to calculate the probabilities of 

occupancy and the velocity distributions for the current time step. The larger the number 

of obstacle velocities that must be considered, and therefore the larger the number of 
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potential new cells that the contents of each previously occupied cell might move to, the 

more complex the probabilities in the grid become to calculate. 

 The velocity obstacle can then be formed by determining the probability of a 

collision, for each robot velocity,	�����(�). This is found by (in short) multiplying the 

probability of a cell being occupied, ��(���|�(�)),	 by the probability of the contents of 

that cell having the specific velocity,	��(��),	that would cause it to be part of the velocity 

obstacle and then summing over all obstacles and the number of time steps into the future 

that are being considered. 

DW 

 The DW method also uses laser range finder data to build an occupancy grid for 

the positions of stationary and moving obstacles, however this algorithm requires 

independent knowledge of the of the velocity vector (v,ω) and motion heading of all of 

the occupied cells that comprise each moving obstacle. Presumably, the DW method 

could use either of the velocity estimation techniques developed for the VOS or 

BOF/PVO methods. 

Using the obstacle position and velocity information, the DW algorithm computes 

all future locations of the robot (based on each kinodynamically feasible robot velocity) 

and the obstacles at specified time intervals. A total of Nt of these potential mutual 

collisions points are computed and a collision check is performed between the robot and 

all of the obstacles at each time interval. The earliest collision (if there is one) is used to 

locally re-plan the FD* path, by considering all of the obstacles as stationary at the 

position which they will occupy at the time of that first collision. 
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Comparison to VOS 

The VOS and BOF/PVO methods both estimate the velocity of moving obstacles 

and account for both the uncertainty in the sensor information and in the velocity 

estimation. The BOF/PVO method creates a discretized velocity distribution for each 

obstacle which decreases the precision of the obstacle velocity estimates but, 

proportionally, decreases the relative computational complexity. The VOS method 

calculates a single velocity value for each moving obstacle as well as a velocity 

uncertainty, Vu, term for each estimated velocity (see Section 2.3). The VOS method is 

significantly less computationally complex, but does not capture as much information as 

the BOF/PVO method, where a broad range of possible obstacle velocities are 

considered. However, the velocity estimation method used in VOS has been shown to 

have relatively low amounts of error (<6%) with low speed testing (Appendix A), 

therefore the more complete information captured by the BOF/PVO method is not 

necessary around these types of obstacles. In addition, given the success of VOS in 

simulations with higher speed obstacles (velocities up to	2�� ), the lower complexity, 

center of certainty velocity estimation method compares very favorably with the BOF 

method. 

The DW method depends on external information for the velocity of the obstacles 

and, while it could be modified to partially incorporate the velocity estimation techniques 

developed by either the VOS or BOF methods, the use of the mutual collision points as 

the obstacle avoidance method in DW means that incorporating uncertainty in obstacle 

position or velocity would increase the amount of collision checking required and 

therefore the computational complexity.  
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 Another difference between the algorithms is the time limited aspect of the 

BOF/PVOs and DW methods versus the perpetual nature of the velocity obstacles used in 

VOS. Both the BOF/PVOs and DW methods will only avoid future collisions which 

occur within a given number of time steps, while the VOS method takes into account all 

future collisions, regardless of how far in the future they are predicted to occur. This time 

limitation will not lead to a collision in the near future, but may cause the robot to end up 

in a trap situation or degrade the quality of the chosen path (as long term avoidance is not 

considered). The difference between the perpetual and time-limited obstacle avoidance 

becomes more pronounced for obstacles with constant velocities (or stationary obstacles), 

but the difference diminishes for more erratic and unpredictable obstacles. 

1.2.3.3. Goal Finding 

BOF/PVO   

The BOF/PVO method uses a goal finding/navigation technique that is similar to 

that used for VOS. Possible robot velocities are evaluated based on a weighted 

combination of goal finding and collision avoidance properties. Possible robot velocities 

are ranked using the equation: 

�(�) 	= 	 ∙ |�| + " ∙ ℎ(�, $%�&)     (1.3) 

where ℎ(�, $%�&) is the difference between the direction of the goal and the velocity 

direction and   and " are empirically chosen constants.  

Robot velocities that produce a probability of collision (over the specified time 

period,	(�', �' + ()*+) that is lower than a safety threshold (�(�����(�) ∈ (�', �' + ()*+ <
���./)	are evaluated as possibly robot velocities using the equation: 
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�∗(�) = �(�) ∗ ((1.0 − �(�����(�) ∈ (�', �' + ()*+)) ∙ 34��56(78
9:(;)).  (1.4) 

 

 The last term of this equation, 
34��56(78
9:(;)), allows for velocities that will be safe over a 

longer period of time to be preferred. The most favorably rated velocity is then chosen as 

the robot command.  

Similar to VOS, this method does not perform long term planning and is not 

suitable for any type of maze situation. 

DW 

 The DW method has a two stage path planning strategy. In the first stage, the FD* 

algorithm is used to find an optimal path to the goal in a stationary environment – if one 

is visible. The environment is assumed to be stationary for this planning, with moving 

obstacles located at future collision positions.  However, this variation of the algorithm 

also uses a ‘safety cost map’ that, in effect, enlarges the size of obstacles in configuration 

space in order to encourage the FD* algorithm to plan a path that keeps the robot far 

away from any obstacles. This improves the safety of the path but can lead to the robot 

following very inefficient paths around groups of obstacles. 

 The second stage of the path selection is similar to that used by BOF/PVO and 

VOS. The DW evaluates potential velocities based on a weighted sum of safety and goal 

finding priorities using the equation: 

Γ(�, =) = >?��/�@ + (1 + >)?A�BC     (1.5) 
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 where > is the weighting factor, ?��/�@ is a clearance measure (which is based on the 

time needed for the robot to break) and ?A�BC is a measure of the velocity alignment with 

the FD* path. The path planning with this version of the DW algorithm has the ability to 

plan an optimal path, however it is limited (as VOS and BOF/PVO are) by the extent to 

which it can perceive the environment (its planning cannot account for occluded areas) 

and by the need to re-plan with the FD* due to moving obstacles and uncertain sensor 

information. 

Comparison to VOS 

All three methods employ a tradeoff between obstacle avoidance and efficient 

goal seeking when selecting a velocity. The BOF/PVO method is the only method that 

takes probability explicitly into account; however the use of the ���./ threshold also 

creates the potential for no robot velocity being considering sufficiently safe and the 

robot performing emergency breaking. This choice may lead to additional collisions with 

aggressive obstacles and prevents the robot from being able to choose the least harmful 

potential velocity (this type of threshold led to simulation failures with the original 

velocity obstacle method in Section 2.5.4.2.). The relative nature of the velocity 

occupancy space gird in VOS means that the robot will always choose the best (or least 

harmful) velocity based on the provided information, even if that velocity is just one that 

leads to the lowest speed collision. 

 The first stage of the DW method allows for longer term planning, which the 

VOS and BOF/PVO methods lack. However, both of these methods could be adapted to 

include this sort of long term planning by incorporating the FD* plan as a series of local 

goals.  
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1.2.3.4. Computational Complexity 

BOF/PVO  

The computational complexity of the BOF/PVO method is dependent on: 

1) the size and resolution of the spatial occupancy space grid 

2) the resolution of velocity space (i.e. the number of different possible robot 
velocities) 

3) the number of discrete velocities that are in the pdf for each obstacle 

4) the number of time steps for which a collision is being avoided 

 

In order to improve the operational speed of the BOF/PVO method, the number of 

discrete velocities that are considered for the obstacles are usually reduced so that the 

obstacles are assumed to be moving at one of only a few different speeds in each 

direction. This assumption improves the processing time of the algorithm[62], but makes 

it less precise at avoiding moving obstacles.  

In addition, the PVO method computes the cumulative probability (over multiple 

time steps) of a collision occurring based on each specific robot velocity selection. The 

more time steps in the future that are considered, the higher the complexity in calculating 

this value, therefore, the PVO is usually limited to only avoiding collisions that will occur 

a few time steps in the future. This might not unduly affect the algorithms performance if 

the robot is surrounded by obstacles that frequently change velocities, however it does 

decrease the robot’s safety for situations where the obstacle velocities are more constant 

and could cause the robot to end up in a trap situation when around stationary obstacles 

[62, 63].  
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DW 

The computational complexity of the DW method is dependent on: 

1) the size and resolution of the configuration occupancy space grid  

2) the number of different possible robot velocities  

3) the number of moving obstacles 

4) the number of mutual collision points along each potential robot and obstacle 

path (Nt, this is also a factor of the number of time steps in the future that are 

being considered) 

5) required path re-planning (new FD* plan) based on moving obstacles or 

discrepancies in sensor information (the algorithm attempts to re-plan locally, but 

sometimes needs to create an entirely new plan) 

 

The original DW method had very low computational complexity, but the 

extensions for FD* planning and moving obstacles require significantly more 

computation. DW can operate more quickly if few mutual collision points (Nt) are 

considered between the robot [67] and all of the moving cells that make up each obstacle, 

however if too few points are considered the algorithm may miss a potential collision and 

choose an unsafe velocity. 

 

VOS 

The computational complexity of VOS was designed to be low in order to allow 

for quicker updates and faster responses to changes in the robot’s environment. The 

computational complexity of VOS is dependent on: 

1) the size and resolution of the configuration occupancy space grid (specifically, 

the number of visible obstacle elements) 

2) the resolution of velocity occupancy space (i.e. the number of different 

potential robot velocities). 
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VOS is significantly less computational complex than the two comparison 

methods. Like the other two methods, its complexity does scale up with the size and 

resolution of configuration space and the number of potential robot velocities. However, 

unlike these methods VOS (without increasing its computational complexity) looks ahead 

an infinite number of time steps (see Section 2.3.1.1), considers all potential mutual 

collision points (assuming constant velocity values) and does not limit obstacles to 

having one of a specific set of velocities. 

In addition, the construction of velocity occupancy space is highly parallelizable 

due to the independent nature of each robot velocity and, in [3], VOS was programmed 

using a graphics card and the velocity occupancy space grid was able to be constructed 

and fully populated in less than 10ms. Therefore, this algorithm can operate extremely 

quickly and is usually only limited by the speed at which it receives sensor data and the 

speed at which the robot can receive new velocity commands. 

1.2.4. Differential Drive Vehicle Obstacle Avoidance 

Most of the previously mentioned obstacle avoidance and navigation methods 

operate, at the most basic level, by selecting location or velocities for the vehicle in 

question to assume. Even though some of these methods compensate for sensor error, 

they select desired vehicle velocities under the assumption that the vehicle is holonomic 

and can instantaneously accelerate to the selected velocity. While these assumptions are 

acceptable in simulations, they are not realistic for experimental platforms. 

Adding constraints to velocity obstacles, or to other adaptations of velocity space 

based obstacle-avoidance methods, has been considered by a few different authors. Owen 
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and Montano solve for the time at which a robot (moving at a certain velocity) and a 

moving obstacle will arrive at the same location in order to differentiate between safe and 

collision causing robot angular velocities [75]. They model a differential drive robot’s 

path as a circle (given different, constant velocities for each wheel) and the obstacle’s 

path as a straight line and then solve for the locations at which the line and circle 

intersect.  When selecting between safe angular velocities, they choose a velocity 

command that will allow the robot to reach the desired angular velocity as soon as 

possible. In a later paper, Owen and Montano use the selected angular velocity as the 

seed for an optimization process in which they converge on a desirable robot trajectory 

[76]. Owen and Montano’s work differs from the work presented in Chapter 4, in that 

they select angular velocities and assume instantaneous velocity change (though bounded 

by acceleration limits), while VOS selects linear velocities and assume only 

instantaneous acceleration change. 

Wilkie et al develop generalized velocity obstacles in order to take the constraints 

of a car-like robot into account [77]. Similar to Owen and Montano, they find the time at 

which the robot and an obstacle will be at their closest point, given that the robot follows 

a specific control command (based on its kinematic model). If, at this time, there is not a 

collision between the robot and the obstacle then the control can be considered collision 

free. While this method takes the kinematics of the vehicle into account, it does not 

consider the vehicle dynamics.  

Instead of developing a specific algorithm that accounts for vehicle constraints, 

Minguez and Montano create an abstraction layer that can be applied to almost any 

collision avoidance algorithm in order to allows the algorithm to innately take any 
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vehicle’s shape, kinematics and dynamics into account (even if the algorithm is designed 

for a holonomic robot) [78]. However, while their method takes acceleration limits into 

account, it does not appear to account for the time required for acceleration (a necessary 

consideration for high speed navigation using the velocity obstacle method), instead it 

relies on commands that are reachable within a short time period. 

1.2.5. Vehicles with Actuation Error 

Morales and Con Son considered heading actuation error via the interval method 

that they use to control their robot Diablo [79]. They compensate for this error by 

periodically adjusting their robot’s orientation so that it follows a desired path.  

Widyotriatmo and Hong integrate sensor and actuation uncertainty into a Partially 

Observable Markov Decision Process (POMDP) in order to obtain an optimal action 

policy for a robot at each time step [80]. While using a probabilistic framework to 

account for actuation error is appropriate for path planning, it is a hazardous choice for 

performing obstacle avoidance. Even if there is a low probability of a large (and collision 

causing) actuation error occurring, it is still necessary for the obstacle avoidance system 

to assume a worst case scenario in order to assure the robot’s safety, instead of only 

compensating for most probable scenario. 

1.2.6. Summary of Key Obstacle Avoidance Methods 

In Table 1.1, the properties of some of the more pertinent obstacle avoidance 

algorithms from Section 1.2 that either account for sensor error or allow for the 

avoidance of moving obstacles (or both) are summarized. The second column in the table 

referrers to if the methods has been validated through experimental trials, if it has, a 
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relevant source is listed. The general computational complexity of each algorithm is 

indicated by the rate at which new velocities were produced for the robot (V rate) and the 

speed of the processor producing these velocities for the experimental trials (or for 

simulations, if experimental results were not available). The susceptibility of each 

algorithm to visible local minima is listed as well as the degree to which the method 

exhibits goal oriented navigation and incorporates sensor uncertainty. If theses later 

capabilities are fundamentally part of the method, then the property is listed as ‘inherent’. 

However, if goal seeking or sensor uncertainty compensation is independent of the 

obstacle avoidance method (e.g. a specific navigation method is not inherent to the 

Inevitable Collision States (ICS) method - ICS could be combined with many different 

types of navigation algorithms which would alter the amount of computation needed to 

navigate with this algorithm) then the ability is simply listed as ‘yes’ and, if appropriate, 

a relevant source from Section 1.2 is listed. The algorithm’s ability to avoid moving 

obstacles is also summarized. If the algorithm requires knowledge of the positions or 

velocities of moving obstacles from a source other than a range finder (the velocities are 

not calculated based on laser range finder data and the algorithm does not account for 

error in the velocities), then this knowledge is listed as ‘required’. Finally, if the 

algorithm assumes that the obstacles will move in a specific way (i.e. at a specific 

velocity) then this restriction is also noted. 
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Table 1.1 Summary of Obstacle Avoidance Algorithms from Section 1.2. 
(Please note that this table is not exhaustive) 

 

Method 
Experimental 

Results 

Computational 
Complexity Visible 

Local 
Minima 

Goal 
Oriented 

Navigation 

Sensor 
Uncertainty 

Moving Obstacles 

V 
Rate 

Processor 
Speed 

Independent 
Obstacle 

Knowledge 

Restricted 
Obstacle  

Velocities 
Potential 

Fields [27] 
Yes [27] 100Hz 1986x Yes Inherent Yes [28] 

Only Stationary 
Obstacles 

Vector Field 
Histogram 

[28-30] 
Yes [28] 337Hz 20MHz Yes Inherent Inherent 

Only Stationary 
Obstacles 

State-Time 
Space[44-

46] 
Yes [46] 

4-
10Hz 

333MHz NMD± Yes No Required No 

Dynamic 
Gradient 
Methods 

[40, 52, 53] 

Yes [53]  10Hz 266MHz Yes Inherent No Required No 

ICS [54-56] No 10Hz+ 1.6GHz NMD± Yes [54] No Required No 
Velocity 
Obstacles 
[57, 58] 

Yes [81] 3.3Hz 166MHz Yes Yes[82] No 
Usually 

Required 
No [59, 

83] 

BOF/PVO 
[62, 63] 

No See Section 1.2.3 Yes Inherent Inherent 
Not 

required 
Yes 

Dynamic 
Window 

[64] 
No See Section 1.2.3 

NMD±, 
No for 
[67] 

Yes [65] No 
Required 

[67] 
No 

SJPDAFs 
[68, 69] 

Yes [69]* 4Hz 2008p NMD± Yes [84] Inherent 
Not 

required 
No 

Probabilistic 
RRTs [71, 

72] 
Yes [73] 10Hz 2.23GHz No Inherent Yes [74] 

Required 
[74] 

Yes [85] 

*Experimental results with a stationary robot, tracking obstacles only 
+ Rate with an A* planner 
x Processor speed not provided, research was performed in 1986  
p Processor speed not provided, research was performed in 2008 
± Navigation Method Dependent; susceptibility to visible local minima is dependent on the 
navigation method in use 
 
The various available algorithms have a range of strengths and weaknesses; 

however, no single algorithm is generally accepted and utilized. A desirable obstacle 

avoidance method should have the properties listed in Table 1.2. 
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Table 1.2 Desired obstacle avoidance algorithm properties 

Experimental 
Results 

Computational 
Complexity Visible 

Local 
Minima 

Goal 
Oriented 

Navigation 

Sensor 
Uncertainty 

Moving Obstacles 

V Rate 
Processor 

Speed 

Independent 
Obstacle 

Knowledge 

Restricted 
Obstacle  

Velocities 
Yes >10Hz 1-3GHz No Inherent Inherent Not required No 

 

Unfortunately, none of the review obstacle avoidance methods possess all of these 

characteristics. Most of the algorithms with low computational complexity and that 

account for sensor uncertainty are only capable of avoiding stationary obstacles. Of the 

algorithms that can avoid moving obstacles, those that are faster than 10Hz require 

independent knowledge of the position and velocity of surrounding obstacles. The few 

methods that are able to avoid moving obstacles and that account for sensor uncertainty 

are either too computational complex to operate in real-time or must make very 

restrictive assumptions about potential obstacles in order to accelerate the processing.   

 

1.3. Original Contributions 

Based on the need for an obstacle avoidance algorithm indicated by Table 1.1, the 

initial goal of this thesis is to develop an algorithm that is successful according to all of 

the categories listed in Table 1.2 – an algorithm with low computational complexity (the 

algorithm should produce new robot velocities at a rate of at least 10Hz on a modern 

laptop computer) that is not susceptible to local minima, which can perform goal oriented 

navigation and is able to avoid moving obstacles using only uncertain sensor data without 

independent knowledge of the obstacles or making restrictive assumptions about their 
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velocities. In addition, while most obstacle avoidance algorithms are designed for ideal, 

holonomic/omni-directional vehicles the algorithm developed in this thesis should be 

applicable to realistic (non-holonomic) kinodynamic robot configurations and this 

capability should be demonstrated experimentally.  

The primary original contribution of this thesis is the development of VOS which 

combines the sensor noise and uncertainty representation of configuration occupancy 

space [23] with the long term avoidance of moving obstacles provided by the velocity 

obstacle concept [57, 82]. In order to facilitate obstacle avoidance, the ability to estimate 

the velocity of moving obstacles from configuration space has been developed. Also 

contributed is the relative weighting scheme between velocities that lead to various 

obstacles or the goal. This allows the robot to safely avoid obstacles while ultimately 

navigating towards the goal. This work is described in Chapter 2 and in [4, 5].  

The two extensions to VOS, presented in Chapters 3 and 4, are also original 

contributions. Velocity based navigation has been used by other researchers, but it is 

almost always assumed that the vehicle being controlled is capable of just assuming 

another velocity without taking time to accelerate or decelerate. The acceleration based 

method developed here does take for granted that the robot can instantaneously change 

accelerations, but this is a more realistic (and less error generating) assumption than 

instantaneous velocity change. In addition, the acceleration based method adapts velocity 

based navigation for an acceleration controlled vehicle both for the specific VOS 

algorithm and for any other type of velocity based navigation. This work is detailed in 

Chapter 3 and in [6, 7]. 
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Finally, the adaption of VOS for actuation error is an original contribution that 

allows for velocity based navigation to be used when there is uncertainty about how a 

vehicle will respond to actuation commands. While the methodology created to 

compensate for this error can only be used with VOS or other velocity obstacle based 

obstacle avoidance methods, it does apply to any type of actuation error for which an 

upper bound on velocity error can be produced. This contribution is detailed in Chapter 4 

and in [8].  

 

1.4. Purpose and Scope 

The purpose of the research presented in this thesis is to provide a new method of 

safe autonomous vehicle navigation in an unknown environment in the presence of 

moving obstacles using uncertain sensor data.  This method, termed velocity occupancy 

space (VOS), combines the sensor error and uncertainty representation of certainty grid 

occupancy space with the velocity obstacle representation of moving obstacles. In 

addition, VOS allows for active velocity selection which will enable the robot to navigate 

efficiently and autonomously, as well as perform obstacle avoidance, while moving 

toward the desired destination. The VOS algorithm is developed and described in detail 

in Chapter 3 and [4, 5]. 

VOS has also been extended in order to allow for autonomous vehicle navigation 

under specific circumstances. First, while the original VOS was designed for a holonomic 

vehicle, it has been adapted to control a differential drive vehicle with acceleration based 

actuation. The purpose of this extension is to compensate for the non-holonomic and non-
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instantaneous acceleration properties of a more realistic experimental vehicle without 

compromising the safe and effective means of obstacles avoidance and navigation 

inherent in the original VOS algorithm (see Chapter 4 and [6, 7]). 

The second extension of VOS is to allow a linear and rotational velocity 

controlled vehicle that suffers from a significant amount of actuation error to be 

effectively operated using VOS. This error may be caused by a delayed motor response, 

an ill tuned motor feedback system or uncertain terrain – anything which makes the 

velocity and position of the vehicle difficult to predict and control. As long as the bounds 

on this error are known, VOS can still be used to provide safe navigation (see Chapter 5 

and [8]). 

The goal of this research has been to design a system that is inexpensive yet 

highly versatile; suitable for both military and civilian applications in structured and 

unstructured environments. As such, no assumptions are made about the types of 

obstacles that are likely to be encounter and it is assumed that the algorithm has almost 

no prior knowledge of the environment (no map is provided, nor is a permanent map 

built). The two assumptions are made is that the local environment is relatively flat so 

that it can be approximated as two dimensional and that the maximum velocity of all of 

the obstacles is equal to or less than the maximum velocity of the vehicle – otherwise, the 

vehicle cannot be assured of avoiding a collision.  

However, the scope of the research presented herein is limited to the specific 

elements of autonomous navigation that are addressed by VOS and its extensions. Over 

the past few decades, there has been an enormous amount of research devoted to many 
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different aspects of autonomous navigation and obstacle avoidance including sensor 

development and characterization, vehicle localization, motor feedback control loop 

design, etc. It is beyond the scope of this thesis to address most of these topics and while 

some of these other methods have been utilized in order to allow for the simulation or 

experimental testing of VOS, they do not represent an original contribution nor have they 

been developed significantly beyond what has been referenced from the work of other 

researchers.  

In addition, VOS has also been designed as a relatively low-level (almost 

reactive) obstacle avoidance algorithm, so it would not be an appropriate choice for any 

sort of complex navigation or maze-type scenario. However, VOS has the potential to be 

integrated with other (higher level) navigation functions that may be available on a UGV 

in order to compensate for this shortcoming. For example, VOS could be combined with 

a map/GPS interface – a device which has become common in many commercial 

vehicles. The map and GPS would provide long term path planning or higher level 

navigation, but could also provide the VOS algorithm with short-term or moving goals 

which the algorithm could follow while avoiding local obstacles – a function which is 

currently performed by a human operator. 

In Chapter 2, background will be presented on VOS and on some of the pertinent 

research from other authors that has been used in order to develop VOS and the original 

VOS algorithm for a holonomic vehicle that suffers from sensor error will be developed. 

In Chapter 3, the first extension of VOS for a differentially driven vehicle will be given. 

The second extension, for a vehicle with actuator error will be presented in Chapter 4 as 
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well as experimental results from testing VOS on an actual vehicle. Finally, in Chapter 5 

the conclusions and plans for future work will be given.  
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     Chapter 2 

2. Velocity Occupancy Space (VOS) 

 

The primary contribution of this thesis is the development of a VOS-based 

obstacle avoidance algorithm, this development was inspired by the sensor noise and 

uncertainty representation of configuration occupancy space [23] and the long term 

avoidance of moving obstacles provided by the velocity obstacle concept [57, 82]. The 

combination of these two concepts led to velocity occupancy space where, similar to a 

configuration occupancy space grid, individual gird elements are given values based on 

the likelihood of a collision occurring if the robot adopts the state represented by that grid 

element. However, instead of each grid element representing a location, as in 

configuration occupancy space, the elements represent velocities. The collision causing 

properties of these velocities are determined using the velocity obstacle concept, where 

all potential collision causing velocities for a robot can be found based on the relative 

location and speed of surrounding obstacles. 

 In order to form VOS, the locations of all detected obstacles and the robot’s goal are 

first represented in velocity space based on their respective locations and velocities. Next, 

velocity occupancy space is populated with repulsive and attractive weights based on the 

likelihood and speed with which each specific velocity will lead the vehicle towards a 

collision or towards the goal. Finally, the most advantageous velocity is selected as the 
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vehicle’s next velocity. Extensive optimization was performed in order to determine the 

most desirable way to weight the velocities based on the objectives of safety, rapid and 

efficient goal finding and smooth operation. 

2.1. Background on VOS 

In this chapter details are provided on related previous research, including a 

discussion of how this research will be utilized in this thesis as well as discussion of the 

implementation and extensions of these methods.  

2.1.1. Background on Configuration Space and Timing 

Cell decomposition and certainty grids have been used by many researchers in 

order to allow a robot to navigate and avoid stationary obstacles using uncertain sensor 

data. Using a distance-finding sensor, such as a laser range finder, the robot can 

determine the approximate angle, θ, and distance, r, that the obstacle is from the robot 

(see Figure 2.1). The accuracy and precision of the data collected is dependent on the 

quality of the sensor in use. As such, when using a low cost sensor a high error rate is 

unavoidable and a certainty grid can be employed in order to account for data errors. 

Moravec and Elfes and later Borenstein and Koren use a certainty grid, which gives each 

cell a certainty value that indicates the confidence that the cell is occupied, in order to 

represent the uncertainty and error inherent in the sensor measurements [23, 28].  
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Figure 2.1 The robot detecting an obstacle 

 

 

Figure 2.2 Polar space occupancy grid of Figure 2.1 

A polar, configuration space grid, Figure 2.2, has been used in order to determine 

the momentary occupancy of the robot’s environment. The occupancy value of each 

element in the polar space grid is found based on the equation 

�ADEF(��), GF(��)H = I1		%��JKLMN0		MOK�P						(                           (2.1) 

where �ADEF(��), GF(��)H	is the binary occupancy value of a region at sensor time step ts at a 

radius of ri and an angle of GF from the robot.  For accuracy and ease of manipulation, the location 
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of the obstacle in local, polar configuration space is converted into global, Cartesian 

configuration space using the standard conversion,  

��DQF(��), PF(��)H = �ADEF(��) ∙ �%RGF(��) + Q@(��), EF(��) ∙ RL�GF(��) + P@(��)H						(2.2)    
where Q@(��)  and P@(��) are the coordinates of the robot’s position at time ��.  

Three separate time steps are used in this derivation, a motion time step, ∆tm, a 

sensor time step, ∆ts, and an acceleration time step, ∆ta (which will be defined in Section 

4.1). The first two time steps are related according to 

sm tkt ∆⋅=∆                                (2.3) 

where k is an integer greater than one. The time steps are related in this way as it is 

assumed that a large number of sensor measurements will be read for every motion 

command that is produced by the algorithm. Figure 2.3 shows a graphical representation 

of the time steps. 

 

Figure 2.3 Relative time steps 

The Cartesian grids are summed for h sensor time steps (see Figure 2.4) in order 

to compute the weighted Cartesian occupancy space grid (see Figure 2.5), used for the 

subsequent velocity calculations.  The grids are summed using the equation  
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��DQF(��), PF(��)H = 1ℎ ∙ S T 1" ∙ (�� − *) ∙ ‖�V@‖ + 1W��DQF(*), PF(*)H
B8

4XB8YC∙∆B8
				(2.4) 

where the 
\C term is used to normalize the occupancy grid values so that a change in the 

number of sensor time steps that are summed to form the occupancy grid does not affect 

the overall weighting (as detailed later), ‖�V@‖ is the magnitude of the robot’s velocity, 

and β is a user defined variable (" ∈ [0,∞)) that regulates how much influence the time-

lag and robot velocity should have on the sensor measurement from each previous time 

step. By using the later two terms, the most recent sensor measurement is given its full 

weight while previous measurements have reduced weights based on the time elapsed and 

the velocity of the robot. These terms help both to reduce the error in the position 

estimate of moving obstacles as well as compensate for error in the robot’s movements.  

 

Figure 2.4 Cartesian grid for several time steps 

 



 

Figure 2.5 Summed Cartesian grid indicating range detection over a past horizon

 

2.1.2. Background on 

The concept of a velocity obstacle, 

later expanded by Shiller 

[58, 59, 82].  Under the velocity obstacle concept, all robot velocities 

collision between the robot and an 

velocity of �V�, are considered to be 

other words, all robot velocities that fall within the 

area labeled	_�`) will lead the robot to a collision with 

the robot’s velocity vector,

remains constant, then the robot w

obstacles’ of multiple obstacles, 

of dynamically possible robot velocities

area) in order to find a safe and dynamically feasible velocity for the robot. 
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Summed Cartesian grid indicating range detection over a past horizon
(values are shown before normalization) 

Background on Velocity Obstacles 

The concept of a velocity obstacle, as first introduced by Fiorini and Shiller and 

later expanded by Shiller et al and Large et al, has been used in the development of VOS 

the velocity obstacle concept, all robot velocities that

llision between the robot and an obstacle, Obstacle A in Figure 2.6 moving with a 

, are considered to be part of the velocity obstacle, _�`, of

other words, all robot velocities that fall within the velocity obstacle (i.e. the cone shaped 

) will lead the robot to a collision with Obstacle A. As long as the tip of 

the robot’s velocity vector, �V@, remains outside of _�` and the obstacle’s velocity, 

remains constant, then the robot will avoid a collision with Obstacle A

obstacles’ of multiple obstacles, Obstacles A and B, can be combined along with the set 

of dynamically possible robot velocities (i.e. Reachable Velocities in the rhombus

afe and dynamically feasible velocity for the robot. 

Summed Cartesian grid indicating range detection over a past horizon 

first introduced by Fiorini and Shiller and 

has been used in the development of VOS 

that will lead to a 

2.6 moving with a 

of that obstacle. In 

(i.e. the cone shaped 

As long as the tip of 

and the obstacle’s velocity, �V̀ , 

Obstacle A. The velocity 

can be combined along with the set 

in the rhombus-shaped 

afe and dynamically feasible velocity for the robot.  
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Figure 2.6 Robot and velocity obstacles of Obstacles A and B. 
Adapted from (Fiorini and Shiller 1998) 

 

2.2. Representing Obstacles and the Goal in VOS 

In order to produce the velocity occupancy space for a robot based on uncertain 

sensor data, the approximate location and velocity of each obstacle and the goal in 

configuration space must be determined. Using this information, the velocity obstacles, a 

set of velocities which will lead to a collision between the robot and an obstacle, can be 

found. 

2.2.1. Center of Certainty 

Sensor data from a laser range finder is collected in the form of robot-based, polar 

coordinates of obstacles. It is then converted into global, Cartesian coordinates based on 

the robot’s perceived location and used to build an occupancy grid. The specifications of 

the laser range finder (LRF) that was mounted on the robot (±30mm accuracy and 0.25 º 

resolution) are used when converting the scan data into the occupancy grid in order to 

account for sensor errors. Occupied obstacle elements are clustered together and the 
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approximate location of each obstacle is found using a variation of the center of mass 

equation, termed the Center of Certainty, 	ab,: 

abDQ(��), P(��)H = ∑ (QF, PF)��DQF(��), PF(��)H�cFX'∑ ��DQF(��), PF(��)H�cFX'
 (2.5)

 

where (QF, PF) is the location of the element i which has the occupancy value, 

��DQF(��), PF(��)H, at time st (see Figure 3.1). It should be noted that the obstacles are 

numbered as	d = 1,2, … , fg, where	fg	is the number of obstacles that the robot detects 

throughout the simulation. In addition, each obstacle, j, consists of	�b  elements, numbered 

as	L = 1,2, … , 	�b. The center of certainty equation uses the number of times that an 

obstacle is detected in an element of occupancy space as the certainty of that element 

being occupied. This data is used to create a weighted average and locate the approximate 

center of the obstacle.  

       

Figure 2.7 Center of Certainty 
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The velocity of the center of certainty of obstacle j, 	ahb ,	can be estimated by 

calculating how far the center of certainty of the obstacle moves between sensor time 

steps using simple differencing techniques. Because the configuration space is discrete, 

rounding errors are produced when finding the estimated velocities, especially when a 

lower resolution configuration space grid is used. To compensate for this, the velocities 

are smoothed by averaging the obstacle’s velocities over a number of sensor time steps, 

h, to find the obstacle velocity at motor time step, tm,   

h
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(2.6)

 

This method finds the center of the side(s) of the obstacle presented to the robot, 

not the physical center of the obstacle. For obstacles with a large aspect ratio, this will 

produce some velocity error when the obstacle turns or the robot circles the obstacle and 

a new side is presented to the robot. However, using the obstacle’s center of certainty 

(instead of the center of the obstacle’s observed physical dimensions) to estimate its 

velocity and averaging the estimated velocities over multiple sensor time steps decreases 

the error in the estimated obstacle velocity used for the formulation of VOS. Averaging 

the estimated velocities does create a delay in the obstacle velocity calculation, as 

historical position data is used to calculate the current velocity, and this drawback should 

be considered when selecting a value for h. Low-speed experimental tests showed that the 

error produced from obstacles with large aspect ratios was usually less than 6% of the 

actual obstacle velocity for obstacles moving at more than 0.2�� 	(see Appendix A for 
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details). This method is similar to an approach explored by Fuerstenberg et al, but here 

the ability to operate in any environment by not making any assumptions about the 

properties of the obstacles is retained [86]. 

For ease of notation, the velocity of obstacle element i will be referred to 

as	(QhF(��), PhF(��)). For this notation, the velocity DQhF(��), PhF(��)H is equal to the obstacle 

velocity ahbDQh(��), Ph (��)H,	if the obstacle element i is a part of obstacle j. 

The method introduced here differs significantly from the more commonly used 

probability based data association methods, such as those used by Schulz et al  and 

Almeida and Araujo, that are used to populate occupancy grids and track obstacles [68, 

69]. While these methods will almost always produce more accurate results in terms of 

locating and tracking obstacles (especially occluded obstacles), most data association 

techniques are very time consuming and computationally expensive, especially as the 

number of obstacles that they are tracking increases.  

The crude, yet fast, obstacle tracking and velocity estimation method used in the 

VOS algorithm takes only around 8ms to update the occupancy grid and estimate the 

obstacle locations and velocities (running in parallel with the rest of the algorithm, 

described in section 2.3, on a 2.53GHz laptop). As this is faster than the scan rate of our 

LRF (Hokuyo UTM-30LX, 40Hz) the algorithm is able to make use of all available 

sensor data.  In addition, the early loss of accuracy is compensated for by giving the 

velocity weighting algorithm the ability to compensate for error and obstacle 

unpredictability (see section 2.3.1). By shifting most of the computational load from the 

map building stage to the velocity selection stage much more of the sensor data is 
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utilized, less odometry error is accumulated between sensor readings and the robot is able 

to recognize and respond more quickly to unanticipated events.  

2.2.2. Obstacles and the Goal in Velocity Space 

Using the location and approximate velocity that was previously calculated for the 

obstacle, the obstacle’s location in velocity occupancy space can be determined, and from 

this location the velocity obstacle (i.e. the set of robot velocities that will lead to a 

collision between the robot and obstacle) can be found. 

Figure 2.8 shows the position and velocity,	�V@, of the robot and the position of 

element i, of obstacle j, and the vector, >VF,@, between the robot and the obstacle element. 

The center of certainty velocity of the obstacle that element i belongs to is	(QhF, PhF , ��). 
While we have clustered the occupied elements into obstacles in order to determine their 

velocity, we will still use the individual elements from configuration space to populate 

velocity space so that their occupancy certainty values can be directly utilized.  

 

Figure 2.8 Configuration space representation of the robot and an obstacle 
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In Figure 2.9, the robot and one obstacle are shown in the velocity space. The 

robot is located at its velocity,	�V@, and the obstacle is located at the sum of the obstacle’s 

center of certainty velocity, DQhF(��), PhF(��)H, and the vector between the robot and the 

obstacle in configuration space, >VF,@DQh (��), Ph (��)H. In other words, the obstacle is 

located at the velocity that the robot would need to assume in order to collide with the 

obstacle in one motor time step, which takes into account both the obstacle’s distance 

from the robot as well as the obstacle’s own velocity. The vector originating at 

DQhF(��), PhF(��)H and intersecting, 	>VF,@DQh (��), Ph (��)H + DQhF(��), PhF(��)H in velocity 

space, is the set of collision causing velocities that makes up the velocity obstacle,	_�iiiiiVF. 
Any of these velocities will cause the robot to collide (at some point in time) with the 

obstacle, assuming constant obstacle velocity.  

 

Figure 2.9 Velocity space representation of the robot velocity,�V@, and the velocity 

obstacle, _�iiiiiVF 
 



53 
 

In this research, it is assumed that the relative position and velocity of the goal are 

always known. As such, locating and tracking the center of certainty is not needed to find 

the velocity goal,	_jiiiiiiV, or the set of robot velocities which will lead the robot to the goal, 

in the same manner that the velocity obstacle was found. However, if a sensor was 

employed that could distinguish the goal from surrounding obstacles, then the same 

technique used for the obstacles could be used to locate the goal, track it and determine 

its location in velocity space.  

 

2.3. Populating Velocity Occupancy Space 

After the velocity obstacles and goal have been found in the velocity space, it is 

necessary to populate the velocity occupancy space with values in order to select the best 

robot velocity. The velocity occupancy space consists of weighted elements that 

correspond to possible robot velocities. The weight of each element is based on two sets 

of factors. The first set forms a repulsive weight, based on the possibility that this 

velocity might lead the robot to a collision with an obstacle. The second set is based on 

how quickly and directly a velocity will lead the robot to its goal.  

2.3.1. Repulsive Weights 

The repulsive weighting value of each element of a velocity obstacle is influenced 

by a number of variables that determine how much of a threat an obstacle is and to what 

degree it should be avoided over other obstacles. The repulsive value,	k, of each element 

is defined by the equation 
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k = lm nom ∙ pm(l̀ m) ∙ Tl77qrra + 1aoW ∙ sg�t (2.7)

where the weights (WR,  WTTC, and WAR) are defined and optimized based on the robot’s 

environment, and WR is the overall repulsive weight; which is used to prioritize obstacle 

avoidance over reaching a goal. The other terms in Equation (2.7) are detailed as follows. 

 The term
OcE is the occupancy value, ))(),(( mimiC tytxO , for the obstacle element 

with which each robot velocity will lead to a collision. The other terms are variables 

related to the robot’s state and environment and include DR, which is the repulsive 

direction term, AR, which is the repulsive angular term, TTC, which is a measure of the 

time to collision and CD which is the Cartesian distance between the robot and the 

obstacle. It should be noted that, unlike the other weights, AR, is a factor of WR, rather 

than being multiplied by it. 

 

2.3.1.1.  Angle and Direction Equations 

A VOS velocity obstacle is formed for each filled element from Cartesian 

occupancy space using the observed obstacle location and estimated velocity, which are 

measured as previously described. By using the information from the individual 

elements, the certainty that each element is occupied can be preserved and used to find 

the likelihood that a specific robot velocity will lead to a collision with the occupant of 

that element. Using the VOS method, an element (robot velocity) in velocity space is 

assumed to be part of the velocity obstacle if it fulfills the following criteria. First, the 

velocity represented by the element must cause the robot to move with a negative speed 

relative to the obstacle, as defined by: 
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om 	=
uvw
vx1	Ly	 z >VF,@DPh (��)HPh E(�O) − Ph L(�O) ∙ (1 ± _|)⋀ >VF,@DQh (��)HQh E(�O) − Qh L(�O) ∙ (1 ± _|)~ ≥ 0	
0						%�ℎME�LRM																																																																																																																																																																																																			

(	 (2.8) 

where >VF,@DPh (��)H and >VF,@DQh (��)H are the relative displacement vectors between the 

robot and the obstacle element i (see Figure 2.9), Ph@(��) and Qh@(��) are the x- and y-

velocities that the velocity space element represents, and QhF(��) and PhF(��)	are the 

obstacle element velocity. In other words, the direction criteria for a velocity element is 

fulfilled if this velocity will cause the robot and the obstacle to approach each other. If a 

value of zero is found in Eq. (2.8), then the velocity is not part of a velocity obstacle and 

will therefore have no repulsive weight. The velocity uncertainty, VU, represents the 

uncertainty of the estimate of the obstacle’s velocity and is found from the equation 

_| = OL�D|(QhF(��), PhF(��)	) − (QhF(��Y\), PhF(��Y\)	)|,O�Q	�D	Qh@(��), Ph@(��)H�H (2.9)

 

This uncertainty factor, VU is used to increase the range of obstacle velocities that 

are avoided. If the currently measured velocity is the same as what was measured on the 

previous time step, then only the estimated obstacle velocity is avoided. However, as the 

prediction and the observation differ, the range of obstacle velocities that are assumed to 

be hazardous also proportionally increases. The upper bound on this term is the robot’s 

maximum velocity, as the robot cannot be guaranteed of avoiding an obstacle moving at a 

higher velocity than that which the robot is capable.  

The ± symbol is used throughout this thesis to represent ‘within range’. For 

example, in Eq. 2.8, if there exists any values between (1 − _|) and (1 + _|) that will 

cause  
�iiV�,�D�h (B�)HPh E(�O)YPh L(�O)∙(\±��) and 	 �iiV�,�D5h(B�)HQh E(�O)YQh L(�O)∙(\±��)	to both be greater or equal to zero then 
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om will equal one. The values of (1 ± _|)	in the two components do not need to be the 

same. 

The second criterion is that the element’s velocity must move the robot into a 

collision course with the obstacle as defined by the relative angles between the robot’s 

and obstacle’s positions and velocities. The equation 

pm	 = �1						���Y\ z>VF,@DPhF(��)H>VF,@DQhF(��)H~ = 	���Y\ �|Ph@(��) − PhF(��) ∙ (1 ± _|)| ± �̀|Qh@(��) − QhF(��) ∙ (1 ± _|)| ± �̀ � ∙ D1 ± (l̀ m − 1)H		(2.10)
	0																																										%�ℎME�LRM																																																																																																											 (  

defines the angle of collision where _|	has the same role as before, only now it increases 

the range of angles instead of the radial direction, based on the predictability of the 

obstacle’s velocity. In other words, if the angle of the relative velocity vector between the 

robot and the obstacle, 	���Y\ �|�h�(B�)Y�h �(B�))||5h�(B�)Y5h�(B�))|�, is equivalent to the angle of the relative 

position between the robot and the obstacle,		���−1 �>iVL,E�Ph L(�O)�>iVL,EDQh L(�O)H�, then the element’s velocity 

fulfills the repulsive angle criteria.  

The weighted angular term, WAR, allows a more or less conservative range of 

velocity angles that are assumed to lead to a collision to be defined based on the situation 

(a WAR value of one will not affect the range). Finally, the angular proximity, PA, is 

defined by 

�̀ 	 = OL� ��RE(��) 	−	�DQF(��), PF(��)H − DQ@(��), P@(��)H�RE(��) �� , 1� (2.11) 
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where the term RE(��) is the robot’s sensor range at the current time step. Using this 

equation in conjunction with Eq. (2.10) a larger range of angles are considered occupied 

when an obstacle is close to the robot than when the obstacle is some distance away. This 

helps the robot to account for additional obstacles that might be hidden behind a closer, 

occluding obstacle. If one of these undetected obstacles were to unexpectedly move out 

from behind an occluding obstacle that was very close to the robot a collision would very 

likely result. However, if the occluding obstacle was farther away from the robot, then 

the robot would have time to detect the newly revealed obstacle and respond 

appropriately, so avoiding larger range of angles is not necessary. 

2.3.1.2. Time To Collision and Cartesian Distance 

The terms time to collision, TTC, and the Cartesian distance, CD, are variables 

which measure the physical relationship between the robot and an obstacle. If a velocity 

does not meet the angle and direction requirements, as described above, then the TTC and 

CD are not calculated, as the overall repulsive weight, R, is already set to zero, Eq.(2.7). 

Therefore, every velocity value for which TTC and CD are computed is assumed to lead 

to a collision. This limitation on the set of robot velocities examined greatly reduces the 

complexity of these equations. The weighting term, TTCW , is used as a ratio between the 

two variables. It represents how important it is to avoid velocities that will lead to a 

collision as opposed to velocities that lead to an obstacle that is close to the robot. These 

priorities can be radically different for an obstacle that is close to the robot, but moving in 

the opposite direction. 
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As commonly defined, the time to collision term,	rra measures the amount of 

time that it will take the robot to collide with an obstacle for each element’s velocity 

value,	DQh@(��), Ph@(��)H, assuming that both the robot and the obstacle maintain a 

constant velocity. For this derivation, the equation for the TTC is 

rra	
= 	

uvw
vx �>VF,@DQh(��), Ph (��)H��DQh@(��), Ph@(��)H − (QhF(��), PhF(��)	)�						�DQh@(��), Ph@(��)H − (QhF(��), PhF(��)	)� < �>VF,@�

											�>VF,@DQh(��), Ph (��)H�RE(��)	 														�DQh@(��), Ph@(��)H − (QhF(��), PhF(��)	)� ≥ �>VF,@�
( (2.12)

If the magnitude of the difference between the robot velocity and the obstacle’s velocity 

is less than >VF,@DQh (�O), Ph (�O)H	then the TTC value is calculated. In other words, if the 

difference between the robot and obstacle’s velocities is small enough that there will not 

be a collision within the next time step then the TTC value is used. If the magnitude of 

the difference between the robot’s velocity and the obstacle’s velocity is greater than 

>VF,@DQh (�O), Ph (�O)H, then that robot velocity will cause a collision in less than one time step 

(i.e. before the robot has a chance to respond) so these velocities are given the smallest 

possible value (which makes Eq. (2.7) highly repulsive). In this case the sensors range 

(RE(��))	is used as the denominator as this is the greatest possible distance between the 

robot and an obstacle. 

The Cartesian distance,  

ao	 = 	zDQF(��), PF(��)H − �Q@(��) + Qh E(�O)∆�O , P@(��) + Ph E(�O)∆�O �~�				 (2.13) 
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is a measure of how far away the obstacle will be from the robot at the end of the time 

step. Obstacles will be close by, and therefore present a more imminent threat, are given 

higher repulsive weightings than obstacles which will be farther away.  

2.3.2. Attractive Weights 

As previously mentioned, only velocity space elements that are part of a velocity 

obstacle--and will therefore lead to a collision between the robot and the obstacle--are 

given any repulsive weighting. All other elements are assumed to represent safe robot 

velocities. However, all elements in velocity occupancy space are given distinct attractive 

weightings in order to prevent large portions of VOS from being equally weighted when 

the elements do not represent equally advantageous velocities. The attractive value for 

each VOS element is found from the equation 

p = [l�� ∙ _o + _a + l̀ ∙ p`+      

(2.14) 

where the weights, l�� and l̀ , are defined based on the robot’s objectives. The velocity 

difference term, VD, is found from the equation 

_o	 = 	− � ��Qh E(�O), Ph E(�O)� − "�2 ∙ �max �Qh E(�O), Ph E(�O)� − min�Qh E(�O), Ph E(�O)�� − 1�� (2.15)

where the " is defined as  

"
=
uvw
vxmaxDQh@(��), Ph@(��)H																		Ly			maxDQh@(��), Ph@(��)H < 	 �>V�,@ + DQh�(��), Ph�(��)H�																											>V�,@ + DQh�(��), Ph�(��)H			Ly				maxDQh@(��), Ph@(��)H ≥ �>V�,@ + (Qh� , Ph�)� ≥ minDQh@(��), Ph@(��)HminDQh@(��), Ph@(��)H														Ly			 �>V�,@ + DQh�(��), Ph�(��)H� < minDQh@(��), Ph@(��)H																									

( (2.16)
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where �>V�,@ + Qh�(��), Ph�(��)� is the location of the goal in velocity space, and 

maxDQh@(��), Ph@(��)H and minDQh@(��), Ph@(��)H are the maximum and minimum 

velocities that the robot can reach during this time step. The " term is used in the velocity 

difference equation so that a consistent weighting can be maintained no matter how far 

the goal is from the robot. In other words, it is desirable that the velocity which will lead 

most quickly to the goal will always have the same attractive weighting no matter how 

far the goal is from the robot.  

 The next term, velocity change, VC, is given by the equation 

_a = ��Qh E(�O−1), Ph E(�O−1)� − �Qh E(�O), Ph E(�O)��max �Qh E(�O), Ph E(�O)� − min �Qh E(�O), Ph E(�O)� − 1 (2.17)

The purpose of this term is to discourage frequent accelerations and decelerations 

so it gives velocities closer to the robot’s current velocity a more attractive weight than 

velocities which require more acceleration to reach. 

Finally the cosine of the angle between the goal’s location in velocity space and 

the velocity element in question, is found from    

α = tanY\ �>Vj,EDPh (�O)H + Phj(�O)>Vj,EDQh (�O)H + Qhj(�O)� − tanY\ �Ph E(�O)Qh E(�O)� (2.18)

and the attractive angle term, AA, is set as the negative of that angle or zero, if the angle is 

large enough that the velocity would no longer be leading in the direction of the goal 
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p` = �−�%R( )				Ly	| | 	≤  2	0					Ly	| | 	>  2 (	 (2.19)

Similar to the " term in Eq. (2.15), the contents of the first inverse tangent term in Eq. 

(2.18) are replaced with the maximum or minimum reachable robot velocity 

(maxDQh@(��), Ph@(��)H or minDQh@(��), Ph@(��)H) if the goal’s location in velocity space is 

outside of these bounds. This prevents the preferred angle from decreasing too much to 

encourage circumnavigation of an obstacle if the robot is far from the goal. 

The equations shown in this section form the basis of velocity occupancy space. 

Other logic was included to avoid numerical contingencies, such as division by zero, in 

the actual program, but is omitted here for brevity. 

2.3.3. Velocity Selection and Navigation  

In simulations, negative values are used to represent how attractive an element of 

VOS is, A from Eq. (2.14), and positive values to represent how repulsive the element is, 

R from Eq. (2.7). This allows the attractive and repulsive values of a single element to be 

summed so that the final value of a single element in velocity occupancy space can be 

influenced by multiple factors. The value of each element indicates the desirability of that 

robot velocity and the element with the lowest value (i.e. the most desirable velocity) can 

be found by minimization with a simple gradient search.  

The weights in Eqs. (2.7 and 2.14) can be adjusted both to influence how the 

various terms should rank relative to each other, as well as to govern the interplay 

between the attractive and repulsive values. These weights are pre-calculated by the 

process outlined in Section 2.4.  



62 
 

After the robot velocity has been chosen for a motor time step, the process 

described in the previous two sections is repeated so as to allow the robot to continuously 

adjust its velocity to deal with non-constant obstacle velocities and newly detected 

obstacles. The processes described in Sections 2.2 (building the occupancy space grid and 

estimating obstacle locations and velocities) and 2.3 (populating velocity occupancy 

space and selecting the next velocity) are performed in parallel.  

 

2.4. Optimization of Weights 

The value of each element in the velocity occupancy space is defined by the sum 

of Eqs. (2.7 and 2.14): 

_�¢DQh@(��), Ph@(��)H = k + p = 

lm £om ∙ pm(l̀ m) ∙ �¤¥¦¦77q + \q�� ∙ sg�§ + [l�� ∙ _o + _a + l̀ ∙ p`+ (2.20)

Along with defining the value of the individual terms based on the physical 

properties of the system and environment, the individual weights (W terms) must be 

determined in order to effectively prioritize the various aspects of obstacle avoidance and 

goal finding. Initially, these weights were hand-tuned based on empirical knowledge and 

observation of the system [4]. In this section a combination of an exhaustive search and 

an optimization process, which produced significantly better weights, is described.  

2.4.1. Evaluation Criteria 

Four evaluation metrics were used in order to judge the quality of the path that the 

robot followed given each set of weights. During each time step the position of the robot, 
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the robot’s velocity and the relative position with respect to the robot of each obstacle to 

the robot was recorded. The magnitude of the robot’s change in position (the distance that 

it traveled during the simulation), change in velocity and the square of the inverse of the 

closest obstacle’s proximity to the robot were each summed for every time step and used 

for the first three evaluation metrics: distance traveled, acceleration and obstacle 

proximity. In addition, the number of time steps required for the robot to reach the goal 

and two binary values that indicated if a collision occurred during the scenario and if the 

robot was successful at reaching the goal were also used as evaluation metrics.  

The number of collisions and the number of times that the robot successfully 

reaches that goal are the most important measures of the algorithm’s performance, 

however, the other evaluation metrics, shown in Table 2.1, were also recorded in order to 

compare the quality of the paths that the robot chooses using each set of weights. 
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Table. 2.1 Evaluation Metrics 

N = number of iterations, Tn = number of time steps in iteration n, J = number of 
obstacles, Cr = robot position, Co = obstacle position, Vr = robot velocity 

 

Evaluation Metrics Equations 

Obstacle Proximity T 1O�W 

1f ∙SS 1∑ �a@(*) − agb(*)��b̈
7©
4X\

ª
�X\  

Change in Velocity �OR � 

1f ∙SS|_@(*) − _@(* − 1)|7©
4X\

ª
�X\  

Distance Traveled (O) 1f ∙SS|a@(*) − a@(* − 1)|7©
4X\

ª
�X\  

          Time (R) 1f ∙Sr�ª
�X\  

 

A random scenario generator was used in order to produce a broad range of 

situations in which the algorithm’s ability to successfully guide a robot could be tested. 

The scenario generator produced a number of obstacles (between one and eight) with a 

range of velocities and starting positions, as well as different positions for the goal. 

Impossible scenarios (e.g. if the scenario started with a collision) were removed. An 

example of the initial conditions of one of these scenarios is shown in Figure 2.10. While 

Figure 2.10 (and later figures) shows an overhead view of the robot and obstacles, for all 

of the simulations the robot only had access to the simulated noisy LRF data that would 

have been produced from the environment. The LRF data was simulated to have a 20% 



65 
 

chance of producing a radial error of ±0.1m. Using the simulated LRF the robot was only 

able to ‘see’ the nearest edges of obstacles that were within the range of the LRF (set at 

20m for the simulations).  

It should be noted that while some error was considered when simulating the LRF 

data there are other difficulties inherent to laser range finders that were not accounted for 

in this simulation, such as specular reflections and obstacles with variable cross-sections 

(such as the legs verse torso on a human). However, these difficulties have been 

addressed by other researchers, such as [87] and [88]. 

 

Figure 2.10 Initial conditions of a sample scenario. Figure contains the robot (circle), 
obstacles (rectangles with velocity vectors) and the goal (asterisk) 

 

The performance measures for ten different scenarios were used for the 

optimization process so that the results of the optimization would be appropriate for a 

more general environment, instead of being overly specific for a single scenario. In 

addition, the same set of ten scenarios was used throughout the optimization processes so 

that the results could be accurately compared. 
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2.4.2. Optimization 

A coarse exhaustive search was performed in order to find a selection of better 

initial design variables that could avoid some of the less desirable local minima. The 

coarse exhaustive search showed that there were a significant number of non-optimal 

local minima and also some discontinuities within the design variable search space. 

However, using some of the better sets of variables from the exhaustive search as the 

initial set of design variables, the optimization process produced improved results. For 

validation, the results of the optimization process were tested on a set of one thousand 

scenarios, from the random obstacle scenario generator, in order to verify that the VOS 

algorithm would operate acceptably for almost any scenario. 

Optimization was performed using MATLAB’s fgoalattain function.  This 

function uses sequential quadratic programming to reduce a set of nonlinear functions to 

below a given goal level. It was used for this research in the following manner: 

OL�LO�Q«¬¬­¬¬®5,¯ 	°		RJ�ℎ	�ℎ�� I±(²) − �ML$ℎ� ∙ ° ≤ ±³(²)´(²) = 0 ( 																						(2.21) 
 where the design variables, x, were the weights: µlm ,(l77q , l̀ m ,l�� , (l̀ ¶. The equality 

constraints, ´(²), were set so that the number of collisions and the number of times that 

the robot was unsuccessful at reaching the goal had to equal zero. The hand tuned 

weights and the optimized weights are compared in Table 2.2. 
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Table 2.2. Coefficients / design variable values used for velocity element weighting 

  Hand-tuned Weights Optimized Weights 

Repulsive Weights 

Repulsive Weight, WR 1.0 0.4 

Time to Collision, WTTC 3.5 7.0 

Angular Range,	l̀ m 1.0 1.0 

Attractive Weights 
Velocity Distance, WVD 2.7 3.2 

Angle, WA 0.3 2.2 

 

For the optimization, each of the design variables was constrained to be positive 

and less than ten (ten was chosen as a reasonable upper bound based on previous 

experience with hand-tuning). The evaluation metrics of obstacle proximity and time 

were given twice the weight of the other as they are more indicative of a successfully 

completed simulation than acceleration and distance traveled. The optimization was run 

for either six hundred iterations or until the function value (±(²) in Eq. (2.18)) varied by 

less than 10-20. 

The optimization process did not neatly converge to a global minimum that was 

the optimal set of weights for any situation. The inability of the optimization to find a 

global optimum is probably the result of two aspects of the system. First, this is a five-

dimensional design problem; the function is non-convex and has some discontinuities. As 

such, finding the global minimum, even for a set of ten scenarios, is an extremely 

challenging and time consuming optimization process. Second, some of the solutions 

obtained using optimization appear to have been overly designed for and narrowly 

focused on for the ten design scenarios that were used for the optimization process, as 
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they failed to cause the VOS algorithm to work acceptably for a broader range of 

scenarios. Ideally, a much larger set of scenarios should be used for both the initial 

exhaustive search and the later optimization, however, even using just ten scenarios made 

for an extremely time consuming processes (weeks of dedicated CPU time on a laptop 

computer), so optimizing with a more complete set of scenarios would not be practical 

without access to parallel computing resources. 

If such resources were available, then the optimization process could, in theory, 

be applied to not just the weight factors but to the exponential relationship between the 

various terms in Eq. (2.20). For instance, through optimization it might be revealed that a 

cubing the time to collision term leads to better robot performance than just increasing its 

weight.   

 

2.5. Results 

2.5.1. Initial VOS Results 

An example of the VOS algorithm run with a fairly simple scenario is shown in 

Figures 2.11 – 2.14. In Figure 2.11, the robot is avoiding two moving and two stationary 

obstacles. The simulation covers the first six motor time steps. The robot is initially 

stationary so that it can locate surrounding obstacles and make an initial estimate of their 

velocities before selecting its first velocity. 
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Figure 2.11 First six simulation steps of an example scenario 

 

The velocity occupancy space representation of the obstacles in Figure 2.11 is 

shown in Figure 2.12 where the velocity values (on the x- and y-axes) that will lead to a 

collision can be seen as the cones of repulsive values (positive values on the z-axis) in 

velocity occupancy space.  

 

Figure 2.12. VOS populated with repulsive values 

All of the velocity occupancy space elements are given attractive values (negative 

values on the z-axis) in proportion to how effectively each velocity will lead the robot to 

the goal. In Figure 2.13, velocity occupancy space is shown populated with attractive 

values based on the scenario in Figure 2.11. 
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Figure 2.13. VOS populated with attractive values 

After fifteen time steps the robot has successfully reached the goal while avoiding 

all obstacles, as shown in Figure 2.14. 

 

Figure 2.14. Simulation results after fifteen time steps 

 

2.5.2. Performance with Optimization 

The set of weights that resulted from the optimization process are shown in Table 

2.2, and results from the algorithm run with these weights are shown in Figures 2.15 and 

2.16.  

 



 

 

Figure 2.15. Comparison of Normalized Evaluation Metrics between Hand Tuned and 
Optimized Weights for 10 Design Scenarios (one 

Figure 2.16. Comparison of Normalized Evaluation Metrics between Hand Tuned and 
Optimized Weights for 1000 Scenarios (one sigma error bars)
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Comparison of Normalized Evaluation Metrics between Hand Tuned and 
Optimized Weights for 10 Design Scenarios (one sigma error bars)

 

Comparison of Normalized Evaluation Metrics between Hand Tuned and 
Optimized Weights for 1000 Scenarios (one sigma error bars)
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In Figure 2.15, the performance of the algorithm using the original hand-tuned 

weights versus the performance with the optimized weights is shown for the set of ten 

design scenarios which were used to perform the optimization. In Figure 2.16, the 

performance of the algorithm with the different sets of weights is again compared, but 

this time for the one thousand randomly generated scenarios, which were used to validate 

the results of the optimization. The values of the evaluation metrics were normalized 

independently for the two sets of scenarios against the values found using the hand tuned 

weights; the lower the value of the evaluation metrics, the better the performance of the 

algorithm. Neither set of weights caused a failure (either due to a robot collision or the 

inability of the robot to reach the goal within a specified amount of time) of the 

simulation for the set of ten design scenarios. For the one thousand validation scenarios, 

there were nine failures (0.9%) for the hand-tuned weights and four failures (0.4%) for 

the optimized weights. The simulations in which failures did occur where usually 

situations that even a human driver would have had difficulty successfully navigating. 

For example, one of the failures using the optimized weights occurred when a couple of 

obstacles converged almost immediately on the robot, see Figure 2.17. An omniscient 

agent would have been able to find a successful path; however the algorithm had very 

little time to collect velocity data on the surrounding obstacles and there were a very 

limited number of velocity choices that would have allowed the robot to successfully 

avoid all of the obstacles. 
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Figure 2.17 Example of a failed scenario. Collision occurs after three motion time steps. 

The optimization process significantly improved the algorithm’s performance for 

the design scenarios that were used in the optimization. While the overall improvement 

for the validation scenarios was not as large, it was still statistically significantly for three 

of the evaluation metrics: the distance traveled, acceleration, time (p < 0.005, on a two-

tailed, paired t-test) and for the number of simulation failures (p < 0.025). 

While the obstacle proximity evaluation metric did not see a significant 

improvement using the optimized weights, the true improvement may be covered up by 

the improvement in the collision failure rate. The values of the evaluation metrics for a 

simulation in which a failure occurred where not included in the statistics. Therefore, 

improvements in the performance of the algorithm with the optimized weights which 

allowed the robot to avoid a collision (presumably by decreasing the robot’s proximity to 

the obstacles) while the hand tuned weights led to a collision would not influence the 

final value of the obstacle proximity for either set of weights. In other words, the 

simulations where the obstacle proximity metric would have been the worst (due to a 
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collision) for the hand tuned weights, were removed from the analysis, which may have 

improved the value of the obstacle proximity for the hand tuned weights when compared 

to the optimized weights. To make the comparison more fair, if there are a significantly 

different number of failures (collisions and time outs) than this should be considered of 

more importance than the difference in the evaluation metrics. The evaluation metrics 

become more meaningful, between two tests, as the number of failures between the two 

tests becomes closer.  

2.5.3. Results for Obstacles with Variable Velocities 

The VOS algorithm works most effectively when the obstacles maintain a 

constant velocity and the optimization was performed using constant velocity obstacles. 

However, the algorithm was also tested using obstacles with variable velocities. In this 

situation, every sensor time step the obstacles that had a 20% chance of altering their x- 

or y- velocity by a value (randomly generated) in the range of	£−0.5�� , 0.5�� §. The 

obstacles’ velocities were still bound to be within the robot’s velocity range 

of	£−2.0�� , 2.0�� §. 
Using the optimized weights and the one thousand validation scenarios (with 

random obstacle velocity changes), eight simulation failures where recorded (0.8% 

failure rate).  There was also no statistically significant difference between three of the 

four evaluation metrics (obstacle proximity, distance and time) between the scenarios 

where the obstacles all had constant velocities and the scenarios where the velocities 

randomly changed.  
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Figure 2.18 shows a representative scenario where the algorithm allows a robot to 

navigate around stationary and moving obstacles and reach a goal. Figures 2.19 through 

2.21 show sequential segments of the robot navigation in this scenario. In Figure 2.19, the 

robot starts to accelerate in the positive x- and y-directions to avoid Obstacles A and B.  

In Figure 2.20, the robot speeds up to circle around Obstacle C and starts moving in the 

positive y-direction to avoid Obstacle D. Finally, Figure 2.21, the robot outpaces 

Obstacle A and then continues on its course to avoid Obstacle E and reach the goal. 

 

Figure 2.18 Simulation results with four moving and two stationary obstacles 
for twenty-seven time steps 
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Figure 2.19 First eight motor time steps  Figure 2.20 Motor time steps eight to seventeen  

 

Figure 2.21 Motor time steps seventeen to twenty-seven 
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2.5.4. Comparison of VOS to other Obstacle Avoidance Algorithms 

In order to validate the performance of VOS, it will be compared via simulation to 

the VFH method [35] and the original Velocity Obstacle (VO) concept [57, 58] by testing 

all three algorithms against a range of obstacle/goal scenarios. These two methods were 

chosen for comparison as they were the initial inspiration for VOS. VOS uses the same 

method to build configuration occupancy space that is fundamental to VFH and utilizes 

the concept of velocity obstacles to avoid moving obstacles.  

VOS is not being compared in detail to the other algorithms on the table as most 

of these algorithms either require additional or different environmental information from 

VOS (i.e. Probabilistic RRTs require training samples, State-Time Space requires 

complete environmental knowledge and) or produce different types of paths (i.e. State-

Time Space can find an optimal path and Probabilistic RRTs plan a significantly longer 

path than the reactive VOS algorithm). 

2.5.4.1. Comparison of VOS and VFH 

Background on the VF 

The VFH [30] method of obstacle avoidance is a well tested method of static 

obstacle avoidance. For the comparison between VOS and VFH, the VFH+ method [35], 

an extension of the basic Vector Field Histogram will be used. This extension decreases 

the need to hand tune specific parameters of the algorithm and also, according to the 

authors, produces more reliable results.  
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The VFH converts ranging sensor data into a Cartesian gird using the same 

method as VOS (detailed in Section 2.1), and then uses this grid to build a histogram of 

all of the angles of navigation around the robot. The equation, 

 

"F,b = �E���� ��cY�¸5�Y5¸�                                                         (2.23) 

 

is used to find the angle that each filled element in the Cartesian grid is from the robot, 

where (QF, Pb) are the coordinates of the filled element and	(Q�, P�)  are the coordinates of 

the robot. The magnitude of each element is based both on the of the certainty of element 

being occupied, �F,b, as well as the distance between the element and the robot, NF,b and is 

found from the equation, 

OF,b = �F,b� ∙ (1 + RE − NF,b)�,    (2.24) 

where sr is the robot’s sensor range. The equation was formulated to fulfill the 

requirements given in [35] and tuned in order to allow the VFH algorithm to operate as 

effectively as possible for the comparison simulations. 

 The robot is treated as a point so the angle that each obstacle fills must be 

increased by the radius of the robot, r, as well as the minimum distance that the robot 

should maintain between itself and obstacles, dº»¼. Therefore each angle is increased by 

°F,b = �E�RL� T@½¾¿ÀÁÂ�,c W.      (2.25) 

A histogram can then be computed for each robot navigation angle using the equation 
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ÃÄ = ∑ OF,b ∙ ℎF,bF,bÅq       (2.26) 

where 

ℎF,b = Æ10( 		Ly	G ∈ Ç"F,b − °F,b, "F,b + °F,bÈ	Ly	G ∉ Ç"F,b − °F,b , "F,b + °F,bÈ .    (2.27) 

 

The histogram can be converted into binary form by apply a two stage threshold, where 

angles are given a value of one, or filled, if they have an ÃÄ value above a certain 

threshold, τhigh, and angles are given a value of zero, or open, if they have an ÃÄbelow 

τlow. If the  ÃÄ value is between the two thresholds, then the angle remains at its value 

from the previous time step. This double threshold prevents angles from frequently 

oscillating between filled and empty.  

 Each open navigation angle is given a cost based on its difference from the goal 

angle,	GÊ, as well as the difference from the robot’s current heading,	Gm , using the 

equation, 

$(G) = Ë\ ∙ D�G − GÊ�H + Ë� ∙ (|G − Gm|)    (2.28) 

Based on the guidelines detailed in [35], the terms of the cost function were weighted as 

Ë\ = 5 and Ë� = 4; this produced a goal seeking algorithm that tends to avoid oscillation 

and follow a steady path to the goal. 
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Simulation Comparison of VOS and VFH 

The performance of VOS was compared to that VFH over 1000 randomly 

generated scenarios (identical sets of scenarios were used to test each algorithm). The 

first 500 scenarios each included ten stationary obstacles and the second scenarios 500 

had a mix of ten moving and stationary obstacles. The moving obstacles and the robot 

had a top speed of	2�� . The scenarios were designed to be challenging in order to better 

differentiate between the two algorithms. Both VOS and VFH build a similar 

configuration occupancy space map; however the VFH method then selects safe headings 

that lead towards the goal based on the occupancy space data, while the VOS method 

builds a velocity occupancy space map and selects safe velocities that will lead to the 

goal.  

In Figures 2.22 and 2.23, the VOS and VFH algorithms are shown navigating 

around the same set of ten stationary obstacles. They take different paths, but both 

manage to reach the goal after 14 time steps. However, the VFH algorithm follows a 

slightly shorter path. 

      

 Figure 2.22 Robot navigating using VOS   Figure 2.23 Robot navigating using the VFH 
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As shown in Table 2.3, for the 500 scenarios with only stationary obstacles, the 

VOS and VFH methods performed very similarly; both experienced a single collision and 

the VOS method experienced one timeout while the VFH method had none. The timeout 

occurred when the goal was very close to an obstacle. The VFH method was successful at 

reaching the goal, but the VOS method, due to the increased safety margin that it keeps 

around obstacles due to the chance that they might start to move, was not able to reach 

the goal. 

Table 2.3 Comparison of the performance of VOS and VFH on 500 Scenarios with 
Stationary Obstacles 

 Collisions Timeouts 

Obstacle 

Proximity � ÌÍÎ� 

Distance 

Traveled (Í) 
Change in 

Velocity�ÍÏ � 

Time (Ï) 
VOS 1 1 3.22 25.20 5.76 15.53 
VFH 1 0 5.59 24.64 3.35 13.94 

 

Simulations where either method experienced a failure (either due to a collision or 

timeout) were removed from the data set for the calculation of the of the four evaluation 

metrics (this was done for all algorithm comparisons in this chapter). The VOS method 

maintained a greater distance from obstacles, but the VFH method was able to (on 

average) find slightly shorter routes and reach the goal more quickly with fewer changes 

in velocity. The difference in time and change in velocity is due to the VFH method 

always attempting to operate at the robot’s highest velocity while the VOS method 

frequently chooses slower, more cautious velocities. 
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For the 500 scenarios with both moving and stationary obstacles, the VOS both 

experienced seven collisions while the VFH method experienced 73 collisions, as shown 

on Table 2.4. Because the VFH method selects a new heading each time step based on 

current sensor data, it was able to avoid moving obstacles in the majority of scenarios, 

however the VFH’s inability to detect or respond to moving obstacles still caused it to 

experience a statistically significant higher number of collisions (p < 0.001) than the VOS 

method.  

Table 2.4 Comparison of the performance of VOS and VFH on 500 Scenarios 
with Stationary and Moving Obstacles 

 Collisions Timeouts 

Obstacle 

Proximity � ÌÍÎ� 

Distance 

Traveled (Í) 
Change in 

Velocity �ÍÏ � 

Time (Ï) 
VOS 7 0 3.23 25.18 5.02 15.33 
VFH 73 0 4.27 24.69 3.81 13.97 

 

Again, the VOS method maintained a greater distance from obstacles, but the 

VFH method was able to find slightly shorter routes and reach the goal more quickly with 

fewer changes in velocity when it did not encounter a collision. However, the large 

difference in the number of collisions between the two methods outweighs the 

performance of the algorithms in successful simulations (as it would be irresponsible to 

choose a navigation method that had an order of magnitude greater chance of colliding 

with an obstacle in order to decrease the time it would take to reach a goal by a few 

seconds). Therefore, this data demonstrates that VOS performs comparably to the VFH 

method in environments with only stationary obstacles and performs superiorly in 

environments where there are both stationary and moving obstacles.   
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2.5.4.2. Comparison of VOS and VO 

The performance of VOS was also compared to that of the original velocity 

obstacle (VO) method (described in Section 2.1.2) using 500 randomly generated 

scenarios with both stationary and moving obstacles. The Th was tuned, for the 

comparison simulations, to a value of nine seconds, as this produced the best simulation 

results for the VO algorithm in the given scenarios.  Initially (Table 2.5), both algorithms 

had access to perfect environmental data (both obstacle position and velocity data) about 

the 500 scenarios, then both algorithms were tested again with the same 500 scenarios but 

only given laser range finder position data and obstacle velocities calculated using the 

center of certainty (COC) method detailed in Section 2.2.1 (Table 2.6). Again, the 

scenarios were designed to be very challenging in order to better differentiate between 

the two algorithms.  

Table 2.5 Comparison of the performance of VOS and VO on 500 Scenarios with 
Complete Obstacle Knowledge 

 Collisions Timeouts 

Obstacle 

Proximity � ÌÍÎ� 

Distance 

Traveled (Í) 
Change in 

Velocity �ÍÏ � 

Time (Ï) 
VOS 2 0 2.35 25.22 4.77 15.18 
VO 4 0 3.86 26.97 6.62 16.82 

 

For the 500 scenarios where the algorithms had complete knowledge of the 

obstacles, the VOS method experienced two collisions while the VO method experienced 

four (this is not a statistically significant difference) and neither algorithm experienced a 

timeout. The VOS method performed somewhat better than the VO method according to 
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the four evaluation metrics; this is probably due to the weights of the VOS method being 

turned according to these metrics. 

Table 2.6 Comparison of the performance of VOS and VO on 500 Scenarios with 
LRF based Position and COC Velocity Data 

 Collisions Timeouts 

Obstacle 

Proximity � ÌÍÎ� 

Distance 

Traveled (Í) 
Change in 

Velocity �ÍÏ � 

Time (Ï) 
VOS 4 0 3.08 25.26 4.97 15.26 
VO 20 3 3.93 26.19 7.23 15.74 

 

For the 500 scenarios where the algorithms used position data from a simulated 

laser range finder and obstacle velocity data calculated from the laser range finder data 

using the COC method, the VOS method experienced four collisions while the VO 

method experienced twenty collisions (this was a statistically significant difference, p > 

0.001).  

The timeouts using the VO method were due to the Boolean nature of this 

method. Velocities are labeled as safe (admissible) or unsafe based on a specific 

threshold (time to collision) and a goal directed velocity is chosen from the set of safe 

velocities. If no safe velocity exists, then the robot performs emergency breaking in order 

to avoid a collision. The three timeouts and a number of the collisions occurred when the 

robot reached a position where it considered none of the velocities to be sufficiently safe 

and the robot would remain stationary until the simulation ended or a moving obstacle 

collided with the robot. This shortcoming is also mentioned in [56], where the author 

notes the difficulty in setting a threshold that maintains the safety of the robot without 

leading to too many situations where there are no admissible velocities. With the VOS 
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algorithm, even if all possibly velocities are somewhat dangerous, the algorithm is still 

able to select the safest velocity and therefore has a better chance at avoiding aggressive 

obstacles and reaching the goal. 

Based on the comparable performance of VOS and VO algorithms in simulations 

with complete obstacle knowledge and the superior performance of VOS in simulations 

without complete obstacle knowledge, VOS is again shown to be a useful addition to the 

literature. 

2.6. Conclusions about VOS 

In this chapter velocity occupancy space (VOS), a navigation algorithm which 

allows a robot to operate using only a range finding sensor with uncertainty in an 

unknown environment and successfully avoid stationary and moving obstacles while 

navigating towards a goal, has been developed and presented. This method uses the 

uncertain obstacle representation of occupancy space to estimate the location of each 

obstacle and finds the center of certainty, a variation of the center of mass, for each 

obstacle. The center of certainty of each obstacle is tracked over multiple time steps and 

the movement of the center of certainty is used to estimate the obstacle’s velocity. This 

basic obstacle information is then converted into velocity obstacle form and used to 

calculate variables that describe the benefits or detriments of each possible robot velocity. 

The relative weights that each of these variables should have, in comparison to the other 

variables, were then optimized and used to form VOS. From this space, the robot can find 

a velocity that is both safe and that will lead it towards the goal, if such a velocity exists. 

While the choice of velocity using the optimized weights may not always be ideal, it has 
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been shown that, in general, the weights will allow the robot to avoid a collision and 

reach its destination in the vast majority of situations. The obstacle avoidance and goal 

finding abilities of VOS were also evaluated against two other obstacle avoidance 

algorithms and VOS was shown to have at least comparable capabilities as these 

algorithms. 
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Chapter 3 

3. Velocity Occupancy Space for Differential Drive Vehicles 

 

The Velocity Occupancy Space (VOS) algorithm, which was introduced and 

described in the previous chapters, selects robot velocities under the assumption that the 

robot is holonomic and is able to instantaneously accelerate to the desired velocity. 

Unfortunately, this assumption is not valid for real-world robots, and therefore the 

algorithm cannot ensure robot safety under realistic experimental conditions, especially at 

high speeds. 

Therefore, this chapter will focus on a method by which VOS (and the use of 

velocity obstacles, in general) can be extended to accommodate non-holonomic robots 

with acceleration constraints. Specifically, this chapter focuses on how a sequence of 

accelerations can be used to approximate a desired velocity and how the velocity 

selection in VOS can be restricted in order to accommodate the constraints of a 

differential drive robot. 

3.1. Differential Drive Formulation 

In this section it is shown how a series of accelerations can be generated in order 

to approximate a desired instantaneously change in velocity for a differential drive 
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vehicle. Intuitively, when a path is planned for a differentially driven robot, the path 

would consist of a series of arcs of various radii (when the two wheels have different 

velocities) and straight lines (when the wheels have the same velocity). However, the 

holonomic robot assumption in VOS implies a series of constant, discontinuous, linear 

velocities. This series of constant linear velocities can be approximated with a 

kinodynamically feasible set of arcs and lines by a) considering only the robot’s initial 

and final position and velocity (at the beginning and end of each motion time step), and 

b) selecting a series of piecewise-continuous accelerations that will produce a 

differentiable and continuous velocity profile. This series of accelerations will allow the 

robot to reach the same approximate velocity and (for the three-step approximation) 

position at the end of each motion time step as the velocity chosen from the VOS search 

space for a holonomic vehicle.   

The piecewise constant acceleration approximation of a holonomic velocity is 

necessary because, in VOS, the velocity obstacles cannot be simply altered to take the 

robot dynamics into account. Currently, a single velocity obstacle is created for each 

physical obstacle and is used to determine the relative safety of each robot velocity. In 

order to take the robot’s dynamics into account, a separate velocity obstacle would have 

to be made for every potential robot velocity. Depending on the velocity space resolution, 

this could increase the computational complexity of populating VOS by over a thousand 

fold at each motion time step.    

When calculating the piecewise accelerations it is acceptable to consider only the 

robot’s position and velocity at the beginning and end of each motion time step, with 

length ∆tm, as long as each time step is short enough that significant movement of the 
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robot, or of surrounding obstacles, would not be expected. In VOS, the robot is always 

required to maintain a safe distance from any surrounding obstacles due to the error 

present in the system which makes exact localization and velocity prediction for the 

obstacles impossible. If ∆tm is short enough, the robot’s position will not deviate 

significantly from the position that it is attempting to reach so the risk of a collision is 

minimal. 

One of the most common kinematic configurations for robots used as 

experimental platforms is a basic differential drive vehicle (usually with a third caster 

wheel for stability). In Figure 3.1, a simple differential drive vehicle is shown at two 

consecutive time steps. The vehicle has a wheel radius d and the distance between the 

two wheels is L.  When calculating the movement of the vehicle between two times steps, 

the vehicle’s initial position is considered to be oriented along the x-axis (in a vehicle 

based coordinate frame) and the vehicle’s heading in its final position, ψ, is given relative 

to this axis. 

 

Figure 3.1 Differential drive vehicle at two, consecutive motion time steps 
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ISO orientation and SAE coordinates are used to define the position, rate of 

change and acceleration of the vehicle’s heading and wheels angles. These coordinates 

are shown in Table 3.1.  

Table 3.1 Coordinates used in derivation 

Angle Rate Acceleration 

θ Ð = (Ð� + Ð@)2  Ñ = (Ñ� + Ñ@)2  

Ò = tanY\ T����5�W E = NÓ (Ð@ − Ð�) k = NÓ (Ñ@ − Ñ�) 
 

The subscripts l and r are used to differentiate between the left and right wheels. The 

vehicle is defined to be initially moving in only the x-direction,	�� = 0, and the velocity 

at the beginning and end of each motion time step is assumed to be constant (i.e Ð� = Ð@  

and Ñ� = Ñ@ = 0). These assumptions allow the vehicle’s movement to more closely 

mimic that of a vehicle that is able to instantaneously change velocities. 

The third time step, the acceleration time step, ta, is used when calculating 

accelerations for a differential drive vehicle. The acceleration time step has a lower 

bound of the frequency with which the vehicle’s actuators can respond to acceleration 

commands, while the motion time step is the time allotted for the vehicle to execute the 

series of accelerations and attain the desired velocity. The acceleration time step and the 

sensor time step are only related to each other through their relationships to the motion 

time step; they are not directly dependent on each other.  
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For this derivation, it is assumed that the vehicle cannot instantaneously change 

velocity, but that it can instantaneously change acceleration: jerk limits are not 

considered. The length of the acceleration time step is either one half (for the two-step 

method) or one third (for the three-step method) of the length of the motion time step, 

Eq.(3.1). It is assumed that the vehicle can accelerate quickly enough that the vehicle 

acceleration can be approximated as constant over the acceleration time step. 

∆�� = �∆B�� 							r�% − ¢�MK∆B�Ô 				rℎEMM − ¢�MK(      (3.1) 

 

3.1.1. Two-step Velocity Approximation Method 

The first method considered is a naïve approximation of the selected velocity 

using a two-step series of accelerations for each of the two wheels (see Figure 3.2). That 

is the motion time step, ∆tm, is divided into two equal segments, and constant wheel 

accelerations (for each wheel) are specified during each segment. These wheel 

accelerations allow the robot to change its heading and speed in order to match the 

desired command velocity by the end of the motion time step. However, the robot’s final 

position does not necessarily match that of a robot that instantaneously started moving at 

the desired velocity.  

As shown in Figure 3.2, the initial and final angular wheel velocities must be 

equal (i.e. Ð�\ = Ð@\ = ÐB� 	and	Ð�� = Ð@� = ÐB�½\) in order for the robot change from its 

previous command (constant, linear) velocity to the new command (constant, linear) 
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velocity.  As the acceleration time step length is fixed (∆�� = ∆B��  ) this constrains the 

angular wheel accelerations to maintain the relationships: 

Ñ�\ = Ñ@�       (3.2) 

and  

Ñ�� = Ñ@\      (3.3) 

where Ñ@\	is the angular acceleration of the right wheel during the first acceleration time 

step (the first half of the motion time step). The other angular accelerations are similarly 

distinguished.  

 

Figure 3.2 Angular wheel velocity and acceleration for two step method.  
(Note, figures are not to scale) 

 

In addition, basic equations of motion and the equations in Table 3.1 produce the 

relationship: 

ÐB�½\ − ÐB� = Õ(Ñ�\ + Ñ��)2 + (Ñ@\ + Ñ@�)2 Ö ∆��																														(3.4) 
between the initial and final angular wheel velocities. 



93 
 

The change in the robot’s heading, ψ, also puts further constraints on the angular 

wheel accelerations which (again using basic equations of motion and the equations in 

Table 3.1), generates the relationship: 

ÒB�½\ = 12 Õ(Ñ@\ − Ñ�\)2 + (Ñ@� − Ñ��)2 Ö ∆���.																																	(3.5) 
 

Solving Eqs. (3.2-3.5) simultaneously for the angular accelerations of each wheel 

produces the following equations: 

Ñ@\ = Ñ�� = ÐB�½\ − ÐB�∆�� + 2ÒÓN(∆��)� 																																																			(3.6) 
Ñ@� = Ñ�\ = ÐB�½\ − ÐB�∆�� − 2ÒÓN(∆��)� .																																																		(3.7)

 

The offset error in the robot’s position at the end of the motion time step arises 

due to the difference in magnitude and direction between the initial and final velocities. 

As shown in Figure 3.3, the desired final robot position is equal to the (holonomic) 

velocity command D�5�, ���H multiplied by the length of the motion time step	(∆��). 
Using the two-step acceleration method, the robot will reach the desired velocity 

D�5�, ���H and therefore will also be oriented along the desired heading, ψ, but it will not 

(in general) reach the desired position unless the new command velocity is the same as 

the robot’s current velocity. 
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Figure 3.3 Possible robot positions at the end of the motion time step 

 

The robot’s position at the end of the time step can be calculated using:  

Q(�� + 1) = Q(��) + Ú ÇÐB�N + Ñ\*NÈ�%R £\�k\*�§ N*
∆B

' 	

+ Ú ÇÐB�½∆Û
N + Ñ�*NÈ�%R £ÒB�½∆Û
 + EB�½∆Û
* + \�k�*�§ N*
∆Û�
∆B
 																				(3.8) 

and 

P(�� + 1) = P(��) + Ú ÇÐB�N + Ñ\*NÈRL� £\�k\*�§ N*
∆B

'

+ Ú ÇÐB�½∆Û
N + Ñ�*NÈRL� £ÒB�½∆Û
 + EB�½∆Û
* + \�k�*�§
∆Û�
∆B
 N*																		(3.9)	 

 

 

 

 

where the variables are defined in Table 3.1 and the subscripts refer to the first and 

second acceleration time steps. The first integral in each equation calculates the distance 

that the robot travels (in the respective direction) during the first acceleration time step 

(0	�%	∆��)  and the second integral is the distance that the robot travels during the second 

acceleration time step(∆��	�%	∆�O). 
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The error in the robot’s position is therefore: 

QÞ = �5�∆�� + Q(��) − Q(�� + 1)																																																							(3.10) 

PÞ = ���∆�� + P(��) − P(�� + 1)																																																					(3.11)	 
The robot’s position at the end of the motion time step (see Figure 3.3) will be 

somewhere between the position that it would have reached had it continued at its 

previous velocity D�5\∆��, ��\∆��	H and the desired position based on the new command 

velocity,	D�5�∆��, ���∆��	H, therefore the greater the change between the initial and final 

velocity (magnitude and heading), the more offset error,	(QÞ, PÞ), there will be in the 

robot’s final position.  

The calculated velocity obstacle (as constructed in Figure 2.9) is based on both 

the distance between the robot and the obstacle,	>VF,@	, as well as the obstacle’s velocity. 

Therefore, regardless of the robot’s ability to reach the desired velocity within one 

motion time step, if the robot’s position at the end of that time step is different from what 

it would have been had it instantaneously changed velocities, then there is an offset in 

velocity space. This offset invalidates the assumption of continuous obstacle avoidance 

for velocities outside of the velocity obstacle. 

In Figure 3.4 the construction of a velocity obstacle, _�iiiiiVF, is shown both as it 

would be calculated assuming that the robot could instantaneously change velocity 

(shown in solid lines), as well as what the actual velocity obstacle would be if 

acceleration constraints were taken into account (shown in bold and dashed lines). It 

should be remembered that the velocity obstacle consists of all of the robot velocities that 
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will lead to a collision between the robot and the obstacle at some point in time. Under 

the instantaneous acceleration assumption, almost all of the velocities along the actual 

velocity obstacle are considered safe. This assumption may cause real-world robots to 

inadvertently collide with an obstacle. 

 

Figure 3.4 Velocity space representation of the robot, with velocity	�Vm, an 

obstacle, with velocity DQhF(��), PhF(��)H,	 and the velocity obstacle,	_�iiiiiVF, where >VF,@  is the 

vector between the robot and obstacle. The velocity obstacles and components are 
calculated both with instantaneous acceleration assumptions (solid lines) and with actual 

robot dynamics (bold, dashed lines). 

 

The effects of this offset may range from negligible to catastrophic depending on 

many factors. For instance, if the obstacle position and velocity estimation error is 

significantly greater than the offset error, then it is very likely that the offset error will not 

cause a collision. In this situation, because the error inherent to the system is already 

forcing the VOS algorithm to choose overly-cautious velocities that avoid obstacles by a 

large margin, the offset will probably not be enough to cause a collision. However, in a 
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system with less error or with more quickly moving obstacles, this offset could cause 

problems. The motion time step, ��, also plays a role in the offset error. As �� decreases, 

the offset error and overall distance traveled also proportionally decrease. However, a 

shorter �� also means that the robot requires much greater accelerations to reach the 

same desired velocity. 

3.1.2. Three-step Approximation Method 

Due to the offset error produced by the two-step velocity approximation method, 

a three-step velocity approximation method, which will both accelerate the robot to the 

desired velocity and move it to the position that it would have reached had it been 

moving at the desired velocity for the entire time step, will be considered.  In this case, 

the motion time step, ∆tm, is divided into three equal segments, and the left and right 

wheel accelerations are determined for each segment. 

The three-step method requires the angular wheel accelerations to fulfill the 

constraints used in the two-step method (final velocity and turn rate, and change in 

heading) but also constrains the final position of the robot in the x- and y-directions. To 

simplify this approximation, the required change of heading is accomplished by the first 

two sets of accelerations and the final set of accelerations, 	ÑÔ,	is the same for both 

wheels. The accelerations can be found from the following equation: 
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where the variables a through f are defined as follows: 

� = �%R(0.163Ò) ß = �%R(0.837Ò)  � = �%R(Ò) N = RL�(0.163Ò)  M = RL�(0.837Ò) y = RL�(Ò)  
 

(3.13)

In Eq. (3.12), the first row of the matrix forces the final robot speed to be equal to 

the command speed. The equation that comprises this row is very similar to Eq. (3.4), 

only modified so that the command speed is reached after three time steps, instead of 

two. The second row of Eq. (3.12) constrains the final robot heading to equal the angle ψ. 

The equation in this row has the same purpose and is analogous to Eq. (3.5), except here 

it is modified to account for the three sets of accelerations. ÑÔ is multiplied by zero in this 

row because all of the heading change occurs during the first two accelerations. The third 

row of Eq. (3.12) is used to make the turn-rate of the robot equal to zero (i.e Ð� = Ð@  and 

Ñ� = Ñ@ = 0) at the end of the time step. This line is produced by combining Eqs. (3.2 

and 3.3). 

The last two rows of Eq. (3.12) constrain the change in the robot’s position, during 

the motion time step, to be approximately equal to the distance that a holonomic, 

àáá
áâ 1 1 1 1 21 −1 −1 1 01 −1 1 −1 0� + 2ß � + 2ß ß ß −2�M + 2y M + 2y y y −2$ãää
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instantly accelerating robot would travel during that time step 

	DL. M. ∆Q ≈ �5�∆��	��N	∆P ≈ ���∆��H, see Figure 3.5.  However, as integration would 

be required in order to calculate the exact distance that the robot travels while it is 

accelerating the distance is estimated with Euler approximations and by using the average 

robot heading and speed for each acceleration time step. This is done because it would 

not be possible to explicitly solve the matrix for the wheel accelerations if they were 

contained within an integral.  

The robot’s position during each acceleration time step can be calculated using the 

average angular wheel velocity and heading from that time step. In Table 3.2 the robot’s 

position (in the x-dimension) and angular wheel velocities are given over the course of 

the acceleration time step shown in Figure (3.5).  

Table 3.2 Robot positions and wheel velocities during three-step acceleration 

Interval x-Position 
(at end of time step) 

Average 
heading 

(during time 
step) 

Angular wheel 
velocity 

(at end of time step) 

0	to	Δ�� Q\ = £Âéê½Âéë� § ìB
Ô �%RÒí\  Òí\ = 0.162Ò  Ð\ = ÐB� + (î�ë½îïë)� ìB
Ô   

Δ��	to	2Δ�� 
Q� =Q\ + N £éë½éð� § ìB
Ô �%RÒí�  Òí� = 0.837Ò  Ð� = Ð\ + (î�ð½îïð)� ìB
Ô   

2Δ��	to	3Δ�� 
QÔ =Q� + N £éð½éñ� § ìB
Ô �%RÒÔ  

ÒÔ = Ò  ÐÔ = Ð� + ÑÔ ìB
Ô   
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Figure 3.5 Robot positions during three-step acceleration 
Coordinates are based on initial, local robot frame for simplicity 

 

The robot position at the end of the motion time step is Q3 and the relationship 

�5�∆�� = QÔ      (3.14) 

can be rearranged to form the fourth row of Eq. (3.12) (after the appropriate angular 

wheel accelerations have been substituted into the equation). The same process can be 

used to form the fifth row of Eq. (3.12), if all of the cosine functions are replaced with 

sine functions and x replaced with y. 

The variables a through f, Eq. (3.13), utilize the average robot heading during the first 

third of (a and d), the second third (b and e) and the final third (c and f) of the motion 

time step. These values were determined empirically, and found to be constant through 

all possible velocity changes that could occur between velocities of	£−4OR , 4OR § in both 

directions. 
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This distance approximation still includes some error, which increases with 

greater changes of the robot heading, Ò. This error can be reduced by breaking each 

actuator time step down into smaller components (thus more closely approximating the 

integral) and solving for the distance traveled in each direction during each of these 

smaller components. However, it was found in simulation that the error with the three-

part approximation was usually a few orders of magnitude smaller than the actual 

distance traveled during the motion time step, which made the risk of a collision (due to 

positional error arising from the lack of integration) negligible. The change in the length 

of	∆��, again, has an effect on both the acceleration and position error. Smaller values of 

∆�� necessitate higher accelerations to reach the same velocity. However smaller values 

of ∆�� also produce proportionally smaller overall position changes as well as error in 

the final position. The opposite is true for larger values of	∆��. 

The set of linear equations, Eq. (3.12), can be solved explicitly for the five 

accelerations (i.e., Qr1, Ql1, Qr2, Ql2, and Q3).  

In the case where Ò = 0 (i.e. there is no change in heading, ��� = 0) the matrix 

in Eq. (3.12) becomes singular and it is necessary to use another method to find the 

required accelerations. Conveniently, if no change in heading is required, there are only 

two constraints on the required accelerations (final velocity and distance traveled in the 

x-direction) so only two sets of accelerations are needed in order to approximate the 

change in velocity and position. The accelerations are the same for both wheels and there 

is no error in the final position (because the distance traveled can be found without 

approximate integration). The accelerations then are: 
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Ñ@\ = Ñ�\ = 3 ∙ TÐB�½\ − ÐB�∆�� W 

Ñ@� = Ñ�� = TÐB� − ÐB�½\∆�� W 

 

(3.15)

(3.16)

 

3.2. Comparison of the Two- and Three-Step Methods 

3.2.1. Modified Velocity Occupancy Space 

The kinodynamic velocity approximations were included in the VOS algorithm in 

two places. First, the simulation was augmented so that the robot’s movement was 

restricted by differential drive constraints and the robot’s position and velocity were 

found by integrating over each of the acceleration time steps. Second, the kinodynamic 

velocity approximations where used to restrict the velocity search space so that the 

algorithm could only choose velocities for which the robot had sufficient acceleration 

capability. In other words, accelerations necessary to mimic each velocity in the velocity 

search space of VOS were computed. If the accelerations were outside the bounds of the 

robot capabilities, then that velocity was deemed unreachable and would not be 

considered for the robot at that time step. Initially, this greatly increased the 

computational cost of populating VOS (especially when using the three step acceleration 

method), however, the net effect on the computational load was almost insignificant as it 

was no longer necessary to compute the attractive and repulsive weight for each velocity 

which was considered unreachable and this greatly reduced the computational cost of 

populating VOS. 
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3.2.2. Results and Comparison of Methods 

Figures 3.6 and 3.7 show simulations of a robot avoiding moving and stationary 

obstacles as it navigates to a goal, all while operating under the constraints of an 

acceleration limited, differential drive robot. The same simulation parameters (i.e. 

obstacle locations and velocities, robot acceleration constraints, etc.) were used for the 

simulations shown in both figures. Using both methods, the robot is able to successfully 

find a collision free path to the goal. In both figures, the grey line originating from the 

robot is the robot’s velocity vector for each motion time step (see Figure 3.6). The vector 

also points to the location that the algorithm expects the robot to move to over the course 

of the next time step. Using the two-step approximation, the robot frequently does not 

end up exactly where the algorithm expects. However, as the desired velocity is 

recomputed after every time step, the robot is still able to quickly find the goal. 

 

Figure 3.6 Simulation, using two-step velocity approximation, of the robot 
(circle), obstacles (rectangles) and the goal (asterisk). The robot takes 12 motion time 

steps to reach the goal. 
 

Using the three-step approximation, Figure 3.7, the robot’s final position at the 

end of each time step is almost indistinguishable from the expected position. However, it 
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takes the robot almost twice as long to reach the goal. This extra time is due to the more 

restricted velocity search space. Using the three-step approximation, when the robot 

needs to turn, it is usually required to slow down substantially in order to change its 

heading (and still end up at the desired position velocity) while not exceeding the 

acceleration constraints. However, the three-step method reduces the error in the robot’s 

position at the end of each motion time step by (on average) 84.33% over the robot 

position found using the two-step method. If the robot is close to an obstacle, this 

improvement could make the difference between safety and a collision. However, in 

order to improve the position, the three step method requires (on average) 44.57% higher 

acceleration to reach the same velocity, and must therefore frequently use lower 

velocities than the two-step method due to the robot’s acceleration constraints.  

 

Figure 3.7 The same simulation as in Figure 3.6, but with the three-step velocity 
approximation. The robot takes 22 motion time steps to reach the goal. 

 

In Figures 3.9 and 3.10, the velocity search space of the very simple scenario in 

Figure 3.8 is shown for both the two- and three- step approximations. In these figures, 

positive weights indicate repulsive regions in velocity space (i.e., velocities which are 

dangerous as they may lead to a collision) and negative weights indicate attractive 
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regions (i.e., velocities which should safely avoid a collision). Kinodynamically 

unreachable velocities were given a repulsive weight slightly higher than the most 

repulsive (but reachable) velocity so that they would never be selected by the algorithm 

(in Figure 3.10, the majority of the velocities, shown in white, are unreachable). In 

Figures 3.5 and 3.6, the velocity obstacles of these two obstacles shown in Figure 3.8 can 

be seen as the cones of repulsively-weighted velocities (weighted a little under thirty) in 

Figure 3.9. It should be noted that x- and y-axes in Figure 3.10 are an order of magnitude 

smaller than those in Figure 3.9. This scaling choice was made to increase the scale of 

Figure 3.10 so that the reachable velocities could be more easily seen. 

 

 

Figure 3.8 Simple goal/obstacle scenario 
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Figure 3.9 Velocity search space of scenario in Figure 3.8 using the two-step 
velocity approximation 

 
 

 
 

Figure 3.10 Velocity search space of scenario in Figure 3.8 using the three-step 
velocity approximation (the axes are an order of magnitude smaller than those in 

Figure 3.9) 
 

The two-step approximation provides a much richer velocity search space for the 

algorithm (as shown in Figure 3.9) and the robot is generally able to move more quickly 

to the goal. The constraint of having to reach a specific position as well as velocity for the 

three-step approximation method means that much greater accelerations are required 
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using this method, than are required using the two-step method, in order to approximate 

the same desired velocity. However, the loss of accuracy in the final position, using the 

two-step method, can have highly undesirable consequences. 

In Figure 3.11, a slightly different simulation than that shown in Figures 3.6 and 

3.7 is presented using the two-step velocity approximation method. By the fifth motion 

time step, the algorithm has detected Obstacle A and attempts to speed up the robot in 

order to cross in front of the obstacle (in the negative y-direction). However, the robot 

does not reach the desired position by the end of the time step, so, in the next time step, 

the algorithm chooses a velocity that will allow the robot to turn sharply and move in the 

positive y-direction and avoid the obstacle. Unfortunately, again the robot does not end 

up in the desired position and this leads to a collision. Although not shown here, the 

three-step method was able to safely reach the goal under the same simulation conditions. 

 

Figure 3.11 Failed simulation using two-step velocity approximation method 
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3.3. Obstacle Proximity Dependent Method 

The two- and three-step acceleration methods have complementary strengths; the 

two-step method enables the robot to move efficiently to a goal, but with a greater 

possibility of a collision, while the three-step method is safer, but much less efficient at 

reaching the goal. Therefore, a combination of the two methods that utilizes the strengths 

of each has been developed. This method allows the algorithm to alter is velocity 

selection method based on the proximity of surrounding obstacles. 

3.3.1. Proximity Dependent Method 

The proximity dependent method was initially designed so that the algorithm 

selected the method (two- or three-step) solely based on the distance to the nearest 

obstacle. However, it was found that this method frequently led to over-conservative 

(unnecessarily switching to the three-step method) or reckless (unsafely switching to the 

two-step method) switching. The amount of positional error possible at each time step 

using the two-step method varies greatly - based on the robot’s current velocity, the 

maximum velocity of which it is capable and its acceleration capabilities - so a switch in 

methods may be overly-conservative or reckless during one part of a simulation, but 

appropriate during another, even if an obstacle is the same distance away. Therefore, in 

order to more precisely tune the selection of the method to the specific scenario, the 

expected positional error for a possible velocity change was used. 

Ideally, the (two-step) positional error would be found for every possible velocity 

change, while building VOS, and if that error for any velocity change was greater than 

the distance between the robot and the nearest obstacles then that velocity change would 
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be considered unreachable and the three-step method would be used instead to ensure 

safety.  However, as it would be extremely computationally expensive to determine all 

the potential positional errors while building velocity occupancy space at every time step, 

the maximum positional errors were pre-computed off-line and built into look-up tables. 

In this manner, the maximum positional error could be quickly found and used to 

determine the appropriate acceleration method based on the current proximity to the 

closest obstacle. This is a less precise approximation than considering the position error 

for every possible velocity change, but it greatly decreases the required computational 

time while still allowing the robot’s current state (velocity and acceleration) to be 

considered. 

Tables were built for a range of possible maximum robot velocities and 

accelerations. For each table, the current robot x- and y-velocities were used along with 

the maximum robot velocities and wheel accelerations to create an array of every 

possible subsequent robot velocity. Using this array, and Eq (3.10 and 3.11), the 

positional error for every velocity change was found and the maximum positional error 

was added to the table.  

The maximum positional error was found so that the acceleration method could be 

selected before constructing VOS for each time step. Because the next velocity to be 

selected could not be known at this point, it was necessary to use the maximum position 

error.  
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The maximum position error ranged from 0.2m for low speed, low acceleration 

cases (maximum velocity = 0.5�� , maximum acceleration =|1|��ð) to 3.47m  for high 

speed, high acceleration cases (maximum velocity = 2�� , maximum acceleration =|6|��ð).  
The proximity dependent method was run with the two-step method as the default 

acceleration method, unless the following inequality was satisfied: 

�DQF(��), PF(��)H� − DQ@(��), P@(��)H� − �maxDQÞ(��), PÞ(��)H� <
																																																																																			�maxDQh@(��½\), Ph@(��½\)H� ∙ ∆��																					 (3.8) 

 

where DQF(��), PF(��)H� is the position of the closest obstacle, DQ@(��), P@(��)H	is the 

robot’s current position, O�QDQ̂(�O), PÞ(�O)H	is the maximum position error that is possible 

at the next time step (obtained from the pre-computed look-up table) and 

O�QDQh@(��½\), Ph@(��½\)H	is the maximum possible velocity of which the robot is 

capable during the next time step. 

Therefore, if during each motion time step, the magnitude of the distance between 

the robot and the closest obstacle minus the maximum positional error was less than the 

distance that the robot could travel during that time step, then the three-step method was 

used.  

3.3.2. Simulation Results 

Two sample simulations using the proximity dependent method are shown below. 

In both sets of figures, the algorithm uses the two-step method when the robot is shown 

in green and the three-step method when the robot is shown in blue.  



111 
 

In the first set of figures (Figures 3.12 – 3.16), due to the cluttered environment in 

this simulation, the algorithm is mostly dependent upon the three-step method. The two-

step method is used for the first five time steps (Figure 3.12). Until, at time step five, 

Obstacle A approaches closely enough that the algorithm switches to the three-step 

method. The change in methods is due both to the obstacles proximity as well as to the 

relatively high speed at which the robot was moving. In Figure 3.13, the algorithm briefly 

uses the two-step method (time step 13), but then relies on the three-step method to avoid 

Obstacle B. 

 

   Figure. 3.12 Simulation using the proximity  Figure 3.13 Time steps 13-18 
      dependent method. Time steps 1 – 11   

      

Between time steps 18 and 32, Figure 3.14, the algorithm occasionally uses the 

two-step method, but is mostly dependent on the three-step as the robot is moving almost 

parallel to Obstacle C. In Figure 3.15, the robot is carefully avoiding both Obstacles C 

and D, and therefore exclusively using the three-step method. Finally, in Figure 3.16, the 

robot is able to reach the goal fairly efficiently – though the proximity of Obstacle E at 

the end of the simulation forces the algorithm to again mostly use the three-step method. 
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Figure. 3.14 Time steps 18–32 

       

Figure 3.15 Time steps 32-39                  Figure 3.16 Time steps 38-45 

 

For the next simulation, shown in Figures 3.17 though 3.19, which is less 

cluttered, the algorithm depends more heavily on the two-step method in order to 

navigate to the goal. In Figure 3.17, the algorithm almost exclusively uses the two-step 

method, except briefly when the robot is close to Obstacles A and B., Next, in Figure 

3.18, the three-step method is used to avoid a collision while the robot is navigating 
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between Obstacles A and C. Finally, after the robot clears Obstacle C, it is able to reach 

the goal using the two-step method, Figure 3.19. 

 

 
Figure. 3.17 Simulation using the proximity dependent method. 

Time steps 1-7 
 
 

      

Figure 3.18 Time steps 7-16    Figure 3.19 Time steps 15-26 

3.3.3. Comparison of the Three Methods 

Using a random obstacle generator, similar to that described in Section 2.5, the 

three different methods (two-step, three-step and proximity dependent) were tested 
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against the same set of 500 randomly generated simulations. The results were analyzed 

using the evaluation metric equations in Table 2.1 and are displayed in Table 3.3. 

Table 3.3 Evaluation Metrics for Three Methods 

  

In general, the performance of the proximity dependent method was between that 

of the two- and three-step method. The proximity dependent method suffers from fewer 

collisions and maintains a larger distance between the robot and the nearest obstacle than 

the two-step method (note: the four evaluation metrics do not include data from scenarios 

that failed due to a collision or a time-out). However, the proximity dependent method 

does take a longer time to reach the goal with more acceleration (on average) than the 

two-step method.  In contrast, the proximity dependent method is able to reach the goal 

more quickly and with fewer time-outs than the three-step method while maintaining a 

similar distance between the robot and obstacles, though the proximity dependent method 

does suffer from more collisions.  

The one evaluation metric that the proximity dependent method performed 

consistently poorly on was the amount of acceleration. The increase in acceleration is due 

to the switching of methods since, when the method is switched, the feasibility of many 

 T 1O�W 

Obstacle 
Proximity 

Distance 
Traveled 

(m) �OR � 

Velocity 
Change Time 

(s) 
Collisions Time-outs 

Two-Step 18.29 25.08 4.89 30.69 7 (1.4%) 0 

Three-Step 5.73 25.47 5.80 37.19 2 (0.4%) 2 
Proximity 

Dependent 5.74 25.35 6.23 33.71 5 (1.0%) 0 
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potential robot velocities changes and often velocities that require only a small 

acceleration or deceleration are no longer available. However, given the general 

improvement over both component methods, the proximity dependent method is a good 

choice when both safety and efficiency need to be considered for robot navigation. 

 

3.4. Conclusions about VOS for Differential Drive Robots 

In this chapter, VOS has been augmented so that it can be used by a differential 

drive robot that is not capable of instantaneous change in velocity. Two basic methods 

have been derived and simulated. The first is a two-step velocity approximation method 

that provides the algorithm with a wide range of velocities to select from. But, while the 

robot does end up moving at the correct velocity, the robot does not move to the correct 

position by the end of the time step. The second is a three-step velocity approximation 

method which is more computationally complex and greatly reduces the selectable set of 

robot velocities, but causes the robot to end up at both the correct position and velocity. 

The combination of the two- and three-step methods into a proximity dependent 

method allows the complementary strengths of both methods to be utilized: the two-step 

method allows for faster navigation (when the robot is not avoiding dangerously close 

obstacles) and the three-step method allows for slower, but predictable and safe, obstacle 

avoidance. The proximity dependent method has been shown to be almost as safe as the 

three-step method and almost as fast as the two-step. 
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Chapter 4 

 

The derivation of VOS for differential drive vehicles (Chapter 3) was developed 

in order to allow an experimental vehicle to be controlled using the VOS algorithm. One 

of the main assumptions made in that derivation was that the experimental vehicle in 

question would exhibit relatively repeatable acceleration responses when given the same 

acceleration command. However, the two vehicles that were available for 

experimentation were an iRobot PackBot and a SuperDroid ATR – both of which are 

controlled via linear and angular velocity commands. Therefore substantial testing was 

performed in order to determine what accelerations would be produced for a specific 

velocity (or changes in velocity) command.  

Both available vehicles exhibited a significant amount of variation in the 

acceleration response for a given velocity command (probably due, at least in part, to the 

motor controllers). This variation is primarily due to errors in the vehicles’ internal 

control system in attempting to follow a velocity command.  Since unmanned ground 

vehicles (UGVs) are typically tele-operated, rather than operated autonomously, the 

operator provides another level of feedback (e.g. using a joystick). When operated 

autonomously, significant errors were observed in the UGVs response to motion 

commands.  However, the two vehicles in question are both commonly used platforms 

4. Velocity Occupancy Space for Vehicles with Actuation Error
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and, thus, such actuation errors are typical of UGVs.  This realization led to an additional 

research extension to VOS, where such actuation (in addition to sensing) uncertainties are 

accounted for. 

As mentioned in the previous chapter, even though VOS is a velocity based 

navigation method, it is not possible to control a velocity commanded vehicle with VOS 

unless the vehicle is capable of instantaneous velocity changes (a capability which is 

decidedly rare among vehicles having mass). To compensate for this shortcoming, VOS 

was extended to apply to velocity-commanded vehicles that suffer from actuation error.  

While the actuation error that this extension is primarily designed for is delayed 

velocity change, the method described in this chapter is capable of compensating for 

multiple types of actuation error, including slip (either due to the kinematics of the 

vehicle or to the terrain), poor motor control or a (well-known, e.g. one motor has 

partially lost power) malfunction of the vehicle: this method can be used as long as the 

effects of the actuation error can be bounded. 

 

4.1. Summary of Error Causes and Effects 

4.1.1. PackBot Specific Error Profiles 

The first vehicle that was tested was the iRobot PackBot. The PackBot is a skid-

steered, tracked vehicle that is typically tele-operated by a human. However, for this 

research, it was operated autonomously and controlled via linear and angular velocity 

commands produced by an onboard computer running the VOS algorithm. The PackBot 
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is able to receive commands and return packets of information (including encoder 

positions, encoder-based velocity measurements, etc.) at a rate of 10Hz.  

In order to convert desired acceleration responses into acceptable velocity 

commands, the PackBot was initially given a range of different velocity commands, and 

the resulting acceleration profiles were recorded. The purpose of this calibration was to 

produce a look-up table that would allow the algorithm to translate desired vehicle 

accelerations into actual vehicle velocity commands. To use the VOS algorithm, the 

vehicle must be able to accept and follow a new VOS-generated velocity every motion 

time step - which should typically be no longer than one second (though, much shorter 

response times would lead to better performance). Because the acceleration based VOS 

method requires the vehicle to change its acceleration up to three times during each 

motion time step, in order to replicate each VOS generated velocity, the vehicle 

accelerations were averaged over the first one-third of a second after the vehicle started to 

respond to the vehicle velocity command.  

To clarify, two different velocity commands are being discussed. The first is the 

VOS generated velocity command (generated by the process described in Chapter 2) that 

will allow the vehicle to avoid obstacles and navigate towards a goal. This VOS 

generated velocity command can be broken into two or three acceleration commands (as 

described in Chapter 3) that allow an acceleration controlled vehicle to approximate an 

instantaneous velocity change. The second type of velocity commands are individual 

vehicle velocity reference commands to the UGV controller which are being analyzed to 

determine what accelerations they will generate in a given vehicle. 
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However, it was found that the Packbot did not repeatably generate the same 

accelerations for a given velocity reference command to the UGV. Specifically, for linear 

and rotational velocity commands of 1��   and	1 @�Â� , there was up to a 56% difference in 

the encoder-measured  track acceleration averaged over the first one-third of a  second 

after the vehicle had started to respond to the command. In addition, the tracks (due to the 

skid-steered configuration) were also subject to a good deal of slip which made the 

difference in average accelerations as measured by an IMU (accelerometers and 

gyroscopes mounted on the PackBot) as much as 186%. 

An additional difficulty that was uncovered with the PackBot was a time-delay in 

the robot’s response to a reference command. Due to the non-real-time PackBot operating 

system, the robot would unpredictably take between 0.1s and 0.4s to start to respond to a 

command (after it had been confirmed that the command had been received), see Figure 

4.1. Given that it was necessary to update the velocity command every third of a second, 

this variable delay prevented the PackBot from being an acceptable platform for use with 

the acceleration based method.  
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Figure 4.1. Two representative PackBot wheel acceleration responses for 

linear and angular velocity commands of 1��   and	1 @�Â�  

     

4.1.2. SuperDroid Specific Error Profiles 

The second vehicle that was considered for experimental testing was a 

SuperDroid with two driven, heavily treaded front wheels and one omni-directional back 

wheel (see Figure 4.2). Similar to the PackBot, the SuperDroid receives linear and 

rotational velocity commands that it translates into individual motor commands at a rate 

of 10Hz. However, the SuperDroid was able to return encoder and gyro information at a 

rate of 50Hz, significantly faster than the Packbot. Unfortunately, the SuperDroid was not 

able to be equipped with an independent accelerometer (vibration issues caused too much 

error in the accelerometer’s reading for the data to be of any use) so independent 

acceleration information was not available. 
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Figure 4.2 SuperDroid Robot 

 

The SuperDroid exhibited less variation in the acceleration response to a velocity 

command (33% difference for linear and rotational velocity commands of 1��   and	1 @�Â� ) 

probably due to the dual wheel configuration instead of the track configuration. While 

this variation was significantly better than the PackBot, it was still not sufficient for use 

directly with the acceleration based VOS method, except at low speeds. 

 

4.2. Effect of Error on Velocity Obstacles 

As neither of the available robotic platforms was suitable for use directly with the 

acceleration based VOS method, a new extension of VOS was developed in order to 

control a linear and rotational velocity commanded vehicle with a degree of actuation 

error (both from non-instantaneous velocity changes and vehicle slip) similar to that seen 
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with the PackBot and the SuperDroid. With regards to accurately building velocity 

occupancy space the actuation error led to several difficulties in ensuring a safe and 

effective robot velocity selection. 

4.2.1. Positional Error 

The first type of error was in the robot’s position. The VOS algorithm operates in 

two parallel loops. The first loop acquires sensor data, builds configuration space, tracks 

the obstacles and estimates their velocities. The second loop uses the obstacle and robot 

information in order to build velocity occupancy space. By necessity, the second loop 

must project the locations of the obstacles and robot ahead by one motion time step as it 

is building velocity occupancy space while the robot is in the process of carrying out the 

last velocity command. Because the actuation error causes the robot’s actual position at 

the end of that time step to be uncertain, the >VF,@DQh (��), Ph (��)H term used to compute the 

velocity obstacles may be incorrect and therefore the velocity obstacle cannot be 

accurately constructed. 

For example, in Figure 4.3, the algorithm will assume, based on the calculated 

lambda, that �V@ will lead to a collision (and therefore that velocity will be avoided). 

However, if >VF,@` is the actual distance then	�V@`, and not	�V@, will lead to a collision. In 

this scenario, the algorithm may mistakenly choose an unsafe robot velocity due to the 

error in the robot’s position. 
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Figure 4.3. Velocity obstacles based on the calculated robot position and 
the actual (error influenced) robot position 

 

To compensate for the positional error, the maximum error in the average robot 

linear and angular velocities were found over the course of one motion time step. The 

error for the SuperDroid was due primarily to the non-instantaneous velocity change and 

therefore the pervious and current velocity commands where used as the basis for 

calculating the positional error. The dependence of the actual, measured velocity on the 

current and previously commanded velocities was found from the SuperDroid test data 

using the equation 

ó;(��Y\) = �̅�Y\ − ��Y���Y\ − ��Y� 																																																												(4.1) 
where ��Y\is the current linear velocity command and �̅�Y\is the average of the 

measured velocities over one motion time step. It should be remembered that the VOS 

algorithm is computing �� while executing	��Y\, so ��Y� is the previously commanded 



124 
 

linear velocity. The maximum linear velocity error for a specific motion time step can 

therefore be calculated using the equation  

M;(��Y\) = D1 − ó;(��Y\)H ∙ ��Y� + ó;(��Y\) ∙ ��Y\																															(4.2) 
The same two equations can also be used to find, óõ and Mõ, the maximum error for the 

angular velocity, by substituting = for � .  

Based on the test data from the SuperDroid it was found that ó; = 0.51 and 

óõ = 0.44. Using these values, M;(��Y\) and Mõ(��Y\) will bound the maximum error 

for 98% of velocity changes (based on the experimental test data). For most of the other 

2% of velocity changes, the actual change was typically so slight, that the error was due 

more to the steady state variation in the average velocity than to error from acceleration 

and including these more extreme values would make ó; and óõ unnecessarily 

conservative. 

 After the maximum velocity errors have been found they can be used to determine 

the maximum positional errors in the x- and y-directions using  

M5(��) = Ú M;(��Y\) ∙ �%R(Mõ(��Y\) ∙ *)∆B�
' N* − Ú �(��Y\) ∙ �%R(=(��Y\) ∙ *)∆B�

' N*														(4.3) 
and 

M�(��) = Ú M;(��Y\) ∙ RL�(Mõ(��Y\) ∙ *)∆B�
' 	N* − Ú �(��Y\) ∙ RL�(=(��Y\) ∙ *)N*															(4.4)∆B�

'  

where ∆�� is the length of one motion time step. 
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 The maximum positional errors were then applied to the >VF,@ term in the direction 

and angle equations in order to ensure that the actual robot position at the end of the 

current time step would be considered. The directional equation (see Eq. (2.8)) was 

augmented using the calculated M�(��)	 and M5(��)	in the following manner 

om 	=
uvw
vx1	Ly	 ö >VF,@DPh (��)H ± M�(��)∆��Ph E(�O) − Ph L(�O) ∙ (1 ± _|)⋀ >VF,@DQh (��)H ± M5(��)∆��Qh E(�O) − Qh L(�O) ∙ (1 ± _|)÷ ≥ 0
0						%�ℎME�LRM																																																																																																																																																																																																			

( .								(4.5) 

The >VF,@ term in the angular equation (see Eq. (2.10)) was likewise increased, 

pm	 =
�1			Ly	���Y\ z�iiV�,�D�h �(B�)H±:ø(Û�)∆Û��iiV�,�D5h�(B�)H±:ù(Û�)∆Û� ~ = 	���Y\ �|�h�(B�)Y�h �(B�)∙(\±��)|±úû|5h�(B�)Y5h�(B�)∙(\±��)|±úû� ∙ D1 ± (l̀ m − 1)H
0										%�ℎME�LRM																																																																																																																																 ( (4.6)  

 

Please see Chapter 2 for definitions and a detailed description of the other 

variables in these equations.  

Using the modified angle and direction equations, an expanded velocity obstacle 

was formed that took into account possible error in the robot’s position at the end of the 

time step. As shown in Figure 4.4, the velocity obstacle has been expanded to include 

additional velocities that may lead to a collision, based on the uncertainty in the robot’s 

position. 
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Figure 4.4 Expanded velocity obstacle using robot’s positional error bounds 

This method may seem overly conservative as it expands the velocity obstacle in 

both directions – instead of only in the direction corresponding to the change in the 

robot’s velocity. However, it was found that the experimental robot would sporadically 

over- or undershoot the command velocity by accelerating or decelerating too rapidly. By 

the end of the time step, the robot’s velocity had settled to the command velocity, but the 

positional error was now the opposite of what was expected (based on Eq. (4.1-4.4)). This 

error occurred frequently enough that it was considered prudent to allow the velocity 

obstacle to be expanded in both directions as a conservative velocity choice around 

obstacles was considered preferable to a possible collision. 

4.2.2. Velocity Error 

The second type of error was in the robot’s selected velocity. Each velocity 

obstacle is composed of all of the robot velocities that will lead to a collision between the 

robot and a specific obstacle – velocities which must be avoided. However, given the 
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actuation error, the robot’s actual velocity frequently differed from the command velocity 

selected by the algorithm. Therefore the robot might inadvertently move at a dangerous 

velocity. For example, in Figure 4.5, the algorithm has selected �V@	as a safe velocity at 

which the robot may operate, however, the actuation error causes the robot to actually 

move at	�iiVEp, which is along a velocity obstacle and places the robot at risk of a collision. 

In this scenario, the algorithm correctly selects a safe velocity, but the robot is unable to 

obey the commanded velocity. 

 

Figure 4.5. Scenario where a possible collision may occur due to the robot’s 
current velocity error. Please note, for simplicity, this figure does not show the positional 

error from Section 4.2.1. 
 

To compensate for the error in the robot’s current velocity, the maximum 

variations in the robot’s linear and angular velocity, Eqs. (4.2 and 4.3), were again used. 

However, this time, the error terms were found using the currently commanded linear and 

angular velocities (��Y\ and =�Y\) and the linear and angular velocity commands that 
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the algorithm was currently selecting using VOS (�� and =�). Therefore the error 

dependency equation is slightly altered from Eq. (4.1) to 

ó;(��) = �̅� − ��Y\�� − ��Y\ 																																																																	(4.7) 
and the maximum linear velocity error is likewise slightly altered from Eq. (4.2) to be 

M;(��) = D1 − ó;(��)H ∙ ��Y\ + ó;(��) ∙ ��																																			(4.8) 
Again, the angular velocity error terms, óõ and Mõ,  can also be found by substituting = 

for �.  

The upper bounds on the directional velocity errors are 

M;5(��) = M;(��) ∙ �%R(Mõ(��) ∙ ∆��)     (4.9) 

and 

M;�(��) = M;(��) ∙ RL�(Mõ(��) ∙ ∆��).     (4.10) 

These terms were also used to augment the direction and angle equations (see 

Eqs. 3.5 and 3.7), but this time they increase the range of the robot’s selected velocity. 

The direction and angle terms, with both the position error terms from Section 4.2.1 and 

the velocity error terms from this section are 

om 	=
uvw
vx 1	Ly	ö >VF,@(Ph) ± M�∆��DPh E±M;�H − Ph L ∙ (1 ± _|)⋀ >VF,@(Qh ) ± M5∆��(Qh E±M;5) − Qh L ∙ (1 ± _|)÷ ≥ 0
0						%�ℎM�LRM																																																																																																																																																																																																			

( 				(4.11)						 

and  
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pm	
=
uvw
vx1			Ly	���Y\ö>VF,@(PhF)± MP∆�O>VF,@(QhF)± MQ∆�O÷ = 	���Y\ z�DPh@±M�PH − PhF ∙ (1 ± _|)� ± �̀�(Qh@±M�Q) − QhF ∙ (1 ± _|)� ± �̀ ~ ∙ D1 ± (l̀ m − 1)H
	0																																										%�ℎME�LRM																																																																																																											

( 			(4.12) 

 

where all time dependent variables are from time tm (tm has been removed for brevity). 

Using the expanded angle and direction terms, the velocity obstacles will now 

take into account both the error in the robot’s position as well as the potential for error in 

the velocity that is selected for each motion time step. 

An example of an actual extended velocity obstacle can be seen in the following 

figures. Figures 4.7 and 4.8 show the velocity obstacle for the simple scenario in Figure 

4.6. The velocity obstacle is notably broader, especially at velocities that are further away 

from the robot’s current velocity (which thus may produce more error). It should be noted 

that the magnitude of the repulsive values assigned to velocities in the obstacles do not 

increase, just the number of velocities that are considered repulsive. 

 

Figure 4.6 Simple scenario with the robot (triangle), goal (asterisk) 
and one moving obstacle (square) 
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Figure 4.7. Velocity obstacle without                         Figure 4.8. Velocity obstacle with  
     considering actuation error                                       actuation error extensions to VOS 

 

4.3. Simulation Results 

4.3.1. Actuation Error Simulation Results 

An environment of approximately the same size and shape as the experimental 

testing area was simulated in order to exhaustively test the algorithm and analyze its 

performance with and without the actuation error extension. In order to cause the 

simulated robot to perform comparably to the experimental robot, error was added to the 

simulated robot’s position, following the same trend as was observed with the 

experimental robot, using the equations 

Q(��) = Q(��Y\) + 

D�(��) + M;(��) ∙ kf(0 − 1.1)H ∙ �%R �D=(��) + Mõ(��) ∙ kf(0 − 1.1)H ∙ ∆��� ∙ ∆��  (4.13) 

 

and 
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y(��) = y(��Y\) + 

D�(��) + M;(��) ∙ kf(0 − 1.1)H ∙ RL� �D=(��) + Mõ(��) ∙ kf(0 − 1.1)H ∙ ∆��� ∙ ∆��.  (4.14) 

 

where the maximum linear and angular velocity errors, M;(��)	and	Mõ(��), were 

calculated according to Eq.(4.2) (using the current and previous velocity commands) and 

RN(0 − 1.1) is a random number between 0 and 1.1. This random number was obtained 

using a uniform distribution and was used for two reasons. First, the observed velocity 

error was relatively evenly distributed between zero and the maximum velocity error 

bound so the random number reproduced the actual robot behavior fairly accurately. 

Second, an upper bound of 1.1 was used instead of 1.0 both to represent additional 

sources of error that had not been quantified (such as inexact timing of robot commands) 

and error from wheel slip that was not captured by the gyroscope and encoder data used 

to calculate the experimental robot’s velocity error. 

 A total of six sets of 100 simulations each were performed, with different velocity 

limits on the robot and the obstacles. Each simulation consisted of six randomly 

generated obstacles (in addition to the walls of the testing environment), with between 

one and four obstacles - moving at constant velocities randomly generated between the 

bounds shown in Table 4.1. The robot’s maximum linear velocity and accelerations for 

the simulations are also shown in this table (the maximum angular velocity was 

always	1 @�Â�  ). 
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Table 4.1 Simulation Specifications 

Simulation 

Set # 

Actuation 

Error 

Extension 

Robot Maximums Obstacles 

Linear 
Velocity 

Linear 
Acceleration 

Velocity Range 

1 Yes 0.5OR  0.5 OR� −0.3	�%	0.3OR  

2 No 0.5OR  0.5 OR� −0.3	�%	0.3OR  

3 Yes 0.7OR  0.7 OR� −0.4	�%	0.4OR  

4 No 0.7OR  0.7 OR� −0.4	�%	0.4OR  

5 Yes 1.0OR  1.0 OR� −0.5	�%	0.5OR  

6 No 1.0OR  1.0 OR� −0.5	�%	0.5OR  

 

Figures 4.9-4.11 show the algorithms response with and without the actuation 

error extension to the same simulation.  

In Figure 4.9, the algorithm has not increased the velocity obstacles based on the 

actuation error derivation, but the robot’s velocity response still suffers from the 

actuation error. The algorithm starts out moving the robot quickly towards the goal. 

However, at time step 7, the algorithm unsuccessfully attempts to evade an obstacle by 

selecting a velocity that is up and to the left (relative to the image’s orientation). 

Actuation error causes the robot not to respond in the desired manner and the robot 

collides with the obstacle at time step 8. 
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Figure 4.9. Algorithm’s response to a basic simulation without actuation error extension 

 

In Figures 4.10 and 4.11 the actuation error extension was applied to the velocity 

obstacles. In Figure 4.10, the robot does not initially move as quickly towards the goal as 

in the previous simulation, as the extended velocity obstacles react to the presence of 

approaching obstacles and cause more of the faster robot velocities to have a repulsive 

value. However, as an obstacle gets closer the algorithm selects more conservative 

velocities and waits for the obstacle to pass, instead of attempting to pass in front of the 

obstacle. In Figure 4.11, once the obstacle is no longer threatening the robot, the 

algorithm selects faster velocities as it successfully directs the robot to the goal. 
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In Table 4.2, the values of the evaluation metrics for the simulations are tabulated. 

The evaluation metrics were calculated using the equations from Table 2.1 of Chapter 2. 

However, the obstacle proximity and the acceleration were divided by the number of 

motion time steps in each simulation so that the results could be more accurately 

compared between simulation and experimental scenarios with different goal locations. 

 

Table 4.2 Simulation Evaluation Metric Values for 100 Trials 

Simulation  

Set # 

 

Evaluation Metrics 

Obstacle 
Proximity � \�ð� 

Distance 
Traveled 

(m) 

Velocity 
Change �OR � 

Time 
(s) 

# of 
Collisions/ 

% of 
Collisions 

# of 
Timeouts/ 

% of 
Timeouts 

1 3.15 8.26 0.082 29.52 3 / 3% 3 / 3% 
2 2.50 8.28 0.080 28.81 5 / 5% 2 / 2%  
3 1.62 8.79 0.285 31.95 4 / 4% 0 
4 1.80 8.93 0.345 27.46 7 / 7% 0 
5 1.41 8.92 0.173 26.09 3 / 3% 0 
6 2.13 9.13 0.292 15.31 11 / 11% 1 / 1% 

Figure 4.10. Algorithm’s response with 
actuation error extension, time steps 1-11 

 

Figure 4.11. Algorithm’s response with 
actuation error extension, time steps 11-20 
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As summarized in Table 4.2, the difference between the algorithm’s performance 

with and without the actuation error extension diminished as the robot’s and obstacle’s 

maximum velocity decreased. For simulations sets 5 and 6 (where the obstacles and robot 

had the highest velocities), the actuation error extension made a statistically significant 

improvement in the number of collisions (p < 0.011, on a two-tailed, paired t-test) and in 

the robot’s acceleration (p < 0.005) between the two sets. However, the actuation error 

extension also significantly increased the average amount of time that it took the robot to 

reach the goal (p < 0.005), probably due to the more conservative velocity selection.  

For simulation sets 4 and 5, there was a smaller difference in the number of 

collisions (p < 0.181) and the statistical difference between the sets for time and 

acceleration were the same as for sets 5 and 6. Finally, for simulation sets 1 and 2, there 

was not a statistically significant difference in the number of collisions. However, the 

simulations with the actuation error extension experienced more timeouts (being unable 

to reach the goal within 100 motion time steps) than the simulations without the 

extension. Two of these timeouts occurred in the simulation where the extension-less 

simulation experienced a collision. While, from a safety perspective, timing out is 

preferable to a collision, it still means that the robot failed to reach the goal. 

The actuation error extensions significantly improved the robot’s ability to avoid 

collisions at higher speeds, but had more negligible effect at lower speeds. At higher 

speeds the robot accumulated more positional error within one time step and the possible 

difference in velocities was also higher (leading to additional error). However, while the 
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robot was more careful in its avoidance of obstacles it also selected more conservative 

velocities which resulted in the robot to taking a longer time to reach the goal. 

For lower speeds, there was less possible position and velocity error and while 

Eq. (4.1) takes this into account, the normal precautions that the traditional VOS 

algorithm takes to compensate for sensor error appeared to be sufficient to keep the robot 

safe even with additional actuation error. The more conservative velocity selection that 

was produced using the actuation error extension was not necessary and served only to 

increase the time needed for the robot to reach the goal. 

4.3.2. Evaluation of VOS in Scenarios with Narrow Passageways 

An important capability of any navigation algorithm is the ability to safely direct 

a robot through a narrow opening, such as a doorway or between two closely spaced 

obstacles, if this is the most efficient route to the goal. The VOS algorithm was tested in 

simulation to determine the narrowest gap (relative to the robot’s size, n) through which 

it would reliably pass. The original VOS method (developed in Chapter 2), as well as the 

proximity dependent, acceleration based VOS method for differentially driven vehicles 

(developed in Chapter 3) and VOS for vehicles with actuation error (developed in this 

chapter) were all tested in the narrow passageway scenarios. 

Two specific scenarios were evaluated; the first (Case 1), occurred when the robot 

was required to pass between two relatively small obstacles in order to reach the goal as 

quickly as possible (Figure 4.12). The second scenario (Case 2) occurred when the robot 

needed to pass between two significantly larger obstacles that completely blocked the 
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robot from the goal; if the robot failed to pass between these obstacles it would not reach 

the goal (Figure 4.13).  

 

Figure 4.12. Robot, with differential drive constraints, using the proximity dependent 
VOS extension (Case 1). Distance between obstacles is 1.55n, where n is the diameter of 
the robot. When robot is green, the algorithm is using the two-step method and when it is 

blue, the three-step. 

 

 

Figure 4.13. Holonomic robot navigating between two obstacles (Case 2). Distance 
between obstacles is 1.5n. 

 

In Table 4.3, the minimum opening through which the robot was able to regularly 

pass (at least 95% of the time) is listed for both cases for the original VOS algorithm 
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(Holonomic) and the two extensions. The holonomic robot was the most successful at 

passing through narrow openings and, when necessitated by the Case 2 configuration, 

could regularly pass through openings of only 1.4n. Using the proximity dependent 

method the robot was also successful at passing between two obstacles spaced 1.6n apart 

when there was no other way to reach the goal, Case 2. However, for the Case 1 

configuration, the robot would frequently take a less efficient route around the obstacles 

unless they were spaced 2n apart.  The larger required spacing for Case 1 was mostly due 

to the use of the two-step method. If the robot did not approach the obstacles/goal from a 

favorable angle, it would need to back away from the opening in order to reorient itself. 

During this process the robot would sometimes overshoot its desired position (due to the 

inexact positioning of the two-step method) and end up in a location far enough from the 

opening that it would circle around the obstacles instead of passing between them.  

Finally, when the robot was operating with the actuation error extension, for Case 

1 it was able to pass reliably between the obstacles when they were spaced 1.6n apart and 

for Case 2 between obstacles spaced 1.55n apart. The unexpected variations in velocity 

caused by the (simulated) robot actuation error sometimes led to a collision between the 

robot and the blocking obstacles – which is why the robot with actuation error required a 

larger opening than the ideal, holonomic robot. 

Table 4.3. Necessary spacing to allow for robot to pass between obstacles 
(at least 95% of the time) 

 Holonomic 
Proximity 
Dependent 

Actuation 
Error 

Case 1 1.5n 2n 1.6n 
Case 2 1.4n 1.6n 1.55n 
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Figure 4.14 shows the minimum opening through which the robot was able to 

successfully pass 95% of the time for Case 2 scenarios. The holonomic robot was the 

most successful at passing through narrow openings, but the performance of all three of 

the algorithms dropped off quickly when the opening was less than 1.35n.  

 

Figure. 4.14 Minimum distance between obstacles required to allow the robot to pass 
between for Case 2 

 

The results for Case 1 were very similar to those shown in Figure 4.14, with the 

exception of the proximity dependent method. The proximity dependent method required 

an opening of 2n in order to reliably pass between two obstacles for Case 1 and was only 

able to pass through an opening of 1.6n (as it did reliably for Case 2) 60% of the time – 

the remainder of the time the robot tended to circumnavigate the obstacles to reach the 

goal. 
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4.4. Experimental Results with SuperDroid 

The SuperDroid, shown labeled in Figure 4.15, was used for the experimental 

testing of VOS. As previously mentioned, it had a motor command update rate of 10Hz 

and reported gyroscope and encoder data at 50Hz. It was equipped with a Hokyuo UTM 

30-LX laser range finder (see Appendix B for additional hardware specifications for the 

robot, computer, the Create robots and laser range finder). The robot received linear and 

angular velocity commands and ran a simple control loop (using the encoders) to produce 

motor commands. This loop had a settling time of about one second, which dictated the 

rate at which VOS could send velocity commands to the SuperDroid. The SuperDroid 

was also equipped with a Dell Latitude E6400 laptop running VOS in NI’s LabVIEW. 

       

Figure 4.15. Labeled SuperDroid Robot 

 



 

Three iRobot Create robots were used as the moving obstacles. The Create robots 

are capable of linear speeds of up to

height of the Create robots so that they would be detectible by the laser range finder.

 

Figure 4.16.

 
Over one hundred different experimental scenarios were tested using t

SuperDroid and Create robots. It proved to be extremely difficult to exactly recreate 

specific scenarios in order to produce comparable or statistically significant results so that 

the effect of the actuation error extension could be clearly demonstrate

a number of factors. First, the Create robots did not generally adhere to a constant 

velocity and also had variable lag time in responding to a command. Second, it was 

difficult to position the robot at exactly the same location and orie

and even a slight variation was enough to affect the respective locations of observed 

obstacles and therefore alter the robot’s performance. Finally, the robot navigated to the 

goal position based on dead reckoning with the encoders 
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Three iRobot Create robots were used as the moving obstacles. The Create robots 

are capable of linear speeds of up to	0.5�� . Cardboard tubes were used to 

height of the Create robots so that they would be detectible by the laser range finder.

 

Figure 4.16. SuperDroid and Create Obstacles in
experimental testing environment 

 

Over one hundred different experimental scenarios were tested using t

SuperDroid and Create robots. It proved to be extremely difficult to exactly recreate 

specific scenarios in order to produce comparable or statistically significant results so that 

the effect of the actuation error extension could be clearly demonstrated. This was due to 

a number of factors. First, the Create robots did not generally adhere to a constant 

velocity and also had variable lag time in responding to a command. Second, it was 

difficult to position the robot at exactly the same location and orientation for each test, 

and even a slight variation was enough to affect the respective locations of observed 

obstacles and therefore alter the robot’s performance. Finally, the robot navigated to the 

goal position based on dead reckoning with the encoders and gyroscope. The amount of 

Three iRobot Create robots were used as the moving obstacles. The Create robots 

. Cardboard tubes were used to increase the 

height of the Create robots so that they would be detectible by the laser range finder. 

 

SuperDroid and Create Obstacles in 

Over one hundred different experimental scenarios were tested using the 

SuperDroid and Create robots. It proved to be extremely difficult to exactly recreate 

specific scenarios in order to produce comparable or statistically significant results so that 

d. This was due to 

a number of factors. First, the Create robots did not generally adhere to a constant 

velocity and also had variable lag time in responding to a command. Second, it was 

ntation for each test, 

and even a slight variation was enough to affect the respective locations of observed 

obstacles and therefore alter the robot’s performance. Finally, the robot navigated to the 

and gyroscope. The amount of 
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error in the robot’s perceived final goal position ranged from a few centimeters to over 

two meters (in one case), with typical errors in the final robot position of around half a 

meter. 

In Figure 4.17, the robot is shown with three moving obstacles in one of the 

experimental scenarios. Obstacles C, D and E are moving at 0.3��   towards the center of 

the testing area and the robot is capable of linear and angular speeds of up 

to	1.0�� 	and	1.0	
@�Â
� , respectively. 

 

Figure 4.17. Robot and obstacles in testing environment 
(Obstacle D is not visible in the image) 

 

In Figure 4.18, the VOS display for Figure 4.17 is shown. The lower, right hand 

corner shows the laser range finder output (this is the entirety of the external sensor data 

with which the robot is provided). The upper, left hand corner shows the configuration 
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space occupancy grid that is built from this data – obstacles are labeled to correspond 

with Figure 4.17. The unlabeled obstacles are either walls, or stationary obstacles that are 

not visible in Figure 4.17. The lower left and middle images are the obstacle-based 

(repulsive) and goal-based (attractive) velocity spaces that are built using the obstacle’s 

locations and estimated velocities. Finally, the upper, right hand corner shows the 

combined velocity occupancy space from which the next robot velocity is selected. The 

combined occupancy space grid is shown in white color for velocities that are not 

dynamically feasible for the robot (and therefore, cannot be selected). 

 

 

Figure 4.18. VOS Display of the scenario in Figure 4.17 
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In the obstacle-based velocity space, the most repulsive velocities are shown in 

red. Velocities that will move the robot towards Obstacle A (the closest obstacle) are 

shown to be highly repulsive, and velocities that will move the robot towards the more 

distant moving Obstacle E, Pole 3 or the wall also have relatively high repulsive values.  

In the goal-based velocity space, the most attractive values (in black) can be seen to move 

the robot directly towards the goal (as would be expected).  

The robot was able to successfully avoid the moving and stationary obstacles and 

reach the goal location. The video results for this test and others can be seen in Appendix 

C. 

In Table 4.4, the specifications for the experimental tests sets are shown. As with 

the simulations, the robot’s maximum angular velocity was always 1.0 @�Â� . 

Table 4.4 Experimental Specifications 

Experimental 

Set # 

Actuation 

Error 

Extension 

Robot Maximums Obstacles 

Linear 
Velocity 

Linear 
Acceleration 

Velocity Range 

1 Yes 0.5OR  0.5 OR� −0.35	�%	0.35OR  

2 No 0.5OR  0.5 OR� −0.35	�%	0.35OR  

3 Yes 0.7OR  0.7 OR� −0.40	�%	0.40OR  

4 No 0.7OR  0.7 OR� −0.40	�%	0.40OR  

5 Yes 1.0OR  1.0 OR� −0.50	�%	0.50OR  

 

In Table 4.5, the results from the experiments are listed. The results from the 

experimental tests with the fastest robot and obstacle velocities, but without the actuation 



145 
 

error extension (Set #6), proved to suffer from too many collisions to produce useful data, 

so the experimental results are not included here. Specific results for the various tests can 

be seen in Appendix D. 

Table 4.5 Simulation Evaluation Metric Values 

Experimental 

Set # 

 

Evaluation Metrics 
Obstacle 
Proximity 

� \
�ð� 

Distance 
Traveled 

(m) 

Velocity 
Change  

 ��� � 

Time 
(s) 

1 1.02 12.51 0.114 51.38 
2 0.93 9.18 0.103 42.13 
3 1.75 12.61 0.116 34.18 
4 0.92 13.52 0.131 33.44 
5 0.86 12.28 0.125 27.46 

 

It is difficult to draw definitive conclusions from the experimental data, as the 

testing conditions unavoidably varied (sometimes substantially) between different tests. 

However, all of the obstacle proximity experimental result metrics fell within one-half of 

one standard deviation of the simulation results and acceleration experimental result 

metrics were within 1.5 standard deviations of the simulation results (the variation in the 

goal location makes the distance traveled and the time not meaningfully comparable). 

Therefore, as the performance of the VOS algorithm is statistically similar under 

experimental and simulation conditions, the statistical conclusions that were drawn from 

the (much larger) set of simulation results can be applied to the experimental results. 

It was also not possible to produce an accurate failure rate for the experimental 

tests because a significant number of failures occurred due to conditions outside of the 

algorithms control. First, the SuperDroid was equipped with a remote emergency stop 

button which was used whenever it appeared that a collision might occur. It ended up 
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being used much more liberally then was actually required in order to safeguard the 

robots. This was usually determined after the robot had been stopped and the data 

reviewed, as it was frequently the case the robot was aware of the obstacle and 

responding appropriately – and what was thought to be a threatened collision was due 

more to the angle and distance from which the robot had been viewed than to any actual 

danger.  

Second, as can be seen in Figures 4.16 and 4.17, the cardboard tubes on the 

Create robots are significantly smaller then the Creates. As the algorithm is only able to 

sense the width of the tube (via the laser range finder) it would occasionally nick (or be 

stopped before it could hit) the end of a Create. Some thought was given to virtually 

increasing the perceived size of all of the obstacles in the configuration space by the 

difference in size between the Creates and the cardboard tubes. However, the testing 

environment frequently required the robot to navigate through somewhat close fitting 

areas, which this increased size would have severely limited the robot’s ability to do. It 

was determined that the decrease in overall performance was not worth fixing a few 

specific cases.  

Finally, the dead reckoning error that was accumulated throughout the test 

frequently moved the robot’s intended goal to an unreachable location (such as within a 

wall). This made a number of tests impossible for the robot to successfully complete. 

Out of the over one hundreds tests that were performed, if all of the cases where 

the there was a failure due to one of the scenarios previously mentioned (or, an all too 

common, hardware failure) were removed then there would only be a very small subset 
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of tests available for analysis. In order to produce a larger set of test data so that more 

representative results could be derived, the data from as many (even partially successful) 

tests as was possible was included in the experimental test evaluation and the calculation 

of the evaluation metrics. 

 

4.5. Conclusions about VOS for Vehicles with Actuation Error 

The actuation extension for VOS has been shown to significantly improve the 

algorithm’s performance at higher speeds �0.7��ð 	to	1	
�
�ð�	over the original VOS 

algorithm. However, this improvement comes at the cost of increasing the time that it will 

take the robot to reach its goal. As has been the theme throughout the development of 

VOS, there are always tradeoffs between performance and safety for the algorithm and as 

safety must be the priority if the robot is to interact with other vehicles, it has been 

necessary to accept slightly degraded performance in order to improve the algorithm’s 

ability to avoid collisions.  

Conversely, at lower speeds there is not a significant advantage (or disadvantage) 

to using the actuation error extension with VOS. This is due to the smaller amount of 

accumulated positional error that can occur within one time step as well as the smaller 

possible change in the robot’s velocity. The original VOS algorithm is sufficient to 

compensate for the lesser amount of actuation errors that may occur under these 

circumstances. However, this change implies that at velocities higher than those tested for 

this research, the actuation error extension will be even more critical to ensuring the 

safety of a robot operating with VOS. 
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The work in this chapter points clearly to the need to improve the motion control 

of UGVs for autonomous operation. Whereas current UGVs are adequately designed for 

their intended use as tele-operated vehicles, for reliable autonomous operation of UGVs, 

more stringent motion control specifications are necessary.   
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Chapter 5 

5. Summary, Conclusions and Future Work 

 
 

5.1. Summary and Conclusions 
 

In this thesis velocity occupancy space (VOS), an algorithm that allows a robot to 

operate in an unknown environment and, with the use of only a range finding sensor with 

uncertainty, successfully avoid stationary and moving obstacles while navigating towards 

a goal, has been developed. In addition, extensions to VOS that allow the algorithm to 

safely operate on an acceleration controlled, differential drive vehicle or on a velocity 

controlled vehicle with actuation error are also presented. 

In Chapter 1, literature related to obstacle detection and avoidance was presented 

and this literature demonstrated the need for an obstacle avoidance method with the key 

properties (and original contributions) of VOS. VOS was also compared to two 

algorithms that were also designed for the avoidance of moving obstacles, specifically the 

PVO/BOF method and the Dynamic Window method. VOS was shown to have 

comparable obstacle avoidance and goal reaching capabilities as these two algorithms 

with significantly less computational complexity. 

In Chapter 2, background information was given on occupancy space and velocity 

obstacles (two of the main elements of the original VOS algorithm) as well as on some of 
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the fundamental concepts utilized by the VOS derivation. Then the basic VOS algorithm 

was derived and presented for a holonomic robot with the ability to instantaneously 

change its velocity. The VOS algorithm utilizes occupancy space to estimate the location 

of each obstacle and to find each obstacle’s center of certainty. The centers of certainty 

are then tracked in order to approximate each obstacle’s velocity over multiple time steps. 

Next, the obstacle information is converted into velocity obstacle form and used to 

calculate a set of variables that describe the advantage or disadvantage of each possible 

robot velocity. The relative weights of these variables are determined either by hand-

tuning or through an optimization process (using a set of obstacle/goal scenarios) and the 

results are used to form VOS. From this space, the algorithm can find a velocity that is 

both safe and that will lead it towards the goal. While the choice of velocity using the 

optimized weights may not always be ideal, it has been shown that, in most simulations, 

those weights will allow the robot to avoid a collision and reach its destination. 

VOS was also compared to two reference obstacle avoidance algorithms from 

literature. The comparisons involved the two reference algorithms, the VFH and the 

velocity obstacle concept, being tested on the same scenarios as VOS. Based on these 

comparisons, it was found that VOS performs comparably to these algorithms in the 

scenarios that the reference algorithms were designed for (stationary obstacles or 

complete environmental knowledge) and VOS performs superiorly for the scenarios that 

it was designed for (moving obstacles with uncertain sensor data).  

In short, VOS has the characteristics from Table 1.2 that were determined to be 

needed in an obstacle avoidance algorithm based on the literature review summarized in 

Table 1.1.  Specifically, VOS has comparatively low computational complexity as 
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demonstrated by the fact that the velocity occupancy space gird can be built and fully 

populated in less than 10ms (Section 1.2.3.). The algorithm is not susceptible to visible 

local minima due to the perpetual nature of the relative velocity obstacles that are used 

(Section 1.2.4.). VOS also possess inherent goal navigation (Section 2.3.2.) and 

automatically incorporates sensor uncertainty through the use of occupancy space 

(Section 2.2.1.).  The center of certainty technique allows VOS to estimate obstacle 

velocities from laser range finder data (as derived in Section 2.2.1. and tested 

experimentally in Appendix A) and VOS accounts for velocity uncertainty and possible 

occlusions using the VU  and PA terms (Section 2.3.1.) so the algorithm does not require 

any independent obstacle knowledge. Finally, while VOS assumes that obstacles will 

have constant velocities (at least in the short term), the fast update rate and the 

accommodations for obstacle position and velocity uncertainty built into the algorithm 

free VOS from being dependent on restricted obstacle velocities, as shown by its 0.8% 

failure rate around obstacles with variable velocities (Section 2.5.3.). 

In Chapter 3, the basic VOS algorithm was augmented so that it could be used by 

a non-holonomic, differential drive vehicle without the ability to instantaneously change 

its velocity. Two different methods that allow a differential drive vehicle to ‘mimic’ a 

holonomic vehicle were derived and simulated. The first was a two-step velocity 

approximation method that provides the VOS algorithm with a wide range of velocities 

from which to select. However, when using this method, the vehicle does not move to the 

correct position by the end of the motion time step – though it does end up moving at the 

correct velocity. The second method was a three-step velocity approximation method 

which is more computationally complex and greatly reduces the selectable set of vehicle 
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velocities, but causes the vehicle to end up at both the correct position and velocity. 

These two methods were combined to form a proximity dependent method that allows the 

algorithm to select the most appropriate (two- or three-step) method based on the robot’s 

current state as well as the locations of surrounding obstacles. The material presented in 

this chapter show that the VOS algorithm is suitable for a non-holonomic robot with a 

realistic kinodynamic configuration. 

In Chapter 4, VOS was again extended, this time to compensate for the actuation 

error in experimental vehicles. The velocity error of a SuperDroid robot was 

characterized, and this data was used to augment each velocity obstacle so that the 

robot’s actuation error would not cause a collision. Using the actuation error extension, 

the simulated robot suffered from fewer collisions and, in general, maintained more 

distance between the robot and nearby obstacles. However, the robot generally took 

longer to reach the goal due to the more conservative velocity selection. This extension of 

VOS was tested extensively in simulation and also shown to be effective in an 

experimental setting via numerous trials with the SuperDroid robot. Videos of some of 

these experiments can be viewed on-line at: 

https://sites.google.com/site/rachaelbis/thesis-appendix-c 

VOS, along with its extensions, has been shown to be an effective algorithm to 

control autonomous robot navigation in an unknown environment with moving obstacles 

where there is error both from the sensor data that the algorithm receives as well as from 

the robot’s actuators’ response to the algorithms commands. The performance of VOS 
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has been validated statistically through numerous simulations and it has been shown to be 

successful under real-world conditions through experimental trails.  

VOS is not meant as a complete and independent robot navigation system. It is 

designed to perform low level robot navigation and obstacle avoidance. While it can 

operate independently in many types of environments, it would not be suitable to plan 

long, complex paths. As such, VOS would ideally be integrated with other algorithms to 

allow for higher level planning and navigation. For example, integration with an 

algorithm such as SLAMMOT [47] would allow the robot to respond quickly to avoid 

moving and stationary obstacles (while still choosing desirable, goal approaching 

velocities) using VOS, but also build a map of and recognize an environment so that it 

could make more complex navigation decisions. A higher level algorithm could break 

down a long, but desirable, route to a destination and provide VOS with more direct, 

intermediate goals. 

 

5.2. Future Work 

5.2.1. Modifications of the original VOS  

In the future, as previously mentioned, VOS could be adapted to be directly 

integrated with different types of high level planners. Different sets of variable weights 

could be optimized for various types of specific environments, such as structured roads or 

uncluttered areas. During navigation, the algorithm could identify what type of 

environment it was in (structured, cluttered, etc.) and then select the weights that had 

been optimized for such a situation.  
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In addition, the linear combination of terms and weights in Eq. (2.20) has not 

been shown to be better than other possible arrangements. Through more extensive 

optimization, the exponential values of these terms could be evaluated to see if a different 

relationship between the powers of these terms would lead to superior performance. 

Additional terms and relationship could also be experimented with to see how they affect 

the algorithm. 

The computational complexity of VOS is dependent on the resolution of the 

configuration and velocity occupancy space grids. Fairly high resolutions were used for 

the simulation and experimental work in this thesis; the configuration resolution was set 

at 0.1O	and the velocity resolution was between 0.05��  and	0.10�� . A lower resolution 

would decrease the precision with which the algorithm could avoid obstacles but would 

also decrease the processing time. The resolutions should be selected based on the 

environment (e.g., obstacle size and spacing) and the robot’s capabilities (e.g., how 

precisely the robot can follow a specific velocity) and could be determined through more 

extensive testing or possibly through an optimization process. 

Finally, VOS accounts for sensor error based on the error characteristics of the 

Hokuyo laser range finder which was used for the experimental trials. Additional 

research with lower cost (and more error prone) laser range finders would indicate the 

extent to which VOS can accommodate sensor uncertainty.  

 

5.2.2. Additional Acceleration Method Selection Criteria 
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The proximity dependent combination of the two- and three-step acceleration 

methods could also be modified to possibly improve the algorithm. While proximity 

dependence has proven to be an adequate way to combine the two acceleration methods, 

they could also be combined using any number of factors. For example, the results may 

be improved by determining if the previously selected robot velocity was a part of a 

velocity obstacle and, if so, what the time to collision was for that velocity. If the robot 

velocity was not part of a velocity obstacle (or if there was a very high time to collision) 

then this would indicate that the current velocity is relatively safe and the robot is not 

headed towards any obstacles and this information may alter the proximity at which the 

three-step method should be selected over the two-step method. An optimization 

processes could be employed to find the ideal combination. 

In addition, if a higher level planner were being used, the proximity dependent 

method could consider information from this planner when selecting the acceleration 

method. For example, if the higher level planner is aware that the robot will soon be 

entering a more cluttered region then the three-step method could be employed earlier to 

improve the initial alignment of the robot’s path. Conversely, if the robot was about to 

exit a cluttered region, the higher level planner could indicate that the two-step method 

was a safe option, even if there were obstacles close behind the robot. 

5.2.3. Additional Sensor Data 

The VOS framework also lends itself well to the inclusion of data from additional 

sensors, such as infrared or visible light cameras, which could be used to identify 

different types of obstacles. If vulnerable obstacles, such as pedestrians, were identified 
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then the velocities that led to a collision with these vulnerable obstacles could be assigned 

more repulsive weights so that the avoidance of these obstacles would be prioritized. 

Other researchers are currently exploring the possibility of adapting VOS so that it will 

respond in a safe and non-threatening manner to any pedestrians that it may encounter 

[3]. 

5.2.4. Modifications for Different Terrain and Vehicle Types 

One of the first assumptions in the formation of VOS was that the terrain was flat 

and could therefore be assumed to be 2D. This is not the case for many experimental 

environments, so it would be useful to also explore how VOS would operate in a more 

complex terrain. Other researchers have considered terrain when developing robot 

navigation algorithms, and some of their results may be able to be adapted for VOS [89]. 

It would also be interesting to expand the VOS algorithm so that it could be used for 3D 

navigation on an UAV. While the 3D VOS would have substantially higher 

computational complexity, the velocity obstacle concept has been applied to a 3D 

workspace [90] with complete obstacle knowledge, so VOS may be a logical extension 

when sensor error is present.   

In addition, while VOS has been extended from its original holonomic derivation, 

to operate with acceleration and velocity commanded vehicles, it could also be extended 

to operate with additional types of vehicles with other kinodynamic configurations, such 

as steered-cars.  
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Finally, the actuation error extension can compensate for error induced from both 

the environment as well as from the vehicle – as long as the extent of the error can be 

bounded. In the future, the error caused by various types of unstable terrain (e.g. sandy or 

muddy soil) and possible vehicle malfunctions (such as partial loss of power) could be 

characterized and the compensation for these errors could be integrated into the VOS 

actuation error framework. 
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Appendix A 

Results from Low Speed Obstacle Velocity Estimation 

 

Three obstacles with different aspect ratios were mounted on top of an iRobot 

Create robot and driven across a room at eight different command velocities. The 

obstacles were tracked over a distance of approximately 10m with a stationary laser range 

finder. Laser range finder data from the middle portion of the test, when the obstacle was 

at a mostly steady state velocity, was analyzed to determine the obstacles’ velocities. 

The obstacles’ velocities were calculated from this data in two ways. First, they 

were calculated by hand from the raw laser range finder data. The obstacle was located in 

the laser range finder data and its position was measured and recorded at regular intervals 

in order to calculate the obstacle’s velocity. This was a tedious but accurate way to 

measure the velocity, and the results from these measurements can be seen in Table A1 in 

the column Measured Velocity. Second, the obstacle velocities were calculated using the 

center of certainty method described in Section 3.1.1 and the results from this calculation 

are shown in Table A1 in the column COC Calculated Velocity.  

As can be seen from the table, there was a significant amount of error in the COC 

velocity calculation at lower velocities, but (with one exception) the velocity error was 

less than 6% for all of the tests where the obstacle was moving at over 0.2�� . 
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Table A1. Low Speed Obstacle Velocity Estimation 

Command 

Velocity (m/s) 
Test 

Measured 

Velocity 

(m/s) 

% Error from 

Command 

Velocity 

Standard 

Deviation 

COC 

Calculated 

Velocity 

(m/s) 

%  Error from 

Measured 

Velocity 

Standard 

Deviation 

0.10 

1 0.095 4.507 0.134 0.129 35.330 0.081 

2 0.094 5.669 0.158 0.108 14.023 0.049 

3 0.094 6.401 0.172 0.107 14.035 0.047 

AVG 0.094 5.526 0.155 0.115 21.130 0.059 

0.15 

1 0.144 4.225 0.151 0.154 7.455 0.043 

2 0.144 3.704 0.180 0.153 6.117 0.056 

3 0.144 3.937 0.205 0.160 10.913 0.066 

AVG 0.144 3.955 0.179 0.156 8.162 0.055 

0.20 

1 0.195 2.386 0.227 0.205 5.087 0.061 

2 0.195 2.486 0.247 0.206 5.399 0.067 

3 0.196 1.882 0.219 0.207 5.443 0.066 

AVG 0.195 2.251 0.231 0.206 5.310 0.065 

0.25 

1 0.244 2.564 0.250 0.252 3.604 0.072 

2 0.246 1.657 0.287 0.253 2.951 0.071 

3 0.243 2.692 0.256 0.254 4.365 0.080 

AVG 0.244 2.304 0.264 0.253 3.640 0.075 

0.30 

1 0.292 2.828 0.267 0.308 5.550 0.076 

2 0.295 1.514 0.262 0.329 11.428 0.126 

3 0.295 1.731 0.275 0.302 2.408 0.071 

AVG 0.294 2.024 0.268 0.313 6.462 0.091 

0.35 

1 0.346 1.066 0.292 0.356 1.664 0.085 

2 0.349 0.216 0.278 0.359 2.554 0.098 

AVG 0.348 0.641 0.285 0.355 2.109 0.091 

0.40 

1 0.397 0.657 0.301 0.408 2.693 0.088 

2 0.395 1.158 0.268 0.406 2.657 0.078 

3 0.391 2.254 0.258 0.407 3.983 0.086 

AVG 0.395 1.357 0.276 0.407 3.111 0.084 

0.45 

1 0.450 0.062 0.257 0.463 2.914 0.091 

2 0.458 1.683 0.262 0.464 1.466 0.077 

3 0.459 1.989 0.294 0.464 1.109 0.084 

AVG 0.455 1.245 0.271 0.464 1.830 0.080 
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Appendix B 

Hardware Specifications 

 

2.7. B.1 Specifications for robot used for the experimental testing: SuperDroid 

• Chassis: SuperDroid ATR Enclosed Heavy Duty 4WD Chassis with Acrylic 
Covers  
o Modified to front 2WD with third omi-directional wheel  

• Motor Controller: Pololu 18V25 High-Power Motor Driver 
• Battery: 26V 9.9Ah LiFePO4 
• Motors: SuperDroid IG42 24VDC 252 RPM Gear Motor 

 

Table B1. SuperDroid Motor Specifications 

Rated voltage 24 V 
Gear reduction ratio 1:24 
Rated torque 10 kgf-cm 
Rated speed 252 rpm 
Rated current < 2300 mA 
No load speed 290 rpm 
No load current < 650 mA 
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B.2 Specifications for Gyroscope: MicroInfinity Cruizcore XA3300 

Table B2. Gyroscope Specifications 

Performance 

Input Range 
± 100 ˚/sec (Continuous) 

± 300 ˚/sec (Instantaneous) 

Roll, Pitch Accuracy 
Static Error < 0.5 ˚ 

Dynamic Error < 2 ˚ 

Heading Accuracy Static Error < 1 ˚ 

Resolution 0.05 ˚ 

Bandwidth 20 Hz 

Update Rate > 100 Hz (USB, RS-232) 

Physical 
Weight 20 g (Including case) 

Size (L, W, H) 53.9 mm X 35.9 mm X 17 mm 

Electrical 
Power Consumption < 400 m W 

Input voltage 4.75 ~ 5.25 V 

Environmental 
Operating temperature -40 ~ 70 °C 

Shock 200 gRMS 
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B.3 Specifications for Laser Range Finder: Hokuyo UTM-30LX 

Table B3. Laser Range Finder Specifications 

 

Voltage 12.0 V ±10% 
Current 0.7 A (Rush current 1.0 A) 

Detection range 0.1 m to approximately 60 m (<30 m guaranteed) 
Laser wavelength 870 nm, Class 1 

Scan angle 270° 
Scan time 25 ms/scan (40.0 Hz) 

Angular resolution 0.25° 
Interface USB 2.0 
Weight 8.2 oz (233 g) 

 

B.4 Specifications for moving obstacles: iRobot Create 

Table B4. iRobot Create Relevant Specifications 

Driven wheels two; left and right 

Caster wheels two; front and back 

Wheel velocity range −0.5OR 	�%	0.5
O
R  

Communication Bluetooth® 
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B.5 Specifications for on-board laptop computer: Dell Latitude E6400 

Table B5. Computer Specifications 

Operating System Windows Vista 

Processor Intel® Core™2 Duo CPU 2.54 GHz 

Memory (RAM) 4.00GB 

System type 32-bit Operating System 
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Appendix C 

Video Results from SuperDroid Testing 

 

Video results from many of the experimental trials are available at 

www.youtube.com at the URLs listed in Tables C1-C3. A list of all of the videos (with 

links) is available at: 

 https://sites.google.com/site/rachaelbis/thesis-appendix-c 

There are two videos available for each trial. The first is video recorded of the 

robot and environment during the trial (Figure 4.17 is a single frame taken from one of 

these videos) and the second is the VOS display (Figure 4.18 is a single frame taken from 

one of these videos).  

In the VOS display, the lower, right hand corner shows the laser range finder 

output (this is the entirety of the external sensor data with which the robot is provided). 

The upper, left hand corner shows the configuration space occupancy grid that is built 

from this data. The lower left and middle images are the obstacle-based (repulsive) and 

goal-based (attractive) velocity spaces that are built using the obstacle’s locations and 

estimated velocities. Finally, the upper, right hand corner shows the combined velocity 

occupancy space from which the next robot velocity is selected.  
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Table C1. Experimental Results from fast SuperDroid test with  
Actuation Error Extension 

 O�Q	�	 = 	1.0�� , O�Q	�	 = 1.0 @�Â� 	 

Test # Video URL VOS URL 

F1 
http://www.youtube.com/watch?v=dolZdmnaE

68 

http://www.youtube.com/watch?v=TJLT4JR
5-rw 

F2 
http://www.youtube.com/watch?v=SPTGMaTs

VOs 

http://www.youtube.com/watch?v=WWyCb
WFP_mo 

F3 
http://www.youtube.com/watch?v=jHZxBF9K

CTw 

http://www.youtube.com/watch?v=rj2XEmP
9Dlo 

F4 http://www.youtube.com/watch?v=HMey7DfsoOE 
http://www.youtube.com/watch?v=yNz2cyyQUg

4 

F5 
http://www.youtube.com/watch?v=wkRstzR3P

9M 

http://www.youtube.com/watch?v=GAkDL9
utM8Y 

F6 http://www.youtube.com/watch?v=BvyW_Iyv0Xw 
http://www.youtube.com/watch?v=BWEBw0Iim

PM 

F7 http://www.youtube.com/watch?v=W2gZxQnk4dE 
http://www.youtube.com/watch?v=et0hqHCxDU

0 

F9 
http://www.youtube.com/watch?v=9zNHCA_0

gXE 

http://www.youtube.com/watch?v=2yYLsRs
CSFw 

F10 http://www.youtube.com/watch?v=JW6CfqyTa4E 
http://www.youtube.com/watch?v=MdFKcCskM

Fs 

F11 
http://www.youtube.com/watch?v=jYmzmSAZ

fNs 

http://www.youtube.com/watch?v=0LiRFp5
CrbI 

F12 
http://www.youtube.com/watch?v=8Iq4OZzjDj

k 

http://www.youtube.com/watch?v=iwrIsJJV
lsM 

F13   
http://www.youtube.com/watch?v=CQFBgPlT

Z4M 

http://www.youtube.com/watch?v=72T3cBb
dzsY 

F14 
http://www.youtube.com/watch?v=3UI0BV4H

lpM 
http://www.youtube.com/watch?v=47q5DH

kPYr0 
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Table C2. Experimental Results from medium SuperDroid test with  
Actuation Error Extension 

 O�Q	�	 = 	0.7�� , O�Q	�	 = 1.0 @�Â� 	 

Tes

t # 
Video URL VOS URL 

M1 
http://www.youtube.com/watch?v=b4eHIh2

m5tY 
http://www.youtube.com/watch?v=K3UaqJ

RVrTk 

M2 
http://www.youtube.com/watch?v=9aj_mc5

sRbk 
http://www.youtube.com/watch?v=cCivH32

N6kE 

M4 
http://www.youtube.com/watch?v=bU8T4t

9pP0k 
http://www.youtube.com/watch?v=nUna2w

cfU20 

M5 
http://www.youtube.com/watch?v=qS2rVp

EvI54 
http://www.youtube.com/watch?v=q1Uru_d

oe5w 
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Table C3. Experimental Results from slow SuperDroid test with  
Actuation Error Extension 

 O�Q	�	 = 	0.5�� , O�Q	�	 = 1.0 @�Â� 	 

Test # Video URL VOS URL 

S1 
http://www.youtube.com/watch?v=Q8d

y0mEIaDg 
http://www.youtube.com/watch?v=aQnvhgK

tAKA 

S2 
http://www.youtube.com/watch?v=-

fVS2-JXsjQ 
http://www.youtube.com/watch?v=RFBE79

1XDXo 

S3 
http://www.youtube.com/watch?v=crZ

BgRRkK18 
http://www.youtube.com/watch?v=3STjAtL

1L-g 

S4 
http://www.youtube.com/watch?v=mjT

LjKI84Rk 
http://www.youtube.com/watch?v=0TgrSNz

kdlo 

S5 
http://www.youtube.com/watch?v=-

kFAcEo3fzw 
http://www.youtube.com/watch?v=cpX2eS

W5G0A 

S6 
http://www.youtube.com/watch?v=Wg

L3ayrOJ1g 
http://www.youtube.com/watch?v=R-OI8La-

RZU 

S7 
http://www.youtube.com/watch?v=ifF

QH1h2quQ 
http://www.youtube.com/watch?v=BoRP0Q

EYgKc 

S8 
http://www.youtube.com/watch?v=-

RoORS_70ww 
http://www.youtube.com/watch?v=864Fbhe

pHFw 

S9 
http://www.youtube.com/watch?v=x0_

3xRTLVVM 
http://www.youtube.com/watch?v=AJ5kXm

x97io 

S10 
http://www.youtube.com/watch?v=Pb5

o2xKnpOk 
http://www.youtube.com/watch?v=vljXPYE

mW6s 

S11 
http://www.youtube.com/watch?v=h7z

aC_uEz04 
http://www.youtube.com/watch?v=Mpn7oF4

QaVg 

S12 
http://www.youtube.com/watch?v=Y-

Wm6n2Ane0 
http://www.youtube.com/watch?v=1d3h-

F_Xlec 

S13 
http://www.youtube.com/watch?v=435

IySAvek8 
http://www.youtube.com/watch?v=-

l50z_YfjZg 

S14 
http://www.youtube.com/watch?v=Wy

Clf8zHCBA 
http://www.youtube.com/watch?v=paXgV5l

Jr3M 
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Appendix D 

Experimental Results with SuperDroid 

 

Table D1. Experimental Results from fast SuperDroid test with  
Actuation Error Extension 

 O�Q	�	 = 	1.0�� , O�Q	�	 = 1.0 @�Â� 	 

Test # 

 

Evaluation Metrics 

Obstacle 
Proximity 

� \
�ð� 

Distance 
Traveled 

(m) 

Acceleration 

�OR�� 
Time 

(s) 

# of 
Moving 

Obstacles 

Obstacle 
Velocity 

�OR�� 

F1 0.842 10.69 0.132 26.50 3 ±0.4 
F2 0.615 9.25 0.137 22.47 1 ±0.5 
F3 0.739 13.18 0.133 22.58 3 ±0.4 
F4 1.080 11.48 0.141 20.23 3 ±0.3 
F5 1.283 18.44 0.127 35.39 3 ±0.3 
F6 1.250 10.78 0.125 18.50 3 ±0.5 
F7 0.931 10.68 0.121 17.14 3 ±0.5 
F8 0.747 11.69 0.109 55.85 1 ±0.3 
F9 0.702 12.41 0.135 19.94 0 N/A 

F10 0.610 12.56 0.113 20.40 0 N/A 
F11 0.890 11.30 0.130 21.69 1 ±0.5 
F12 0.735 16.71 0.091 55.04 0 N/A 
F13 0.796 10.47 0.134 21.29 1 ±0.5 
F14 1.476 7.80 0.107 40.35 3 ±0.5 

Average 0.907 11.96 0.124 28.38   
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Table D2. Experimental Results from medium SuperDroid test  
with Actuation Error Extension 

 O�Q	�	 = 	0.7�� , O�Q	�	 = 1.0 @�Â� 	 

Test # 

 

Evaluation Metrics 

Obstacle 
Proximity 

� \
�ð� 

Distance 
Traveled 

(m) 

Acceleration 

�OR�� 
Time 

(s) 

# of 
Moving 

Obstacles 

Obstacle 
Velocity 

�OR�� 

M1 0.617 10.47 0.102 23.33 1 ±0.5 
M2 0.747 10.96 0.133 26.58 3 ±0.4 
M3 3.451 7.98 0.091 37.52 1 ±0.3 
M4 2.747 16.27 0.128 40.09   
M5 1.180 17.35 0.124 43.40 1 ±0.3 

Average 1.749 12.61 0.116 34.18   

 

Table D3. Experimental Results from slow SuperDroid test  
with Actuation Error Extension 

 O�Q	�	 = 	0.5�� , O�Q	�	 = 1.0 @�Â� 	 

Test # 

 

Evaluation Metrics 

Obstacle 
Proximity 

� \
�ð� 

Distance 
Traveled 

(m) 

Acceleration 

�OR�� 
Time 

(s) 

# of 
Moving 

Obstacles 

Obstacle 
Velocity 

�OR�� 

S1 1.167 10.16 0.109 44.63 0 0 
S2 0.856 9.65 0.119 33.27 0 0 
S3 0.984 10.95 0.099 52.96 0 0 
S4 1.646 14.76 0.117 72.47 0 0 
S5 1.267 8.92 0.106 44.38 0 0 
S6 0.839 9.18 0.128 24.15 1 ±0.3 
S7 0.631 16.55 0.123 64.98 0 0 
S8 0.656 23.42 0.128 97.69 0 0 
S9 1.399 13.10 0.114 46.68 3 ±0.3 

S10 0.829 11.47 0.113 38.78 0 0 
S11 1.179 10.56 0.111 41.46 2 ±0.35 
S12 0.865 13.05 0.117 54.59 3 ±0.45 
S13 0.703 11.46 0.128 44.08 3 ±0.45 
S14 1.459 18.30 0.120 72.30 2 ±0.35 
S15 0.792 6.24 0.077 38.24 1 ±0.25 

Average 1.018 12.52 0.144 51.38   
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Table D4. Experimental Results from fast SuperDroid test  
without Actuation Error Extension 

 O�Q	�	 = 	1.0�� , O�Q	�	 = 1.0 @�Â� 	 

Test # 

 

Evaluation Metrics 

Obstacle 
Proximity 

� \
�ð� 

Distance 
Traveled 

(m) 

Acceleration 

�OR�� 
Time 

(s) 

# of 
Moving 

Obstacles 

Obstacle 
Velocity 

�OR�� 

F1, NAE 9.200 2.67 0.020 32.69 3 ±0.5 
F2, NAE 2.527 11.95 0.079 50.88 3 ±0.5 
F3, NAE 2.256 6.98 0.045 44.02 3 ±0.5 
F4, NAE 2.069 5.09 0.054 26.88 3 ±0.5 
F5, NAE 2.353 11.16 0.137 17.93 3 ±0.5 
Average 2.301 8.79 0.079 34.93   

 

Table D5. Experimental Results from medium SuperDroid test  
without Actuation Error Extension 

 O�Q	�	 = 	0.7�� , O�Q	�	 = 1.0 @�Â� 	 

Test # 

 

Evaluation Metrics 

Obstacle 
Proximity 

� \
�ð� 

Distance 
Traveled 

(m) 

Acceleration 

�OR�� 
Time 

(s) 

# of 
Moving 

Obstacles 

Obstacle 
Velocity 

�OR�� 

M1, NAE 0.918 13.52 0.131 33.44 3 ±0.4 
M2, NAE 1.416 12.06 0.130 28.71 3 ±0.4 
M3, NAE 6.381 14.45 0.100 44.29 3 ±0.4 
M4, NAE 0.912 7.80 0.064 40.35 3 ±0.4 
Average 2.407 11.96 0.106 36.70   
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Table D6. Experimental Results from slow SuperDroid test  
without Actuation Error Extension 

 O�Q	�	 = 	0.5�� , O�Q	�	 = 1.0 @�Â� 	 

Test # 

 

Evaluation Metrics 

Obstacle 
Proximity 

� \
�ð� 

Distance 
Traveled 

(m) 

Acceleration 

�OR�� 
Time 

(s) 

# of 
Moving 

Obstacles 

Obstacle 
Velocity 

�OR�� 

S1, NAE 0.727 10.85 0.110 50.09 3 ±0.3 
S2, NAE 0.836 11.07 0.119 43.15 3 ±0.3 
S3, NAE 1.235 5.62 0.079 33.15 3 ±0.3 
Average 0.933 9.18 0.103 42.13   
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