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Fig. IV.4. Airbus A380 model illuminated by a   ẑ -polarized plane wave traveling in the   x̂  direction. (a) 

Mesh and main dimensions of the aircraft; second order curvilinear patches are used to discretize the 

surface. (b) Detail of the slot in the aircraft’s fuselage. (c) Cavity seeing from inside. ........................ 93 

Fig. IV.5. Current distribution on the surface of the Airbus A380 of Fig. IV.4 at (a)   t = 120Δt , (b) 

  t = 300Δt , (c)   t = 420Δt , and (d)   t = 660Δt . (e) Location of the three probes; one is located at the tip 

of the nose, one inside the small cavity, and one at the tip of the vertical stabilizer. (f) Transient 

currents observed at the three probes. .................................................................................................... 94 
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CHAPTER I 

Introduction 

1.1 Motivation 

Boundary integral equations (BIE) have remained a popular choice among code developers and 

practitioners for analyzing time-harmonic and transient electromagnetic interaction with perfect electrically 

conducting (PEC) as well as homogeneous penetrable objects [1]. Opposite to Finite Differences or Finite 

Element methods in which equations are solved for the electric and magnetic fields everywhere in the 

propagation domain, BIEs are solved for the trace of those fields on the surface of a scatterer. These traces 

are referred here as equivalent currents. Numerical solution of a BIE requires the discretization of the 

scatterer’s surface, generally in terms of a mesh of planar or curvilinear triangles and/or quadrangles. On 

this discrete surface, spatial dependence of the equivalent current distribution(s) is accounted by  NS  vector 

basis functions. In time-domain (TD) BIEs, the temporal dependence of the currents is represented by 

means of  NT  scalar basis functions, which yields a total of  NS NT  real coefficients to be determined. In 

frequency-domain BIEs, time dependence is accounted by a complex coefficient scaling each vector basis 

function, which yields a total of   2NS  real (or  NS  complex) coefficients to be determined. 

Irrespective of the time regime, discretization of a BIE leads to a linear system of equations in the 

current’s expansion coefficients. The computational cost of iteratively solving this system is directly 

proportional to cost of multiplying the system matrix with a trial solution vector, and to the number of 

iterations  Niter  required for convergence to a prescribed residual error. There exist many “fast methods” 

that reduce the complexity of a matrix-vector multiplication, some of these being suitable for frequency-

domain [2]-[5], and other for time-domain [6],[7]. Often  scales with the condition number of the 

system matrix, with small condition numbers guaranteeing fast convergence. Unfortunately, the standard 

formulations used for PEC and homogeneous penetrable objects are plagued with spectral problems which 

iterN
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render in system matrices whose condition number grows rapidly as the mesh discretization density 

increases [8], the frequency approaches zero or is close to a resonance. As a result, the cost of solving the 

BIE for realistic structures is often prohibitively high. The work presented here deals with techniques for 

preconditioning the system so that the condition number of the system matrix is reduced, and henceforth 

. 

1.2 Overview of Previous Work 

Among all BIEs proposed for the analysis of scattering from PEC structures, the Electric Field Integral 

Equation (EFIE) plays a predominant role. An alternative to the EFIE is the Magnetic Field Integral 

Equation (MFIE), which can also be linearly combined with the EFIE to form a Combined Field Integral 

Equation (CFIE). The same operators encountered in the EFIE and MFIE pertinent to the analysis of 

scattering from PEC structures can also be used to derive BIEs suitable homogeneous penetrable objects.  

1.2.1 Calderón Preconditioning of the EFIE for Scattering from PEC Objects 

Techniques for preconditioning the EFIE based on Calderón identities have become quite popular in 

recent years [9]-[14]. In essence, these techniques exploit the self-regularizing property of the EFIE 

operator, viz. the fact that the square of the EFIE operator is a compact perturbation of the identity, to 

produce well-conditioned system matrices even when the mesh includes sub wavelength geometric features. 

Unfortunately, only a few such preconditioners developed to date are easily integrated into existing codes. 

The Calderón Multiplicative Preconditioner (CMP) technique proposed in [11] is one of them. In particular, 

CMP has been successfully used as a preconditioning technique for the EFIE in frequency-domain 

[11],[15] as well as for the time-domain EFIE (TDEFIE) [12]. In this work, they are referred as CMP-EFIE 

and CMP-TDEFIE, respectively. In close connection to the CMP, a modified TDEFIE that is immune to 

DC instabilities has been presented in [13]. This equation is obtained by leveraging the time domain 

Calderón identities in conjunction with a careful rearrangement of temporal derivatives appearing in the 

TDEFIE operator. This rearrangement is referred here as  “Dottrick-TDEFIE”. 

The CMP uses two separate discretizations of the EFIE operator, one in terms of standard Rao-Wilton-

Glisson (RWG) basis functions [16], and the other in terms of Buffa-Christiansen (BC) basis functions [17]. 

iterN
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The former are div-conforming, while the latter are div- and quasi curl-conforming, i.e. they are 

geometrically nearly orthogonal to the RWG functions. The effectiveness of the RWG-BC combination in 

the construction of the CMP stems from the fact that the RWG and BC functions are linked by a well-

conditioned Gram matrix and guarantee the annihilation of the square of the discretized hypersingular 

component of the EFIE operator. Chen and Wilton proposed basis functions similar to the BC ones in the 

context of analyzing scattering from penetrable objects [18]. Both the BC and Chen-Wilton basis functions 

are of zeroth-order and designed for use in conjunction with RWG basis functions.  

In the last decade, EFIE solvers that use high-order representations of the surface and/or the current 

density have become increasingly popular. A high-fidelity representation of the surface can be achieved 

using a high-order parametric mapping from a reference cell to the scatterer surface, usually in the form of 

curvilinear patches (as opposed to flat ones). Among the many high-order basis functions for representing 

surface current densities, those proposed by Graglia-Wilton-Peterson (  GWP( p) ), which comprise of 

products of scalar polynomials (complete up to order  p ) and RWG basis functions, are very popular [19]. 

For a given solution accuracy, high-order EFIE solvers have been shown to be more CPU and memory 

efficient than their zeroth-order counterparts [20]. That said, they still suffer from ill conditioning when 

applied to structures with sub wavelength geometric features. To allow for a high-order CMP, a high-order 

extension of the BC functions is called for. Jan et al. [23] already presented an extension of the BC basis 

functions on curvilinear triangular patches; unfortunately their method does not extend to high-order 

current representations. 

1.2.2 Single Source Equations for Scattering from Homogeneous Penetrable Objects 

The literature abounds with integral equation techniques for analyzing scattering from homogeneous 

penetrable objects. Dual source techniques, such as those presented by Poggio and Miller [1] and Müller 

[24], solve a coupled pair of electric, magnetic, or combined field integral equations in electric and/or 

magnetic surface current unknowns. These formulations have been studied and used extensively for almost 

four decades and are the de facto standard.  Single source techniques, which solve one integral equation for 

an electric or magnetic surface current density, were proposed by Marx [25] and Glisson [26]. Appealing as 

these methods may be, they never gained a foothold among code developers and practitioners. The reasons 
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are two-fold: (i) Marx’ and Glisson’s equations are of the first kind and involve hypersingular operators; 

hence they lead to ill-conditioned matrices when discretized and are susceptible to dense-mesh [27] and 

low-frequency [28] breakdown. (ii) They exhibit resonances; that is, their solution is not unique at a set of 

discrete frequencies that is increasingly dense as the electrical size of the scatterer increases. A handful of 

papers present single source integral equations that improve on those in [25][26]. For example, Colliander 

and Ylä-Oijala [29] presented a second kind single source equation that does not suffer from dense-mesh 

breakdown; unfortunately their equation remains susceptible to resonances and hence problematic when 

applied to the analysis of electrically large scatterers.  Also, Yeung proposed a combined field single source 

equation [30] that is resonance-free (at least for the first few resonances of a spherical cavity). 

Unfortunately, his equation contains a hypersingular electric field integral operator that renders the entire 

equation hypersingular and susceptible to dense-mesh breakdown.  Finally, Mautz [31] presented a 

resonant free single source equation by introducing an electric current and its rotated counterpart in 

Glisson’s original formulation [26]. However, this integral equation is not easily discretized using basis 

functions of the mixed order type, since these can be either div- or curl-conforming, but not both.  

Numerical discretization of single source equations is by no means a simple task as they contain double 

operator products, which are not encountered on standard formulations for PEC or homogeneous penetrable 

objects. Not surprisingly, to date, no time-domain single source formulation for penetrable objects has been 

reported in the literature. 

1.3 Advancements proposed by this work 

In the past four years, CMP and BC basis functions have received a lot of attention inside the 

Computational Electromagnetics (CEM) community. As promising as these techniques are, up to date, they 

suffer from the main limitation that BC basis functions are of zeroth-order in nature. In consequence: 

• The numerical implementations of the CMP reported up to date are limited to zeroth-order surface 

representations and current expansions.  

• High-order discretization of the time-domain CMP-TDEFIE and Dottrick-TDEFIE have never 

been reported to date.  
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Single source equations on the other side have not received much attention. This may be explained by 

the fact that standard discretization schemes do not fit for this type of equations. For this reason: 

• Single source equations for analyzing scattering from homogeneous penetrable objects that are 

free from dense-mesh and low-frequency breakdowns also free from internal resonances have 

never been presented up to date in the literature.  

• Time-domain single source equations for analyzing scattering from homogeneous penetrable 

objects have never been presented to date. 

This work presents the following contributions: 

• A true high-order BC extension, viz. a set of high-order div- and quasi curl-conforming 

(DQCC(p)) functions that, when used in conjunction with the GWP(p) functions, exhibits the 

aforementioned properties of the BC-RWG pair. 

• A high-order numerical implementation of the CMP, both in frequency- and time-domain. This is 

accomplished using  and the  basis functions presented here. 

• A high-order numerical implementation of the Dottrick-TDEFIE.  

• A discretization technique for double or triple operator products, which is achieved by multiplying 

system matrices arising from the discretization of the various (standalone) operators involved, 

carefully choosing basis and testing functions. This technique has enabled the proper discretization 

of a single source equation for penetrable objects, which is free from dense-mesh and low 

frequency breakdowns, as well as free from resonances. 

•  A high-order numerical implementation of time domain single source equations for analyzing 

scattering from homogeneous penetrable objects. 

1.4 Document Overview 

This document can be outlined as follows. Chapter I describes (in very general terms) the numerical 

solution of BIEs, provides historic background and previous work that investigates BIEs and lists their 

main limitations, some of which are addressed in this work. Chapter II introduces a set of high-order div- 

and quasi curl-conforming (  DQCC( p) ) basis functions. For illustration purposes, this set of functions is 

  GWP( p)   DQCC( p)
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presented in the context of CMP-EFIE for PEC objects in frequency-domain. The proposed basis functions 

are constructed as orthogonal projections of the range of the EFIE operator onto div-conforming   GWP( p) s 

defined on a barycentrically refined mesh. Chapter III presents a single source equation for analyzing 

scattering from homogeneous penetrable objects in frequency-domain. The proposed equation is free from 

resonances, and free from dense-mesh and low-frequency breakdowns. This equation contains double and 

triple operator products, the discretization of which is achieved by multiplying system matrices arising 

from the discretization of the various (standalone) operators involved using carefully chosen basis and 

testing functions. Specifically,   GWP( p)  functions are used alongside the   DQCC( p)  functions presented 

in Chapter II to stably discretize electric and magnetic field operator products. Chapters IV and V extend 

the work presented in Chapters II and III to a time-domain framework. In particular, Chapter IV presents a 

high-order CMP-TDEFIE) as well as a high-order Dottrick-TDEFIE pertinent to the analysis of scattering 

from PEC objects. Both time-domain implementations are achieved using   GWP( p)  and   DQCC( p)  basis 

functions. In Chapter V, time-domain single source EFIE and MFIE are presented and appropriately 

discretized to achieve an accurate and stable time-domain scheme. As in the frequency-domain case, the 

equations presented here contain double operator products, discretization of which is achieved by 

multiplying system matrices arising from the discretization of the various (standalone) operators involved, 

using carefully chosen basis and testing functions. To this end, the   DQCC( p)  basis functions presented in 

Chapter II are used alongside   GWP( p)  basis functions. Conclusions and future work are outlined in 

Chapter VI. 
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CHAPTER II  

High-order Div- and Quasi Curl-Conforming Basis Functions 

This chapter presents a new set of high-order div- and quasi curl-conforming (  DQCC( p) ) basis 

functions. For illustration purposes, this set of functions is presented in the context of CMP-EFIE for PEC 

objects in frequency-domain. Section 2.1 presents the general framework for analyzing scattering from 

PEC objects with the EFIE and CMP-EFIE, in frequency-domain. Section 2.2 describes the BC basis 

functions. The construction of the   DQCC( p)  basis functions is detailed in Section 2.3. Details in the 

computational implementation of these functions and numerical results are shown in Sections 2.4 and 2.5, 

respectively. 

2.1 Introduction: Calderon Multiplicative Preconditioner 

2.1.1 Non-preconditioned EFIE solver 

Consider a closed, simply connected PEC surface  S  residing in a homogeneous medium with 

permittivity  ε  and permeability μ .  The (scaled) current density  J  on  S  induced by the incident time-

harmonic electric field   E inc  satisfies the EFIE [21] 

     T [J] = −n̂r × E inc  (6.1) 

where  

     T [J ] = Ts[J ]+ Th[J ]  (6.2) 

with  

 
    
Ts[J ] = ik

4π
n̂r ×

eik r−r '

r − r '
J (r ')ds '

S
∫  (6.3) 
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and  

 
    
Th[J] = −i

4πk
n̂r × ′∇ eik r−r '

r − r '
′∇S J (r ')ds '

S
∫  (6.4) 

Here,   k =ω εμ  and    n̂r  is the outward pointing unit vector normal to  S  at  r ; ω  is the angular 

frequency. A time dependence  e− iωt  (  i = −1 ) is assumed and suppressed. The subscripts “s” and “h” 

stand for “singular” (vector potential) and “hyper-singular” (scalar potential), respectively. To numerically 

solve (6.1),  S  is approximated by a mesh  Sδ  of planar or curvilinear triangles with minimum edge size δ , 

and  J  is expressed as   

 
   
J (r) ≈ I j f j (r)

j=1

N

∑  (6.5) 

where 
 
I j ,   j = 1,…, N   are expansion coefficients of  J  in terms of a set of the div-conforming basis 

functions 
   
F = f j (r), j = 1,…, N{ } .  

Throughout this section it is assumed that  F  is the set of pth-order interpolatory Graglia-Wilton-

Peterson functions, i.e.   F = GWP( p)  [19]. These functions interpolate at   p +1  and   p( p +1)  nodes along 

each of the  N E  edges and on each of the  N P  patches in  Sδ , respectively. The total number of   GWP( p)  

functions therefore is   N = ( p +1)N E + p( p +1)N P ; note that  RWG = GWP(0)  [19].   GWP( p)  functions 

that interpolate at a node internal to a patch or on an edge henceforth will be referred to as patch and edge 

functions, respectively.  For later use we note the Euler identity for a simply connected surface  

   NV − N E + N P = 2  (6.6) 

where  NV  is the number of vertices in  Sδ . 

Substitution of expansion (6.5) into (6.1), and testing the resulting equation with curl-conforming 

functions in 
   
nF = n̂r × fi (r), i = 1,…, N | fi (r)∈F{ }  yields the  N × N  linear system of equations  
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 TF I = VF  (6.7) 

where  

 
     
(TF )i, j = n̂r × fi ,T [ f j ]  (6.8) 

 
   
(I) j = I j  (6.9) 

and  

 
    
(VF )i = − n̂r × fi , n̂r × E inc  (6.10) 

Here 
   

a,b = a(r) b(r)ds
Sδ
∫  denotes the inner product between to vector functions  a  and  b  on  Sδ .  

When analyzing electromagnetic phenomena involving electrically large and/or complex structures, i.e., 

when  N  is large, (6.7) cannot be solved directly and iterative solvers are called for. The computational cost 

of solving (6.7) iteratively is proportional to the cost of multiplying the impedance matrix   TF  by a trial 

solution vector and the number of iterations  Niter  required to reach a desired residual error;  Niter  typically 

is proportional to   TF ’s condition number, viz. the ratio of   TF ’s largest and smallest singular values. 

Unfortunately, the singular values of the operator  T  comprise two branches, one accumulating at zero, and 

the other at infinity [8]. Thus the condition number of   TF  grows without bound as  J  is increasingly well-

approximated, i.e. as  δ → 0  and/or  p→∞ . When this happens the number of iterations required for 

convergence often is prohibitively high. 

2.1.2 Calderón preconditioned EFIE solver 

A well-conditioned EFIE can be obtained by leveraging  T ’s self-regularizing property expressed by 

the Calderón identity [8][11][12] . 

 
   
T 2[J ] = − J

4
+K2[J ]  (6.11) 

with  
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K[J ](r) =

n̂r

4π
× ′∇ eik r−r '

r − r 'S
∫ × J (r ')ds '  (6.12) 

The operator  K  is compact on smooth surfaces: its singular values accumulate at zero and the same 

holds true for   K
2  [8][33]. It follows that the operator   −1/ 4+K2  has a bounded spectrum with singular 

values accumulating at  −1/ 4 . Eqn. (6.11) implies that the Calderón-preconditioned EFIE  

     T
2[J ] = −T [n̂r × E inc ]  (6.13) 

may be amenable to stable discretization regardless of the mesh density or basis function order. 

Unfortunately, the discretization of 
   
T 2[J ] = T T [J ]⎡⎣ ⎤⎦  is by no means trivial. The literature abounds 

with techniques for discretizing  

     T
2[J ] = Ts

2[J ]+ TsTh[J ]+ ThTs[J ]+ Th
2[J ]  (6.14) 

that separately handle the first three terms in the above expansion, explicitly leaving out the fourth as 

   Th
2 ≡ 0  [9][10]. However, the implementation of these techniques into existing codes is quite intrusive. 

The CMP proposed in [11] does not suffer from this drawback. The CMP approximates    T
2[J ]  as the 

product of two impedance matrices    T �F  and   TF  with 
    
�F = �f j (r), j = 1,…, N{ } , separated by a Gram matrix 

that accounts for the possible lack of (bi-)orthogonality between the functions in   �F  and  nF .  In other 

words, the CMP-EFIE matrix equation reads  

   T
CMP I = VCMP  (6.15) 

where  

 
    
TCMP = T �F GnF ; �F

−1 TF  (6.16) 

 
    
VCMP = T �F GnF ; �F

−1( )VF  (6.17) 

and  
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(GnF ; �F )i, j = n̂r × fi , �f j  (6.18) 

is the matrix of overlap integrals of functions in   �F  and  nF . Eqn. (6.15) does not require the 

decomposition of matrix elements in    T �F  and   TF  into their singular (vector potential) and hypersingular 

(scalar potential) components, simplifying its implementation. That said, (6.16) only will be well-

conditioned if  

C1. the functions in   �F  and  F  are div-conforming; 

C2. the matrix 
    
GnF ; �F  is well-conditioned; this ensures the rapid iterative solution of 

    
GnF ; �F y = TFx( )  for 

trial solution vectors  x  while solving (6.15); this requirement precludes the choice    
�F = F = GWP( p)  

as such leads to a singular Gram matrix; 

C3. the sets   �F  and  F  ensure the cancellation of     Th
2[J ]  upon discretization, i.e.  

 
    
Th, �F GnF ; �F

−1 Th,F = 0  (6.19) 

where  

 
     
(Th,F )i, j = n̂r × fi ,Th[ f j ]  (6.20) 

If (6.19) is not satisfied, the desirable spectral properties of   T 2  will not be inherited by 
    
T �F GnF ; �F

−1 TF . 

The above criteria are satisfied by the sets   F = RWG  and    �F = BC , the set of (zeroth-order) div- and 

quasi curl-conforming Buffa-Christiansen basis functions, used by all CMP implementations reported to 

date [11]-[13][15][21]-[23]. 

2.2  Zeroth-order Quasi Curl-conforming Basis Functions 

This section reviews the construction of the BC basis functions and their main properties [11][12]. Just 

as   F = RWG , the set    �F = BC  contains  N = N E  basis functions. Contrary to the current of the RWG 

function   fn , which crosses edge  n  (Fig. II.1(a)), that of the BC function    
�fn  flows along edge  n  (Fig. 

II.1(c)). Consider the barycentrically refined mesh  Sδ , obtained by adding the three medians to each 
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triangle of the original mesh Sδ . Each BC basis function is a linear combination of div-conforming RWGs 

defined on  Sδ  [11][12]. Even though BC functions are strictly div-conforming, they also are quasi curl-

conforming in that they resemble curl-conforming RWGs in  nF  (Fig. II.1(b)). This renders the Gram 

matrix in (6.19) (with   F = RWG  and    �F = BC ) well-conditioned. That is, the sets   F = RWG  and 

   �F = BC  fulfill conditions C1 and C2 above. To show that these sets also satisfy condition C3, consider the 

space 
  
Span F sol( ) ⊂ Span F( )  spanned by “div-conforming solenoidal RWG” functions  

 
   
F sol = f j

sol (r), j = 1,…, N sol{ }  (6.21) 

with   N
sol = NV −1 ; the 

  
f j

sol  are charge-free and could, for example, be “loop” functions describing current 

flowing around all but one of the vertices in  Sδ  (Fig. II.2(a)) [23-24]. The set  F sol  can be complemented 

by a set  F nonsol  such that 
  
Span F( ) = Span F sol( )⊕Span F nonsol( ) . The set  F nonsol  contains “div-conforming 

non-solenoidal RWG” functions  

 
   
F nonsol = f j

nonsol (r), j = 1,…, N nonsol{ }  (6.22) 

with   N
nonsol = N − (NV −1) = N P −1 ; the 

  
f j

nonsol  all produce charge and could, for example, be “star” 

functions describing current flowing out of all but one patch in  Sδ  (Fig. II.2(b)) [34][35]. Similarly, 

consider the space 
   
Span �F sol( ) ⊂ Span �F( )  spanned by “div-conforming solenoidal BC” functions  

 
    
�F sol = �f j

sol (r), j = 1,…, �N sol = N nonsol{ }  (6.23) 

The dimensionality of 
   
Span �F sol( )  equals that of 

  
Span F nonsol( ) ; indeed, it can be verified that an 

appropriate linear combination of the BC functions associated with the three edges of a patch in  Sδ  

describes a divergence-free current circulating the patch (Fig. II.2(c)) [12]. The set   �F sol  can be 

complemented by a set   �F nonsol  such that 
   
Span �F( ) = Span �F sol( )⊕Span �F nonsol( ) . The set   �F nonsol  contains 

“div-conforming non-solenoidal BC” functions (Fig. II.2(d)) 
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�F nonsol = �f j

nonsol (r), j = 1,…, �N nonsol = N sol{ }  (6.24) 

Again, the dimensionality of 
   
Span �F nonsol( )  equals that of 

  
Span F sol( )  [12]. 

Next, assume that the matrices 
   
Th,F , 

    
Th, �F , and 

    
GnF ; �F , are not constructed using the sets   F = RWG  

and    �F = BC , but instead from   F
sol ∪ F nonsol   and   �F nonsol ∪ �F sol   with functions in the left and right subset 

labeled 1 through   NV −1 and  NV  through  N , respectively; note the reverse order of the “sol” and “nonsol” 

superscripts for functions in   F = RWG  and    �F = BC . It is clear from (6.4) and (6.20) that the entries 

   
(Th,F )i, j  and 

    
(Th, �F )i, j  vanish when the source function is solenoidal or the test function is irrotational, 

which implies  

 
    

Th,F =
0 0
0 T

h,F nonsol

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, and Th, �F =
T

h, �F nonsol 0

0 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (6.25) 

The blocks in these matrices have dimensions  

 

  

(NV −1)× (NV −1) (NV −1)× (N P −1)

(N P −1)× (NV −1) (N P −1)× (N P −1)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (6.26) 

Since an irrotational function can be written as the surface gradient of a scalar function φ , and a solenoidal 

function can be written as the surface curl of a scalar function ψ , the inner product of two such functions 

can be expressed as  

 
   
∇Sφ(r)( ) n̂r ×∇Sψ (r)( )ds

S
∫  (6.27) 

which can be transformed by partial integration into  

 
  
φ(r)∇S n̂r ×∇Sψ (r)( )ds = 0

S
∫  (6.28) 

Therefore, the Gram matrix 
    
GnF ; �F  has the form  
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GnF ; �F =

B 0
C D

⎛

⎝⎜
⎞

⎠⎟
 (6.29) 

and so does its inverse  

 
    
GnF ; �F

−1 = B' 0
C' D'

⎛

⎝⎜
⎞

⎠⎟
 (6.30) 

From (6.25) and (6.30), it is clear that 
    
Th, �F GnF ; �F

−1 Th,F = 0 . The fact that the dimension of the solenoidal 

subspace of the RWG basis functions equals that of the non-solenoidal subspace of the BC basis functions 

(and vice-versa), is essential for the CMP technique to work, as it ensures the cancellation of     Th
2[J ]  upon 

discretization. 
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Fig. II.1. RWG and BC functions defined for edge  n  in  Sδ . Functions are plotted on top of  Sδ . (a) Div-

conforming RWG,   fn . (b) Curl-conforming RWG,    n̂r × fn . (c) Div-conforming BC,    
�fn . (d) Curl-

conforming BC,     n̂r × �fn . 
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Fig. II.2. Div-conforming RWG and BC solenoidal and non-solenoidal functions defined in  Sδ . Note that 

functions are plotted on top of  Sδ . (a) Div-conforming RWG solenoidal function   fn
sol , describing current 

flowing around vertex  n  in  Sδ . (b) Div-conforming RWG non-solenoidal function   fn
nonsol , describing 

current flowing out of patch  n  in  Sδ . (c) Div-conforming BC solenoidal function    
�fn

sol , describing current 

flowing around patch  n  in  Sδ . (d) Div-conforming BC non-solenoidal function    
�fn

nonsol , describing current 

flowing out of vertex  n  in  Sδ . 
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2.3 High-order Quasi Curl-Conforming Basis Functions 

In this section, the construction of the basis functions in    
�F = DQCC( p)  is discussed in detail. Of equal 

importance is the set of   GWP( p)  basis functions, for that reason, a more detailed notation for these 

functions is established here. For each patch  P∈SΔs  there are   p( p +1)  GWP functions that interpolate at a 

node strictly inside  P . These functions are grouped in the set  

 
   
FP = fn ∈GWP :Sup( fn )⊆ P{ }  (6.31) 

Here    Sup( fn )  denotes the support of   fn , i.e. the region in  SΔs  in which    fn(r) ≠ 0 . Similarly, for each 

edge  E ∈SΔs  (shared by patches   PE
+ , PE

− ∈SΔs ) there are   p +1  functions that interpolate at a node along  E  

and they are grouped in the set  

 
   
FE = fn ∈GWP : Sup( fn )⊂ PE

+ ∪ PE
−( ) fn ∉F

PE
+ ∧ fn ∉F

PE
−( ){ }  (6.32) 

Of course,  

 
   
GWP = FP

P=1

NP

∪ ∪ FE
E=1

NE

∪  (6.33) 

That being said, consider the following basis for  Span(GWP) :  

   F = RWG∪ Fho
sol ∪ Fho

nonsol  (6.34) 

where  Fho = Fho
sol ∪ Fho

nonsol  is the set that complements that of  RWG  such that  

  
Span(F ) = Span GWP( ) = Span RWG( )⊕Span Fho( ) . The sets  

 
   
Fho

sol = fho, j
sol , j = 1,…, Nho

sol{ }  (6.35) 

and  

 
   
Fho

nonsol = fho, j
nonsol , j = 1,…, Nho

nonsol{ }  (6.36) 
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span the solenoidal and non-solenoidal subspaces of 
  
Span Fho( ) , respectively. The change of basis matrix 

that transforms coordinates in  F  into coordinates in GWP is denoted by   HF . 

The set    
�F = DQCC( p)  is the union of three subsets, namely  

    
�F = BC∪ �Fho

nonsol ∪ �Fho
sol  (6.37) 

where   
�Fho = �Fho

nonsol ∪ �Fho
sol  is the set that complements BC such that    Span( �F ) = Span(BC)⊕Span( �Fho )  [36]. 

The sets  

 
    
�Fho

nonsol = �fho, j
nonsol , j = 1,…, �Nho

nonsol{ }  (6.38) 

and  

 
    
�Fho

sol = �fho, j
sol , j = 1,…, �Nho

sol{ }  (6.39) 

span the non-solenoidal and solenoidal subspaces of    Span( �Fho )  respectively. 

Throughout this section, notation introduced previously for spaces and sets applicable to  F  will be 

reused and extended for all spaces and functions derived from the barycentrically refined mesh  SΔs  by 

adding bars on top of symbols. That is,  

   F = RWG∪ Fho = RWG∪ Fho
sol ∪ Fho

nonsol  (6.40) 

where the sets  

 
   
Fho

sol = fho, j
sol , j = 1,…, Nho

sol{ }  (6.41) 

and  

 
   
Fho

nonsol = fho, j
sol , j = 1,…, Nho

nonsol{ }  (6.42) 

span the solenoidal and non-solenoidal subspaces of 
  
Span Fho( ) , respectively;   GWP( p) = GWP  and 

 RWG  denote   GWP( p)  and RWG basis functions defined on  SΔs ; etc.  
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To ensure that sets  Fho  and   
�Fho  satisfy conditions C1 through C3, functions in   

�Fho
sol  and   

�Fho
nonsol  are 

constructed with the following properties: 

P1. they are linear combinations of div-conforming functions in  Fho
sol  and  Fho

nonsol  respectively, making  

div-conforming, 

P2. they “resemble” the functions in  nFho
nonsol  and  nFho

sol  respectively, rendering the Gram matrix  
    
GnF ; �F  

well-conditioned, 

P3. their cardinality is matched to that of  Fho
nonsol  and  Fho

sol  respectively, i.e.,   
�Nho

sol = Nho
nonsol  and 

  
�Nho

nonsol = Nho
sol , thereby guaranteeing the cancellation 

    
�Th, �F

(0) GnF ; �F
−1 �Th,F

(0) = 0 . 

In the remainder of this section the three points listed above are addressed. Section 2.3.1 details the 

Helmholtz decomposition of the spaces  Fho  and  Fho , into  Fho
sol  and  Fho

nonsol , and  Fho
sol  and  Fho

nonsol , 

respectively. Using these decompositions the sets   
�Fho

sol  and   
�Fho

nonsol  are built in Section 2.3.2.  

2.3.1 Helmholtz decomposition of  Fho  and  Fho  

As described in [37], the set  Fho
sol  can be sought as the union of patch- and edge-based solenoidal 

functions, i.e.  

 
   
Fho

sol = Fho,P
sol

P=1

NP

∪ ∪ Fho,E
sol

E=1

NE

∪  (6.43) 

where 
   
Fho,P

sol = fho, jP (k )
sol ,k = 1,…, Nho,P

sol{ } , with 
  
Nho,P

sol = p( p −1) / 2 , is the set of solenoidal functions with 

support inside patch  P∈SΔs  (Fig.II.3(a)), and 
   
Fho,E

sol = fho, jE (k )
sol ,k = Nho,E

sol{ } , with 
  
Nho,E

sol = p , is the set of 

solenoidal functions with support inside  PE
+ ∪ PE

− , the two patches that share edge  E ∈SΔs  (Fig.II.3(c)). 

Here,   jP(k)  and   jE (k)  are integer mappings that transform the function’s local index  k  in 
  
Fho,P

sol  or 
  
Fho,E

sol  

into its global index in  Fho
sol . Similar integer mappings from local-to-global indexing are used throughout 

the remainder of this chapter.    
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Likewise, the set  Fho
nonsol  can be sought as the union of patch-based non-solenoidal functions,  

 
   
Fho

nonsol = Fho,P
nonsol

P=1

NP

∪  (6.44) 

where 
   
Fho,P

nonsol = fho, jP (k )
nonsol ,k = 1,…, Nho,P

nonsol{ } , with 
  
Nho,P

nonsol = [( p +1)( p + 2)− 2] / 2 , is the set of non-solenoidal 

functions with support inside patch  P∈SΔs  (Fig.II.3(b)). 

Patch solenoidal and non-solenoidal functions in  P  can be obtained by performing a singular value 

decomposition (SVD) to the matrix that maps all patch-based functions 
   
f jP ( i) ∈FP ,   i = 1,…, p( p +1) , onto 

their charges (divergence) at points in  P . Edge solenoidal functions can be obtained by performing a SVD 

to the matrix that maps all edge-based functions 
   
f jE ( i) ∈FE ,   i = 1,…, p +1, and all 

  
2Nho,P

nonsol  patch-based 

non-solenoidal functions in 
  
F

ho,PE
+

nonsol ∪ F
ho,PE

−
nonsol  onto their charges at points in  PE

+ ∪ PE
− . As described in [36], 

patch- and edge-based functions can be orthogonalized. A partial local orthogonalization can be performed 

as follows: 

1. For each edge in  Sδ , orthogonalize the solenoidal functions associated with it. 

2. For each patch in  Sδ , separately orthogonalize the solenoidal and non-solenoidal functions.  

After this partial orthogonalization has been performed, all functions in  Fho
nonsol  are orthogonal to one 

another; but not necessarily orthogonal to any or all functions in  Fho
sol . Furthermore, among the functions in 

 Fho
sol , only those that are patch-based are orthogonal to one another, but not necessarily orthogonal to any or 

all of the edge solenoidal functions.  

A full local orthogonalization can also be performed. The difference with respect to the previous one 

being that now patch-based solenoidal and non-solenoidal functions are orthogonalized altogether. Hence 

all functions in  Fho
nonsol  are orthogonal to one another, and also orthogonal to all patch based functions, but 

not necessarily to any or all edge based functions in  Fho
sol . 
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To summarize, the set  Fho
sol  contains 

  
Nho,P

sol N P  patch-based functions and 
  
Nho,E

sol N E  edge-based 

functions. Likewise,  Fho
nonsol  contains 

  
Nho,P

nonsol N P  patch-based functions. The cardinalities of  Fho
sol  and 

 Fho
nonsol  are therefore  

 
  
Nho

sol = Nho,P
sol N P + Nho,E

sol N E  (6.45) 

and  

 
  
Nho

nonsol = Nho,P
nonsol N P  (6.46) 

Of course   Nho
sol + Nho

nonsol = pN E + p( p +1)N P = NS − N E .  

For future use, we define the matrix   LP  (of size 
  
p( p +1)× Nho,P

sol ) that expresses functions in 
  
Fho,P

sol  as 

linear combinations of functions in  FP , i.e. its  k -th column contains the coefficients of 
   
fho, jP (k )

sol  in terms of 

the functions 
   
f jP ( i) ∈FP ,   i = 1,…, p( p +1) . Similarly, the matrix   SP  (of size 

  
p( p +1)× Nho,P

nonsol ) expresses 

functions in 
  
Fho,P

nonsol  as linear combinations of functions in  FP . The matrix   LE  (of size 

  
(2 p +1)( p +1)× Nho,E

sol ) expresses functions in 
  
Fho,E

sol  as linear combinations of functions in 
 
FE ∪ F

PE
+ ∪ F

PE
− . 

Next, consider the barycentrically refined mesh  SΔs . For each patch  P ∈SΔs  and for each edge  E ∈SΔs  

sets 
  
Fho,P

sol , 
  
Fho,P

nonsol , and 
  
Fho,E

sol  can be obtained in the same way as described above for  SΔs . The union of all 

solenoidal sets equals  Fho
sol , with cardinality  

   Nho
sol = 3p( p +1)N P + 2 pN E  (6.47) 

Similarly, the union of all non-solenoidal sets equals  Fho
nonsol , with cardinality  

 
  
Nho

nonsol = 3 ( p + 2)( p +1)− 2⎡⎣ ⎤⎦N P  (6.48) 

Sets 
  
Fho,P

sol , 
  
Fho,P

nonsol , and 
  
Fho,E

sol , for all   P, E ∈SΔs , can be conveniently grouped according to elements in 

 SΔs . As depicted in Fig.II.4(a), for each patch  P∈SΔs  there are six barycentric patches 
  
Pj (P)∈SΔs , 
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  j = 1,…,6 , twelve barycentric edges 
  
E j (P)∈SΔs ,   j = 1,…,12 , and seven barycentric vertices 

  
Vj (P)∈SΔs , 

  j = 0,…,6 . Note that only edges one through six, and vertex zero, lay inside  P ; all other edges and 

vertices lie in the boundary of  P . Also, for each edge  E ∈SΔs  there are two barycentric edges 
  
E j (E)∈SΔs

,   j = 1,2 . 

All barycentric non-solenoidal functions associated to patch  P∈SΔs  are grouped in the set  

 

    

Fho,P
nonsol = Fho,Pj ( P)

nonsol

j=1

6

∪

= fho, jP (k )
nonsol ,k = 1,…, Nho,P

nonsol{ }
 (6.49) 

with  

 
  
Nho,P

nonsol = 3[( p +1)( p + 2)− 2]  (6.50) 

Every function in 
  
Fho,P

nonsol  is a linear combination of functions in the set  

 
   
FP = FPj ( P) ∪ FE j ( P)

j=1

6

∪  (6.51) 

of cardinality   # FP = 6( p +1)2 .  

Similarly, barycentric non-solenoidal functions associated to edge  E ∈SΔs  are grouped in the set  

 

   

Fho,E
nonsol = F

ho,PE
+

nonsol ∪ F
ho,PE

−
nonsol

= fho, jE (k )
nonsol ,k = 1,…, Nho,E

nonsol{ }  (6.52) 

with  

 
  
Nho,E

nonsol = 6[( p +1)( p + 2)− 2]  (6.53) 

Of course, functions in 
  
Fho,E

nonsol  are linear combinations of functions in 
 
F

PE
+ ∪ F

PE
− . 
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The grouping of barycentric solenoidal functions associated to patch P∈SΔs  requires a few prior 

definitions. Consider the barycentric vertices 
  
Vj (P) ,   j = 1,…,6 , in the boundary of  P . For each vertex 

  
Vj (P)  there is a set 

  
Π(Vj (P))  of all barycentric patches, and a set 

  
Ξ(Vj (P))  of all barycentric edges, that 

have 
  
Vj (P)  as a common vertex. The union of these sets for al vertices in  P  defines the barycentric 

neighborhood of  P :   

 
   
Π(P) = Π(Vj (P))

j=1

6

∪  (6.54) 

and  

 
   
Ξ(P) = Ξ(Vj (P))

j=1

6

∪  (6.55) 

The cardinalities of these sets are denoted by   #Π(P)  and   #Ξ(P)  respectively, and they depend on 

how many patches share the vertices   V1(P) ,   V2(P) , and   V3(P) . In the example mesh of Fig.II.4(b),   V1(P)  

and   V2(P)  are shared by 12 barycentric patches,   V3(P)  is shared by 8. The set that groups all barycentric 

solenoidal functions with support in the barycentric neighborhood of  P  is defined as  

 

    

Fho,NP
sol = Fho,P

sol

P∈Π( P)
∪ ∪ Fho,E

sol

E∈Ξ( P)
∪

= fho, jNP (k )
sol ,k = 1,…, Nho,NP

sol{ }
 (6.56) 

with  

 
  
Nho,NP

sol = p( p −1)
2

#Π(P)+ p#Ξ(P)  (6.57) 

Every function in 
  
Fho,NP

sol  is a linear combination of functions in the set  

 
   
FNP = FP

P∈Π( P)
∪ ∪ FE

E∈Ξ( P)
∪  (6.58) 

of cardinality   # FNP = p( p +1)#Π(P)+ ( p +1)#Ξ(P) . 
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We now define the matrix   SP  (of size 
  
# FP × Nho,P

nonsol ) that expresses all functions in 
  
Fho,P

nonsol  as linear 

combinations of functions in  FP . Similarly, the matrix   SE  (of size 
  
2# FP × Nho,E

nonsol ) expresses functions in 

  
Fho,E

nonsol  as linear combinations of functions in 
 
F

PE
+ ∪ F

PE
− . The matrix   LP  (of size 

  
# FNP × Nho,NP

sol ) expresses 

functions in 
  
Fho,NP

sol  as linear combinations of functions in  FNP .  
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Fig.II.3. Div-conforming  Fho  solenoidal and non-solenoidal functions defined in  SΔs . Note that functions 

are plotted on top of  SΔs . (a) Div-conforming  Fho  patch solenoidal function 
   
fho, j

sol , its support (shaded area) 

is limited to a patch in  SΔs . (b) Div-conforming  Fho  patch non-solenoidal function 
   
fho, j

nonsol , its support 

(shaded area) is limited to a patch in  SΔs . (c) Div-conforming  Fho  edge solenoidal function 
   
fho, j

sol , its 

support (shaded area) include the two patches sharing the edge in  SΔs . 
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Fig.II.4. (a) Barycentric patches 

  
Pj (P), j = 1,…,6 , edges 

  
E j (P), j = 1,…,12 , and vertices 

  
Vj (P), j = 0,…,6  in patch  P∈SΔs . (b) Barycentric neighborhood of patch  P∈SΔs . Every thick line is 

rooted on a barycentric vertex 
  
Vj (P)  and represents an edge in   Ξ(P) . Patches in   Π(P)  are shaded. 

 

2.3.2 Helmholtz decomposition of   
�Fho  

In this section we make use of the sets defined in (6.49), (6.52), and (6.56) to build functions in   
�Fho

sol  

and   
�Fho

nonsol  that have the properties P1 through P3, described above. 
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For each patch-based solenoidal function fho, jP ( i)
sol ∈Fho,P

sol  there is a corresponding div-conforming non-

solenoidal function 
    
�fho, jP ( i)

nonsol  that “best approximates” the curl-conforming counterpart of the former, i.e. the 

function 
   
n̂r × fho, jP ( i)

sol ∈nFho,P
sol , with 

  
i = 1,…, Nho,P

sol . Here the term “best approximates” should be understood 

as  
    
�fho, jP ( i)

nonsol  being the orthogonal projection of 
   
n̂r × fho, jP ( i)

sol  onto the space spanned by all functions in 

  
Fho,P

nonsol  [25], i.e.  

 
    
�fho, jP ( i)

nonsol (r) = pk , jP ( i)
nonsol fho, jP (k )

nonsol (r)
k=1

Nho ,P
nonsol

∑ , ∀ i = 1,…, Nho,P
sol  (6.59) 

where the coefficient 
  
pk , jP ( i)

nonsol  is the   (k,i) -th entry of the matrix 
   
Pho,P

nonsol , obtained by  

 
   
Pho,P

nonsol =G
Fho ,P

nonsol ;Fho ,P
nonsol

−1 G
Fho ,P

nonsol ;nFho ,P
sol  (6.60) 

The Gram matrices in (6.60) are defined for patch  P∈SΔs  and their entries are given by  

 
    
(G

Fho ,P
nonsol ;Fho ,P

nonsol )m,n = fho, jP (m)
nonsol , fho, jP (n)

nonsol  (6.61) 

with 
  
m,n = 1,…, Nho,P

nonsol , and  

 
    
(G

Fho ,P
nonsol ;nFho ,P

sol )m,n = fho, jP (m)
nonsol , n̂r × fho, jP (n)

sol  (6.62) 

with 
  
m = 1,…, Nho,P

nonsol  and 
  
n = 1,…, Nho,P

sol . For example, the function depicted in Fig. II.5(b) is the “best” 

non-solenoidal approximation of the function depicted in Fig. II.5(a), which is the curl-conforming 

counterpart of that depicted in Fig.II.3(a). Note that if the set 
  
Fho,P

nonsol  is orthonormal, then 
   
G

Fho ,P
nonsol ;Fho ,P

nonsol  

equals the identity matrix. 

Similarly, for each edge-based solenoidal function 
   
fho, jE ( i)

sol ∈Fho,E
sol  there is a corresponding div-

conforming non-solenoidal function 
    
�fho, jE ( i)

nonsol  that is the orthogonal projection of 
   
n̂r × fho, jE ( i)

sol  onto the space 

spanned by all functions in 
  
Fho,E

nonsol  [36], i.e.  
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�fho, jE ( i)

nonsol (r) = pk , jE ( i)
nonsol fho, jE (k )

nonsol (r)
k=1

Nho ,E
nonsol

∑ , ∀ i = 1,…, Nho,E
sol  (6.63) 

where the coefficient 
  
pk , jE ( i)

nonsol  is the   (k,i) -th entry of the matrix 
   
Pho,E

nonsol , obtained by  

 
   
Pho,E

nonsol =G
Fho ,E

nonsol ;Fho ,E
nonsol

−1 G
Fho ,E

nonsol ;nFho ,E
sol  (6.64) 

The Gram matrices in (6.64) are defined for patches  PE
+  and  PE

− . Matrix 
   
G

Fho ,E
nonsol ;Fho ,E

nonsol  is the block-diagonal 

matrix  

 

   

G
Fho ,E

nonsol ;Fho ,E
nonsol =

G
F

ho ,PE
+

nonsol ;F
ho ,PE

+
nonsol 0

0 G
F

ho ,PE
−

nonsol ;F
ho ,PE

−
nonsol

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (6.65) 

and the entries of 
   
G

Fho ,E
nonsol ;nFho ,E

sol are given by  

 
    
(G

Fho ,E
nonsol ;nFho ,E

sol )m,n = fho, jE (m)
nonsol , n̂r × fho, jE (n)

sol  (6.66) 

with 
  
m = 1,…, Nho,E

nonsol  and 
  
n = 1,…, Nho,E

sol . For example, the function depicted in Fig. II.5(d) is the “best” 

non-solenoidal approximation of the function depicted in Fig. II.5(c), which is the curl-conforming 

counterpart of that depicted in Fig.II.3(c). Again, if the set 
  
Fho,E

nonsol  is orthonormal, then 
   
G

Fho ,E
nonsol ;Fho ,E

nonsol  equals 

the identity matrix. 

Finally, for each patch-based non-solenoidal function 
   
fho, jP ( i)

nonsol ∈Fho,P
nonsol  there is a corresponding div-

conforming solenoidal function 
    
�fho, jP ( i)

sol  that is the orthogonal projection of 
   
n̂r × fho, jP ( i)

nonsol ∈nFho,P
nonsol  onto the 

space spanned by all functions in 
  
Fho,NP

sol  [36][38], i.e.  

 
    
�fho, jP ( i)

sol (r) = pk , jP ( i)
sol fho, jNP (k )

sol (r)
k=1

Nho ,NP
sol

∑ , ∀ i = 1,…, Nho,P
nonsol  (6.67) 

where the coefficient 
  
pk , jP ( i)

sol  is the   (k,i) -th entry of the matrix 
   
Pho,P

sol , obtained by  
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Pho,P

sol =G
Fho ,NP

sol ;Fho ,NP
sol

−1 G
Fho ,NP

sol ;nFho ,P
nonsol  (6.68) 

The Gram matrices in (6.68) are defined for patches in   Π(P)  and their entries are given by  

 
    
(G

Fho ,NP
sol ;Fho ,NP

sol )m,n = fho, jNP (m)
sol , fho, jNP (n)

sol  (6.69) 

with   m,n = 1,…, N NP
sol , and  

 
    
(G

Fho ,NP
sol ;nFho ,P

nonsol )m,n = fho, jNP (m)
sol , n̂r × fho, jP (n)

nonsol  (6.70) 

with   m = 1,…, N P
sol  and 

  
n = 1,…, Nho,P

nonsol . For example, the function depicted in Fig. II.5(f) is the “best” 

solenoidal approximation of the function depicted in Fig. II.5(e), which is the curl-conforming counterpart 

of that depicted in Fig.II.3(b). 

To summarize, the set   
�Fho

sol  is composed of 
  
Nho,P

nonsol  functions 
    
�fho, jP ( i)

sol  per patch  P∈SΔs , which gives a 

total of  

 
   
�Nho

sol = Nho,P
nonsol N P = Nho

nonsol  (6.71) 

Similarly, the set   
�Fho

nonsol  is composed of 
  
Nho,P

sol  functions 
    
�fho, jP ( i)

nonsol  per patch  P∈SΔs  and 
  
Nho,E

sol  functions 

    
�fho, jE ( i)

nonsol  per edge  E ∈SΔs ;  

 
   
�Nho

nonsol = Nho,P
sol N P + Nho,E

sol N E = Nho
sol  (6.72) 
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Fig. II.5. Div- and quasi curl-conforming functions in   

�Fho , approximating those in  nFho . Note that 

functions are plotted on top of  SΔs . (a) 
   
n̂r × fho, j

sol , i.e. curl-conforming counterpart of the patch solenoidal 

function 
   
fho,i

sol  depicted in Fig.II.3(a). (b) Div-conforming patch non-solenoidal function 
    
�fho, j

nonsol  

approximating 
   
n̂r × fho, j

sol . (c) 
   
n̂r × fho, j

sol , i.e. curl-conforming counterpart of the edge solenoidal function 

   
fho,i

sol  depicted in Fig.II.3(c). (d) Div-conforming edge non-solenoidal function 
    
�fho, j

nonsol  approximating 

   
n̂r × fho, j

sol . (e) 
   
n̂r × fho, j

nonsol , i.e. curl-conforming counterpart of the patch non-solenoidal function 
   
fho, j

nonsol  

depicted in Fig.II.3(b). (f) Div-conforming patch solenoidal function 
    
�fho, j

sol  approximating 
   
n̂r × fho, j

nonsol . 
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2.4 Implementation of the High-Order CMP 

This section provides details on the construction of the basis functions in   �F  and their use in a high-

order implementation of the CMP-EFIE. First, explicit expressions for the matrices   Pho
sol  and   Pho

nonsol  are 

given in terms of Gram matrices and basis transformations. With these matrices, expressions for    T �F , 
    
GnF ; �F

, and   TF  are given. Finally, issues relating to computational cost are discussed. 

The evaluation of 
   
Pho,P

nonsol  in (6.60) requires the computation of two Gram matrices: 
   
G

Fho ,P
nonsol ;Fho ,P

nonsol  and 

   
G

Fho ,P
nonsol ;nFho ,P

sol . Since each function in 
  
Fho,P

nonsol  is a linear combination of functions in  FP , the Gram matrices 

   
G

Fho ,P
nonsol ;Fho ,P

nonsol  in (6.61), and 
   
G

Fho ,P
nonsol ;nFho ,P

sol  in (6.62) can be obtained respectively as  

 
   
G

Fho ,P
nonsol ;Fho ,P

nonsol = SP
T GFP ;FP

SP  (6.73) 

and  

 
   
G

Fho ,P
nonsol ;nFho ,P

sol = SP
T GFP ;nFP

R PLP  (6.74) 

The matrix   R P  (of size   12( p +1)2 × p( p +1) ) expresses functions in  FP  as linear combinations of 

functions in  FP . Substitution of the above expressions into eqn. (6.60) yields 

 
   
Pho,P

nonsol = SP
T GFP ;FP

SP( )−1
SP

T GFP ;nFP
R PLP( ) . (6.75) 

Similarly, the evaluation of 
   
Pho,E

nonsol  can be performed using Gram matrices encompassing the 

appropriate  GWP  basis functions, viz. 

 
   
Pho,E

nonsol = SE
T GA;A SE( )−1

SE
T GA;nBR ELE( ) , (6.76) 

with sets 
 
A = F

PE
+ ∪ F

PE
−  and 

  
B = A∪ FE1( E ) ∪ FE2 ( E ) . The matrix   R E  (of size 

  12( p +1)2 + 2( p +1)× 2 p( p +1)+ ( p +1) ) expresses functions in 
 
F

PE
+ ∪ F

PE
− ∪ FE  as linear combinations of 
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functions in B . Once again, the inverse matrices in (6.75) and (6.76) need not to be computed if 
  
Fho,P

nonsol  is 

an orthonormal set  ∀ P ∈SΔs . 

The evaluation of 
   
Pho,P

sol  in (6.68) requires the computation of two Gram matrices: 

 
   
G

Fho ,NP
sol ;Fho ,NP

sol = LP
T GFNP ;FNP

LP  (6.77) 

and 

 
   
G

Fho ,NP
sol ;nFho ,P

nonsol = LP
T GFNP ;nFP

R PSP . (6.78) 

Substitution of the above expression into (6.68) yields 

 
   
Pho,P

sol = LP
T GFNP ;FNP

LP( )−1
LP

T GFNP ;nFP
R PSP( ) . (6.79) 

In contrast to the basis functions presented in [36], the ones presented here are essentially patch-based. 

This means that the size of all matrices in (6.75), (6.76), and (6.79) scale only with  p  (and not with the 

size of  SΔs ) and therefore the computation of the coefficient matrices 
   
Pho,P

nonsol , 
   
Pho,P

sol ,  ∀ P∈SΔs , and 
   
Pho,E

nonsol , 

 ∀ E ∈SΔs , can be performed in a pre-processing stage and its coefficients stored in memory. 

The implementation of the high-order CMP-EFIE follows the same structure of the zeroth-order CMP 

(see [11]), which makes use of matrices   Pzo  and   R zo , that express functions in BC and RWG as linear 

combinations of functions in  RWG , respectively. The matrix   Pzo  encountered in the zeroth-order CMP is 

extended here to  P  defined as 

 

  

P =

Pzo 0 0

0 0 Pho
sol

0 Pho
nonsol 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

, (6.80) 

where   Pho
nonsol  is the (sparse) matrix that encompasses matrices 

   
Pho,P

nonsol ,   P = 1,…, N P , and 
   
Pho,E

nonsol , 

  E = 1,…, N E , and   Pho
sol  is the (sparse) matrix that encompasses matrices 

   
Pho,P

sol ,   P = 1,…, N P . Explicit 
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expressions for the entries of Pzo  can be found in [17]. The matrix R zo  encountered in the zeroth-order 

CMP is replaced here by the matrix  R , which expresses functions in   GWP( p)  as linear combinations of 

functions in  GWP . 

Using  P , matrix    T �F  in (6.16) can be evaluated as  

 
    
T �F = PTHF

T T
GWP

HFP  (6.81) 

where   HF  is the matrix that expresses functions in  F  as linear combinations of functions in  GWP .  

Similarly, matrix   TF  is evaluated as  

    TF = HF
T TGWPHF  (6.82) 

where   HF  is the matrix that expresses functions in  F  as linear combinations of functions in GWP. The 

evaluation of 
    
GnF ; �F  in (6.18) can be recast into 

 
    
GnF ; �F = HF

T RT G
nGWP;GWP

HF P . (6.83) 

The computational cost of solving (6.15) is that of multiplying the matrix   TCMP  times the number of 

iterations required to reach a prescribed residual error. Evaluation of a vector times   TCMP  involves 

multiplying first by   TF  as in (6.82), then by the inverse of 
    
GnF ; �F  as in (6.83), and finally by    T �F  as in 

(6.81). As mentioned previously, the cost of multiplying  R  and  P  by a vector scales as   O(N ) . Thus, the 

cost of multiplying 
    
GnF ; �F  by a vector also scales as   O(N ) . Provided that 

    
GnF ; �F  is well-conditioned, and it 

is, then its inverse can be multiplied by a vector using just a few (i.e.,   O(1) ) iterations of an iterative solver 

like the generalized minimal residual (GMRES) [39] or the transpose-free quasiminimal residual (TFQMR) 

[40]. Using the multilevel fast multipole method [2], the cost of multiplying   TF  by a vector scales as 

  CT +O(N )  where  CT  is the cost of multiplying   TF  by a vector. Indeed, even though the dimension of   TF  

is greater that that of   TF  by a factor of 6, the additional degrees of freedom introduced by the barycentric 
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mesh do not change the number of multipoles required for field expansion compared to that used when 

multiplying by   TF . Therefore, the cost of multiplying   TF  increases only by an additive linear term. The 

fact that the number of iterations required for the high-order CMP-EFIE to converge is much smaller than 

that of the standard EFIE justifies the use of the former scheme. 

2.5 Numerical Results 

This section presents several examples that demonstrate the effectiveness of the   DQCC( p)  basis 

functions presented and its performance in the high-order CMP-EFIE. The results emphasize its main 

advantage: high-order accuracy in the solutions, without compromising the number of iterations needed for 

convergence. The results presented here are obtained using a parallel EFIE MoM solver, which uses the 

proposed high-order CMP or a standard diagonal preconditioner. This solver uses a TFQMR-based iterative 

method [40] to solve the EFIE MoM systems. 

2.5.1 High-order accuracy 

The first two examples demonstrate the convergence of the radar cross section (RCS) as the order of the 

basis functions in the high-order CMP-EFIE is increased. Each example comprises a smooth PEC object: a 

sphere of radius 1 m., and a star-shaped object whose surface is parameterized as 

  r(θ ,φ) = 1.5+ sin2(2θ )cos2(φ)  m., both illuminated by a 30 MHz.,   x̂ -polarized plane wave traveling in the 

  ẑ  direction. Fig. II.6(a) (Fig. II.7(a)) shows the bistatic RCS of the PEC sphere (star-shaped object) when 

computed with basis functions of orders   p = 0,1,2,3 . Fig. II.6(b) (Fig. II.7(b)) shows the relative error of 

the computed RCS of the PEC sphere (star-shaped object) with respect to Mie series (4th-order) solution. In 

these examples, the geometric models consist of 32 patches for the sphere and 102 patches for the star-

shaped object. Each patch is obtained by means of an exact mapping from a reference patch onto the 

surface of the object. The evaluation of basis functions on curvilinear patches requires the computation of a 

Jacobian function, which requires additional computation time when compared to flat patches [19].  The 

overhead introduced by the evaluation of the Jacobian is more than compensated however by the reduction 

in the number of patches required to accurately describe the sphere surface. 
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Fig. II.6. Bistatic RCS of a PEC sphere of radius 1 m. illuminated by a 30 MHz   x̂ -polarized plane wave 
traveling in the   ẑ  direction. The surface of the sphere is modeled with 32 curvilinear patches. The current 
density is modeled with basis functions of orders   p = 0,1,2,3 . The number of unknowns ranges from 48 (

  p = 0 ) to 576 (  p = 3): (a) Bistatic RCS in the x-z plane. (b) Relative error in the RCS with respect to Mie 
series solution. 
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Fig. II.7. Bistatic RCS of a PEC star-shaped object illuminated by a 30 MHz   x̂ -polarized plane wave 
traveling in the   ẑ  direction. The surface of the object is modeled with 102 curvilinear patches. The current 
density is modeled with basis functions of orders   p = 0,1,2,3 . The number of unknowns ranges from 153 (

  p = 0 ) to 1836 (  p = 3). (a) Bistatic RCS in the x-z plane. (b) Relative error in the RCS with respect to the 
solution obtained using basis functions of order   p = 4 . 
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2.5.2 Condition number 

The following three examples illustrate the behavior of the condition numbers of the non-

preconditioned EFIE and CMP-EFIE system matrices as the surface current expansion is increasingly well-

approximated, i.e. as  δ → 0  and/or  p→∞ . Table II.A shows the condition numbers of 
    
GnF ; �F ,   TF , and 

  TCMP , obtained with several mesh discretizations of the PEC sphere of Fig. II.6(a) using basis functions of 

orders   p = 1,2,3,4 . Similarly, Table II.B and Table II.C show the same data for the star-shaped object of 

Fig. II.7(a) and a PEC cube with side length of 1 m., respectively. These results show that for a fixed order 

 p , the condition numbers of 
    
GnF ; �F  and   TCMP  remain bounded as the mesh density is increased, whereas 

the condition number of   TF  does not. 

By virtue of the Calderón identity in (6.11), the operator   T 2  is spectrally equivalent to the identity 

operator. Hence the condition number of    TCMP  depends on how well the sets  F  and   �F  can discretize the 

identity operator, i.e. the Gram matrix 
    
GnF ; �F . As mentioned in Section 2.3.1, the growth in the condition 

number of 
    
GnF ; �F  (and therefore of   TCMP ) with  p  is related to the way in which the functions in  Fho

sol  and 

 Fho
nonsol  are obtained. Table II.D shows the condition numbers of 

    
GnF ; �F  and   TCMP  for three different ways 

of obtaining these sets, and for orders   p = 1,2,3,4 . As expected, full local orthogonalization of the 

functions in  Fho
sol  and  Fho

sol  result in lower condition numbers for the matrices 
    
GnF ; �F  and   TCMP  that are 

more stable with respect to  p  when compared to partial local orthogonalization. Also, as conjectured at the 

end of Section 2.3.1, a global orthogonalization of the functions in  Fho
sol  and  Fho

sol  yields 
    
GnF ; �F  and   TCMP  

matrices with condition numbers that are almost independent of  p . 
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TABLE II.A.  

Condition numbers of 
    
GnF ; �F ,   TF , and   T

CMP  for three different mesh 

discretizations of a  PEC sphere 

 p  
 N P   N      

GnF ; �F    TF    TCMP  

1 

32 160 11.77 335.87 21.18 

102 510 13.4 2318.48 25.63 

224 1120 14.35 5542.08 32.95 

2 

32 336 45.06 2942.35 63.31 

102 1071 68.08 21298.59 98.67 

224 2352 59.97 47297.28 88.26 

3 

32 576 62.59 25681.78 202.45 

102 1836 72.94 189540.53 233.97 

224 4032 78.02 417912.93 265.26 

4 

32 880 156.68 201766.16 571.16 

102 2805 183.08 1604161.36 705.08 

224 6160 192.28 3394907.21 740.86 
 

 
TABLE II.B.  

Condition numbers of 
    
GnF ; �F ,   TF , and   T

CMP  for three different mesh 

discretizations of a PEC star-shaped object 

 p  
 N P   N      

GnF ; �F    TF    TCMP  

1 

32 160 13.24 239.07 23.56 

102 510 14.49 1167.83 26.5 

224 1120 14.06 4013.27 28.53 

2 

32 336 51.38 2005.19 78.68 

102 1071 91.44 11268.25 125.03 

224 2352 70.19 36240.98 109.66 

3 

32 576 82.46 17867.56 262.67 

102 1836 88.62 102686.45 279.92 

224 4032 83.03 325654.23 262.08 

4 

32 880 179.14 145715.16 700.56 

102 2805 226.84 905399.7 926.65 

224 6160 198.94 2689593.01 735.11 
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TABLE II.C. 

Condition numbers of 
    
GnF ; �F ,   TF , and   T

CMP  for three different mesh 

discretizations of a PEC cube 

 p  
 N P   N      

GnF ; �F    TF    TCMP  

1 

24 120 14.94 658.14 26.63 

154 770 12.41 6719.43 35.38 

240 1200 12.21 10411.1 42.66 

2 

24 252 76.75 5266.6 118.11 

154 1617 73.03 59766.95 115.66 

240 2520 59.98 97635.17 96.78 

3 

24 432 69.48 50812.32 221.55 

154 2772 69.5 582413.73 315.89 

240 4320 71.17 841216.68 338.87 

4 

24 660 172.38 325648.19 674.44 

154 4235 165.76 3910371 881.96 

240 6600 168.5 6382122.93 921.35 
 

 

 
TABLE II.D.  

Condition numbers of 
    
GnF ; �F , and   T

CMP  for three different 

Helmholtz decomposition strategies 
 Partial local orthogonalization Full local orthogonalization Full global orthogonalization 

 p   N      
GnF ; �F    TCMP      

GnF ; �F    TCMP      
GnF ; �F    TCMP  

1 60 29.9 21.18 29.9 20.99 2.51 3.14 

2 336 73.1 63.31 55.5 48.15 2.54 3.17 

3 576 152.3 202.45 126.5 134.97 2.79 3.29 

4 880 220.2 571.16 177.4 248.44 2.94 3.47 
 

 

2.5.3 Speed of convergence 

The examples in this section compare the speed of convergence of the diagonally-preconditioned EFIE 

and CMP-EFIE when solved iteratively.  Fig. II.8(a-e) show the residual error versus iteration count 

achieved by a TFQMR solver during the iterative solution of the matrix systems obtained by discretizing 

the diagonally-preconditioned EFIE and HO-CMP with basis functions of orders   p = 1,2,3,4,5 . The 
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geometry is a PEC sphere of radius 1 m. Similarly, Fig. II.9(a-e) show the same data for a PEC cube with 

side length of 1 m. In both examples, the excitation is a 30 MHz.,   x̂ -polarized plane wave traveling in the 

  ẑ  direction, and the prescribed accuracy (relative residual error) for the TFQMR solver is  10−5 . As 

dictated by the condition number of   TCMP , the number of iterations required for the CMP-EFIE to reach the 

prescribed accuracy does not grow as the discretization density is increased. In contrast, the diagonally-

preconditioned EFIE requires an increasing number of iterations as the mesh becomes denser. Moreover, 

this behavior worsens as the order  p  of the basis functions is increased, severely penalizing the efficiency 

and accuracy of high-order basis functions.  
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Fig. II.8. Residual history of diagonally-preconditioned EFIE (dashed lines) and CMP-EFIE (solid lines) 
for the case of a PEC sphere of radius 1 m., illuminated by a 30 MHz.,   x̂ -polarized plane wave traveling in 
the   ẑ  direction. Four different discretizations are used, ranging from 32 to 810 curvilinear elements. 
Results are shown for several orders of the basis functions: (a) order 1; (b) order 2; (c) order 3; (d) order 4; 
(e) order 5. 
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Fig. II.9. Residual history of diagonally-preconditioned EFIE (dashed lines) and CMP-EFIE (solid lines) 
for the case of a PEC cube of side 1 m., illuminated by a 30 MHz.,   x̂ -polarized plane wave traveling in the 
  ẑ  direction. Four different discretizations are used, ranging from 24 to 918 elements. Results are shown for 
several orders of the basis functions: (a) order 1; (b) order 2; (c) order 3; (d) order 4; (e) order 5. 
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2.5.4 Monopole Antenna 

Next, the diagonally-preconditioned EFIE and CMP-EFIE are used to analyze scattering from a printed 

monopole antenna similar to the one presented in [41]. The antenna geometry and mesh are shown in Fig. 

II.10(a). Note that the dielectric substrate has not been considered here. The antenna is fed with a voltage 

delta-gap. The divergence of the electric current, i.e. the (scaled) charge distribution on the surface of the 

antenna is plotted in Fig. II.10(b). The current distribution in this example was obtained using the HO-CMP, 

with basis functions of order   p = 1  and a frequency of 3.55 GHz. The radiation pattern of the antenna is 

plotted in Fig. II.10(c) for two different frequencies: 3.55 and 5.5 GHz. Finally, Fig. II.10(d) shows the 

residual error versus iteration count achieved by a TFQMR solver during the iterative solution of the matrix 

systems stemming from the diagonally-preconditioned EFIE and HO-CMP with basis functions of orders 

  p = 0,1 . 

2.5.5 Airbus A380 

The last example involves a model of the Airbus A380 shown in Fig. II.11(a). The surface of the 

aircraft is discretized using second-order curvilinear patches, allowing the use of (relatively) large patches 

on smooth surfaces (wings and main body), and small patches near fine geometric features (engines and 

wing tips). The airplane is illuminated by a   ŷ -polarized plane wave traveling in the   x̂  direction. Fig. 

II.11(b) shows the bistatic RCS obtained for four different frequencies, ranging from 1.5 to 30 MHz. Fig. 

II.11(c) and Fig. II.11(d) show the divergence of the current density induced on the surface of the aircraft, 

at frequencies of 6 MHz and 30 MHz, respectively. Note that at 30 MHz the high-order basis functions 

allow for the use of less than 5 patches per wavelength on the wings and main body of the aircraft. Finally, 

Fig. II.11(e) shows the residual error versus iteration count achieved by a TFQMR solver during the 

iterative solution of the matrix systems obtained by discretizing the diagonally-preconditioned EFIE and 

CMP-EFIE with basis functions of orders   p = 1,2,3 . In this case, the excitation frequency is 6 MHz. 

Similarly, Fig. II.11(f) shows the residual error versus iteration count achieved by a TFQMR solver for an 

excitation frequency of 30 MHz. Using basis functions of order   p = 0 , it took 30 minutes and 16852 

iterations for the diagonally preconditioned EFIE to converge to a prescribed relative residual error of  10−4 . 
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For the CMP-EFIE it took 11 minutes and 485 iterations.  Using basis functions of order p = 1 , the 

diagonally preconditioned EFIE could only reach a relative residual error of  1.8×10−3  after 8.6 hours and 

100000 iterations. For the CMP-EFIE it took 1.2 hours and 383 iterations to reach the prescribed relative 

residual error of  10−4 . 
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Fig. II.10. Monopole antenna excited with a voltage delta-gap. (a) Mesh and dimensions of the antenna. (b) 
Divergence of the current density induced on the antenna, for a frequency of 3.55 GHz. (c) Radiation 
pattern in the x-y plane for two different frequencies. (d) Residual history of diagonally-preconditioned 
EFIE (dashed lines) and CMP-EFIE (solid lines), for a frequency of 5.5 GHz for orders   p = 0,1 . 
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Fig. II.11. Airbus A380 model illuminated by   ŷ -polarized plane wave traveling in the   x̂  direction. (a) 
Mesh and dimensions of the aircraft; second order curvilinear patches are used to discretize the surface. (b) 
Bistatic RCS in the x-y plane for four different frequencies. (c) Divergence of the current density induced 
on the aircraft, for a frequency of 6 MHz. (d) Divergence of the current density induced on the aircraft, for 
a frequency of 30 MHz. (e) Residual history of diagonally-preconditioned EFIE (dashed lines) and CMP-
EFIE (solid lines), for a frequency of 6 MHz for orders   p = 1,2,3. (f) Residual history of diagonally-
preconditioned EFIE (dashed lines) and CMP-EFIE (solid lines), for a frequency of 30 MHz for orders 

  p = 0,1,2 . 
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CHAPTER III 

Single Source Integral Equations for Analyzing Scattering from Homogeneous 

Penetrable Objects in Frequency Domain 

3.1 Formulation of Single Source Integral Equations 

Consider a homogeneous penetrable object with surface  S  and outward pointing unit normal vector    n̂r , 

which is immersed in a homogeneous background medium (Fig. III.1(a)). The object is illuminated by 

time-harmonic electric and magnetic fields    {E inc , H inc}  produced by sources with angular frequency ω , 

residing external to  S . The background and the object are denoted by   j = 1 and   j = 2 , respectively. Let 
  
ε j , 

 
μ j , 

 
η j  and 

 
k j  denote the permittivity, permeability, impedance, and wave number of medium  j , 

respectively. We wish to find the total electric and magnetic fields 
   
{E j , H j}  in regions   j = 1 and 2. As in 

the previous chapter, a time dependence  e− iωt  (  i = −1 ) is assumed and suppressed.  

The identity operator is denoted  I  and the single and double layer operators pertinent to medium  j  

are defined as 

 
    
T j[X ] = T j

s[X ]+ T j
h[X ]  (7.1) 

with 

 
    
T j

s[X ] =
ik j

4π
n̂r ×

eik j |r−r ′|

| r − r′ |
X (r′)

S∫ ds′ , (7.2) 

 
    
T j

h[X ] = −i
4πk j

n̂r × ′∇
S∫

eik j |r−r ′|

| r − r′ |
∇′s X (r′)ds′ , (7.3) 

and 
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Kj[X ] =

n̂r

4π
× ′∇ eik j |r−r ′|

| r − r′ |
× X (r′)ds′

S∫ . (7.4) 

To obtain integral equations in electric and magnetic source densities 
   
{J j , M j}residing on  S  that 

permit the evaluation of 
   
{E j , H j} , two scenarios are considered [42]. In the externally equivalent scenario, 

  {J1, M1}  radiate in a homogeneous medium with   {ε1,μ1} alongside the original sources and produce the 

fields   {E1, H1}  outside  S  and (auxiliary) fields    {Ein , Hin}  inside  S  (Fig. III.1(b)), i.e. 

    η1n̂r × H1 −η1n̂r × Hin = J1 , (7.5) 

    n̂r × E1 − n̂r × Ein = −M1 , (7.6) 

or 

 
    

I

2
+K1

⎛
⎝⎜

⎞
⎠⎟

[J1]− T1[M1] = η1n̂r × H inc −η1n̂r × Hin , (7.7) 

 
    

I

2
+K1

⎛
⎝⎜

⎞
⎠⎟

[M1]+ T1[J1] = −n̂r × E inc + n̂r × Ein . (7.8) 

In the internally equivalent scenario,   {J2 , M2} radiate in a homogeneous medium with   {ε2 ,μ2}  and 

produce the fields   {E2 , H2}  inside  S  and (auxiliary) fields    {Eout , Hout} outside  S  (Fig. III.1(c)), i.e. 

    η2n̂r × Hout −η2n̂r × H2 = J2 , (7.9) 

    n̂r × Eout − n̂r × E2 = −M2 , (7.10) 

or 

 
    

I

2
−K2

⎛
⎝⎜

⎞
⎠⎟

[J2]+ T2[M2] = η2n̂r × Hout , (7.11) 

 
    

I

2
−K2

⎛
⎝⎜

⎞
⎠⎟

[M2]− T2[J2] = −n̂r × Eout . (7.12) 
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The auxiliary fields {Ein , Hin}  and {Eout , Hout}  can be chosen arbitrarily as long as they satisfy 

Maxwell’s equations inside and outside  S , respectively. In addition, the fields    {Eout , Hout} must satisfy the 

Silver-Müller radiation condition [24]. 

In the original problem of Fig. III.1(a), the tangential components of 
   
{E j , H j}    j = 1,2 , are continuous 

across  S , i.e. 

    n̂r × H1 = n̂r × H2 , (7.13) 

    n̂r × E1 = n̂r × E2 . (7.14) 

Combinations of (7.7), (7.8), (7.11), (7.12), (7.13), and (7.14) give rise to many formulations for 

reconstructing 
   
{E j , H j} , each of which corresponds to a different choice of the auxiliary fields    {Ein , Hin}  

and    {Eout , Hout}. Dual source equations can be constructed by assuming    {Ein , Hin}={Eout , Hout}={0,0}, for 

which (7.7), (7.8), (7.11), and (7.12) become 

 
    
η1n̂r × H inc + T1[M1]+

I

2
−K1

⎛
⎝⎜

⎞
⎠⎟

[J1] = J1 , (7.15) 

 
    
n̂r × E inc + T1[J1]+ − I

2
+K1

⎛
⎝⎜

⎞
⎠⎟

[M1] = −M1 , (7.16) 

 
   
−T2[M2]+ I

2
+K2

⎛
⎝⎜

⎞
⎠⎟

[J2] = J2 , (7.17) 

 
   
−T2[J2]− I

2
+K2

⎛
⎝⎜

⎞
⎠⎟

[M2] = −M2 . (7.18) 

Note that for the above choice of the auxiliary fields, (7.5), (7.9), and (7.13) and (7.6), (7.10), and (7.14) 

imply that 
  
J2 = − η2 η1( )J1  and   M2 = −M1 , respectively. Inserting these relations into (7.15)-(7.18), and 

then combining (7.15) with (7.17), and (7.16) with (7.18) yields 

 
    
− K1 +K2( )[J1]+ T1 +

η1

η2

T2

⎛

⎝⎜
⎞

⎠⎟
[M1] = −η1n̂r × H inc , (7.19) 
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T1 +
η2

η1

T2

⎛

⎝⎜
⎞

⎠⎟
[J1]+ K1 +K2( )[M1] = −n̂r × E inc . (7.20) 

Eqns. (7.19)-(7.20) are the well-known dual source Poggio-Miller-Chang-Harrington-Wu-Tsai 

(PMCHWT) equations [1], and can be solved simultaneously for   {J1, M1} . The dual source Müller 

equations can be derived in a similar fashion [24]. 

Single source equations can be obtained, for example, by choosing 

   Ein = Hin = 0 , (7.21) 

and 

    Eout = E2 . (7.22) 

The latter condition, together with (7.10) implies that   M2 = 0 . Continuity of the tangential component of 

the electric and magnetic fields across  S  dictates that   {J1, M1}  can be expressed in terms of   J2  as 

 
   
J1 = η1n̂r × Hout −

η1

η2

J2 , (7.23) 

    M1 = −n̂r × E2 . (7.24) 

Eqns. (7.7) , (7.8), (7.11), and (7.12) become 

 
    

I

2
+K1

⎛
⎝⎜

⎞
⎠⎟

[η1n̂r × Hout −
η1

η2

J2]+ T1[n̂r × E2] = η1n̂r × H inc , (7.25) 

 
    

I

2
+K1

⎛
⎝⎜

⎞
⎠⎟

[−n̂r × E2]+ T1[η1n̂r × Hout −
η1

η2

J2] = −n̂r × E inc , (7.26) 

 
    
n̂r × Hout =

1
η2

I

2
−K2

⎛
⎝⎜

⎞
⎠⎟

[J2] , (7.27) 

     n̂r × E2 = T2[J2] , (7.28) 

respectively. 
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Single source EFIE and MFIE can be obtained by inserting (7.27) and (7.28) into (7.26) and (7.25), 

respectively: 

   
    

η1

η2

T1

2
[J2]+

η1

η2

T1K2[J2]+K1T2[J2]+
T2

2
[J2] = n̂r × E inc  (7.29) 

   
    

η1

η2

K1

2
+K1K2 +

K2

2
+ I

4
⎛
⎝⎜

⎞
⎠⎟

[J2]− T1T2[J2] = −η1n̂r × H inc . (7.30) 

Unlike dual source formulations, which require the simultaneous solution of two equations in two 

unknowns, either of the single source equations (7.29) or (7.30) can be solved independently.  
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Fig. III.1 Generic penetrable 3-D scatterer. (a) Original problem. (b) Externally equivalent scenario. (c) 
Internally equivalent scenario. 
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3.2 Calderón Preconditioned Combined Field Integral Equation 

The single source EFIE and MFIE operators in (7.29) and (7.30) are plagued by spectral problems. First, 

the EFIE suffers from dense-mesh breakdown. The operators 
  
T j  comprise a compact vector potential 

component 
  
T j

s  with spectrum accumulating at zero and a hypersingular scalar potential component 
  
T j

h  

with unbounded spectrum [9][11][12][43]. In addition, the EFIE suffers from low-frequency breakdown. 

Indeed, because 
  
T j

s ’s singular values scale as   O(ω ) , 
  
T j

h ’s as   O(1/ω ) , and 
  
Kj ’s as   O(1) , contributions 

to the system matrix stemming from 
  
T j

h  dominate those from 
  
T j

s  and 
  
Kj  as  ω → 0  [44]. Finally, the 

EFIE exhibits resonances, i.e., its solution is not unique at a set of frequencies that grows increasingly 

dense as the electrical size of the scatterer increases [45]. Discretization of the EFIE therefore yields a 

system matrix with condition number that grows without bound as: (i) the minimum edge length δ  in the 

mesh  Sδ  that approximates  S  tends to zero, (ii)  ω → 0 , or (iii) ω  approaches one of the object’s resonant 

frequencies. Even though the MFIE does not suffer from the dense-mesh or low-frequency breakdown, it is 

susceptible to resonances and hence problematic when applied to the analysis of electrically large scatterers.  

One may attempt to remove the resonances by using the equation  CFIE= EFIE +α MFIE . 

Unfortunately, this CFIE still suffers from dense-mesh breakdown [15]. The literature abounds with 

techniques that cure the unbounded nature of the spectrum of 
  
T j  by leveraging its self-regularizing 

property, expressed by the Calderón identity (6.11). To date, these techniques have been used mainly to 

construct regularized EFIEs pertinent to the analysis of scattering from perfect electrically conducting 

(PEC) bodies. Here, a single source Calderón-preconditioned electric field integral equation (CP-EFIE) 

pertinent to the analysis of scattering from penetrable bodies is obtained by using the localization technique 

presented in [46]. Specifically, localization is performed by operating with 

 
    
T0[X ] ≡

−k1

4π
n̂r ×

e−k1|r−r ′|

| r − r′ |
X (r′)

S∫ ds′ − 1
4πk1

n̂r × ′∇
S∫

e−k1|r−r ′|

| r − r′ |
∇′s X (r′)ds′  (7.31) 

on (7.29), yielding 
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η1

η2

T0T1

2
+ T0T1K2

⎛
⎝⎜

⎞
⎠⎟

[J2]+
T0T2

2
+ T0K1T2

⎛
⎝⎜

⎞
⎠⎟

[J2] = T0[n̂r × E inc ].  (7.32) 

The CP-EFIE and MFIE can be combined to produce a resonance-free Calderón-preconditioned CFIE: 

CP-CFIE = CP-EFIE +  α MFIE  [41,48]. Note that the operator   T0  is in essence   T1 , but with a purely 

imaginary wave number (provided that   k1  is real).  

3.3 Low-frequency Breakdown 

In this section, the CP-CFIE is shown to be immune to low-frequency breakdown and lead to stable 

solutions at very low frequencies.  The singular values of the operators   K1  and   K2 , and the operator 

product   K1K2  in (7.30), scale as   O(1)  as the frequency goes to zero. Operator products in (7.30) and (7.32) 

of the form 
   
T iT j (i, j = 0,1,2)  can be decomposed as 

 

   

T iT j = T i
s + T i

h( ) T j
s + T j

h( )
= T i

sT j
s + T i

sT j
h + T i

hT j
s + T i

hT j
h.

 (7.33) 

Since 
  
T i

hT j
h  in (7.33) is zero it follows that as  ω → 0 , the singular values of 

  
T iT j  scale as 

 
  
O ω 2 +ω 1

ω
+ 1
ω
ω

⎛
⎝⎜

⎞
⎠⎟
= O(1) . (7.34) 

Similarly,   T0T1K2  in (7.32) can be decomposed into 

 
   
T0T1K2 = T0

sT1
s + T0

sT1
h + T0

hT1
s( )K2 , (7.35) 

therefore its frequency dependence also scales as   O(1) . The treatment of   T0K1T2  in (7.32) requires some 

care;    T0
hK1T2

h  is not zero and the Calderón identity 
  
KjT i = −T iKj  is only valid for  i = j .  However, 

  T0K1T2  can be rewritten as 
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T0K1T2 = T0 −
k1

k0

T1

⎛

⎝⎜
⎞

⎠⎟
K1 T2 −

k1

k2

T1

⎛

⎝⎜
⎞

⎠⎟
+

k1

k2

T0K1T1 +
k1

k0

T1K1T2 −
k1

k2

k1

k0

T1K1T1

= T0 −
k1

k0

T1

⎛

⎝⎜
⎞

⎠⎟
K1 T2 −

k1

k2

T1

⎛

⎝⎜
⎞

⎠⎟
−

k1

k2

T0T1K1 −
k1

k0

K1T1T2 +
k1

k2

k1

k0

K1T1T1.
 (7.36) 

The previous arguments show that the singular values of the last three terms scale as   O(1) , as  ω → 0 . 

Because the factors 
   
T i − (k j / ki )T j  scale with frequency as   O(ω )  [44], it follows that the singular values 

of the first term on the right hand side of (7.36) scale as   O(ω 2 ) . Therefore   T0K1T2 ’s singular values scale 

as   O(1)  as  ω → 0 . With this, all terms in the CP-CFIE operator are seen to scale as   O(1)  with frequency 

and, hence, are balanced as  ω → 0 . 

3.4 Resonance Frequencies and Dense-mesh Breakdown 

In this section, the spectral properties of the single source CP-CFIE are investigated. It is argued that the 

CP-CFIE is resonance-free and immune to dense-mesh breakdown. Indeed, the operators   K1  and   K2 , and 

the operator product   K1K2  are compact. Moreover it is worth noticing that 
  
T iT j , in general, cannot be 

written as the sum of a compact operator plus an identity. Instead it can be written as the sum of a compact 

operator plus a regular operator whose spectrum is uniformly bounded from above and below, i.e. an 

operator that is spectrally equivalent to an identity. It is well-known that compact plus regular operators 

share all the relevant properties of second kind operators [47], thus 
   
T iT j (i, j = 0,1,2)  is well-behaved. 

These facts immediately show that the second term on the left hand side of the single source MFIE (7.30) 

and the terms inside the leftmost bracket on the left hand side of the CP-EFIE (7.32) are well behaved as 

 δ → 0 . To show that   T0K1T2  is well behaved as  δ → 0 , reconsider (7.36). The last three terms on the right 

hand side of (7.36) are well-behaved by the above argument. The first term on the right hand side of (7.36) 

is compact because 
   
T i − (k j / ki )T j (i, j = 0,1,2)  has a weakly singular kernel [47]. 

In the following, we demonstrate that the proposed CP-CFIE is resonant free for a penetrable sphere; 

from this, as it is pointed out in [9], one can infer that the equation is resonant free also for structures that 

are a smooth deformation of a sphere (see also [48], Theorem 4.35). We will be using arguments similar to 
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those used in [9] to demonstrate the resonant-free nature of a CP-CFIE for analyzing scattering from PEC 

objects. In the process, we also readdress the limit of  δ → 0 . 

A complete set of vector functions on the surface of a sphere of radius  a  is given by the vector 

spherical harmonics 

 
   
X l

m(θ ,φ) ≡ a
i l(l +1)

n̂×∇Yl
m(θ ,φ)  (7.37) 

    U l
m(θ ,φ) ≡ n̂× X l

m(θ ,φ) , (7.38) 

where   Yl
m(θ ,φ)  denotes the scalar spherical harmonic of degree  l  and order  m . 

Operating 
  
T j , 

   
Kj + I / 2( ) , and 

   
Kj − I / 2( )  on   X l

m  and   U l
m  yields [33,51] 

 

     

T j

X l
m

U l
m

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

−Jl (k ja)Hl (k ja)U l
m

′Jl (k ja) ′Hl (k ja)X l
m

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, (7.39) 

 

     

Kj +
I

2
⎛
⎝⎜

⎞
⎠⎟

X l
m

U l
m

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

i ′Jl (k ja)Hl (k ja)X l
m

−i Jl (k ja) ′Hl (k ja)U l
m

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, (7.40) 

 

     

Kj −
I

2
⎛
⎝⎜

⎞
⎠⎟

X l
m

U l
m

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

i Jl (k ja) ′Hl (k ja)X l
m

−i ′Jl (k ja)Hl (k ja)U l
m

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
. (7.41) 

Here   Jl  and   Hl  are the Riccati-Bessel and the first kind Riccati-Hankel functions of order  l , respectively 

[52], and  “ ' ” denotes differentiation with respect to the wave number 
 
k j . 

3.4.1 Spectral properties of the MFIE 

The MFIE operator in (7.30) comprises terms proportional to 
  
K1 + I / 2( ) K2 + I / 2( )  and   T1T2 . 

Operating the former on   X l
m  and   U l

m  yields  
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K1 +
I

2
⎛
⎝⎜

⎞
⎠⎟

K2 +
I

2
⎛
⎝⎜

⎞
⎠⎟

X l
m

U l
m

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= K1 +

I

2
⎛
⎝⎜

⎞
⎠⎟

i ′Jl (k2a)Hl (k2a)X l
m

−i Jl (k2a) ′Hl (k2a)U l
m

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
− ′Jl (k1a)Hl (k1a)( ) ′Jl (k2a)Hl (k2a)( )X l

m

− Jl (k1a) ′Hl (k1a)( ) Jl (k2a) ′Hl (k2a)( )U l
m

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.

 (7.42) 

Similarly, applying   T1T2  to these same functions yields 

 

     

T1T2

X l
m

U l
m

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= T1

−Jl (k2a)Hl (k2a)U l
m

′Jl (k2a) ′Hl (k2a)X l
m

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
− ′Jl (k1a) ′Hl (k1a)( ) Jl (k2a)Hl (k2a)( )X l

m

− Jl (k1a)Hl (k1a)( ) ′Jl (k2a) ′Hl (k2a)( )U l
m

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.

 (7.43) 

Combining (7.42) and (7.43) to obtain the MFIE operator yields an eigensystem 

 

    

η1

η2

K1 +
I

2
⎛
⎝⎜

⎞
⎠⎟

K2 +
I

2
⎛
⎝⎜

⎞
⎠⎟
− T1T2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

X l
m

U l
m

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

λl
I X l

m

λl
IIU l

m

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (7.44) 

where the functions   λl
I = λl

I (k1,k2 ,η1,η2 )  and   λl
II = λl

II (k1,k2 ,η1,η2 )  are 

 
   
λl

I ≡ ′Jl (k1a)Hl (k2a) ′Hl (k1a)Jl (k2a)−
η1

η2

Hl (k1a) ′Jl (k2 )
⎡

⎣
⎢

⎤

⎦
⎥ ,  (7.45) 

 
   
λl

II ≡ Jl (k1a) ′Hl (k2a) Hl (k1a) ′Jl (k2a)−
η1

η2

′Hl (k1a)Jl (k2a)
⎡

⎣
⎢

⎤

⎦
⎥. . (7.46) 

Note that   X l
m  and   U l

m  are the eigenfunctions of the MFIE operator with eigenvalues  λl
I  and  λl

II . The 

resonances in the MFIE occur at the zeros of  λl
I  and  λl

II  for the   X l
m  and   U l

m  modes, respectively. As 

shown in the Appendix, if  (η1 /η2 )2 ≠ 1  then the expressions in brackets in (7.45) and (7.46) have no real 

zeroes for all positive values of   k1, k2  and   l ≥ 0 . Therefore, the real zeroes of the functions  λl
I  and  λl

II  are 

those of    ′Jl (k1a)  and    Jl (k1a) , respectively. 
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The stability of the MFIE operator can be verified by observing the asymptotic behavior of its 

eigenvalues as the order  l  grows. Making use of the asymptotic forms of the Bessel and Hankel functions 

[52] as  l→∞ , it is easily shown that 

 
  
lim
l→∞
λl

I (k1,k2 ,η1,η2 ) =
η1k1 +η2k2

4η2k1

, (7.47) 

 
  
lim
l→∞
λl

II (k1,k2 ,η1,η2 ) =
η2k1 +η1k2

4η2k2

. (7.48) 

3.4.2 Spectral properties of the CP-EFIE 

The CP-FIE operator in (7.32) comprises terms proportional to 
  
T0T1 K2 + I / 2( )  and 

  
T0 K1 + I / 2( )T2 . 

Operating the former on   X l
m  and   U l

m  yields 

 

     

T0T1 K2 +
I

2
⎛
⎝⎜

⎞
⎠⎟

X l
m

U l
m

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= T0T1

i ′Jl (k2a)Hl (k2a)X l
m

−i Jl (k2a) ′Hl (k2a)U l
m

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

= T0

−i Jl (k1a)Hl (k1a)( ) ′Jl (k2a)Hl (k2a)( )U l
m

−i ′Jl (k1a) ′Hl (k1a)( ) Jl (k2a) ′Hl (k2a)( )X l
m

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−i ′Jl (ik1a) ′Hl (ik1a)( ) Jl (k1a)Hl (k1a)( ) ′Jl (k2a)Hl (k2a)( )X l

m

i Jl (ik1a)Hl (ik1a)( ) ′Jl (k1a) ′Hl (k1a)( ) Jl (k2a) ′Hl (k2a)( )U l
m

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 (7.49) 

Similarly, applying 
  
T0 K1 + I / 2( )T2  to these same functions yields 

 

     

T0 K1 +
I

2
⎛
⎝⎜

⎞
⎠⎟
T2

X l
m

U l
m

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= T0 K1 +

I

2
⎛
⎝⎜

⎞
⎠⎟

−Jl (k2a)Hl (k2a)U l
m

′Jl (k2a) ′Hl (k2a)X l
m

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

= T0

i Jl (k1a) ′Hl (k1a)( ) Jl (k2a)Hl (k2a)( )U l
m

i ′Jl (k1a)Hl (k1a)( ) ′Jl (k2a) ′Hl (k2a)( )X l
m

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
i ′Jl (ik1a) ′Hl (ik1a)( ) Jl (k1a) ′Hl (k1a)( ) Jl (k2a)Hl (k2a)( )X l

m

−i Jl (ik1a)Hl (ik1a)( ) ′Jl (k1a)Hl (k1a)( ) ′Jl (k2a) ′Hl (k2a)( )U l
m

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 (7.50) 

Combining (7.49) and (7.50) to obtain the CP-EFIE operator, yields an eigensystem 
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η1

η2

T0T1 K2 +
I

2
⎛
⎝⎜

⎞
⎠⎟
+ T0 K1 +

I

2
⎛
⎝⎜

⎞
⎠⎟
T2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

X l
m

U l
m

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

γ l
I X l

m

γ l
IIU l

m

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (7.51) 

where the functions   γ l
I = γ l

I (k1,k2 ,η1,η2 )  and   γ l
II = γ l

II (k1,k2 ,η1,η2 )  are 

 
   
γ l

I ≡ i Hl (k2a)× ′Jl (ik1a) ′Hl (ik1a)Jl (k1a)⎡⎣ ⎤⎦ ′Hl (k1a)Jl (k2a)−
η1

η2

Hl (k1a) ′Jl (k2a)
⎡

⎣
⎢

⎤

⎦
⎥ ,  (7.52) 

 
   
γ l

II ≡ −i ′Hl (k2a)× Jl (ik1a)Hl (ik1a) ′Jl (k1a)⎡⎣ ⎤⎦ Hl (k1a) ′Jl (k2a)−
η1

η2

′Hl (k1a)Jl (k2a)
⎡

⎣
⎢

⎤

⎦
⎥.  (7.53) 

Just like for the MFIE operator,   X l
m  and   U l

m  are eigenfunctions of the CP-EFIE operator with 

eigenvalues  γ l
I  and  γ l

II . The resonances of the CP-EFIE occur at the zeros of    Jl (k1a)  and    ′Jl (k1a)  for the 

  X l
m  and   U l

m  modes, respectively. The CP-EFIE operator has a bounded spectrum, as can be verified by 

observing the asymptotic behavior of its eigenvalues as  l→∞ : 

 
  
lim
l→∞
γ l

I (k1,k2 ,η1,η2 ) = i
η1k1 +η2k2

8η2k1

⎛

⎝⎜
⎞

⎠⎟
, (7.54) 

 
  
lim
l→∞
γ l

II (k1,k2 ,η1,η2 ) = −i
η2k1 +η1k2

8η2k2

⎛

⎝⎜
⎞

⎠⎟
. (7.55) 

3.4.3 Spectral properties of the CP-CFIE 

To avoid the resonances exhibited by the single source CP-EFIE or MFIE, the linear combination CP-

CFIE = CP-EFIE +  α MFIE  is used instead. In the case of the sphere, the operator present in the CP-CFIE 

gives rise to the following eigensystem: 

 

   

CP-EFIE +α MFIE{ } X l
m

U l
m

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

ξl
I X l

m

ξl
IIU l

m

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (7.56) 

where the eigenvalues  ξl
I = γ l

I +αλl
I  and  ξl

II = γ l
II +αλl

II  are 



60 

 

   

ξl
I = γ l

I +αλl
I

= Hl (k2a) α ′Jl (k1a)+ i ′Jl (ik1a) ′Hl (ik1a)Jl (k1a)⎡⎣ ⎤⎦

× Jl (k2a) ′Hl (k1a)−
η1

η2

′Jl (k2a)Hl (k1a)
⎡

⎣
⎢

⎤

⎦
⎥

 (7.57) 

 

   

ξl
II = γ l

II +αλl
II

= ′Hl (k2a) αJl (k1a)− i Jl (ik1a)Hl (ik1a) ′Jl (k1a)⎡⎣ ⎤⎦

× ′Jl (k2a)Hl (k1a)−
η1

η2

Jl (k2a) ′Hl (k1a)
⎡

⎣
⎢

⎤

⎦
⎥

. (7.58) 

 ξl
I  and  ξl

II  have no zeros for all real and positive values of   k1  and   k2 , and for any order   l ≥ 0 , as long as 

 (η1 /η2 )2 ≠ 1  and α  is a real positive number (see Section 3.4.4). As expected, the CP-CFIE operator has a 

bounded spectrum, which can be verified from the asymptotic behavior of  ξl
I  and  ξl

II : 

 
  
lim
l→∞
ξl

I (k1,k2 ,η1,η2 ) = α + i
2

⎛
⎝⎜

⎞
⎠⎟
η1k1 +η2k2

4η2k1

⎛

⎝⎜
⎞

⎠⎟
, (7.59) 

 
  
lim
l→∞
ξl

II (k1,k2 ,η1,η2 ) = α − i
2

⎛
⎝⎜

⎞
⎠⎟
η1k1 +η2k2

4η2k1

⎛

⎝⎜
⎞

⎠⎟
. (7.60) 

3.4.4 Proof of the resonance-free of CP-CFIE 

Proving that the CP-CFIE formulation is resonant free for the case of a sphere, is equivalent to proving 

that the eigenvalues  ξl
I  and  ξl

II  (defined in eqns. (7.57) and (7.58), respectively) are non-zero for all 

positive values of the real wavenumbers   k1  and   k2 ; and for every order   l ≥ 0 . Instead of proving it 

separately for each eigenvalue, a proof for both can be accomplished by showing that the product  ξl
Iξl

II  is 

non-zero. Here and in what follows, for any complex number  z ,  z  denotes its complex conjugate. For the 

sake of clarity, the following notation is established: 

    ξl
I = H(k2a) xl

I yl
I , (7.61) 

    ξl
II = ′H (k2a) xl

II yl
II , (7.62) 

where 
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xl

I = Jl (k2a) ′Hl (k1a)−
η1

η2

′Jl (k2a)Hl (k1a) , (7.63) 

 
   
xl

II = ′Jl (k2a)Hl (k1a)−
η1

η2

Jl (k2a) ′Hl (k1a) , (7.64) 

    yl
I = α ′Jl (k1a)+ i ′Jl (ik1a) ′Hl (ik1a)Jl (k1a) , (7.65) 

and 

    yl
II = αJl (k1a)− i Jl (ik1a)Hl (ik1a) ′Jl (k1a) . (7.66) 

With this notation, the product  ξl
Iξl

II  can be decomposed into 

 
   ξl

Iξl
II = Hl (k2a) ′Hl (k2a) xl

I xl
II⎡⎣ ⎤⎦ yl

I yl
II⎡⎣ ⎤⎦ . (7.67) 

For  ξl
Iξl

II  to be non-zero, all the partial products in (7.67) have to be non-zero, i.e., 

   Hl (k2a) ′Hl (k2a) ≠ 0 ,   xl
I xl

II ≠ 0 , and   yl
I yl

II ≠ 0 . In what follows, each of these three products is shown to 

have no zeros. 

(i.) The product    Hl (k2a) ′Hl (k2a)  is non-zero for all positive values of   k2  and for   l ≥ 0 : 

 

   

Hl (k2a) ′Hl (k2a) = Jl (k2a)+ i Yl (k2a)( ) ′Jl (k2a)− i ′Yl (k2a)( )
= ′Jl (k2a)Jl (k2a)+ ′Yl (k2a)Yl (k2a)

− i Jl (k2a) ′Yl (k2a)− ′Jl (k2a)Yl (k2a)( )
 (7.68) 

Note that    Jl (k2a) ′Yl (k2a)− ′Jl (k2a)Yl (k2a)  is nothing but the Wronskian between    Jl (k2a)  and    Yl (k2a)  

[49], which is equal to one. Thus, above equation renders into 

    Hl (k2a) ′Hl (k2a) = ′Jl (k2a)Jl (k2a)+ ′Yl (k2a)Yl (k2a)− i . (7.69) 

It follows that the imaginary part of the product    Hl (k2a) ′Hl (k2a)  is equal to -1, regardless of the value of 

  k2  or  l . 

(ii.) If  (η1 /η2 )2 ≠ 1 , the product  xl
I xl

II  is non-zero for all positive values of   k1 ,   k2 , and for   l ≥ 0 : 
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xl
I xl

II = Jl (k2a) ′Hl (k1a)−
η1

η2

′Jl (k2a)Hl (k1a)
⎡

⎣
⎢

⎤

⎦
⎥ ′Jl (k2a)Hl (k1a)−

η1

η2

Jl (k2a) ′Hl (k1a)
⎡

⎣
⎢

⎤

⎦
⎥

= Jl (k2a) ′Jl (k2a) ′Hl (k1a)Hl (k1a)+
η1

η2

⎛

⎝⎜
⎞

⎠⎟

2

Hl (k1a) ′Hl (k1a)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
η1

η2

Jl (k2a)
2

′Hl (k1a)
2
+ ′Jl (k2a)

2 Hl (k1a)
2⎡

⎣⎢
⎤
⎦⎥
.

 (7.70) 

The product    ′Hl (k1a)Hl (k1a)  can be expanded into 

 
   

′Hl (k1a)Hl (k1a) = ′Jl (k1a)+ i ′Yl (k1a)( ) Jl (k1a)− i Yl (k1a)( )
= ′Jl (k1a)Jl (k1a)+ ′Yl (k1a)Yl (k1a)+ i Jl (k1a) ′Yl (k1a)− ′Jl (k1a)Yl (k1a)( ).  (7.71) 

Now, using the Wronskian between    Jl (k1a)  and    Yl (k1a)  the above equation renders into 

    ′Hl (k1a)Hl (k1a) = ′Jl (k1a)Jl (k1a)+ ′Yl (k1a)Yl (k1a)+ i  (7.72) 

Similarly, the product    Hl (k1a) ′Hl (k1a)  is found to be 

    Hl (k1a) ′Hl (k1a) = ′Jl (k1a)Jl (k1a)+ ′Yl (k1a)Yl (k1a)− i  (7.73) 

Thus, equation (7.70) is reduced to 

 

   

xl
I xl

II = Jl (k2a) ′Jl (k2a) ′Jl (k1a)Jl (k1a)+ ′Yl (k1a)Yl (k1a)⎡⎣ ⎤⎦ 1+
η1

η2

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
η1

η2

Jl (k2a)
2

′Hl (k1a)
2
+ ′Jl (k2a)

2 Hl (k1a)
2⎡

⎣⎢
⎤
⎦⎥
+ i Jl (k2a) ′Jl (k2a) 1−

η1

η2

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

 (7.74) 

As can be seen in (7.74), the imaginary part of  xl
I xl

II  vanishes either at the zeros of    Jl (k2a)  or at the 

zeros of    ′Jl (k2a) , as long as  (η1 /η2 )2 ≠ 1 . On the one hand, at a zero of    Jl (k2a) , the real part of  xl
I xl

II  

equals 
   −(η1 /η2 ) ′Jl (k2a)

2 Hl (k1a)
2
≠ 0 . On the other hand, at a zero of    ′Jl (k2a) , the real part of  xl

I xl
II  

equals 
   −(η1 /η2 ) Jl (k2a)

2
′Hl (k1a)

2
≠ 0 . It follows that real and imaginary parts of  xl

I xl
II  do not vanish 

simultaneously, i.e., it has no zeros. 

(iii.) For α  real and positive, the product  yl
I yl

II  is non-zero for all positive values of   k1  and for   l ≥ 0 : 
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yl
I yl

II = α ′Jl (k1a)+ i ′Jl (ik1a) ′Hl (ik1a)Jl (k1a)⎡⎣ ⎤⎦
× αJl (k1a)+ i Jl (ik1a)Hl (ik1a) ′Jl (k1a)⎡⎣ ⎤⎦

= Jl (k1a) ′Jl (k1a) α 2 − Jl (ik1a)Hl (ik1a) ′Jl (ik1a) ′Hl (ik1a)⎡⎣ ⎤⎦

+ i α ′Jl (k1a)
2 Jl (ik1a)Hl (ik1a)⎡

⎣⎢
+ Jl (k1a)

2
′Jl (ik1a) ′Hl (ik1a)⎤

⎦⎥
.

 (7.75) 

It is straightforward to show [49] that for real values of   k1 , 

 
   
Jl (ik1a) = il+1 πk1a

2
Il+1/2 (k1a) , (7.76) 

and 

 
   
Hl (ik1a) = −il+1

(−1)l

2k1a
π

Kl+1/2 (k1a) . (7.77) 

Here, the functions   Iν (z)  and   Kν (z)  are the modified Bessel functions of first and second kind, 

respectively. These functions are real and positive for real positive values of ν  and  z . Unlike ordinary 

Bessel functions, which are oscillating functions of a real argument  z ,   Iν (z)  and   Kν (z)  are exponentially 

growing and decaying functions, respectively; therefore, they have no zeros except (maybe) for the origin 

[49]. With (7.76) and (7.77) the product    Hl (ik1a)Jl (ik1a)  is given by 

    Hl (ik1a)Jl (ik1a) = (k1a)Il+1/2 (k1a)Kl+1/2 (k1a) , (7.78) 

which is real and positive for all positive values of   k1 , and for every non-negative order  l . Similar 

arguments apply to the product    ′Hl (ik1a) ′Jl (ik1a) , which is also real and positive for all positive values of 

  k1 , and for every non-negative order  l . With the above results, it is clear that the imaginary part of   yl
I yl

II , 

 
   Im yl

I yl
II{ } = α ′Jl (k1a)

2 Jl (ik1a)Hl (ik1a)+ Jl (k1a)
2
′Jl (ik1a) ′Hl (ik1a)  (7.79) 

is non-zero for all   k1 > 0 , as long as α is a real positive number. 
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3.5 Discretization of the CP-CFIE 

The Galerkin discretization of standard dual source integral equations for analyzing scattering from 

dielectric objects calls for the discretization of 
  
T j  and 

  
Kj . Typically, 

  
T j  is discretized using div-

conforming basis functions    fn
Q(r), n = 1,..., N  and curl-conforming test functions    n̂r × fn

Q , yielding the 

 N × N  matrix 
   
Tj

nQ;Q  with entries  

 
     
(Tj

nQ;Q )m,n = n̂r × fm
Q,T j[ fn

Q] . (7.80) 

Note that eqn. (7.80) is essentially (6.8), but with a notation that allows for more flexibility in the 

exposition of the topics discussed in this chapter.  The superscript Q indicates the type of functions    fn
Q  

used, and nQ refers to functions    n̂r × fn
Q . The choice   Q = GWP( p)  is particularly popular. The operator 

  
Kj  often is discretized using div-conforming basis functions and either div- or curl-conforming test 

functions (depending on the role 
  
Kj  plays in the equation), yielding the matrices 

   
K j

Q';Q  and 
   
K j

nQ';Q  with 

entries 

 
     
(K j

Q';Q )m,n = fm
Q' ,Kj[ fn

Q] , (7.81) 

 
     
(K j

nQ';Q )m,n = n̂r × fm
Q' ,Kj[ fn

Q] . (7.82) 

In (7.81)-(7.82), it is not necessary that Q = Q’. 

Unfortunately, discretization schemes applicable to standalone operators do not immediately apply to 

the double or triple operator products. In this section, a discretization scheme for products of two operators 

is presented first. The scheme is trivially extended to products of three or more operators. The product of 

any two operators  A  and  B  is discretized as 

 
    
AB( )dis

= AQ; ′Q GQ'';Q'
−1 B ′′Q ; ′′′Q , (7.83) 
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where   AQ; ′Q  and   B ′′Q ; ′′′Q  are matrices obtained by discretizing the standalone operators A  and  B  by means 

two sets of suitable basis and testing functions 
 

Q;Q'{ }  and 
 

Q'';Q'''{ } , and 
  
GQ'';Q'  is the mixed Gram matrix 

between the functions  Q''  (that test  B ) and  Q'  (that source  A ): 

 
    
(GQ'';Q' )m,n = fm

Q '' , fn
Q ' . (7.84) 

The inverse of this Gram matrix accounts for the possible lack of (bi-)orthogonality between the sets  Q'  

and  Q'' . For example, using this scheme, the operator product   T1K2  in (7.29) could be discretized as 

 
    
T1K2( )dis

= T1
nGWP;GWP GGWP;GWP

−1 K 2
GWP;GWP . (7.85) 

Note that in (7.85) and in the remainder of this chapter, the set   GWP( p)  is denoted by  GWP . The Gram 

matrix 
  
GGWP;GWP  is known to be well-conditioned; as a result its inverse can be applied to a vector by using 

just a few iterations of an iterative solver.  

A different situation is encountered when this discretization scheme is used for operator products of the 

form 
  
T iT j  present in (7.30) and (7.32). As explained in Section 2.1.2, if Q = GWP is used to discretize 

both   T i  and 
  
T j , the mixed Gram matrix 

  
GnGWP;GWP  is singular and therefore the action of its inverse 

cannot be evaluated. Here, the CMP idea exposed in the previous chapter is used to discretize 
  
T iT j  as 

 
    
(T iT j )dis = Ti

nDQCC;DQCC GnGWP;DQCC
−1 Tj

nGWP;GWP , (7.86) 

where GWP and DQCC functions are used to discretize 
  
T j  and   T i , respectively. 

With the above discretization scheme, the single source MFIE (7.30) can be discretized as 

 

   

η1

η2

K1
nDQCC;GWP

2
+K1

nDQCC;GWP GGWP;GWP
−1 K 2

GWP;GWP +
K 2

nDQCC;GWP

2
+

GnDQCC;GWP

4
⎛

⎝
⎜

⎞

⎠
⎟ I

− T1
nDQCC;DQCC GnGWP;DQCC

−1 T2
nGWP;GWP( )I = −η1VM ,

 (7.87) 

where the elements of the vector   VM  are 
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 (VM )m = n̂r × fm
DQCC, n̂r × H inc  (7.88) 

and the elements of  
  

I( )n = In  are the expansion coefficients of   J2  in terms of GWP basis functions: 

 
   
J2(r) = In

n=1

N

∑ fn
GWP (r) . (7.89) 

The matrix 
  
GnDQCC;GWP , which discretizes the identity operator  I , is nothing but the Gram matrix 

between curl-conforming DQCC and div-conforming GWP basis functions. 

As the discretization scheme for operator products presented here allows for the independent 

discretization of each standalone operator (and also provides us with a well-conditioned mapping between 

bases), the extension to the product of three (or even more) operators is straightforward. Using the same 

ideas described above, the CP-EFIE can be discretized as 

 

   

η1

η2

T0
nDQCC;DQCC GnGWP;DQCC

−1 T1
nGWP;GWP

2

⎛

⎝
⎜ +

η1

η2

T0
nDQCC;DQCC GnGWP;DQCC

−1 T1
nGWP;GWP GGWP;GWP

−1 K 2
GWP;GWP

+T0
nDQCC;DQCC GnGWP;DQCC

−1 K1
nGWP;DQCC GnGWP;DQCC

−1 T2
nGWP;GWP +

T0
nDQCC;DQCC GnGWP;DQCC

−1 T2
nGWP;GWP

2

⎞

⎠
⎟ I

= T0
nDQCC;DQCC GnGWP;DQCC

−1 VE ,

 (7.90) 

where the elements of the vector   VE  are 

 
    
(VE )m = n̂r × fm

GWP , n̂r × E inc . (7.91) 

Of course, the discretized CP-CFIE is obtained by linearly combining (7.87) and (7.90). 

Using the transformation matrices  P  and  R  defined in Section 2.4, the matrices 
   
K j

nDQCC;GWP , 

   
K j

GWP;GWP , 
   
K j

nGWP;DQCC , 
   
Tj

nDQCC;DQCC , and 
   
Tj

nGWP;GWP  can be expressed as 

 

   

K j
nDQCC;GWP = PT K j

nGWP;GWP R ,

K j
GWP;GWP = RT K j

GWP;GWP R ,

K j
nGWP;DQCC = RT K j

nGWP;GWP P ,

 (7.92) 
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Tj
nDQCC;DQCC = PT Tj

nGWP;GWP P ,

Tj
nGWP;GWP = RT Tj

nGWP;GWP R ,
 (7.93) 

where the matrices 
   
K j

nGWP;GWP , 
   
K j

GWP;GWP , and 
   
Tj

nGWP;GWP  are obtained through a standard discretization of 

the operators 
  
T j  and  

  
Kj  on  Sδ . 

In conclusion, the iterative solution of the proposed CP-CFIE only requires the multiplication of 

   
K j

nGWP;GWP , 
   
K j

GWP;GWP (  j = 1,2 ) and 
   
Tj

nGWP;GWP  (  j = 0,1,2 ) by vectors. A careful analysis reveals that only 9 

multiplications are required. Of course, all of these matrices can be computed (and compressed) using 

standard MoM codes provided with  Sδ , instead of  Sδ . The transformation matrices  P  and  R  are highly 

sparse and can be multiplied by a vector in   O(N )  operations.  

3.6 Numerical Results 

This section presents several examples that demonstrate the effectiveness of the proposed CP-CFIE and 

the discretization scheme used for discretizing it. The results especially focus on the two most relevant 

features of the CP-CFIE: its immunity to resonance frequencies and dense-mesh breakdown. All results 

shown here were obtained using  α = 0.5 . 

3.6.1 Resonant frequencies of single source formulations 

The first examples show that the CP-CFIE is resonance free for spherical and cubical scatterers. The 

first example involves a dielectric sphere of radius 1 m and permittivity   ε2 = 2ε1 , with 

  ε1 = ε0 = 8.854187 ×10−12  F/m. The condition number of the impedance matrices obtained by discretizing 

four single source equations (EFIE, MFIE, CFIE, and CP-CFIE) is plotted versus frequency in Fig. III.2. 

As expected, the matrices obtained by discretizing the EFIE and MFIE become ill-conditioned in the 

vicinity of the resonant frequencies of a spherical PEC cavity of radius 1 m. On the other hand, those 

obtained by discretizing the CFIE and CP-CFIE are free from these resonances. 
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Fig. III.2. Condition number versus frequency for the sphere example of the impedance matrices obtained 
for four different formulations: EFIE, MFIE, CFIE, and CP-CFIE. 

 

Although the analytical results presented here are limited to the case of a dielectric sphere, numerical 

experiments show that these results also hold true for other (more complex) geometries. The second 

example involves a dielectric cube of side 1 m and permittivity   ε2 = 2ε1  with   ε1 = ε0 . This geometry, like 

most targets of practical interest, involves edges. The condition numbers of the system matrices derived 

from for the various formulations are plotted in Fig. III.3. These results suggest that for a cube, the four 

single source formulations behave in the same way they do when used for a sphere. In particular, the CP-

CFIE remains resonant free. 
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Fig. III.3. Condition number versus frequency for the cube example of the impedance matrices obtained for 
four different formulations: EFIE, MFIE, CFIE, and CP-CFIE. 

 

3.6.2 Dense-mesh breakdown in CFIEs 

Although both the CFIE and CP-CFIE are resonant free, the latter does not suffer from dense-mesh 

breakdown, while the former does. This advantage of the CP-CFIE over the CFIE becomes significant 

when the penetrable object has sub-wavelength geometric features. Consider a dielectric sphere of radius 

  R = λ / 20  and permittivity   ε2 = 2ε1  with   ε1 = ε0 . The sphere is illuminated by an  x -polarized plane wave 

propagating in the  z  direction. Fig. III.4 shows the residual error versus iteration count achieved by a 

TFQMR solver [53] during the iterative solution of the matrix systems obtained by discretizing CFIE and 

CP-CFIE. The simulation is repeated for five discretizations with minimum edge size ranging from 

 δ = λ / 400  to  δ = λ / 2000 . The number of unknowns ranges from   N = 153  to   N = 1080 , respectively. 

For the CFIE, the convergence rate deteriorates as  δ → 0 , and the number of iterations needed to reach a 


