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Abstract 

 

 Translational bypassing is a unique phenomenon of Bacteriophage T4 

gene 60 in which the ribosome generates a single polypeptide chain from a discontinuous 

open reading frame.  In about half of translational events, the ribosome skips over a 50 

nucleotide segment in the open reading frame to generate a full-length subunit of a Type 

II DNA topoisomerase; the rest of the time the ribosome terminates at an in-frame stop 

codon at the 5’ edge of the untranslated region or coding gap.  Mutational and 

computational analyses suggest a stable structure forms in the coding gap to induce 

bypassing, yet there is no direct evidence of structure in this region.  We have probed the 

structure of gene 60 mRNA with Tb
3+

 ions and the selective 2’-hydroxyl acylation 

analyzed by primer extension (SHAPE) reagent 1M7 and constructed a secondary 

structure model compatible with experimental data.  Our model confirms the presence of 

a predicted UUCG-loop hairpin at the 5’ edge of the coding gap that aids in efficient 

translational bypassing.  Contrary to several previously proposed models, however, the 

rest of the untranslated region is highly reactive to both probing reagents suggesting it 

possesses little structure.  Furthermore, mutational analyses reveal that the untranslated 

region does base pair to any other region of gene 60 mRNA.  The autonomous nature of 

the coding gap is consistent its role as a foreign genetic element inserted into gene 60 

mRNA to inhibit cleavage by the MobA homing endonuclease.  These results indicate 

that the 5’ hairpin may be the only structural element required to stimulate translational 

bypassing. 

 


