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relative residual error of  10−5  increases. The CP-CFIE exhibits a convergence rate that is independent of 

the discretization and a low number of iterations. 

 
Fig. III.4. Residual history of CFIE and CP-CFIE  for different discretizations of the surface of a sphere  of 
radius 1 m. 
 

3.6.3 Broadband T-shaped dielectric resonator antenna 

The final example involves the T-shaped dielectric resonator antenna (DRA) shown in Fig. III.5(a)-(d) 

[50]. The DRA has an equilateral-triangular shape, and is placed on a square ground plane of side   L3 = 260  

mm. The permittivity of the DRA is   ε2 = 9.2ε1  with   ε1 = ε0 . The two equilateral triangle cross sections have 

heights   h1 = 12.0  mm and   h2 = 18.0  mm, and side lengths of   L1 = 25.0  mm and   L2 = 64.0  mm. The 

antenna is fed by a  z -directed coaxial probe located at the center of both triangles. The probe’s length is 

  h = 11.0  mm and its radius is 0.38 mm. Note that the formulation presented here is not suitable for 

different penetrable objects touching a PEC or each other. Thus, in this example, an artificial gap of 0.5 

mm. was introduced between the DRA and the PEC surfaces. 
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For an excitation frequency   f = 1.6  GHz, the equivalent electric current density J1  is shown in Fig. 

III.6(a)-(b). Similarly, the equivalent magnetic current density   M1  is shown in Fig. III.7(a)-(b). Fig. 

III.8(a)-(c) show the antenna’s normalized radiation patterns in the three principal planes, also for an 

excitation frequency of   f = 1.6  GHz. Fig. III.9(a)-(c) show the normalized radiation patterns for an 

excitation frequency of   f = 3.1 GHz. For this example, the CP-CFIE was used for the dielectric surface, 

and the CMP-EFIE for the PEC surface. The matrix system obtained after discretizing both equations was 

solved (iteratively) using a TFQMR solver. For the mesh in Fig. III.5(c-d), the total number of unknowns is 

approximately 15000, and the minimum edge length of 0.23 mm. The results obtained with a coupled 

surface-volume integral equation solver [51][52] are also displayed for both frequencies. 
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Fig. III.5. Broadband T-shaped DRA with equilateral-triangle cross sections. (a) Top view of schematic 
diagram. (b) Side view of schematic diagram. (c) Perspective view of the mesh used for the simulations. (d) 
Detailed view of the coaxial probe feed. A gap of 0.5 mm. exists between the dielectric and PEC surfaces. 
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Fig. III.6. Equivalent electric current density   J1  for the example of Broadband T-shaped DRA with 

equilateral-triangle cross sections operating at 1.6 GHz. (a) Norm of the real part of   J1 . (b) Norm of the 

imaginary part of   J1 . Plots are in logarithmic scale. 
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Fig. III.7. Equivalent magnetic current density   M1  for the example of Broadband T-shaped DRA with 

equilateral-triangle cross sections operating at 1.6 GHz. (a) Norm of the real part of   M1 . (b) Norm of the 

imaginary part of   M1 . Plots are in logarithmic scale. 
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Fig. III.8. Normalized radiation pattern of the DRA operating at 1.6 GHz. Result obtained with the CP-
CFIE is compared to the one obtained with a coupled surface-volume integral equation solver (labeled as 
“Ref”). (a) Radiation pattern in the XZ plane. (b) Radiation pattern in the YZ plane. (c) Radiation pattern in 
the XY plane. 
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Fig. III.9. Normalized radiation pattern of the DRA operating at 3.1 GHz. Result obtained with the CP-
CFIE is compared to the one obtained with a coupled surface-volume integral equation solver (labeled as 
“Ref”). (a) Radiation pattern in the XZ plane. (b) Radiation pattern in the YZ plane. (c) Radiation pattern in 
the XY plane. 
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CHAPTER IV 

High-Order Dot-Trick and Calderón Multiplicative Preconditioner for Time 

Domain Electric Field Integral Equations 

4.1 Time Domain Electric Field Integral Equation and its Discretization 

Consider a closed, simply connected PEC surface  S  residing in a homogeneous medium with 

permittivity  ε  and permeability μ .  The incident electric field    E
inc (r,t) , which is zero for all   t < 0  and 

temporally bandlimited to maximum frequency  fmax  induces the current density    J (r,t)  on  S . The 

scattered field     E
s(r,t)  radiated by    J (r,t)  satisfies the TDEFIE 

 
    

0 = n̂r × E inc (r,t)+ n̂r × E s(r,t)

= n̂r × E inc (r,t)+ηT [J ](r,t)
 (8.1) 

where 

     T [J ] = Ts[J ]+ Th[J ]  (8.2) 

with 

 
     
Ts[J ](r,t) = − 1

4πc
n̂r ×

�J ( ′r ,t − R / c)
R

d ′s
S
∫  (8.3) 

and 

 
    
Th[J ](r,t) = c

4π
n̂r ×∇

′∇s J ( ′r , ′t )d ′t
0

t−R/c

∫
R

ds '
S
∫ . (8.4) 
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Here    n̂r  is the outward pointing unit vector normal to  S  at  r ,  η = μ / ε  and   c = 1/ εμ  are the 

background medium’s impedance and speed of light respectively, and 
  
R = r − r'  is the distance between 

observation  r  and source  r'  points. The “dot” on top of a symbol denotes the action of a temporal 

derivative. The subscripts “s” and “h” stand for “singular” (vector potential) and “hyper-singular” (scalar 

potential), respectively. To numerically solve (8.1)    J (r,t)  is approximated as 

 
   
J (r,t) ≈ I j ,ng j (t) fn(r)

n=1

NS

∑
j=1

NT

∑ . (8.5) 

 where 
  
I j ,n ,   j = 1,…, NT ,   n = 1,…, NS  are expansion coefficients of    J (r,t)  in terms of  NT  scalar temporal 

basis functions 
  
g j (t)  and  NS  vector spatial basis functions    fn(r) . 

Throughout this chapter it is assumed that  S  is approximated by a mesh  SΔs  comprising  N P  planar or 

curvilinear triangular patches,  NV  vertices and  N E  edges. The minimum edge size in  is denoted by 

 Δs . 

The set of spatial basis functions 
   
F = fn ,n = 1,…, Ns{ }  is, unless otherwise stated, assumed to be the 

set of (div-conforming)   p
th -order interpolatory Graglia-Wilton-Peterson functions, i.e.   F = GWP( p)  [5]. 

Unless   p = 0  (in which case   GWP( p) = RWG ) ,   p ≥1 is assumed and suppressed.  

The temporal basis functions 
  
g j (t) = g LAG (t − jΔt) ,   j = 1,…, NT  are shifted piecewise polynomial 

Lagrange interpolants of degree   q >1 defined as [26] 

 
  
g LAG (t) = iΔt − t

iΔti=1

k

∏⎛⎝⎜
⎞
⎠⎟

iΔt + t
iΔti=1

q−k

∏⎛⎝⎜
⎞
⎠⎟

 (8.6) 

for   t ∈[(k −1)Δt,kΔt]  and   k = 0,…,q , with 
  
Δt = 1/ χ  fmax( )  the time step; χ is an over-sampling factor 

typically chosen in the range  10 ≤ χ ≤ 20 . 

sSΔ
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Substitution of expansion (8.5) into (8.1), and testing the resulting equation with curl-conforming 

functions in 
   
nF = n̂r × fm(r), m = 1,…, NS | fm(r)∈F{ }  at  t = jΔt ,   j = 1,…, NT  yields the following 

marching on time (MOT) TDEFIE system 

 
   
TF

(0)I( j ) = VF
( j ) − TF

(k )I( j−k )

k=1

min{ j−1,kmax }

∑  (8.7) 

for   j = 1,…, NT . In (8.7), the elements of the vectors    I( j )  and    VF
( j )  are given by 

 
   

I( j )( )
n
= I j ,n  (8.8) 

 

    

VF
( j )( )

m
= δ (t − jΔt)n̂r × fm(r), 1

η
n̂r × E inc (r,t)

= 1
η

fm(r) E inc (r, jΔt)ds
S
∫

 (8.9) 

and the elements of the matrices    TF
(k )  can be written as 

 

      

TF
(k )( )

m,n
= δ (t − jΔt)n̂r × fm(r),T [g j−k (t) fn(r)]

= − 1
4πc

fm(r)
S×S
∫∫ fn( ′r )

�g LAG (kΔt − R / c)
R

d ′s ds

− c
4π

∇s
S×S
∫∫ fm(r) ′∇s fn( ′r )

g LAG ( ′t )d ′t
0

kΔt−R/c

∫
R

d ′s ds

 (8.10) 

Note the subscript in  and , specifying the set of spatial basis functions used. Since 

  g
LAG (t) = 0,∀t < −Δt , all matrices  are identically zero for   k < 0 . The number  kmax  of nonzero 

interaction matrices  is of the order of   D / (cΔt) , where  D  is the diameter of the smallest sphere 

circumscribing  S . Equation (8.7) is solved for the current coefficients vector    I( j )  after the current 

coefficients vectors    I( i) ,   i = 1,…, j −1  have been computed. This recursive procedure is termed MOT and it 

can be written as the linear system of equations 

( )k
FT ( )j

FV

( )k
FT

( )k
FT
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TF
(0)

TF
(1) TF

(0)

TF
(2) TF

(1) TF
(0)

� � � �

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

I(1)

I(2)

I(3)

�

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

V (1)

V (2)

V (3)

�

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (8.11) 

or  

   TFI = VF . (8.12) 

Successively solving (8.7) for time steps   j = 1,…, NT  is equivalent to solve (8.12) by forward substitution. 

The evaluation of the matrix elements in (8.10) requires the evaluation of a temporal integral, which is 

computationally expensive. For this reason, most TDIE schemes solve the time-differentiated TDEFIE 

      η
�T [J ](r,t) = −n̂r × �E inc (r,t)  (8.13) 

with 

      
�T [J ] = �Ts[J ]+ �Th[J ]  (8.14) 

 
     
�Ts[J ](r,t) = − 1

4πc
n̂r ×

��J ( ′r ,t − R / c)
R

d ′s
S
∫  (8.15) 

 
     
�Th[J ](r,t) = c

4π
n̂r ×∇

′∇s J ( ′r ,t − R / c)
R

d ′s
S
∫ . (8.16) 

The differentiated TDEFIE (8.13) can be solved via the same MOT scheme already used to solve (8.1). In 

particular, (8.7) remains valid provided that    TF
(k )  and    VF

( j )  are replaced by     
�TF

(k )  and     
�VF

( j ) , defined by 

 

      

�TF
(k )( )

m,n
= δ (t − jΔt)n̂r × fm(r), �T [g j−k (t) fn(r)]

= − 1
4πc

fm(r)
S×S
∫∫ fn( ′r )

��g LAG (kΔt − R / c)
R

d ′s ds

− c
4π

∇s
S×S
∫∫ fm(r) ′∇s fn( ′r ) g LAG (kΔt − R / c)

R
d ′s ds

 (8.17) 
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�VF
( j )( )

m
= δ (t − jΔt)n̂r × fm(r),− 1

η
n̂r × �E inc (r,t)

= − 1
η

fm(r) �E inc (r, jΔt)ds
S
∫

 (8.18) 

When analyzing electromagnetic phenomena involving electrically large and/or complex structures, i.e., 

when  NS  is large, (8.7) cannot be solved directly and iterative solvers are called for. At each time step, the 

computational cost of solving (8.7) iteratively is proportional to the cost of multiplying the impedance 

matrix    TF
(0)  by a trial solution vector and the number of iterations  Niter  required to reach a desired residual 

error;  Niter  typically is proportional to    TF
(0) ’s condition number, viz. the ratio of    TF

(0) ’s largest and smallest 

singular values. Unfortunately, the singular values of the operator  T  comprise two branches, one 

accumulating at zero, and the other at infinity (see Chapter II). Thus the condition number of    TF
(0)  grows 

without bound as the spatial dependence of  J  is increasingly well-approximated, i.e. as   Δs→ 0  and/or 

 p→∞ . When this happens the number of iterations required for convergence often is prohibitively high. 

Similar observations apply to the time-differentiated TDEFIE. 

4.2 Calderón Preconditioned and DC Stable TDEFIEs 

A well-conditioned TDEFIE can be obtained by leveraging  T ’s self-regularizing property 

expressed by the time-domain Calderón identity [12], 

 
     
T 2[J ](r,t) = −

��J (r,t)
4

+K2[J ](r,t)  (8.19) 

with 

 
    
K[J ](r,t) = −n̂r ×

1
4π

∇ J ( ′r ,t − R / c)
RS

∫ ds ' . (8.20) 

Operators  K  and   K
2  in time-domain have the same properties that their frequency-domain counterparts 

have. Eqn. (8.19) implies that the Calderón-preconditioned TDEFIE 

     ηT 2[J ](r,t) = −T [n̂r × E inc ](r,t)  (8.21) 
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and its time-differentiated version 

      η
�T 2[J ](r,t) = − �T [n̂r × �E inc ](r,t)  (8.22) 

may be amenable to well-conditioned systems, regardless of the mesh density or the order of the spatial 

basis functions. In general, eqn. (8.22) is preferred over (8.21) to avoid evaluating the time integral present 

in   Th . Calderón-preconditioned TDEFIEs (8.21) and (8.22) suffer from DC instabilities as the operators 

  T 2  and    �T 2  have the same null space  T  and   �T  have, respectively. To construct an equation that is DC 

stable, we define the operators 

 
     

�
Ts[X ](r,t) = − 1

4πc
n̂r ×

X ( ′r ,t − R / c)
R

d ′s
S
∫ , (8.23) 

 
     

�
Th[X ](r,t) = c

4π
n̂r ×∇

′∇s X ( ′r ,t − R / c)
R

d ′s
S
∫ . (8.24) 

Since spatial integrations and temporal differentiations in (8.3) and (8.4) commute, the following 

equations hold: 

    TsTh =
�

Ts

�
Th  (8.25) 

    ThTs =
�

Th

�
Ts . (8.26) 

Using (8.25) and (8.26), and since    Th
2 = 0 ,   T 2  can be expressed as 

     T
2 = Ts

2 + TsTh + ThTs = Ts
2 +

�
Ts

�
Th +

�
Th

�
Ts . (8.27) 

As demonstrated in [13] the static and linear-in-time functions in the null space of  T  and   �T  are not 

present in     (Ts
2 +

�
Ts

�
Th +

�
Th

�
Ts ) . Thus, the “Dottrick-TDEFIE” defined as 

 
     
η Ts

2 +
�

Ts

�
Th +

�
Th

�
Ts( )[J ](r,t) = −T [n̂r × E inc ](r,t)  (8.28) 

is immune to DC instabilities. 
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Unfortunately, the discretization of either (8.22) or (8.28) is by no means trivial. Here the sets 

  F = GWP( p)  and    
�F = DQCC( p)  (see Chapter II) are used to discretize   T 2  either directly or in its 

“Dottrick” form. The operator    T
2[J ]  is discretized as the product of two impedance matrices    T �F  and   TF , 

separated by a Gram matrix that accounts for the possible lack of (bi-)orthogonality between the functions 

in   �F  and  nF . In particular, the discretization of (8.22) reads 

 
    

�T �F GS
−1( ) �TFI = �T �F GS

−1( ) �VF  (8.29) 

or 

 

    

�T �F
(0)

�T �F
(1) �T �F

(0)

�T �F
(2) �T �F

(1) �T �F
(0)

� � � �

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

GS
−1

�TF
(0)

�TF
(1) �TF

(0)

�TF
(2) �TF

(1) �TF
(0)

� � � �

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

I(1)

I(2)

I(3)

�

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−

�V (1)

�V (2)

�V (3)

�

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

=

0
0
0
�

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (8.30) 

with   GS  a block-diagonal spatial Gram matrix given by 

 

    

GS =
GnF ; �F

GnF ; �F

�

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (8.31) 

where 

 
     
(GnF ; �F )m,n = n̂r × fm , �fn  (8.32) 

is the matrix of overlap integrals of functions in   �F  and  nF . Eqn. (8.29) does not require the 

decomposition of matrix elements in    T �F  and   TF  into their singular (vector potential) and hypersingular 

(scalar potential) components, simplifying its implementation. 

Similarly to (8.11), the linear system in (8.30) can be solved by forward substitution as 

 

    

�T �F
(0) GnF ; �F

−1 �TF
(0)( ) I( j ) = �T �F

(0) GnF ; �F
−1 �V ( j ) − �TF

(k ) I( j−k )

k=1

min{ j−1,kmax }

∑
⎛

⎝⎜
⎞

⎠⎟

+ �T �F
( l ) GnF ; �F

−1

l=1

min{ j−1,kmax }

∑ �V ( j−l ) − �TF
(k ) I( j−l−k )

k=0

min{ j−l−1,kmax }

∑
⎛

⎝⎜
⎞

⎠⎟

 (8.33) 
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for j = 1,…, NT . The expression in parenthesis, in the second term of the right hand side of (8.33) can be 

rearranged by splitting the sum into     
�TF

(0)I( j )  and all other terms with   1≤ k ≤ min{ j − l −1,kmax} . 

Considering the MOT system in (8.7) for time step  j − l  it follows that  

 
    

�V ( j−l ) − �TF
(k ) I( j−l−k )

k=0

min{ j−l−1,kmax }

∑
⎛

⎝⎜
⎞

⎠⎟
= �V ( j−l ) − �TF

(0) I( j−l ) − �TF
(k ) I( j−l−k )

k=1

min{ j−l−1,kmax }

∑ = 0 . (8.34) 

Thus, the CMP-TDEFIE system in (8.33) is simplified into 

 
    

�T �F
(0) GnF ; �F

−1 �TF
(0)( ) I( j ) = �T �F

(0) GnF ; �F
−1 �V ( j ) − �TF

(k ) I( j−k )

k=1

min{ j−1,kmax }

∑
⎛

⎝⎜
⎞

⎠⎟
. (8.35) 

The system matrix 
    
�T �F

(0)GnF ; �F
−1 �TF

(0)  in (8.35) is well conditioned only if conditions C1 through C3 (see 

Chapter II) are satisfied by the functions in  F  and   �F . As explained in section 2.3, the above criteria is 

satisfied by the sets   F = GWP( p)  and    
�F = DQCC( p) . 

To discretize the Dottrick-TDEFIE in (8.28), each term in the Dottrick operator is handled separately 

using the same sets of functions used for CMP: 

 
    

Ts, �F Gs
−1 Ts,F +

�
Ts, �F Gs

−1 �
Th,F +

�
Th, �F Gs

−1 �
Ts,F( ) I = T �F Gs

−1 VF . (8.36) 

The matrices 
   
Ts,Q , 

    
�
Ts,Q , and  

    
�
Th,Q , with    Q = F , �F , are given by 

 

    

Ts,Q =

Ts,Q
(0)

Ts,Q
(1) Ts,Q

(0)

Ts,Q
(2) Ts,Q

(1) Ts,Q
(0)

� � � �

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

, (8.37) 

 

    

�
Ts,Q =

�
Ts,Q

(0)

�
Ts,Q

(1) �
Ts,Q

(0)

�
Ts,Q

(2) �
Ts,Q

(1) �
Ts,Q

(0)

� � � �

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

, (8.38) 
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�
Th,Q =

�
Th,Q

(0)

�
Th,Q

(1) �
Th,Q

(0)

�
Th,Q

(2) �
Th,Q

(1) �
Th,Q

(0)

� � � �

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

, (8.39) 

with 

 

      

Ts,F
(k )( )

m,n
= δ (t − jΔt)n̂r × fm(r),Ts[g j−k (t) fn(r)]

= − 1
4πc

fm(r)
S×S
∫∫ fn( ′r )

�g LAG (kΔt − R / c)
R

d ′s ds
, (8.40) 

 

      

�
Ts,F

(k )( )
m,n

= δ (t − jΔt)n̂r × fm(r),
�

Ts[g j−k (t) fn(r)]

= − 1
4πc

fm(r)
S×S
∫∫ fn( ′r ) g LAG (kΔt − R / c)

R
d ′s ds

, (8.41) 

 

      

�
Th,F

(k )( )
m,n

= δ (t − jΔt)n̂r × fm(r),
�

Th[g j−k (t) fn(r)]

= − c
4π

∇s
S×S
∫∫ fm(r) ′∇s fn( ′r ) g LAG (kΔt − R / c)

R
d ′s ds

. (8.42) 

Matrices 
    
Ts, �F

(k ) , 
    
�
Ts, �F

(k ) , and 
    
�
Th, �F

(k )  are obtained as in (8.40), (8.41), and (8.42) respectively, but with functions 

in   �F  instead of  F . 

As in a standard MOT scheme, the linear system in (8.36) can be solved by forward substitution, which 

is equivalent to solve 

 

    

Ts, �F
(0) Gs

−1 Ts,F
(0) +

�
Ts, �F

(0) Gs
−1 �

Th,F
(0) +

�
Th, �F

(0) Gs
−1 �

Ts,F
(0)( )I( j ) = T �F

( l ) Gs
−1 VF

( j−l )

l=0

min{ j−1,kmax }

∑

− Ts, �F
( l ) Gs

−1 Ts,F
(0)( )I( j−l )

l=1

min{ j−1,kmax }

∑ − Ts, �F
( l ) Gs

−1 Ts,F
(k ) I( j−l−k )

k=1

min{ j−l−1,kmax }

∑
⎛

⎝⎜
⎞

⎠⎟l=0

min{ j−1,kmax }

∑

−
�
Ts, �F

( l ) Gs
−1 �

Th,F
(0)( )I( j−l )

l=1

min{ j−1,kmax }

∑ −
�
Ts, �F

( l ) Gs
−1 �

Th,F
(k ) I( j−l−k )

k=1

min{ j−l−1,kmax }

∑
⎛

⎝⎜
⎞

⎠⎟l=0

min{ j−1,kmax }

∑

−
�
Th, �F

( l ) Gs
−1 �

Ts,F
(0)( )I( j−l )

l=1

min{ j−1,kmax }

∑ −
�
Th, �F

( l ) Gs
−1 �

Ts,F
(k ) I( j−l−k )

k=1

min{ j−l−1,kmax }

∑
⎛

⎝⎜
⎞

⎠⎟l=0

min{ j−1,kmax }

∑

 (8.43) 

for every time step   j = 1,2,…, NT . 
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The implementation of equations (8.35) and (8.43) follows exactly the same procedure described earlier 

for frequency domain solvers. In particular, using the transformation matrices  P  and  R  (defined in section 

2.4), matrices     
�T �F

(0)  and     
�TF

(0) in (8.35) can be evaluated as 

 
    
�T �F

(0) = PT HF
T �T

GWP
(0) HF P  (8.44) 

and 

     
�TF

(0) = HF
T �TGWP

(0) HF . (8.45) 

Evaluation of matrices 
    
�
Ts,F

(k ) , 
    
�
Th,F

(k ) , 
    
�
Ts, �F

(k ) , and 
    
�
Th, �F

(k )  is performed in a similar fashion: 

 
    
�
Ts,F

(k ) = HF
T �

Ts,GWP
(k ) HF , (8.46) 

 
    
�
Th,F

(k ) = HF
T �

Th,GWP
(k ) HF , (8.47) 

 
    
�
Ts, �F

(k ) = PT HF
T �

T
s,GWP
(k ) HF P , (8.48) 

 
    
�
Th, �F

(k ) = PT HF
T �

T
h,GWP
(k ) HF P . (8.49) 

4.3 Numerical Results 

This section presents several examples that demonstrate the effectiveness of the basis functions 

presented in Chapter II and its performance in the high-order CMP-TDEFIE and the high-order Dottrick-

TDEFIE. The results presented here are obtained using a time-domain solver which implements all three 

MOT schemes presented in this chapter, i.e., the differentiated TDEFIE in (8.7), the CMP-TDEFIE in 

(8.35), and the Dottrick-TDEFIE in (8.43). In either case, a generalized minimal residual (GMRES)-based 

iterative method [39] is used to solve the linear systems in each time step.  

In all numerical experiments the excitation is considered to be a modulated Gaussian plane wave of the 

form  

    E
inc (r,t) = p̂e

− (τ −tp )/ 2σ ]⎡
⎣

⎤
⎦

2

cos(2π f0τ ) . (8.50) 
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In (8.50)   f0  is the center frequency,    τ = t − r̂ k̂ / c ,    k̂  denotes the direction of propagation and   p̂  denotes  

the polarization of the incident wave. The temporal standard deviation σ  is related to the nominal 

bandwidth  fBW  by   σ = 6 / (2π fBW ) . The delay time of the wave relative to the origin is denoted by 
 
tp .  

The performance of the CMP-TDEFIE is studied here with three different structures: a sphere, an 

Airbus A380, and a model of an avionics bay. Specific parameters used for each structure are summarized 

in Table IV.A. 

 

Table IV.A.  
Parameters used in the excitation for the different geometries 

Mesh   p̂    k̂    f0   fBW   
tp  

Sphere   x̂    ẑ  50 MHz 10 MHz 1 μs 
Airbus A380   ẑ    x̂  70 MHz 20 MHz 360 ns 
Avionics bay   ŷ    x̂  50 MHz 10 MHz 760 ns 

 

4.3.1 Sphere 

The first example demonstrates the convergence of the RCS as the order of the basis functions in the 

high-order CMP-TDEFIE is increased. The target geometry is a sphere of radius 1 m, which is discretized 

with 32 curvilinear patches. Each patch is obtained by means of an exact mapping from a reference patch 

onto the surface of the sphere. The simulation is run with a time step   Δt = 250  ps and   NT = 8192  time 

steps. All frequency-domain results attributed to the proposed solver are obtained by (discrete) Fourier 

transforming time-domain data while accounting for the spectral content of the incident field. 

To demonstrate the effect of the spatial basis functions, Fig. IV.1(a) shows the bistatic RCS of the PEC 

sphere when computed with time basis functions of order   q = 4  and spatial basis functions of orders 

  p = 0,1,2 . Fig. IV.1(b) shows the relative error of the computed RCS with respect to Mie series solution. 

To demonstrate the effect of temporal basis order, Fig. IV.2(a) show the bistatic RCS of the sphere when 

computed with spatial basis functions of order   p = 2  and temporal basis functions of orders   q = 2, 3, 4 . Fig. 

IV.2(b) shows the relative error with respect to Mie series solution. All RCS are computed at a frequency 
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of 50 MHz. As expected, increasing the order of time and/or spatial basis functions improves the accuracy 

of the results. 

Fig. IV.3(a-c) show the residual error versus iteration count achieved by a GMRES solver during the 

iterative solution of the MOT matrix systems obtained by discretizing the diagonally-preconditioned 

TDEFIE and CMP-TDEFIE with basis functions of orders   p = 0,1, 2 . As dictated by the condition number 

of 
    
( �T �F

(0)GnF ; �F
−1 �TF

(0) )  the number of iterations required for the CMP-TDEFIE to reach the prescribed accuracy 

does not grow as the discretization density is increased. In contrast, the diagonally-preconditioned TDEFIE 

requires an increasing number of iterations as the mesh becomes denser. Moreover, this behavior worsens 

as the order  p  of the basis functions is increased, severely penalizing the efficiency and accuracy of high-

order basis functions.  
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(a) 

 
(b) 

Fig. IV.1. Bistatic RCS of a PEC sphere of radius 1 m. computed at 30 MHz from the current density 
obtained with the CMP-TDEFIE. The surface of the sphere is modeled with 32 curvilinear patches. The 
current density is modeled with spatial basis functions of orders   p = 0,1,2  and temporal basis functions of 
order   q = 4 . (a) Bistatic RCS in the x-z plane. (b) Relative error in the RCS with respect to Mie series 
solution. 
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(a) 

 
(b) 

Fig. IV.2. Bistatic RCS of a PEC sphere of radius 1 m. computed at 50 MHz from the current density 
obtained with the CMP-TDEFIE. The surface of the sphere is modeled with 32 curvilinear patches. The 
current density is modeled with spatial basis functions of order   p = 2  and temporal basis functions of 
degrees   q = 2,3,4 . (a) Bistatic RCS in the x-z plane. (b) Relative error in the RCS with respect to Mie 
series solution. 
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Fig. IV.3. Residual history of diagonally-preconditioned TDEFIE (dashed lines) and CMP-TDEFIE (solid 
lines) when solving for a single time step. The illuminated target is a PEC sphere of radius 1 m. Four 
different discretizations are used, ranging from 32 to 7000 curvilinear elements. Results are shown for 
several orders of the spatial basis functions: (a) order  0; (b) order 1; (c) order 2. 
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4.3.2  Airbus A380 

The next example involves an open cavity in the fuselage of an Airbus A380, as shown in Fig. IV.4(a-c). 

The cavity penetrates 40.0 cm along the   ŷ  axis and into the aircraft. The aperture of the cavity is a 

rectangular slot of dimensions 20.0 x 1.0 cm, and oriented along the   x̂  axis. Note that the airplane is 

illuminated by a   ẑ -polarized plane wave traveling in the   x̂  direction, thus the polarization is orthogonal to 

the orientation of the slot. Fig. IV.5(a-d) show snapshots of the transient current density at different 

instances of time. Fig. IV.5(f) shows the transient current observed at three different locations (probes) on 

the surface of the aircraft (see Fig. IV.5(e)): the tip of the nose, inside the cavity, and the tip of the vertical 

stabilized. The results shown in these figures are obtained with the CMP-TDEFIE using time basis 

functions of order   q = 4  (and a time step of   Δt = 80  ps) and spatial basis functions of order   p = 2 .  
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Fig. IV.4. Airbus A380 model illuminated by a   ẑ -polarized plane wave traveling in the   x̂  direction. (a) 
Mesh and main dimensions of the aircraft; second order curvilinear patches are used to discretize the 
surface. (b) Detail of the slot in the aircraft’s fuselage. (c) Cavity seeing from inside. 
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Fig. IV.5. Current distribution on the surface of the Airbus A380 of Fig. IV.4 at (a)   t = 120Δt , (b) 
  t = 300Δt , (c)   t = 420Δt , and (d)   t = 660Δt . (e) Location of the three probes; one is located at the tip of 
the nose, one inside the small cavity, and one at the tip of the vertical stabilizer. (f) Transient currents 
observed at the three probes. 
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4.3.3 Avionics bay 

The last example involves a model of an avionics bay, with compartments and equipment (PCs) inside. 

As shown in Fig. IV.6(a-c), the geometry comprises an almost rectangular box with six compartments 

inside. The box is closed, except for three 7 cm diameter holes in the back of the bay. Inside the box there 

are four vertical divisions and a horizontal one. Vertical divisions have 3 cm –diameter holes (not shown). 

The bay stores two rectangular boxes (PCs) of dimensions 20 x 10 x 35 cm. Fig. IV.6(b) shows the 

dimensions of the compartments. Fig. IV.6(c) shows the bay with its cover, as well as its main dimensions.  

Fig. IV.7(a-d) show snapshots of the transient current density at different instances of time. Fig. IV.7(f) 

shows the transient current observed at each PC inside the bay (see Fig. IV.7(e)). The results shown in 

these figures are obtained with the high-order CMP-TDEFIE using time basis functions of order   q = 4  (and 

a time step of   Δt = 1500  ps) and spatial basis functions of order   p = 2 . 
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Fig. IV.6. Avionics bay illuminated by a   ŷ -polarized plane wave traveling in the   x̂  direction. (a) Bay 
without its cover, with six compartments and two PCs inside. (b) Dimensions of the compartments. (c) 
Main dimensions of the bay. 
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Fig. IV.7. Current distribution on the surface of the avionics bay of Fig. IV.6 at (a)   t = 300Δt , (b) 
  t = 350Δt , (c)   t = 520Δt , and (d)   t = 705Δt . (e) Location of the two probes; one on each PC. (f) Transient 
currents observed at the two probes. 

 

In the remainder of this section, the high-order implementation of the Dottrick-TDEFIE is studied. To 

demonstrate that the scheme in (8.43) is free from DC instabilities, consider the companion matrix   TC  [13] 

 

    

TC =

−( �T(0) )−1 �T(1) −( �T(0) )−1 �T(2) −( �T(0) )−1 �T(3) � −( �T(0) )−1 �T(kmax )

I
I

I
�

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

 (8.51) 
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4.3.4 High-Order Dottrick-TDEFIE Applied to a Sphere 

The first example considered is a PEC sphere of radius 1 m. The surface of the sphere is discretized 

with 32 curvilinear patches. Each patch is obtained by means of an exact mapping from a reference patch 

onto the surface of the sphere. The incident field is described by (8.50), with   f0 = 30 KHz ,   fBW = 20 KHz , 

  k̂ = x̂ ,   p̂ = ẑ , and 
  
tp = 500 μs . The simulation is run with a time step   Δt = 1μs  and a total of   NT = 2000  

time steps. Results shown in this section are obtained using temporal basis functions of order   q = 3 and 

spatial basis functions of order   p = 0,1,2,3 . 

The polynomial eigenvalues of the differentiated TDEFIE and the Dottrick-TDEFIE (both discretized 

with spatial basis functions of order   p = 0 ) are plotted in Fig. IV.8(a) and Fig. IV.8(b), respectively. As 

detailed in Fig. IV.8(a), the polynomial eigenvalues of the differentiated TDEFIE contains a cluster of 

poles in the vicinity of   1+ 0i . These poles are responsible of the DC instability of the differentiated 

TDEFIE. As expected, this cluster is not present in the polynomial eigenvalues of the Dottrick-TDEFIE. 

Similar results are obtained using spatial basis functions of order   p = 1  (Fig. IV.8(c-d)),   p = 2  (Fig. IV.9 

(a-b)), and   p = 3 (Fig. IV.9(c-d)). Note that as the order of the spatial basis functions is increased, the 

cluster around   1+ 0i  becomes denser, with poles situated further away from the unit circle. 

The current obtained with the Dottrick-TDEFIE (using spatial basis functions of order   p = 0,1,2,3 ) is 

plotted in Fig. IV.10(a-d) and compared to the one obtained with the differentiated TDEFIE and the CMP-

TDEFIE. Irrespective of the order of the spatial basis functions, the DC instabilities are not present in the 

Dottrick-TDEFIE. In contrast, and as expected, DC instabilities are more outspoken for the differentiated 

TDEFIE and the CMP-TDEFIE as the order of the spatial basis functions is increased.  

It is worth noting that in the MOT process for solving the differentiated TDEFIE for spatial basis 

functions of order   p = 2,3 , the GMRES solver could not reach a relative residual error smaller than  10−1  at 

any time step, even after 30,000 iterations. For this reason, the solution obtained with this scheme does not 

resemble at all with the one obtained with the Dottrick-TDEFIE. The solution obtained with the CMP-
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TDEFIE (in this case, the GMRES solver could reach the specified error of  10−8  in a few iterations) does 

resemble the one obtained with the Dottrick-TDEFIE, yet it still suffers from DC instabilities.  

To demonstrate the effect of the spatial basis functions in the accuracy of the Dottrick-TDEFIE, Fig. 

IV.11(a) shows the bistatic radar cross-section (RCS) calculated for  φ = 0°  and  −180° ≤θ ≤180°  for a 

frequency of 30 KHz. RCS is computed from the current obtained from solving the Dottrick-TDEFIE using 

temporal basis functions of order   q = 4  and spatial basis functions of orders   p = 0,1,2 . Fig. IV.11(b) 

shows the error of the computed RCS with respect to Mie series solution. 

 
Fig. IV.8. Polynomial eigenvalues of differentiated TDEFIE and Dottrick-TDEFIE applied to a 1 m radius 
PEC sphere. (a) Differentiated TDEFIE with spatial basis functions of order   p = 0 . (b) Dottrick-TDEFIE 
with spatial basis functions of order   p = 0 . (c) Differentiated TDEFIE with spatial basis functions of order 

  p = 1 . (d) Dottrick-TDEFIE with spatial basis functions of order   p = 1 . 
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Fig. IV.9. Polynomial eigenvalues of differentiated TDEFIE and Dottrick-TDEFIE applied to a 1 m radius 
PEC sphere. (a) Differentiated TDEFIE with spatial basis functions of order   p = 2 . (b) Dottrick-TDEFIE 
with spatial basis functions of order   p = 2 . (c) Differentiated TDEFIE with spatial basis functions of order 

  p = 3. (d) Dottrick-TDEFIE with spatial basis functions of order   p = 3. 
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Fig. IV.10. Electric current density obtained after solving the differentiated TDEFIE, CMP-TDEFIE, and 
Dottrick-TDEFIE. The target is a 1 m radius PEC sphere, illuminated by a Gaussian pulse with center 
frequency   f0 = 30 KHz  and bandwidth   fBW = 20 KHz  traveling along   k̂ = ẑ  and with polarization   p̂ = x̂ . 
All equations are discretized using temporal basis functions of order   q = 3  and spatial basis functions of 
order (a)   p = 0 , (b)   p = 1 , (c)   p = 2 , and (d)   p = 3. 
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Fig. IV.11. Bistatic RCS at a frequency of 30 KHz obtained after solving the Dottrick-TDEFIE for a 1 m 
radius PEC sphere, illuminated by a Gaussian pulse with center frequency   f0 = 30 KHz  and bandwidth 

  fBW = 20 KHz , traveling along   k̂ = ẑ  and with polarization   p̂ = x̂ . The surface of the sphere is modeled 
with 32 curvilinear patches. The current density is modeled with temporal basis functions of order   q = 4  
and spatial basis functions of orders   p = 0,1,2 . The number of spatial unknowns ranges from 48 (  p = 0 ) to 
336 (  p = 2 ). (a) Bistatic RCS in the x-z plane. (b) Error in RCS with respect to Mie series solution. 
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4.3.5 High-Order Dottrick-TDEFIE Applied to a Cube 

The same experiments shown for the sphere are now performed for a cube of 1 m side length. In this 

case the incident field is described by (8.50), with   f0 = 30 KHz ,   fBW = 20 KHz ,   k̂ = x̂ ,   p̂ = ẑ , and 

  
tp = 500 μs . The simulation is run with a time step   Δt = 1μs  and a total of   NT = 2000  time steps. 

The polynomial eigenvalues of the differentiated TDEFIE and Dottrick-TDEFIE are shown in Fig. 

IV.12(a-b), Fig. IV.12(c-d), Fig. IV.13(a-b), and Fig. IV.13(c-d), for spatial basis functions of order 

  p = 0,1,2,3 , respectively. The current obtained with the Dottrick-TDEFIE (using spatial basis functions of 

order   p = 0,1,2,3 ) is plotted in Fig. IV.14(a-d) and compared to the one obtained with the differentiated 

TDEFIE and the CMP-TDEFIE. As expected, the results obtained here with the differentiated TDEFIE, 

CMP-TDEFIE, and Dottrick-TDEFIE are consistent to those obtained for the sphere. 
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Fig. IV.12. Polynomial eigenvalues of differentiated TDEFIE and Dottrick-TDEFIE applied to a PEC cube 
with side length of 1 m. (a) Differentiated TDEFIE with spatial basis functions of order   p = 0 . (b) 
Dottrick-TDEFIE with spatial basis functions of order   p = 0 . (c) Differentiated TDEFIE with spatial basis 
functions of order   p = 1 . (d) Dottrick-TDEFIE with spatial basis functions of order   p = 1 . 
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Fig. IV.13. Polynomial eigenvalues of differentiated TDEFIE and Dottrick-TDEFIE applied to a PEC cube 
with side length of 1 m. (a) Differentiated TDEFIE with spatial basis functions of order   p = 1 . (b) Dottrick-
TDEFIE with spatial basis functions of order   p = 1 . (c) Differentiated TDEFIE with spatial basis functions 
of order   p = 2 . (d) Dottrick-TDEFIE with spatial basis functions of order   p = 2 . 
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Fig. IV.14. Electric current density obtained by solving the differentiated TDEFIE, CMP-TDEFIE, and 
Dottrick-TDEFIE. The target is a 1 m radius PEC sphere illuminated by a Gaussian pulse with center 
frequency   f0 = 30 KHz  and   fBW = 20 KHz  traveling along   k̂ = ẑ  and polarization   p̂ = x̂ . All equations 
are discretized using temporal basis functions of order   q = 3 and spatial basis functions of order (a)   p = 0 , 
(b)   p = 1 , (c)   p = 2 , and (d)   p = 3. 
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CHAPTER V 

Time Domain Single Source Integral Equations for Analyzing Scattering from 

Homogeneous Penetrable Objects 

5.1 Time-Domain Single Source Equations 

Consider a homogeneous penetrable object with surface  S  and outward pointing unit normal vector    n̂r , 

which is immersed in a homogeneous background medium (Fig. III.1(a)). The object is illuminated by 

electric and magnetic fields    {E inc (r,t), H inc (r,t)}  that are zero for all   t < 0  and temporally band-limited to 

maximum frequency  fmax . Let 
  
ε j , 

 
μ j , 

 
η j , and 

 
c j  denote the permittivity, permeability, impedance, and 

propagation speed of medium  j , respectively. The background and the object are labeled by   j = 1 and 

  j = 2 , respectively. We wish to find the total electric and magnetic fields 
   
{E j (r,t), H j (r,t)}  in regions 

  j = 1,2 . 

For any vector field  X tangential to  S , the identity operator is denoted by  I ; single and double layer 

operators pertinent to medium  j  are defined as 

 
     
T j[X ](r,t) = − 1

4πcj

n̂r ×
�X ( ′r ,t − R / cj )

R
d ′s

S
∫ +

cj

4π
n̂r ×∇

′∇s X ( ′r , ′t )d ′t
0

t−R/c j∫
R

ds '
S
∫  (5.1) 

and 

 
    
Kj[X ](r,t) = −n̂r ×

1
4π

∇
X ( ′r ,t − R / cj )

RS
∫ ds '  (5.2) 

respectively. Here  R  is the distance between observation  r  and source  r'  points., i.e. 
  
R = R , where 

 R = r − r' . The derivation of time-domain single source equations follows closely the one illustrated in 
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Section 3.1. Therefore time domain single source EFIE and MFIE are presented here without formal 

derivation. Time-domain single source EFIE and MFIE read:  

 
    

η1

η2

T1

2
[J2](r,t)+

η1

η2

T1K2[J2](r,t)+K1T2[J2](r,t)+
T2

2
[J2](r,t) = n̂r × E inc (r,t) , (5.3) 

 
    

η1

η2

K1

2
+K1K2 +

K2

2
+ I

4
⎛
⎝⎜

⎞
⎠⎟

[J2](r,t)− T1T2[J2](r,t) = −η1n̂r × H inc (r,t) . (5.4) 

Equivalent external current densities    {J1(r,t), M1(r,t)}  can be expressed in terms of   J2  as 

 
    
J1(r,t) =

η1

η2

K2[J2](r,t)  (5.5) 

     M2(r,t) = −T2[J2](r,t)  (5.6) 

5.2 Marching on Time Single Source Equations 

To numerically solve either dual or the single source IEs, equivalent currents and fields are discretized 

in time and space. Using the same notation established in Chapter IV, it is assumed that  S  is approximated 

by a mesh  SΔs  comprising  N P  planar or curvilinear patches (triangles),  NV  vertices and  N E  edges. The 

minimum edge size in  SΔs  is denoted by  Δs . In addition, it is assumed that time is discretized into  NT  

time steps of duration   Δt = 1/ (χ fmax ) , where χ  is an over-sampling factor typically chosen in the range 

 10 ≤ χ ≤ 20 . Under these assumptions, a current distribution    X (r,t)  on  SΔs  is approximated as 

 
   
X (r,t) ≈ Ii,ngi(t) fn

Q (r)
n=1

NS

∑
i=1

NT

∑  (5.7) 

where 
  
Ii,n ,   i = 1,…, NT ,   n = 1,…, NS  are expansion coefficients of    X (r,t)  in terms of  NT  scalar temporal 

basis functions   gi (t)  and  NS  vector spatial  div-conforming basis functions    fn
Q (r) . 

The set of spatial basis functions    Q ={ fn
Q (r),n = 1,…, NS}  is, unless otherwise stated, assumed to be 

the set of (div-conforming)   p
th -order interpolatory Graglia-Wilton-Peterson functions, i.e.   Q = GWP( p) .  
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The temporal basis functions   gi (t) = g LAG (t − iΔt) ,   i = 1,…, NT  are shifted piecewise polynomial 

Lagrange interpolants of degree   q >1 defined as [26] 

 
  
g LAG (t) = iΔt − t

iΔti=1

k

∏⎛⎝⎜
⎞
⎠⎟

iΔt + t
iΔti=1

q−k

∏⎛⎝⎜
⎞
⎠⎟

 (5.8) 

for   t ∈[(k −1)Δt,kΔt]  and   k = 0,…,q . Note that   g
LAG (t)  is non-zero only in the interval   (−Δt,qΔt) . 

The discretization of standard dual source integral equations for analyzing scattering from dielectric 

objects calls for the discretization of standalone operators 
  
T j  and 

  
Kj . Typically, 

  
T j  is discretized using 

div-conforming basis functions    fn
Q (r)  and curl-conforming test functions    n̂r × fn

Q (r) , yielding the 

 NS NT × NS NT  lower triangular block matrix 

 

    

Tj
nQ;Q =

Tj
nQ;Q (0)

Tj
nQ;Q (1) Tj

nQ;Q (0)

Tj
nQ;Q (2) Tj

nQ;Q (1) Tj
nQ;Q (0)

� � � �

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (5.9) 

with matrices 
   
Tj

nQ;Q (k) ,   k = 0,1,…,kmax , given by 

 

      

Tj
nQ;Q (k)( )

m,n
= n̂r × fm

Q (r),T j[g−k fn
Q ](r,t)

= − 1
4πc

fm
Q (r) ⋅ fn

Q ( ′r )
�g LAG (kΔt − R / cj )

R
d ′s ds

S×S
∫∫

−
cj

4π
∇s ⋅ fm

Q (r) ′∇s ⋅ fn
Q ( ′r )

g LAG (t ')dt '
0

kΔt−R/c j∫
R

d ′s ds
S×S
∫∫

 (5.10) 

The superscript “  nQ;Q ” indicates that functions in  Q  and  nQ  are used as basis and test (space) functions, 

respectively. At any position   r ∈SΔs  and for any time   t > 0 , 
    
T j[g−k fn

Q ](r,t)  accounts for the electric field 

originated by electric current   fn
Q ,  k  time steps ago i.e., at time  t − kΔt . The number of non-zero 

interaction matrices is given by 
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kmax =

D
cjΔt

+ q , (5.11) 

where  D  is the diameter of the smallest sphere circumscribing  SΔs . 

The operator 
   
Wj ≡ Kj + I / 2( )  often is discretized using div-conforming basis functions and either div- 

or curl-conforming test functions (depending on the role 
  
Kj  plays in the equation), yielding the matrices 

   
Wj

′Q ;Q (k)  and 
   
Wj

n ′Q ;Q (k) ,   k = 0,1,…,kmax , with entries 

 

      

Wj
′Q ;Q (k)( )

m,n
= fm

′Q (r),Kj[g−k fn
Q ](r,t) + 1

2
fm

′Q (r),g−k (t) fn
Q (r)

= 1
4π

fm
′Q (r) ⋅ n̂r ×

fn
Q ( ′r )× R

R2

⎛

⎝⎜
⎞

⎠⎟S×S
∫∫

× 1
cj

�g LAG (kΔt − R / cj )+
1
R

g LAG (kΔt − R / cj )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ds 'ds

+ 1
2

g LAG (kΔt) fm
′Q (r) ⋅ fn

Q (r)ds
S
∫

 (5.12) 

and 

 

      

Wj
n ′Q ;Q (k)( )

m,n
= n̂r × fm

′Q (r),Kj[g−k fn
Q ](r,t) + 1

2
n̂r × fm

′Q (r),g−k (t) fn
Q (r)

= 1
4π

n̂r × fm
′Q (r)( ) ⋅ fn

Q ( ′r )× R
R2

⎛

⎝⎜
⎞

⎠⎟S×S
∫∫

× 1
cj

�g LAG (kΔt − R / cj )+
1
R

g LAG (kΔt − R / cj )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ds 'ds

+ 1
2

g LAG (kΔt) n̂r × fm
′Q (r) ⋅ fn

Q (r)ds
S
∫

 (5.13) 

In (5.12) and (5.13), it is not necessary that   Q = Q ' . 

Unfortunately, discretization schemes applicable to standalone operators do not immediately apply to 

operator products like those appearing in (5.3) and (5.4). A discretization scheme for products of two or 

more operators has been previously presented in the context of single source equations in frequency domain 

[21]. This scheme is used and extended here for time domain equations. The product of any two operators 

 A  and  B  is discretized as 
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AB( )dis
= AQ; ′Q G ′′Q ; ′Q

−1 B ′′Q ; ′′′Q

=

AQ; ′Q (0)

AQ; ′Q (1) AQ; ′Q (0)

AQ; ′Q (2) AQ; ′Q (1) AQ; ′Q (0)
� � � �

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

×

G ′′Q ; ′Q
−1

G ′′Q ; ′Q
−1

�
G ′′Q ; ′Q

−1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

B ′′Q ; ′′′Q (0)

B ′′Q ; ′′′Q (1) B ′′Q ; ′′′Q (0)

B ′′Q ; ′′′Q (2) B ′′Q ; ′′′Q (1) B ′′Q ; ′′′Q (0)
� � � �

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (5.14) 

where    A
Q; ′Q (k)  and    B

′′Q ; ′′′Q (k) ,   k = 0,1,…,kmax , are matrices obtained by discretizing the standalone 

operators  A  and  B  by means two sets of suitable basis and testing functions   {Q;Q '} and   {Q '';Q '''} , and 

   
G ′′Q ; ′Q

−1  (we slightly abuse of the notation here) is the mixed Gram matrix between the functions   Q ''  (that 

test  B ) and   Q '  (that source  A ): 

 
    

G ′′Q ; ′Q( )
m,n

= fm
′′Q , fn

′Q . (5.15) 

The inverse of this Gram matrix accounts for the possible lack of (bi-)orthogonality between the sets 

  Q '  and   Q '' . For example, using this scheme, the operator product   T1W2  in (5.3) could be discretized as 

 
    
T1W2( )dis

= T1
nGWP;GWP GGWP;GWP

−1 W2
GWP;GWP . (5.16) 

The Gram matrix 
  
GGWP;GWP  is known to be well-conditioned; as a result its inverse can be applied to a 

vector by using just a few iterations of an iterative solver.  

A different situation is encountered when this discretization scheme is used for the operator product 

present in (5.4). In this case, if   Q = GWP  is used to discretize both   T1  and   T2 , the mixed Gram matrix 

  
GnGWP;GWP  is singular (see Chapter II) and therefore the action of its inverse cannot be evaluated. Here, a 

high-order discretization is achieved using GWP and DQCC functions:  

 
    
T1T2( )dis

= T1
nDQCC;DQCC GnGWP;DQCC

−1 T2
nGWP;GWP . (5.17) 
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With the discretization scheme described above, the time-domain single source EFIE (5.3) can be 

discretized as 

 
   

η1

η2

T1
nGWP;GWP GGWP;GWP

−1 W2
GWP;GWP + W1

nGWP;DQCC GnGWP;DQCC
−1 T2

nGWP;GWP⎛

⎝⎜
⎞

⎠⎟
I = VE , (5.18) 

where   VE  contains the (tested) incident field at consecutive time steps, i.e. 

 

    

VE =

VE
(1)

VE
(2)

VE
(3)

�

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

, (5.19) 

with 

 
    

VE
( i)( )

m
= n̂r × fm

GWP (r), n̂r × E inc (r,iΔt) . (5.20) 

The vector  I  contains the expansion coefficients of   J2  as described in (5.7), 

 

   

I =

I(1)

I(2)

I(3)

�

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

, (5.21) 

with 
   

I( i)( )
n
= Ii,n . 

Similarly, time-domain single source MFIE (5.4) is discretized as 

 
   

η1

η2

W1
nDQCC;GWP GGWP;GWP

−1 W2
GWP;GWP − T1

nDQCC;DQCC GnGWP;DQCC
−1 T2

nGWP;GWP⎛

⎝⎜
⎞

⎠⎟
I = −η1VM , (5.22) 

with 

 

    

VM =

VM
(1)

VM
(2)

VM
(3)

�

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

, (5.23) 



113 

and 

 
    

VM
( i)( )

m
= n̂r × fm

DQCC(r), n̂r × H inc (r,iΔt) . (5.24) 

As in any standard MOT scheme, the linear systems in (5.18) and (5.22) can be solved by forward 

substitution, which is equivalent to solve the systems 

 

   

η1

η2

T1
nGWP;GWP (0) GGWP;GWP

−1 W2
GWP;GWP (0)+ W1

nGWP;DQCC(0) GnGWP;DQCC
−1 T2

nGWP;GWP (0)
⎛

⎝⎜
⎞

⎠⎟
I( i)

= VE
( i) −

η1

η2

T1
nGWP;GWP (l) GGWP;GWP

−1 W2
GWP;GWP (0)( )

l=1

min{i−1,kmax }

∑ I( i−l )

−
η1

η2

T1
nGWP;GWP (l) GGWP;GWP

−1 W2
GWP;GWP (k) I( i−l−k )

k=1

min{i−l−1,kmax }

∑
⎛

⎝⎜
⎞

⎠⎟l=0

min{i−1,kmax }

∑

− W1
nGWP;DQCC(l) GnGWP;DQCC

−1 T2
nGWP;GWP (0)( )

l=1

min{i−1,kmax }

∑ I( i−l )

− W1
nGWP;DQCC(l) GnGWP;DQCC

−1 T2
nGWP;GWP (k) I( i−l−k )

k=1

min{i−l−1,kmax }

∑
⎛

⎝⎜
⎞

⎠⎟l=0

min{i−1,kmax }

∑

 (5.25) 

and 

 

   

η1

η2

W1
nDQCC;GWP (0) GGWP;GWP

−1 W2
GWP;GWP (0)− T1

nDQCC;DQCC(0) GnGWP;DQCC
−1 T2

nGWP;GWP (0)
⎛

⎝⎜
⎞

⎠⎟
I( i)

= −η1VM
( i) −

η1

η2

W1
nDQCC;GWP (l) GGWP;GWP

−1 W2
GWP;GWP (0)( )

l=1

min{i−1,kmax }

∑ I( i−l )

−
η1

η2

W1
nDQCC;GWP (l) GGWP;GWP

−1 W2
GWP;GWP (k) I( i−l−k )

k=1

min{i−l−1,kmax }

∑
⎛

⎝⎜
⎞

⎠⎟l=1

min{i−1,kmax }

∑

+ T1
nDQCC;DQCC(l) GnGWP;DQCC

−1 T2
nGWP;GWP (0)( )

l=1

min{i−1,kmax }

∑ I( i−l )

+ T1
nDQCC;DQCC(l) GnGWP;DQCC

−1 T2
nGWP;GWP (k) I( i−l−k )

k=1

min{i−l−1,kmax }

∑
⎛

⎝⎜
⎞

⎠⎟l=0

min{i−1,kmax }

∑

 (5.26) 

for every time step   i = 1,2,…, NT . 

Using the transformation matrices  P  and  R  (see Section 2.4), the matrices 
   
Tj

nGWP;GWP (k) , 
   
Wj

GWP;GWP (k) , 

   
Wj

nGWP;DQCC(k) , 
   
Wj

nDQCC;GWP (k) , and 
   
Tj

nDQCC;DQCC(k)  can be expressed as 

 
   
Tj

nGWP;GWP (k) = RT Tj
nGWP;GWP (k) R , (5.27) 
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Wj

GWP;GWP (k) = RT Wj
GWP;GWP (k) R , (5.28) 

 
   
Wj

nGWP;DQCC(k) = RT Wj
nGWP;GWP (k) P , (5.29) 

 
   
Wj

nDQCC;GWP (k) = PT Wj
GWP;GWP (k) R , (5.30) 

 
   
Tj

nDQCC;DQCC(k) = PT Tj
GWP;GWP (k) P , (5.31) 

where the matrices 
   
Tj

nGWP;GWP (k) , 
   
Wj

GWP;GWP (k) , and 
   
Wj

nGWP;GWP (k)  are obtained through standard 

discretization of the operators 
  
T j  and 

  
Wj  on  SΔs . 

5.3 Numerical Results 

This section presents several examples that demonstrate the effectiveness of the time-domain single 

source equations and of the discretization scheme presented in this chapter. The results shown here are 

obtained using a parallel MOT single source TDIE solver which implements both EFIE and MFIE 

discussed in the previous sections. This solver uses a generalized minimal residual (GMRES)-based 

iterative method [39] to solve the linear systems on each time step. In all examples considered here, objects 

are illuminated by a Gaussian plane wave given by 

    E
inc (r,t) = p̂e−[(τ −tp )/ 2σ ]2

cos(2π f0τ ) , (5.32) 

where   f0  is the center frequency,    τ = t − r̂ ⋅ k̂ / c ,   k̂  denotes the direction of propagation and   p̂  denotes  

the polarization of the incident wave. The temporal standard deviation σ  is related to the nominal 

bandwidth  fBW  by   σ = 6 / (2π fBW ) . The delay time of the wave relative to the origin is denoted by 
 
tp . All 

frequency-domain results attributed to the proposed solver are obtained by (discrete) Fourier transforming 

time-domain data while accounting for the spectral content of the incident field. Whenever pertinent, 

results obtained with time-domain single source EFIE/MFIE are compared to those obtained with 

frequency-domain single source EFIE/MFIE, using the same spatial discretization and integration rules. 
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5.3.1 MOT Analysis of Scattering from a Sphere 

The first example considered is a sphere of radius 1 m with permittivity   ε2 = 2ε1  and permeability 

 μ2 = μ1  (   ε1 = ε0 = 8.854187 ×10−12  F/m,  μ1 = μ0 = 4π ×10−7  H/m). The incident field is described by 

(5.32), with   f0 = 50 MHz ,   fBW = 50 MHz ,   k̂ = x̂ ,   p̂ = ẑ , and 
  
tp = 150 ns . The surface of the sphere is 

discretized with 32 curvilinear patches. Each patch is obtained by means of an exact mapping from a 

reference patch onto the surface of the sphere. The simulation is run with a time step   Δt = 250 ps  and a 

total of   NT = 2000  time steps. Fig. V.1 to V.3 show plots of the transient equivalent currents    J1(r,t)  and 

   M1(r,t)  obtained by solving single source EFIE and MFIE using temporal basis functions of order   q = 4  

and spatial basis functions of order   p = 0,1,2 . Fig. V.1(a-b) show the equivalent currents at a position 

  r = (−0.816,  0.408,  0.408)  m along the direction (-0.577, -0.577, -0.577) obtained using spatial basis 

functions of order   p = 0 . The number of spatial unknowns is   NS = 48 . Fig. V.2(a-b) show the equivalent 

currents at a position   r = (−0.534,  − 0.801,  0.267)  m along the direction (0.577, -0.577, -0.577) obtained 

using spatial basis functions of order   p = 1 . The number of spatial unknowns is   NS = 160 . Fig. V.3(a-b) 

show the equivalent currents at a position   r = (0.0,  − 0.187,  0.982)  m along the direction (-1.0, 0.0, 0.0) 

obtained using spatial basis functions of order   p = 2 . The number of spatial unknowns is   NS = 336 . 

The consistency between results obtained from time- and frequency-domain single source EFIE and 

MFIE is studied in Fig. V.4 to V.6. Fig. V.4(a) shows the bistatic RCS calculated for  φ = 0°  and 

 −180° ≤θ ≤180°  for frequencies of 30, 50 and 70 MHz. RCS is computed from the equivalent currents   J1  

and   M1  obtained from solving the single source EFIE in time- and frequency-domain separately. Currents 

are obtained using spatial basis functions of order   p = 0 , and (for time-domain) temporal basis functions of 

order   q = 4 . The relative error in RCS between time- and frequency-domain solutions is shown in Fig. 

V.4(c). Results obtained from solving the single source MFIE are shown in Fig. V.4(b,d). Similar to the 

data illustrated in Fig. V.4(a-d), Fig. V.5(a-d) show results obtained using spatial basis functions of order 

  p = 1 . Finally, Fig. V.14(a-d) show results obtained using   p = 2 .  
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To demonstrate the effect of the spatial basis functions, Fig. V.7(a,c,e) show the bistatic radar cross-

section (RCS) calculated for  φ = 0°  and  −180° ≤θ ≤180°  for frequencies of 30, 50 and 70 MHz 

respectively. RCS is computed from the equivalent currents   J1  and   M1  obtained from solving the single 

source EFIE using temporal basis functions of order   q = 4  and spatial basis functions of orders   p = 0,1,2,3 . 

Fig. V.7(b,d,f) show the error of the computed RCS with respect to Mie series solution. Similarly, to 

demonstrate the effect of temporal basis functions, Fig. V.8(a,c,e) show the bistatic RCS when computed 

with spatial basis functions of order   p = 2  and time basis functions of orders   q = 2,3,4 . Fig. V.8(b,d,f) 

show the relative error with respect to Mie series solution. 

 
Fig. V.1. Electric and (scaled) Magnetic equivalent current densities obtained after solving time-domain 
single source EFIE and MFIE using temporal basis functions of order   q = 4  and spatial basis functions of 
order   p = 0 . The target is a 1 m radius sphere with permittivity   ε2 = 2ε0  illuminated by a Gaussian pulse 
with center frequency   f0 = 50 MHz  and bandwidth   fBW = 50 MHz  traveling along   k̂ = ẑ  and with 
polarization   p̂ = x̂ . Currents are observed at point (-0.816, 0.408, 0.408) m and along the direction (-0.577, 
-0.577, -0.577) (a) Absolute value of the currents for 0 ≤ t ≤ 500 ns . (b) Currents for 80 ≤ t ≤ 250 ns . 
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Fig. V.2. Electric and (scaled) Magnetic equivalent current densities obtained after solving time-domain 
single source EFIE and MFIE using temporal basis functions of order   q = 4  and spatial basis functions of 
order   p = 1 . The target is a 1 m radius sphere with permittivity   ε2 = 2ε0  illuminated by a Gaussian pulse 
with center frequency   f0 = 50 MHz  and bandwidth   fBW = 50 MHz  traveling along   k̂ = ẑ  and with 
polarization   p̂ = x̂ . Currents are observed at point (-0.534, -0.801, 0.267) m and along the direction (0.577, 
-0.577, -0.577) (a) Absolute value of the currents for 0 ≤ t ≤ 500 ns . (b) Currents for 80 ≤ t ≤ 250 ns . 
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Fig. V.3. Electric and (scaled) Magnetic equivalent current densities obtained after solving time-domain 
single source EFIE and MFIE using temporal basis functions of order   q = 4  and spatial basis functions of 
order   p = 2 . The target is a 1 m radius sphere with permittivity   ε2 = 2ε0  illuminated by a Gaussian pulse 
with center frequency   f0 = 50 MHz  and bandwidth   fBW = 50 MHz  traveling along   k̂ = ẑ  and with 
polarization   p̂ = x̂ . Currents are observed at point (0.0, -0.187, 0.982) m and along the direction (-1.0, 0.0, 
0.0) (a) Absolute value of the currents for 0 ≤ t ≤ 500 ns . (b) Currents for 80 ≤ t ≤ 250 ns .  
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Fig. V.4. Comparison of bistatic RCS at frequencies 30 MHz, 50 MHz, and 70 MHz obtained after solving 
time-domain and frequency-domain single source EFIE and MFIE using spatial basis functions of order 

  p = 0  for a 1 m radius sphere with   ε2 = 2ε0 . (a) RCS obtained from single source EFIE. (b) RCS obtained 
from singe source MFIE. (c) Relative error in RCS between time- and frequency-domain EFIE. (d) Relative 
error in RCS between time- and frequency-domain MFIE. 
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Fig. V.5. Comparison of bistatic RCS at frequencies 30 MHz, 50 MHz, and 70 MHz obtained after solving 
time-domain and frequency-domain single source EFIE and MFIE using spatial basis functions of order 

  p = 1  for a 1 m radius sphere with   ε2 = 2ε0 . (a) RCS obtained from single source EFIE. (b) RCS obtained 
from singe source MFIE. (c) Relative error in RCS between time- and frequency-domain EFIE. (d) Relative 
error in RCS between time- and frequency-domain MFIE. 
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Fig. V.6. Comparison of bistatic RCS at frequencies 30 MHz, 50 MHz, and 70 MHz obtained after solving 
time-domain and frequency-domain single source EFIE and MFIE using spatial basis functions of order 

  p = 2  for a 1 m radius sphere with   ε2 = 2ε0 . (a) RCS obtained from single source EFIE. (b) RCS obtained 
from singe source MFIE. (c) Relative error in RCS between time- and frequency-domain EFIE. (d) Relative 
error in RCS between time- and frequency-domain MFIE. 
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Fig. V.7. Bistatic RCS at frequencies 30 MHz, 50 MHz, and 70 MHz obtained after solving time-domain 
single source EFIE for a 1 m radius sphere with   ε2 = 2ε0  illuminated by a Gaussian pulse with center 
frequency   f0 = 50 MHz  and bandwidth   fBW = 50 MHz  traveling along   k̂ = ẑ  and with polarization   p̂ = x̂
. The surface of the sphere is modeled with 32 curvilinear patches. The current density is modeled with 
temporal basis functions of order   q = 4  and spatial basis functions of orders   p = 0,1,2,3 . The number of 
spatial unknowns ranges from 48 (  p = 0 ) to 576 (  p = 3). (a) Bistatic RCS in the x-z plane at 30 MHz. (b) 
Error in RCS at 30 MHz with respect to Mie series solution. (c) Bistatic RCS in the x-z plane at 50 MHz. 
(d) Error in RCS at 50 MHz with respect to Mie series solution. (e) Bistatic RCS in the x-z plane at 70 
MHz. (f) Error in RCS at 70 MHz with respect to Mie series solution. 
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Fig. V.8. Bistatic RCS at frequencies 30 MHz, 50 MHz, and 70 MHz obtained after solving time-domain 
single source EFIE for a 1 m radius sphere with   ε2 = 2ε0  illuminated by a Gaussian pulse with center 
frequency   f0 = 50 MHz  and bandwidth   fBW = 50 MHz  traveling along   k̂ = ẑ  and with polarization   p̂ = x̂
. The surface of the sphere is modeled with 32 curvilinear patches. The current density is modeled with 
spatial basis functions of order   p = 3 and temporal basis functions of orders   q = 2,3,4 . (a) Bistatic RCS in 
the x-z plane at 30 MHz. (b) Error in RCS at 30 MHz with respect to Mie series solution. (c) Bistatic RCS 
in the x-z plane at 50 MHz. (d) Error in RCS at 50 MHz with respect to Mie series solution. (e) Bistatic 
RCS in the x-z plane at 70 MHz. (f) Error in RCS at 70 MHz with respect to Mie series solution. 
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5.3.2 MOT Analysis of Scattering from a Smooth Star-shaped object 

The next example considered is a smooth star-shaped object with permittivity   ε2 = 5ε1 and permeability 

 μ2 = 2μ1  (  ε1 = ε0 ,  μ1 = μ0 ) and whose surface is described as 

 
  
r(θ ,φ) = 2+ cos2(2.5θ )+1.5sin2(θ )cos2(2φ)( ) / 4  (5.33) 

The incident field is described by (5.32), with   f0 = 50 MHz ,   fBW = 50 MHz ,   k̂ = x̂ ,   p̂ = ẑ , and 

  
tp = 150  ns. The surface of the star-shaped object is discretized with 32 curvilinear patches. Each patch is 

obtained by means of an exact mapping from a reference patch onto the surface described in (5.33). The 

simulation is run with a time step   Δt = 250  ps and a total of   NT = 2000  time steps. Fig. V.9 to V.11 show 

plots of the transient equivalent currents    J1(r,t)  and    M1(r,t)  obtained by solving single source EFIE and 

MFIE using temporal basis functions of order   q = 4  and spatial basis functions of order   p = 0,1,2 . Fig. 

V.9(a-b) show the equivalent currents at a position   r = (−0.690,  0.345,  0.345)  m along the direction (-

0.973, -0.102, -0.205) obtained using spatial basis functions of order   p = 0 . The number of spatial 

unknowns is   NS = 48 . Fig. V.10(a-b) show the equivalent currents at a position 

  r = (−0.690,  0.345,  0.345)  m along the direction (0.264, -0.774, -0.574) obtained using spatial basis 

functions of order   p = 1 . The number of spatial unknowns is   NS = 160 . Fig. V.11(a-b) show the equivalent 

currents at a position   r = (0.0,  − 0.133,  0.699)  m along the direction (-1.0, 0.0, 0.0) obtained using spatial 

basis functions of order   p = 2 . The number of spatial unknowns is   NS = 336 . 

The consistency between results obtained from time- and frequency-domain single source EFIE and 

MFIE is studied in Fig. V.12 to V.14. Fig. V.12(a) shows the bistatic radar cross section (RCS) calculated 

for  φ = 0°  and  −180° ≤θ ≤180°  for frequencies of 30, 50 and 70 MHz. RCS is computed from the 

equivalent currents   J1  and   M1  obtained from solving the single source EFIE in time- and frequency-

domain separately. Currents are obtained using spatial basis functions of order   p = 0 , and (for time-

domain) temporal basis functions of order   q = 4 . The relative error in RCS between time- and frequency-
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domain solutions is shown in Fig. V.12(c). Results obtained from solving the single source MFIE are 

shown in Fig. V.12(b,d). Similar to the data illustrated in Fig. V.12(a-d), Fig. V.13(a-d) show results 

obtained using spatial basis functions of order   p = 1  and Fig. V.14(a-d) show results obtained using   p = 2 . 

To demonstrate the effect of the spatial basis functions, Fig. V.15(a,c,e) show the bistatic radar cross-

section (RCS) calculated for  φ = 0°  and  −180° ≤θ ≤180°  for frequencies of 30, 50 and 70 MHz 

respectively. RCS is computed from the equivalent currents   J1  and   M1  obtained from solving the single 

source MFIE using temporal basis functions of order   q = 4  and spatial basis functions of orders 

  p = 0,1,2,3 . Fig. V.15(b,d,f) show the error of the computed RCS with respect to the solution obtained 

using spatial basis functions of order   p = 4 . 

 
Fig. V.9. Electric and (scaled) Magnetic equivalent current densities obtained after solving time-domain 
single source EFIE and MFIE using temporal basis functions of order   q = 4  and spatial basis functions of 
order   p = 0 . The target is the “smooth star” described in (5.33) with permittivity   ε2 = 5ε0  and permeability 

 μ2 = 2μ0 , illuminated by a Gaussian pulse with center frequency   f0 = 50 MHz  and bandwidth 

  fBW = 50 MHz  traveling along   k̂ = ẑ  and with polarization   p̂ = x̂ . Currents are observed at point (-0.690, 
0.345, 0.345) m and along the direction (-0.973, -0.102, -0.205). (a) Absolute value of the currents for 
0 ≤ t ≤ 500 ns . (b) Currents for 80 ≤ t ≤ 250 ns . 
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Fig. V.10. Electric and (scaled) Magnetic equivalent current densities obtained after solving time-domain 
single source EFIE and MFIE using temporal basis functions of order   q = 4  and spatial basis functions of 
order   p = 1 . The target is the “smooth star” described in (5.33) with permittivity   ε2 = 5ε0  and permeability 

 μ2 = 2μ0 , illuminated by a Gaussian pulse with center frequency   f0 = 50 MHz  and bandwidth 

  fBW = 50 MHz  traveling along   k̂ = ẑ  and with polarization   p̂ = x̂ . Currents are observed at point (-0.426, 
-0.640, 0.213) m and along the direction (0.264, -0.774, -0.574). (a) Absolute value of the currents for 
0 ≤ t ≤ 500 ns . (b) Currents for 80 ≤ t ≤ 250 ns . 
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Fig. V.11. Electric and (scaled) Magnetic equivalent current densities obtained after solving time-domain 
single source EFIE and MFIE using temporal basis functions of order   q = 4  and spatial basis functions of 
order   p = 2 . The target is the “smooth star” described in (5.33) with permittivity   ε2 = 5ε0  and permeability 

 μ2 = 2μ0 , illuminated by a Gaussian pulse with center frequency   f0 = 50 MHz  and bandwidth 

  fBW = 50 MHz  traveling along   k̂ = ẑ  and with polarization   p̂ = x̂ . Currents are observed at point (0.0, -
0.133, 0.699) m and along the direction (-1.0, 0.0, 0.0). (a) Absolute value of the currents for   0 ≤ t ≤ 500 ns
. (b) Currents for 80 ≤ t ≤ 250 ns . 
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Fig. V.12. Comparison of bistatic RCS at frequencies 30 MHz, 50 MHz, and 70 MHz obtained after 
solving time-domain and frequency-domain single source EFIE and MFIE using spatial basis functions of 
order   p = 0  for the “smooth star” described in (5.33), with   ε2 = 5ε0  and  μ2 = 2μ0 . (a) RCS obtained from 
single source EFIE. (b) RCS obtained from singe source MFIE. (c) Relative error in RCS between time- 
and frequency-domain EFIE. (d) Relative error in RCS between time- and frequency-domain MFIE. 
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Fig. V.13. Comparison of bistatic RCS at frequencies 30 MHz, 50 MHz, and 70 MHz obtained after 
solving time-domain and frequency-domain single source EFIE and MFIE using spatial basis functions of 
order   p = 1  for the “smooth star” described in (5.33), with   ε2 = 5ε0  and  μ2 = 2μ0 . (a) RCS obtained from 
single source EFIE. (b) RCS obtained from singe source MFIE. (c) Relative error in RCS between time- 
and frequency-domain EFIE. (d) Relative error in RCS between time- and frequency-domain MFIE. 

 

 



130 

 
Fig. V.14. Comparison of bistatic RCS at frequencies 30 MHz, 50 MHz, and 70 MHz obtained after 
solving time-domain and frequency-domain single source EFIE and MFIE using spatial basis functions of 
order   p = 2  for the “smooth star” described in (5.33), with   ε2 = 5ε0  and  μ2 = 2μ0 . (a) RCS obtained from 
single source EFIE. (b) RCS obtained from singe source MFIE. (c) Relative error in RCS between time- 
and frequency-domain EFIE. (d) Relative error in RCS between time- and frequency-domain MFIE. 
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Fig. V.15. Bistatic RCS at frequencies 30 MHz, 50 MHz, and 70 MHz obtained after solving time-domain 
single source MFIE for the  “smooth star” described in (5.33), with   ε2 = 5ε0  and  μ2 = 2μ0 , illuminated by a 
Gaussian pulse with center frequency   f0 = 50 MHz  and bandwidth   fBW = 50 MHz  traveling along   k̂ = ẑ  
and with polarization   p̂ = x̂ . The surface is modeled with 102 curvilinear patches. The current density is 
modeled with temporal basis functions of order   q = 4  and spatial basis functions of orders   p = 0,1,2,3 . 
The number of spatial unknowns ranges from 153 (  p = 0 ) to 1836 (  p = 3). All solutions here are 
compared to the solution obtained using spatial basis functions of order   p = 4  (  NS = 2805 ). (a) Bistatic 
RCS in the x-z plane at 30 MHz. (b) Error in RCS at 30 MHz with respect to solution obtained with spatial 
basis functions of order   p = 4 . (c) Bistatic RCS in the x-z plane at 50 MHz. (d) Error in RCS at 50 MHz 
with respect solution obtained with spatial basis functions of order   p = 4 .  (e) Bistatic RCS in the x-z plane 
at 70 MHz. (f) Error in RCS at 70 MHz with respect solution obtained with spatial basis functions of order 
p = 4 . 
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5.3.3 MOT Analysis of Scattering from a Cube 

In this subsection, scattering from a dielectric cube with   ε2 = 5ε1  and  μ2 = 2μ1  (  ε1 = ε0 ,  μ1 = μ0 ) is 

analyzed. The cube has a side length of 1 m, is centered at the origin and two of its faces are parallel to the 

x-y plane. The incident field is described by (5.32), with   f0 = 50  MHz,   fBW = 50  MHz,   k̂ = ẑ ,   p̂ = x̂ , and 

  
tp = 150  ns. The surface of the cube is discretized with 24 flat triangular patches. The simulation is run 

with a time step   Δt = 250  ps and a total of   NT = 2000  time steps. Fig. V.16 to V.18 show plots of the 

transient equivalent currents    J1(r,t)  and    M1(r,t)  obtained by solving single source EFIE and MFIE using 

temporal basis functions of order   q = 4  and spatial basis functions of order   p = 0,1,2 . Fig. V.16(a-b) show 

the equivalent currents at a position   r = (0.5,  − 0.25,  0.25)  m along the direction (0.0, -0.707, -0.707) 

obtained using spatial basis functions of order   p = 0 . The number of spatial unknowns is   NS = 36 . Fig. 

V.17(a-b) show the equivalent currents at a position   r = (0.333, 0.5, 0.166)  m along the direction (0.0, -

0.707, -0.707) obtained using spatial basis functions of order   p = 1 . The number of spatial unknowns is 

  NS = 120 . Fig. V.18(a-b) show the equivalent currents at a position   r = (0.5,  0.25,  -0.25)  m along the 

direction (0.0, 0.707, 0.707) obtained using spatial basis functions of order   p = 2 . The number of spatial 

unknowns is   NS = 252 . 

The consistency between results obtained from time- and frequency-domain single source EFIE and 

MFIE is studied in Fig. V.19 to V.21. Fig. V.19(a) shows the bistatic radar cross section (RCS) calculated 

for  φ = 0°  and  −180° ≤θ ≤180°  for frequencies of 30, 50 and 70 MHz. RCS is computed from the 

equivalent currents   J1  and   M1  obtained from solving the single source EFIE in time- and frequency-

domain separately. Currents are obtained using spatial basis functions of order   p = 0 , and (for time-

domain) temporal basis functions of order   q = 4 . The relative error in RCS between time- and frequency-

domain solutions is shown in Fig. V.19(c). Results obtained from solving the single source MFIE are 

shown in Fig. V.19(b,d). Similar to the data illustrated in Fig. V.19(a-d), Fig. V.20(a-d) show results 

obtained using spatial basis functions of order   p = 1  and Fig. V.21(a-d) show results obtained using   p = 2 . 



133 

 

 
Fig. V.16. Electric and (scaled) Magnetic equivalent current densities obtained after solving time-domain 
single source EFIE and MFIE using temporal basis functions of order   q = 4  and spatial basis functions of 
order   p = 0 . The target is a cube with 1 m side length with permittivity   ε2 = 5ε0  and permeability  μ2 = 2μ0

, illuminated by a Gaussian pulse with center frequency   f0 = 50 MHz  and bandwidth   fbw = 50 MHz  
traveling along   k̂ = ẑ  and with polarization   p̂ = x̂ . Currents are observed at point (0.5, -0.25, 0.25) m and 
along the direction (0.0, -0.707, -0.707). (a) Absolute value of the currents for   0 ≤ t ≤ 500 ns . (b) Currents 
for 80 ≤ t ≤ 250 ns . 
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Fig. V.17. Electric and (scaled) Magnetic equivalent current densities obtained after solving time-domain 
single source EFIE and MFIE using temporal basis functions of order   q = 4  and spatial basis functions of 
order   p = 1 . The target is a cube with 1 m side length with permittivity   ε2 = 5ε0  and permeability  μ2 = 2μ0 , 
illuminated by a Gaussian pulse with center frequency   f0 = 50 MHz  and bandwidth   fbw = 50 MHz  
traveling along   k̂ = ẑ  and with polarization   p̂ = x̂ . Currents are observed at point (0.333, 0.5, 0.166) m 
and along the direction (0.0, -0.707, -0.707). (a) Absolute value of the currents for   0 ≤ t ≤ 500 ns . (b) 
Currents for 80 ≤ t ≤ 250 ns . 

 

 



135 

 
Fig. V.18. Electric and (scaled) Magnetic equivalent current densities obtained after solving time-domain 
single source EFIE and MFIE using temporal basis functions of order   q = 4  and spatial basis functions of 
order   p = 2 . The target is a cube with 1 m side length with permittivity   ε2 = 5ε0  and permeability  μ2 = 2μ0

, illuminated by a Gaussian pulse with center frequency   f0 = 50 MHz  and bandwidth   fbw = 50 MHz  
traveling along   k̂ = ẑ  and with polarization   p̂ = x̂ . Currents are observed at point (0.5, 0.25, -0.25) m and 
along the direction (0.0, 0.707, 0.707). (a) Absolute value of the currents for   0 ≤ t ≤ 500 ns . (b) Currents 
for 80 ≤ t ≤ 250 ns . 
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Fig. V.19. Comparison of bistatic RCS at frequencies 30 MHz, 50 MHz, and 70 MHz obtained after 
solving time-domain and frequency-domain single source EFIE and MFIE using spatial basis functions of 
order   p = 0  for a 1 m side cube with   ε2 = 5ε0  and  μ2 = 2μ0 . (a) RCS obtained from single source EFIE. (b) 
RCS obtained from singe source MFIE. (c) Relative error in RCS between time- and frequency-domain 
EFIE. (d) Relative error in RCS between time- and frequency-domain MFIE. 
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Fig. V.20. Comparison of bistatic RCS at frequencies 30 MHz, 50 MHz, and 70 MHz obtained after 
solving time-domain and frequency-domain single source EFIE and MFIE using spatial basis functions of 
order   p = 1  for a 1 m side cube with   ε2 = 5ε0  and  μ2 = 2μ0 . (a) RCS obtained from single source EFIE. (b) 
RCS obtained from singe source MFIE. (c) Relative error in RCS between time- and frequency-domain 
EFIE. (d) Relative error in RCS between time- and frequency-domain MFIE. 
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Fig. V.21. Comparison of bistatic RCS at frequencies 30 MHz, 50 MHz, and 70 MHz obtained after 
solving time-domain and frequency-domain single source EFIE and MFIE using spatial basis functions of 
order   p = 2  for a 1 m side cube with   ε2 = 5ε0  and  μ2 = 2μ0 . (a) RCS obtained from single source EFIE. (b) 
RCS obtained from singe source MFIE. (c) Relative error in RCS between time- and frequency-domain 
EFIE. (d) Relative error in RCS between time- and frequency-domain MFIE. 
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CHAPTER VI 

Conclusions and Future Work 

This thesis improved existing CMP techniques for the analysis of scattering from PEC objects, and 

presented new equations for the analysis of scattering from homogeneous penetrable objects. All these 

contributions were explored and extensively tested in frequency- and time-domain. 

6.1 Summary 

A new set of high-order div- and quasi curl-conforming basis functions (  DQCC( p) ) was presented in 

Chapter II. This set was used alongside   GWP( p)  basis functions in a high-order implementation of the 

Calderon-preconditioned EFIE in frequency-domain. The numerical results presented in this chapter 

demonstrate fast convergence rates of the HO-CMP, regardless of the mesh density and the order of the 

basis functions used. The set   DQCC( p)  has also been used to extend the existing implementations of 

Calderon-preconditioned equations in time-domain. In particular, Chapter IV presented high-order CMP-

TDEFIE and Dottrick-TDEFIE. Numerical results in this chapter demonstrate the stability and accuracy of 

both time-domain equations. They also demonstrate fast convergence rates as observed in the frequency-

domain case. 

A Calderón-preconditioned single source combined field integral equation for analyzing scattering from 

homogeneous penetrable objects was presented in Chapter III. The number of unknowns in this equation is 

half that in standard dual source equations. The proposed equation is not susceptible to dense-mesh or low-

frequency breakdown. The regularization of the equation was achieved by leveraging the self-regularizing 

property of the EFIE operator. The spectrum of the CP-CFIE operator was analyzed for the case of a 

dielectric sphere, for which the equation was proven to be resonant free. Numerical results indicate that the 

resonant free character of the equation is maintained for non-spherical structures as well. In close 
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connection to Chapter III, time-domain single source EFIE and MFIE are presented in Chapter V. Both 

equations are discretized appropriately into a MOT scheme. The discretization technique presented here 

makes use of   GWP( p)  and the   DQCC( p)  basis functions presented in Chapter II. Since this is the first 

time these equations are presented in the CEM community, an extensive set of numerical results that 

demonstrate the stability and accuracy of both equations is provided.  

6.2 Future Work 

The work presented in this thesis is subject to improvements and/or extension in their applicability, 

especially if they are to be deployed as part of commercial software. In the current stage, only triangular 

surface patches (planar and curvilinear) are supported. In this context, further extensions may include the 

use of quadrilateral patches, wire, elements and junctions among them. The stability (w.r.t. the order  p ) of 

the   DQCC( p)  basis functions (and therefore also the stability of the high-order CMP) is closely related to 

the stability of the Helmholtz decomposition in the standard basis functions. Any improvement in the way 

this Helmholtz decomposition is achieved will have a direct impact on the stability and efficiency of the 

preconditioner.  

The single source CP-CFIE presented in Chapter III is also susceptible to further study and 

development. Recently, Calderón-preconditioned dual source integral equation solvers have been 

developed. It is of great interest to compare the accuracy and efficiency of the single source CP-CFIE with 

respect to its dual source counterpart. In addition, the single source CP-CFIE can be modified to allow for 

different penetrable objects touching one another and/or PEC surfaces. In the time-domain front, future 

work will be aimed in the development of a time-domain single source combined field integral equation, 

which is free from resonances and immune to dense-mesh breakdown. 
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6.3 Contributions 

This thesis resulted in the following contributions: 

Journal Papers 

1. Valdés, F.; Andriulli, F.P.; Cools, K.; Michielssen, E., “High-order Div- and Quasi Curl-

Conforming Basis Functions for Calderón Multiplicative Preconditioning of the EFIE,” IEEE 

Transactions on Antennas and Propagation, vol.59, no.4, pp.1321-1337, April 2011. 

2. Valdes, F.; Andriulli, F.P.; Bagci, H.; Michielssen, E., “A Calderón-Preconditioned Single Source 

Combined Field Integral Equation for Analyzing Scattering From Homogeneous Penetrable 

Objects,” IEEE Transactions on Antennas and Propagation, vol.59, no.6, pp.2315-2328, June 

2011. 

3. Valdes, F.; Andriulli, F.P.; Michielssen, E., “Time Domain Single Source Integral Equations for 

Analyzing Scattering from Homogeneous Penetrable Objects,” to be Submitted to IEEE 

Transactions on Antennas and Propagation, 2012. 

4. Valdes, F.; Ghaffari-Miab, M.; Andriulli, F.P.; Cools, K.; Kotulski, J.D.; Michielssen, E., “High-

Order Dot-Trick and Calderón Multiplicative Preconditioner for Time Domain Electric Field 

Integral Equations,” to be Submitted to IEEE Transactions on Antennas and Propagation, 2012. 

Conference Papers 

5. Valdes, F.; Andriulli, F.P.; Bagci, H.; Michielssen, E., “On the discretization of single source 

integral equations for analyzing scattering from homogeneous penetrable objects,” Antennas and 

Propagation Society International Symposium, 2008. AP-S 2008. IEEE , vol., no., pp.1-4, 5-11 

July 2008. 

6. Valdes, F.; Andriulli, F.P.; Bagci, H.; Michielssen, E., “On the regularization of single source 

combined integral equations for analyzing scattering from homogeneous penetrable objects,” 

Antennas and Propagation Society International Symposium, 2009. APSURSI '09. IEEE , vol., no., 

pp.1-4, 1-5 June 2009. 
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7. Valdes, F.; Andriulli, F.P.; Cools, K.; Michielssen, E., “High-order quasi-curl conforming 

functions for multiplicative Calderón preconditioning of the EFIE,” Antennas and Propagation 

Society International Symposium, 2009. APSURSI '09. IEEE , vol., no., pp.1-4, 1-5 June 2009. 

8. Valdes, F.; Andriulli, F.P.; Cools, K.; Kotulski, J.D.; Michielssen, E.;, “Fully localized high-order 

div- and quasi-curl-conforming basis functions for multiplicative Calderón preconditioning of the 

EFIE,” Antennas and Propagation Society International Symposium (APSURSI), 2010 IEEE , vol., 

no., pp.1-4, 11-17 July 2010. 

9. Valdes, F.; Ghaffari-Miab, M.; Andriulli, F.P.; Cools, K.; Kotulski, J.D.; Michielssen, E., “High-

order Calderón multiplicative preconditioner for time domain electric field integral equations,” 

Antennas and Propagation (APSURSI), 2011 IEEE International Symposium, vol., no., pp.2362, 
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