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ABSTRACT 

 

 

 

In diseases such as lupus or graft-versus-host disease (GVHD), 

lymphocytes react against self- or allo-antigen and mediate tissue damage.  

Current treatments for such diseases rely on non-specific immunosuppression 

and lead to opportunistic infections.  Disease-causing lymphocytes perform 

numerous energetically demanding processes including proliferation and 

cytokine synthesis.  While activated lymphocytes primarily utilize glycolysis in 

vitro, little is known regarding the bioenergetics of disease-causing lymphocytes 

in vivo.  Understanding the metabolic pathways used by disease-causing 

lymphocytes could provide novel therapeutic targets that allow for selective 

immunomodulation.  As such, the goal of this research is to characterize the 

pathways of cellular metabolism used by pathogenic lymphocytes and to exploit 

these pathways to treat disease. 

Splenocytes from NZB/W mice with lupus up-regulate the oxidation of 

glucose rather than its conversion to lactate.  This oxidative phenotype is distinct 

from acutely-activated T cells, which produce lactate at high rates.  However, 

chronically-stimulated T cells have low rates of lactate production, suggesting 

that a reliance on oxidative metabolism could be a consequence of chronic 

stimulation. 
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 In the setting of unirradiated GVHD, alloreactive donor T cells up-regulate 

OXPHOS but have low rates of glycolysis.  This bioenergetic phenotype 

contrasts with control-stimulated T cells and proliferating bone marrow cells, 

which primarily up-regulate glycolysis.  The oxidative phenotype of alloreactive 

donor T cells is associated with an increased mitochondrial membrane potential 

(m), increased levels of superoxide (O2
-) and depleted antioxidants.  These 

bioenergetic abnormalities suggest that GVHD-causing T cells could be sensitive 

to therapeutic agents that modulate the OXPHOS pathway or induce ROS-

dependent apoptosis. 

 Bz-423 is a novel therapeutic that modulates the mitochondrial F1Fo-

ATPase, hyperpolarizes m, and induces O2
--dependent apoptosis.  We show 

that Bz-423 induces m hyperpolarization, O2
- production and apoptosis in 

alloreactive donor T cells in vivo.  However, Bz-423 does not affect unstimulated 

T cells or proliferating cells in the bone marrow, which have low rates of 

OXPHOS and intact antioxidants.  Bz-423 treatment reduces tissue damage and 

mortality in a model of nonirradiated GVHD, but does not inhibit immune 

reconstitution in fully irradiated syngeneic transplants.  Hence, differences in 

cellular bioenergetics allow Bz-423 to selectively kill GVHD-causing lymphocytes 

without inducing non-specific immunosuppression.  
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CHAPTER 1 

INTRODUCTION 

 

Overview of the immune system.  The immune system is a collection of 

specialized cells and molecules that protects an organism from foreign 

pathogens.  In jawed vertebrates, the immune system has two components, 

termed the adaptive and innate immune systems (1, 2).  

 The adaptive immune system involves the recognition of specific 

molecules, which are known as antigens (1).  In the context of an infection, 

antigens are often pathogen-derived peptides or polysaccharides.  Specialized 

white blood cells, called B and T lymphocytes, recognize antigens using antigen 

receptors called the B cell receptor (BCR) and T cell receptor (TCR) (1).  Each 

lymphocyte expresses an antigen receptor specific for a single antigen.  When a 

lymphocyte encounters its cognate antigen, it becomes activated, meaning that it 

divides and differentiates into numerous progeny called clones, all of which 

recognize the same antigen and, if it is foreign, can aid in its clearance (Figure 

1.1) (3).  Differentiated lymphocytes that have acquired functions to aid in the 

immune response are termed effector cells.   

In order for the adaptive immune response to be effective, the repertoire of 

lymphocyte antigen receptors must be sufficiently large so as to recognize the 

wide variety of pathogen-associated antigens.  Indeed, on the order of 1015 
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different T cell receptors can be theoretically generated (4, 5), while 

approximately 2 x 106 and 2.5 x 107 distinct T cell clones are estimated to exist in 

mice and humans, respectively (5-7).  Following the expansion of lymphocyte 

clones and elimination of antigen, the immune response ceases and most 

effector cells die (8-12). However, some antigen-specific lymphocytes persist as 

memory cells, which can quickly mount an immune response upon reintroduction 

of antigen (13).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Antigen recognition and the adaptive immune response.  (1) 

Mice and humans are populated by a diverse array of naïve lymphocytes that 

have not been stimulated by antigen. (2) Naïve lymphocytes that recognize 

foreign antigen begin to divide and give rise to a clonal population effector 

lymphocytes, all of which recognize the same antigen. (3) Effector lymphocytes 

eliminate the foreign antigen, and the immune response ceases. However, some 

effector lymphocytes differentiate into long-lived memory cells, which can 

respond quickly upon reintroduction of specific antigen.  Adapted from (1).  
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Effector B cells are called plasma cells, and their primary function is 

antibody production (Figure 1.2) (14).  Antibodies are a secreted form of the B 

cell receptor, which can bind to antigen (1).  The binding of an antibody to 

antigen can have several consequences, depending on the nature of the antigen.  

Antibodies can neutralize soluble toxins and can coat the cell surface of bacteria 

that express antigen (1).  This coating process is termed opsinization, and it can 

induce phagocytic cells to engulf bacteria or the complement system to lyse 

bacteria (1).  Phagocytosis and the complement system are discussed further 

under innate immunity.  

 

 

Figure 1.2.  The production of antibodies by B cells.  B cells recognize 

foreign antigen through their B cell receptors.  Antigen-stimulation through the 

BCR, coupled with help from T cells causes B cells to differentiate into plasma 

cells, which produce large amount of secreted antibodies that recognize the 

stimulatory antigen.  Antibodies coat the infectious pathogens leading to their 

clearance by phagocytosis or complement-mediated lysis.  Alternatively, 

antibodies can bind to and neutralize foreign toxins. From (1). 
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The stimulation of T cells requires that antigen be bound to an accessory 

cell, termed an antigen presenting cell (APC, discussed below).  There are two 

major classes of T cells, termed CD4+ and CD8+ based on the cell surface 

expression of the CD4 and CD8 glycoproteins (1).  Effector CD8+ cells express 

cytotoxic molecules that can kill infected target cells (Figure 1.3) (15).  These 

cytotoxic molecules include FASL, which binds to cellular death receptors and 

induce apoptosis in target cells (15).  CD8+ T cells can also express perforin, 

which creates pores in target cells, and granzyme B, which passes through those 

pores and kills target cells by cleaving intracellular proteins and inducing 

apoptosis (16).  

The effector functions of CD4+ T cells primarily involve the synthesis of 

pro-inflammatory signaling molecules, termed cytokines (Figure 1.3) (17).  

Effector CD4+ cells are termed helper T (Th) cells, because they help augment 

the activity of other immune cells.  CD4+ T cells can differentiate into several 

different types of helper T cells, each of which synthesizes different cytokines.  

Th type 1 (Th1) CD4+ T cells produce the cytokine IFN-, which promotes the 

killing of infected cells by phagocytes and CD8+ T cells (18).  The production of 

IL-4 by Th2 CD4+ T cells promotes antibody production by B cells (17).  Activated 

CD4+ T cells also express the cell surface protein CD40L, which stimulates B cell 

antibody production by signaling through CD40 on the B cell surface (19).  

Several other types of effector CD4+ cells exist.  Regulatory T cells (Tregs) 

dampen immune responses and are characterized by the expression of the 

transcription factor FoxP3.  Finally, Th17 cells produce the cytokine IL-17 and 
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have recently been implicated in the clearance of pathogens such as tuberculosis 

(20), as well as the development of autoimmune diseases such as rheumatoid 

arthritis (21) and multiple sclerosis (22).   

 

 

 

Figure 1.3. Effector functions of T cells.  CD4+ T cells (yellow) are stimulated 

by antigen (red) in the context of antigen presenting cells (blue).  Depending on 

the environment at the time of stimulation, CD4+ T cells can develop into Th1, 

Th2, Treg, or Th 17 cells, which aid in various types of immune responses.  CD8+ 

T cells (orange) are stimulated by antigen (red) in the context of antigen 

presenting cells (blue).  CD8+ T cells differentiate into cytotoxic T cells, which 

express FASL, perforin and granzyme B.  They can migrate to infected tissues 

and kill infected cells. Adapted from (1). 
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T cells can only recognize antigen when it is presented by cell surface 

proteins called the major histocompatability complex (MHC) (1).  There are two 

classes of MHC, termed class I and class II (Figure 1.4).  Class II MHC 

molecules are primarily expressed by professional APCs (dendritic cells, 

macrophages and B cells), which sample the extracellular environment and 

present these peptides to CD4+ T cells (23).  Class I MHC molecules are 

expressed on all nucleated cells and present intracellular antigen to CD8+ T cells, 

although extracellular antigen can also be presented by class I MHC molecules 

in a process termed cross presentation (24).  The expression of class I MHC on 

all nucleated cells allows cytotoxic CD8+ T cells to recognize and kill infected 

cells, even if those cells are not professional APCs (1). 

 

 

 

 

 

 

 

 

 

 

Figure 1.4.  Antigen presentation to CD4 and CD8 T cells.  CD4 T cells 

recognize antigen in the context of class II MHC expressed on professional 

APCs.  CD8 T cells recognize antigen in the context class I MHC, which is 

expressed by all nucleated cells. (23, 24) 
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In contrast to the adaptive immune system, the innate immune system 

broadly protects against pathogens in an antigen-independent fashion (25).  The 

first line of innate defense against pathogens is the epithelium of the skin, gut 

and lung, which serves as a physical barrier between the host and the outside 

environment (1).  Once a pathogen enters a tissue, several cell types cooperate 

to aid in its removal.  For example, macrophages are phagocytic cells that reside 

in connective tissues, the lung, the liver and the spleen (26).  Macrophages 

express receptors that recognize molecular patterns on the surface of pathogens, 

which allows them to preferentially engulf pathogens rather than bystander self-

tissue (27).  For example, the polysaccharides frequently present in bacterial 

capsules are recognized by the mannose receptor on macrophages (28).  

Neutrophils are another type of phagocytic cell that quickly migrate from the 

blood to sites of infection and engulf pathogens (29, 30).   

The innate immune system also contains several non-cellular 

components, including the complement system (31).  The complement system is 

a set of soluble plasma proteins that can coat pathogens, leading to their direct 

lysis and the recruitment of phagocytes (1).  The binding of the complement 

system to pathogens is stimulated either by the presence of specific molecular 

patterns on the pathogen surface, or the opsinization of the pathogen with 

antibodies (31). 

Dendritic cells (DCs) function to link the innate and adaptive immune 

responses (Figure 1.5) (1).  Immature DCs constantly phagocytose material at 

peripheral tissues such as the skin and the gut, and, after internally processing 
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this material, present it on their cell surface (1).  Because of this activity, DCs are 

termed professional APCs.  Macrophages and B cells can also function as 

professional APCs (1).  Thus, the encounter of DC and pathogen leads to the 

presentation of pathogen-derived antigen on the surface of DCs (32).  DCs also 

express molecules called Toll-like receptors (TLRs), which bind to common 

pathogen-derived molecules, such as bacterial lipopolysaccharide (LPS) and 

viral DNA (27).  Signaling through TLRs causes DCs to undergo several changes 

known as “maturation” (1).  These changes include the migration of DCs from 

peripheral tissue to lymphoid organs like the lymph nodes (LNs) or spleen (33).  

The DC maturation process also involves the up-regulation of important cell-

surface stimulatory molecules such as CD80 and CD86 (27).   

Once in the lymph node, DCs interact with T cells (1).  If the TCR of a T 

cell recognizes the antigen presented by the DC, a signal passes through the 

TCR to stimulate the T cell (1).  However, this signal by itself is insufficient to fully 

activate T cells (34).  Mature DCs provide a second signal to T cells by binding 

CD80 or CD86 to the CD28 receptor on T cells (27).  This second signal is 

termed costimulation.  After receiving these two signals, activated T cells, divide, 

differentiate and can migrate to the site of infection.  Because the expression of 

CD80 and CD86 is dependent on the exposure of DCs to pathogen-associated 

molecules, the second signal only comes from DCs bearing pathogen-related 

antigens (32).  Thus, DCs bearing antigens derived from self-tissue (self- 
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Figure 1.5.  Dendritic cells bridge the innate and adaptive immune responses and limit autoreactivity.  In 

the periphery, dendritic cells nonspecifically phagocytose and present processed antigens.  In the absence of 

pathogens, these antigens are primarily from self-tissues (blue).  When a tissue is infected, DCs phagocytose the 

pathogen and present its antigens on their cell surface (red).  Pathogen-associated molecules activate the DC, 

causing it to migrate to the lymph node and increase the expression of costimulatory molecules such as CD80 and 

CD86.  At the LN, DCs activate pathogen-specific lymphocytes by signaling through both the antigen receptor and 

through costimulatory interactions.  DCs presenting self-antigen can also be found at LNs.  However, these DCs 

have low levels of costimulatory molecules, which prevents the activation of potentially autoreactive lymphocytes.  
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antigens) have low expression of CD80 and CD86, which prevents potentially 

autoreactive T cells from inappropriately mediating immune responses (35, 36).  

The cells of the immune system develop in the bone marrow from 

pluripotent hematopoietic stem cells (HSCs) (37).  While B cells and the cells of 

innate immune system fully mature in the bone marrow, this is not the case for T 

cells (38).  Following their formation in the bone marrow, T cell precursors 

migrate to the thymus, where they complete their development (39).  The 

maturation of T cells in the thymus involves two steps that select for mature T 

cells capable of recognizing foreign antigens on APCs, but unlikely to recognize 

self antigens.  The first selection process is termed  positive selection, and it 

ensures that mature T cells contain a TCR that can bind to MHC molecules (40).    

If developing T cells are unable to interact with MHC molecules expressed on 

thymic epithelial cells, they die by neglect (41).   

While the T cells that survive positive selection can recognize self-MHC 

molecules, many of these cells can also recognize self-antigen (40, 42).  If these 

cells escaped the thymus, they would be predisposed to mount immune 

responses against self-tissue and might cause autoimmune diseases.  The 

second selection, termed negative selection, kills many of these autoreactive T 

cells (42).  Because the antigens found in the thymus are nearly all self-derived, 

T cells that strongly recognize antigen-MHC undergo apoptosis (42).  Together, 

positive and negative selection function to minimize the number of non-reactive 

or autoreactive T cells present in the periphery.   
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Although positive and negative selection function to limit the number of 

autoreactive T cells in the periphery, these mechanisms are not perfect.  In many 

diseases, such as rheumatoid arthritis, multiple sclerosis and systemic lupus 

erythematosus (SLE), B and T cells inappropriately respond to self-antigen, 

proliferate, differentiate into effector cells and cause tissue damage (43-45).  The 

pathogenesis of SLE is covered in greater detail in Chapter 2.   

Another type of lymphocyte-mediated disease occurs in the setting of 

transplantation.  When foreign tissue is transplanted into a recipient, the recipient 

immune system mounts a response to it, as if it were a foreign pathogen (46).  

This response is called graft rejection.  In the setting of a bone marrow 

transplant, it is the immune system, rather than peripheral tissue that is 

transplanted.  In this setting, the transplanted immune system can recognize the 

host as “foreign” and mount an immune response, called graft-versus-host 

disease (GVHD) (47, 48).  GVHD is covered in greater detail in Chapter 3. 

Overview of lymphocyte glucose metabolism.  Cells use glucose as a fuel 

source for a variety of purposes.  The breakdown of glucose can provide ATP 

through both O2-consuming and O2-independent processes (49).  For example, 

the conversion of glucose to pyruvate generates two molecules of ATP in an O2-

independent fashion (49).  Pyruvate can either be secreted from cells as lactate, 

or enter the TCA cycle to generate ATP in an O2-dependent fashion (49).  

Additionally, the metabolism of glucose by the pentose phosphate cycle (PPC), 

provides ribose molecules for nucleic acid synthesis and NADPH, which is an 

electron donor used for biomolecule synthesis and glutathione regeneration (50, 
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51).  Finally, the breakdown of glucose can provide a carbon source for the 

synthesis of cellular fatty acids (52, 53).  The principal enzymes involved in 

glucose metabolism are discussed below, with a particular emphasis placed on 

their expression and regulation in activated T cells and peripheral blood 

mononuclear cells (PBMCs) (Figure 1.6). 

Cells import glucose according to its concentration gradient using 

facilitative glucose transporters (54).  There are 14 different glucose transporters 

currently identified (GLUT1-14), each of which contains 12 transmembrane -

helical regions that form a central channel through which glucose passes (54-57).  

The best characterized glucose transporters are GLUT1-GLUT4, which are 

collectively termed class I glucose transporters.  These glucose transporters vary 

based on their tissue distribution and their affinity for glucose (Table 1.1).  

 

 

Table 1.1  Selected glucose transporters, their tissue distribution and Km.  

From (54, 57). 

 

 Primary Tissue Km 

GLUT1 Ubiquitous 5 mM 

GLUT2 Intestine, kidney, liver, pancreatic b cells 11 mM 

GLUT3 Neurons 1 mM 

GLUT4 Muscle and apidopse (insulin sensitive) 5 mM 
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Figure 1.6.  Reaction of glycolysis and their regulation in stimulated 

lymphocytes.  Glycolysis proceeds along the pathway at left (49).  Indicated 

lymphocyte populations were stimulated with agonistic antibodies or mitogens 

(58-67).  Further details are provided in the text. 
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The major glucose transporter for lymphocytes is GLUT1 (58, 59, 68, 69), 

however GLUT3 expression has also been documented in human lymphocytes 

(60, 70).  There is conflicting data regarding the expression of GLUT2 and the 

insulin-regulated GLUT4 in lymphocytes (60, 70, 71).  For example, a microarray 

analysis detected GLUT4 transcripts in both human CD4+ and CD8+ T cells (71).  

However, RT-PCR analysis of human lymphocytes (70) and western blot 

analysis of human T cells (60) failed to detect evidence of GLUT4.   

 The expression of GLUT1 is an important regulator of cellular glucose 

metabolism in lymphocytes.  Indeed, resting T cells that overexpress GLUT1 take 

up 5-fold more glucose than WT T cells (58).  Several studies have addressed 

the effects of T cell stimulation on glucose transporter expression.  Stimulation 

with anti-CD3 and anti-CD28 antibodies increases GLUT1 levels by 5-10-fold in 

both mouse and human CD4+ T cells (58, 59). Similar results were observed 

when human T cells were stimulated with the mitogen phytohemagglutinin (PHA) 

(60).    While PHA stimulation does not affect GLUT2 levels in lymphocytes (60), 

there is disagreement regarding the effects of stimulation on GLUT3.  One study 

suggested that PHA stimulation of human lymphocytes increased GLUT3 levels 

3-4-fold (70), while another suggested that PHA stimulation decreased GLUT3 

expression (60).  While the PHA concentrations used in these studies were 

similar (5-10 g/ml), this discrepancy could be due to the different detection 

antibodies used (60, 70) 

Once glucose is inside cells, hexokinase (HK) catalyzes the ATP-

dependent phosphorylation of glucose to glucose-6-phosphate (G6P) (49).  
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Conversion to G6P traps glucose-derived carbons inside the cell and decreases 

intracellular [glucose], thereby maintaining the concentration gradient that drives 

glucose uptake (72).  There are four different isozymes of HK (HK I-IV), each 

encoded by a separate gene (72).  HK I and II are ubiquitously expressed in 

mammals, while HK III is expressed primarily in the liver and kidney (73).  HK IV 

is expressed in hepatocytes and pancreatic b cells (72, 73).  There are several 

modes by which HK activity is regulated.  HK I-III, but not HK IV, are inhibited by 

their product G6P (72, 73).  Additionally, insulin stimulates HK II activity in 

muscle and adipose (72, 73).  On a transcriptional level, HK I and II mRNA are 

induced during hypoxia by the transcription factor hypoxia-inducible factor-1 

(HIF-1) (74).    

 T cells express HK I and II, and T cell stimulation increases HK activity.  

Indeed, expression of constitutively active AKT increases HK activity by 50% in 

non transformed lymphoid FL5.12 cells (75).  Additionally, stimulation with the 

cytokine IL-7 increases HK II mRNA 2-3-fold in primary mouse T cells (76).  HK 

activity also increases following T cell stimulation through the TCR.  Both HK I 

and HK II mRNA increase 24-48 h after the stimulation of rat thymocytes with 

concanavalin A (conA) (61).  Consistent with these results, two separate studies 

have shown that thymocyte HK activity increases 8-12-fold following conA 

stimulation (62, 63). 

G6P can either enter the PPD (Figure 1.7) or continue along glycolysis.  

The entry of G6P into the PPC is catalyzed by glucose-6-phosphate 

dehydrogenase (G6PDH) (77).  G6PDH and the subsequent PPC enzyme 6-
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phosphogluconate dehydrogenase (6PGDH) convert G6P into ribulose-5-

phosphate, thereby generating 1 molecule of CO2 and 2 molecules of NADPH 

(49).  Production of NAPDH through the PPC is required for generation of 

reduced glutathione and the synthesis of fatty acids (50, 51, 78).  Ribulose-5-

phosphate is then converted into xylulose-5-phosphate (X5P) or ribose-5-

phosphate (R5P), which can exit the PPC and be used for nucleotide synthesis.  

Alternatively, two molecules of X5P and a single R5P can undergo reactions with 

transketolase and transaldolase, which generates 2 molecules of fructose-6-

phosphate (F6P) and a single molecule of glyceraldehydes-3-phosphate (GAP) 

(49). Because both F6P and GAP are intermediates in the glycolytic pathway, 

these molecules can exit the PPC and reenter glycolysis (Figure 1.7) (49). 

  The activity of the PPC is regulated by G6P entry at G6PHD (77).  

G6PDH is encoded by a single gene and is subject to both transcriptional and 

post-translational regulation (77).  Indeed, insulin signaling can increase G6PDH 

gene expression in a phosphatidylinositol-3-kinase (PI3-K) dependent fashion in 

rat hepatocytes (79).  Stimulation of rat thymocytes with conA increases PPC 

activity 3-fold, however this study did not specifically measure the expression or 

activity of G6PDH (63). 
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Figure 1.7. Pentose phosphate cycle.  Glucose-6-phosphate enters the 

pentose phosphate cycle and is converted to ribulose-5-phosphate by glucose-6-

phosphate dehydrogenase (GAPDH) and 6-phosphogluconate dehydrogenase 

(6PGDH), which generates 2 NADPH molecules and 1 CO2.  Ribulose-5-

phosphate is converted to ribose-5-phosphate by ribulose-5-phosphate 

isomerase (R5P isomerase).  Ribose-5-phosphate can be used for nucleic acid 

synthesis, or three ribose-5-phosphates can rearrange through the reactions of 

transketolase and transaldolase to form two fructose-6-phosphate molecules and 

one glyceraldehydes-3-phosphate, which can reenter glycolysis. From (49). 

 

If G6P does not enter the PPC, it next reacts with phosphoglucose 

isomerase (PGI), which converts G6P to F6P (49).  F6P reacts with 

phosphofructokinase-1 (PFK-1) and ATP to form fructose-1,6-bisphosphate 

(FBP) (49).  Three separate isoenzymes of PFK-1 exist (PFK-L, -M, and –C) and 

are encoded by three separate genes (80).  Muscle primarily expresses PFK-M 

and liver primarily expresses PFK-L (80, 81).  Human PBMCs express all three 

isoenzymes of PFK, but PFK-L predominates (81). 

PFK-1 is an important regulator of glycolytic flux and its activity is 

controlled by several mechanisms (Figure 1.8) (49).  ATP allosterically inhibits 
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PFK-1, while it is activated by ADP, AMP and fructose-2,6-bisphosphate (F-2,6-

P) (49).  AKT activates PFK-1 by phosphorylating and activating PFK-2 (82).  

Active PFK-2 catalyzes the formation of F-2,6-P, thereby stimulating PFK-1 (82).  

PFK-1 is also regulated on a transcription level by HIF-1, whose activity 

increases mRNA levels of PFK-L (74). 

 

 

 

 

 

 

 

Figure 1.8 Regulation of phosphofructokinase-1.  PFK-1 is inhibited 

allosterically by ATP and stimulated by AMP, ADP and fructose-2,6-bisphosphate 

(F-2,6-BP).  AKT stimulates PFK-1 by phosphorylating and activating 

phosphofructokinase-2 (PFK-2), which catalyzes the formation of F-2,6-BP. (49, 

82). 

 

Lymphocyte stimulation also up-regulates PFK activity.  For example, PFK 

activity increases 10-15-fold following stimulation of thymocytes with conA for 2-3 

d (62, 63).  Similarly, PFK-L protein levels increase 10-fold following the 

stimulation of human PBMCs with conA and phorbyl 12-myristate 13-acetate 

(PMA) for 2 d (64). 

 Following its formation by PFK-1, FBP is split into two 3-carbon molecules 

(dihydroxyacetone phosphate (DHAP) and glyceraldehydes-3-phosphate (GAP)) 

by aldolase (49).  There are three types of aldolase, classified as aldolase A, B 
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and C.  Aldolase A is expressed in most mammalian tissues, including muscle, 

liver, brain and spleen (83).  Aldolase B is primarily a liver enzyme (84), while 

aldolase C is primarily expressed in the brain (85). 

 Aldolase regulation occurs primarily on a transcriptional level (86, 87).  

Aldolase B expression is stimulated by ingestion of carbohydrates and insulin 

signaling (86-88), while aldolase A and C are both induced by HIF-1 (74).  The 

stimulation of thymocytes with conA increases aldolase activity 24-fold (62). 

While the specific isoforms of aldolase were not analyzed in this study (62), a 

separate study showed that only aldolase A is detected in conA-stimulated 

thymocytes (61). 

 While both DHAP and GAP are generated by aldolase, only GAP can 

continue along glycolysis (49).  Triose phosphate isomerase (TIM) catalyzes the 

interconversion of GAP and DHAP, which allows carbons from both to continue 

along the glycolytic pathway. TIM is encoded by a single gene, however several 

isozymes have been identified based on differences in electrophoretic mobility 

(89-91).  The functional significance of these isozymes isozymes is unclear (89-

91).  The catalytic activity of TIM is regulated by substrate diffusion (49, 92).  TIM 

activity increases 2-3-fold following PBMC stimulation with PHA and pokeweed 

mitogen (PWM) (65), which suggests increased TIM expression in activated 

lymphocytes. 

 The next step in glycolysis is the oxidation of GAP to 1,3-

bisphosphoglycerate (1,3-BPG) by GAP dehydrogenase (GAPDH).  This reaction 

is coupled to the reduction of NAD+ to NADH, which can be used for oxidative 
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ATP production or for the conversion of pyruvate to lactate (49).  GAPDH is 

expressed at  high levels by all tissues, and thus is considered a “housekeeping 

gene” (93).  However, GAPDH can be regulated on an mRNA level (93), and its 

activity increases 2-fold in PBMCs stimulated with PHA and PWM (65). 

 Phosphoglycerate kinase (PGK) catalyzes the conversion of 1,3-BPG to 3-

phosphoglycerate (3PG), which generates one molecule of ATP (49).  There are 

two different isoforms of PGK: the ubiquitously expressed PGK-1, and the testes-

specific PGK-2 (94).  PGK is primarily regulated transcriptionally, and its 

induction is stimulated by HIF-1 (74).  In PBMCs, PGK activity increases 2-fold 

following stimulation with PHA and PWM (65). 

 3PG is converted to 2-phosphoglycerate (2PG) by phosphoglycerate 

mutase (PGM) (49).  There are two separate isozymes of PGM, termed PGM-m 

(muscle-derived) and PGM-b (ubiquitously expressed) (95).  Active PGM exists 

as a dimer composed of b and m subunits.  PGM-mm is expressed in skeletal 

muscle, PGM-mb is primarily expressed in heart, and PGM-bb is expressed in 

non-muscle tissues (95, 96).  PGM is primarily regulated by its transcription (49).  

In PBMCs, PGM activity increases 3-4-fold following stimulation with PHA and 

PWM (65). 

 Enolase catalyzes the formation of phosphoenolpyruvate (PEP) from 2PG 

(49).  Enolase function as a dimer composed of two subunits (97). There are 

three different isozymes of enolase (, b, and ), which combine to form homo- 

and hetero-dimers (97).  The  isozyme of enolase is ubiquitously expressed, the 

b isozyme is expressed in muscle, and the  isozyme is primarily expressed in 
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neural tissue (97).  Interestingly, resting PBMCs primarily express the bb form of 

enolase, and stimulation with conA and PMA increases protein leves of both bb 

and  enolase (64).  PBMC stimulation with PHA and PWM also increases the 

activity of enolase by 3-fold (65). 

 The final enzyme in glycolysis is pyruvate kinase (PK), which catalyzes 

the conversion of PEP into pyruvate and generates ATP (49).  Four different PK 

isozymes exist in mammals and are classified based on their tissue distribution 

(98).  PK-L is primarily expressed in liver (98).  PK-R is expressed in red blood 

cells from the same gene as PK-L, however it is controlled by a distinct promoter 

(99).  PK-M1 is expressed by most adult tissues (100), while its splice variant PK-

M2 is expressed in embryonic tissue, proliferating cells, and tumors (98-101).  PK 

is regulated by several mechanisms.  PK is allosterically stimulated by its 

substrate, PEP, and by the upstream glycolytic metabolite FBP (102, 103).  PK is 

also regulated by its quaternary structure. For example, tetrameric PK-M2 has a 

high affinity for PEP, while dimeric PK-M2 has low affinity for PEP (98, 99).    

 Human PBMCs and rat thymocytes primarily express the PK-M2 isoform 

(66, 67).  Stimulation of human PBMCs with conA and PMA increases PK-M2 

protein levels (67).  Similarly, stimulating rat thymocytes with conA increases 

both PK-M2 mRNA and protein (66).  Consistent with these results, PK activity is 

increased 10-30-fold in conA-stimulated rat thymocytes compared to 

unstimulated controls (62, 63). 

Metabolic fates of pyruvate.  Once formed, pyruvate has three major 

metabolic fates (Figure 1.9).  It can be converted to lactate by lactate 
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dehydrogenase (LDH) and secreted from cells through the monocarboxylate 

transporter (MCT) (49, 104). Alternatively, pyruvate can enter the mitochondria 

through reactions with pyruvate carboxylase (PC) or pyruvate dehydrogenase 

(PDH) (105-107). 

LDH catalyzes the cytosolic conversion of pyruvate to lactate, which is 

coupled to the conversion of NADH to NAD+ (49).  Because NAD+ is required for 

the GAPDH step of glycolysis, this O2-independent regeneration of NAD+ allows 

hypoxic cells to maintain flux through glycolysis despite the inability to convert 

NADH to NAD+ in the mitochondria (49).  Lactate dehydrogenase is encoded by 

two genes, termed LDH-A and LDH-B.  Each gene encodes a separate peptide 

chain, termed M (muscle) and H (heart) (108, 109).  Functional LDH is a homo- 

or heterotetramer composed of M and H peptides (109).  Five isozymes of LDH 

exist in mammals: LDH-1, which is composed of four H peptides (H4); LDH-2 

(H3M,); LDH-3 (H2M2); LDH-4 (H1M3); and LDH-5 (M4) (110).  These isozymes 

are widely expressed across tissues (108, 109), and all five are present in 

lymphocytes (64, 67, 111).   
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Figure 1.9. Metabolic fates of pyruvate and the TCA cycle.  Lactate 

dehydrogenase (LDH) can convert pyruvate to lactate, which is then secreted 

from cells.  Pyruvate can be converted into oxaloacetate by pyruvate carboxylase 

(PC) or acetyl-CoA by pyruvate dehydrogenase (PDH).  Citrate synthase 

combines oxaloacetate with acetyl-CoA to form citrate.  NADH is generated by 

isocitrate dehydrogenase (IDH), -ketoglutarate dehydrogenase (-KGDH), and 

malate dehydrogenase (MDH).  FADH2 is produced by succinate dehydrogenase 

(SDH).  Carbons leave the cycle as CO2, but intermediates can also be utilized 

for biomolecule synthesis.  Glutamine-derived carbons enter the cycle as -

ketoglutarate.  Adapted from (112, 113). 
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LDH activity is primarily regulated at the level of gene expression.  LDH-A 

expression increases during hypoxia (114) through stimulation by HIF-1 (74).  

Importantly, the M chain of LDH has a greater affinity for lactate than the H chain. 

Thus, the activity an LDH isozyme will vary depending on the number of M 

subunits it contains (65, 109-111).  Stimulation of human lymphocytes with conA 

and PMA preferentially induces the expression of LDH-5 (M4) and LDH-4 (M3H1), 

but not LDH-1 (H4) (64, 67, 111).  Consistent with these results, LDA-A mRNA 

increases >10-fold following conA and PMA stimulation of human lymphocytes 

(111).  Furthermore, stimulation of rat thymocytes with conA increases LDH 

activity 10-fold, and increases lactate production by 35-fold (63). 

If pyruvate does not react with LDH, it can enter the mitochondria through 

the pyruvate transporter (115-117).  Once pyruvate is inside the mitochondria, 

either PDH or PC can catalyze its entry into the TCA cycle, where it can be 

oxidized to NADH and FADH2 for ATP production or exported for amino acid or 

fatty acid synthesis (Figure 1.9) (49, 52, 53). 

PDH is a multi-enzyme complex that catalyzes the conversion of pyruvate 

to acetyl coenzyme A (acetyl-CoA), CO2 and NADH (49, 105).  Once converted 

into acetyl-coA by PDH, pyruvate-derived carbons combine with oxaloacetate 

and enter the TCA cycle as citrate (118).  The PDH complex contains numerous 

copies of three separate enzymes; pyruvate dehydrogenase (E1, ~ 30 copies per 

complex), dihydrolipoyl transacylase (E2, ~60 copies per complex) and 

dihydrolipoyl dehydrogenase (E3, 6 copies per complex) (105).  Each E1 subunit 

is a tetramer composed of 2  and b subunits, each of which is encoded by a 
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separate gene (105, 119).  E2 and E3 are each encoded by single genes (105). 

While there is an alternative isoform of E1, it is only expressed in testes (120).   

PDH is regulated both by end-product inhibition by NADH and acetyl-CoA 

and by the phosphorylation status of E1 (Figure 1.10) (105).  PDH-kinase (PDH-

k) catalyzes the phosphorylation of PDH at three separate serine residues, which 

inactivates PDH (106).  PDH-k is activated by acetyl-coA and NADH, and is 

inhibited by ADP, pyruvate and NAD+ (105).  The expression of PDH-k is also 

stimulated by the transcription factor HIF-1 (121, 122).  PDH-phosphatase 

catalyzes the dephosphorylation PDH leading to its activation.  PDH-

phosphatase is stimulated by both Mg2+ and Ca2+ (105).   

 

 

 

 

 

 

 

 

 

Figure 1.10. Regulation of pyruvate dehydrogenase.  PDH is active in its 

unphosphorylated form.  PDH-k dephosphorylates and inactivated PDH.  PDH-K 

is stimulated by acetyl-CoA, NADH and its expression is stimulated by HIF-1.  

PDH-K is inhibed by pyruvate, NAD+ and ADP.  PDH-phosphatase, which 

activates PDH, is stimulated by Ca2+ and Mg2+.  Adapted from (105). 
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Stimulation of lymphocytes increases the entry of pyruvate into the TCA 

cycle through PDH.  For example, activation of bulk pig lymphocytes with conA 

increases PDH activity by 40% within 5 h (123).  This PDH stimulation was 

inhibited by the addition of the Ca2+ chelator EGTA, which suggests that 

lymphocyte stimulation activates PDH-phosphatase in a Ca2+-dependent fashion 

(123).  Consistent with this observation, rat thymocytes stimulated by conA 

generate 3-fold more CO2 from pyruvate than unstimulated controls (62). 

PC catalyzes the conversion of pyruvate to oxaloacetate, which consumes 

both CO2 and ATP (49, 107).  PC is encoded by a single gene (124), and is 

highly expressed in tissues that synthesize glucose such as the liver and the 

kidney (107).  Oxaloacetate synthesis by PC is important to replenish TCA cycle 

intermediates, which might otherwise be depleted by their utilization in such 

processes as amino acid synthesis, fatty acid synthesis and gluconeogenesis  

(107).  PC activity is allosterically increased when acetyl-CoA levels are high, 

which indicates an increased need for TCA cycle intermediates (107, 125). 

Lymphocytes express PC, and stimulation of human lymphocytes with conA for 1 

h increases PC activity by 50% (126).   

PC and PDH both catalyze the entry of pyruvate-derived carbons into the 

TCA cycle (Figure 1.9).  The TCA cycle is a series of enzymes that catalyzes the 

formation of citrate from oxaloacetate and acetyl-CoA and the oxidation of that 

citrate molecule into oxaloacetate.  These oxidation reactions produce CO2 as 

well as NADH and FADH2, both of which can be used for oxidative ATP 

production by the mitochondrial respiratory chain (described below).  While the 
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TCA cycle contains eight enzymes, only three are regulated: citrate synthase, 

which is inhibited by NADH and citrate; isocitrate dehydrogenase, which is 

inhibited by ATP and NADH, and stimulated by Ca2+ and ADP; and -

ketoglutarate dehydrogenase, which is inhibited by NADH and succinyl-CoA and 

stimulated by Ca2+ (112).  In lymphocytes, the activity of the TCA cycle appears 

to increase following stimulation, possibly due to increased Ca2+ (discussed 

below).  For example, rat splenocytes and thymocytes stimulated by conA 

increase glucose oxidation by 100% and 50%, respectively (62, 127).  The TCA 

cycle can also oxidize glutamine, whose carbons enter the cycle as -

ketoglutarate (Figure 1.9).  Rat thymocytes stimulated with conA increase 

glutamine oxidation 5-fold, again suggesting increased TCA cycle activity in 

activated lymphocytes (128). 

The mitochondrial electron transport chain.  The TCA cycle oxidizes 

carbon substrates and produces high-energy electron carriers NADH and FADH2, 

but it does not generate large amounts of ATP (112).  In actively respiring 

mitochondria, the energy contained in NADH and FADH2 is used by the electron 

transport chain (ETC) to form a proton gradient across the inner mitochondrial 

gradient, and that gradient is then utilized to generate ATP (Figure 1.11). 

  Electrons carried by NADH or FADH enter the ETC at complex I (NADH-

ubiquinone oxidoreductase) or complex II (succinate-ubiquinone 

oxidoreductase), respectively (49).  NADH formed in the TCA cycle is oxidized by 

the flavin mononucleotide (FMN) located on the matrix face of complex I (Figure 

1.11) (129).  These electrons are passed along a series of 7 iron-sulfur (Fe-S) 
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clusters (130) and eventually combine with ubiquinone (Q or CoQ) to form 

ubiquinol (QH2 or CoQH2) (129, 131).  Complex I also pumps 4 H+ from the 

matrix into the intermembrane space for every 2 electrons it transports (Table 

1.2) (132, 133).  Electrons can also enter the respiratory chain at complex II, 

which catalyzes the oxidation of succinate into fumarate and transfers the 

electrons onto  flavin adenine dinucleotide (FAD) (134).  In a fashion similar to 

complex I, the reduced flavin of complex II passes its electrons through a series 

of iron-sulfur clusters leading to the reduction of Q to form QH2 (134). However, 

complex II does not pump H+ into the mitochondrial matrix (135). 

 

Table 1.2. Reactions of the mitochondrial respiratory chain.  Q and QH2 

indicate ubiquinone and ubiquinol.  Hi
+ indicates a proton in the mitochondrial 

matrix , while Ho
+ indicates a proton in the intermembrane space. From (136). 

 

Complex Name Reaction Catalyzed 

 

I 
NADH-Ubiquinone 

Oxidoreductase 

NADH + Q + 5Hi
+  

NAD + QH2 + 4Ho
+ 

II Succinate dehydrogenase 
Succinate + Q  

Fumarate + QH2 

III 
Ubiquinone-cytochrome c 

oxidoreductase 

QH2 + 2cyt c3+ + Q + 2Hi
+
 

2Q + 2cyt c2+ + 4Ho
+ 

IV Cytochrome C oxidase 
4cyt c2+ + 8Hi

+ + O2  

4cyt c3+ + 4Ho
+ + 2H2O 

V F1Fo-ATPase 
2-3 Ho

+ + ADP + Pi  

2-3 Hi
+ + ATP 
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Figure 1.11.  Electron transport schematic.  Complexes are identified by numbers on top and the flow of 

electrons is indicated by red arrows.  Electrons (red) enter complex I or complex II as NADH or succinate, 

respectively.  Complex I pumps 4 protons (H+) into the intermembrane space for each NADH.  Complex I and II 

transfer electrons to coenzyme Q (CoQ), which migrates to complex III and transfers electrons to cytochrome c and 

pumps 2 H+ for each CoQH2.  Reduced cytochrome c migrates to complex IV and passes its electrons to O2, 

forming H2O.  Complex IV pumps 4 protons for every 4 cytochrome c oxidized.  Complex V synthesizes ATP and 

allows H+ to flow into the matrix, but does not transport electrons (130, 134, 135, 137-139).      
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Complex III (ubiquinone-cytochrome c oxidoreductase) oxidizes QH2 

formed by complex I or complex II and transfers electrons to cytochrome C, while 

pumping two H+ into the intermembrane space for every 2 electrons it transports 

(138).  Complex III accomplishes this electron transport and proton pumping 

through multiple one electron reactions (Figure 1.11).  QH2 first transfers a single 

electron to an Fe-S cluster and transfers one H+ into the intermembrane space, 

thus generating the relatively unstable ubisemiquinone (QH) (139).  While the 

reduced Fe-S cluster passes its electron on towards cytochrome C, 

ubisemiquinone transfers its free electron to the heme bL center within complex 

III.  Heme bL transfers its electron to heme bH, which resides on the matrix face.  

Heme bH adds 2 consecutive electrons to Q, which along with H+ from the matrix, 

regenerates QH2 (138, 139).   

The final component of the electron chain is complex IV (cytochrome C 

oxidase).  Complex IV transfers electrons from reduced cytochrome C through a 

copper center and several heme groups to O2, which is reduced to H2O and acts 

as the final electron acceptor of the ETC (140).  For every electron transferred to 

O2, a single H+
 is pumped from the matrix to the intermembrane space (141). 

Because the reactions catalyzed by complex IV lead to a disappearance in O2, 

monitoring the consumption of O2 is often used to assess the activity of the ETC 

(142, 143).    

Complexes I, III and IV pump H+ into the intermembrane space as they 

transfer electrons along the ETC (Figure 1.11) (129, 138, 141). This 

accumulation of H+ in the intermembrane space creates an electrochemical 
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gradient (p) of 100-200 mV across the inner mitochondrial membrane (144). 

This gradient is composed of a small pH gradient (~30 mV in actively respiring 

mitochondria) and a large electric potential (~150 mV in actively respiring 

mitochondria), termed the mitochondrial membrane potential (m) (145, 146).   

The electrochemical gradient generated by complexes I-IV is counteracted 

by H+ flow into the mitochondrial matrix through complex V, also known as the 

F1Fo-ATPase (147).  Complex V consists of the transmembrane Fo domain, 

through which protons flow and the F1 domain, which synthesizes ATP in the 

mitochondrial matrix (147).  These two domains are coupled by a peripheral 

stalk, which contains the oligomycin sensitivity-conferring protein (OSCP) (148).  

As protons flow through the Fo region into the mitochondrial matrix, they cause 

the rotation of the central axis of the F1 domain and catalyze the synthesis of 

ATP (149-153).  Hence, the generation of m by complexes I-IV of the 

mitochondrial respiratory chain is coupled to ATP production by complex V. 

  Mitochondrial generation of reactive oxygen species and antioxidants. 

While most of the O2 consumed by the mitochondria is converted to H2O by 

complex IV, approximately 0.5-3% is converted to superoxide (O2
- ).  O2

- 

production occurs when single electrons escape from reactive intermediates 

such as FMN or Fe-S clusters in complex I or ubisemiquinone in complex III and 

react directly with O2 (Figure 1.12) (131, 154).  O2
- production by complex I or III 

increases when the half-lives of reduced reactive intermediates increase (131, 

154).  This phenomenon has been investigated in complex I using rotenone,  a 

small molecule (Figure 1.12) that inhibits the passage of electrons from the 
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terminal Fe-S cluster of complex I to ubiquinone (155, 156).  Treatment with 

rotenone causes an accumulation of reduced intermediates proximal to the 

terminal Fe-S cluster and increases reactive oxygen species (ROS) production 

into the mitochondrial matrix by 17-fold in actively respiring rat brain mitochondria 

(131, 154, 157).  The site of O2
- production by complex I is unclear, as both Fe-S 

clusters (158) and the FMN (157) site have been implicated.   

 

Figure 1.12.  O2
- production by the electron transport chain.  O2

- is formed by 

single electron reactions with O2 occuring at complex I and III of the ETC (red 

arrows).  At complex I, O2 can react with either reduced FMN or iron sulfur 

clusters, however O2
- is only released into the matrix.  These reactions are 

increased by the presence of rotenone, which inhibits electron transfer to 

ubiquinone, thereby increasing the half lives of reduced Fe-S clusters and FMN.  

At complex III, O2 reacts with ubisemiquinone (CoQH) to form O2
-.  O2

- formed at 

complex III can enter either the matrix or the intermembrane space.  O2
- 

production at complex III increases in the presence of antimycin A, which inhibits 

electron transfer from cytochrome bH to ubisemiquinone, thereby causing 

ubisemiquinone accumulation (131, 154-156, 159). 
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 The other major site of ROS production in the mitochondria is complex III, 

which generates O2
- when ubisemiquinone reacts with O2 (160).  Ubisemiquinone 

is formed on both the matrix and intermembrane faces of complex III (Figure 

1.11), which suggests that complex III can produce O2
- into both the matrix and 

intermembrane space (131, 154, 161, 162).  Indeed, antimycin A, which inhibits 

electron flow from cytochrome bH to ubisemiquinone (Figure 1.12), increases 

ROS production into both the matrix and intermembrane space by > 10-fold in 

isolated mouse mitochondria (159). 

Mitochondrial ROS production also increases as m increases (154).  

This phenomenon is thought to occur because a large m disfavors additional 

H+ pumping and extends the half lives of reactive single electron intermediates 

such as FMN and Fe-S clusters in complex I and ubisemiquinone in complex III 

(131, 154, 163).  The increased lifetimes of these reactive intermediates 

increases the likelihood that electrons react with O2  to form O2
- rather than 

continuing along the ETC (131, 164-167).   In rat heart mitochondria respiring on 

succinate, increasing m by 20% increases H2O2 generation by 10-fold (167).  

In a similar system using rat brain mitochondria and NADH-linked substrates 

(malate + glutamate or -ketoglutarate), a 20% change in m increases H2O2 

generation by 3-4-fold (168).  In both of these studies, the initial ROS species 

formed was assumed to be O2
-, which was then converted to H2O2 by superoxide 

dismutases (167, 168).  This relationship between m and O2
- production helps 

explain why small molecules that inhibit the F1FoATPase and increase m such 
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as Bz-423 (169-173), oligomycin (168, 174), PK11195 (175), and farnesol (176) 

also generate ROS. 

 Once O2
- is formed by the mitochondria it has several possible fates 

(Figure 1.13) (177).  O2
- can oxidize iron present at Fe-S clusters, thereby 

inactivating enzymes such as aconitase that rely on Fe-S clusters for catalysis 

(177-179).  Alternatively, O2
- can be converted to hydrogen peroxide (H2O2) by a 

pair of enzymes termed superoxide dismutases (SODs) (177).  In the cytosol and 

mitochondrial intermembrane space, a SOD containing copper and zinc at its 

active site (Cu,Zn-SOD) catalyzes the following reaction: 2O2
- + 2 H+  O2 + 

H2O2 (180).  A similar manganese containing-enzyme (MnSOD) catalyzes the 

same reaction in the mitochondria (180).  The importance of these SOD enzymes 

is evident, as overexpression of Cu,Zn-SOD protects mice from drug-induced 

Parkinson’s disease (181), while mice homozygous for a deletion in MnSOD die 

within days of birth (182). 

 

 

 

 

 

 

 

Figure1.13.  ROS and antioxidants.  O2
- generated by the ETC is converted to 

H2O2 by SODs.  H2O2 can either be converted into OH by Fenton-like chemistry 

or detoxified into H2O by catalase or glutathione peroxidase.  Red lettering 

indicates capability to oxidize cellular substrates. Adapted from (183) 
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 The primary oxidation target of H2O2 is the thiol group (-SH) on the amino 

acid cysteine, which can be oxidized to a sulfenic acid (S-OH) (184).  Cysteine 

oxidation by H2O2 can have a variety of biologic effects.  H2O2 can stimulate cell 

growth by inhibiting protein tyrosine phosphatases and activating the mitogen-

activated protein kinases (MAPKs) extracellular signal-regulated kinase 1 and 2 

(ERK1/2) (185-187).  Alternatively, H2O2 can induce apoptosis by activating the 

redox sensitive protein apoptosis signal-regulated kinase-1 (ASK-1) (188) and its 

downstream kinase JNK (187, 189).  Whether H2O2 stimulates pro-growth or pro-

apoptotic pathways may depend on its concentration, as addition of < 0.2 mM 

H2O2 activated ERK1/2 and stimulated proliferation in renal epithelial cells, while 

concentrations of H2O2 > 0.2mM activated JNK and induced apoptosis (187).  

Importantly, O2
- is also capable of activating ASK1 (189, 190), which suggests 

that ASK1 can mediate both O2
- - and H2O2- induced apoptosis.  In addition to 

these specific signaling pathways, H2O2 can be converted to hydroxyl radical 

(OH) through an iron-catalyzed reaction: H2O2 + Fe2+  OH- + OH + Fe3+ (191).  

Unlike H2O2 and O2
-, OH  induces non-specific oxidative damage to DNA, lipids, 

and proteins, which can lead to apoptosis (192-194). 

 Cells contain several mechanisms for detoxifying H2O2 that limit the 

production of OH  and nonspecific oxidative damage (191, 195-197).  Catalase, 

which is only present in the cytosol, catalyzes the iron dependent reduction of 

H2O2 to H2O (195).  Glutathione peroxidase, which is present in both the cytosol 

and the mitochondrial matrix, can also reduce H2O2 to H2O (198).  This reaction 

is coupled to the oxidation of glutathione (GSH) to its oxidized disulfide form 
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(GSSG) (196, 197).  Pyruvate, a metabolite of glucose, can also detoxify H2O2 

through a non-enyzmatic decarboxylation reaction (199-204).  The role of 

glutathione and pyruvate as antioxidants are discussed in greater detail in 

Chapter 3.     

The Warburg effect and its etiology. In the presence of O2, the complete 

oxidation of glucose to CO2 generates ~15-fold more ATP than its anaerobic 

conversion to lactate (78).  As such, in the absence of hypoxia many cell types 

generate their energy through oxidative phosphorylation rather than “wastefully” 

secreting carbons as lactate (205-207).  However, this paradigm does not apply 

to many types of proliferating cells, which take up glucose at a high rate and, 

despite the presence of O2, secrete it as lactate rather than fully metabolizing it 

through the TCA cycle and oxidative phosphorylation (78).  This metabolic 

phenotype is termed the Warburg effect or aerobic glycolysis.  This phenomenon 

was first demonstrated by Otto Warburg, who showed that cancerous mouse 

ascites cells produced 60-fold more lactate than non-cancerous kidney or liver 

cells, but respired only half as fast (205).  This observation led to his hypothesis 

that tumors were characterized by high rates of fermentation.  This hypothesis 

has been confirmed over several decades in numerous cell types (208) and 

serves as the basis for clinical 18FDG positron emission tomography (PET), an 

imaging modality in which tumors are identified based on their uptake of a 

radioactive glucose analog (209). 

While numerous studies have shown that increased rates of glycolysis are 

a general feature of cancers (78, 208, 210-212), the etiology of increased 
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glycolysis has been more controversial.  Warburg suggested that tumor cells 

depend on glycolysis due to defects in respiration, stating that “The driving force 

of the increase of fermentation…is the energy deficiency under which the 

(cancerous) cells operate after destruction of their respiration” (205). However, 

subsequent studies have shown that, while some cancers show respiratory 

defects, oxidative metabolism is actually increased in numerous tumors 

compared to normal cells (208, 213).  Among the tumor cells with increased 

respiratory activity are HT29 human colon cancer cells (214), HeLa human 

cervical cancer cells (215), AS-30D rat hepatoma cells (215), and mouse 

fibrosarcoma l929 (216).  These findings suggest that decreased respiration is 

not prerequisite for transformation and suggest that aerobic glycolysis is not due 

to a respiratory defect.  Recent studies have begun to elucidate the molecular 

basis for the Warburg effect, which appears to be controlled by the activation of 

the transcription factor HIF-1 (217) and the kinase Akt (211).   

HIF-1 is a heterodimeric transcription factor composed of HIF-1 and HIF-

1b subunits (217).  The expression of HIF-1 is regulated by oxygen tension, as 

HIF-1 protein levels are 20-fold higher during hypoxia (0.5% O2) than during 

normoxia (20% O2) in human HeLa cells (218).  This regulation is due to the O2-

dependent hydroxylation of proline residues 402 and 564 on HIF-1, which 

allows the von Hippel-Lindau (VHL) protein to bind HIF-1 and target it for 

proteasomal degradation (Figure 1.14) (219, 220).  Hypoxia inhibits proline 

hydroxylation, resulting in increased HIF-1 levels (221).  HIF-1 levels are 

elevated in a variety of cancers due to local hypoxia, as rapid tumor growth 
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outpaces blood and O2 supply (217), and due to mutations in regulators of HIF-

1 such as VHL (222).  HIF-1 induces glycolysis by increasing the expression of 

numerous glycolytic genes including GLUT1, GLUT3, HK I and II, PFK-L, 

aldolase A and C, enolase 1, pyruvate kinase M (PK-M), and LDH-A (74).  HIF-1 

also induces the transcription of pyruvate dehydrogenase kinase 1 (PDK1), 

which phosphorylates and inhibits pyruvate dehydrogenase (PDH) (121).  This 

concomitant increase in LDH expression and decrease in PDH activity inhibits 

the entry of pyruvate into the TCA cycle for oxidation and instead promotes the 

conversion of pyruvate into lactate and its subsequent secretion from the cell.  In 

addition to decreasing PDH activity, HIF-1 also inhibits oxidative metabolism by 

decreasing the levels and acitivities of c-myc and its target PGC-1b, a 

transcription factor that stimulates mitochondrial biogenesis and respiration 

(223). 
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Figure 1.14.  Regulation of HIF-1 and its effects on cellular metabolism.  

HIF-1 is constitutively expressed, and in the presence of O2 is hydroxylated by 

O2-dependent prolyl-hydroxylases.  VHL recognizes hydroxylated HIF-1  and 

targets it for proteasomal degradation.  Under hypoxic conditions, HIF-1 

induces the expression of numerous glycolytic genes including GLUT1, GLUT3, 

HK I, HK II, PFK-L, Aldolase A and C, enolase 1, PK-M and LDH-A.  HIF-1 also 

inhibits mitochondrial biogenesis and respiration by inhibiting c-myc acitivity and 

by inducing PDH-K, which phosphorylates and inhibits pyruvate dehydrogenase 

(74, 121, 219, 220, 223). 

 

 

Akt is an evolutionarily conserved kinase that is frequently activated in 

human cancers (211).  In normal tissues, signaling through growth factor 
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receptors such as the IL-7 receptor (224) or CD28 (59) activate 

phosphatidylinositol 3-kinase (PI3K), which catalyzes the formation of 

phosphatidylinositol-triphosphate (PIP3) (Figure 1.15).  PIP3 interacts with the 

pleckstrin homology (PH) domain of AKT, and recruits it to the plasma membrane 

where it is phosphorylated and activated by PI3K-dependent kinase 1 (PDK-1) 

and mammalian target of rapamycin complex 2 (mTORC2) (211).  The activation 

of AKT is negatively regulated by PTEN, the phosphatase and tensin homolog 

deleted on chromosome ten, which catalyzes the dephosphorylation of PIP3 

(225).     

In cancers, AKT is often constitutively activated due to inactivation of 

PTEN (226) or activating mutations in PI3K (227, 228).   Active AKT promotes 

the expression and activity of several glucose transporters including GLUT1 and 

GLUT4 (58, 59, 229).  Activated AKT also promotes glycolysis by increasing 

hexokinase activity (75, 230) and enhacing phosphofructokinase activity by 

phosphorylating and activating the regulatory enzyme 6-phosphofructo-2-kinase 

(82, 231).  While its role in glycolytic metabolism is well established (59, 75, 231), 

recent observations suggest that AKT also stimulates oxidative metabolism 

(232).  Mouse embryonic fibroblasts (MEFs) lacking AKT consumed half as much 

O2 as wild type MEFs, while MEFs lacking PTEN and Rat1a cells expressing 

constitutively active AKT consumed 50% more O2 than wild type controls (232).  

The ability to increase both glycolysis and OXPHOS is consistent with a role for 

AKT in cancer metabolism, as many cancers display both increased glycolysis 

and OXPHOS compared to nontransformed cells (208, 213).  AKT also 
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stimulates fatty acid synthesis in transformed cells through its ability to 

phosphorylate and activate ATP-citrate lyase (52, 53, 233). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15.  Regulation of AKT and its effects on cellular metabolism.  

Signaling through growth factor receptors activates PI3-K, which catalyzes the 

conversion of PIP2 to PIP3.  PIP3 recruits AKT to the plasma membrane where it 

is phosphorylated and activated by PDK and MTORC2.  Active AKT stimulates 

O2 consumption and fatty acid synthesis and stimulates glycolysis by increasing 

the activities of hexokinase, phosphofructokinase, GLUT1 and GLUT4.  PTEN 

opposes AKT activity by dephosphorylating PIP3.(211, 232) (58, 59, 75, 82, 229-

231)  
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Utility of the Warburg effect.  Increased glycolytic metabolism plays 

several important roles in cancer cells.  The ability to generate energy from 

anaerobic processes rather than relying on OXPHOS allows cancer cells to 

survive and grow in areas of hypoxia such as those frequently found in rapidly 

growing and invasive tumors (234).  However, leukemias (235), lymphomas 

(236) and lung cancers (237) display increased rates of glycolysis, despite being 

exposed to abundant O2 in the blood or lungs.  These observations suggest that 

glycolysis may provide benefitis to proliferating tumor cells independent of the 

ability to survive in hypoxic conditions.   

One hypothesis is that increased glycolysis promotes the ability of 

proliferating tumor cells to synthesize biomolecules such as fatty acids (Figure 

1.16) (78).  Specifically, increased glycolysis can be used to generate NADPH 

(through the action of the PPC) and cytosolic acetyl-coA, both of which are 

required for fatty acid synthesis (78, 238).  Several studies support this 

hypothesis.  When the activity of glucose-6-phosphate dehydrogenase (G6PDH), 

the rate limiting enzyme in the PPC, is decreased using siRNA in A375 

melanoma cells, NADPH levels drop by 2.4-fold and cellular proliferation 

decreases by 30% (239).  Similarly, small molecule inhibitors of the pentose 

phosphate cycle such as oxythiamine (OT) and dehydroepiandrosterone (DHEA), 

which inhibit transketolase and G6PDH respectively, slow the rate of cancer cell 

growth (240).  Treatment of cultured pancreatic adenocarcinoma cells with OT or 

DHEA decreases cellular proliferation by 40 or 20% respectively (241), while 
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injection of OT or DHEA into mice bearing Erlich’s ascites tumors decreases 

tumor cell growth by 80 or 50% respectively (240).  

 

Figure 1.16. Glycolysis and fatty acid synthesis.  Glucose metabolism 

generates NADPH through the pentose phosphate cycle (PPC) and 

mitochondrial citrate through pyruvate dehydrogenase and pyruvate carboxylase.  

Citrate is exported to the cytosol where it is converted to acetyl-CoA by ATP-

citrate lyase (ACL).  Cytosolic acetyl-CoA and NADPH proceed along the fatty 

acid synthesis pathway (52, 53, 78, 238). 

 

Glycolysis generates cytosolic acetyl-coA by funneling carbons into the 

mitochondria as pyruvate and forming citrate, which is then exported from the 

mitochondria to form acetyl-coA through the action of ATP-citrate lyase (ACL) 

(238).  This process is stimulated by AKT, which can phosphorylate and activate 

ACL (233).  Knockdown of ACL using RNA interference inhibits growth of lung 

cancer cells in vitro and in vivo (53).  ACL knockdown also inhibits the 
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incorporation of glucose-derived carbons into lipids in activated non-transformed 

lymphoid cells and inhibits their growth in vitro (52).      

Aerobic glycolysis may also promote tumor cell growth and survival by 

protecting them from ROS production and ROS-mediated damage.  Inhibiting 

glycolysis in human lymphoma cells by using siRNA directed LDH increases 

oxygen consumption 2.5-fold and increases ROS production as measured by 

dichlorofluorescein oxidation (242).   This decrease in LDH increases apoptosis 

3-fold compared to controls.  Increased apoptosis is reversed by the antioxidant 

N-acetyl cysteine (NAC), suggesting that aerobic glycolysis protects cancer cells 

from ROS-mediated apoptosis (242).  A similar study investigating the effects of 

LDH expression in tumors derived from mammary epithelial cells showed that 

knockdown of LDH increased respiration by 75% but inhibited rates of 

proliferation in vitro under normoxic (~3-fold inhibition) and hypoxic (~100-fold 

inhibition) conditions (243).  Similarly, mice receiving inoculations of mammary 

epithelial tumor cells with LDH knocked-down survived 3 times longer than mice 

inoculated with WT tumor cells, however the role of ROS was not explicitly 

examined in this study (243).  HIF-1 appears to play an important role in the 

ability of glycolysis to decrease tumor cell ROS production, as it both increases 

LDH expression and decreases PDH activity (74, 121), thereby funneling 

glucose-derived carbons away from the mitochondria and lowering ROS 

production (122).  

 In a related fashion, glycolysis prevents ROS mediated damage by 

allowing tumor cells to maintain their antioxidant levels.   Inhibiting glycolysis with 
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the non-metabolizable glucose-analog 2-deoxyglucose (2DG) perturbs 

antioxidant balance in HeLa cells by decreasing total glutathione levels by 40% 

and inducing dose- and time- dependent apoptosis (244).  This increased 

apoptosis is reversed by the antioxidant NAC, suggesting that it is due to 

increased ROS formation (244).     

Bioenergetics of unstimulated and stimulated T and B cells.  In the 

absence stimulation through the TCR, T cells are small cells that do not 

proliferate or secrete cytokines (207).  Consistent with their quiescent status, 

unstimulated T cells have low energetic demands that primarily arise from 

housekeeping processes such as protein synthesis and ion homeostasis (245).  

Unstimulated T cells primarily generate ATP by oxidizing carbon substrates.  

Freshly purified thymocytes take up glucose at a low rate (0.07 nMoles/(min x 106 

cells), oxidize approximately 15% of it into CO2 and convert 50% into lactate (63).  

Resting T cells utilize several other metabolic substrates besides glucose.  

Freshly purified thymocytes consume glutamine at a rate of 0.03-0.05 

nMoles/(min x 106 cells), and oxidize 15-20% of into CO2 (128).  Unstimulated 

lymphocytes also oxidize fatty acids:  freshly purified cells from rat lymph nodes 

metabolize the fatty acid oleate at the same rate as they metabolize glucose 

(246).  However, this study did not distinguish between B and T cells (246).   

As discussed above, cells can generate energy either through glycolysis 

or oxidative phosphorylation (142, 247).  By measuring both oxygen consumption 

and lactate production, Guppy et. al. calculated that freshly purified rat 

thymocytes generated only 4% of their ATP by producing lactate and 96% by 
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oxidizing glucose, glutamine and other carbon sources (206).  In sum, 

unstimulated T cells are quiescent cells that meet their minimal energy demands 

using low rates of oxidative phosphorylation. 

 Over the past 50 years, it has become apparent that stimulating T cells 

with mitogens or activating antibodies causes dramatic changes in cellular 

metabolism (Figure 1.17).  In 1963, it was observed that culturing human 

lymphocytes with PHA for 3 d resulted in glucose depletion and lactate 

accumulation in the culture media (248).  Subsequent studies in the late 1960s 

and 1970s quantified these changes and showed that PHA stimulation causes a 

2-4 increase in lactate production within 4 h of addition to culture, before cells 

began to grow or divide (249, 250).  After 3 d of PHA stimulation, actively 

proliferating lymphocytes increase glucose consumption and lactate production 

10-20-fold compared to unstimulated controls (251).  More recent studies have 

extended these observations and shown that proliferating rat thymocytes 

stimulated for 2-3 d with conA increase glucose utilization 50-fold and lactate 

production 36-80-fold compared to unstimulated cells (62, 206, 252).   As 

discussed above, these studies also showed that proliferating thymocytes exhibit 

a 5-30-fold increase in the activities of glycolytic enzymes such as hexokinase, 

phosphofructokinase, aldolase, pyruvate kinase and lactate dehydrogenase 

compared to unstimulated cells (Figure 3.6).  Because oxidative metabolism only 

increases approximately 2-fold following T cell activation, (62, 251), these studies 

suggest that aerobic glycolysis provides the majority (60-85%) of ATP in 

activated lymphocytes and that OXPHOS plays a minor role (206, 252). 
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Figure 1.17.  Metabolic pathways upregulated in activated T cells.  Numbers 

next to an enzyme or pathway indicate its fold upregulation in activated T cells 

compared to unactivated controls as described in the text.  Enzymes or pathways 

in red have been directly linked to AKT or costimulatory signaling, while those in 

blue have been linked to Ca2+ signaling (59, 62, 63, 123, 206, 245, 251-254). 
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Increased aerobic glycolysis in activated T cells is controlled by signaling 

through CD28 in a PI3-K/AKT-dependent fashion (Figure 1.17, in red).  When 

human CD4+ T cells are stimulated by bead-bound anti-CD3 and anti-CD28 

antibodies, they quickly phosphorylate AKT (5-30 min after activation) and later 

(20 h), upregulate the expression of glucose transporter 1 (GLUT1) and their 

rates of glycolysis and lactate production by 5-10-fold (59).  Increased glucose 

uptake and glycolysis are inhibited when AKT phosphorylation is blocked by 

signaling through the inhibitory receptors PD-1 or CTLA4 or by treatment with the 

PI3-K inhibitor Ly294002, which confirms their dependence on signaling through 

the PI3-K pathway (59, 255).  Similarly, murine CD4+ T cells stimulated through 

both CD3 and CD28 increase glucose uptake 5-10-fold compared to T cells 

activated with CD3 alone (58).  In addition to regulating GLUT1 expression and 

activity, activated AKT promotes glycolysis by increasing hexokinase activity 

through an unkown mechanism (75, 230) and enhacing phosphofructokinase 

activity by phosphorylating and activating the regulatory enzyme 6-

phosphofructo-2-kinase (82, 231).   

Lymphocytes also increase oxidative metabolism following activation, 

although to a lesser magnitude than aerobic glycolysis.  Within 30 min of 

activation with conA, rat thymocytes increase O2 consumption by 25-30 % (253, 

256), and similar changes (30-50% increase) are seen 3-6 h after stimulation of 

human CD4+ T cells with PMA and ionomycin (257).  This increased oxidative 

metabolism is also seen at later timepoints after activation, when lymphocytes 

are actively proliferating.  3 d after stimulation with anti-CD3 and anti-CD28 
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coated microbeads or PHA, human CD4+ T cells or bulk lymphocytes increase O2 

consumption approximately 2-fold compared to unstimulated cells (59, 251).  

Early increases in oxidative metabolism following T cell activation are 

thought to be due to increases in intracellular Ca2+ ([Ca2+]i) (Figure 1.17, in blue) 

(254).  Unstimulated T cells have an [Ca2+]i of 75 nM, which increases to 150 nM 

within seconds of TCR stimulation (254). This increased [Ca2+]i enters the 

mitochondria ([Ca2+]m) through the mitochondrial permeability transition pore 

(258), where it directly and indirectly activates the dehydrogenases of the TCA 

cycle.  [Ca2]m stimulates PDH activity by increasing the activity of PDH 

phosphatase, which dephosphorylates and activates PDH (Figure 1.18) (259).  

Increased [Ca2]m also lower the Km of isocitrate dehydrogenase and alpha-

ketoglutarate dehydrogenase activity, thereby increasing their activities (Figure 

1.18) (259, 260).  Increased TCA cycle activity in activated T cells increases 

NADH fluorescence 1.5-fold (254).  While increased NADH can feed into the 

electron transport chain and increase O2 consumption, it appears that NADH-

stimulated H+-transport into the intermembrane space exceeds the rate of rate H+ 

flow through the FoF1-ATPase, resulting in m hyperpolarization and superoxide 

formation shortly after T cell activation (254).  In addition to directly stimulating 

the TCA cycle, Ca2+ also activates the AMP-activated protein kinase (AMPK) at 

early time points (1-20 min) following TCR stimulation in an [AMP]-independent 

manner (261).  AMPK is an important mediator of cellular energy homeostasis, 

and its activation promotes both oxidative and glycolytic ATP production by 

increasing fatty acid oxidation and glycolysis (262, 263). 
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Figure 1.18. [Ca2+]m-mediated stimulation of the TCA cycle.  The stimulatory 

effects of [Ca2+]m on TCA cycle enzymes are indicated in blue.  [Ca+]m directly 

stimulates isocitrate dehydrogenase (IDH) and α-ketoglutarate dehydrogenase 

(α-KGDH) and activates pyruvate dehydrogenase (PDH) phosphatase, which 

dephosphorylates and activates PDH.  Other abbreviations are as follows: 

succinate dehydrogenase (SDH), malate dehydrogenase (MDH). (123, 259) 

 

Increased [Ca2+]m may play a role in increased OXPHOS at later 

timepoints (i.e. 2-3 d) after activation, but these later changes are also likely 

mediated by an increase in mitochondrial mass.  By 24-60 h after stimulation with 

anti-CD3 and anti-CD28 antibodies or PMA and ionomycin, mouse T cells 
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increase their mitochondrial mass 5-15 fold as measured by Mitotracker Green 

fluorescence (264), which is a dye that accumulates in mitochondria 

independently of m (265).  Importantly, these changes were not observed in 

proliferating T cells stimulated by the cytokines IL-2, IL-17 and IL-15, which 

indicates that increased OXPHOS may not be a feature of all stimulated 

lymphocytes (264).  Ca2+-mediated hyperpolarization may also play a role in 

increased OXPHOS at these later timepoints, as antibody- or PMA and 

ionomycin-stimulated T cells also showed a 5-10 increase in Mitotracker Red 

fluorescence (264), which is a dye that accumulates based on m (265).   

 Although activated T cells increase aerobic glycolysis 10-20-fold while 

increasing OXPHOS only 2-fold, it is unclear if high rates of glucose uptake and 

lactate production are necessary for productive T cell activation (i.e. proliferation 

and cytokine production).  Removing glucose from the culture media (but 

maintaining 2 mM glutamine as a carbon source) results in the complete absence 

of proliferation and IFN- production and a 7-fold decrease in IL-2 production in 

mouse T cells stimulated for 2 d by anti-CD3 and anti-CD28 (58).  Similarly, the 

number of proliferating human CD4+ cells present 96 h after stimulation by PMA 

and ionomycin drops by 60% when cells are cultured without glucose (257).   

Lowering glucose levels, rather than eliminating glucose entirely, allows T 

cells to retain their ability to proliferate and synthesize cytokines.  Human CD4+ T 

cells stimulated with anti-CD3 and anti-CD28 antibodies in 0.4 mM glucose 

(rather than 11 mM), decrease glycolysis 4-fold and increase O2 consumption by 

4-fold, but maintain their ability to proliferate (59).  Similarly, murine T cells 
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stimulated with anti-CD3 and anti-CD28 and cultured in 0.5 mM glucose are 

identical to T cells in 5 mM glucose with respect to viability, proliferation and IL-2 

and IFN- production (58).  Together, these results show that while low levels of 

glucose are necessary for activated T cell proliferation and cytokine production, 

high rates of aerobic glycolysis are not absolutely required, possibly due to the 

ability of activated T cells to upregulate OXPHOS when glycolysis is restricted.  

Consistent with this notion, inhibiting OXHPOS with the complex III inhibitor 

myxothiazol decreases IL-2, TNF-, IFN- and IL-4 production when human 

CD4+ T cells are stimulated with PMA and ionomycin in restricted glucose 

conditions (257).  However, myxothiazol does not inhibit cytokine production 

when cells are cultured in 11 mM glucose (257).  These results show that 

activated T cells can proliferate and produce cytokines while relying on OXHPOS 

as their primary energy source. 

While B cell metabolism has not been studied as extensively as that of T 

cells, it appears that resting and activated B cells share many characteristics with 

resting and activated T cells.  For example, mouse B cells stimulated through the 

B cell receptor increase glucose uptake and glycolysis 15-20-fold compared to 

resting B cells (266).  Both of these metabolic changes are dependent on the 

AKT/PI3-K pathway, as PI3-K inhibition with wortmannin or LY294002 abrogated 

increased glucose uptake and glycolysis in activated B cells (266).  These results 

suggest that, like T cells, B cells increase glucose metabolism in an AKT/PI3-K 

dependent fashion following stimulation through the antigen receptor. 
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Statement of purpose.  In the setting of autoimmunity (e.g. lupus) or 

allogeneic transplantation (e.g. GVHD), inappropriately activated lymphocytes 

mediate disease.  Unfortunately, glucocorticoids, a major treatment option for 

both lupus and GVHD, indiscriminately kill pathogenic and non-pathogenic white 

blood cells and are therefore associated with high rates of infection.  Because 

dramatic differences in cellular metabolism often exist between cell types (e.g. 

nontransformed cells vs. cancers, resting vs. activated lymphocytes), an 

understanding of cellular metabolism in lupus and GVHD could reveal pathways 

selectively utilized by disease-causing lymphocytes.  Such information may be of 

value for developing therapies that selectively inhibit pathogenic lymphocytes 

while preserving other aspects of the immune system.  This hypothesis is 

bolstered by studies showing that Bz-423, a novel inhibitor of the mitochondrial 

ATPase, selectively deletes autoreactive B and T cells in models of lupus without 

killing bystander lymphocytes. 

Therefore, the goal of my research is to determine the metabolic pathways 

used by pathogenic autoreactive or alloreactive lymphocytes as they mediate 

disease with the goal of exploiting differential cellular metabolism to selectively 

kill pathogenic cells.  In Chapter 2, lymphocytes from mice with active lupus are 

shown to rely on oxidative energy production as they mediate disease, and a 

similar phenotype is observed in chronically-activated human T cells.  This 

oxidative phenotype is contrasted with acutely-activated T cells, which primarily 

rely on glycolysis for energy production. In Chapter 3, GVHD-causing T cells are 

shown to increase oxidative metabolism and decrease antioxidants as they 
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mediate disease.  This metabolic phenotype is contrasted with proliferating cells 

in the bone marrow, which up-regulate glycolysis and maintain antioxidants.  In 

Chapter 4, Bz-423 is shown to selectively kill GVHD-causing T cells without 

inducing apoptosis in bystander T cells or proliferating cells in the bone marrow.  

These results lead to a bioenergetic model of Bz-423 sensitivity, in which Bz-423 

selectively kills disease-causing lymphocytes with increased oxidative 

metabolism and depleted antioxidants, but not bystander cells with either low 

rates of OXPHOS or intact antioxidants. 
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CHAPTER 2 

CHARACTERIZATION OF THE METABOLIC PHENOTYPE OF 
CHRONICALLY STIMULATED LYMPHOCYTES 

 

 

Introduction 

Systemic lupus erythematosus. Systemic lupus erythematosus (SLE or 

lupus) is an autoimmune disorder characterized by the inappropriate recognition 

of self antigens by the immune system (43).  According to a 1996 meta-analysis, 

SLE affects approximately 25 out of every 100,000 residents of the United 

States, with 90% of those affected being female (267).  Symptoms associated 

with SLE include skin rash, pleuritis, joint pain, nephritis, vasculitis and stroke 

(268, 269). 

SLE is a multifactorial disease whose pathogenesis involves both 

environmental and genetic factors (270).  The importance of genetics in SLE is 

emphasized by the 24% concordance rate of SLE in monozygotic twins as 

compared with a 2% rate in dizygotic twins (271).  Polymorphisms in several 

genes are known to contribute to the development of SLE in humans.  

Expression of the DR2 or DR3 alleles on chromosome 6, which encode MHC 

class II molecules, is associated with a 2-3-fold increase in SLE incidence in 

Caucasian populations (268).  Similarly, genetic deficiencies in the complement 
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system components C1q, C2, and C4, which aid in pathogen lysis (31), 

predispose patients to SLE (268).

Genetic factors also influence the development of lupus-like disease in 

mice.  Studies in the NZM2410 strain of lupus-prone mice have identified three 

separate genetic regions on chromosomes 1 (Sle1), 4 (Sle2) and 7 (Sle3) linked 

to the development of lupus-like disease (268).  These regions are involved in 

maintaining B and T cell tolerance, and their functions were determined by 

transferring individual regions onto non-autoimmune mice. Mice containing Sle1 

produce increased levels of anti-chromatin antibodies (272).  B cells from mice 

containing Sle2 proliferate 2-fold faster to a variety of stimuli including anti-IgM 

and LPS in comparison to WT B cells (273). CD4+ T cells from mice containing 

Sle3 exhibit increased proliferation in response to anti-CD3 or IL-2 stimulation in 

vitro, and accumulate with an activated phenotype in vivo (274). The transfer of 

any one of these genetic regions onto a non-autoimmune B6 mouse does not 

result in lupus-like disease (275).  However, when all three of these regions are 

transferred together, mice developed severe nephritis and kidney failure, 

suggesting that their combined effects are sufficient to cause SLE (275). 

While SLE has a strong genetic component that arises from the 

involvement of numerous genes, environmental factors also play a role in the 

development of SLE.  Several pharmacologic agents are known to induce lupus-

like symptoms, termed drug-induced lupus (276).  For example, treatment with 

procainamide, an antiarrythmic, or hydralazine, a vasodilator, is associated with a 

7-20% risk of inducing drug-induced lupus (276).  The mechanism by which 
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these compounds induce lupus is thought to involve the inhibition of DNA 

methylation and subsequent increased inflammatory gene expression (276, 277).  

Furthermore, the concordance rate of lupus in identical twins is 24% (271).  If 

lupus were solely determined by genetic factors, this value would be closer to 

100% (43, 271).   Together, these observations suggest that a combination of 

genetic predisposition and environmental triggers may lead to the development 

of SLE.   

T and B lymphocytes in SLE.  The development of SLE is characterized 

by a loss of tolerance to self-antigen and the expansion of autoreactive B and T 

lymphocytes.  While autoreactive B cells are found in healthy individuals (278, 

279), their numbers and activity are increased in patients with lupus (280).  For 

example, the number of B cells actively producing antibodies is increased up to 

50-fold in human and murine SLE compared to healthy controls (281-283).   

The reasons for autoreactive B cell expansion in SLE are manifold.  One 

contributing factor is increased B cell stimulation through the CD40 receptor 

(284).  B cells express CD40, and costimulatory signals from CD40L can induce 

B cell proliferation and antibody production (285, 286).  B and T cells from 

patients with lupus express 20-fold more CD40L than do cells from healthy 

individuals (284), suggesting that stimulation through CD40 may be increased in 

lupus B cells.  Consistent with this hypothesis, inhibiting CD40-CD40L 

interactions delays lupus development by up to 1 year in lupus-susceptible SNF1 

mice (287).  Additionally, reduced inhibitory signaling in lupus B cells may play a 

role in their hyperactivation.  Inhibitory signaling through the FcRIIB receptor 
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opposes stimulatory signaling through the B cell receptor by decreasing 

intracellular levels of phosphatidylinositol (3,4,5) triphosphate (288).  B cells from 

patients with SLE express decreased levels of FcRIIB (289) and polymorphisms 

in FcRIIB are associated with the development of SLE (290, 291).  Together, 

these observations suggest that both increased stimulation through CD40 and 

decreased inhibitory signaling through FcRIIB may contribute to the expansion 

of autoreactive B cells in SLE. 

Autoreactive T cells also play a role in SLE pathogenesis (43).  T cells that 

recognize self antigens such as complexes of DNA and histones can be cloned 

from humans or mice with SLE (292-295).  In healthy individuals, autoreactive T 

cells that have escaped central tolerance are inhibited by a process termed 

peripheral tolerance (296, 297).  Peripheral tolerance is comprised of two major 

processes, both of which may be defective in lupus T cells.  If T cells receive a 

signal through their T cell receptor (TCR) without accompanying costimulation, 

they can become anergic, which is a state characterized by inhibited proliferation 

and decreased IL-2 production (297).  The induction of costimulatory molecules 

on antigen presenting cells (APCs) is associated with Toll-like receptor (TLR) 

stimulation by pathogen associated molecular patterns such as viral DNA or 

lipopolysaccharide (LPS) (36).  Because self-antigens are not associated with 

such patterns, the APCs presenting self-antigens are expected to have low levels 

of costimulatory molecules (35, 298).  Thus, in normal individuals, autoreactive T 

cells receive signaling through the TCR without costimulation and become 

anergic (35, 297, 298).  In SLE, this induction of tolerance to self-antigen appears 
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to be faulty (299). Compared to T cells from healthy controls, T cells from SLE 

patients and lupus mice exhibit a 50-100% increase in Ca2+ flux following 

stimulation through the TCR alone (300-302).   This increased signal strength in 

the absence of costimulation could contribute to the ability of SLE T cells to 

escape tolerance (303).     

A second mechanism of maintaining T cell tolerance to self antigens is 

through activation induced cell death (AICD, Figure 2.1).  The repetitive 

stimulation of T cells increases their surface expression of FAS ligand (FASL) 

(304-308).  FASL then signals through FAS (CD95) on T cells, which activates 

caspase 8 and induces apoptosis (304).  In healthy individuals, this mechanism 

aids in the deletion of autoreactive T cells, which are continuously exposed to 

self-antigen (304, 308).  However, T cells from mice and patients with lupus 

exhibit defects in the AICD pathway (299).  T cells from MRL-lpr and Gld/gld 

mice have defective FAS and FASL, respectively, and both strains develop 

lupus-like disease (281, 299).  While mutations in FAS and FASL in patients with 

SLE are rare (309), T cells from SLE patients show a 2-3-fold decrease in AICD 

sensitivity compared to control cells (310, 311).  While, the basis for this 

resistance is unclear, it may be related to alterations in cyclooxygenase (COX) 2 

levels in lupus T cells.  When lupus T cells are exposed to repetitive TCR 

stimulation in vitro, they increase COX-2 up to 40-fold compared to control T cells 

(311).  This increased COX-2 expression in SLE T cells is associated with 

increased expression of C-FLIP, which inhibits apoptosis by blocking the 

activation of caspase 8 (311, 312).  However, treating lupus T cells with the 
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COX-2 inhibitors celecoxib and niflumic acid decreases C-FLIP expression and 

induces apoptosis (311). 

 

Figure 2.1.  AICD in activated T cells.  Repetitive stimulation of the TCR 

induces FASL and FAS expression.  Clustering of FAS recruits adaptor proteins 

such as FADD, which recruit procaspase 8 into a complex termed the death-

inducing signaling complex (DISC).  Clustering of procaspase 8 stimulates its 

autoactivation and release from the DISC.  Active caspase 8 can activate the 

executioner caspases-3 and-7, which leads to apoptosis.  From (308). 

 

Tissue damage in SLE.  Following their stimulation by autoreactive helper 

T cells, autoreactive B cells in lupus produce antibodies that recognize self 

antigens (autoantibodies) (43).  These autoantibodies are directed against 

numerous antigens, including double-stranded DNA (dsDNA) (313), 

nucleosomes (e.g., complexed histones and DNA) (314), and other nuclear 
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antigens (43).  There are two models that explain how autoantibodies mediate 

the nephritis characteristic of SLE.  The first model suggests that autoantibodies 

bind to nucleosome fragments in the bloodstream and these immune complexes 

deposit in the glomerular basement membrane of the kidney (315).  The 

presence of these complexes activates complement, recruits white blood cells 

and induces glomerulonephritis (315).  This model is supported by the direct 

observation that complexes of nucleosomal antigens and anti-nucleosomal 

antibodies bind to the glomerular basement membrane in rats (316).  The second 

model suggests that anti-nuclear antigens cross-react with proteins present on 

the glomerular basement membrane such as -actinin (317), thereby inducing 

glomerulonephritis.  This model is supported by evidence showing that 

monoclonal anti-DNA antibodies only caused glomerulonephritis in mice when 

they also cross-reacted with -actinin (317).  The extent to which these two 

models contribute to tissue damage in human patients with lupus is unresolved 

(43).   

The NZB/W model of SLE.  In the early 1960s, New Zealand Black (NZB) 

and New Zealand White (NZW) mice were mated, yielding lupus-prone offspring 

(NZB/W), which have since been used as the prototypical mouse model of SLE 

(318, 319).  NZB/W mice display many of the characteristics of human SLE, 

including the production of autoantibodies to single-stranded and double-

stranded DNA, the deposition of autoantibodies in the glomerulus, and the 

development of fatal nephritis (Figure 2.2) (320).  Similarly to humans, the 
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symptoms of lupus are more frequent and severe in female NZB/W mice than in 

males (321).   

 

 

 

NZB/W

H and E IgG

 

 

Figure 2.2. Glomerlulonephritis and IgG deposition in the kidneys of NZB/W 

mice.  On the left are hematoxylin and eosin (H and E) stained images showing 

white blood cell infiltration into the kidneys of NZB/W animals with lupus.  On the 

right, images were stained with a fluorescent antibody against IgG.  Green 

fluorescence indicates IgG deposition in the glomerulus.  Images are from 9.5 mo 

old NZB/W mice with active lupus-like disease (169). 

 

Female NZB/W mice begin to develop anti-DNA antibodies around two 

months of age, while antibody deposition in the glomerulus and associated 

glomerulonephritis begin at 3-6 months (313, 322).  The severity of the 

glomerulonephritis increases with age, and leads to a median lifespan of 

approximately 8.5 months in female NZB/W mice (281, 323). 

Both B and T cells are important for the development of disease in NZB/W 

mice.  Three separate studies have documented an improvement in disease 

when NZB/W mice are treated with antibodies that neutralize or deplete CD4+ T 
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cells (324-326).  Similarly, depleting B cells with an anti-CD20 antibody improves 

survival in NZB/W mice when the treatment occurs between weeks 12 and 20 

(327).  Interestingly, B cell depletion beginning at 4 or 8 weeks of age actually 

hastens disease, possibly because of the depletion of regulatory IL-10 producing 

B cells (327).  Hence, both autoreactive T and B cells contribute to lethal lupus-

like disease in NZB/W mice. 

Lymphocyte metabolism and SLE.  Resting lymphocytes, such as those 

found in the spleens of naïve mice, meet their minimal demand for ATP using low 

rates of oxidative phosphorylation (OXPHOS) (207).  Normal lymphocyte 

activation is an acute response to signals generated by antigen and 

costimulatory receptors such as CD28 (34).  Once activated, lymphocytes require 

increased energy to proliferate, produce cytokines and synthesize antibodies.  

Upon activation, lymphocytes increase oxygen consumption and CO2 production 

~2-fold compared to unactivated controls (127, 206, 251).  These changes reflect 

increased OXPHOS, which in part, results from higher intracellular Ca2+ levels 

(254), stimulating dehydrogenases in the TCA cycle (123, 254, 260).   

Despite an ability to increase OXPHOS, acutely activated lymphocytes 

generate the majority of their ATP by dramatically increasing their rate of 

glycolysis by taking up large amounts of glucose and converting it to lactate 

(Discussed in greater detail in Chapter 1).  Because acutely activated T cells 

engage in high rates of glycolysis despite the presence of oxygen, it is termed 

aerobic glycolysis (59, 206, 251).  In addition to producing ATP, a high rate of 

glycolysis helps maintain antioxidant levels in activated cells; e.g., by providing 
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substrates for the pentose phosphate cycle which produces NADPH, an 

important intracellular reducing agent (50, 78, 252).   

In autoimmune diseases such as SLE, autoreactive lymphocytes are 

persistently stimulated by self-antigen and acquire a chronically activated 

phenotype characterized by sustained proliferation and effector functions (43, 

296, 328-333).  Although the metabolic pathways used by chronically activated 

lymphocytes have not been studied directly, several lines of evidence suggest 

that pathogenic lymphocytes in diseases like lupus, rheumatoid arthritis (RA), 

psoriasis, and graft-vs-host disease preferentially rely on mitochondrial 

metabolism (Figure 2.3) (334-337).  Indeed, peripheral blood T cells from 

patients with SLE have a 50% increase in mitochondrial mass compared to 

control cells from healthy individuals (302).  This increase in mitochondrial mass 

is accompanied by a 20% increase in the mitochondrial membrane potential 

(m) as measured by tetramethylrhodamine (TMRM) fluorescence (302).  

However, the amount of dye used in this study (1 M), (302) can report on both 

the plasma membrane potential and m (145, 338).  Similar results were 

obtained with two separate potentiometric dyes (DIOC6 and JC-1), however 

these dyes are also not entirely specific for m (145, 302).  Despite these 

limitations, these results are consistent with the interpretation that m is 

hyperpolarized in T cells from lupus patients (339).  

This increased m in lupus T cells is accompanied by a 40% increase in 

the fluorescence of dihydroethidium (DHE) (339), a dye whose fluorescence 

increases following its selective oxidation by O2
- (340).  Hyperpolarization of m 
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slows electron transport through the mitochondrial respiratory chain and extends 

the half lives of reactive intermediates such as flavins, iron-sulfur centers and 

ubisemiquinone, which leads to increased O2
- formation (131, 154, 167, 168).  

Hence, increased O2
- in lupus T cells could be related to hyperpolarization of 

m. 

 

H+

H+
H+

H+
H+

H+

H+

H+

H+

H+
H+

H+

H+

H+

H+

H+

m H+

O2 H2OO2
-

Ca2+

Ca2+

O2
-

GSH

Cytosol

Mitochondria

H+

H+
H+

H+

H+

 

 
 

Figure 2.3. Bioenergetic abnormalities of SLE lymphocytes.  T cells from 
patients with lupus display increased (red) mitochondrial and cytosolic Ca2+, total 

cellular O2
-, O2 consumption and m , while total cellular GSH levels are 

decreased (blue) (302, 335, 339, 341). 
 

As discussed above, T cells from patients and mice with lupus show 

increased [Ca2+]i flux following stimulation through the TCR (300-302).  

Additionally, T cells from patients with SLE have a 20-40% increase in basal 

levels of cytosolic and mitochondrial [Ca2+] ([Ca2+]m) compared to control cells, as 
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measured by the dyes fluo-3 and rhod-2, respectively (302).  Increased [Ca2+]m 

and m hyperpolarization in lupus T cells may be linked, as increased [Ca2+]m 

can stimulate the TCA cycle (123, 259, 342) and lead to m hyperpolarization 

(254).   

Further evidence of increased mitochondrial metabolism in chronically 

stimulated lymphocytes comes from the direct measurement of O2 consumption 

from lymphocytes of patients with autoimmune disease.  A 2003 study showed 

that peripheral blood mononuclear cells (PBMCs) from 12 patients with active 

lupus and rheumatoid arthritis consumed 50% more O2 than cells from healthy 

controls (335).   Together, the observations of increased mitochondrial mass, 

m hyperpolarization, increased [Ca2+]m, and increased respiration suggest an 

increase in oxidative metabolism in SLE lymphocytes. 

In addition to high levels of oxidative metabolism, several studies suggest 

that lymphocytes from animals and mice with SLE may have low rates of 

glycolysis.  T cells from patients with SLE have 30% less total cellular reduced 

glutathione (GSH) than cells from healthy controls (339).  GSH is consumed 

when glutathione peroxidase catalyzes the formation of H2O from H2O2 (196, 

197).  Conversely, GSH is formed in an NADPH-dependent fashion by 

glutathione reductase (196, 197).  The NADPH used for GSH formation is 

generated by the metabolism of glucose through the pentose phosphate cycle 

(50, 51).  Thus, decreased GSH levels could be reflective of inadequate 

generation of NADPH secondary to insufficient glycolysis (51, 343).  Hence, the 

inability to maintain glutathione at normal levels is consistent with relatively low 
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rates of glycolysis in lupus T cells.  GSH depletion in SLE lymphocytes contrasts 

with T cells acutely stimulated with mitogens, which increase glutathione levels 2-

fold compared to unstimulated cells (344).  While mitogen stimulated T cells 

increase glycolysis 20-40-fold compared to unstimulated cells (206, 252, 253), 

direct measurements of glycolytic metabolism in lymphocytes from patients or 

animals with lupus are lacking.   

Persistent antigen stimulation in autoimmunity.  A successful immune 

response against an acute infection leads to the clearance of pathogen, which is 

followed by decreased presentation of foreign antigen by APCs (308).  The 

absence of foreign antigen causes pathogen-specific T cells to cease the 

production of pro-surivival cytokines such as IL-2.  Decreased levels of these 

growth factors leads to the apoptosis of activated T cells, which is dependent on 

the BH3-only protein Bim (Figure 2.4) (8-11).   

During a chronic viral infection, infectious pathogens cannot be cleared 

and stimulatory foreign antigen persists (308).  Despite this persistence of foreign 

antigen, pathogen-specific T cells do not proliferate in an unrestrained fashion 

(9).  Indeed, in the setting of chronic mouse -herpes virus (MHV), the number of 

virus-specific T cells peaks after d 14 and then declines, despite the continued 

presence of antigen.  However, when T cells lack both Bim and functional FAS,  

this process is impaired, and pathogen-specific T cells continue to accumulate as 

MHV persists (308).   
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Figure 2.4.  T cell apoptosis in the immune response.  Following an acute 
infection, pathogen is cleared, and activated T cells die through a Bim-dependent 
pathway.  During chronic infections, activated T cells are eliminated in a FAS- 
and Bim-dependent fashion, which prevents their pathologic expansion.  In 
autoimmune diseases, T cells are resistant to FAS-mediated apoptosis and have 
increased levels of Bcl-2, which inhibits Bim-mediated apoptosis.  These 
abnormalities could contribute to autoreactive T cell expansion and autoimmunity 
(8-12). 

 

In the setting of lupus, self-antigen is present ubiquitously due to its 

continual release from dead or dying cells (43, 299, 314-316).  However, both 

pathways that induce apoptosis in activated T cells are defective in T cells from 

lupus patients.  Compared to control T cells, T cells from lupus patients express 

5-fold more Bcl-2, which is an antiapoptotic protein that can inhibit Bim-mediated 

apoptosis (345).  Additionally, T cells from lupus patients have increased levels 

of C-FLIP and are less sensitive to FAS-mediated apoptosis than control cells 

(299, 310, 311).  Thus, persistent stimulation with self-antigen, combined with 
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defective Bim- and FAS-mediated apoptosis, could relate to the pathologic 

expansion of autoreactive T cells in lupus.   

Persistent antigen stimulation in lupus and other autoimmune diseases 

has several important consequences.  Chronic stimulation of T cells can lead to 

the increased expression of the Kv1.3 potassium channel, and inhibition of this 

channel is therapeutic in several models of pathogenic T cell activation, including 

experimental autoimmune encephalitis (EAE) (328, 333), allograft rejection (333), 

and rheumatoid arthritis (346).  Unstimulated rat T cells express 1-10 Kv1.3 

channels, while T cells stimulated 1-2 times with mitogen or antigen express 

approximately 200 Kv1.3 channels per cell (328).  However, when T cells are 

stimulated > 8 times with antigen, they express approximately 1500 Kv1.3 

channels per cell (328).  Furthermore, the number of Kv1.3 channels expressed 

on a T cell clone correlated with its ability to induce EAE, which may explain the 

efficacy of Kv1.3 inhibition in the treatment of EAE (328).  Similarly, myelin-

specific T cells isolated from patients with MS express 3-4-fold more Kv1.3 

channels than cells from healthy controls (333).   Hence, repetitive stimulation 

can cause changes distinct from acute stimulation that can be exploited 

therapeutically to treat autoimmune diseases. 

Persistent antigen stimulation can also lead to decreased expression of 

CD28 on T cells (332, 347).  In healthy young adults, fewer than 2% of CD4+ and 

fewer than 25% of CD8+ T cells lack the expression of the costimulatory receptor 

CD28 (i.e. CD28null) (332).  When these cells are stimulated ex vivo with 

irradiated allogeneic stimulator cells, they expand and maintain CD28 expression 
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for the first 2-3 weeks of culture.  However, after 4 repetitive stimulations T cells 

begin to lose CD28, and after 10 stimulations > 70% are CD28null (332).  

Decreased CD28 expression is due to the inactivation of the transcription factor 

complex that normally promotes CD28 gene expression (347, 348).   Numerous 

autoimmune diseases, including multiple sclerosis, RA, and lupus are associated 

with increased frequencies of CD28null T cells, possibly due to persistent 

stimulation with ubiquitous self antigen (349-351).  Indeed, the percentage of T 

cells lacking CD28 in patients with lupus (29%) is 70% greater than in age-

matched healthy controls (17%) (352).    

Several observations suggest that CD28null T cells may participate in the 

pathogenesis of autoimmune diseases.  CD28null T cells proliferate in response to 

autoantigen (353) and produce 2-fold more IFN- than CD28+ T cells following 

stimulation with anti-CD3 (354).  Furthermore, CD28null T cells from patients with 

RA express 5-10-fold more perforin and KIR2DL4 (355).  Perforin is a pore-

forming protein secreted by cytotoxic T cells and natural killer cells that allows 

granzyme-B-mediated apoptosis (15, 16), while KIR2DL4 is a receptor that 

activates NK cell cytokine production (356).   

Together, these observations suggest that autoreactive CD28null cells arise 

as a consequence of repetitive TCR stimulation and may play an important role 

in the pathogenesis of autoimmune diseases such as lupus and rheumatoid 

arthritis.  Importantly, signaling through CD28 increases T cell glucose 

transporter 1 (GLUT1) expression, glucose uptake and lactate production in a 

PI3-K/AKT dependent fashion (59, 231).  The effects of CD28 extinction on 
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cellular metabolism are unknown, but may play a role in the metabolic alterations 

evident in lupus and rheumatoid arthritis (302, 335, 339, 341). 

Statement of problem.  Little is known regarding cellular metabolism in 

autoimmune lymphocytes.  To characterize the metabolic pathways used by 

lupus splenocytes, we infused uniformly labeled 13C-glucose into NZB/W mice 

with active lupus and into non-autoimmune, age-matched Balb/c mice and 

analyzed tracer-derived 13C redistribution among glucose metabolites using gas 

chromatography-mass spectrometry (GC-MS) (357).  We chose glucose as a 

tracer because it is the primary energy source for lymphocytes (69) and because 

its conversion into lactate reflects the rate of aerobic glycolysis while its oxidation 

into CO2 occurs during OXPHOS.  Additionally, the patterns of tracer distribution 

into lactate and palmitate indicate relative flux through the pentose phosphate 

cycle (PPC) (Figure 2.5).  Thus, a single tracer allowed the simultaneous 

interrogation of aerobic glycolysis, PPC activity, and OXPHOS (Figure 2.e).  We 

selected the spleen as the tissue for analysis because it is rich in lymphocytes, 

many of which are autoreactive in the NZB/W model (358, 359).   

Similarly, little is known about the metabolism of chronically activated 

lymphocytes.  To determine if the metabolism of chronically activated 

lymphocytes differed from acutely activated cells, we conducted studies using a 

model in which repetitive stimulation of T cells through the T cell receptor (TCR) 

decreases expression of CD28 over a period of several months (332, 360).  

These findings were then placed into the context of our studies in the NZB/W 

mice.  Differences in bioenergetics between normal and chronically activated 
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lymphocytes may ultimately lead to new diagnostic and therapeutic strategies for 

immune diseases.   

 
 
Figure 2.5. Pathways of U-13C-Glucose metabolism through glycolysis and 
the pentose phosphate cycle.  13C carbon atoms are shown as black circles 
and 12C carbons are white.  Uniformly labeled 13C-glucose (U-13C-Glucose) can 
be metabolized directly through glycolysis or through the pentose phosphate 
cycle (PPC).  Direct metabolism through glycolysis to fructose-6-phosphate (F-6-
P) and pyruvate is shown on the left of their respective boxes.  The three major 
labeled F-6-P products from the PPC and the resulting pyruvate molecules are 
shown on the right of their respective boxes.  PPC products resulting from 
recombination of 2 separate labeled substrates are likely to be rare and have 
been omitted.  m3 lactate is formed from either direct glycolysis or the PPC, while 
m1 and m2 lactate are only formed from the PPC.  TCA cycle metabolism of 
tracer-derived pyruvate produces 13CO2 and 13C-labeled palmitate, however m1 
palmitate derives only from multiple turns through the PPC. 
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Results 

To investigate glucose metabolism in the setting of SLE, we infused 9-mo 

old autoimmune female NZB/W (Lupus; n=4) and age-matched healthy female 

Balb/c (Control; n=2) mice with uniformly labeled 13C-glucose tracer for 6 h.  

Following tracer administration, we analyzed 13C redistribution into metabolites in 

the plasma and the spleen.   

 By 6 h after infusing the 13C6-glucose tracer, approximately 7% of plasma 

glucose contained tracer-derived carbon atoms in both lupus and control mice 

(Figure 2.6 A, p>0.5), indicating that tracer administration from the pump and 

clearance from the bloodstream were similar in lupus and control mice.  The 

fraction of labeled plasma glucose containing a specific number (x) of tracer-

derived carbons (mx/m) was similar in lupus and control mice for each 

isotopomer (Figure 2.6 B, p>0.14 for all x), indicating that cycling through 

gluconeogenesis was similar in both groups (361). 

Figure 2.6.  Label distribution in plasma glucose.  A.   Fraction of 
plasma glucose containing tracer-derived 13C.  B.  Percentage of labeled plasma 
glucose containing the indicated number of tracer-derived 13C atoms.  Data are 
from triplicate samples from two control and three lupus animals. 
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13C was incorporated into approximately 2% of splenic lactate, 4% of 

plasma lactate, 1-10% of splenic fatty acids and 4-12% of plasma fatty acids 

(Table 2.1 ) indicating that tracer infusion for 6 h is sufficient to allow 13C 

incorporation into glucose-derived metabolites in both the plasma and the spleen.  

Only 0.3% of ribose in splenocytes was derived from 13C6-glucose tracer in both 

lupus and control mice, indicating that splenocytes have very slow rates of 

glucose-derived ribose synthesis, compared to these other metabolites.   

 
Table 2.1. Label distribution in plasma and spleen metabolites.  Numbers 
indicate the percentage of a given metabolite that contains tracer-derived 13C.  
Data are from triplicate samples from two control and four lupus animals. 
Numbers in parentheses indicate standard error.  
   
 

 

 

 

 

 

 

 

 

 

Splenocyte lactate and CO2 production.  The NZB/W model of lupus is 

characterized by chronically activated, autoimmune lymphocytes in the spleen 

(359).  If chronically activated lymphocytes selectively increase aerobic glycolysis 

  % Enrichment* 

 Metabolite Control Lupus 

Plasma 

Lactate 4.2 (1.1) 4.3 (0.7) 

Myristate 8.3 (2.5) 11.3 (0.9) 

Palmitate 1.6 (0.1) 1.46 (0.02) 

    

Spleen 

Lactate 1.9 (0.4) 1.8 (0.2) 

Myristate 13.0 (0.5) 12.8 (1.2) 

Palmitate 1.2 (0.1) 1.2 (0.1) 

Ribose 0.3 (0.2) 0.3 (0.2) 
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and lactate production from glucose (similar to normally activated lymphocytes), 

13C enrichment in the lactate pool of lupus splenocytes is expected to be greater 

than controls.  However, the fraction of lactate containing 13C was 1.9% in both 

groups (Figure 2.7 A, p=0.9), indicating that the relative production of lactate from 

glucose is the same in lupus and control splenocytes.  This finding suggests that 

lupus and control splenocytes have similar rates of aerobic glycolysis. 

 

Figure 2.7.  Splenic lactate and CO2 enrichment from lupus and control 
mice.  A.  Percentage of splenic lactate containing tracer-derived 13C.  B. 

Splenic CO2 containing tracer-derived 13C (13CO2). * p<0.04.  Measurements 
were made in triplicate for each mouse and each data point represents the 
average for a single mouse.   
 
 

The amount of 13C-label in CO2 was 40% higher in the spleens of lupus 

mice compared to controls (Figure 2.7 B, p<0.04).  This finding indicates that 

more 13C-labeled glucose tracer is oxidized in the splenocytes of lupus mice than 

in controls.   
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Isotopomer distribution of splenic lactate and fatty acids. Glucose 

oxidation can occur in either the pentose phosphate cycle, where it produces 

NADPH, or in the TCA cycle, where it drives NADH and ATP production through 

the electron transport chain (362).  We assessed pentose phosphate cycle (PPC) 

activity by measuring carbon-labeling patterns in both lactate and fatty acids 

(363-365).  The fraction of labeled lactate containing one (m1/m) or two (m2/m) 

atoms of 13C indicates cycling through the PPC, while lactate containing 3 atoms 

(m3/m) can be produced from direct glycolysis or the PPC (Figure 2.5, (363-

365)).  Lactate m1/m, m2/m and m3/m do not differ significantly between lupus 

and control spleens (Figure 2.8 A, p>0.2 for each species), arguing that PPC 

activity is similar in both strains.  

 
 

 
 

Figure 2.8.  Splenic lactate and fatty acid isotopomer patterns reflecting 
carbon cycling through the pentose phosphate cycle.  A. Percentage of 
labeled splenic lactate containing 1 (m1), 2 (m2), or 3 (m3) tracer-derived 13C 
atoms.  B. Percentage of labeled splenic palmitate or myristate containing 1 
tracer-derived 13C atom.  Data are from triplicate samples from two control and 
four lupus animals. 
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The analysis of 13C labeling patterns in fatty acids provides a second, 

independent measure of PPC activity.  Glucose-derived carbons are incorporated 

into fatty acids when citrate is exported from the mitochondria and converted into 

acetyl-CoA by ATP-citrate lyase (52).  Acetyl-CoA formed in this manner will 

contain a single tracer-derived 13C only following multiple turns of the PPC 

(Figure 2.8).  Thus, the fraction of a given labeled fatty acid that contains a single 

tracer-derived 13C (m1/m) is indicative of the relative activity of the pentose 

phosphate cycle.  Splenic palmitate and myristate show similar m1/m values in 

both lupus and control mice, which indicates that the ratio of the pentose 

phosphate cycle to glycolysis is the same in both strains (Figure 2.8 B, p>0.2).  

Because both lactate and fatty acid labeling patterns suggest that PPC activity is 

similar in lupus and control splenocytes, the increase in tracer-derived CO2 in 

lupus splenocytes likely results from increased glucose oxidation by the TCA 

cycle. 

Metabolic parameters of chronic lymphocyte activation.  Chronically 

activated lupus splenocytes up-regulate oxidative metabolism rather than 

glycolysis, which is markedly different than the highly glycolytic metabolism 

characteristic of acutely activated lymphocytes (59, 207, 251, 252).  Because 

chronically activated human lymphocytes lose expression of cell surface 

receptors that activate aerobic glycolysis (59, 360), we hypothesized that the 

reliance on OXPHOS observed in lupus splenocytes could result from chronic 

activation.  Recently, a cell culture model of chronic lymphocyte activation was 

described (360, 366), in which human peripheral blood T cells are acutely 
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stimulated with PHA and then repetitively stimulated with irradiated allogeneic 

PBMCs.  Cells become chronically activated and lose expression of CD28, a key 

signaling molecule that is required for activation-induced increased aerobic 

glycolysis (59).  We used this model system to test the hypothesis that, 

compared to acute stimulation, chronic stimulation decreases aerobic glycolysis.  

Acutely stimulated CD8+ or CD4+ T cells have rates of lactate production and 

oxygen consumption (Figures 2.9 and 2.10) higher than rates established for 

unstimulated mouse (206, 245) or human (251) lymphocytes.  However, 

chronically stimulated T cells have rates of lactate production that are 60% lower 

than acutely activated controls, while rates of oxygen consumption are equivalent 

(Figures 2.9 and 2.10).  During both acute and chronic activation, CD8+ T cells 

have higher rates of oxygen consumption and lactate production than CD4+ T 

cells, which may relate to the increased proliferative capacity observed in 

antigen-stimulated CD8+ T cells (367-369).  
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Figure 2.9. Lactate production under conditions of acute and chronic 
stimulation.  CD4 results are from three independent measurements from two 
separate cultures.  CD8 acute is from a single culture.  CD8 chronic is from two 
independent cultures.  Error bar reflects standard deviation in the slope of lactate 
production over time.  

 

 

 

 

 

 

 
 
 
 
 
 

 
Figure 2.10. Oxygen consumption under conditions of acute and chronic 
stimulation.  CD4 results are from one (acute) or three (chronic) measurements 
from two separate cultures.  CD8 results are from three (acute) or four (chronic) 
measurements from three separate cultures. 
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Based on these measurements, ATP production from aerobic glycolysis 

and OXPHOS was calculated (247).  The acutely stimulated T cells meet 50% of 

their demand for ATP through glycolysis, while chronically stimulated T cells 

produce only 20-30% of their ATP through this pathway (Figure 2.11).  As a 

result, OXPHOS meets a greater share of the demand for ATP in the chronically 

stimulated T cells.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.11.  ATP production during acute and chronic stimulation.  ATP 
production from OXPHOS and gylcolysis calculated  as follows:  ATPOXPHOS=5.6 
x O2 consumption (nMoles/(min x 106 cells)) and ATPGlycolysis=lactate production 
(nMoles/(min x 106 cells))+ 0.4 x O2 consumption (nMoles/(min x 106 cells)) 
(142). 
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Discussion 

 Metabolic changes during acute lymphocyte activation. In the absence of 

activating signals, quiescent lymphocytes have low rates of oxidative metabolism 

(207).  For example, resting thymocytes take up glucose at a low rate (0.07 

nMoles/(min x 106 cells)) and oxidize approximately 15% of it into CO2 (63).  ATP 

generated by resting B and T cells is primarily used for housekeeping functions 

including ion pumping and protein synthesis (245, 370).  When activated, 

lymphocytes rapidly increase the activity of ATP-requiring processes such as 

fatty acid and nucleic acid synthesis and calcium signaling (245).  In lymphocytes 

activated by mitogens or stimulatory antibodies, this increased demand for ATP 

is met by increasing aerobic glycolysis (59, 251, 252, 266).  In this pathway, 

glucose carbons are converted to lactate and secreted from the cell rather than 

entering the mitochondria for oxidation (207).  For example, rat thymocytes 

stimulated for 2-3 d with concanavalin A (conA) increase glucose utilization 50-

fold and lactate production 40-80-fold compared to unstimulated cells (62, 63, 

206, 252).  In contrast to resting thymocytes, conA–stimulated thymocytes 

convert only 0.8% of imported glucose into CO2, while 90% is converted to 

lactate (63). 

T cell activation in response to most infectious pathogens is an acute 

process initiated by stimulation of TCRs and co-stimulatory receptors such as 

CD28 (207).  Indeed, it is these stimulatory signals through the TCR and CD28 

that mediate the metabolic changes observed in acutely activated T cells (69).  

When human CD4+ T cells are stimulated by bead-bound anti-CD3 and anti-
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CD28 antibodies, they phosphorylate AKT and increase the expression of 

GLUT1 6-7-fold (59).   These changes are accompanied by a 15-20-fold increase 

in glycolysis and lactate production (59).  However, increased glycolysis and 

lactate production are not observed if the CD28 signal is omitted (59).   

While the ability of CD28 costimulation to increase glucose metabolism 

has been attributed to signaling through AKT (59, 207, 255), recent studies in 

murine CD4+ T cells suggest that AKT-independent processes may also be 

involved (Figure 2.12) (58).  A strong signal (i.e., 5 g/ml of anti-CD3 antibody) 

through the TCR alone increases total cellular levels of GLUT1 by 5-fold, but has 

little effect on cellular glucose uptake (58).  When a strong TCR signal is 

accompanied by either costimulation through CD28 or the expression of a 

constitutively active form of AKT (myristoylated AKT, myrAKT), GLUT1 

expression increases by an additional 30%, but glucose uptake increases 2-3-

fold compared to cells stimulated through the TCR alone (58).  These results 

suggest that, when signaling through the TCR is strong, AKT activation and 

CD28 signaling primarily function to increase the activity or surface localization of 

GLUT1, rather than increasing its total expression (58).  Lowering the strength of 

stimulus through the TCR (i.e., 1 g/ml of anti-CD3 antibody) shows that CD28 

signaling affects glucose metabolism through both AKT-dependent and AKT-

independent pathways.  In the context of a low TCR signal, CD28 stimulation can 

increase total cellular GLUT1, but expression of constitutively active AKT cannot.  

These observations suggest that AKT-independent signaling downstream of 

CD28 can increase GLUT1 expression when TCR stimulation is low, while AKT 
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primarily functions to increase the activity and surface localization of GLUT1 

(Figure 2.12) (58). In addition to regulating activity and surface trafficking, 

activated AKT promotes glycolysis by increasing hexokinase activity (75, 230) 

and enhancing phosphofructokinase activity by phosphorylating and activating 

the regulatory enzyme 6-phosphofructo-2-kinase (82, 231). 

 

 

 

 

 

 

 

 
 
 

 
 
Figure 2.12.  Effects of CD3, CD28 and AKT signaling on GLUT1 expression 
and glycolysis.  Signaling through CD3 stimulates GLUT1 expression, but not 
its surface localization or glucose uptake.  AKT-independent signaling through 
CD28 can augment CD3-mediated increases in GLUT1 expression.  AKT 
functions primarily to increase the activity and surface localization of GLUT1 and 
stimulate glycolytic enzymes such as hexokinase (HK) and phosphofructokinase 
(PFK).  From (58, 69, 82, 231).  
 

While signaling through CD28 and AKT increases T cell glycolysis, 

signaling through negative costimulatory receptors such as PD-1 or CTLA-4 

inhibits glycolytic metabolism in activated T cells.  Signaling through PD-1 

decreases T cell glycolysis by inhibiting the activity of PI3-K, thus decreasing 
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levels of phospho-AKT (255).  Similarly, signaling through CTLA-4 decreases T 

cell glycolysis by increasing the activity of the serine/threonine phosphatase 

PP2A, which dephosphorylates AKT (255).   

Hypoxia-inducible factor 1 (Hif-1) may also play a role in the glycolytic 

metabolism of acutely activated T cells (Figure 2.13).  Mouse T cells stimulated 

with anti-CD3 antibodies for 24 h increase HIF-1 expression 5-15 fold at both 

normoxia (20% O2) and hypoxia (1% O2) (371).  Studies using Hif-1 deficient T 

cells suggest that changes in Hif-1 levels regulate the overall rate of glycolysis 

and determine the fate of glucose-derived carbons in activated T cells.  Indeed, 

murine T cells lacking Hif-1 utilized 2-3-fold less glucose and produced 2-fold 

more lactate following stimulation with anti-CD3 and anti-CD28 antibodies than 

did wild type T cells (372).  Conversely, Hif-1 deficient T cells converted 5-fold 

more glucose into lipid than did wild type T cells (372).  Because glucose-derived 

lipid synthesis requires carbons to enter the mitochondria (52, 53, 78), this 

observation suggests that activated T cells lacking Hif-1 preferentially shuttle 

glucose-derived carbons into the mitochondria, rather than secreting them as 

lactate.  This hypothesis is supported by studies using FL5.12 cells, a non-

transformed IL-3-dependent lymphoid cell line (373).  FL5.12 cells lacking Hif-1  

produce 10-20-fold less lactate and convert 2-3-fold more glucose into lipid than 

wild type cells (372).  Furthermore, Hif-1 deficient FL5.12 cells showed a 2-3-

fold increase in m and a 40-80% increase in O2 consumption compared to wild 

type cells, both of which are consistent with increased carbon entry into the 

mitochondria (372).  These observations are likely due to the ability of Hif-1 to 
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increase the transcription of lactate dehydrogenase (LDH) (74, 374) and its ability 

to inhibit pyruvate dehydrogenase (PDH) by increasing the transcription of PDH-

kinase (PDH-k), which phosphoryates and inhibits PDH (Figure 2.13) (121, 375). 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.13. Hif-1 signaling in activated T cells.  T cells increase Hif1- 

levels following stimulation through the TCR.  Hif1- promotes activated T cell 
glycolysis and lactate production and decreases mitochondrial metabolism.  

These actions are likely due to the ability of Hif1- to increase the activity of LDH 
and inhibit PDH by activating PDH-kinase, which phosphorylates and inhibits 
PDH (74, 121, 371, 372, 374, 375).   

 

 In addition to producing ATP, high rates of aerobic glycolysis supply 

acutely activated T cells with substrates used by the pentose phosphate cycle to 

generate NADPH, which maintains the reducing potential of the cellular 

glutathione pool (50).  Indeed, human lymphocytes stimulated with conA in media 

CD3/TCR Glucose

Pyruvate

Lactate

Hif1-

LDH PDH

PDH-kinase

Mitochondria

TCA cycle

Lipid production

O2 consumption



  

86 

 

containing 11 mM glucose increase glutathione levels by 2-fold over 2-4 d (344).  

Decreasing glycolysis inhibits the ability of cells to produce glutathione and 

detoxify reactive oxygen species (ROS).  For example, decreasing the 

concentration of glucose in media from 10 to 1 mM increases ROS production 3-

fold in rat thymocytes stimulated by conA as measured by luminal 

chemiluminescence (376).  Similarly, culturing astrocytes in media lacking 

glucose decreases reduced glutathione levels by 75% within 12 h, while cells 

grown in media with 5.5 mM glucose maintain glutathione levels within 80-90% of 

initial levels (343).    

Metabolic changes during chronic stimulation.  While it is clear that acutely 

activated lymphocytes dramatically increase glycolysis, the understanding of 

glucose metabolism in chronically activated lymphocytes in the setting of 

autoimmunity is limited.  However, there is indirect evidence that these cells rely 

on mitochondrial metabolism rather than aerobic glycolysis as their principle 

route of ATP synthesis.  Increased ROS and markers of oxidative stress have 

been observed in the serum and tissues of patients with lupus (377), psoriasis 

(337) and RA (336).  For example, the serum of lupus patients contains 30% 

more hydrogen peroxide (H2O2) compared to healthy controls (377). Because 

ROS are generated during oxidative phosphorylation (378), high levels of ROS 

and oxidative stress are consistent with an increased dependence on 

mitochondrial metabolism.  However, because these measurements were made 

in non-lymphoid tissue, they may not directly reflect the metabolism of 

autoreactive lymphocytes.  
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Fortunately, several studies have directly measured ROS and antioxidant 

levels in lymphocytes during SLE.  Studies directly analyzing lymphocytes from 

lupus patients reveal a 20-40% increase in O2
- levels and m compared to 

healthy controls, both of which are consistent with increased OXPHOS (379).  

Furthermore, lymphocytes from patients with active RA and lupus consume 25% 

more oxygen than those from healthy controls (335).  Additionally, T cells from 

patients with SLE have 30% less total cellular reduced glutathione (GSH) than 

cells from healthy controls (339), while T cells from MRL/lpr mice with lupus have 

4-fold less GSH than controls (380).  These observations suggest that the activity 

of glycolysis and the pentose phosphate cycle may be insufficient to maintain 

GSH levels in lupus lymphocytes (50). 

To explore the metabolism of chronically activated lymphocytes in vivo, we 

infused uniformly labeled 13C-glucose into NZB/W mice and measured 13C 

redistribution into products of both aerobic and anaerobic metabolism by GC-MS 

(363).  This technique has been used previously to investigate both oxidative and 

non-oxidative glucose metabolism (361, 363).  Our results indicate that 

splenocytes from 9 month-old NZB/W mice with active lupus up-regulate glucose 

oxidation 40% compared to non-autoimmune controls but appear to have similar 

levels of glucose to lactate conversion and pentose phosphate cycle activity.  It is 

unclear what signaling pathways contribute to increased oxidative metabolism in 

chronically activated lupus splenocytes.  However, T cells from lupus patients 

have a 40% increase in [Ca2+]m (302), which is known to stimulate TCA cycle 

activity leading to NADH production and ROS generation (123, 254, 260).  TCA-
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induced ROS production is presumed to be a consequence of hyperpolarization 

of m (254, 381), a characteristic identified in lupus lymphocytes (379).   

Increased AKT activity could also contribute to increased TCA cycle 

activity in lupus splenocytes.  Splenocytes from both MRL/lpr and B6.Sle1b.lpr 

mice with lupus-like disease have 2-6-fold more phospho-AKT than control 

splenocytes (382, 383).  This observation is noteworthy, as active AKT stimulates 

oxidative metabolism.  For example, mouse embryonic fibroblasts (MEFs) that 

express a constitutively active form of AKT consume 50% more O2 than do 

control cells (232).  This increased oxidative metabolism could be due to the 

ability of AKT to stimulate mTORC1, which can increase mitochondrial 

biogenesis and O2 consumption (247, 384, 385).  Compared to control cells, 

MEFs with constitutively active AKT also showed a 60% increase in ROS as 

measured by the dye dichlorofluorescein (DCF) (232), which becomes 

fluorescent upon its oxidation by a variety of ROS including hydroxyl radicals 

(OH) and H2O2 (386).  Thus, increased AKT activity in lupus lymphocytes could 

contribute to their increased oxidative activity and ROS levels.  Interestingly, the 

expression of constitutively active AKT sensitizes MEFs to apoptosis induced by 

the addition of exogenous H2O2 (232).  This observation suggests that lupus 

lymphocytes might have increased sensitivity to ROS-mediated apoptosis. 

 While lupus splenocytes up-regulate oxidative glucose metabolism, 

lymphocytes responding to normal receptor stimulation primarily rely on 

glycolysis (59, 251, 266).  Since, autoimmune B and T cells are chronically 

activated, we reasoned that the difference in metabolism might arise from 
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differences in the duration of antigen stimulation and the resulting activation.  To 

investigate this possibility, we repetitively stimulated human T cells in vitro to 

generate a chronically activated phenotype characterized by loss of CD28 

expression (366), which mimics the pathologic CD28- lymphocyte subset found in 

several chronic inflammatory diseases including RA and lupus (351, 360, 366).  

These T cells lose CD28 expression due to transcription factor inactivation 

resulting from chronic stimulation (387).  In comparison to the glycolytic 

phenotype observed in T cells in response to acute stimulation, repetitive 

stimulation of CD4 and CD8 decreases lactate production and promotes a 

reliance on oxidative ATP production.  These observations suggest that chronic 

stimulation promotes metabolic adaptations that limit glycolysis and increase 

OXPHOS, which mirrors the metabolic phenotype found in splenocytes from 

lupus mice.  

Possible explanation for differing bioenergetics of acute and chronic 

stimulation.  These observations raise the question of why glycolysis is restricted 

during chronic stimulation.  Chronic stimulation decreases expression of CD28 

and increases the expression PD-1 and CTLA-4 (387-389).  Signaling through 

CD28 activates AKT and increases GLUT1 expression, glucose uptake, and 

lactate production.  Conversely, signaling through PD-1 or CTLA-4 decreases 

AKT phosphorylation and decreases glucose uptake and glycolysis (59, 255).  It 

is possible that loss of CD28 or increased signaling through PD-1 or CTLA-4 due 

to chronic stimulation decrease anaerobic metabolism via reduced signaling 

through this pathway.  However, chronically activated lupus lymphocytes display 
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increased AKT phosphorylation compared to wild type (WT) cells  (383, 390, 

391), and inhibiting the PI3-K/AKT pathway alleviates disease in the MRL/lpr 

model of lupus (382).  Thus, decreased lactate production in chronically activated 

lymphocytes occurs in the context of an active AKT pathway.   

 This observation suggests that chronically activated lymphocytes may 

have low activity of other molecules involved in the regulation of glycolysis.  Hif-

1 is such a candidate, due to its potent ability to stimulate glucose uptake and 

lactate secretion in acutely activated T cells (372).  Importantly, Hif-1 is not 

required for autoimmune responses.  Indeed, mice lacking Hif-1 in their T and B 

cells spontaneously develop a lupus-like phenotype characterized by anti-dsDNA 

antibodies and proteinuria (392).  Furthermore, many of the mitochondrial 

characteristics of lupus lymphocytes, such as increased m and O2 

consumption, are recapitulated when siRNA are used to decrease Hif-1 in IL-3-

stimulated lymphoid cells (372).   

Based on these observations, decreased lactate production in chronically 

stimulated lymphocytes may be due to low Hif-1 activity rather than low 

signaling through AKT (Figure 2.14).  The activities of both Hif-1 and AKT are 

low in unstimulated lymphocytes, and these cells have low rates of glucose 

utilization, lactate production and mitochondrial metabolism (59, 255, 371) 

(Figure 2.14).  Acutely activated lymphocytes have active Hif-1 (371) and AKT 

(59, 255), which leads to high rates of glucose utilization (59, 231).  Most of the 

pyruvate formed in acutely activated lymphocytes is converted into lactate and 

secreted (62).  However, because so much pyruvate is formed, the net entry of 
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pyruvate into the mitochondria is increased in acutely activated lymphocytes 

compared to unstimulated cells (123).  Chronically activated lymphocytes are 

proposed to have active AKT, but not Hif-1.  This combination of signaling 

pathways results in a net utilization of glucose that is increased compared to 

unstimulated cells, but lower than the glucose utilization of acutely activated cells 

(Figure 2.14).  However, the proposed lack of active Hif-1 in chronically 

stimulated lymphocytes directs the majority of pyruvate into the mitochondria and 

flux through LDH is low.  Confirmation of this model will require the direct 

assessment of AKT and Hif-1 activity in acutely and chronically stimulated 

lymphocytes. 

This model is consistent with our observations of low lactate production 

and increased mitochondrial metabolism observed in chronically activated 

lymphocytes.  While it is clear that lupus lymphocytes have increased AKT 

activity, it is unclear if chronically-activated, CD28- human T cells have high 

levels of phospho-AKT.  While signaling through CD28 is a well characterized 

pathway to increase phospho-AKT in T cells (59), several CD28-independent 

pathways also increase phospho-AKT.  Indeed, stimulation with the cytokine IL-2, 

which is present in chronic-stimulation cell culture conditions, increases AKT 

phosphorylation in cell lines and primary T cells (393, 394).  It is possible that 

cytokine signaling maintains phospho-AKT levels in CD28- T cells.   

In summary, our data show that splenocytes from autoimmune mice with 

active disease along with chronically stimulated human T cells, which model 

pathogenic autoimmune lymphocytes, rely on OXPHOS for a greater share of 
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ATP synthesis than lymphocytes acutely responding to receptor stimulation.  

These findings suggest that modulating OXPHOS should have therapeutic 

effects against autoimmune diseases.  In support of this hypothesis, Bz-423, a 

small molecule that modulates the FoF1-ATPase leading to redox-regulated 

apoptosis, has robust efficacy in models of autoimmune disease with minimal 

effects on normal immune function (169, 395).  Its ability to treat autoimmune 

disease while sparing normal immune functions may result from differences in 

the metabolism and redox balance between autoimmune, resting and acutely 

activated lymphocytes.  Thus, measurement and manipulation of glycolytic and 

oxidative metabolism warrant further investigation as novel diagnostic and 

therapeutic strategies for immune disorders.   
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Figure 2.14.  Model of AKT and Hif-1 signaling and glucose metabolism in unstimulated, acutely 
stimulated and chronically stimulated lymphocytes.  Details of the model are provided in the text. 
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Materials and Methods 

Lupus mice and tracer administration.  9-mo old autoimmune female 

NZB/W (Lupus; n=4) and age-matched healthy female Balb/c (Control; n=2) mice 

were purchased from Jackson Laboratories and cared for according to the 

Guidelines for Laboratory Animal Medicine at the University of Michigan.  The 

number of mice used is consistent with the literature standard of 3-5 for similar 

isotopomer studies (357, 396-398).  Mice were fasted for 24 hours prior to tracer 

administration to normalize energy stores.  Uniformly labeled 13C-glucose (50 

mg, Cambridge Isotope) was dissolved in water (200 L) and administered as a 

continuous infusion (8 L/h) using a subcutaneously implanted Alzet osmotic 

minipump for 6 h.   

Sample preparation. After 6 h tracer administration, animals were 

euthanized and blood samples were collected by cardiac puncture and spleens 

were harvested and frozen at -80C.  Samples were shipped to SiDMAP (Los 

Angeles, CA) and derivitization and gas chromatography-mass spectrometry 

(GC-MS) were performed as described (399).  Lactate was isolated from HCl 

acidified tissue homogenate or plasma with ethyl acetate and derivatized to its n-

propylamide-heptafluorobutyric ester for GC-MS analysis.  Fatty acids were 

extracted from plasma or tissue using petroleum ether and methylated with 

methanolic-HCl for GC-MS analysis.  CO2 was obtained by adding concentrated 

HCl to tissue or plasma and directly analyzed by GC-MS.   
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Gas chromatography/mass spectrometry (GC/MS).  A HP5973 mass 

selective detector and a HP6890 gas chromatograph were used to collect mass 

spectral data.  The settings were as follows: GC inlet 250 C, transfer line 280 

C, MS source 230 C, MS Quad 150 C.  An HP-5 capillary column was used for 

lactate analysis. 

Cell Culture.  Peripheral blood mononuclear cells (PBMCs) were isolated 

from healthy donors and CD4+ or CD8+ subsets were isolated using magnetic 

beads (Miltenyi Biotec, Auburn, CA, USA) according to the manufacturer’s 

protocol yielding purities above 95%.  Cells were initially stimulated with 

phytohemagglutinin (PHA; 1g/mL) and were cultured in complete RPMI media 

supplemented with IL-2 (10ng/mL; PeproTech, Rocky Hill, NJ, USA).  Cells were 

restimulated weekly with irradiated allogeneic PBMC at a ratio of 1 stimulator cell 

to 2.5 responder cells as described (366).  For CD8+ and CD4+ cultures, acute 

stimulation measurements were made 1 and 3 weeks after beginning culture, 

respectively.  Chronic stimulation measurements were made 5 weeks after 

beginning culture when the cells were typically ~50% CD28-. 

Oxygen Consumption and Lactate Production. Cells were resuspended at 

~5 x 106 cells/mL in complete RPMI media and analyzed at 37 C using a Clarke 

electrode.  Cells were treated with oligomycin (1-2 g/ml) to confirm that oxygen 

was being consumed for ATP synthesis.  To measure lactate production, cells 

were washed and resuspended in DMEM (5-15 x 106 cells/mL) and aliquots were 

quenched at four time points over 2-3 hours using perchloric acid (0.6 M).  After 

removal of cellular debris and neutralization with NaOH, lactate concentrations at 
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3 time points were determined by incubating aliquots of sample (10-20 L) with 

lactate dehydrogenase (LDH; 1 L) and glutamate-pyruvate transaminase (0.375 

L; Sigma Aldrich) in buffer (230-240 L) containing glutamate (116 mM) and 

NAD (0.96 mM) at pH 8.9.  Lactate levels were determined using a standard 

curve by monitoring absorption at 340 nM and the rate of lactate production was 

calculated as a function of time and cell concentration (142).  ATP production 

was calculated as ATPOXPHOS=5.6 x O2 Consumption and ATPGlycolysis=Lactate 

Production + 0.4 x O2 Consumption (142) 

Data Analysis. GC/MS spectra were analyzed to determine 13C 

enrichment as described (400).  Mass spectral data were generated using three 

independent injections per animal sample.  13C enrichment in CO2 was compared 

to a standard breath and reported as 13CO2, which equals [(13C/12C 

sample)/(13C/12C standard)-1]x103 (401).  Enrichment in other metabolites is 

reported as % enrichment or mx/m, where mx is defined as the fraction of a 

given metabolite containing x tracer derived carbons and m is the sum of all mx 

for a given metabolite.  Thus, mx/m equals the fraction of total labeled 

metabolite (m) that contains x tracer-derived carbons.  The distribution of tracer-

derived 13C into glucose-derived metabolites was analyzed according to the 

schematic diagramed in Figure 2.5.  Unless otherwise noted, error bars indicate 

standard error.   Statistical analysis was performed using the Student t test for 

unpaired samples.  p<0.05 was considered significant.   
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CHAPTER 3 

 

METABOLISM OF ALLOREACTIVE DONOR T CELLS DURING GVHD 

 

 

 

Introduction 

 

Hematopoietic stem cell transplant and immune system reconstitution. 

Hematopoietic stem cell transplant (HSCT) is a procedure primarily used to treat 

malignant diseases of the immune system (Figure 3.1) (402).  Over 17,000 

HSCTs were performed worldwide in 2005, most commonly as a treatment for 

acute myelogenous leukemia (AML; over 6,000 transplants) or acute 

lymphoblastic leukemia (ALL; over 3,000 transplants) (402).  The steps of a 

successful HSCT include conditioning of the recipient, transfusion of donor stem 

cells into the recipient, and post-transplant therapy (47).  Together, these steps 

serve to cure any underlying malignancy, ensure engraftment of the donor 

immune system within the recipient, and minimize the incidence and severity of 

any immune-mediated graft-versus-host reaction (47). 

Prior to transplantation, HSCT recipients undergo preparative 

conditioning, which eliminates malignant cells involved in the underlying disease 

and induces immunosuppression to allow graft acceptance (Figure 3.1) (403).  

Conditioning regimens involve a combination of total body irradiation (TBI) and 

cytotoxic chemotherapeutics including etoposide, busulfan, cyclophosphamide 
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and cytosine arabinoside and are termed myeloablative when given at levels that 

eradicate the host hematopoietic system (404).  Stem cells are harvested either 

directly from the donor's bone marrow or from the donor's peripheral blood 

following treatment with granulocyte-colony stimulating factor (G-CSF), which 

induces stem cells to migrate from the bone marrow to the blood stream, and are 

then transfused into the conditioned recipient (405). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.  Hematopoeitic stem cell transplant.  Transplant recipients (red) 
undergo preparative conditioning, which eliminates the host immune system 
(solid red).  Stem cells harvested from donors (blue) are transplanted into 
conditioned recipients.  The result of the transplant is a recipient (red outline) with 
a donor-derived immune system (solid blue) (47, 403, 404). 
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Immediately following myeloablative transplant, recipients undergo a 

period of severe immunodeficiency during which the host immune system is 

eliminated while infused donor stem cells proliferate and differentiate to 

repopulate the host in a process termed engraftment (Table 3.1) (406-409).  

Neutrophil levels drop from a normal range of 3-6 x 109 cells/liter (410) to nearly 

undetectable levels during this immunosuppressive period, and their recovery is 

one of the first signs of engraftment (406, 407).  The rapid proliferation of 

neutrophils and neutrophil precursors is stimulated by the cytokine G-CSF (411), 

and treatment with this cytokine accelerates engraftment following transplant 

(412).  Recipient B and T cell levels also drop as a result of myeloablative 

conditioning, and their recovery can take 1-2 years (413).  T cell repopulation 

occurs from homeostatic (i.e., antigen-independent) proliferation of mature T 

cells present in the graft and from maturation of T cells in the thymus following de 

novo generation from the engrafted bone marrow, processes which are both 

stimulated by the cytokine interleukin 7 (IL-7) (414).    

 

Table 3.1.  Immune system recovery following HSCT.  From (408, 409). 

Cell Type Estimated Recovery Time 

Neutrophils 10-20 d 

Monocytes 1 mo 

CD4+ T cells 1-2 yr 

CD8+ T cells 1 yr 

B cells 6 mo 

Dendritic cells 6 mo 
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During the post-transplant period, HSCT patients are at increased risk for 

infection in part due to their severe leukopenia.  Approximately 15-50% of HSCT 

patients develop bacterial infections within 30 d of transplant (415, 416).  Such 

infections are often caused by gram-positive organisms such as Streptococcus 

viridans, Staphylococcus aureus, S. epidermidis, as well as gram-negative 

organisms such as Escherichia coli, Klebsiella, and Pseudomonas species (415, 

416).  Fungal infections are also common early post-transplant (415, 416).  A 

study examining fungal infections post-transplant over a 10 yr period from 1986-

96 documented that 12% of pediatric HSCT recipients developed invasive 

Candida or Aspergillus infections, which were lethal in 66% of cases (417).  

Patients treated with high dose methylprednisone (0.25-1 g/day) had a 15-fold 

increased risk of fungal infection compared to those receiving low doses (2 

mg/kg/day), possibly due to the immunosuppressive characteristics of 

glucocorticoids (417).  Viral infections early post-transplant are usually due to the 

herpes simplex virus (HSV) (415, 416).  HSV is typically dormant in 

immunocompetent individuals, but becomes reactivated in approximately 80% of 

HSV-positive HSCT patients and typically presents as inflammation of the mouth 

and gums (gingivostomatitis) (418). 
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Table 3.2.  Common infections at early timepoints post-HSCT.  From (415-

418) 

 

Type of Infection  Organism  

Gram-positive bacteria S. Viridans S. aureus S. epidermidis 

Gram-negative bacteria E. coli Klebsiella Pseudomonas 

Fungus Candida Aspergillus  

Virus HSV   

 

 

Graft-versus-host disease.  In addition to containing stem cells to 

repopulate the host immune system, HSCT grafts frequently contain donor T 

cells (47, 48).  While the presence of T cells in HSCT grafts decreases infection 

rates and helps eliminate residual disease (graft-versus-leukemia effect) (419), 

these cells are also capable of causing graft-versus-host disease (GVHD)  (47, 

48).  The development of GVHD requires mature T cells in the graft, a recipient 

who cannot reject the T cells, and the expression of antigens in the recipient not 

present in the donor (48, 420).  Donor T cells proliferate in response to foreign 

recipient peptides in the context of antigen presenting cells (APCs), produce Th1 

cytokines such as IFN-, and differentiate into cytotoxic T lymphocytes (CTLs) 

(Figure 3.2).  CTLs mediate tissue damage culminating in clinical GVHD 

characterized by damage to the skin, liver and gastrointestinal tract (48), and 

these effects are enhanced by the tissue damage and cytokine release that 

accompanies recipient conditioning (Figure 3.2) (421).  Despite these negative 

consequences, eliminating T cells from the graft does not improve patient 

survival following HSCT (422, 423).  This observation underscores the beneficial 
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effects of T cells during HSCT, which include decreased infection rates, improved 

engraftment, and the elimination of residual disease (422, 423). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.  GVHD Pathogensis. (1) Conditioning damages host epithelial cells 

resulting in cytokine production and LPS entry into the bloodstream, which 

activates host APCs and macrophages.  (2) Donor T cells are activated by 

foreign alloantigen and costimulatory molecules on host APCs and polarize 

towards a Th1 cytokine profile.  (3) Donor T cells mature into CTLs and, together 

with activated macrophages, mediate host tissue damage through cyotoxic 

cytokine production and granzyme B/FASL pathways.  Adapted from (48). 
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 Alloantigen recognition.  APCs present peptides to T cells in the context of 

major histocompatibility complex (MHC) molecules on the cell surface (1). Class I 

MHC molecules are expressed on all nucleated cells and present intracellular 

antigen to CD8+ T cells, although extracellular antigen can also be presented by 

class I MHC molecules in a process termed cross presentation (24).  Class II 

MHC molecules are primarily expressed by "professional" APCs (dendritic cells, 

B cells and macrophages), which sample the extracellular environment and 

present these peptides to CD4+ T cells on class II MHC molecules (23).  GVHD 

can occur when donor T cells directly recognize MHC molecules as foreign, 

termed a major histocompatibility mismatch (Figure 3.3) (424).  When donor and 

recipient have identical MHC molecules, donor T cells recognize foreign recipient 

polymorphic peptide fragments (minor histocompatibility antigens, miHAs) 

presented on matched MHC molecules.  This type of reaction occurs due to 

genetic diversity between donor and host and is termed a minor 

histocompatibility mismatch (424).   

The type of mismatch present can have a dramatic effect on the overall 

success of HSCT.  A 2007 study showed that of 334 patients undergoing 

myeloablative transplant between 1993-2003, 54% had developed acute GVHD 

(grade II or higher) (425).  Recipients receiving MHC-matched (6 out of 6 alleles) 

transplants had a 41% survival rate 3 yr after transplant, while those receiving 

transplants with > 1 allelic mismatch had only a 23% survival rate (425). 
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Figure 3.3.  Major and minor MHC mismatches.  In a minor mismatch (left), 

the donor and host MHC molecules are matched and donor T cells recognize 

polymorphic antigens (yellow) in the context of matched MHC (blue).  In a major 

mismatch (right), donor T cells recognize mismatched MHC molecules (yellow). 

Adapted from (424). 

 

 

Role of APCs in GVHD.  APCs play a critical role in GVHD as they are 

responsible for the initial activation of donor-reactive T cells (48, 424).  When 

host APCs are eliminated by infusing mismatched NK cells, donor T cells are no 

longer capable of mediating disease (426).  This conclusion is further supported 

by experiments showing that eliminating host MHC I or MHC II on APCs 

abrogates CD8 or CD4-mediated GVHD, respectively (427, 428).  Interestingly, 

this study showed that lethal GVHD does not require MHC II expression on host 

epithelium, indicating that direct T cell receptor (TCR)/MHC II interactions are not 

necessary during the effector phase of CD4-mediated, MHC class II mismatched 
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GVHD (428).  Of the several types of professional APCs, dendritic cells (DCs) 

are likely the most important for GVHD initiation, as their infusion (but not that of 

LPS-activated B cells) is sufficient to induce GVHD in allogeneic transplant 

recipients that otherwise lacked MHC II on APCs (429).    

 T cell activation and signaling during (allo)antigen stimulation.  During 

GVHD, signaling through the TCR, costimulatory receptors and cytokine 

receptors causes T cells to proliferate, secrete proinflammatory cytokines and 

differentiate into effector T cells (Figure 3.4) (430).  TCR signaling causes ζ-

chain-associated protein of 70 kDa-(ZAP-70)-mediated linker-of-activated T cells 

(LAT) and SH2 domain containing leukocyte protein of 76kDa (SLP-76) 

phosphorylation, which results in phospholipase-C- 1 (PLC1) activation.  PLC1 

hydrolyzes phosphatidylinositol-3,5-bisphosphate, which causes an increase in 

diacylglyceride (DAG) and inositol-1,4,5-triphosphate (IP3) levels (430).  DAG 

activates protein kinase C- (PKC), an important activator of nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-B), whose deletion reduces 

GVHD in several models (431).  DAG also activates the GTPase Ras, which 

initiates signaling through the mitogen-activated protein kinase (MAPK) pathway 

resulting in extracellular signal-regulated kinase 1 (ERK1) and ERK2 activation 

(430).  Activated ERK1 and ERK2 stimulate the activities of activator protein 1 

(AP-1) and signal transducer and activator of transcription 3 (STAT3), both of 

which promote gene transcription in activated T cells (430).  ERK1 and ERK2 

become phosphorylated during GVHD, and their inhibition with a small molecule 

results in decreased alloresponses in vitro (432).  
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Figure 3.4.  Overview of T cell signaling in allo responses.  Summary of 

downstream mediators of TCR, costimulatory and cytokine signaling in donor T 

cells in GVHD. See text for details.  * indicates that inhibition or genetic deletion 

of the indicated molecule will reduce GVHD according to (431-441).  
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transcription factor nuclear factor of activated T cells (NFAT), allowing it to enter 

the nucleus and, in coordination with AP-1 and NF-B, promote transcription of 

genes important in T cell activation such as IL-2 (430).  The importance of this 

pathway in GVHD is emphasized by the fact that calcineuirin inhibition with 

tacrolimus (FK-506) or cyclosporine is standard treatment for GVHD prophylaxis 

in patients receiving HSCT (433, 441).   

 APCs also express Ig-containing costimulatory molecules such as CD80 

and CD86, which serve to provide a second stimulatory signal to T cells (442). 

Ligation of T cell CD28 by CD80 or CD86 phosphorylates the intracellular tail of 

CD28 and activates the Tec kinases ITK and TEC (34).  This kinase activation 

potentiates TCR-signaling through PLC1 (443) and the guanine-nucleotide 

exchange factor (GEF) VAV1, which increases TCR-dependent activation of 

NFAT and NF-B (444).  CD28 phosphorylation also recruits PI3K to the plasma 

membrane through interactions with its p110 subunit (Figure 3.4) (430).  The p85 

subunit of PI3K catalyzes the formation of PIP3, which then recruits AKT and its 

activator PDK-1 to the plasma membrane via their pleckstrin homology (PH) 

domains (430).  Activated AKT has numerous targets and promotes the nuclear 

localization of NF-B and NFAT, thereby promoting activated T cell gene 

transcription (34).  In addition to enhancing TCR-mediated gene transcription, 

costimulation also enhances T cell glycolysis in a PI3K/AKT-dependent fashion 

(231) and has anti-apoptotic effects mediated by increased BCL-XL expression 

and inhibition of Bax activation (75, 445).   
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When CD80 and CD86 are genetically deleted on host and donor APCs, 

disease fails to develop in a model of CD4+-dependent MHC-matched GVHD 

(438).  Similarly, blocking costimulatory interactions by using antibodies directed 

against CD80 and CD86 (439) or blocking CD28 with CTLA4-Ig (440) improves 

both mortality and weight loss in MHC-mismatched models of GVHD.  These 

data indicate that costimulatory signals through CD28 are critical for GVHD 

pathogenesis.     

 Cytokines such as IL-2 and IL-6 also play a role in T cell activation during 

GVHD (Figure 3.4) (435, 436).  IL-2 is produced by activated T cells as a result of 

NFAT, AP-1 and NF-B activation (430).  IL-2 signals through the heterotrimeric 

IL-2 receptor (IL-2R), composed of IL-2R (CD25), IL-2Rb (CD122) and the 

common gamma chain (c, CD132), which leads to activation of the PI3-K/AKT, 

MAPK and STAT5 signaling pathways (446).  The importance of these signaling 

pathways in GVHD pathogenesis is emphasized by studies showing that IL-2R 

blocking antibodies can improve survival, weight loss and skin pathology in a 

model of MHC-matched GVHD (434).  Clinical trials with similar agents have 

given mixed results in humans (435), likely due to suppressive effects on 

regulatory T cells, which also express high levels of IL-2R (447).  IL-6 is 

produced by a variety of cell types including epithelial and lymphoid cells, and its 

levels rise dramatically following recipient conditioning (421, 436, 448) due to 

increases in pro-inflammatory mediators such as tumor necrosis factor (TNF)-, 

IL-1, and lipopolysaccharide (LPS).  IL-6 signals through the STAT3 pathway to 
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induce inflammatory gene transcription (449), and blocking the IL-6 receptor 

(436) or inhibiting STAT3 directly (432, 437) reduces GVHD. 

 T cell differentiation and effector functions in nonirradiated GVHD.  In 

specific mouse models of GVHD (parent into F1, P→F1), parental donor cells 

can induce GVHD in unconditioned F1 recipients (47).  In the B6→B6D2F1 

model, donor T cells express the H2b MHC haplotype (450).  Because MHC gene 

expression is codominant (23), the F1 offspring (B6D2F1) of B6 (H2b) and DBA/2 

(H2d) parents have the combined H2b/d haplotype.  Donor B6 T cells then 

recognize foreign H2d expression and react against the mismatched host MHC 

class I and II molecules (Figure 3.5) (451).  Host T cells recognize both H2b and 

H2d as “self” and thus cannot reject the H2b donor T cells, which eliminates the 

need for conditioning (451).  Because donor T cells lack H2d MHC class I (H2Kd, 

H2Dd) expression, NK-mediated hybrid resistance can be a concern if insufficient 

numbers of donor T cells are used (452, 453). 
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Figure 3.5.  Alloantigen recognition in Parent into F1 GVHD models.  Parent 

T cells (left) recognize mismatched MHC molecules on F1 APCs (yellow) that are 

derived from the second parental strain as foreign. The opposite reaction (right) 

does not occur, because F1 T cells recognize MHC molecules from both parental 

strains (i.e, both yellow and blue) as self. 
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significantly reduced by administration of CTLA4-Ig, which blocks signaling 

through CD28 (458).  As donor T cells proliferate in this model, they secrete the 

proinflammatory cytokines IL-2 and IFN-, which promote a Th1-polarized cell-
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regulate the surface expression of FASL, which ligates FAS receptors on target 

cells and induce apoptosis through a caspase-8 mediated pathway (460).  CTLs 

can also induce apoptosis through the perforin/granzyme B pathway in which 

secreted perforin forms pores in target cells allowing secreted granzyme B to 

enter and induce apoptosis by activating caspase-3 (15).  Both of these 

pathways are important for nonirradiated GHVD pathogenesis as genetically 

deleting either FASL (461) or perforin (462) in donor T cells significantly reduces 

lysis of host cells, although the FASL pathway may predominate in other models 

of GVHD (463).  During nonirradiated GVHD, CTLs up-regulate chemokine 

receptors such as CXCR6, which allow them to traffic to target tissues such as 

the liver (464) and the bone marrow (461), where they induce liver damage and 

lethal marrow hypoplasia (453, 461, 464).  

Glycolysis and GVHD.  During GVHD, donor T cells proliferate, secrete 

cytokines and differentiate into CTLs.  Because these processes require the 

synthesis of biomolecules and the expenditure of ATP, it is expected that donor T 

cells will up-regulate their cellular metabolism during GVHD (207).  Over the past 

40 years, studies on T cells stimulated with mitogens and agonistic antibodies 

have suggested that activated T cells rely primarily on glycolysis to meet their 

metabolic needs (207); however, the relative importance of glycolysis and 

OXPHOS have not been investigated in GVHD or other immune-mediated 

diseases.  Because inhibiting aerobic glycolysis has been suggested as a 

therapeutic strategy in treating diseases mediated by activated T cells (104, 207), 
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it is important to determine the extent to which this pathway is used in diseases 

such as GVHD. 

As discussed in Chapter 1, costimulation through CD28 up-regulates 

glycolysis in activated T cells by activating AKT, and increasing the expression 

and surface localization of glucose transporter 1 (GLUT1) (58, 59). Costimulatory 

signaling plays an important role in T cell activation in both irradiated and 

nonirradiated models of GVHD.  In the nonirradiated B6F1 model, the 

importance of costimulation was investigated with CTLA4-Ig, which binds CD80 

and CD86 thereby preventing signaling through CD28 (458).  CTLA4-Ig 

administration on d2, d5 and d7 decreased donor T cell expansion 4-6 fold and 

decreased serum IFN- 4-fold as measured 14 d after transplant (458).  Similarly, 

genetic deletion of CD80 and CD86 on APCs improved survival and weight loss 

in an irradiated MHC-matched model of GVHD (438).  These findings indicate 

that signaling through costimulatory pathways are important for donor T cells to 

mediate GVHD and would suggest that donor T cells might rely on aerobic 

glycolysis in vivo.  

 While signaling through CD28 increases glycolysis in T cells, signaling 

through PD-1 or CTLA-4 inhibits glycolysis (59, 255).  Both the PD-1 and CTLA-4 

signaling pathways are active during GVHD (465-467).  For example, GVHD is 

worsened when PD-1 signaling is blocked by neutralizing antibodies or by using 

donor T cells that lack the PD-1 receptor (465, 466) or when CTLA-4 signaling is 

blocked by neutralizing antibodies (467).  These findings suggest that inhibitory 

signals through PD-1 and CTLA-4 help control donor T cells during GVHD.  
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Together, these observations suggest that the activity of donor T cells in GVHD 

is influenced by costimulatory signals, which stimulate aerobic glycolysis, and 

inhibitory signals, which inhibit glycolysis.  Hence, it is difficult to determine a 

priori the role of aerobic glycolysis in alloreactive donor T cells.   

Evidence for increased aerobic glycolysis in disease-causing T cells in 

vivo comes from studies using positron emission tomography (PET) imaging.  

Increased uptake of the glucose analog 2-[18F]-Fluoro-2-deoxy-D-glucose (FDG) 

has been detected in the lymph nodes of patients with lupus (468), the spinal 

cord of mice with experimental autoimmune encephalitis (469), and the intestine 

of mice and patients with GVHD (470).  However, these studies cannot identify 

which cells at sites of inflammation are taking up the tracer.  Furthermore, the 

FDG tracer used in PET studies cannot be metabolized past the proximal 

(hexokinase) step of glycolysis (209).  Therefore, FDG-PET does not distinguish 

between the oxidative (i.e. OXPHOS) or nonoxidative (i.e., glycolysis) breakdown 

of glucose in those cells (Figure 3.5).  Due to the ambiguities of FDG-PET data, 

direct measurements of OXPHOS and glycolysis in alloreactive donor T cells are 

necessary to understand the metabolic pathways used by these cells as they 

mediate GVHD.   

 OXPHOS and GVHD.  T cells activated in vitro primarily rely on high rates 

of aerobic glycolysis, but maintain their ability to proliferative and synthesize 

cytokines when glycolysis is inhibited by using oxidative phosphorylation 

(OXPHOS) as their primary energy source (Chapter 1) (58, 59, 257).  This 

flexibility is problematic when attempting to predict the extent to which 
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alloreactive donor T cells use OXPHOS in vivo.  Furthermore, the little data that 

exists regarding oxidative metabolism in activated T cells in vivo is indirect.  

Antigen-specific CD8+ T cells responding to lymphocytic choriomeningitis virus 

(LCMV) 5 d after infection increase their mitochondrial membrane potential (m)  

5-fold as measured by the potentiometric dye DiOC6.  m returns to baseline 

levels by d 8, when virus has been cleared (471) but remains elevated when a 

chronic strain of the virus is used, suggesting that this increase is due to antigen 

stimulation of the TCR receptor, possibly due to Ca2+-mediated activation of the 

TCA cycle (254).  While an increase in m LCMV-specific T cells also showed a 

3-fold increase in dihydroethidium (DHE) fluorescence 5 d after infection with 

LCMV, suggesting increased O2
- levels in responding T cells (471).  Similar 

increases in m and reactive oxygen species (ROS) production are seen in 

autoimmune T cells in lupus (Chapter 2) (472), again suggesting that activated T 

cells can increase OXPHOS in vivo.  In other work, it was found that peripheral 

blood mononuclear cells (PBMCs) from patients with active rheumatic disease 

consume O2 25% faster than healthy controls, while PBMCs from patients with 

active infectious disease show a 30% increase in respiration (335).  However, 

none of these studies investigated glycolytic metabolism in conjunction with their 

measurements of m, ROS levels or respiration.  Without such measurements, 

it is difficult to determine the relative importance of OXPHOS and glycolysis in 

these different settings.  Indeed, in pancreatic b cells, increased glucose 

metabolism is associated with an increased m (362).  However, in mammary 

tumor cells, decreased glucose metabolism (achieved by siRNA-mediated 
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inhibition of lactate dehydrogenase) is associated with decreased m (243).  

Regardless of the relative utilization of glycolysis and OXPHOS, these data 

suggest that OXPHOS may play a role in fueling alloreactive donor T cell 

responses in vivo (433).   

Further evidence suggesting increased OXPHOS in alloreactive donor T 

cells comes from the importance of Ca2+ signaling in T cells during GVHD.  

Inhibiting Ca2+ signaling with tacrolimus or cyclosporine is frequently used for 

GVHD prophylaxis (discussed further in Chapter 4) and suggests that 

alloreactive donor T cells may exhibit increased Ca2+ signaling during GVHD 

(441, 473).  Because Ca2+ signaling in activated lymphocytes activates pyruvate 

dehydrogenase (123) and increases NADH production (254), these observations 

suggest that alloreactive donor T cells may up-regulate OXPHOS.   

Recent data suggest that cytokine signaling might also be related to 

OXPHOS in activated T cells.  STAT3 activation is important for GVHD 

pathogenesis (Figure 3.4) (432, 437), and activated STAT3 was recently 

discovered to play an important role in OXPHOS by interacting with and 

stimulating complex I of the mitochondrial respiratory chain (474).  This finding 

suggests that oxidative metabolism in GVHD-causing donor T cells could be 

related to cytokine stimulation as well as Ca2+ signaling.  Thus, while existing 

data suggest that mitochondrial metabolism will be increased in alloreactive 

donor T cells, direct experimental measurements are needed to explore the 

importance of this pathway in GVHD. 
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 Energy production of non-T cells in the immune system.  While evidence 

exists for both OXPHOS and glycolytic energy production in antigen-stimulated T 

cells, hematopoietic stem cells (475), granulocytes such as neutrophils (476), 

and T cells proliferating in response to cytokine-stimulation (224, 477) primarily 

rely on increased glycolysis to generate their energy.  Proteomic analysis of 

primitive Lin- c-Kit+ Sca-1+ (LSK+) stem cells shows increased levels of glycolytic 

enzymes such as glyceraldehydes-3-reductase, pyruvate kinase, and lactate 

dehydrogenase compared to less primitive Lin- c-Kit- Sca-1- cells (475).  

Furthermore, these primitive LSK+ cells have a 5-fold increase in GLUT1 as 

determined by fluorescence microscopy and produce 5-fold more lactate when 

cultured ex vivo compared to LSK- cells (475).  A reliance on glycolytic energy 

production is important for stem cell function, as activating mitochondrial 

biogenesis and ROS production by deleting tuberous sclerosis complex 1 (TSC1) 

and activating the mTOR pathway results in reduced hematopoietic function 

(478).   

 In the absence of antigen stimulation, T cells can proliferate when 

stimulated by cytokines.  IL-7 is an important mediator of T cell differentiation and 

proliferation in the thymus and it is the major factor governing homeostatic 

proliferation of mature T cells in the periphery (224, 414, 477).  IL-7 stimulation 

activates AKT through the STAT5 pathway and causes a 2-fold increase in 

surface GLUT1 expression and glucose uptake in naïve and activated T cells 

(224, 477).  Unlike TCR stimulation, IL-7-mediated stimulation has not been 

linked to Ca2+ signaling and IL-7-related changes in oxidative metabolism have 
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not been investigated.  Additionally, stimulation of T cells with other cytokines (IL-

2, IL-17 or IL-15) does not increase mitochondrial mass or cause m 

hyperpolarization (264), suggesting that cytokine stimulation in the absence of 

TCR activation may lead selectively to increased glycolysis. 

Neutrophils cultured directly ex vivo or stimulated to induce phagocytosis 

produce lactate at a fast rate (1.3 nMoles lactate/(min x 106 cells)), and this 

correlates with a high rate of glucose uptake (0.84 nMoles glucose/(min x 106 

cells))  (479).  Both of these values are > 10-fold higher than rates reported in 

resting thymocytes (62, 206).  In human neutrophils, complexes I, III and IV of 

the respiratory chain do not associate into the higher order supercomplexes that 

are characteristic of mitochondria from tissues such as the heart or PBMCs (480, 

481).  Treatment with rotenone or sodium azide, which inhibit complexes I and IV 

of the mitochondria respectively, have no effect on neutrophil ATP levels, while 

the glycolytic inhibitor sodium iodoacetate reduces neutrophil ATP levels by more 

than 90% following 6 h of treatment (476).  Thus, high rates of glycolysis in 

neutrophils may result from an inability to synthesize ATP through their 

mitochondria.  Together, these data show that a high rate of OXPHOS is not a 

uniform characteristic of all activated cells of the immune system and suggest 

that repopulating granulocytes and homeostatically proliferating T cells may rely 

on glycolysis in the setting of HSCT. 

   ROS, antioxidants and GVHD.   ROS are formed from numerous sources 

including complexes I and III of the mitochondrial respiratory chain (131, 154), 

cytosolic peroxisomes (482), and neutrophils and macrophages during the 
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respiratory burst (483).  While ROS can oxidize cellular proteins, lipids and 

nucleotides, such reactions are inhibited by antioxidants such as glutathione, 

catalase, manganese superoxide dismutase (MnSOD), copper/zinc-superoxide 

dismutase (Cu, Zn-SOD) and pyruvate (177, 180, 191, 193, 195, 197, 200).  

Hence, accumulation of ROS and markers of ROS oxidation, termed oxidative 

stress, can indicate an imbalance between ROS production and their 

detoxification by antioxidants (191, 193).    

Following allogeneic HSCT, patients have a 2-fold and 1.5-fold increase in 

plasma malondialdehyde (MDA) and nitric oxide, respectively, two markers of 

oxidative stress (484, 485).  Compared to healthy controls, transplant recipients 

also have significantly decreased activities of important plasma antioxidant 

enzymes, including total superoxide dismutase (65% decrease), catalase (CAT, 

30% decrease) and glutathione peroxidase (20% decrease) (485).  However, no 

relationship was observed between decreased antioxidant activity and the 

development of GVHD (485). 

Increased oxidative stress is also observed in mice suffering from GVHD.  

The lungs of mice with GVHD have increased MDA and a decreased ratio of 

reduced to oxidized glutathione (486).  Additionally, the livers of mice with GVHD 

have decreased total levels of glutathione (486).  However, this study did not 

include conditioned animals transplanted with syngeneic T cells, so increased 

oxidative stress may result from the conditioning regimen rather than from the 

presence of alloreactive donor T cells.  Furthermore, these measurements were 

made in plasma, liver and lung, but not in lymphocytes (484-486).  Hence, these 
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studies suggest an imbalance between ROS production and ROS detoxification 

during GVHD, but offer limited information on the redox environment within 

alloreactive donor T cells.  

 In a different mouse model, the intracellular ROS and glutathione levels of 

various blood cells during MHC-mismatched GVHD were measured using the 

dye 2′-7′-dichlorofluorescein diacetate (DCF), which fluoresces when it reacts 

with a variety of ROS including hydrogen peroxide (H2O2) and hydroxyl radicals 

(OH) (386).  Lymphocytes, neutrophils and red blood cells (RBCs) from mice 5 

weeks after GVHD induction have 3-fold increased levels of ROS and 3-fold 

depleted levels of reduced glutathione compared to untreated control mice (487).  

Additionally, ROS levels in RBCs are greater in mice with GVHD than in control 

mice transplanted with syngeneic lymphocytes, which suggests that increased 

oxidative stress is due to the presence of alloreactive donor T cells rather than 

the conditioning regimen.  Because ROS production and oxidative stress are 

associated with high levels of oxidative metabolism (378), the presence of 

increased ROS and oxidative stress during GVHD is consistent with increased 

activity of OXPHOS in pathogenic donor T cells.   

 Glutathione and pyruvate.  Glutathione (Figure 3.6) is the primary 

antioxidant in mammalian cells, at concentrations between 1 and 10 mM in most 

tissues (196).  Glutathione peroxidase detoxifies H2O2 to water by converting 

reduced glutathione (GSH) to its oxidized form (GSSG) (Figure 3.7) (197).  

Hence, glutathione limits the apoptosis and non-specific oxidation of DNA, 

proteins and lipids that can accompany the production of ROS (187, 189, 192-
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194).  The antioxidant function of glutathione is emphasized by studies showing 

that inhibiting glutathione synthesis sensitizes lymphoma cells to ROS-mediated 

apoptosis (488, 489).  Similarly, treatment with exogenous glutathione protects 

the mitochondrial DNA of human lymphocytes from oxidative damage induced by 

the pro-oxidant t-butyl hydroperoxide (490). 

 

 

 

 

 

Figure 3.6. Structures of glutathione and pyruvate.  From (49, 196). 

 

The regeneration of GSH from oxidized GSSG is catalyzed by glutathione 

reductase (Figure 3.7) (196).  This reaction requires NADPH, the majority of 

which is formed from glucose metabolism through the pentose phosphate cycle 

(PPC) (49).  Hence, a deficiency in glucose metabolism could impair NADPH 

production in the PPC and therefore inhibit the regeneration of reduced 

glutathione.  The importance of the PPC for maintaining glutathione levels has 

primarily been investigated in cells of the nervous system.  In astrocytes and 

neurons, increasing oxidative stress by adding H2O2 to cultures stimulates the 

PPC by 70% (51).  However, when the glutathione redox system is inhibited by 

depleting glutathione or inhibiting glutathione peroxidase, H2O2 no longer 

stimulates the PPC.  These observations suggest that H2O2 stimulates PPC 

Glutathione Pyruvate
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activity by increasing the need for reduced glutathione and NADPH (51).  

Similarly, inhibiting glucose entry into the PPC with the glucose-6-phosphate 

dehydrogenase (G6PDH) inhibitors dehydroepiandrosterone or 6-anicotinamide 

increases ROS levels as measured by DCF fluorescence, which is consistent 

with decreased glutathione levels (50).  

 Yeast cells also rely on aerobic glycolysis to maintain GSH levels and 

minimize ROS production.  When Saccharomyces cerevisiae are switched from a 

media supporting glycolysis (2% glucose) to a media supporting respiration (2% 

glycerol) ROS levels increase 2-3 fold as measured by DHE oxidation (491).  

When proliferating glycolytic yeast cells are transferred into respiratory media 

nearly 100% die; however, only 40% die when these cells are treated with 

reduced glutathione.  Hence, these observations indicate that high rates of 

glycolysis are important for maintaining glutathione levels and minimizing 

oxidative stress in a variety of cell types. 

These results suggest that decreased levels of glutathione and increased 

ROS levels in lymphocytes during GVHD could be a consequence of low 

glycolytic metabolism and PPC flux.  This hypothesis is supported by studies 

showing that high rates of glycolysis limit ROS production in lymphocytes.  

Indeed, concanavalin A (conA)-stimulated thymocytes cultured in media with low 

glucose (1.2 mM) increase ROS levels 2-3 fold compared to cells cultured in 

media with high glucose (10 mM), as measured by luminol chemiluminescence 

or DCF oxidation (376).  However, this study did not specifically address 

glutathione levels or PPC activity (376).    
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Figure 3.7.  Glutathione regeneration and detoxification of hydrogen 

peroxide.  Reduced glutathione (GSH) becomes oxidized to GSSG as it 

converts hydrogen peroxide (H2O2) to water in a reaction catalyzed by 

glutathione peroxidase (GPx).  GSH is regenerated from GSSG in a reaction 

catalyzed by glutathione reductase (GR).  The GR reaction requires NADPH, 

which is generated when glucose is metabolized in the pentose phosphate cycle 

(197). 

 

 Pyruvate is a metabolite of glucose and is another antioxidant closely tied 

to glycolytic metabolism.  Pyruvate is formed in the cytoplasm when pyruvate 

kinase dephosphorylates phosphoenolpyruvate (49).  Its antioxidant properties 

are thought to be related to its ability to eliminate H2O2 (Figure 3.8) and possibly 

its ability to reduce O2
- production in mitochondria (203).  Addition of pyruvate 

(0.1-2 mM) to culture media reduces H2O2-induced apoptosis and ROS 

production in a neuroblastoma cell line (203).  Pyruvate also reduces ROS 

formation due to ischemia-reperfusion injury in perfused guinea pig hearts, 

although this could be due to its ability to inhibit NADH oxidase rather than direct 

ROS scavenging (492).  The ROS-protective effects of pyruvate have proven 

beneficial in preclinical models, where administration of pyruvate reduces tissue 

damage and ROS production in rat ischemia-reperfusion models of the small 

intestine (202) and liver (201).  Ethyl pyruvate, a stable derivative of pyruvate 

(493), also reduces tissue damage in rat models of hemorrhagic shock (494) and 
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stroke (495) and mouse models of sepsis (496). These protective effects are also 

seen in lymphoid cells, as adding pyruvate to culture media inhibits ROS 

production in cultured thymocytes and HL-60 leukemia cells (252).  Like 

glutathione, pyruvate is an antioxidant formed by the metabolism of glucose.  

Thus, the increased ROS levels and altered antioxidant balance in lymphocytes 

during GVHD could be due, in part, to abnormally low levels of pyruvate, 

secondary to low rates of aerobic glycolysis. 

 

 

 

 

 

 

 

 

 

 

Figure 3.8.  Pyruvate formation and degradation by H2O2.  Glucose generates 

pyruvate through the cytosolic steps of glycolysis.  Pyruvate can directly react 

with ROS such as hydrogen peroxide yielding acetate, CO2 and H2O (200). 

 

Statement of problem.  GVHD is the major morbidity associated with 

hematopoietic stem cell transplantation, and current treatments are lacking.  

Alloreactive donor T cells perform numerous metabolically active functions, but 

how they meet these energetic demands is unknown.  Literature reports of 

increased oxidative stress suggest that these T cells may rely on OXPHOS 

rather than glycolysis.  Identifying the metabolic pathways used by alloreactive 

donor T cells could identify novel therapeutic targets for the treatment of GVHD. 

Glucose

Pyruvate

H2O2
Acetate

+ CO2

+ H2O



  

124 

 

RESULTS 

Prolfiling the metabolism of splenocytes from mice with GVHD.  The non-

irradiated B6→F1 model of GVHD is characterized by rapid proliferation of donor 

CD4+ and CD8+ T cells 7-10 d following transplant (expansion phase) followed by 

CTL-mediated apoptosis of host and donor lymphoid cells (contraction phase), 

which leads to high levels of mortality by 21 d after transplant (451).  During the 

graft-versus-host reaction, donor T cells produce Th1 cytokines such as IFN-, 

which promote the differentiation of CTLs and the development of anti-host 

cytotoxicity (459).  To confirm that our transplant system behaved as previously 

reported, we infused congenic B6-Ly5.2 cells into unirradiated F1 (allogeneic) or 

B6 (syngeneic) recipients and enumerated donor T cells and measured their 

expression of CTL-related molecules following transplant.  Hematopoietic cells 

from the B6-Ly5.2 mice express the CD45.1 protein tyrosine phosphatase 

isoform on their cell surface, while cells from B6 or F1 mice express CD45.2 

(497, 498).  This distinction allowed the discrimination of donor and host 

lymphocytes.  By 8 d after infusion into allogeneic recipients, donor CD4+ and 

CD8+ had expanded 18- and 39-fold, respectively, compared to donor T cells 

infused into syngeneic B6 recipients (Figure 3.9, p<0.002 for both comparisons).  

The number of donor T cells peaked after d 8 and had decreased by 25% by 14 

d after transplant.  During this expansion, alloreactive donor T cells increased 

their expression of IFN- 5-10-fold over syngeneic T cells (Figure 3.10 A, p<0.02) 

and granzyme B 7-fold over syngeneic T cells (Figure 3.10 B, p<0.01), both of 

which are important effector molecules for CTL activity (16). 
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Figure 3.9.  Donor T cell expansion during non-irradiated GVHD.  F1 

(allogeneic, white circles) or B6 (syngeneic, black triangles) mice were injected 

i.v. with B6-Ly5.2 splenocytes (35 x 106).  On d 8 or 14 after transplant, recipient 

splenocytes were counted and stained for CD4, CD8, CD45.1 (donor) and 

CD45.2 (host) expression.  Donor T cells were gated as indicated (right panels) 

and enumerated.  Data are from 4 (allogeneic) or 2 (syngeneic) mice per 

timepoint and error bars indicate standard error.  * p < 0.002. 
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Figure 3.10.  Donor T cell effector molecule expression during non-irradiated GVHD.  A and B.  F1 (allogeneic, 

white circles) or B6 (syngeneic, black triangles) mice were injected i.v. with B6-Ly5.2 splenocytes (35 x 106).  Splenocytes 

were fixed and permeabilized without restimulation to measure IFN- and Granzyme B expression.  Granzyme B was 

measured 8 d after transplant.  Histograms are gated on CD45.1+ CD45.2- CD4+ or CD45.1+ CD45.2-  CD8+ as in A and 

show IFN- or Granzyme B staining 8 d after transplant in allogeneic (blue) or syngeneic (red) splenocytes. Data are from 

4 (allogeneic) or 2 (syngeneic) mice per timepoint and error bars indicate standard error.  * p < 0.02. 
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Proliferation and effector molecule production require the de novo 

biosynthesis of cellular membranes and pro-inflammatory proteins, both of which 

are energetically demanding processes (207).  For example, the synthesis of a 

single palmitate molecule, a major component of cellular membranes, requires 7 

molecules of ATP, while protein synthesis requires a single GTP (equivalent to 

one ATP (49)) for each amino acid incorporated (49, 78, 499).  Because 

alloreactive donor T cells have increased proliferation and effector molecule 

production, we hypothesized that splenocytes from mice receiving allogeneic 

infusions would have increased ATP production compared to splenocytes from 

mice receiving syngeneic infusions.   

The two major routes of ATP production are glycolysis and OXPHOS, 

which can be assessed by lactate production and O2 consumption respectively 

(78, 142, 143, 207, 247).  Two days after GVHD induction, splenocytes from 

mice receiving allogeneic or syngeneic infusions had similar rates of O2 

consumption (0.44 vs. 0.38 nMoles O2/min x 106 cells, p=0.16) and lactate 

production (0.37 vs. 0.28 nMoles lactate/min x 106 cells, p=0.24) (Figure 3.11 A-

B).  However, by d 7-14 after GVHD induction, splenocytes from mice receiving 

allogeneic infusions increased O2 consumption 60-80% and lactate production 

50% compared to mice receiving syngeneic infusions (Figure 3.11 A-B, Table 

3.3).  Lactate production and O2 consumption were not analyzed after d 14 

because nonirradiated GVHD induces severe lymphopenia at these time points 

(453, 461, 500).  These results suggest that splenocytes from mice receiving 
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allogeneic infusions increase both oxidative and glycolytic metabolism compared 

to syngeneic controls. 

 

Figure 3.11.  Lactate Production, O2 Consumption and ATP production of 

splenocytes from mice with GVHD.  F1 (allogeneic) or B6 (syngeneic) mice 

were injected i.v. with B6-Ly5.2 splenocytes (50 x 106).  A and B.  On d 2-14 

after transplant, recipient splenocytes were RBC-lysed and analyzed for O2 

consumption and lactate production.  Data are averaged from 3 mice per 

condition and error bars indicate standard error.  C.  ATP production was 

calculated as ATPOXPHOS(Black)=5.6 x O2 Consumption and 

ATPGlycolysis(White)=Lactate Production + 0.4 x O2 Consumption.  Syngeneic 

results were pooled (n=9).  * p < 0.05 compared to syngeneic. 

 

Table 3.3.  Lactate production and O2 consumption of GVHD and control 
splenocytes.  Data are averaged from 3 mice per group and numbers in 
parentheses indicate standard error.  p values compare Syn and Allo groups 
from the same day and are unpaired and 1 tailed. 

 

 
Lactate Production 

nMoles Lactate/(min x 106 cells) 

O2 Consumption 

nMoles O2/(min x 106 cells) 

 Syn Allo p Syn Allo p 

Day 2 0.28 (.09) 0.37 (.09) 0.24 0.38 (.05) 0.44 (.02) 0.16 

Day 7 0.53 (.08) 0.87 (.06) 0.018 0.47 (.05) 0.75 (.06) 0.01 

Day 14 0.41 (.08) 0.58 (.15) 0.16 0.33 (.03) 0.58 (.01) 0.001 
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Using the rates of O2 consumption and lactate production, it is possible to 

calculate the amount of ATP cells produce through oxidative phosphorylation and 

glycolysis (142, 247, 501).  The metabolism of one glucose molecule through 

aerobic glycolysis produces 2 molecules of ATP and 2 molecules of lactate, thus 

each lactate produced indicates a single molecule of ATP produced through 

glycolysis (78).  The amount of ATP produced per O2 consumed varies 

depending on the substrate oxidized (502).  For NADH-linked substrates such as 

malate and pyruvate, 4.6 ATP are theoretically generated per O2 consumed 

based on calculations from studies in isolated mitochondria (502).  However, a 

ratio of 5.6 ATP per O2 consumed is frequently used for mammalian cells (142, 

247, 501).  This value is used because it was determined empirically in intact 

renal tubular cells (143), although this study did not take proton leak into account.  

Such a consideration is important, as protons returning to the mitochondrial 

matrix through a path independent of the F1Fo-ATPase do not catalyze ATP 

production (502).  Hence, a calculation of mitochondrial ATP production that 

does not account for proton leak will overestimate the amount of ATP 

synthesized per O2 (502).   

The complete oxidation of glucose generates 2 ATP from glycolysis and 

30-34 ATP from OXPHOS (49, 78).  Using an ATP/O2 ratio of 5.6, this suggests 

that the complete oxidation of one glucose molecule requires 5.3-6 molecules of 

O2 (i.e. 30 ATP/5.6 (ATP/O2)).  Thus, if glucose is the only substrate oxidized, 

each molecule of O2 consumed will correspond to approximately 0.2 molecules of 

glucose metabolized (142).  Because a single glucose molecule generates 2 
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molecules of ATP as it is converted into pyruvate, each O2 consumed indicates 

an additional 0.4 ATP produced through glycolysis (142).  Thus, ATP production 

from glycolysis is calculated as lactate production + 0.4 x O2 consumption, while 

ATP production from OXPHOS is calculated as 5.6 x O2 consumption (142, 247, 

501).  Using these equations, OXPHOS was estimated to provide 80% of the 

ATP for each splenocyte group analyzed (Figure 3.11 C, Table 3.4). 

Table 3.4.  ATP production of GVHD and control splenocytes.  ATP 
production was calculated as described in the text and in Figure 3.11.  Data are 
averaged from 3 (Allo) or 9 (Syn) mice per group, and numbers in parentheses 
indicate standard error.  

 

  
ATP Production 

nMoles ATP/(min x 106 cells) 

Sadfd) % ATP Production 

  OXPHOS Glycolysis  OXPHOS Glycolysis 

Syn combined 2.2 (0.1) 0.56 (0.06)  80 20 

Allo Day 2 2.5 (0.1) 0.55 (0.09)  82 18 

Allo Day 7 4.2 (0.3) 1.13 (0.06)  79 21 

Allo Day 14 3.2 (0.1) 0.81 (0.15)  80 20 

 

To determine the amount of O2 consumption used for ATP synthesis, we 

treated splenocytes with the F1Fo-ATPase inhibitor oligomycin, using 

concentrations (1-2 g/mL) that are 100-200x greater than the apparent Ki for 

inhibition of ATP synthesis (171).  The difference between routine respiration 

(i.e., without any inhibitors present) and oligomycin-inhibited respiration indicates 

the amount of O2 consumption used for ATP synthesis (Figure 3.12, “OXPHOS”) 
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(503, 504).  Oligomycin treatment reduced O2 consumption by 54-68% in nearly 

all splenocyte groups (Table 3.5), indicating that the majority of O2 consumed 

under routine conditions is used for ATP synthesis, with the rest being used for 

other processes such as proton leak (Table 3.5, “Leak”) (503).  However, 

oligomycin only inhibited 45% of respiration in syngeneic splenocytes on d 2 after 

transplant, which was different than the 57-62% inhibition seen in syngeneic cells 

on d 7 and d 14.  The reason for this variation is unclear. 

  We next treated cells with carbonylcyanide-p-

trifluoromethoxyphenylhydrazone (FCCP, 6-12 M), a protonophore that 

increases respiration by uncoupling O2 consumption and ATP synthesis (503).  

The difference between routine respiration and FCCP-stimulated respiration is 

termed the reserve capacity (Figure 3.12), and cells may use it to generate 

additional ATP when energetic demands increase (504).  FCCP increased 

splenocyte respiration rates approximately 2-fold over routine rates in all mice 

analyzed, indicating an equivalent fraction of reserve capacity in all groups 

(Table 3.5).   

Splenocytes from mice 7 or 14 d after infusion of allogeneic cells 

increased routine, oligomycin-inhibited and FCCP-stimulated O2 consumption 

rates compared to splenocytes from mice receiving syngeneic splenocytes 

(Table 3.5, p<0.05 for each comparison).  These results show that the increase in 

routine respiration rates in allogeneic splenocytes is accompanied by an increase 

of similar magnitude in total respiratory capacity.  In addition, splenocytes from 

mice receiving allogeneic infusions increased the percentage of routine 
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respiration used for ATP synthesis by 14% 7 d after transfusion as compared to 

pooled syngeneic controls (68% vs. 54%, p<0.05).  Similar changes were seen in 

the percent utilization of the total respiratory capacity; 36% of total respiratory 

capacity was used for ATP synthesis in d 7 allogeneic splenocytes vs. 28% for 

pooled syngeneic controls, although these changes were not significant (Table 

3.5, p=0.09).  These data suggest that splenocytes from mice with GVHD 

increase oxidative ATP production compared to syngeneic splenocytes by 

increasing total respiratory capacity and may increase the percentage of 

respiration used for ATP synthesis.  These results are summarized graphically in 

Figure 3.13. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12.  Schematic of O2 consumption parameters.  Routine is the O2 

consumption rate of unmanipulated cells.  Oligomycin is the O2 consumption rate 

following addition of oligomycin (1-2g/mL).  FCCP is the O2 consumption rate 

following addition of FCCP (10-12 M).  OXPHOS, LEAK, Reserve Capacity and 

Total Capacity are described in the text and are indicated by two-headed arrows. 
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 nMoles O2/(min x 106 cells)  % of Routine  % of Total Capacity 

 Routine Oligo FCCP OXPHOS  OXPHOS Leak  OXPHOS Leak Reserve 

Syn d2 0.38 (0.05) 0.22 (0.04) 0.76 (0.10) 0.16 (0.06)  43 (7) 57 (7)  22 (2) 29 (4) 49 (2) 

Syn d7 0.46 (0.05) 0.17 (0.02) 0.83 (0.05) 0.29 (0.05)  62 (3) 38 (3)  36 (7) 21 (1) 43 (8) 

Syn d14 0.33 (0.03) 0.14 (0.02) 0.7 (0.07) 0.19 (0.03)  57 (4) 42 (4)  27 (1) 20 (3) 53 (2) 

Syn 

Combined 0.39 (0.03) 0.18 (0.02) 0.76 (0.04) 0.22 (0.03)  54 (4) 46 (4)  28 (3) 24 (2) 48 (3) 

Allo d2 0.44 (0.02) 0.18 (0.02) 0.9 (0.03) 0.26 (0.03)  59 (3) 41 (3)  29 (1) 21 (3) 50 (4) 

Allo d7 0.75 (0.06)* 0.24 (0.03)* 1.43 (0.15)* 0.51 (0.06)*  68 (2)** 32 (2)**  36 (2) 17 (1)** 47 (2) 

Allo d14 0.58 (0.01)* 0.22 (0.03)* 1.1 (0.03)* 0.36 (0.04)*  62 (5) 38 (2)  33 (2) 20 (3) 47 (1) 

Table 3.5.  O2 consumption parameters of GVHD splenocytes.  O2 consumption measurements were made as in 

Figure 3.11.  Routine, Oligo and FCCP rates were collected as described in the text and methods.  Calculations for 

OXPHOS and percentages were made as described in the methods.  Numbers in parentheses indicate standard error. 

3 mice per group were analyzed.  Syn combined is averaged over all 9 syngeneic mice.  * p<0.05 compared syngeneic 

controls collected on the same day. ** p<0.05 compared to pooled syngeneic controls.  Extramitochondrial oxygen 

consumption was ignored in these experiments. 
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Figure 3.13.  O2 consumption parameters of GVHD splenocytes.  Data are 
from table 3.5.  A.  Routine, Oligo and FCCP rates of O2 consumption.  B.  The 
percentage of total respiratory capacity used for proton leak (black), OXPHOS 
(white) and kept in reserve (gray). 

 

 

Oxidative and glycolytic metabolism of purified donor T cells from mice 

with GVHD.  In the non-irradiated B6→F1 model of GVHD, disease-causing 

donor T cells comprise < 10% of splenic lymphocytes 7-8 d after transplant 

(Figure 3.14).  Hence the metabolic characteristics of bulk splenocytes likely 

reflect the metabolism of a combined population of host T and B cells in addition 

to GVHD-causing donor T cells.  
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Figure 3.14.  Percentage of splenocytes that are donor T cells.  Donor 

splenocytes (B6-Ly5.2, 35 x 106) were infused into F1 (Allo, n=4) or B6 (Syn, 

n=4) mice.  At the indicated times, splenocytes were analyzed and donor T cells 

were identified as CD45.1+ CD45.2- and either CD4+ or CD8+.  Numbers in the 

upper right of each plot indicate the percentage of splenocytes that were 

CD45.1+ CD45.2- CD4+ CD8- or CD45.1+ CD45.2- CD4- CD8+ (i.e. the percentage 

of splenocytes that are donor T cells), while numbers in parentheses indicate 

standard error.  Flow plots were gated on cells that were CD4+ or CD8+ and then 

plotted as shown.  Pink numbers inside boxes indicate the percentage of T cells 

that are CD45.1+ CD45.2-. 

 

To specifically characterize the metabolism of alloreactive donor T cells, 

donor T cells were purified from spleens of animals with GVHD by positive 

magnetic selection using the Thy1.1 (d 5 or d 7) or CD45.1 (d 14) marker.  

Thy1.1 is a congenic marker expressed only on T cells, while CD45.1 is 

expressed on all hematopoietic cells (498, 505, 506).  Magnetic purification was 

chosen over flow-cytometry-based sorting because its speed and cell yield were 
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more compatible with the high cell numbers (i.e. 5 x 106 ) required for O2 

consumption and lactate production analysis (142, 247). 

  Purification of donor T cells over two subsequent ferromagnetic columns 

yielded purities over 85% (Figure 3.15).  Spleens from mice contained 

approximately 200 x 106 cells on d 7 after transplant, and donor T cells were 

pooled from 1-2 mice per data point.  Approximately 4-5 x 106 donor T cells were 

obtained per spleen used.  Control unstimulated T cells were purified by Thy1.2 

positive selection from naïve B6-Ly5.2 mice (Unstim) or from F1 mice 7 d after 

GVHD induction (Host).  As a positive control, we stimulated T cells from B6-

Ly5.2 mice for 48 h with anti-CD3 and anti-CD28 antibodies, which is known to 

increase both O2 consumption and lactate production (59).    

 

 

 

 

 

 

Figure 3.15.  Purification of donor T cells.  Donor splenocytes (50 x 106 B6-
Thy1.1) were transfused into F1 recipients.  On d 7 post-transfusions, 
splenocytes were stained with PE-anti-Thy1.1 and donor T cells were purified 
using magnetic anti-PE microbeads.  Plots show the percentage of cells staining 
positive for PE-Thy1.1 without magnetic separation (unpurified), with purification 
over a single LS column (Column 1) or purification over one LS and one MS 
column (Column 2). 
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Alloreactive donor T cells consumed O2 at rates of 0.45 and 0.48 nMoles 

O2/(min x 106 cells) on d 5 and d 7 after transplant, respectively (Figure 3.16 and 

Table 3.6).  These O2 consumption rates were 2.2- and 2.4-fold greater than 

control unstimulated T cells, respectively (Table 3.6, p<0.0001 for each 

comparison).  Host T cells from mice with GVHD served as a second control and 

consumed O2 at a rate of 0.24 nMoles O2/(min x 106 cells), which was not 

significantly different than unstimulated T cells (Figure 3.16, Table 3.6).  The 

increase in O2 consumption observed in alloreactive donor T cells was similar to 

that seen in control T cells stimulated in vitro with anti-CD3/28 antibodies, which 

consumed 0.54 nMoles O2/(min x 106 cells) (Figure 3.16, Table 3.6).  By d 14 

after transplant, the rate of donor T cell O2 consumption had decreased to 0.28 

nMoles O2/(min x 106 cells), which is 40% greater than unstimulated cells (Figure 

3.16, Table 3.6).  This finding indicates that donor T cell OXPHOS may peak 

after d 7, suggesting that increased OXPHOS may coincide with the expansion 

phase of GVHD (Figure 3.16). 

Alloreactive donor T cells produced lactate at rates of 0.18, 0.53, and 0.23 

nMoles lactate/(min x 106 cells) on d 5, 7, and 14 after transplant, respectively.   

These rates were 1.5-4-fold higher than those seen in unstimulated T cells, which 

produced 0.11 nMoles lactate/(min x 106 cells) (Table 3.6).  However, donor T 

cells did not produce lactate significantly faster than host T cells, which produced 

0.46 nMoles lactate/(min x 106 cells) (Table 3.6).  T cells stimulated with anti-

CD3/28 antibodies produced 3.4 nMoles lactate/(min x 106 cells), which is 30-fold 
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higher than the lactate production of unstimulated T cells (p<0.0001) and 6.5-fold 

higher than d 7 donor T cells (p=0.004).  

 

 

Figure 3.16.  O2 consumption, lactate production and ATP production of 

donor T cells during GVHD.  A and B. O2 consumption and lactate production 

from freshly purified CD90.2 T cells from naïve B6-Ly5.2 mice (Unstim), CD90.2 

purified host T cells from F1 mice 7 d after GVHD induction (Host), Thy1.1 

purified donor T cells from F1 mice 5 or 7 d after GVHD induction with 50 x 106 

B6-Thy1.1 splenocytes (Donor d5, d7), CD45.1 purified donor T cells from F1 

mice 14 d after GVHD induction with 50 x 106 B6-Ly5.2 splenocytes (Donor d14) 

or CD90.2 purified T cells stimulated for 48 h with anti-CD3 and anti-CD28 

antibodies (0.5 g/mL, soluble; CD3/28).  Purity of cells was > 85% by flow 

cytometry.  O2 consumption and lactate production replicates are as follows: 

Unstim (15 O2, 12 lactate), Host (4 O2, 4 lactate), Donor d5 (3 O2, 3 lactate), 

Donor d7 (8 O2, 5 lactate), Donor d14 (4 O2, 3 lactate), CD3/28 (7 O2, 9 lactate).  

* p<0.02 compared to Host.  C.  ATP from OXPHOS is in black and ATP from 

glycolysis is in white. ATP production was calculated as ATPOXPHOS=5.6 x O2 

Consumption and ATPGlycolysis = Lactate Production + 0.4 x O2 Consumption.  

Error bars indicate standard error. 

 

Unstim Host d5 d7 d14 CD3/28
0.0

0.2

0.4

0.6

Donor

* *

A

*

n
M

o
l O

2
/(

m
in

*1
0

6
 c

e
lls

)

Unstim Host d5 d7 d14 CD3/28
0

1

2

3

4

5

Donor

*

B

n
M

o
l l

a
c
ta

te
/(

m
in

*1
0

6
 c

e
lls

)

Unstim Host d5 d7 d14 CD3/28
0

3

6

9

Donor

C

n
M

o
le

s
 A

T
P

/(
m

in
*1

0
6
 c

e
lls

)



  

 

 

1
3
9 1

3
9 

 

   p values  aa    p values 

O2 Consumption 

nMoles O2/(min x 106 cells) 

n vs. Unstim vs. Host Lactate Production 

nMoles Lactate/(min x 106 cells) 

n vs. Unstim vs. Host 

Unstim 0.20 (0.01) 15 - 1 x 10-1       0.11 (0.02) 12 - 6 x 10-5 

Host 0.24 (0.04) 4 1 x 10-1 -  0.46 (0.10) 4 6 x 10-5 - 

Donor d5 0.45 (0.01) 3 2 x 10-9 6 x 10-3  0.18 (0.04) 3 1 x 10-1 4 x 10-2 

Donor d7 0.48 (0.02) 8 3 x 10-13 6 x 10-5  0.53 (0.07) 5 6 x 10-7 3 x 10-1 

Donor d14 0.28 (0.02) 4 1 x 10-3 2 x 10-1  0.23 (0.05) 3 2 x 10-2 7 x 10-2 

CD3/28 0.54 (0.02) 7 1 x 10-14 1 x 10-5  3.40 (0.65) 9 5 x 10-6 6 x 10-3 

 

Table 3.6.  O2 consumption and lactate production of T cells during GVHD.  Numbers are averaged from the 
indicated n measurements and numbers in parentheses indicate standard error.  p values are one tailed. 
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Although donor T cells purified on d 7 after transplant and control 

stimulated T cells both increase O2 consumption 2-3-fold over unstimulated cells 

(Table 3.6), donor T cells only increased lactate production 4-fold, while control 

stimulated T cells increased lactate production 30-fold (Table 3.6).  These 

disparate rates of lactate production suggested different routes of energy 

production in donor and control stimulated T cells.  Indeed, OXPHOS provided 

79% of ATP in donor T cells, but only 46% in T cells stimulated with anti-CD3/28 

antibodies (Figure 3.16, Table 3.7, p<0.05).    

 

Table 3.7.  ATP production of T cells during GVHD.  Data are from Figure 
3.16.  ATP production was calculated as ATPOXPHOS=5.6 x O2 Consumption and 
ATPGlycolysis=Lactate Production + 0.4 x O2 Consumption.  Numbers in 
parentheses indicate standard error. 

 

 ATP Production 

n 

    % ATP Production 

     nMoles ATP/(min x 106 cells)  

 OXPHOS Glycolysis  OXPHOS Glycolysis 

Unstim 1.1 (0.1) 0.20 (0.01)  85 15 

Host 1.3 (0.3) 0.55 (0.05)  71 29 

Donor d5 2.5 (0.1) 0.36 (0.04)  88 12 

Donor d7 2.7 (0.1) 0.72 (0.03)  79 21 

Donor d14 1.6 (0.1) 0.34 (0.05)  82 18 

CD3/28 3.0 (0.1) 3.62 (0.74)  46 54 

 

Oligomycin decreased O2 consumption by 60-66% in all T cells (Table 

3.8).  This finding indicates that 30-40% of basal respiration is used for 

processes other than ATP production such as proton leak (503).  FCCP 
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increased respiration rates approximately 2-fold, which defines the reserve 

respiratory capacity in these cells (503).  While the percentage of routine 

respiration used for OXPHOS (i.e., that which was inhibited by oligomycin) did 

not change between the T cell groups, the magnitude of routine, oligomycin-

inhibited and FCCP-stimulated respiration rates were increased in alloreactive 

donor T cells and control stimulated cells as compared to unstimulated T cells 

(Table 3.8).   

Donor T cells also differed from unstimulated T cells with regard to the 

percentage of respiratory capacity used for OXPHOS and kept in reserve (Figure 

3.12).  Donor T cells isolated 7 d after transplant had a 10% increase in the 

fraction of total capacity used for OXPHOS and a 10% decrease in the fraction of 

capacity in reserve as compared to unstimulated T cells.  These data suggest 

that alloreactive donor T cells increase ATP synthesis compared to unstimulated 

T cells both by increasing total respiratory capacity, and also by increasing the 

fraction of that capacity that is directed towards ATP synthesis (Table 3.8).  

These results are summarized graphically in Figure 3.17.  
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 nMoles O2/(min x 106 cells)  % of Routine  % of Total Capacity 

 Routine Oligo FCCP OXPHOS  OXPHOS Leak  OXPHOS Leak Reserve 

Unstim 
(n=15) 

0.20 (0.01) 0.08 (0.01) 0.52 (0.04) 0.13 (0.01)  62 (2) 38 (2)  26 (2) 15 (1) 58 (3) 

Host    
(n=4) 

0.24 (0.04) 0.08 (0.01) 0.45 (0.12) 0.16 (0.04)  66 (3) 34 (3)  37 (1)* 20 (4) 43 (5)* 

Donor d5 
(n=3) 

0.45 (0.01)* 0.18 (0.02)* 0.91 (0.07)* 0.27 (0.03)*  60 (4) 40 (4)  30 (2) 20 (3) 50 (4)* 

Donor d7 
(n=8) 

0.48 (0.02)* 0.17 (0.01)* 0.93 (0.07)* 0.31 (0.01)*  65 (1) 35 (1)  35 (3)* 19 (1)* 47 (3)* 

Donor d14 
(n=4) 

0.28 (0.02)* 0.10 (0.01) 0.56 (0.08) 0.18 (0.02)*  66 (1) 34 (1)  34 (4) 18 (2) 48 (6) 

CD3/28 
(n=7) 

0.54 (0.02)* 0.21 (0.01)* 1.14 (0.07)* 0.36 (0.04)*  66 (6) 34 (6)  32 (2) 17 (3) 51 (3) 

 

Table 3.8.  O2 consumption parameters of control and alloreactive donor T cells.  O2 consumption measurements 

were made as in Figure 3.16.  Routine, Oligo and FCCP rates were collected as described in the text and methods.  

Calculations for OXPHOS and percentages were made as described in the methods.  Numbers in parentheses indicate 

standard error.  * p<0.05 compared to Unstim.  Extramitochondrial O2 consumption was ignored in these experiments. 
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Figure 3.17.  O2 consumption parameters of control and alloreactive donor 
T cells.  Data are from table 3.8.  A.  Routine, Oligo and FCCP rates of O2 
consumption.  B.  The percentage of total respiratory capacity used for proton 
leak (black), OXPHOS (white) and kept in reserve (gray). 
 

Alloreactive donor T cells from mice with GVHD produce lactate 7-fold 

slower than T cells stimulated with anti-CD3/28 antibodies (Figure 3.16 B).  One 

possible explanation for this difference is that stimulation with anti-CD3/28 

antibodies activates all T cells regardless of their TCR specificity (507) while 

stimulation with MHC-mismatched alloantigen is estimated to activate only 1-10% 

of T cells (508).  Hence, low rates of lactate production by donor T cells on d 7 
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could be due to the presence of large numbers of unactivated T cells in this 

population.  To exclude this possibility, we analyzed the expression of the CD44 

and CD62L on donor T cells on d 8 after transplant.  Naïve T cells express low 

levels of CD44 and high levels of CD62L, while antigen-experienced effector or 

memory T cells express high levels of CD44 and low levels of CD62L (13, 509).  

We further analyzed the division status of donor T cells on d 2-7 after transplant 

using the cytoplasmic dye carboxyfluorescein diacetate succinimidyl ester 

(CFSE).  The amount of CFSE in a cell decreases by half following each division, 

which causes a 2-fold decrease in fluorescence for each cell division (510, 511) 

 Approximately 80% of donor CD4+ and donor CD8+ T cells were 

CD44hiCD62Llo by d 8 after transplant, consistent with an activated 

effector/effector memory phenotype (Figure 3.18 A) (512, 513).  This finding 

contrasts with donor T cells from syngeneic transplants, of which fewer than 20% 

were CD44hiCD62Llo (Figure 3.18 A).  Similarly, 80-95% of donor T cells had 

divided 4 d after allogeneic transplant, while fewer than 10% of donor T cells 

divided after syngeneic transplant (Figure 3.18 B-C).  These results show that by 

7-8 d post-transplant, over 80% of donor T cells are activated.  Hence, the 

relatively low lactate production in these cells is unlikely to be due to the 

presence of unactivated donor T cells. 
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Figure 3.18.  Activation marker expression and division status of donor T cells.  A.  Splenocytes (50 x 106) from 
nonirradiated allogeneic (B6-Ly5.2→F1, n=4) or syngeneic (B6-Ly5.2→B6, n=2) were analyzed 8 d after transplant.  
Donor T cells were identified and gated based on CD45.1+ CD4+ or CD45.1+ CD8+ expression and then analyzed for 
CD44 and CD62L expression as shown in flow cytometry plots.  * p<0.0001 vs. syn.  B and C.  CFSE-labled splenocytes 
(50 x 106) from nonirradiated allogeneic (white circles, B6-Ly5.2→F1, n=3 per timepoint) or syngeneic (black triangles, B6-
Ly5.2→B6, 1 per timepoint) were analyzed 2-7 d after transplant.  Donor T cells were identified and gated based on 

CD45.1+ CD4+ or CD45.1+ CD8+ expression and the percentage of cells that had undgergone 1 division by CFSE was 
quantified as shown in flow cytometry histograms, which are from mice analyzed on day 7.  * p<0.0001 vs. combined syn.
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Glycolytic rate and GLUT1 expression of alloreactive donor T cells.  

Aerobic glycolysis occurs when glucose-derived carbons are converted to lactate 

by lactate dehydrogenase (LDH) and secreted (59, 252).  Several other possible 

fates exist for glucose-derived carbons, including oxidation in the TCA cycle and 

incorporation into biomolecules such as fatty acids (Figure 3.19) (52, 78, 207).  

Thus, lower rates of lactate production in alloreactive donor T cells compared to 

control stimulated T cells do not necessarily indicate lower glucose utilization, as 

high rates of glucose oxidation or glucose-derived biomolecule synthesis could 

occur concurrently with lower rates of lactate production.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19.  Glycolytic rate assay principle and fates of pyruvate.  Glucose 

containing a 5-3H label is metabolized by cells to 3H-2-phosphoglycerate through 

the first eight steps of glycolysis.  Enolase catalyzes the conversion of 3H-2-

phosphoglycerate to phosphoenolpyruvate and forms 3H2O, which is analyzed 

following evaporation.  Determination of the glycolytic rate in this manner 

indicates the amount of glucose metabolized for biosynthesis, oxidation and 

lactate production, but gives no information on pentose phosphate cycle activity 

(68, 373). 
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To determine the absolute rate of glycolysis in alloreactive donor T cells, 

we analyzed the conversion of 5-[3H]-glucose to 3H2O, which occurs during the 

enolase-catalyzed penultimate step in glycolysis (49, 68).  The amount of 3H2O 

formed reflects the total amount of glucose that will be oxidized in the TCA cycle, 

secreted as lactate, or converted into other biomolecules (Figure 3.19) (68).  

Alloreactive donor T cells were purified from the spleens of F1 mice 7 d after 

induction of nonirradiated GVHD as in O2 consumption and lactate production 

experiments.  Unstimulated T cells and T cells that had been stimulated with anti-

CD3/28 antibodies were used as controls and display low and high rates of 

glycolysis respectively (58, 59). 

Alloreactive donor T cells increased glycolysis 4-fold compared to 

unstimulated T cells (Figure 3.20 A).  Further elevations in glycolysis were 

observed in T cells stimulated with anti-CD3/28 antibodies, which increased their 

glycolytic rate 30- and 7-fold compared to unstimulated and alloreactive donor T 

cells, respectively (Figure 3.20 A).  These differences in glycolytic rate are 

consistent with differences observed in lactate production (Figure 3.16 B) and 

suggest that the decreased rate of lactate production in alloreactive donor T cells 

compared to T cells stimulated by anti-CD3/28 antibodies reflects lower total 

glycolytic metabolism.  

Following activation through the TCR and CD28, T cells increase 

glycolysis in part by increasing their expression and plasma membrane 

localization of glucose transporter 1 (GLUT1) in a PI3-K/AKT-dependent fashion 

(Chapter 1) (58, 59, 68, 69).  This regulatory mechanism suggests that 
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decreased rates of glycolysis in donor T cells as compared to T cells stimulated 

by anti-CD3/28 antibodies could be due to decreased levels of GLUT1 

expression.  To test this hypothesis, total cellular GLUT1 expression in purified 

donor T cells was evaluated by western blot (68).  This method does not 

discriminate between plasma membrane (i.e., active) and intracellular (i.e., 

inactive) GLUT1 (58, 68).  However, this distinction requires methods 

incompatible with the limiting number of primary cells available in our studies. 

Such methods include physically separating the plasma membrane from other 

cellular components, which requires 15 x 106 cells per analysis, (75) or using 

cells that express a GLUT1 molecule genetically designed to contain an 

extracellular FLAG or Myc tag (58, 68, 224, 514).  However, mice do not 

currently exist that express FLAG- or Myc- tagged GLUT1.   

Donor T cells purified 7 d after induction of GVHD expressed 

approximately 2-fold more GLUT1 compared to unstimulated T cells (Figure 3.20 

B).  This increased GLUT1 expression is similar to the increased lactate 

production and glycolytic rate in alloreactive donor T cells (Figure 3.16 B, Figure 

3.20 A).  However, unstimulated T cells, host T cells and alloreactive donor T 

cells all expressed approximately 5-fold less GLUT1 than T cells stimulated with 

anti-CD3/28 antibodies (Figure 3.20, B).  This low GLUT1 expression in 

alloreactive donor T cells compared to control stimulated T cells may account for 

the disparate rates of lactate production and glycolysis between these two 

groups.   
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However, without direct measurements of cell surface GLUT1, we cannot 

exclude the possibility that surface GLUT1 levels are equivalent between 

alloreactive donor T cells and T cells stimulated with anti-CD3/28 antibodies (i.e., 

that most of the GLUT1 in CD3/28 cells is intracellular).  This possibility is 

unlikely because stimulation with anti-CD3/28 antibodies increases the surface 

localization of GLUT1 (58, 69) and most GLUT1 expressed by mitogen-

stimulated T cells is located in the plasma membrane (60).  If surface GLUT1 

levels were equivalent in alloreactive donor T cells and T cells stimulated with 

anti-CD3/28 antibodies, it would suggest other glycolytic enzymes such as 

hexokinase or phosphofructokinase as possible mediators of the different 

glycolytic rates between these two cell types (231). 

While alloreactive donor T cells on d 7 after transplant have a decreased 

glycolytic rate and GLUT1 expression compared to control stimulated T cells, 

these observations do not preclude higher rates of glycolysis earlier during donor 

T cell expansion.  Purification of donor T cells earlier than d 5 is not an ideal 

strategy for analyzing metabolic paramaters because 30-50% of donor T cells 

have not yet divided by 2 d after transplant (Figure 3.18).  Thus, measurements 

of O2 consumption, lactate production or GLUT1 expression would reflect both 

alloreactive and non-reactive donor T cells and make interpretation difficult.  To 

separately analyze divided and undivided cells, we labeled donor T cells with 

CFSE and measured total cellular GLUT1 by flow cytometry (Figure 3.21) (59, 

510).   
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Figure 3.20.  Glycolytic rate and GLUT1 expression of alloreactive donor T 

cells.  Donor (Thy1.1+) T cells were purified from F1 animals 7 d after i.v. 

injection of allogeneic B6-Thy1.1 splenocytes (50 x 106).  T cells were purified 

from naïve B6 or B6-Ly5.2 mice based on Thy1.2 expression immediately before 

analysis (Unstim) or stimulated for 48 h with anti-CD3 and anti-CD28 antibodies 

(0.5 g/mL, soluble; CD3/28).  All populations were  85% pure.  A.  Unstim and 

CD3/28 T cells are from 3 independent mice or cultures.  Donor T cells were from 

10 mice with GVHD (2 mice/data point).  T cells were incubated with 5-3H-

glucose for 1 h and the glycolytic rate was normalized to the cell number.  * 

p=0.01 vs. Unstim.  ** p<0.0001 vs. Unstim or Donor.  B.  Donor and Host T cells 

were purified from 3-4 independent mice 7 d after transplant.  Lysates were 

deglycosylated prior to gel electrophoresis and analysis in order to prevent 

GLUT1 smearing. The GLUT1 band appeared at 45 kD as expected (58). 
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Both CD4 and CD8 divided donor T cells had approximately 2-fold more 

GLUT1 staining than undivided T cells on d2, d4 and d7 after transplant (Figure 

3.21 A, Table 3.9).  These increases are consistent with the 2-4-fold increase in 

GLUT1 expression and glycolytic rate observed in purified donor T cells on d 7 

compared to unstimulated T cells (Figure 3.21).  This 2-fold increase in GLUT1 

expression contrasts with the 10-fold increase observed in control T cells 

stimulated in vitro with anti-CD3/28 antibodies (CD4: 120 vs. 14, CD8: 154 vs. 

14)) or allogeneic stimulator cells (CD4: 166 vs. 16, CD8: 192 vs. 20) (Figure 

3.21 B).  These results indicate that alloreactive donor T cells have 2-fold more 

GLUT1 than undivided controls up to d7 during GVHD, but have 5-fold less 

GLUT1 than T cells stimulated in vitro with anti-CD3/28 antibodies or alloantigen.  

These results suggest that the lactate production and glycolytic rate of 

alloreactive donor T cells will be increased in comparison to unstimulated T cells, 

but decreased in comparison to control-stimulated T cells, even at early time 

points during expansion (58, 69). 
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Figure 3.21.  GLUT1 expression of alloreactive donor T cells during in vivo 

expansion.  Numbers in the upper left quandrant indicate the GLUT1 MFI of 

divided cells and numbers in the upper right quadrant indicate the GLUT1 MFI of 

undivided cells.  A.  Donor splenocytes (B6-Ly5.2, 50 x 106) were labeled with 

CFSE and injected into F1 or B6 recipients.  At the indicated timepoint, 

splenocytes were stained for surface markers and total cellular GLUT1.  Donor T 

cells were identified as CD45.1+ and CD4+ or CD8+.  Flow plots are representive 

of 3 animals analyzed per timepoint.  For B6-Ly5.2→F1, numbers are averaged 

from three mice, SEM values are in table 3.9.  B.  T cells (B6-Ly5.2) were labeled 

with CFSE and cultured with syngeneic (Syn, B6) or allogeneic (Allo, F1) 

splenocytes for 4 d and stained as in A.  Alternatively, CFSE-labeled T cells were 

stained and fixed prior to culture (Unstim) or following 48 h culture with anti-

CD3/28 antibodies (0.5 g/mL). 
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Table 3.9. GLUT1 expression of alloreactive donor T cells during in vivo 

expansion.  Donor splenocytes (B6-Ly5.2, 50 x 106) were labeled with CFSE 

and injected into F1 or B6 recipients.  At the indicated timepoint, splenocytes 

were stained for surface markers and total cellular GLUT1.  Donor T cells were 

identified as CD45.1+ and CD4+ or CD8+.  Data are averaged from 3 mice per 

timepoint and numbers in parentheses indicate SEM.  * p<0.001 for divided vs. 

undivided within a given timepoint and cell type.   

 

 Day 2 aa Day 4 a Day 7 

 Undivided Divided    Undivided Divided  Undivided Divided 

CD4 13 (1) 37 (1)*  19 (2) 35 (2)*  16.9 (0.2) 25.2 (0.3)* 

CD8 12.5 (0.3) 34 (2)*  17 (1) 41 (1)*  21 (1) 50 (1)* 

 

Donor T cell size during GVHD.  In addition to its role in ATP production, 

glycolysis provides carbon atoms and NADPH for biomolecule synthesis in 

proliferating cells (78).  Because alloreactive donor T cells have a relatively low 

rate of glycolysis, one might expect their rate of proliferation to be similarly low 

due to an inability to synthesize biomolecules.  However, CFSE profiles analyzed 

on d 2 after stimulation suggest that donor T cells proliferate at least as fast as T 

cells stimulated by anti-CD3/28 antibodies (Figure 3.21).  An alternative 

hypothesis is that donor T cells compensate for low rates of glycolysis and 

biomolecule production by limiting their size, rather than their rate of proliferation.   

To address this possibility, we measured the forward light scatter (FSC) of 

dividing donor T cells as they mediated GVHD.  The FSC of a cell changes in 

proportion to its diameter, and is thus representative of cell size (515).  As 

controls, we used unstimulated T cells and T cells stimulated for 48 h by CD3/28 
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antibodies, which have low and high rates of glycolysis, respectively (Figure 

3.20).  Donor T cells purified on d 7 of GVHD had greater FSC values 50% 

greater than unstimulated T cells (p<0.0001).  T cells stimulated with anti-CD3/28 

antibodies further increased their cell size, as they had FSC values 30% higher 

than donor T cells (p=0.0003).  Together, these results suggest that, while donor 

T cells increase their size as they mediate GVHD, they are smaller than control T 

cells stimulated with anti-CD3/28 antibodies. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.22.  FSC-A analysis of donor T cells.  Aliquots of cells purified for 
glycolytic rate analysis (Figure 3.20) were set aside and analyzed by flow 
cytometry.  FSC-A indicates the area of the Forward Light Scatter parameter.  
Unstim and CD3/28 T cells are from 3 independent mice or cultures.  Donor T 
cells are from 10 mice with GVHD (2 mice/data point).   
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Characterization of CD28, PD-1, CTLA-4 and phospho-AKT expression in 

alloreactive donor T cells.  In activated T cells, aerobic glycolysis is stimulated by 

signaling through CD28, which activates PI3K and AKT, and leads to increased 

GLUT1 expression, glycolysis and lactate production (Chapter 1) (58, 59, 207).  

This pro-glycolytic signaling is opposed by signaling through the inhibitory 

receptors PD-1 and CTLA-4 (59, 255).  Because alloreactive donor T cells have 

relatively low levels of aerobic glycolysis, we hypothesized that increased 

signaling through PD-1 and CTLA-4 and/or decreased signaling through CD28 

could contribute to this phenomenon. 

We first addressed this question by comparing the expression of CD28, 

CTLA-4 and PD-1 on unstimulated T cells and alloreactive donor T cells 

mediating GVHD.  Unstimulated T cells expressed CD28, but had low levels of 

PD-1 and CTLA-4 (Figure 3.23 A).  Similarly, donor T cells analyzed on d 7 after 

infusion into F1 hosts expressed CD28 (Figure 3.23 B).  However, donor T cells 

increased their expression of both CTLA-4 and PD-1 (Figure 3.23 B).  This 

observation suggests that increased signaling through CTLA-4 or PD-1 could 

restrict glycolysis in donor T cells as they mediate GVHD. 
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Figure 3.23.  CD28, CTLA-4 and PD-1 expression in alloreactive donor T 
cells.  A.  Unstimulated T cells (unstim) from naïve B6-Ly5.2 mice (n=3) were 
identified on the basis of CD45.1, CD4 and CD8 expression.  B.  B6-Ly5.2 
splenocytes (50 x 106) were injected into B6D2F1 recipients (n=3) and 
splenocytes were analyzed on d 7 after transplant.  Donor T cells were identified 
on the basis of CD45.1, CD4 and CD8 expression.  A and B.  Gray histograms 
are isotype controls while black histograms are of the indicated protein.  Cell 
surface CD28 and PD-1 and total cellular CTLA-4 were analyzed.  Similar results 
were obtained from 3 mice in each group. 

 

 

Signaling through CTLA-4 and PD-1 inhibits glycolysis by decreasing 

levels of phospho-AKT (255).  Therefore, if low glycolysis in donor T cells is due 

to increased signaling through CTLA-4 and PD-1, we would expect these cells to 

have relatively low levels of phospho-AKT.  To test this hypothesis, we purified 

alloreactive donor T cells 7 d after GVHD induction and compared phospho-AKT 

expression to unstimulated cells and to T cells stimulated with anti-CD3/28 
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antibodies.  Alloreactive donor T cells had increased phospho-AKT compared to 

unstimulated control T cells (Figure 3.24 A).  However, phospho-AKT was 

undetectable in control-stimulated T cells, likely because this phosphorylation 

peaks early after stimulation (i.e. within 1 h) and then decreases in in vitro 

models of T cell activation (516-518).   

We then assessed phospho-AKT levels in CFSE-labeled donor T cells 

using flow cytometry, which allowed us to specifically analyze undivided and 

divided CD4+ and CD8+ donor T cells. AKT phosphorylation was observed in 

divided (i.e., CFSElo) donor CD4+ and CD8+ T cells on d 7 after transplant, 

suggesting an association with activation (Figure 3.24 B).  These results show 

that alloreactive donor T cells can increase AKT phosphorylation in vivo as 

compared to unstimulated T cells, which is consistent with the modest increase in 

GLUT1 expression, lactate production and glycolytic rate compared to 

unstimulated T cells (Figure 3.16 B, Figure 3.20 A).  However, the ability of 

alloreactive donor T cells to phosphorylate AKT suggests that other molecules 

that stimulate glycolysis such as HIF-1 (217, 372) or other molecules 

downstream of CD28 such as the TEC kinases or Vav1 (58) may have 

decreased activity in alloreactive donor T cells as compared to T cells stimulated 

with anti-CD3/28 antibodies and may be responsible for the differing levels of 

glycolysis in these two cell types. 
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Figure 3.24.  Phospho-AKT expression in alloreactive donor T cells.  A.  

Donor (Thy1.1+) T cells were purified from F1 animals 7 d after i.v. injection of 

allogeneic B6-Thy1.1 splenocytes (50 x 106).  Control T cells were purified from 

naïve B6-Ly5.2 mice based on Thy1.2 expression immediately before analysis 

(Resting) or stimulated for 48 h with anti-CD3 and anti-CD28 antibodies (0.5 

g/mL, soluble; CD3/28).  Cellular lysates were immunoblotted with antibodies 

specific for phosphor-AKT, GLUT1 or GAPDH.  B. GVHD splenocytes were 

analyzed 7 d after the infusion of CFSE-labeled allogeneic B6 splenocytes (50 x 

106) into F1 recipients.  Donor cells were identified based on the absence of H-

2kd and gated as either CD4+ or CD8+.  Cells were further classified as undivided 

or divided based on their CFSE status as in Figure 3.18.  Red histograms are 

isotype control samples while blue histograms are stained for phospho-AKT. 

 

 

m and ROS levels in alloreactive donor T cells.  In addition to 

generating ATP, OXPHOS produces ROS as a byproduct when electrons escape 

from the electron transport chain (252, 378).  O2
-, and in the presence of 

superoxide dismutases, H2O2 production increases as the voltage across the 
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mitochondrial inner membrane becomes increasingly negative (i.e., a greater 

accumulation of protons in the intermembrane space), a state termed m 

hyperpolarization (131, 168, 381).  m hyperpolarization disfavors additional 

proton pumping, thus increasing the half-lives of reactive iron-sulfur clusters and 

ubisemiquinone, which undergo single electron reactions with O2 to form O2
- 

(131, 154, 167).   

T cells activated in vitro increase their intracellular [Ca2+] levels from 75 

nM to 150 nM within minutes of anti-CD3 stimulation, which activates the TCA 

cycle and leads to a 2-fold increase in NADH that hyperpolarizes m (254).  

Because the increased O2 consumption observed in donor T cells suggests 

similar increases in TCA cycle activity, we hypothesized that alloreactive donor T 

cells might have a hyperpolarized m compared to unstimulated T cells, which 

could coinincide with increased O2
- levels.   

To test this hypothesis, donor T cells were identified and distinguished into 

activated (CFSElo) or unactivated (CFSEhi) subsets (Figure 3.26) 4 d after 

transplant into F1 (allo) or B6 (syn) hosts and m was evaluated using 

tetramethylrhodamine methyl ester (TMRM).  TMRM is a cationic lipophilic 

fluorescent dye (Figure 3.25) that accumulates in membranes as the voltage 

across that membrane increases (145, 519).  This property has led to the 

frequent use of TMRM to assess m in whole cells.  However, TMRM can 

accumulate in both the plasma and the mitochondrial membranes, which often 

complicates interpretation (145, 338, 519).  
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Figure 3.25.  Structures of TMRM, DHE and Ethidium.  From (520, 521). 

 

 

Divided donor T cells had a 60% increase in TMRM fluorescence 

compared to unactivated donor T cells (CFSEhi) in allo or syn recipients or 

unactivated host T cells (Figure 3.26 A).  This finding could result from either an 

increased plasma or mitochondrial membrane potential (145, 338).  However, 

there is disagreement as to whether T cells increase the potential of the plasma 

membrane following activation (522).  The studies in which plasma membrane 

hyperpolarization was observed suggest that it is small in magnitude (~ 5 mV) 

and lasts less than 5 min after activation (523-525).  Although effects due to 

changes in plasma membrane potential cannot be discounted, our results are 

consistent with an interpretation in which m is hyperpolarized in divided donor 

T cells.   

To measure ROS levels in alloreactive donor T cells, we stained CFSE-

labeled donor T cells with DHE (Figure 3.25).  The weakly fluorescent DHE is 
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oxidized to form the highly fluorescent ethidium (E+) by O2
-, but not by other 

oxidants such H2O2 or HNOO- (526).  These properties make DHE fluorescence 

a selective marker of O2
- levels (340).  However, due to the ability of DHE to 

dismutate O2
- to H2O2, DHE fluorescence is considered a qualitative, rather than 

quantitative, marker of O2
- levels (340, 520).     

Dividing donor T cells showed a 2-fold increase in DHE staining compared 

to control unactivated T cells (Figure 3.26 B).  This result suggests that 

alloreactive donor T cells have increased levels of O2
-, which coincides with the 

increased TMRM staining observed in these cells (Figure 3.26 A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26.  TMRM and DHE staining of alloreactive donor T cells.  B6-

Ly5.2 splenocytes (50 x 106, CFSE-labeled) were injected i.v. into F1 (allo) or B6 

(syn) recipients.  On d 4 following transplant, splenocytes were analyzed for 

TMRM (A, n=8/group) or DHE (B, n=6/group) staining.  For each mouse, the 

mean log fluorescence (MLF) from a sample without DHE or TMRM dye was 

subtracted from the MLF value for the stained samples.  CFSE gating strategy is 

shown below.  * indicates p<0.05. 
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Glutathione and pyruvate levels of alloreactive donor T cells.  Cells utilize 

a variety of antioxidants to scavenge ROS and prevent oxidative damage to 

biomolecules (527).  Among these antixodants are pyruvate and glutathione, 

both of which are consumed as they detoxify ROS (Figure 3.7, Figure 3.8) (196, 

200, 528).  Because alloreactive donor T cells have increased O2
- levels 

compared to unstimulated T cells (Figure 3.26 B), we hypothesized that they may 

also have lower levels of antioxidants. 

We measured intracellular pyruvate levels using an enzymatic kit based 

on the generation of H2O2 following the reaction of pyruvate and pyruvate 

oxidase (529).  Alloreactive donor T cells purified 7 d after transplant had nearly 

undetectable levels of pyruvate, while unstimulated T cells from naïve mice or 

host T cells from d 7 GVHD mice had 6-10 pMoles pyruvate/g protein (Figure 

3.27 A).  We next measured total intracellular glutathione levels using an assay 

that generates color as 5,5'-dithiobis-(2-nitrobenzoic acid) reacts with glutathione 

(530).   Alloreactive donor T cells purified 7 d after transplant into F1 hosts had 

16 pMoles glutathione/g protein, which is 25% less compared to or host T cells 

(Figure 3.27 B).  Together, these results show that alloreactive donor T cells 

have decreased antioxidant levels compared to unstimulated and host T cells, 

perhaps due to their increased O2
- levels. 
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Figure 3.27.  Pyruvate and glutathione levels of alloreactive donor T cells.  

Donor (Thy1.1+) or Host (Thy1.2+) T cells were purified from F1 animals 7 d after 

i.v. injection of allogeneic B6-Thy1.1 splenocytes (50 x 106).  Unstimulated T cells 

were purified from naïve B6 or B6-Ly5.2 mice based on Thy1.2 expression 

immediately before analysis (Unstim).  A.  Pyruvate levels from Unstim (n=5), 

Donor (n=5) or Host (n=3) T cells were determined using the Biovision assay kit.  

Results are combined from 3 independent experiments.  * p<0.01.  B.  Total 

glutathione levels from Unstim (n=2), Donor (n=8) or Host (n=5) T cells.  Results 

are combined from 2 independent experiments.  ** p=0.01 Donor vs. Host, 

p=0.04 Donor vs. Unstim. 

  

O2 consumption, lactate production and GLUT1 expression of proliferating 

bone marrow cells after transplant.  Following myeloablative bone marrow 

transplantation, numerous cell types proliferate within the recipient (48, 406, 412, 

424, 531).  Donor-derived myeloid and lymphoid precursors rapidly proliferate in 

the bone marrow to regenerate the host immune system (406, 408, 412), while 

mature donor T cells in the periphery can proliferate in response to alloantigen 

and mediate GVHD (48, 424).  Alloreactive donor T cells increase OXPHOS 

compared to unstimulated cells and use this pathway to generate 80-90% of their 

ATP (Figure 3.16).  However, the metabolic pathways used by proliferating bone 

marrow cells post-transplant unknown (406).   
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Mature peripheral granulocytes have mitochondria that inefficiently 

synthesize ATP, possibly because complexes I, III and IV do not associate into 

the higher order supercomplexes that are characteristic of mitochondria from 

tissues such as the heart (discussed further below) (480, 481).  Because 

granulocytes are amongst the first cells to be generated by post-transplant bone 

marrow (408, 409), this observation suggests that proliferating bone marrow cells 

may increase glycolysis rather than OXPHOS post-transplant. 

To test this hypothesis, we transfused donor (B6) bone marrow into 

lethally irradiated syngeneic recipients (1100 cGy, B6-Ly5.2) to induce rapid 

proliferation in the bone marrow.  We first analyzed the surface expression of 

lineage markers of naïve and post-transplant bone marrow to determine the cell 

types present.  Naïve and post-transplant bone marrow cells primarily (40-50%) 

stained for the granulocyte lineage marker GR-1, rather than for the B cell or T 

cell markers B220 (10-25%) or Thy1.2 (< 5%) (Figure 3.28 A and B).  We next 

assessed cellular proliferation in naïve and post-transplant bone marrow by 

injecting mice with 5-bromo-2-deoxyuridine (BrdU), a nucleoside analog whose 

incorporation indicates active DNA synthesis, and measuring its incorporation by 

flow cytometry (532).  After transplant, 80% of bone marrow cells stained 

positively for BrdU, as compared to 55% of bone marrow cells from naïve mice  
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Figure 3.28.  Lineage marker expression, BrdU incorporation and GLUT1 expression in naïve and post-transplant 
bone marrow.  Lethally irradiated (1100 cGy) B6-Ly5.2 mice were transplanted with B6 bone marrow cells (5 x 106).  A 
and B.  Bone marrow from naive B6 (A, n=8) and d 8 post-transplant (B, n=8) mice were analyzed for lineage markers by 
flow cytometry as indicated.  C.  Naïve B6 (n=8) or d 7 post-transplant mice (n=8) were injected with BrdU (100mg/kg) and 
given BrdU drinking water (1mg/mL).  24 h later, bone marrow was harvested and analyzed for BrdU incorporation.  D.  
Bone marrow cells from naïve B6 (n=10) or d 8 post-transplant mice (n=10) were analyzed for GLUT1 expression by flow 
cytometry.  * p<0.001
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(Figure 3.28 C, p<0.001).  Together, these results show that post-transplant bone 

marrow cells are primarily granulocytes and that they have increased proliferation 

compared to bone marrow cells from naïve mice. 

To determine the metabolic changes that accompany this increased 

proliferation, we measured GLUT1 expression, lactate production and O2 

consumption in bone marrow cells from post-transplant and naïve animals.  Post-

transplant bone marrow cells increased GLUT1 expression by 50% over naïve 

bone marrow (Figure 3.28 D), which suggests an increased glycolytic metabolism 

in post-transplant cells.  Consistent with this hypothesis, post-transplant bone 

marrow cells increased lactate production 2.8-fold compared to naïve bone 

marrow (Figure 3.29 A). 

Unlike GLUT1 expression and lactate production, rates of O2 consumption 

were not statistically different between post-transplant and naïve bone marrow 

(Figure 3.29 B).  This finding suggests that metabolic demands associated with 

increased proliferation in post-transplant bone marrow cells (Figure 3.28) are met 

by increased glycolysis rather than increased OXPHOS.  In support of this 

hypothesis, post-transplant bone marrow cells did not increase oxidative ATP 

production compared to naïve cells (1.3  0.1 vs. 1.4  0.2 nMoles ATP/(min x 

106 cells), p=0.2), but increased glycolytic ATP production 2.5-fold (0.98  0.11 

vs. 0.39  0.06 nMoles ATP/(min x 106 cells), p=0.0002).  Thus, post-transplant 

bone marrow cells produced 43% of their ATP through glycolysis and 57% 

through OXPHOS (Figure 3.29 C).  These results indicate that bone marrow cells 

increase glycolysis but do not increase OXPHOS following transplant.   
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Figure 3.29.  Lactate production, O2 consumption and ATP production of 

naïve and post-transplant bone marrow.  A and B.  Bone marrow from naïve 

B6 (n=8) or d 8 or d 9 post-transplant (n=10) mice was harvested, RBC-lysed 

and analyzed for lactate production and O2 consumption.  C.  ATP production 

was calculated from A and B as ATPOXPHOS=5.6 x O2 Consumption and 

ATPGlycolysis=Lactate Production + 0.4 x O2 Consumption.  Error bars indicate 

standard error.  * p<0.001   

 

Treatment of bone marrow cells with oligomycin reduced respiration rates 

by 62-64% in naïve and post-transplant bone marrow cells (Table 3.10).  This 

finding indicates that, like T cells (Table 3.10), bone marrow cells use ~65% of 

their basal respiratory rates to synthesize ATP.  FCCP treatment of bone marrow 

cells showed that post-transplant cells had a small but significant (20% increase, 

p=0.03) increase in total respiratory capacity (Table 3.10).  This finding suggests 

that post-transplant bone marrow cells may have a greater ability to increase 

oxidative ATP synthesis than naïve bone marrow cells, if energetic demands 

increase (503).  These data are shown graphically in Figure 3.30. 
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 nMoles O2/(min x 106 cells)  % of Routine  % of Total Capacity 

 Routine Oligo FCCP OXPHOS  OXPHOS Leak  OXPHOS Leak Reserve 

Naïve 

 (n=8) 
0.26 (0.03) 0.10 (0.01) 0.53 (0.04) 0.16 (0.02)  62 (2) 38 (2)  30 (2) 18 (2) 52 (3) 

Post-
Transplant  

(n=7) 

0.23 (0.02) 0.08 (0.01) 0.65 (0.05)* 0.15 (0.01)  64 (3) 36 (3)  23 (1)* 13 (1)* 64 (1)* 

 

 

Table 3.10.  O2 consumption parameters of naïve and post-transplant bone marrow.  O2 consumption 

measurements were made as in Figure 3.29.  Routine, Oligo and FCCP rates were collected as described in the text and 

methods.  Calculations for OXPHOS and percentages were made as described in the methods.  Numbers in parentheses 

indicate standard error.  * p<0.05 compared to Naïve bone marrow.  Treatment with myxothiazol showed that 

extramitochondrial O2 consumption was less than 5% of routine rates and was ignored. 
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Figure 3.30.  O2 consumption parameters of naïve and post-transplant bone 
marrow.  Data are from table 3.8.  A.  Routine, Oligo and FCCP rates of O2 
consumption.  B.  The percentage of total respiratory capacity used for proton 
leak (black), OXPHOS (white) and kept in reserve (gray). 

 

 

Following transplant, bone marrow cells do not increase oxidative ATP 

production compared to naïve bone marrow cells, but increase lactate production 

3-fold (Figure 3.29).  This finding contrasts with alloreactive donor T cells, which 

increase both OXPHOS and lactate production compared to unstimulated T cells 

(Figure 3.16).  On an absolute level, proliferating bone marrow cells generate 

less ATP than alloreactive donor T cells (Figure 3.16, Figure 3.29, p<0.0001), 

which suggests that they may have lower overall bioenergetic demands (207).  
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Because proliferation requires large amounts of energy (78, 207), post-transplant 

bone marrow cells could have lower energetic demands than alloreactive donor T 

cells due to slower rates of proliferation. 

  To test this hypothesis, we measured the proliferative index of 

alloreactive donor T cells and post-transplant bone marrow granulocytes.  The 

proliferative index is defined as the average number of divisions undergone by 

dividing cells (533) and was calculated using FlowJo software (Figure 3.31).  The 

proliferation index of donor bone marrow granulocytes post-transplant was 2-fold 

lower than that of alloreactive donor T cells (Figure 3.31).  These observations 

suggest that alloreactive donor T cells may have increased energetic demands 

compared to post-transplant bone marrow cells due to their higher rates of 

proliferation. 

 While donor T cells transplanted into nonirradiated syngeneic recipients 

do not proliferate (Figure 3.18, Figure 3.26), donor T cells transplanted into 

irradiated syngeneic recipients proliferate to fill the empty immune system (534).  

This antigen-independent expansion is termed homeostatic proliferation (534).  

Homeostatically proliferating syngeneic T cells also had lower rates of 

proliferation than alloreactive donor T cells (Figure 3.31, 1.7 vs. 3.5, p<0.0001), 

suggesting that T cells proliferating in response to alloantigen may have 

increased energetic demands compared to T cells proliferating to fill an empty 

niche.   
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Figure 3.31.  Proliferation indices of post-transplant bone marrow cells, 

syngeneic T cells and alloreactive T cells.  Syn: CFSE-labeld bone marrow 

(B6, 5-50 x 106) was transplanted into congenic (B6-Ly5.2) recipients conditioned 

with 1100 cGy.  Allo: CFSE-labeled splenocytes (B6-Ly5.2, 50 x 106) were 

transplanted into F1 recipients.  Donor cells were identified based on CD45.1 and 

CD45.2 expression 72 h post transplant in the bone marrow (BM) or spleen (Sp) 

and gated as Gr-1+ (Gr-1) or CD4/8+
 (T).  Proliferation index is indicated in the 

upper right corner of histograms and was calculated using FlowJo software as 

shown for representative mice.  Data are combined from 3 separate experiments. 

* p < 0.001. 

 

 

Pyruvate levels of post-transplant bone marrow cells.  While alloreactive 

donor T cells increase OXPHOS 2-fold over unstimulated T cells and use 

glycolysis to generate only 10-20% of their ATP (Figure 3.29, Table 3.8), post-

transplant bone marrow cells do not increase OXPHOS following transplant 

compared to naïve bone marrow cells and use glycolysis to generate 40% of 
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their ATP (Figure 3.29, Table 3.10).  Post-transplant bone marrow cells also 

produce lactate 70% faster compared to alloreactive donor T cells purified 7 d 

after transplant (0.9 vs. 0.5 nMoles lactate/(min x 106 cells), p=0.02).  This 

increased glycolysis could help post-transplant bone marrow cells maintain their 

levels of antioxidants while they proliferate (252, 376, 535).  To test this 

hypothesis, we measured intracellular pyruvate in bone marrow cells from naïve 

and post-transplant mice.  Pyruvate levels in naïve and post-transplant bone 

marrow were nearly identical (Figure 3.32).  This finding indicates that, unlike 

alloreactive donor T cells, repopulating bone marrow cells do not have decreased 

levels of pyruvate compared to unstimulated or naïve controls.  Because 

pyruvate functions as an antioxidant (203, 493, 495), this finding suggests that 

alloreactive donor T cells may be more sensitive to ROS-mediated cell death 

than post-transplant bone marrow cells. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.32.  Pyruvate levels of naïve and post-transplant bone marrow 

cells.  Lethally irradiated (1100 cGy) B6-Ly5.2 mice were transplanted with B6 

bone marrow cells (5 x 106).  Bone marrow was harvested from naïve B6 (n=8) or 

d7/d8 post-transplant (n=9) mice and RBC-lysed.  Pyruvate levels were 

measured using the pyruvate assay kit from Biovision. 
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Discussion 

 The experiments reported in this chapter demonstrate that alloreactive 

donor T cells possess bioenergetic characteristics that distinguish them from 

unstimulated T cells, control-stimulated T cells and proliferating cells in the bone 

marrow.  During the development of disease in the B6F1 model of 

nonirradiated GVHD, alloreactive donor T cells have high rates of OXPHOS than 

glycolysis and depleted glutathione and pyruvate levels.  This bioenergetic 

phenotype is distinct from the “Warburg effect”, which was recently hypothesized 

to characterize all proliferating cells (78).  The following sections will (1) discuss 

the potential carbon sources used to support OXPHOS in alloreactive donor T 

cells; (2) contrast the bioenegetics of alloreactive donor T cells with the 

bioenergetics of control-stimulated T cells, which utilize high rates of aerobic 

glycolysis; (3) contrast alloreactive donor T cell metabolism with that of 

proliferating post-transplant bone marrow cells; and (4) discuss the role that 

cytokine signaling and conditioning may play in regulating metabolism during 

GVHD. 

Potential carbon sources for alloreactive donor T cells.  Unlike acutely 

stimulated T cells (Figure 3.16) (207, 250-252, 536) or proliferating bone marrow 

cells (Figure 3.29), alloreactive donor T cells generate 80-90% of their energy 

using OXPHOS.  OXPHOS is driven by the electron carriers NADH and FADH2 

(502).  Electrons from these molecules generate a proton gradient across the 

inner mitochondrial membrane as they are passed along complexes I-IV (CI-CIV) 

of the electron transport chain to O2, the terminal electron acceptor (138, 140, 
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145, 381).  Protons flow back down this gradient through complex V (the F1Fo-

ATPase) to generate ATP (153).  Hence, the oxidation of NADH and FADH2 drive 

O2 consumption and oxidative ATP production (OXPHOS).  Because NADH and 

FADH2 are formed during the oxidation of glucose (502), amino acids (113) and 

fatty acids (537), it is possible that any of these carbon sources could contribute 

to increased OXPHOS in alloreactive donor T cells. 

Glycolysis is increased 4-fold in alloreactive donor T cells compared to 

unstimulated cells (Figure 3.20), which suggests that increased glucose oxidation 

in the TCA cycle may play a role in providing the NADH for donor T cell 

OXPHOS.  While some glucose-derived carbons are apparently used for lactate 

production in alloreactive donor T cells (Figure 3.16), some may enter the 

mitochondria for oxidation or for biomolecule synthesis (Figure 3.33) (78, 207).  

The rapid proliferation of donor T cells suggests a need for newly synthesized 

biomolecules and an increase in glucose-derived fatty acid synthesis, rather than 

complete oxidation of glucose into CO2 (372).  However, glucose-derived fatty 

acid synthesis requires glucose-derived pyruvate to pass through either pyruvate 

carboxylase (PC) or pyruvate dehydrogenase (PDH), before forming citrate and 

being exported to the cytosol for conversion into fatty acids (Figure 3.33).  

Because PDH generates NADH (105, 123), increased flux through PDH could 

contribute to increased OXPHOS in alloreactive donor T cells.  In support of this 

hypothesis, increased glucose-derived fatty acid synthesis contributes to 

increased OXPHOS in an IL-3 dependent lymphoid cell line (372).  In these 

experiments, fatty acid synthesis was increased by lowering HIF-1 levels, which 
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otherwise inhibits glucose-derived carbon entry into the mitochondria by inhibiting 

PDH (121, 122, 372).  Cells with decreased levels of HIF-1 increased glucose-

derived lipid synthesis by 2-3-fold despite lower overall glucose uptake.  This 

increased lipid synthesis was accompanied by a 1.5-2-fold increase in O2 

consumption, presumably due to increased NADH formation by pyruvate 

dehydrogenase (372). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.33.  NADH and FADH2 generation from glucose.  Glucose can 

generate NADH and FADH2 through the indicated reactions.  Substrates in red 

can be used for oxidative ATP production.  Abbreviations are as follows: 

glyceraldehydes-3-phosphate dehydrogenase (GAPDH), pyruvate 

dehydrogenase (PDH), pyruvate carboxylase (PC), isocitrate dehydrogenase 

(IDH), α-ketoglutarate dehydrogenase (α-KDH), succinate dehydrogenase 

(SDH), malate dehydrogenase (MDH).  Other steps have been omitted for clarity.  

Adapted from (49). 
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Another potential fuel source to support increased OXPHOS in 

alloreactive donor T cells is amino acid oxidation.  Glutamine is the most 

abundant amino acid in the plasma, with a concentration around 0.6 mM in 

healthy human subjects (538), and its metabolism is important for proliferating 

cells, including lymphocytes (62, 113, 206, 538-543).  Glutamine enters cells 

through neutral amino acid transporters such as SN2, ASCT2 and SLC1A5 (113, 

541).  Mitochondrial glutaminase cleaves glutamine into ammonia and glutamate, 

which can be used for numerous metabolic functions including oxidative ATP 

production and NADPH generation (Figure 3.34) (113, 544, 545).  Following this 

reaction, glutamate transaminase catalyzes the formation of the TCA-cycle 

intermediate -ketoglutarate.  Glutamine-derived -ketoglutarate is either 

oxidized by the TCA cycle, resulting in NADH production, or is exported from the 

mitochondria as malate in order to generate NADPH and pyruvate through the 

action of malic enzyme (113).  Glutamine metabolism is regulated by the 

oncogene c-Myc, which promotes glutaminase expression by regulating 

microRNA transcription (542) and increases the expression of glutamine 

transporters such as SN2 and ASCT2 by directly inducing their transcription 

(541).  
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T cells stimulated with phorbyl 12-myristate 13-acetate (PMA) and 

ionomycin increase c-Myc RNA levels > 10-fold compared to unstimulated cells 

(546).  Similarly, T cells responding to immunization with hen egg lysozyme up-

regulate c-Myc expression in vivo (547).  Because c-Myc promotes glutamine 

uptake and utilization (541, 542), these observations suggest that activated T 

cells might up-regulate glutamine metabolism.  Indeed, rat thymocytes stimulated 

with conA consume 8-fold more glutamine and produce 4-fold more glutamine-

derived CO2 than resting thymocytes (62).  This increased glutamine metabolism 

is important for lymphocyte proliferation, as reducing glutamine levels in culture 

media from 0.6  to 0.01 mM decreases conA-stimulated PBMC proliferation by 

10-fold (538). Similar experiments indicate that glutamine restriction inhibits 

conA-stimulated proliferation 5-10-fold in rat (539) or mouse lymphocytes (540).  

Glutamine is also important for lymphocyte cytokine production, as human 

PBMCs stimulated with conA in media without glutamine produce 2-5-fold less 

IL-2, IFN- and IL-10 compared to cells stimulated with 0.6 mM glutamine (548).   
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Figure 3.34.  Mitochondrial glutamine metabolism.  Glutamine enters 

mitochondria and is converted to glutamate by glutaminase (GLS).  Glutamate is 

converted into α-ketoglutarate by transaminases (TA) or glutamate 

dehydrogenase (GDH).  Malate can be exported from the mitochondria to 

generate pyruvate and NADPH by malic enzyme.  Red text indicates potential for 

OXPHOS utilization.  Other abbreviations are as follows: pyruvate 

dehydrogenase (PDH), isocitrate dehydrogenase (IDH), α-ketoglutarate 

dehydrogenase (α-KDH), succinate dehydrogenase (SDH), malate 

dehydrogenase (MDH).  Other steps have been omitted for clarity.  Adapted from 

(49) and (113). 
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proliferate 2-5-fold faster in response to conA than lymphocytes from control 

animals.  In humans, decreased plasma glutamine levels in burn victims is 

correlated with profound immunosuppression (538).  Conversely, glutamine 
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birth weights (551) and decreases the incidence of pneumonia and bacteremia 

by 28-35% in trauma patients (552).     

Together, these studies document the importance of glutamine 

metabolism for T cell proliferation and cytokine production and suggest that 

increased OXPHOS in alloreactive donor T cells may be fueled by glutamine 

oxidation.  However, a recent microarray analysis revealed that CD8+ effector T 

cells in an irradiated model of murine GVHD have decreased levels of c-Myc 

mRNA compared to naïve T cells (553).  Because c-Myc stimulates glutamine 

uptake and utilization (541, 542), this observation suggests that glutamine may 

play a limited role in fueling OXPHOS in alloreactive donor T cells.  Studies in 

human allogeneic HSCT patients support this hypothesis (554, 555).  

Supplementing the diets of post-transplant patients with glutamine reduced 

infection rates and increased the number of circulating lymphocytes; however, 

glutamine supplementation did not increase the incidence of GVHD (554, 555).  

Although the relationship between glutamine supplementation and GVHD 

severity was not analyzed, these studies suggest that glutamine metabolism may 

play less of a role in alloreactive donor T cells than it does in other lymphocyte 

populations. 

Fatty acids are another potential fuel source whose oxidation could drive 

increased OXPHOS in alloreactive donor T cells (Figure 3.35).  Fatty acids travel 

through the blood stream complexed with albumin or as part of triglycerides (556) 

and are imported into cells through fatty acid transport proteins (FATPs) (557).  

Once inside cells, fatty acids are conjugated to coenzyme A in the cytosol by 
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fatty acyl CoA synthetase to form acyl CoA esters (558).  Carnitine 

palmitoyltransferase (CPT) 1, which is the rate limiting step in fatty acid oxidation 

(FAO) catalyzes the converstion of acyl CoA esters into acylcarnitines in the 

intermembrane space (559, 560).  Acylcarnitines then enter the mitochondrial 

matrix through carnitine:acylcarnitine translocase (560).  Once inside the matrix, 

acylcarnitines are converted back into acyl CoA esters by CPT2, which liberates 

free carnitine for export and reuse in the cytosol (560).  Acyl CoA molecules can 

then enter the b-oxidation pathway, where an acyl chain consisting of 2n carbons 

generates n acetyl coA, NADH and FADH2 molecules (560).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.35.  Fatty acid oxidation.  Fatty acids (containing n carbons) are 

imported through fatty acid transport proteins and conjugated to coenzyme A by 

fatty acyl coA synthetase.  Carnitine palmitoyltransferase (CPT) 1 catalyzes the 

formation of acylcarnitines, which enter the mitochondria through the 

carnitine:acylcarnitine translocase.  CPT2 catalyzes the regeneration of acyl-

CoA, which can then enter the beta oxidation pathway.  Each cycle of beta 

oxidation shortens the acyl-CoA by two carbons and yields one FADH2, one 

NADH and once acetyl CoA, which can enter the TCA cycle.  Red text indicates 

potential utilization by OXPHOS.  Adapted from (49) and (560). 
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FAO generates large amounts of ATP (100-130 ATP per palmitate 

oxidized (502)); however, its role in lymphocyte metabolism is not well 

understood.  One of the important regulators of FAO in mammalian cells is the 

AMP-activated kinase (AMPK), which activates b-oxidation by phosphorylating 

and inhibiting acetyl coA carboxylase (ACC) (Figure 3.36) (561, 562).  Inhibition 

of ACC leads to decreased levels of malonyl-CoA, an inhibitor of CPT1 (563).  

Thus AMPK activity increases CPT1 activity by reducing malonyl-CoA levels 

(560). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.36.  Regulation of FAO by p-AMPK and etomoxir.  p-AMPK 

phosphorylates and inhibits acetyl CoA carboxylase (ACC), which decreases the 

concentration of malonyl-CoA.  Because manonyl-CoA is an allosteric inhibitor of 

CPT1, the actions of p-AMPK stimulate fatty acid oxidation.  Etomoxir inhibits 

fatty acid oxidation through its irreversible inhibition of CPT1.  From (560, 563-

565). 
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be important for activated lymphocytes to increase energy production in 

anticipation of the energy demands of proliferation.  However, a more recent 

study suggests that AMPK is dispensible for many T cell responses (566).  For 

example, mouse T cells lacking the catalytic subunit of AMPK (AMPK1 in 

lymphocytes (261, 566)) proliferate and produce IFN- and IL-4 equally well as 

compared to wild type T cells in response to anti-CD3 stimulation (566).  

Similarly, wild type mice lacking AMPK1 generate equivalent antibody titers 

following primary and secondary (d 14)  Keyhole limpet hemocyanin (KLH) 

immunization, and OVA-specific wild-type or AMPK1 deficient T cells proliferate 

identically in response to OVA immunization and cause identical amounts of 

swelling in antigen-specific delayed-type hypersensitivity (DTH) tests (566).    

While these results suggest that T cells do not require active AMPK to 

mediate immune responses, they do not rule out a role for FAO in lymphocyte 

activation, as signaling molecules other than AMPK may stimulate FAO.  Muscle 

cells expressing a kinase dead (KD) isoform of AMPK2 cannot increase AMPK 

activity when stimulated to contract (567).  Despite this lack of AMPK activity, 

AMPK2 KD muscle cells phosphorylate acetyl coA carboxylase and oxidize 

palmitate as efficiently as wild-type cells during contractions(567).  The existence 

of AMPK-independent pathways that activate fatty oxidation indicates that simply 

measuring AMPK activity is insufficient to assess the activity of FAO in 

lymphocytes.   
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The role of b-oxidation in lymphocytes has been investigated by the direct 

measurement of fatty acid oxidation and by using genetic models with defects in 

FAO (246, 568-570).  Rat lymphocytes stimulated for 1 h with conA do not 

increase their rate of oleate metabolism compared to control cells (246), while 

mouse T cells stimulated for 4 d with IL-2 and anti-CD3 and anti-CD28 antibodies 

decrease palmitate oxidation 2-fold compared to unstimulated T cells (570).  

These observations suggest that FAO is not important for acute T cell responses.  

Recent studies in mice support this hypothesis.  CD8+ T cells lacking TNF 

receptor-associated factor 6 (TRAF6 KO T cells) have decreased levels of genes 

involved in fatty acid oxidation compared to wild type T, however this study did 

not report the specific genes analyzed (568).  TRAF6 KO T cells accumulate 

identically to wild type cells out to d 6 following immunization with an OVA-

expressing strain of LCMV (568).  Together, these observations suggest that 

FAO is not important for acute T cell responses in vitro or in vivo.   

Despite their identical expansion in response to LCMV, TRAF6 KO T cells 

decline faster than WT cells and fail to convert into memory cells (568).  Unlike 

activated WT T cells, which increase FAO 5-fold following IL-2 withdrawal, 

TRAF6 deficient T cells do not increase FAO.  These observations suggest that 

increasing b-oxidation may be important for activated T cells to transition into 

memory cells when cytokine levels become limiting in vivo (568, 569).  

Consistent with this hypothesis, treatment with metformin, which activates AMPK 

and increases T cell FAO in vitro, improves memory T cell generation in vivo 

following LCMV infection for both WT and TRAF6 KO T cells (568, 569).   
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While CD4+ or CD8+ memory T cells (CD44+ and or CD62L-) from naïve 

mice do not cause GVHD (571, 572), alloreactive memory T cells mediate severe 

GVHD (573).  These experiments were performed by first transferring T cells 

from naïve mice into allogeneic recipients to induce GVHD.  Donor CD4+ or CD8+ 

memory T cells isolated from these primary recipients were then transferred into 

secondary recipients, where they caused severe GVHD (573).  While the role of 

memory T cells has not been investigated in the nonirradiated PF1 model, the 

donor T cells we analyzed were 80% CD44+ CD62L-, consistent with an 

effector/effector memory phenotype.  Because FAO is an important aspect of 

memory T cell metabolism (568, 569), it is possible that this pathway contributes 

to increased OXPHOS in alloreactive donor T cells during nonirradiated GVHD.  

Further evidence for FAO as the fuel source for alloreactive donor T cells 

comes from a study of the nutritional status of 13 patients with chronic GVHD 

(574).  Patients with chronic GVHD oxidize fatty acids 2-fold faster than healthy 

controls, however, both groups oxidized carbohydrates at the same rate (574).  

While these observations were based on whole body measurements and does 

not specifically reflect lymphocyte metabolism, they are consistent with increased 

FAO contributing to increased OXPHOS in alloreactive donor T cells. 

Preliminary evidence from this laboratory also suggests that FAO 

contributes to increased OXPHOS in alloreactive donor T cells.  A recent screen 

of intracellular metabolites revealed that alloreactive donor T cells increase the 

levels of several acyl-carnitine species (C8, C14:1-OH, C16:1, C18:1, C18:2) by 

10-20-fold compared to unstimulated T cells.  Because acyl-carnitines are 
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intermediates that shuttle fatty acids into the mitochondria for b-oxidation (Figure 

3.35), they likely support increased FAO in alloreactive donor T cells (575).   

Increased FAO in alloreactive donor T cells would have several 

implications for the management of GVHD.  Donor T cells lacking TRAF6 should 

mediate less severe GVHD than WT T cells, due to their inability to increase b-

oxidation (568).  Conversely, drugs that increase FAO such as metformin may 

increase GVHD severity (568).  Furthermore, drugs that inhibit FAO may have 

beneficial effects in the setting of GVHD.  One such agent is etomoxir, which 

inhibits b-oxidation by inhibiting CPT1 (Figure 3.36) (559).  While clinical studies 

using etomoxir have focused on its therapeutic effects in heart failure (565, 576-

578), the importance of b-oxidation in memory T cells (568, 569) suggests that 

etomoxir should be investigated in T cell-mediated diseases where memory cells 

play a role, such as GVHD (573) and multiple sclerosis (45). 

These observations suggest a model in which alloreactive donor T cells 

use glucose to synthesis biomass and fatty acids to generate ATP (Figure 3.37).  

The modestly increased glucose utilized by alloreactive donor T cells is 

preferentially used to synthesize the new fatty acids necessary for rapid 

proliferation (78) (Figure 3.37).  While alloreactive donor T cells likely metabolize 

glucose primarily for biomass, they may increase the oxidation of fatty acids to 

drive oxidative ATP synthesis (Figure 3.37).  This phenotype would allow 

alloreactive donor T cells to proliferate and generate ATP without using large 

amounts of glucose or secreting large amount of lactate, however it results in an 

impaired antioxidant balance (discussed below). 
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Figure 3.37.  Proposed model for increased OXPHOS in alloreactive donor 
T cells.  Alloreactive donor T cells are proposed to primarily use glucose for 
biomolecule synthesis (blue). As glucose-derived carbons enter the 
mitochondria, a modest amount of NADH is formed through pyruvate 
dehydrogenase (PDH).  Fatty acid oxidation (red) is proposed to generate the 
majority of ATP in alloreactive donor T cells by fueling OXPHOS. 
 

Comparison of alloreactive donor T cells to control-stimulated T cells.  

Both alloreactive donor T cells and T cells stimulated with anti-CD3 and anti-

CD28 antibodies (control-stimulated T cells) increase OXPHOS 2-3-fold 

compared to unstimulated T cells.  However, control-stimulated T cells increase 

lactate production, glycolysis and GLUT1 expression up to 30-fold compared to 

unstimulated T cells.  This high rate of aerobic glycolysis is similar to the 

metabolic phenotype found in many cancers (the Warburg effect), but is distinct 

from alloreactive donor T cells, which exhibit relatively low levels of GLUT1, 

glycolysis and lactate production.  The possible etiology of this difference and its 

consequences are discussed below. 
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Similar to cancer cells (Chapter 1), aerobic glycolysis in activated T cells is 

primarily controlled by signaling through phosphatidylinositol 3-kinase (PI3-

K)/AKT and HIF-1 (59, 207, 231, 372).  When human CD4+ T cells are 

stimulated by bead-bound anti-CD3 and anti-CD28 antibodies, they activate PI3-

K, phosphorylate AKT and increase the expression of GLUT1 (59).  These 

changes are accompanied by a 15-20-fold increase in glycolysis and lactate 

production, which is not observed if the CD28 signal is omitted (59).  Similarly, 

GLUT1 expression does not increase in mouse and human T cells activated by 

anti-CD3 and anti-CD28 if PI3-K signaling is inhibited with the small molecule 

Ly294002 (58, 59).  These observations suggest that the PI3-K/AKT pathway is 

involved in mediating the glycolytic phenotype of acutely activated T cells.  

Indeed, active AKT promotes the surface expression of GLUT1 (58), increases 

the activity of hexokinase (HK) (75, 230, 579) and increases the activity of 

phospho-fructokinase-1 (PFK-1) (82).  AKT also phosphorylates and activates 

ATP-citrate lyase (ACL), which stimulates the conversion of glucose into the fatty 

acids necessary for proliferation (52, 53, 233). 

These observations suggest that the relatively low levels of glucose 

metabolism in alloreactive donor T cells could be due to low levels of AKT 

phosphorylation.  In activated T cells, increased signaling through negative 

costimulatory receptors such as PD-1 or CTLA-4 can decrease AKT 

phosphorylation and restrict glycolytic metabolism (59, 255).  Signaling through 

PD-1 decreases T cell glycolysis by inhibiting the activity of PI3-K, thus 

decreasing levels of phospho-AKT (Figure 3.38) (255).  Similarly, signaling 
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through CTLA-4 decreases T cell glycolysis by increasing the activity of the 

serine/threonine phosphatase PP2A, which dephosphorylates AKT (255).   

Alloreactive donor T cells increase both PD-1 and CTLA-4 expression on d 7 

after GVHD induction (Figure 3.23).  These observations suggests that negative 

signaling through these pathways may be lead to low levels of AKT 

phosphorylation and low rates of glycolysis in alloreactive donor T cells.  

However, we observed increased levels of phospho-AKT in alloreactive donor T 

cells as compared to both unstimulated cells and control-stimulated T cells 

(Figure 3.24), suggesting that low glycolysis in alloreactive donor T cells occurs 

despite increased AKT phosphorylation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.38.  Regulation of AKT phosphorylation by CD28, PD-1 and CTLA-

4.  CD28 stimulation activates PI3-K to form PIP3, which recruits AKT to the 

plasma membrane allowing its phosphorylation by PDK and MTORC2.  PD-1 

signaling decreases AKT phosphorylation by inhibiting PI3-K activity.  CTLA-4 

decreases AKT phosphorylation by activating the phosphatase PP2A (255). 
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 Because low rates of glycolysis in alloreactive donor T cells are not 

accompanied by low levels of AKT phosphorylation, decreased activity in other 

pro-glycolytic signaling pathways may be responsible decreased glycolysis.  HIF-

1 expression increases the expression of numerous enzymes involved in 

glycolysis, including GLUT1, HK, PFK-1, aldolase, enolase and lactate 

dehydrogenase (LDH) (74).  Hence, decreased glycolysis in alloreactive donor T 

cells could be due to decreased HIF-1 activity as compared to control-

stimulated T cells.   

In mouse T cells, HIF-1 mRNA increases 15-fold following stimulation for 

24 h with anti-CD3 and anti-CD28 antibodies (371).  Increased mRNA expression 

is accompanied by a similar increase in HIF-1 protein in activated T cells (371).  

T cells lacking HIF-1 consume 3-fold less glucose and produce 2-fold less 

lactate compared to wild type T cells following stimulation with anti-CD3 and anti-

CD28 antibodies (372).  These observations indicate that the induction of HIF-1 

expression is important for increased glycolytic metabolism in antibody-

stimulated T cells.  Hence, low rates of glycolysis in alloreactive donor T cells 

could be explained by low expression of HIF-1.  While there is little data 

regarding the role of HIF-1 in GVHD, a recent microarray analysis showed that 

effector CD8+ T cells in a model of irradiated GVHD have 3-fold more HIF-1 

mRNA than naïve T cells (553).  This increase is modest compared to the 15-fold 

increase in HIF-1 mRNA reported in T cells stimulated by anti-CD3 and anti-

CD28 antibodies (371).  While the importance of O2-dependent HIF-1 protein 
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degradation cautions against the over-interpretation of mRNA levels (218, 221), 

these studies are consistent with an interpretation in which alloreactive donor T 

cells have decreased HIF-1 activity compared to control-stimulated T cells 

(Figure 3.39).  In this model, both alloreactive donor T cells and control-

stimulated T cells have active AKT, which promotes glucose uptake, glycolysis 

and fatty acid synthesis.  However, increased HIF-1 in control-stimulated cells 

leads to higher rates of glucose uptake, glycolysis and lactate production 

compared to alloreactive donor T cells.  A direct comparison of HIF-1 protein 

levels in alloreactive donor T cells and control-stimulated T cells is necessary to 

test the validity of this model. 

Another important difference between alloreactive donor T cells and 

control-stimulated cells is the environment in which they expand.  Control-

stimulated T cells were grown in cell culture containing 10% fetal bovine serum 

(FBS), which typically has a fatty acid concentration of 21-28 M (580, 581).  

Alloreactive donor T cells expand in vivo, where plasma fatty acid concentrations 

range from 400-600 M (557).  These observations suggest that control-

stimulated T cells may be forced to rely on glycolysis as their primary energy 

source because they do not have access to substrates for fatty acid oxidation.  In 

support of this hypothesis, inhibition of fatty acid oxidation with etomoxir causes a 

10-20-fold increase in lactate production in leukemia cells cultured in vitro (564).  

If fatty acid oxidation is similarly limited in control-stimulated T cells in vitro as a 

result of low fatty acid levels, increasing the fatty acid concentration in culture 



  

191 

 

could reduce the lactate production of control-stimulated T cells to levels similar 

to those observed in alloreactive donor T cells.   

Decreased glycolytic metabolism in alloreactive donor T cells compared to 

control-stimulated T cells has important functional implications for these two cell 

types.  As discussed in Chapter 1, high rates of glycolytic metabolism are used 

by proliferating cancer cells to produce ATP, to provide carbon for biomolecule 

synthesis, and to generate antioxidants that protect from ROS-mediated damage 

(50, 78, 121, 208, 217, 223, 242, 491).  Recent studies suggest that glycolysis 

plays similar roles in non-cancerous proliferating cells such as lymphocytes (78, 

207, 252, 372).  Because alloreactive donor T cells exhibit 7-fold lower rates of 

glycolytic metabolism compared to control-stimulated cells, it is important to 

consider how these three functions differ in these two cell types. 
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Figure 3.39.  Model of the bioenergetic differences between alloreactive donor T cells and control-stimulated T 

cells.  Control stimulated T cells (right) have both active HIF-1 and AKT, which stimulated high rates of glucose uptake, 
glycolysis and lactate production (blue).  OXPHOS in these cells is primarily due to NADH from the PDH reaction, as fatty 
acid oxidation is restricted.  Because flux through glycolysis is high, pyruvate and glutathione formation is increased, and 
these metabolites are not depleted through reactions with ROS.  Alloreactive donor T cells (left) have active AKT, but their 

HIF-1 activity is proposed to be lower than control-stimulated T cells.  Low HIF-1 activity leads to low rates of glucose 
metabolism, which is primarily used for fatty acid synthesis.  Low flux through glycolysis prevents the regeneration of 
pyruvate and glutathione, leading to their depletion from reactions with ROS.  The majority of ATP in these cells is 
proposed to be generated through fatty acid oxidation (red).
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Unlike proliferating cancer cells that display a "respiratory defect" (205), 

oxidative metabolism is increased 2.5-fold in alloreactive donor T cells compared 

to unstimulated controls.  Hence, alloreactive donor T cells compensate for low 

rates of glycolysis by increasing oxidative ATP production.  Unlike alloreactive 

donor T cells, control-stimulated T cells generate large amounts of ATP through 

both glycolysis and OXPHOS.  While rates of O2 consumption in alloreactive 

donor T cells and control-stimulated T cells are similar, the carbon substrates 

used to support this OXPHOS likely differ.  Indeed, alloreactive donor T cells 

appear to increase FAO (discussed above), while antibody-stimulated T cells 

decrease palmitate oxidation 2-fold compared to unstimulated cells (570).  

However, the high rate of glucose-derived lipid synthesis in antibody-stimulated T 

cells suggests that NADH from pyruvate dehydrogenase may be responsible for 

increased OXPHOS in these cells (372) (Figure 3.39). 

The second major role of aerobic glycolysis in proliferating cells is to 

provide carbons for biomolecule synthesis (78).  Because alloreactive donor T 

cells have low rates of glycolysis compared to control-stimulated cells, they might 

be expected to have decreased rates of glucose-derived lipid synthesis and thus 

lower rates of proliferation than control-stimulated T cells (Figure 3.39).  

However, CFSE staining indicates that both cell types proliferate at similar rates 

(Figure 3.21).  This observation suggests that alloreactive donor T cells may 

preferentially use glucose-derived carbons to synthesize fatty acids and other 

molecules, rather than secreting them as lactate or oxidizing them to form CO2 

(Figure 3.38, Figure 3.39)  (52, 372).  An alternative explanation is that, in 
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response to low rates of glycolysis, alloreactive donor T cells limit their size 

rather than their rate of proliferation, thus requiring less biosynthetic carbon per 

division (373, 582, 583).  In support of this hypothesis, donor T cells are 

significantly smaller than control-stimulated T cells (Figure 3.22). 

Another important function of aerobic glycolytic is to protect cells from 

ROS production and subsequent oxidative damage (50, 252, 491).  Glycolysis 

accomplishes this function by generating NADPH to maintain the reduced 

glutathione pool (50, 196, 197, 343) and by keeping pyruvate levels high (56-59).  

Both of these aspects of ROS protection appear to be compromised in 

alloreactive donor T cells.   

Synthesis of the tripeptide antioxidant glutathione is catalyzed by -

glutamylcysteine synthetase (GCS) and glutathione synthetase (197).  Following 

oxidation by peroxides, glutathione is either reduced back to GSH by glutathione 

reductase and NADPH (197) or is exported from cells through ATP-dependent  

(MDRPs) (Figure 3.40) (584).  Total glutathione levels are decreased 25% in 

alloreactive donor T cells compared to unstimulated T cells.  This decrease 

suggests either increased export of oxidized glutathione or decreased glutathione 

synthesis.  Human PBMCs activated with conA in vitro increase glutathione 

levels by 2-fold over 2-4 d, suggesting that glutathione synthesis does not 

decrease in activated T cells (344).  Similarly, PI3-K/AKT signaling increases 

transcription of GCS (585), again suggesting that glutathione synthesis may not 

be decreased in alloreactive donor T cells, which contain phosphorylated AKT 

(Figure 3.24).  These observations suggest that decreased glutathione levels in 
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alloreactive donor T cells might be due to increased export rather than decreased 

synthesis.  However, a direct examination of GCS expression and activity in 

alloreactive donor T cells would be needed to rule out decreased GSH synthesis 

in these cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.40.  Glutathione synthesis, oxidation, reduction and export.  

Glutamylcysteine synthetase, the rate limiting step in glutathione synthesis, 

conjugates glutamate with cysteine.  Glycine is added by glutathione synthetase 

which forms reduced glutathione (GSH).  GSH is oxidized to GSSG by H2O2 in 

the presence of glutathione peroxidase.  GSSG is reduced to GSH by glutathione 

reductase using NADPH generated from the pentose phosphate cycle.  During 

periods of oxidative stress, GSSG is exported from cells through MDRPs.  (51, 

196, 197, 584) 
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If GSH synthesis is not decreased in alloreactive donor T cells compared 

to unstimulated controls, it suggests that the low levels of glutathione in these 

cells results from increased oxidation to GSSG and subsequent export.  

Glutathione is oxidized by H2O2 (196, 197), which is formed by the reaction of O2
- 

with superoxide dismutases (SODs) (527).  Elevated DHE staining in alloreactive 

donor T cells (Figure 3.26) indicates increased O2
- in these cells and suggests 

increased H2O2, as T cells express both Mn and Cu/Zn SOD (586, 587).  These 

observations suggest that GSH oxidation in alloreactive donor T cells will be 

increased in comparison to unstimulated controls.  Such increased GSH 

oxidation to GSSG could be countered by increased NADPH-dependent 

regeneration of GSH (Figure 3.40) (196, 197).  While the glycolytic rate of 

alloreactive donor T cells is increased 4-fold compared to unstimualted cells 

(Figure 3.20), it appears that the pentose phosphate cycle activity of alloreactive 

donor T cells may not generate sufficient NADPH to prevent the export of 

oxidized glutathione (584).  This interpretation suggests that increasing glycolytic 

rates in alloreactive donor T cells (to the levels observed in control-stimulated 

cells) may prevent glutathione depletion.  Evidence for this relationship between 

glycolysis and glutathione levels has been observed in primary mouse astrocytes 

(343).  Culturing these cells in media lacking glucose decreases reduced 

glutathione by 75% within 12 h, whereas cells grown in media with 5.5 mM 

glucose maintain glutathione levels within 80-90% of initial levels (19.7 nMoles 

glutathione/mg protein) (343).   
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Glycolysis also allows cells to maintain high levels of pyruvate.  Increasing 

the glucose concentration of cell culture media from 2.5 mM to 12 mM causes a 

pancreatic b-cell line to increase intracellular pyruvate levels by greater than 10-

fold (15 vs. 180 nMoles pyruvate/mg protein) (535).  This association between 

glucose metabolism and pyruvate levels likely occurs because pyruvate is a 

direct metabolite of glucose (Figure 3.41) (200, 252).  Pyruvate levels in 

alloreactive donor T cells are nearly undetectable, while unstimulated cells have 

6-10 pMoles pyruvate/g protein (Figure 3.27).  However, glycolytic rates are 

increased 4-fold in donor T cells compared to unstimulated cells, which suggests 

a 4-fold increase in pyruvate formation (Figure 3.20).  For depletion of the 

pyruvate pool to occur under such a situation, the consumption of pyruvate must 

outpace its increased production.   

 

 

 

 

 

 

 

 

 

 

 

3.41.  Formation and consumption of pyruvate.  Pyruvate is primarily formed 

through glycolysis.  Lactate dehydrogenase (LDH) converts pyruvate into lactate.  

Pyruvate dehydrogenase (PDH) converts pyruvate into acetyl-coA.  Pyruvate 

carboxylase (PC) converts pyruvate into oxaloacetate.  Nonenzymatic reactions 

with H2O2 convert pyruvate into acetate. (123, 200, 252, 588, 589) 
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Pyruvate can be consumed by pyruvate dehyrogenase (123), pyruvate 

carboxylase (589), lactate dehyrdogenase (223, 243) or through direct reactions 

with hydrogen peroxide (Figure 3.40) (200, 203).  Mitogen-stimulated 

lymphocytes increase PDH and PC activity by 50% within 1 h of stimulation (123, 

246), suggesting that activated lymphocytes increase their utilization of pyruvate 

through both of these pathways.  Our data are consistent with increased flux 

through PDH in alloreactive donor T cells, as this reaction allows glucose-derived 

carbons to be used for fatty acid synthesis, which is necessary for proliferation 

(Figure 3.39) (52, 53).  Alloreactive donor T cells also have increased rates of 

lactate production and ROS levels as compared to unstimulated T cells (Figure 

3.16, Figure 3.26), both of which could contribute to pyruvate depletion in these 

cells.   

These observations suggest that rates of glycolysis in alloreactive donor T 

cells, while modestly increased over unstimulated cells, are not sufficient to 

maintain glutathione and pyruvate levels in these cells.  Unlike alloreactive donor 

T cells, control-stimulated T cells engage in high rates of glycolysis that could 

allow them to maintain high levels of both glutathione and pyruvate (Figure 3.39).  

Indeed, PBMCs stimulated with conA for 2-4 d double their glutathione levels 

compared to unstimulated cells (344).  While the role of glycolysis was not 

addressed in this study, conA stimulation increases glucose utilization and 

lactate production by 20-40-fold in rat thymocytes, which suggests that increased 

glutathione levels could relate to increased glycolysis (62, 206).  Similarly, rat 
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thymocytes stimulated with conA increase glucose-derived pyruvate levels 10-

fold compared to resting cells (252).   

These observations suggest that control-stimulated T cells, which have 

high rates of glycolysis, will have increased levels of glutathione and pyruvate 

compared to alloreactive donor T cells and may therefore be resistant to ROS-

mediated apoptosis.  Furthermore, if the high glycolysis observed in control-

stimulated T cells faithfully models the metabolism of acutely-stimulated T cells in 

vivo, it would suggest that T cells responding to an acute viral infection or 

immunization may be able to maintain their intracellular pyruvate and glutathione 

levels in a manner that alloreactive donor T cells do not (Figure 3.39).  Such 

differences in intracellular antioxidants would predict that acutely-stimulated 

lymphocytes might be resistant to apoptosis induced by pro-oxidant compounds 

such as arsenic trioxide (ATO) or Bz-423 (169, 172, 380, 488, 489).   

  Implications of bone marrow metabolism for GVHD treatment.  Following 

myeloablative conditioning, recipients undergo a several week period of profound 

immunodeficiency (590) during which the host immune system dies and infused 

donor stem cells migrate to the bone marrow and begin to repopulate the 

immune system (591).  During this time period, peripheral blood immune cells 

drop to nearly undetectable levels (407, 408).  This leukopenia is counteracted 

by the rapid proliferation of precursor cells in the bone marrow, which 

regenerates the innate and adaptive immune system in the host (408, 411, 592).   

This rapid proliferation of cells in the bone marrow complicates the 

treatment of GVHD.  The current standard for treatment of acute GVHD is a 
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course of glucocortoids, aimed at inducing apoptosis in and inhibiting the function 

of alloreactive donor T cells (discussed in detail in Chapter 4) (593-595).  

However, glucocorticoids are non-specifically immunotoxic (594), and inhibit 

reconstitution of NK cells and interferon /b-producing plasmacytoid DCs 

following transplant (596, 597).  This lack of specificity is a problem clinically, as 

delayed reconstitution is associated with an increased frequency of 

cytomegalovirus (CMV), adenovirus and herpes zoster virus in the post-

transplant period (596).  Because of these issues with glucocorticoids, there is 

currently a large effort to develop improved treatments for GVHD (598). 

Work over the past 40 years has documented that activated lymphocytes 

increase glycolytic and oxidative metabolism compared to unactivated 

lymphocytes. (59, 206, 250-252, 264, 471).  These changes have generated 

interest in inhibiting activated lymphocyte metabolism in an attempt to treat 

lymphocyte-mediated diseases (207).  Because glycolysis provides the majority 

of energy for activated T cells in culture models (59, 63, 206), current studies 

have focused on inhibiting enzymes important for glycolysis, such as the 

monocarboxylate transporter (MCT)1, which transports lactate out of cells (599).  

Inhibitors of MCT1 decrease PMA and ionomycin-stimulated T cell proliferation in 

vitro and reduce disease severity in a model of collagen-induced arthritis in vivo 

(104).  While such compounds may preferentially affect activated lymphocytes 

due to their increased rates of lactate production compared to unactivated 

lymphocytes, they may have limited utility in the treatment of GVHD.   
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Whereas a treatment for GVHD might inhibit the growth of or kill 

proliferating alloreactive donor T cells, it should at the same time spare 

proliferating cells in the bone marrow.  Both alloreactive donor T cells and post-

transplant bone marrow cells have rates of lactate production that are increased 

3-4-fold compared to naïve cells (Figure 3.16, Figure 3.29).  This observation 

suggests that agents that inhibit glycolysis may inhibit the reconstitution of the 

host immune system in addition to inhibiting alloreactive donor T cells and may 

lead to an increased incidence of opportunistic infections post-transplant. 

While inhibiting glycolysis may not be an ideal strategy to treat GVHD, our 

studies suggest that modulating OXPHOS may allow the selective inhibition of 

alloreactive donor T cell function without affecting proliferating cells in the bone 

marrow.  Donor T cells consume O2 twice as fast and have decreased pyruvate 

levels compared to post-transplant bone marrow cells (Figures 3.16, 3.27, 3.29, 

and 3.32).  Increased oxidative metabolism in donor T cells suggests that they 

may be more sensitive to inhibition of this pathway than post-transplant bone 

marrow cells.  Similar differential sensitivity to OXPHOS inhibition has been 

observed in leukemia cell lines with respect to cytovaricin and apoptolidin, which 

inhibit the mitochondrial ATPase (600).  Sensitivity to cytovaricin correlates with 

expression of enzymes important for oxidative phosphorylation such as aspartate 

aminotransferase, which is used by the malate-aspartate shuttle to transfer 

cytosolic NADH into the mitochondria for oxidative ATP production (600, 601).  

This correlation suggests that cell lines with increased oxidative activity are more 

sensitive to apoptosis induced by inhibition of the mitochondrial ATPase.  In 
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support of this hypothesis, forcing cells to rely on OXPHOS by inhibiting 

glycolysis with 2-deoxyglucose or the LDH inhibitor oxamate increased the 

amount of apoptosis induced by apoptolidin by 3-10-fold in 8 different cell lines 

(600).  While reports documenting apoptolidin or cytovaricin use in vivo are 

lacking, the selectivity of these agents for cells with increased OXPHOS 

suggests that they might be able to kill alloreactive donor T cells while sparing 

unstimulated T cells or proliferating bone marrow cells. 

Intracellular pyruvate levels are > 10-fold decreased in alloreactive donor 

T cells compared to post-transplant bone marrow cells (Figure 3.27, Figure 3.32).  

Pyruvate plays an important role as an intracellular antioxidant due to its ability to 

detoxify both H2O2 (200) and O2
- (203, 602).  Pyruvate's role as an antioxidant 

has been primarily investigated in the setting of ischemia-reperfusion injury (201, 

495, 588).  Ischemia reperfusion injury occurs when occluded vessels, such as 

those responsible for stroke or myocardial infarction, are reopened allowing the 

return of blood flow to the affected organ (603).  The reintroduction of O2 to the 

ischemic tissue causes increased production of O2
- and H2O2 within minutes and 

leads to additional apoptosis and tissue damage (603, 604).  Pyruvate treatment 

of ischemic rat small intestine tissue reduces reperfusion-induced ROS 

production 5-fold as measured by luminol chemiluminescence, and decreases 

histological evidence of tissue damage compared to control treated tissue (202).  

Similarly, treatment with increasing concentrations of pyruvate decreases ROS 

production in post-ischemic guinea pig hearts by 80% as measured using a 1-

hydroxy-3-carboxy-pyrrolidine spin trap (492).  Pyruvate can also decrease ROS 
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production in settings independent of ischemia-reperfusion, as pyruvate 

treatment reduces rotenone- and antimycin A-induced O2
- production by 50% in 

isolated submitochondrial particles (203).  

The antioxidant properties of pyruvate and its reduction in alloreactive 

donor T cells compared to post-transplant bone marrow cells suggests that these 

cells types may have differing sensitivities to ROS-mediated apoptosis.  Several 

therapeutic agents mediate their beneficial affects by killing cells in an ROS-

dependent fashion.  ATO is one such agent that induces apoptosis in leukemia 

cells through an ROS-mediated mechanism (488, 489, 605).  Sensitivity to ATO-

induced apoptosis is inversely correlated to intracellular glutathione levels across 

multiple leukemia cell lines (488).  Furthermore, increasing intracellular 

glutathione levels with the glutathione precursor N-acetyl-cysteine decreases 

ATO-induced apoptosis, while lowering glutathione levels with the -

glutamylcysteine synthetase inhibitor buthionine sulfoxide increases ATO-

induced apoptosis (488, 489).  A similar phenomenon is observed with the pro-

oxidant chemotherapeutic agent paclitaxel (606).  The IC50 of paclitaxel positively 

correlates with total antioxidant capacity (TAC) across 16 different cell lines (606) 

and lowering a cell line's TAC using BSO increases paclitaxel sensitivity (606).  

Although these studies did not investigate pyruvate levels specifically, they 

suggest that alloreactive donor T cells, with depleted pyruvate and glutathione 

levels, may be more sensitive to ATO- and paclitaxel-induced apoptosis than will 

post-transplant bone marrow cells.  Such selectivity would be useful 

therapeutically, as inducing selective apoptosis in alloreactive donor T cells may 
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reduce GVHD without slowing engraftment.  ATO is especially promising as a 

potential treatment for GVHD because, in addition to its anti-leukemia effects 

(607), it has recently been shown to reduce disease in the MRL/lpr model of 

lupus by eliminating autoreactive T cells with depleted glutathione levels (380).  

It is unclear why proliferating bone marrow cells use such a different 

metabolic program than proliferating alloreactive donor T cells.  Gr-1+ 

granulocytes are the most abundant cell type in the bone marrow of naïve and 

post-transplant mice (Figure 3.28), suggesting that the metabolism of 

proliferating bone marrow cells may reflect the metabolic activity of granulocytes 

such as neutrophils.  Bone marrow-derived donor granulocytes proliferate 

significantly slower than alloreactive donor T cells (Figure 3.31).  Because 

proliferation is an ATP-demanding process (207), the slower rate of proliferation 

of bone marrow cells may indicate a decreased demand for ATP compared to 

alloreactive donor T cells.  While the basis for these disparate rates of 

proliferation is unclear, they are supported by precedent in the literature.  

Granulocyte progenitor cells require approximately 24 h to synthesize DNA and 

generate a mature granulocyte (608), while CD4+ or CD8+ T cells responding to 

antigen divide approximately every 10-12 h (511, 609, 610).  Hence, OXPHOS 

may be lower in proliferating bone marrow cells in part because their ATP 

requirements are lower than alloreactive donor T cells.   

  Another factor that may contribute to the lack of increased OXPHOS in 

proliferating bone marrow granulocytes is the inability of mature neutrophil 

mitochodnria to synthesize ATP.  Neutrophils have a 10-fold decrease in 
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mitochondrial DNA copy number compared to PBMCs (476) and components I, 

III and IV of their respiratory chains are not organized into the higher-order 

supercomplexes that are characteristic of mitochondria from heart or 

lymphocytes (480, 481).  These observations suggest that the respiratory 

complexes of mature neutrophil mitochondria might not be able to generate large 

amounts of ATP.  Indeed, inhibitors of the electron transport chain (ETC) such as 

rotenone (complex I), antimycin A (complex III), aurevertin B (complex V) and 

KCN (complex IV) do not deplete ATP in mature neutrophils, although they 

deplete the ATP of PBMCs by more than 75% within 2 h (481).  Conversely, 

inhibiting neutrophil glycolysis with sodium iodoacetate completely depletes ATP 

levels following 6 h of treatment (476).  These observations suggest that 

granulocyte mitochondria may not be able to increase oxidative ATP synthesis 

and that the increased ATP demands that accompany proliferation in the post-

transplant setting must be met by glycolysis instead.   

 Role of cytokines and irradiation on alloreactive donor T cell metabolism.  

The studies performed in this chapter characterized the bioenergetics of 

alloreactive donor T cells in the context of a nonirradiated model of GVHD.  This 

model shares many features with irradiated GVHD models, including the 

development of anti-host CTLs and the production of pro-inflammatory cytokines 

such as IL-2, IFN-, and TNF- (451, 455, 457, 611, 612).  However, there are 

several important differences between irradiated and nonirradiated GVHD.  

Irradiation causes damage to the epithelium of the gut, which exposes the 

immune system to bacterial-derived products such as LPS that can activate 
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TLRs on various cells of the immune system (47, 48, 421).  This tissue damage 

and TLR activation induces the production of IL-1 and TNF-, termed the 

“cytokine storm” (47, 48, 421).  While TNF- also plays a role in nonirradiated 

GVHD pathogenesis (611), it is likely that TNF- and IL-1 levels vary between 

models of irradiated and nonirradiated GVHD.  Importantly, TNF- and IL-1 

increase HIF-1 DNA binding activity in human hepatoma cells (613) and rat 

alveolar epithelial cells (Figure 3.42) (614).  Although the ability of TNF- and IL-

1 to increase HIF-1 activity in T cells has not been investigated, these 

observations suggest that the irradiation-induced cytokine storm may increase 

HIF-1 levels in GVHD-causing T cells, and as a consequence, induce glycolysis 

(74, 217, 372).  Hence, it will be important for future studies to investigate donor 

T cell metabolism in irradiated models of GVHD. 
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Figure 3.42.  Potential roles of irradiation and cytokine signaling in 
alloreactive donor T cell metabolism.  Irradiation causes tissue damage and 
allows bacterial LPS to enter the recipient .  Tissue damage and LPS causes a 

“cytokine storm” characterized by high levels of TNF- and IL-1 (47, 48, 421).  

While these cytokines activate HIF-1 in liver and epithelial cells, their ability to 

activate T cell HIF-1 is unclear, as indicated by “?” (613, 614).  LPS, TNF and 
IL-1 activate dendritic cells (DCs) and increase their expression of the B7 
molecules (CD80 and CD86), which stimulate T cells through CD28 and induce 
PI3-K/AKT activation (36, 58, 59).  IL-2 signaling may contribute to PI3-K/pAKT 
activation and glycolysis in alloreactive donor T cells during nonirradiated GVHD 
(615).  IL-6 signaling phosphorylates STAT3, however it is unclear if this 
signaling causes pSTAT3 to enter the mitochondria, where it could stimulated 
OXPHOS (474, 616). 
 

 

 Lethal irradiation and the subsequent cytokine production may also affect 

cellular metabolism by increasing the expression of costimulatory molecules on 

DCs (27, 32, 36, 617, 618).  Indeed, TNF- (617), LPS (619) and IL-1 (620) all 

increase DC expression of B7 molecules, which stimulate T cells through the 
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CD28 receptor (36).  While costimulation is important in the pathogenesis of 

nonirradiated GVHD (458), these observations suggest that DCs in nonirradiated 

hosts may express decreased levels of costimulatory molecules compared to 

DCs in irradiated hosts.  Because signaling through CD28 regulates T cell 

glycolysis (58, 59), irradiation-induced increases in DC B7 molecule expression 

could enhance glycolysis in alloreactive T cells (Figure 3.42).  These 

observations further emphasize the need to extend the metabolic analysis 

performed in this work to irradiated models of GVHD. 

 While the traditional “cytokine storm” is absent in this nonirradiated model 

of GVHD, plasma levels of several cytokines are elevated in mice suffering from 

nonirradiated GVHD compared to naïve mice, including IFN- (4000-fold 

increase), TNF- (4-fold increase), IL-2 (6-fold increase), IL-4 (9-fold-increase) 

and IL-6 (10-fold increase) (611).  As discussed above, TNF- may affect T cell 

metabolism by activating HIF-1 (613, 614).  Furthermore, IL-2 has direct effects 

on T cell metabolism (615), while aspects of IL-6 (474, 621) signaling suggests 

that it may also modulate T cell metabolism.  Hence, changes in the cytokine 

environment during nonirradiated GVHD could contribute to the bioenergetic 

phenotype of alloreactive donor T cells. 

IL-2 is produced by activated T cell and  signals through the heterotrimeric 

IL-2 receptor (IL-2R), composed of IL-2R (CD25), IL-2Rb (CD122) and the 

common gamma chain (c, CD132).  Because activation of the IL-2 receptor 

stimulates the PI3-K/AKT pathway (394), IL-2 signaling is expected to increase 

cellular glucose metabolism.  Indeed, incubating primary human T cells with IL-2 
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for 4 h increases glycolysis by 40% (615).  IL-2-stimulation also increases T cell 

size (615), which suggests that IL-2-stimulated glucose utilization is directed 

towards fatty acid synthesis (Figure 3.42).  Serum levels of IL-2 are increased 6-

fold on d 6 following nonirradiated GVHD induction, which suggests that the 

metabolic changes in alloreactive donor T cells could be related to increased IL-2 

signaling (457, 611).  Indeed, alloreactive donor T cells express increased levels 

of phospho-AKT and have increased cell size compared to unstimulated cells, 

both of which are consistent with increased IL-2 signaling (394, 615). 

IL-6 is produced by a variety of cells including activated macrophages and 

T cells and has pleiotropic effects, which include inducing the proliferation and 

differentiation of cytotoxic T cells (622, 623).  Binding of IL-6 to its receptor 

induces the phosphorylation and dimerization of the signaling molecule STAT3, 

which can then traffic to the nucleus and alter gene transcription (622-624).  In 

addition to its canonical role as a modulator of transcription, phosphorylated 

STAT3 was recently discovered to traffic to the mitochondria, where it directly 

interacts with complexes I and II of the mitochondrial respiratory chain (474, 

616).  Mouse heart mitochondria lacking STAT3 consume O2 50% slower than 

wild type mitochondria, suggesting that STAT3 plays a role in OXPHOS (474).  

IL-6 levels are increased 10-fold in mice with nonirradiated GVHD (611), and IL-6 

and STAT3 signaling are important for the pathogensis of GVHD in several 

irradiated models (432, 436, 437).  Thus, it is tempting to speculate that IL-6 

signaling could contribute to increased OXPHOS in alloreactive donor T cells by 

increasing the phosphorylation and mitochondrial localization of STAT3 (Figure 
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3.42).  Future studies should address this issue by analyzing the mitochondrial 

localization of STAT3 in unstimulated and alloreactive donor T cells.   

Although both IL-2 and IL-6 may contribute to the bioenergetic phenotype 

of alloreactive donor T cells, it is important to note that host T cells purified from 

animals suffering from GVHD have similar metabolic characteristics as 

unstimulated T cells from naïve mice (low OXPHOS, low glycolysis), despite 

being exposed to the same systemic cytokines as alloreactive donor T cells.  

While these results do not preclude a role for cytokine signaling in determining 

the metabolism of GVHD-causing T cells, they suggest that cytokine signaling 

alone does not give rise to the metabolic phenotype observed in alloreactive 

donor T cells. 

In summary, alloreactive donor T cells increase OXPHOS as they mediate 

nonirradiated GVHD, likely due to increased fatty acid oxidation.  Alloreactive 

donor T cells have decreased glycolysis compared to control-stimulated T cells, 

perhaps due to increased fatty acid oxidation and decreased HIF-1 activity.  

High rates of OXPHOS in alloreactive donor T cells contrasts with the 

metabolism of proliferating bone marrow cells, which only increase glycolysis 

following transplantation.  These metabolic alterations are associated with 

depleted antioxidants in alloreactive donor T cells, which suggests that treatment 

with pro-oxidant compounds could have therapeutic utility in models of GVHD 

and may spare T cells whose antioxidants are intact. 
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Materials and Methods 

 

 Reagents.  Dihydroethidium (DHE), 5-(and-6)-chloromethyl-

2’,7’dichlorodihydrofluorescein diacetate, acetyl ester (DCFDA) and 

tetramethylrhodamine methyl ester (TMRM) were purchased from Invitrogen.  

DMEM media was purchased from Gibco and contained 10% heat-inactivated 

fetal bovine serum (FBS: Gibco), glucose (25 mM), glutamine (4 mM), HEPES (1 

mM), penicillin (100 units/ml), streptomycin (100 g/ml), minimal non-essential 

amino acids (1x), sodium pyruvate (1 mM) and 2-mercaptoethanol (0.05 mM).   

Unless indicated, all other reagents were purchased from Sigma. 

Mice.  Female C57Bl/6 (B6; H-2b, CD45.2+Thy1.2+) and B6.Ly-5a (B6-

Ly5.2; H-2b, CD45.1+Thy1.2+) were purchased from Charles River Laboratories 

or Jackson Laboraties.  Female B6.PL-Thy1a (B6-Thy1.1; H-2b, CD45.2+Thy1.1+) 

and C3H.SW (H-2b, CD45.2+) were purchased from the Jackson Laboratory (Bar 

Harbor, ME).  B6D2F1 (F1) mice were purchased from Charles River 

Laboratories or Taconic Laboratories.  Mice were housed in specific pathogen 

free conditions and cared for according to the Guidelines for Laboratory Animal 

Medicine at the University of Michigan.  All mice were at least seven weeks old 

prior to use. 

 T cell purification and splenocyte preparation.  T cells were purified from 

the spleens of B6 or B6-Ly5.2 mice by CD90+ positive selection according to the 

manufacturer’s protocol.  Mice were anesthetized with isoflurane and euthanized 

by CO2 asphyxiation.  Spleens were harvested and placed into sterile MACS 



  

212 

 

running buffer (PBS, 0.5% BSA (w/v, Fischer), 2 mM EDTA).  Spleens were 

dissociated using sterile frosted microscope slides and strained over a 40 M 

filter (BD Falcon) into 50 ml conical vials.  Dishes and filters were then rinsed 

once with MACS running buffer.  Cells were pelleted at 1400 RPM and 

resuspended in 50 l anti-CD90 microbeads and 950 l MACS running buffer per 

spleen and placed on ice for 15 min.  Greater than 10x excess MACS running 

buffer was added and cells were pelleted at 1400 RPM and resuspended in 

MACS running buffer (500 l) and up to 3 spleens were applied to a single LS 

magnetic column in a MidiMACS magnetic.  After three rinses with MACS 

running buffer, the column was removed from the magnetic field and the 

positively labeled cells were flushed out using 5 ml of buffer.  Cells were washed 

once with DMEM media, counted, stained for purity and placed on ice until use.  

T cells were typically >85% TCR-b positive.   

Splenocytes were processed as for T cells, with DMEM media replacing 

MACS running buffer.  After centrifugation, cells were resuspended in RBC lysis 

buffer (4 ml; Sigma) for 4 min at room temperature.  Splenocytes were washed 

twice with DMEM media.  Splenocytes were either used immediately for O2 

consumption and lactate production assays, or placed on ice until used for mixed 

lymphocyte reactions. 

CFSE labeling.  Vybrant CFDA SE Cell Tracer Kit was purchased from 

Invitrogen.  Cells were suspended in L-15 media or MACS running buffer 

consisting of PBS, 0.5% BSA (w/v, Fischer) and 2 mM EDTA at a concentration < 

20 x 106 cells/ml.  5(6)-carboxyfluorescein diacetate, succinimidyl ester (CFSE) 
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was dissolved in DMSO and added to cells at a final concentration of 5 M and 

cells were incubated at 37 C for 15-30 minutes.  After two washes with DMEM 

media, cells were placed on ice until use. 

Bone marrow transplantation.  To induce GVHD in non-irradiated 

recipients, syngeneic (B6) and allogeneic (F1) recipient mice were infused 

through the tail vein with 50.0x106 bulk splenocytes from B6-Ly5.2 or B6-Thy1.1 

donor mice in L-15 media (250 l, Cellgro).  In irradiated models, B6-Ly5.2 mice 

were conditioned with a single dose of  900 cGy TBI (137Cs source), followed by 

tail vein infusion of 5.0x106 bone marrow (BM) cells plus either 4.0x106 or 0.2-

0.5x106 positively-selected CD90+ or CD8+ T cells as indicated, from allogeneic 

(C3H.SW) or syngeneic (B6) donor mice in L-15 media (250 l).  After transplant, 

animals were kept in specific pathogen free housing and given hyperchlorinated 

(pH=3.0) drinking water for 3 weeks.   

T cell antibody stimulations and mixed lymphocyte reactions (MLRs).  For 

antibody stimulation, T cells from B6-Ly5.2 mice were resuspended at 1 x 106 

TCR-b+ cells/ml in DMEM media.  Functional grade anti-CD3 (clone 145-2C11; 

eBioscience) and anti-CD28 (clone 37.51; eBioscience) were added to cells at a 

final concentration of 0.5 g/ml or left unstimulated as controls.  200 L of cells 

(0.2 x 106 cells) were cultured in flat-bottomed 96 well plates at 37 C.  For 

MLRs, T cells from B6-Ly5.2 mice (0.4 or 0.5x106 TCR-b+) were cultured at a 2:1 

ratio with splenocytes (0.2 or 0.25 x 106 splenocytes) from B6 mice (syngeneic 

cultures) or B6D2F1 mice (allogeneic cultures) in 200 L of media in flat-

bottomed 96 well plates at 37 C.   
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Flow cytometry. Cells (1 x 106) in single cell suspension were 

resuspended in Fc Block buffer composed of PBS, FBS (2% v/v) and anti-mouse 

CD16/CD32 Fc III/II receptor (1:250 dilution; BD Biosciences) for 10 min at 4 C 

to minimize non-specific binding.  Cells were spun (1400 RPM, 5 min) and 

resuspended in PBS containing 2% fetal bovine serum (FACS wash, 100 l) with 

antibodies against cell surface antigens (1:200 dilution) for 20 min at 4 C.  Cells 

were then washed twice with FACS wash and either analyzed immediately or 

fixed and analyzed 1-2 days later.  The mitochondrial membrane potential (m) 

was measured by labeling cells with TMRM (50nM; Invitrogen) and antibodies to 

cell surface antigens for 30 minutes at 37C in pre-warmed FACS wash. Stained 

cells were washed once prior to analysis.  Carbonyl cyanide 4-(trifluoromethoxy) 

phenylhydrazone (FCCP; 30M; Sigma-Aldrich) was used as a positive control 

for disruption of m.  To detect O2
-, cells were stained for cell surface markers 

for 15 min at 37C in pre-warmed FACS wash followed by incubation with DHE 

(4M; Invitrogen) for 30 min at 37C.  

Intracellular IFN- and CTLA4 were assessed by permeabilizing fixed cells 

with eBioscience permeabilization buffer.  Following permeabilization, cells were 

incubated with antibodies recognizing IFN-  or CTLA4 in permeabilization buffer 

(1:200 dilution, 45 min at 4 C).  Following this incubation, cells were washed 

twice with permeabilization buffer, resuspended in staining buffer and analyzed.  

For GLUT1 analysis, CFSE-labeled cells were surface stained as 

described above and fixed.  1-2 d later, cells were permeabilized by washing with 

permeabilization buffer (eBioscience) and incubated for 20 minutes with 10% 
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normal mouse serum at 4C.  Cells were then incubated with rabbit anti-GLUT1 

(Abcam, 1:800 dilution) or isotype control for 45 minutes at 4C, washed twice, 

incubated with APC-labeled anti-Rabbit Fab (Jackson ImmunoResearch) for 45 

min at 4C, and washed twice more.  All samples were analyzed using either a 

BD FACS Calibur cytometer or a BD FACS Canto cytometer and CellQuest or 

FlowJo software.  GLUT1 results are reported as either MFI or the fold increase 

in GLUT1 MFI over isotype MFI as indicated, and reflect total cellular levels of 

GLUT1.  The following antibodies and their isotype controls were used: anti-

mouse CD4 (FITC, PerCP-Cy5.5, APC, PE, Pacific Blue, Pacific Orange clone 

RM4-5, Rat IgG2a), CD8a (FITC, APC, PerCP-Cy5.5, APC-Cy7 and Pacific Blue, 

clone 53-6.7, Rat IgG2a), CD45.1 (FITC, PE, APC, PerCP-Cy5.5, APC-Alexa750 

clone A20, Ms IgG2a), CD45.2 (FITC, PE, PerCP-Cy5.5 and APC-eFluor780 

clone 104, Ms IgG2a), CD90.1 (FITC and PE, clone HIS51, Rat IgG2a), IFN- 

(PE, clone XMG1.2, Rat IgG1), CD44 (FITC, PE, APC, clone IM7, Rat IgG2b), 

CD62L (FITC, PE, APC, clone MEL-14, Rat IgG2a), Gr-1 (eFluor450, clone RB6-

8C5, Rat IgG2b), CD19 (FITC, PE, APC, clone 1D3, Rat IgG2a), PD-1 (PE, clone 

J43, Hamster IgG), CTLA-4 (PE, clone UC10-4B9, hamster IgG) and B220 (APC, 

clone RA3-6B2, Rat IgG2a) (BD Biosciences and eBioscience). 

Donor T cell purification.  GVHD was induced by injecting 50 x 106 B6-

Thy1.1 splenocytes into unirradiated F1 recipients.  7 d after GVHD induction, 

mice were euthanized and spleens were harvested into dishes containing MACS 

running buffer, disrupted using frosted microscope slides (Fisher) and passed 

through 40 M filters (BD) to form single cell suspensions.  Anti-mouse 
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CD16/CD32 Fc III/II receptor (Fc Block) was added to cells (1:400 dilution) to 

prevent non-specific antibody binding.  After 10 min, PE-anti-Thy1.1 (BD; 1:800 

dilution) was added to splenocytes for 15 min at room temperature.  Cells were 

washed once with MACS running buffer and resuspended with anti-PE 

microbeads (100-200 L; Miltenyi Biotec) and MACS running buffer (800-900 L) 

for 15 minutes at room temperature.  Cells were washed once with MACS 

running buffer, resuspended in MACS running buffer (1 ml) and applied to an LS 

magnetic column (Miltenyi Biotec).  After 3 washes, the column was removed 

from the magnetic field and the positively labeled cells were collected.  The 

positively collected cells were spun, resuspended in MACS running buffer (500 

L) and applied to an MS magnetic column (Miltenyi Biotec).  After 3 washes, the 

positive fraction was collected, analyzed for PE-Thy1.1 fluorescence and used 

immediately.  2-5 x 106 donor T cells were typically obtained per spleen.   

O2 consumption.  Cells were resuspended in DMEM media at 2-5 x 106 

cells/ml, placed into a sealed 2 ml chamber and O2 consumption was analyzed 

on an Oxygraph-2k O2 electrode (Oroboros Instruments).  After a stable rate of 

O2 consumption was seen, oligomycin (1-2 g/ml) was added to inhibit ATP-

synthesis coupled respiration.  Carbonyl cyanide 4-(trifluoromethoxy) 

phenylhydrazone (FCCP) was then added in 2 M increments to measure total 

respiratory capacity.  In some experiments, myxothiazole (1 M) was then added 

to fully inhibit mitochondrial respiration.  Oligomycin, FCCP and myxothiazole 

were all prepared at 10-20x stocks in ethanol and stored at -20 C. 
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"Routine" indicates O2 consumption without any additions to media.  

"Oligo" indicates O2 consumption in the presence of 1-2 g/ml oligomycin. 

"FCCP" indicates maximal O2 consumption following a titration of FCCP (typically 

6-12 M FCCP).  "OXPHOS" is calculated as the rate of O2 consumption that is 

inhibitable by oligomycin (Routine-Oligo).  The % of the routine rate used for 

OXPHOS is calculated as (Routine-Oligo)/Routine, while the % of the routine rate 

used for proton leak is calculated as (Oligo/Routine).  The % of capacity used for 

OXPHOS is calculated as (Routine-Oligo)/FCCP, the % of capacity used for Leak 

is calculated as (Oligo/FCCP), and the % of capacity in reserve is calculated as 

(FCCP-Routine)/FCCP.   

Lactate production.  Cells were washed and resuspended in DMEM (5-

15x106 cells/mL) and aliquots (50 or 100 L) were quenched at four time points 

over 2-3 hours using perchloric acid (0.6 M, 25 or 50 L).  After removal of 

cellular debris and neutralization with NaOH, lactate concentrations at  3 time 

points were determined by incubating aliquots of sample (10-20 L) with lactate 

dehydrogenase (LDH; 1 L) and glutamate-pyruvate transaminase (0.375 L; 

Sigma Aldrich) in buffer (230-240 L) containing glutamate (116 mM) and NAD 

(0.96 mM) at pH 8.9.  Lactate levels were determined using a standard curve by 

monitoring absorption at 340 nM and the rate of lactate production was 

calculated as a function of time and cell concentration.  ATP production was 

calculated as ATPOXPHOS=5.6 x O2 Consumption and ATPGlycolysis=Lactate 

Production + 0.4 x O2 Consumption. 
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Glycolytic rate. Cells (~4 x 106) were washed in PBS and resuspended in 

Krebs buffer (1 mL; 115 mM NaCl, 2 mM KCl, 25 mM NaHCO3, 1 mM MgCl2, 2 

mM CaCl2, 0.25% FBS, pH 7.4) for 30 min at 37 C.  During this incubation, cells 

were recounted to determine the exact concentration.  Cells were spun down and 

resuspended in Krebs buffer (500 L) containing 10 mM glucose and 10 Ci 5-

3H-glucose tracer (PerkinElmer) and placed into a 24 well plate for 1 h at 37 C. 

HCL (100 l of 0.2 M) was then added to each well and mixed in order to lyse 

cells and stop the reaction.  Lysate (180 l, in triplicate per condition) was placed 

into a 0.6 ml centrifute tube, which was placed inside a 1.5 ml centrifuge tube 

with its lid removed.  This combination of tubes was placed inside a large 

scintillation vial containing 0.5 ml water and sealed to allow tracer-derived 3H2O 

in the 0.6 ml tube to equilibrate with H2O in the bottom of the scintillation vial.  

After 72 h, the 0.6 ml tube was removed and placed into a separate scintillation 

vial.  Scintillation fluid (5ml) was added to the vial containing the 0.6 ml tube 

(tube) and the vial containing 0.5 ml H2O and the 1.5 ml tube (vial) and samples 

were analyzed on a scintillation counter (Beckman LS 6500).  The fraction of 

glucose metabolized was calculated as: (CPMVial*180/500+ CPMvial)/(CPMtube + 

CPMvial). 

GLUT1 western blot.  Cells (~5 x 106) were washed once with PBS and 

resuspended in lysis buffer (~ 50 l) containing 1% Triton X-100, 0.1% SDS and 

protease inhibitors (Roche, Complete EDTA-free) for 1 h on ice.  Lysates were 

centrifuged for 10 min (14,000 RPM, 4 C) and protein containing supernatant 

was separated from cellular debris.  Protein levels were determined using the 



  

219 

 

Bradford protein assay (Bio-Rad) using BSA as a standard.  Immediately prior to 

gel electrophoresis, lysates were deglycosylated using the PNGaseF kit (New 

England Biosciences).  Proteins (10 g) were diluted to a total of 9 l with water 

and denaturing buffer (1 l) was added and the mixture was incubated at room 

temperature for 30 min.  Water (4 l), NP-40 (2 l), G7 reaction buffer (2 l) and 

PNGaseF (2l) were then added and the mixture was incubated at 37 C for 1 h.  

Gel loading buffer (5 ul of 5x stock) was added to deglycosylated lysates for 30 

min at room temperature.  Proteins were separated by SDS-polyacrylamide gel 

electrophoresis and transferred to polyvinylidene difluoride membranes.  

Membranes were blocked using skim milk powder (5% w/v) in PBS containing 

Tween (0.05% v/v) for 1 h and then probed with rabbit-anti GLUT1 antbody 

(Abcam, 1:1000 dilution).  Primary antibodies were detected with horseradish 

peroxidase-linked donkey anti-rabbit IgG (GE Healthcare, Piscataway, NJ) and 

visualized with a chemiluminescence detection system (GE Healthcare).  

Phospho-AKT determination.  pAKT levels in cell lysates were determined 

by western blot using a rabbit monoclonal antibody directed against 

phosphorylated serine 473 (Cell Signaling, catalog # 193H12).  This procedure 

was identical to the determination of GLUT1 by western blot, however lysates 

were not deglycosylated and membranes were blocked with 3% BSA rather than 

skim milk.  Determination of pAKT levels by flow cytometry was identical to 

GLUT1 staining by flow cytometry, however a 1:200 dilution of rabbit-anti-

pSer473 was used instead of the anti-GLUT1 antibody 
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Pyruvate measurements.  Pyruvate levels were determined in using the 

pyruvate assay kit (BioVision, Mountain View, CA).  Cells (~10 x 106) were 

washed once with PBS and then incubated with detergent-containing pyruvate 

assay buffer (50-100 l) for 15 min at 4 C on a rotator to lyse cells.  Cellular 

debris was pelleted and supernatant was isolated following a high speed spin 

(14,000 RPM, 20 min, 4 C).  Pyruvate levels in the supernatant were determined 

using the pyruvate oxidase-linked colorimetric kit (BioVision) and normalized to 

protein levels as determined using the Bio-Rad protein assay.   

Glutathione measurements. Cells (5-10 x 106) were washed with PBS (10 

ml) and resuspended in lysis buffer (50 l) composed of potassium phosphate 

(0.1 M), EDTA (5 mM), Triton X-100 (0.1%, v/v) and sulfosalicylic acid (0.6% w/v) 

at pH 7.5 and placed on a low speed rotator (15 min, 4 C).  Cellular debris was 

pelleted and supernatant was isolated following a high speed spin (14,000 RPM, 

20 min, 4 C) and stored at -80 C until analysis.  Sulfosalicylic acid (10% w/v, 20 

l) was added to lysate (20 l) mixed and placed on ice for 15 min to precipitate 

proteins.  Protein-free supernatant was isolated following centrifugation (5,000 

RPM, 15 min 4 C).  Glutathione standards (Sigma) were prepared in 5% (w/v) 

sulfosalicylic acid.  Glutathione standards or lysate samples (10 l) were added 

to wells of a 96 well plate (standard range: 50-1500 pMoles glutathione/well) and 

mixed with buffer (40 l) containing potassium phosphate (0.1 M) and EDTA (5 

mM) at pH 7.5.  The assay was started by adding activation buffer (150 l)   

containing 5,5′-Dithiobis(2-nitrobenzoic acid) (59.4 g/ml), glutathione reductase 

(1 unit/ml) and NADPH (168 g/ml).  Absorbance (412 nM) was measured 
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kinetically over 10 minutes on an automated plate reader.  Glutathione levels of 

lysates were normalized to protein levels as determined using the Bio-Rad 

protein assay.  

BrdU staining.  24 h prior to analysis, mice were injected with BrdU 

(Sigma, 100mg/kg in PBS) and placed on drinking water containing BrdU (1 

mg/ml).  One mouse per group received no BrdU as a negative control.  BrdU 

staining was performed using the FITC-BrdU kit (BD Biosciences).  After Fc 

receptor blockade and surface staining, cells (~1 x 106) were resuspended in 

Cytofix/Cytoperm Buffer (15 min, room temperature) to fix cells and resuspended 

in FACS wash at 4 C overnight.  The next day, cells were washed with 

Perm/Wash buffer (200 l) and resuspended in Cytoperm Plus Buffer (100 l, 4 

C).  After 10 min, cells were washed and refixed in Cytofix/Cytoperm Buffer (5 

min, room temperature).  Cells were resuspended with DNase (30 g, 1 h, 37 C) 

to expose BrdU epitopes.  Cells were washed with Perm/Wash buffer and then 

resuspended with FITC-anti-BrdU (1:50 dilution, 20 min, room temperature).  

Cells were washed twice with Perm/Wash buffer, refixed in Cytofix/Cytoperm 

buffer and analyzed in FACS wash buffer. 
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CHAPTER 4 

EFFECTS OF BZ-423 IN MODELS OF ALLOGENEIC AND  

SYNGENEIC BONE MARROW TRANSPLANTATION 

 

Introduction 

Graft-versus-host disease prophylaxis.  Following allogeneic bone marrow 

transplantation, patients are at significant risk of developing graft-versus-host 

disease (GVHD), which is characterized by damage to the skin, liver and 

gastrointestinal tract (48).  The cornerstone of GVHD management is prophylaxis 

with immunosuppressive compounds such as calcineurin inhibitors (i.e., 

cyclosporine A and tacrolimus), antiproliferative agents (methotrexate and 

mycophenolate mofetil) and rapamycin  (Figure 4.1) (441, 625). 

Cyclosporine A (CsA) is a non-ribosomal peptide synthesized by the 

fungus Hypocladium inflatum (626).  CsA inhibits T cell activation by binding to 

cyclophilin A and inhibiting the phosphatase calcineurin (627).  Because 

calcineurin activates the transcription factor NFAT in a Ca2+-dependent fashion 

following TCR stimulation (430), CsA treatment potently inhibits T cell 

proliferation and cytokine synthesis (626). Tacrolimus (FK506) is a macrolide that 

was isolated from the bacteria Streptomyces tsukubaensis (628).  Tacrolimus 

functions similarly to CsA, in that it inhibits calcineuirin.  However, tacrolimus 
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binds to the FK506 binding protein (FK506BP) and this complex inhibits 

calcineurin (629). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.  Structures of selected drugs used for GVHD prophylaxis.  (44, 

626, 627, 630)   

 

Standard GVHD prophylaxis involves a calcineurin inhibitor combined with 

methotrexate (Figure 4.1), an inhibitor of dihydrofolate reductase (DHFR) (631).  

DHFR is an enzyme important in thymidine biosynthesis (632), and its inhibition 

with methotrexate (50 nM) completely inhibits phytohemagglutinin (PHA)-

stimulated T cell proliferation (633).  When combined with a calcineurin inhibitor, 

methotrexate helps prevent GVHD.  According to a recent meta analysis of 5 

separate randomized trials, 45% of patients receiving a calcineurin inhibitor 

without methotrexate developed GVHD (634).  However, when methotrexate was 

Cyclosporine Tacrolimus (FK506) Methotrexate

Mycophenolate Mofetil Sirolimus (Rapamycin)
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added to the prophylactic regimen, the percentage of patients developing GVHD 

dropped to 22% (634). 

 Rapamycin, which is also known as sirolimus, is a macrolide isolated from 

the bacteria Streptomyces hygroscopicus (625).  Like the calcineurin inhibitors, 

rapamycin is also used as a prophylactic agent for GVHD (625).  Rapamycin 

inhibits mTORC1, a kinase downstream of AKT that is involved in cell growth and 

proliferation (635).  A 2007 study of 83 transplant recipient showed that using 

rapamycin and tacrolimus as prophylactic agents leads to an GVHD incidence of 

20.5%, which suggests that rapamycin might have utility as an alternative to 

methotrexate (636).   

Mycophenolate mofetil (MMF, Figure 4.1) is a precursor of mycophenolic 

acid, which inhibits inosine monophosphate dehydrogenase, an important 

enzyme in guanosine nucleotide synthesis (630).  MMF inhibits mitogen-

stimulated T cell proliferation (630) and Staphylococcus aureus enterotoxin A-

induced IL-2, IFN-γ and TNF-α production (637).  These immunosuppressive 

properties have lead to the use of MMF in combination with a calcineurin inhibitor 

as a prophylactic strategy for GVHD (638).  However, MMF treatment decreases 

neutrophil engraftment by 40% in a mouse model of allogeneic bone marrow 

transplantation (BMT) (639) and its utility in preventing GVHD is unclear; a 2004 

study of 34 patients suggested that MMF does not decrease GVHD incidence in 

the setting of reduced intensity transplantation (640). 

Treatment of GVHD.  Despite these various prophylactic measures, many 

transplant patients develop GVHD.  A 2008 study showed that 35% of patients 
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(n=1960) undergoing myeloablative human leukocyte antigen (HLA)-matched 

transplants from sibling donors developed GVHD (641).  Similarly, a 2002 study 

showed that of all patients receiving allogeneic transplants at the University of 

Minnesota between 1990 and 1999 (n=1181), 63% developed GVHD (642).  

When patients fail prophylaxis and develop GVHD, they are typically treated with 

glucocorticoids (GCs) such as methylprednisolone (Figure 4.2) (473).   

 

 

 

 

 

Figure 4.2.  Structure of methylprednisolone.  From (643). 

 

GCs are steroid hormones produced endogenously by the adrenal gland 

(644).  In addition to their role in the whole body stress response (645), 

endogenous GCs negatively regulate the function of the immune system (644).  

Decreasing endogenous GC production by removing adrenal glands from adult 

rats increases thymus size by 50-80% (646).  Endogenous GC production is 

stimulated by adrenocorticotropic hormone (ACTH), which is produced by the 

pituitary gland (647).  Administering exogenous ACTH stimulates endogenous 

GC production and decreases the size of both the thymus and lymph nodes 

(648).  Additionally, patients with Cushing’s Disease have abnormally elevated 
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GC levels and are at increased risk for opportunistic infections such as 

cryptococcosis and candidiasis (647).    

GCs achieve their immunosuppressive effects by binding to the cytosolic 

glucocorticoid receptor, which allows this complex to enter the nucleus and affect 

gene transcription (644).  GCs decrease the activity of transcription factors 

important for T cell activation such as AP-1 and NF-B (644, 649-652) and 

reduce the production of proinflammatory cytokines such as IL-2, IL-6 and IFN- 

(473, 595).  Additionally, GCs induce apoptosis in various cells of the immune 

system, including thymocytes, splenic T cells, and dendritic cells (594, 653-655).  

These pro-apoptotic effects can significantly affect circulating lymphocyte 

numbers in vivo following GC treatment.  For example, a single dose of the GC 

methylprednisolone (25 mg/kg) lowers peripheral blood lymphocyte counts by > 

50% 4 h after injection into healthy mice (656).  The precise signaling pathways 

involved in GC-mediated apoptosis are unclear (644).  However, GC-mediated 

apoptosis in thymocytes is inhibited by Bcl-2 or Bcl-xL overexpression, which 

suggests the involvement of the mitochondrial pathway of apoptosis (657-659). 

Because of these immunosuppressive properties, GCs have been used 

since the late 1940s to treat a variety of immune-mediated diseases, including 

rheumatoid arthritis (660), systemic lupus erythematosus (644, 661), and GVHD 

(441).  When BMT recipients fail prophylaxis and develop GVHD, they are 

typically treated with high dose methylprednisone (i.e., 2 mg/kg per day).  

However, GC treatment fails to induce durable responses in more than half of 

patients with GVHD (598, 642).  This deficiency is reflected in the high mortality 
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observed in patients with GVHD.  Of 443 patients with GVHD at the University of 

Minnesota between 1990 and 1999, 47% died within 1 yr of transplant, despite 

treatment with high dose GCs.  Similarly, a 1998 Italian study of 97 patients 

showed that treatment with standard (2 mg/kg) or higher (10 mg/kg) doses of 

methylprednisolone therapy resulted in only 60% overall survival 3 yr after 

development of GVHD (593).  

In addition to their limited efficacy, GCs have numerous side effects that 

detract from their clinical utility.  One of the most important complications of GC 

treatment is increased rates of infection (662).  In the general population, the risk 

of tuberculosis infection increases 5-fold with GC treatment (663).  Similarly, a 

case-control study of 228 renal transplantation patients showed that the 

likelihood of invasive aspergillosis infection correlated with the average daily 

intake of prednisone (664).  An additional complication associated with chronic 

GC treatment is Cushing’s syndrome, which is characterized by hypertension, 

bone loss, muscle wasting, weight gain and fat accumulation in the face and 

upper back (665).   

In the BMT setting, GC treatment is associated with delayed reconstitution 

of several cell types.  By d 60 after BMT, patients receiving GC treatment had 

fewer plasmacytoid dendritic cells and fewer monocytes compared to those not 

receiving GCs, although this study did not indicate the magnitude of these 

decreases (596).  Similarly, a 2005 study of 77 transplant recipients showed that 

patients treated with prophylactic prednisolone had 2-fold fewer NK cells than 

patients receiving only prophylactic cyclosporine and methotrexate (597). 
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 When treatment with GCs fails to reverse GVHD, several secondary 

treatment options exist.  A frequent treatment strategy involves antibody-

mediated T cell depletion.  Several agents exist for this purpose (Table 4.1), 

including alemtuzumab, which recognizes CD52 expressed on mature leukocytes 

(666, 667).  Visilizumab and OKT3 achieve a similar result by binding to CD3 on 

T cells leading to their depletion (668, 669).  While not a monoclonal antibody, 

anti-thymocyte globulin (ATG) is another agent that depletes T cells (670).  ATG 

is produced from the antiserum of horses or rabbits immunized with human T 

cells (670).  Thus, ATG contains a variety of antibodies that recognize and 

deplete human T cells when infused into patients suffering from GVHD (670).   

Unfortunately, these depletion strategies are directed against antigens 

expressed on all T cells, and thus do not distinguish between T cells mediating 

GVHD and bystander cells that may be important in anti-pathogen immunity.   

Possibly because of this lack of specificity, T cell-depletion strategies are 

associated with high rates of life-threatening infections (Table 4.1) (666-670).  

For example, a 2008 study of alemtuzumab treatment for steroid-refractory 

GVHD showed that 33% of patients receiving alemtuzumab developed 

neutropenia, and 78% developed infections, including cytomegalovirus (CMV), 

pneumonia and tuberculosis (667).  
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Table 4.1. Leokocyte depletion agents for steroid-refractory GVHD. From 

(666-670). 

 

Agent 
Antigen 

Recognized 
Expression Adverse Effects 

Alemtuzumab (666, 

667) 
CD52 

Mature 

Leukocytes 

Delayed 

reconstitution 

Neutropenia 

Infection 

Visilizumab (668) CD3 T Cells Infection 

OKT3 (669) CD3 T Cells Infection 

ATG (670) Polyclonal T Cells 
Infection 

Poor Outcome 

 

 Several strategies besides T cell depletion exist for the treatment of 

steroid-refractory GVHD.  One such strategy is the neutralization of tumor 

necrosis factor (TNF)-, an inflammatory cytokine produced by activated 

macrophages and T cells (671, 672). Infliximab and etanercept are monoclonal 

antibodies that neutralize TNF-, and kill cells that produce TNF- (421, 671, 

673).  This activity has led to the use of anti-TNF- therapy as an addition to GC 

treatment and as a treatment for steroid-refractory GVHD (674, 675).  As in 

cellular depletion strategies, infection is a common side effect of anti-TNF- 

therapy.  A 2004 Italian study documented that 72% of patients receiving 

infliximab as a treatment for steroid-refractory GVHD developed infections, 
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including septicemia, bacterial pneumonia, cytomegalovirus (CMV), and invasive 

fungal infections (674). 

 Extracorporeal photopheresis (ECP) is another strategy used to treat 

GVHD (676).  ECP involves the isolation of a patient's peripheral blood 

mononuclear cells and their treatment with 8-methoxypsoralen (8-MOP) and 

ultraviolet A (UVA) radiation (676).  UVA photoactivates 8-MOP thereby inducing 

DNA cross-linking and apoptosis.  Treated cells are then transfused back into 

GVHD patients.  A 2006 Austrian study showed that ECP-treatment for steroid-

refractory GVHD yielded a response rate of 60%; however, rates of infectious 

complications were not reported (677).  Currently, many of the details of ECP’s 

mechanism are unknown.  However, ECP treatment increases regulatory T cell 

numbers in both mice and humans, which may be related to its ability to 

attenuate GVHD (678, 679). 

 The limited efficacy of therapies for GHVD combined with the increased 

rates of infection that accompany such therapies highlight the need for novel 

GVHD treatments.  One such avenue of investigation involves the modulation of 

cellular redox status.  As discussed in Chapter 3, patients with GVHD exhibit 

increased oxidative stress in both plasma and white and red blood cells (487, 

680).  Investigators have used this knowledge in an attempt to treat GVHD by 

restoring antioxidant balance.  However, treatment with N-acetylcysteine (NAC), 

a precursor of glutathione (681) had no effect on disease in a mouse model of 

GVHD (487).  Similarly, in a small clinical study (n=8), 75% of patients with 

GVHD who were treated with NAC died of GVHD or transplant complications 
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within 100 days of GVHD development (680).  However, this study did not 

include patients not receiving NAC, so its results are difficult to interpret (680).  

While these studies suggest that increasing antioxidant levels has little benefit in 

GVHD, an alternative strategy is to use the depleted antioxidant status of 

alloreactive donor T cells to target these cells for deletion with pro-oxidant 

therapeutics such as arsenic trioxide (380, 489) or Bz-423 (169, 172, 395).   

Bz-423.  Bz-423 is a non-anxiolytic 1,4-benzodiazepine with proapoptotic 

and immunomodulatory properties (Figure 4.3) (169).  Bz-423 was identified by 

screening a library of 1,4-benzodiazepines for lymphotoxicity using Ramos B 

cells, which are derived from Burkitt's lymphoma and resemble activated, 

germinal center B cells (682).  Bz-423 treatment for 24 h induces dose-

dependent apoptosis in Ramos B cells with an EC50 of 6-8 M (169, 683).  

However, structural analogs of Bz-423 that lack the 4’-phenolic hydroxyl or the 3-

position naphthalene groups induce limited apoptosis at concentrations up to 60 

M (169).   

These structural and pro-apoptotic characteristics distinguish Bz-423 from 

prototypical 1,4-benzodiazepines such as diazepam, clonazepam and lorazepam 

(Figure 4.3), which exert their biologic effects by binding to the central 

benzodiazepine receptor (CBR) within the -aminobutyric acid (GABA) receptor 

complex on post-synaptic neurons (684).  Unlike prototypical benzodiazepines, 

Bz-423 does not bind the CBR and does not cause neurologic effects in mice, 

indicating that its proapoptotic effects likely stem from a mechanism distinct from 

interactions with GABA receptors (169, 395).   
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Figure 4.3.  Structure of Bz-423, diazepam and PK11195.  Bz-423 contains a 

naphthalene group at the 3 carbon and a phenolic OH at the 4’ position.  These 

structural features distinguish it from ligands of the central benzodiazepine 

receptor, such as diazepam, and ligands of the peripheral benzodiazepine 

receptor, such as PK11195 (169, 175, 685). 

 

Benzodiazepines can also bind a receptor localized on the mitochondrial 

outer membrane, termed the peripheral benzodiazepine receptor (PBR) (686). 

Unlike the CBR, the PBR has a wide tissue distribution that includes cells of the 

immune system (686, 687).  Although the precise function of the PBR is 

uncertain, it has been implicated in cellular proliferation, porphyrin and heme 

biosynthesis and steroidogenesis (688).  PK11195, a ligand of the PBR, does not 

induce apoptosis in primary thymocytes or in CEM-C7 leukemia cells (Figure 1.3) 

(689).  However, PK11195 can sensitize cells to apoptosis induced by other 

agents, such as etoposide and dexamethasone (689).  Furthermore, PK11195 

has anti-inflammatory effects in several mouse models, including autoimmune 

arthritis (690, 691).   

Bz-423 Diazepam PK11195

3

4’



  

233 

 

Several lines of evidence suggest that Bz-423 exerts its pro-apoptotic 

effects by binding a cellular target distinct from the PBR.  While Bz-423 is 

capable of binding to the PBR, it does so with a 10-50-fold lower affinity than the 

prototypical PBR ligands 4-chlorodiazepam (4-ClDz) and PK11195, as measured 

by the ability to displace radiolabeled PK1195 from the PBR (692, 693).  Despite 

their tighter binding to the PBR, PK11195 and 4-ClDz only induce apoptosis in 

Ramos B cells at high concentrations, with EC50 values 15-20-fold higher than 

Bz-423 (90 and 130 M respectively vs. 6.3 M).  Furthermore, preincubation of 

Ramos B cells with PK11195 (20 M) does not inhibit Bz-423-induced apoptosis 

(169).  Together, these observations suggest that Bz-423 induces apoptosis 

through a mechanism independent of binding to the PBR. 

Effects of Bz-423 in models of lupus.  Because of its potent ability to 

induce apoptosis in a germinal center-like B cell line, Bz-423 was administered to 

NZB/W mice, which suffer from a lupus-like disease characterized by the 

pathologic expansion of germinal center B cells (169, 694).  A short (1 week) 

course of Bz-423 treatment increases B cell apoptosis in the spleens of NZB/W 

mice (169).  Similarly, a 12-week course of Bz-423 reduces germinal center 

numbers by 40%, increases germinal center TUNEL staining (a marker of 

apoptosis), and reduces the incidence of nephritis by 60% (169).  Importantly, 

Bz-423 does not broadly induce lymphocyte apoptosis or affect the number of T 

cells in treated mice, indicating that its effects might be specific for disease-

causing lymphocytes.   
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Bz-423 shows similar efficacy when used to treat MLR-lpr mice, which 

develop a T cell dependent lupus-like disease (395).  A short (1 week) course of 

Bz-423 treatment reduces the number of pathogenic CD4+ T cells in MLR-lpr 

mice without significantly depleting the number of B cells (395).  This observation 

again suggests that Bz-423 specifically induces apoptosis in disease-causing 

lymphocytes rather than being broadly lymphotoxic.  In support of this 

hypothesis, 7 d of Bz-423 treatment does not reduce the number of T or B cells 

in the spleens of healthy Balb/c mice (395). 

  Longer term Bz-423 treatment (14 weeks) improves renal function and 

decreases histologic manifestations of nephritis and arthritis in MLR-lpr mice 

(395).  This same study showed that Bz-423 treatment does not significantly 

affect the cell mediated immune response to a foreign antigen, as measured by 

hind paw swelling in response to a delayed-type hypersensitivity (DTH) test.  

Similarly, Bz-423 treatment does not decrease antibody production following 

immunization with keyhole limpet hemocyanin (KLH) (395).  Both of these results 

suggest that Bz-423 does not broadly impair lymphocyte function.   

Anti-proliferative and anti-psoriatic effects of Bz-423.  In addition to its 

ability to induce apoptosis in lymphoid cells, Bz-423 can induce cell cycle arrest 

and inhibit proliferation without inducing apoptosis (692, 695).  These 

experiments were carried out in media with 10% fetal bovine serum (FBS), in 

which nearly 99% of Bz-423 is bound to bovine serum albumin (BSA).  Under 

these conditions, 20 µM Bz-423 inhibited Ramos cell proliferation by 6-fold and 

nearly doubled the percentage of cells arrested in the G0/G1 stage of the cell 
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cycle (692).  These anti-proliferative effects stem from the ability of Bz-423 to 

induce proteosomal degradation of the transcription factor c-myc (695).  Treating 

Ramos cells with Bz-423 (15 µM) for 24 h decreased c-myc levels by > 90% and 

significantly decreased the expression of cyclins (D3 and E), and cyclin-

dependent kinases (CDK 2, 4 and 6), all of which are transcriptionally activated 

by c-myc (695, 696).  These changes were associated with decreased pRb 

phosphorylation, which is the primary substrate of the CDKs (695, 697).  

Because dephosphorylated pRb prevents the transcription of E2F-regulated 

genes and cell cycle entry (697), these changes are likely responsible for the 

anti-proliferative effects of Bz-423.  Indeed, when c-myc degradation was 

blocked by inhibiting the proteosome, Bz-423 was no longer able to decrease 

cyclin D3 expression (695). Furthermore, transfecting Ramos cells with c-myc 

mutants resistant to proteosomal degradation abrogated the ability of Bz-423 to 

induce cell cycle arrest (695). 

The antiproliferative effects of Bz-423 are not limited to lymphoid cells.  

Bz-423 also inhibits cellular proliferation in the setting of psoriasis, a disease 

characterized by excessive proliferation of keratinocytes that results in epidermal 

hyperplasia (698).  Bz-423 inhibits the growth of proliferating keratinocytes in 

vitro at concentrations < 2 µM (699).  Similarly, treatment with 1 µM Bz-423 

completely reverses retinoic acid-induced epidermal thickening in an organ 

culture model of epidermal hyperplasia (699).  However, when normal skin tissue 

is cultured without retinoic acid (i.e., no hyperplasia), Bz-423 treatment has no 

effect on epidermal thickness (699).  These observations suggest that Bz-423 
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may selectively inhibit psoriatic keratinocyte proliferation without affecting normal 

skin. 

In addition to these in vitro effects, Bz-423 has potent anti-psoriatic effects 

in animal models, in which psoriatic human skin is transplanted onto severe-

combined-immunodeficient (SCID) mice (700).  Treatment with corticosteroids or 

Bz-423 decreases epidermal thickness by 2-3-fold compared to vehicle 

treatment.  However, unlike corticosteroids, Bz-423 treatment did not induce 

atrophy of the normal mouse skin surrounding the transplanted psoriatic lesion 

(700).  These results support in vitro observations that Bz-423 selectively inhibits 

the growth of psoriatic skin tissue without affecting normal skin (699). 

 Bz-423 production of ROS.  Because Bz-423 induces apoptosis in 

pathogenic germinal center B cells and reduces the number of pathogenic cells 

in two separate models of lupus, studies were undertaken to investigate its 

apoptotic signaling mechanism.  Treating T or B cell lines or mouse embryonic 

fibroblasts (MEFs) for 1-2 h with Bz-423 results in a dose-dependent increase in 

the fluorescence of dihydroethidium (DHE) (169, 172, 173), a redox sensitive dye 

that fluoresces due to selective oxidation by superoxide (O2
-) (340).  This O2

- 

signal precedes the collapse of the mitochondrial membrane potential (m), 

caspase activation and cytochrome C release, which suggests that it might be a 

cause rather than a consequence of apoptosis (169, 173).  Bz-423 also 

generates reactive oxygen species (ROS) in the spleens of NZB/W mice 2 h after 

i.p. injection, suggesting that O2
- generation may be important for its therapeutic 

effects in vivo (169).  This O2
- signal is required for Bz-423-induced apoptosis 
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because its inhibition with antioxidants such as vitamin E or the superoxide 

dismutase (SOD) mimetic manganese(III)meso-tetrakis(4-benzoic acid) porphyrin 

(MnTBAP), significantly reduces caspase activation, cyctochrome c release and 

cell death in MEFs and B and T cell lines (169, 173, 175).  PEG-catalase, which 

converts hydrogen peroxide to water (701), does not protect against Bz-423-

induced apoptosis, which suggests that superoxide rather than hydrogen 

peroxide is the ROS species important for induction of apoptosis (172).   

Studies in isolated mitochondria show that Bz-423 generates ROS when 

mitochondria are actively respiring (i.e., in the presence of succinate and ADP, 

state 3 respiration), but not when mitochondria are inactive (i.e., in the presence 

of succinate and oligomycin and without ADP, state 4 respiration) (169).  

Similarly, co-treatment with sodium azide, an inhibitor of respiration, completely 

abolishes Bz-423 induced ROS production in Ramos B cells (169).  This 

observation supports the hypothesis that active respiration may be necessary for 

Bz-423 activity in intact cells.  

ROS production is also important for the anti-proliferative effects of Bz-

423.  Anti-proliferative concentrations (e.g., 20 µM in media with 10% FBS) of Bz-

423 increase dichlorofluorescein (DCF) fluorescence in Ramos B cells, which 

indicates increased ROS levels (386, 692).  This DCF fluorescence was reduced 

when cells were co-treatment with MnTBAP, which suggests that it was caused 

by O2
- formation.  MnTBAP treatment also decreases Bz-423-induced c-myc 

degradation (695) and increases the GI50 of Bz-423 by 2-fold (692).  Together, 

these observations suggest that O2
- is an important mediator of Bz-423’s 



  

238 

 

antiproliferative effects in Ramos B cells (692).  Anti-proliferative concentrations 

of Bz-423 also increase both DHE and DCF fluorescence in keratinocytes (699, 

700).  Blocking this ROS production with vitamin E abrogates Bz-423’s ability to 

inhibit keratinocyte proliferation in vitro, which suggests that O2
- may also 

mediate Bz-423’s anti-psoriatic effects (700). 

 Molecular target of Bz-423.  The molecular target of Bz-423 was 

discovered based on phage-display screens.  These experiments demonstrated 

a direct interaction between Bz-423 and the oligomycin sensitivity conferring 

protein (OSCP), a component of the mitochondrial F1Fo-ATPase (170).  Bz-423 

inhibits ATP synthesis and hydrolysis in submitochondrial particles (SMPs), but 

this inhibition is lost when OSCP is removed from SMPs.  Bz-423 also inhibits 

ATP synthesis and O2 consumption in Ramos B cells, and causes an increase in 

m shortly (1 hr) after treatment (170).  Together, these data suggest that Bz-

423 causes a respiratory transition from state 3 (active ATP synthesis) to state 4 

(inhibited ATP synthesis) and slows the rate of H+ flow through the F1Fo-ATPase.  

This slowed H+ flow causes H+ accumulation in the intermembrane space, 

thereby increasing m (Figure 4.4).  Increased m slows electron transport 

through the mitochondrial respiratory chain (MRC) and increases the half-life of 

reduced flavins, Fe-S clusters, and ubisemiquinone, which favors electron 

escape and superoxide formation (167).  
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Figure 4.4.  Electron transport, ATP synthesis and Bz-423-induced ROS 

formation.  A. In state 3 respiration, electrons are transferred along the MRC (in 

red) and protons (H+) are pumped into the intermembrane space.  Protons then 

flow through the F1Fo-ATPase catalyzing the synthesis of ATP.  B.  Bz-423 

modulates the F1Fo-ATPase, slowing proton flow through the enzyme and 

resulting in H+ accumulation in the intermembrane space.  This transition to state 

4 respiration disfavors the flow of electrons from complex to complex and causes 

the buildup of reactive intermediates resulting the escape of electrons from 

complex III (in red) and the formation of superoxide.  
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  While superoxide can be formed at complex I or complex III in the MRC 

(154), Bz-423 forms substantial superoxide even when rotenone is present (170). 

This observation suggests that Bz-423 produces superoxide at complex III 

because rotenone blocks reverse electron flow to the active flavin and iron-sulfur 

centers of complex I (154).  The OSCP is important for Bz-423-induced O2
- 

production in intact Ramos cells, as decreasing OSCP levels using small 

inhibitory RNA (siRNA) decreases ROS production and apoptosis following Bz-

423 treatment (170).     

Transduction of Bz-423-induced O2
- into apoptosis.  In intact cells, Bz-423 

generates O2
- and leads to biochemical changes characteristic of apoptosis, 

including the collapse of m, and the translocation of cytochrome C from the 

intermembrane space to the cytosol (169, 172, 683).  However, in isolated 

mitochondria, Bz-423 produces O2
- but does not cause m collapse or 

cytochrome C translocation (169, 172).  These observations suggest that O2
- 

produced by Bz-423 must signal through cytosolic factors in order to induce 

apoptosis.  

 The mitochondrial pathway of apoptosis is regulated by numerous 

cytosolic proteins (Figure 4.5).  Bax and Bak are effector proteins that, when 

activated, begin the apoptotic signaling cascade by permeabilizing the 

mitochondrial outer membrane (702).  In the absence of pro-apoptotic signals, 

Bak is localized in the mitochondrial membrane, but is kept inactive by 

interactions with anti-apoptotic proteins such as Mcl-1 and Bcl-xL (703).  Bax is a 

cytosolic protein that becomes phosphorylated in response to pro-apoptotic 
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signals and translocates to the mitochondria (704).  Like Bak, the ability of 

mitochondrial Bax to permeabilize the mitochondrial membrane is blocked by 

interactions with anti-apoptotic proteins such as Bcl-2, Mcl-1 and Bcl-xL (702).  

Cell death occurs when apoptotic stimuli activate pro-apoptotic “BH3-only” 

proteins such as Bad, Bim, tBid, Puma and Noxa (702).  Active BH3-only 

proteins activate Bax and Bak and induce their dissociation from constraining 

anti-apoptotic proteins, leading to permeabilization of the mitochondrial outer 

membrane and apoptosis (702). 

 

Figure 4.5.  Regulation of the mitochondrial pathway of apoptosis.  In step 

1, cytosolic Bax translocates to the mitochondria, where it is sequestered by anti-

apoptotic proteins such as Bcl-xL, Mcl-1 or Bcl-2.  In step 2, proapoptotic BH3 

proteins such as Bad, Bim, tBid, Puma and Noxa activate Bax and Bak and 

displace them from antiapoptotic proteins.  In step 3, active Bax and Bak 

dimerize and form pores in the mitochondrial membrane thereby inducing 

apoptosis (702).   

 

 

 In Ramos B cells, Bz-423 causes the translocation of the proapoptotic 

protein Bax to the mitochondria and activates both Bax and Bak, as assayed by 
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immunofluorescence (683).  Decreasing Bax and Bak levels with siRNA inhibited 

Bz-423-induced apoptosis, confirming their importance in this pathway (683).  

Importantly, Ramos cells with decreased Bax and Bak levels produced as much 

O2
- in response to Bz-423 as wild type cells, confirming that O2

- production is 

proximal to Bax and Bak activation (683).  In Ramos cells, O2
- activates Bax and 

Bak by inducing the degradation of the anti-apoptotic protein Mcl-1 and the 

generalized activation of BH3-only proteins (683). 

Similar to its effects in Ramos cells, Bz-423-induced O2
- activates Bax and 

Bak in MEFs (172).  However, the signaling pathways between O2
- and Bax and 

Bak differ between these two cell types.  In MEFs, Bz-423 treatment increases 

the levels of the BH3-only protein Bad within 1 h of treatment (172).  Preventing 

this increase in Bad, either by inhibiting protein synthesis with cyclohexamide or 

by using Bad-deficient MEFs, decreases Bz-423-induced apoptosis (172).  This 

contrasts with Ramos cells, in which cyclohexamide does not inhibit Bz-423-

induced apoptosis (395).  While Bz-423-induced apoptosis was inhibited in both 

cyclohexamide-treated and Bad-deficient MEFs, it was not eliminated completely, 

which suggests that Bz-423 might activate Bad-independent pro-apoptotic 

pathways (172).  In support of this hypothesis, Bz-423 activates apoptosis 

signaling regulating kinase-1 (ASK1) and the MAP kinase JNK (172), both of 

which are involved in apoptosis induced by other pro-oxidants such as H2O2 and 

TNF- (705, 706).  This ASK1-JNK signaling appears to be important in Bz-423-

mediated apoptosis in MEFs, as inhibiting JNK with a selective kinase inhibitor 

almost completely abrogates Bz-423-induced apoptosis (172). 
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Another important difference between Bz-423-induced apoptosis in MEFs 

and Ramos cells is the [Bz-423] at which apoptosis occurs.  Ramos cells require 

3-4 h of exposure to [Bz-423] of 6 M and higher for apoptosis to occur (683).  In 

contrast, inducing apoptosis in MEFs requires longer exposure (> 10 h) to higher 

[Bz-423] (10 M and higher) (172).  This decreased sensitivity to Bz-423-induced 

apoptosis in MEFs could be due to increased levels of endogenous antioxidants, 

as MEFs have 2-fold more cytosolic and mitochondrial glutathione than Ramos 

cells.  In support of this hypothesis, experimentally lowering MEF glutathione 

levels with the -glutamylcysteine synthetase inhibitor buthionine sulfoxide (BSO) 

increases Bz-423-induced apoptosis 3-fold (172). 

In Jurkat T cells, Bz-423 activates Bak within 4 h of treatment, while Bax 

activation occurs later (i.e., at 8 h).  This is different than the results in Ramos or 

MEF cells, where Bax and Bak activation was not temporally separated (172, 

683).   siRNA experiments showed that lowering Bak levels inhibits Bz-423-

induced apoptosis in Jurkat cells, but lowering Bax alone has no effect.  Bz-423 

also activates JNK and inactivates the prosurvival kinase AKT in Jurkat T cells.  

However, blocking these two processes does not inhibit Bz-423-induced 

apoptosis, which suggests that other pathways may couple Bz-423-induced O2
- 

to apoptosis.  As in Ramos cells, Bz-423 induces the degradation of the anti-

apoptotic protein Mcl-1 (173), possibly by inducing the expression of the BH3-

only protein noxa.  Indeed, reducing noxa levels with siRNA decreases Bz-423-

induced apoptosis by 2-3-fold (173).  Together, these observations show that the 

mechanisms coupling Bz-423-induced O2
- to apoptosis vary between cell types 
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and suggest that such variations could cause differential sensitivity to Bz-423 

across cell types in vivo.   

Statement of problem.  GVHD is the major morbidity associated with 

allogeneic bone marrow transplantion and current treatments lack efficacy and 

have numerous side effects, including high rates of opportunistic infection.  Bz-

423 is a novel pro-apoptotic small molecule that selectively induces apoptosis in 

activated lymphocytes in models of lupus by modulating the F1Fo-ATPase and 

forming a O2
- signal.  High rates of OXPHOS and depleted antioxidants in 

alloreactive donor T cells suggest that Bz-423 may induce apoptosis in these 

cells and therefore have utility in models of GVHD.  The low rates of OXPHOS 

and intact antioxidants in unstimulated T cells and proliferating bone marrow cells 

suggest that, unlike current treatments for GVHD, Bz-423 may specifically affect 

alloreactive donor T cells. 
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Results 

  

Effects of Bz-423 on T cell m and ROS production in vitro.  Bz-423 

modulates the F1FO-ATPase, which hyperpolarizes m leading to O2
- production 

and apoptosis (169, 170, 172, 173, 395).  Increased OXPHOS in alloreactive 

donor T cells compared to unactivated cells suggests an increased flow of 

protons through the F1FO-ATPase (153).  Hence, modulating the F1FO-ATPase 

with Bz-423 may induce increased hyperpolarization in cells with greater 

oxidative metabolism, resulting in a larger ROS signal (167, 707). 

We first tested this hypothesis in vitro by measuring the effects of Bz-423 

on m hyperpolarization in unstimulated and stimulated T cells using the dye 

tetramethylrhodamine (TMRM).  T cells stimulated for 48 h with anti-CD3 and 

anti-CD28 antibodies consumed 0.4 nMoles O2/(min x 106 cells) (Figure 4.6 A), 

which is 2-fold faster than rates observed in unstimulated T cells (0.2 nMoles 

O2/(min x 106 cells).  Similarly, CD3/28-stimulated T cells had 3-4-fold more 

TMRM staining than unstimulated cells following Bz-423 treatment (Fig 4.6 B, 

p<0.0001 for all [Bz]).  These results suggest that the ability of Bz-423 to 

hyperpolarize m increases as O2 consumption increases.  However, 

unstimulated and stimulated T cells differ in many ways aside from their oxidative 

metabolism, including increased intracellular [Ca2+] and activated NFAT and NF-

B in stimulated T cells (430).  An alternative interpretation of our data is that a 

change independent of O2 consumption sensitized activated T cells to Bz-423-

mediated m hyperpolarization. 
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The experiments described above were performed in standard DMEM 

media, which contains 25 mM glucose.  To further test if cells with increased 

OXPHOS were more sensitive to Bz-423-induced m hyperpolarization, we 

increased O2 consumption in activated T cells by culturing these cells in media 

containing low glucose (0.5 mM).  Although restricting glucose could potentially 

decrease OXPHOS by limiting flux through pyruvate dehydrogenase (Chapter 3), 

others have shown that stimulating T cells in low (0.4 mM) glucose media 

increases O2 consumption 3-fold compared to T cells stimulated with high 

glucose (11 mM), likely due to increased fatty acid and glutamine oxidation (59, 

376).  

T cells stimulated in low glucose media consumed O2 2-fold faster than T 

cells stimulated in high glucose media (Figure 4.6 A, p=0.002) and had 20-30% 

more TMRM staining following Bz-423 treatment (Figure 4.6 B, p<0.02 for [Bz-

423] > 2 M).  Together, these results show that as T cells increase their rates of 

O2 consumption, they become more sensitive to Bz-423-induced m 

hyperpolarization.  These results are consistent with studies in isolated 

mitochondria showing that inhibition of the F1FO-ATPase with oligomycin caused 

a greater rise in m in quickly respiring mitochondria than in slowly respiring 

mitochondria (707).   

  A potential caveat in interpreting these data is that the concentrations of 

TMRM used (50 nM) may measure contributions from both the plasma and 

mitochondrial membrane potentials (145, 338).  However, Bz-423 is not known to 

bind to proteins on the plasma membrane (170) and the OSCP, to which Bz-423 
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does bind (170), is not a component of extramitochondrial ATPases such as the 

vacuolar H+-ATPase (708).   These observations suggest that Bz-423-induced 

changes in TMRM fluorescence are due to alterations in m rather than 

changes in the plasma membrane potential. 
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Because Bz-423 generates O2
- as a consequence of its ability to 

hyperpolarize m (170, 175), we hypothesized that T cells in which Bz-423 

hyperpolarized m would also increase O2
- in response to Bz-423.  Consistent 

with this hypothesis, Bz-423 produced 2-4-fold more DHE staining in T cells 

stimulated in high glucose media than in unstimulated cells (Figure 4.6 C, 

Figure 4.6.  Bz-423-induced m hyperpolarization and ROS production in T 
cells in vitro.  A-C.  T cells were stimulated for 48 h with anti-CD3/28 antibodies 

(0.5 g/mL) in DMEM media with 25 mM glucose (CD3/28, white squares) or 0.5 
mM glucose (CD3/28 Low Glucose, black triangles) prior to analysis.  
Unstimulated T cells (Unstim, gray circles)were purified from naïve mice 
immediately before being analyzed in DMEM media with 25 mM glucose.  A. 
Oxygen consumption of CD3/28 (n=3) or CD3/28 Low Glucose (n=3) T cells 
performed in DMEM media with the indicated glucose concentrations.  * p=0.002.  
B-C.  After isolation (Unstim) or 48 h of culture (CD3/28, CD3/28 Low glucose) in 
media with 10% FBS, cells were washed, resuspended in media with the 
appropriate glucose concentration and 2% FBS and treated with the indicated 
concentration of Bz-423 for 1 h before analysis of TMRM (B) or DHE (C) staining.  
Data points are the average of median fluorescence intensity (MFI) for 3 
independent treatments and error bars indicate standard error.  
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p<0.002 at all [Bz-423]).  This observation parallels the 3-4-fold increase in Bz-

423-induced TMRM staining in stimulated cells compared to unstimulated T cells 

(Figure 4.6 B).  T cells stimulated in low glucose had the highest levels of DHE 

staining following Bz-423 treatment (10-15-fold over unstimulated, 3-4-fold over 

high glucose, Figure 3.C, p<0.001 at all [Bz-423]).  These data are consistent 

with the observation that T cells stimulated in media containing low glucose 

hyperpolarize m in response to Bz-423 to a greater extent than do 

unstimulated T cells or T cells stimulated in media containing high glucose 

(Figure 4.6 B). 

The difference in DHE staining between T cells stimulated in high and low 

glucose media (3-4-fold, Figure 4.6 C) was greater in magnitude than the 

difference seen in TMRM staining (20-30%, Figure 4.6 B).  Although neither 

TMRM nor DHE reports on m or ROS production quantitatively as used (145, 

340),  this difference in magnitude could occur because small increases in m 

cause large increases in ROS production (168).  For example, a 20% increase in 

m increases H2O2 production 10-fold in isolated mitochondria (167).  

Alternatively, T cells stimulated in low glucose could have decreased antioxidants 

compared to T cells stimulated in high glucose, which could increase the ROS 

levels detected following Bz-423 treatment (343, 376, 491). 

Effects of Bz-423 on m hyperpolarization, ROS production and 

apoptosis in T cells during GVHD.  The bioenergetic measurements detailed in 

Chapter 3 revealed two important and possibly related features of alloreactive 

donor T cells that could sensitize them to Bz-423.  First, alloreactive donor T cells 
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increase OXPHOS 2.5-fold compared to unstimulated T cells (Figure 3.16), 

which could sensitize them to Bz-423-induced m hyperpolarization and ROS 

production (Figure 4.4).  Second, alloreactive donor T cells have decreased 

glutathione and pyruvate levels compared to unstimulated T cells (Figure 3.27), 

which could lead to increased ROS-mediated apoptosis (172).   

 To examine the effects of Bz-423 on m hyperpolarization and ROS 

production in alloreactive donor T cells, we labeled B6-Ly5.2 splenocytes with the 

fluorescent cytoplasmic dye carboxyfluorescein diacetate succinimidyl ester 

(CFSE) (510, 511).  The amount of CFSE in a cell decreases by half following 

each division, which causes a 2-fold decrease in fluorescence (510, 511).  We 

infused CFSE-labeled B6-Ly5.2 splenocytes into allogeneic (B6D2F1) and 

syngeneic (B6) recipients, and treated mice with Bz-423 or vehicle 4 d after 

transplant.  We distinguished donor cells based on their expression of CD45.1, 

as lymphocytes from B6-Ly5.2 mice express the CD45.1 phosphatase isoform, 

while those from B6 or F1 mice express CD45.2 (497, 498).  We further identified 

donor T cells as either divided (i.e. 1 or more divisions) or undivided based on 

their CFSE fluorescence (Figure 3.18, Figure 3.26).   

Bz-423 increased TMRM staining 40-50% in divided CD4+ and CD8+ 

donor T cells compared to cells from mice treated with vehicle (Figure 4.7 A, 

p<0.02).  However, Bz-423 did not alter TMRM staining in undivided donor T 

cells or host T cells (Figure 4.7 A).  These findings show that Bz-423 induces 

m hyperpolarization preferentially in alloreactive donor T cells rather than in 

unstimulated donor or host T cells.  Similarly, Bz-423 increased DHE staining 50-
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60% in divided donor T cells as compared to cells from mice treated with vehicle 

(Figure 4.7 B, p=0.001).  However, Bz-423 did not change DHE staining in 

undivided donor T cells or host T cells. These data show that, like m 

hyperpolarization, Bz-423 produces O2
- primarily in alloreactive donor T cells and 

not in unactivated T cells.   

Because Bz-423 can induce redox regulated apoptosis in vitro (169, 172, 

173, 683), we next examined the effects of Bz-423 on apoptosis in T cells post-

transplant.  We infused donor cells into allogeneic recipients, treated mice with 

Bz-423 or vehicle and analyzed the ability of donor and host T cells to bind 

annexin-V, a protein that selectively binds phosphatidylserine externalized by 

dying cells (709).  Bz-423 doubled annexin-V staining in alloreactive donor T 

cells compared to vehicle  (p<0.001, Figure 4.7 C), consistent with increased 

apoptosis in these cells (710).  Bz-423 did not increase annexin-V staining in 

unactivated host T cells.  This differential sensitivity to Bz-423-mediate apoptosis 

could be related to the differences in oxidative metabolism and antioxidant status 

in host T cells as compared to alloreactive donor T cells (Figures 3.16, 3.27).
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Figure 4.7.  Effects of Bz-423 on m hyperpolarization, ROS production and apoptosis in alloreactive donor T 

cells post-transplant.  A and B.  B6-Ly5.2 splenocytes (50 x 106, CFSE-labeled) were injected into F1 (Allo) or B6 (Syn) 

mice.  On d 4 after transplant, mice were injected i.p. with Bz-423 (60 mg/kg) or vehicle.  2 h after injection, splenocytes 

were harvested and stained for flow cytometry.  Donor (CD45.1+) T cells (CD4+ or CD8+) that had undgergone 1+ division 

by CFSE were classified as CFSELO.  Host (CD45.2+) T cells were gated based on CD4+ or CD8+ expression.  For each 

mouse, a sample without TMRM or DHE was included as a background control and was subtracted from the stained 

sample.  Results were normalized to the MFI of the syngeneic sample.  A. n=8 mice/group, *p<0.0001, **p<0.02.  B. n=6 

mice/group, * and ** p=0.001.  C.  Annexin-V staining of donor (black bars) and host (white bars) CD4+ and CD8+ cells 

from allogeneic recipient mice 7 days after donor cell infusion and 6h after a single Bz-423 or control injection 

(n=12/group); *p<0.001.
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Effects of Bz-423 on donor T cell infiltration into recipient liver and bone 

marrow and host survival during non-irradiated GVHD.  In the non-irradiated 

B6F1 model of GVHD, alloreactive parental T cells infiltrate into target tissues 

such as the liver and the bone marrow where they damage host tissues and lead 

to high rates of mortality ~21 d after transplant (451, 453).  Because a single 

dose of Bz-423 induces apoptosis in alloreactive donor T cells, we hypothesized 

that a series of Bz-423 doses could improve disease in this model.  To test this 

hypothesis, F1 (Allo, CD45.2+) or B6 (Syn, CD45.2+)  mice were transplanted 

with B6-Ly5.2 splenocytes (CD45.1+, 35 x 106) and treated every other day with 

vehicle or Bz-423 (60 mg/kg, i.p.) from d 3 to d 13.  We chose this dosing 

schedule because our measurements indicate that donor T cells have increased 

rates of OXPHOS during this period (Figure 3.16).  

 As expected, vehicle-treated mice with GVHD (allo) showed an increased 

percentage of donor T cells infiltrating into the liver (6-30%) and bone marrow (2-

6%) compared to syngeneic controls (< 0.5%, p<0.02 for each T cell population) 

14 d after transplant (Figure 4.8 A). The majority of infiltrating donor T cells were 

CD8+ (Figure 4.8 A, p<0.001 for liver and bone marrow), which is consistent with 

the proposed role for CD8-mediated CTL activity in this model (453, 500).  

Treatment with Bz-423 reduced infiltrating donor CD8+ T cells from 16% of bone 

marrow lymphocytes in vehicle treated mice to 7% (p=0.01), and infiltrating donor 

CD4+ T cells also decreased from 1.8% in vehicle treated mice to 0.3% in Bz-423 

treated mice (p=0.002, Figure 4.8 A).  In addition, Bz-423 decreased donor T cell 

infiltration into the liver (Figure 4.8 B).  CD8+ donor T cells comprised 39% of liver 
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lymphocytes in vehicle treated mice, compared to 24% of liver lymphocytes in 

Bz-423 treated mice (p=0.01).  Similarly, Bz-423 treatment decreased donor 

CD4+ T cells levels from 6.4% in vehicle treated mice to 2.1% (p=0.001, Figure 

4.8 B).   

 Donor T cells infiltrating into the BM induce apoptosis of target host 

hematopoietic cells which leads to lethal BM hypoplasia ~21 d after transplant 

(461, 500).  Vehicle-treated mice with GVHD showed a 45% decrease in host 

bone marrow cellularity compared to untreated F1 mice 14 d after GVHD 

induction (Figure 4.8 C, p=0.02).  However, mice receiving allogeneic 

splenocytes and treated with Bz-423 showed only a 9% loss in bone marrow 

cellularity (Figure 4.8 C, p=0.01 vs. vehicle), which was not statistically different 

compared to the bone marrow cellularity of untreated F1 mice (p=0.3).  Hence, 

Bz-423 treatment prevented target cell destruction and subsequent loss of 

cellularity.   
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Because mortality in this model results from bone marrow aplasia (453, 

500), we hypothesized that the ability of Bz-423 to prevent bone marrow loss 

would result in a survival benefit in mice with GVHD.  To test this hypothesis, we 

performed syngeneic (F1F1) and allogeneic (B6-Ly5.2F1) transplants and 

treated mice with either Bz-423 or vehicle from d3 to d15.  As expected, 100% of 

F1 mice injected with syngeneic F1 splenocytes (Figure 4.8 D, syn, black) 

survived out to d 50 post-transplant, after which the study was terminated.  F1 

mice injected with 35 x 106 parental B6-Ly5.2 splenocytes (Figure 4.8 D, red) and 

treated with vehicle showed significant mortality (~67%) by d 30 after transplant.  

Treatment with Bz-423 eliminated mortality as measured on d 50 in F1 mice 

injected with 35 x 106 B6-Ly5.2 splenocytes (Figure 4.8 D, p=0.02).  Bz-423 

treatment may also provided a survival benefit when GVHD is induced using an 

increased dose of donor splenocytes (50 x 106, Figure 4.8 D, blue, p=0.15). 
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Figure 4.8.  Effect of Bz-423 treatment on donor T cell infiltration, tissue 

damage and mortality in non-irradiated GVHD.  A-C. B6-Ly5.2 splenocytes 

(35 x 106) were injected into F1 (Vehicle or Bz-423) or B6 (Syn) mice.  Mice were 

treated 7x from d 3 to d 13 (every other day) with i.p. injections of Bz-423 (60 

mg/kg, Bz-423) or vehicle (Vehicle, Syn) and tissues were harvested on d 14 

after transplant.  A.  The percentage of bone marrow cells staining positively as 

donor (CD45.1) T cells (CD8, left or CD4, right) was quantified by flow cytometry 

as shown for syn (n=2), Vehicle (n=4) and Bz-423 (n=4) mice.  * p  0.01  Bz-423 

vs. Vehicle.  B.  The percentage of infiltrating liver lymphocytes staining positively 

as donor (CD45.1) T cells (CD8, left or CD4, right) was quantified by flow 

cytometry as shown for syn (n=2), Vehicle (n=4) and Bz-423 (n=4) mice.  ** p  

0.01  Bz-423 vs. Vehicle.  C.  Number of non-red blood cells per femur was 

quantified for untreated F1 mice (F1, n=2)) and for Bz-423 (n=4) or vehicle-

treated mice with GVHD (n=4). *** p=0.01 Bz-423 vs. vehicle, p=0.6 Bz-423 vs. 

F1.  D.  F1 mice were injected with 35 (red lines) or 50 x 106 (blue lines) B6-Ly5.2 

splenocytes and treated with 7 i.p. injections of Bz-423 (60 mg/kg, dotted lines) 

or vehicle (solid lines) from d 3 to d 15.  n=6 mice per group with GVHD, except 

for Vehicle:50 (n=5).  Vehicle-treated F1 mice receiving F1 splenocytes (n=4, 

syn, black line) served as a control.  Survival curves were compared using the 

Log-rank (Mantel-Cox) Test.  **** p=0.02 Bz:35 vs. Vehicle:35. 

 

 

Effects of Bz-423 on post-transplant bone marrow cells.  Unlike 

alloreactive donor T cells, post-transplant bone marrow cells do not increase 

OXPHOS or have decreased antioxidants compared to cells from naïve mice 

(Chapter 3).  Additionally, proliferating post-transplant bone marrow consume O2 

2-fold slower than alloreactive donor T cells (0.23 vs. 0.48 nMoles O2/(min x 106 

cells), p<0.0001).  Because of these differences, we hypothesized that, unlike 

proliferating alloreactive T cells, post-transplant bone marrow cells would be 

resistant to Bz-423-induced m hyperpolarization, O2
- production, and 

apoptosis.   
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We transfused donor (B6) bone marrow into lethally irradiated syngeneic 

recipients and treated mice with Bz-423 or vehicle on d 7-8 to assess the ability 

of Bz-423 to induce m hyperpolarization, O2
- production and apoptosis in 

proliferating bone marrow cells (Figure 4.9).  Bz-423 treatment did not increase 

TMRM staining in post-transplant bone marrow cells, indicating a lack of m 

hyperpolarization (Figure 4.9 A, p=0.9).  Similar results were obtained using a 

lower concentration of TMRM (10 nM), which is more specific for m (Figure 4.9 

B) (145, 338).  Consistent with this lack of hyperpolarization, Bz-423 treatment 

did not increase DHE staining in post-transplant bone marrow cells. (Figure 4.9 

C, p=0.3 vehicle vs. Bz-423).  The lack of Bz-423-induced m hyperpolarization 

and O2
- production suggested that Bz-423 treatment would not induce apoptosis 

in post-transplant bone marrow cells.  Indeed, similar percentages of donor bone 

marrow cells in vehicle- and Bz-423-treated mice stained positive for annexin V 

(Figure 4.9 D, 23% vs. 19%, p=0.2).  

These results suggest that Bz-423 may preferentially induce m 

hyperpolarization, O2
- production and apoptosis in alloreactive donor T cells, and 

may spare other proliferating cells post-transplant.  In addition to the rapid 

proliferation of granulocytes in the bone marrow (Chapter 3), the de novo 

generation of mature T cells in the thymus is critical for reconstitution of the host 

immune system (711).  After lethal irradiation, host thymocytes undergo 

apoptosis and the thymus is reconstituted from bone-marrow derived donor cells 

to regenerate the T cell compartment of the immune system (531, 711, 712).   
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Figure 4.9 Effects of Bz-423 on post-transplant bone marrow cells.  Lethally 

irradiated (1100 cGy) B6-Ly5.2 mice were transplanted with B6 bone marrow 

cells (5 x 106).  A and B.  Naïve B6 mice were injected i.p. with vehicle (n=8) and 

post-transplant mice were injected with vehicle (n=8) or Bz-423 (60 mg/kg, n=8) 

2 h before analysis on d 7-8 after transplant.  Bone marrow cells were stained 

with TMRM (50 nM in A, 10 nM in B) and immediately analyzed.  The 

background fluorescence from unstained samples was subtracted from the 

TMRM fluorescence for each mouse analyzed.  Samples stained with TMRM and 

treated with FCCP (30 M) served as a control for disruption of m. C.  Naïve 

B6 mice were injected i.p. with vehicle (n=8) and post-transplant mice were 

injected with vehicle (n=8) or Bz-423 (60 mg/kg, n=8) 2 h before analysis.  Bone 

marrow cells were stained with DHE (4 M) and immediately analyzed.  The 

background fluorescence from unstained samples was subtracted from the 

TMRM fluorescence for each mouse analyzed.  Results are combined from two 

separate experiments. In each experiment, the average naïve DHE MFI was 

normalized to 100.  D.  Naïve B6 mice were injected i.p. with vehicle (n=5) and 

post-transplant mice were injected with vehicle (n=4) or Bz-423 (60 mg/kg, n=5) 

6 h before analysis.  The % annexin V+ was calculated using an unstained 

sample for each mouse. 
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 To determine if Bz-423 affected post-transplant thymocytes, we 

performed syngeneic transplants, treated mice with Bz-423 or vehicle and 

measured TMRM, DHE and Annexin-V staining in thymocytes.  Thymocytes 

were distinguished into CD4+ or CD8+ single positive, CD4+CD8+ double positive 

or CD4-CD8- double negative populations (Figures 4.11-4.14). Bz-423 treatment 

did not cause increased TMRM staining (50 or 10 nM), DHE staining, or Annexin-

V staining in CD8+CD4-  (Figure 4.11), CD8-CD4+ (Figure 4.12), CD8-CD4- 

(Figure 4.13), or CD8+CD4+ (Figure 4.14) thymocytes post transplant (p > 0.05 

for all comparisons, Bz-423 vs. vehicle). These results suggest that, like post-

transplant bone marrow cells, post-transplant thymocytes are insensitive to Bz-

423. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10.  Thymocyte gating strategy.  Thymocytes were stained with CD4 

and CD8 and gated as shown.  Cells falling into quadrants were defined as 

CD8+CD4- , CD8-CD4+ , CD8+CD4+ , or CD8-CD4- and analyzed for TMRM, DHE 

and Annexin V staining. 
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Figure 4.11. Effects of Bz-423 on m, ROS production, and apoptosis on 

CD8+ post-transplant thymocytes.  Lethally irradiated (1100 cGy) B6-Ly5.2 

mice were transplanted with B6 bone marrow cells (5 x 106) and thymocytes 

were analyzed 20-21 d post-transplant.  CD8+ CD4- thymocytes were identified 

as shown in Figure 4.10.  A-C.  Naïve B6 mice were injected i.p. with vehicle 

(n=4) and post-transplant mice were injected with vehicle (n=4) or Bz-423 (60 

mg/kg, n=4) 2 h before analysis.  Thymocytes were stained for surface markers 

and TMRM (50 nM in A, 10 nM in B) or DHE (4 M, C) and immediately 

analyzed.  .  The background fluorescence from unstained samples was 

subtracted from the TMRM or DHE fluorescence for each mouse analyzed.  

Samples stained with TMRM and treated with FCCP (30 M) served as a control 

for disruption of m.  D.  Naïve B6 mice were injected i.p. with vehicle (n=4) and 

post-transplant mice were injected with vehicle (n=3) or Bz-423 (60 mg/kg, n=4) 

6 h before staining for Annexin V.  For each mouse, a sample not incubated with 

PE-Annexin V served as a gating control.   
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Figure 4.12. Effects of Bz-423 on m, ROS production, and apoptosis on 

CD4+ post-transplant thymocytes.  Lethally irradiated (1100 cGy) B6-Ly5.2 

mice were transplanted with B6 bone marrow cells (5 x 106) and thymocytes 

were analyzed 20-21 d post-transplant.  CD4+ CD8- thymocytes were identified 

as shown in Figure 4.10.  A-D are as in Figure 4.11 
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Figure 4.13. Effects of Bz-423 on m, ROS production, and apoptosis on 

double negative post-transplant thymocytes.  Lethally irradiated (1100 cGy) 

B6-Ly5.2 mice were transplanted with B6 bone marrow cells (5 x 106) and 

thymocytes were analyzed 20-21 d post-transplant.  CD4- CD8- thymocytes were 

identified as shown in Figure 4.10.  A-D are as in Figure 4.11 
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Figure 4.14. Effects of Bz-423 on m, ROS production, and apoptosis on 

double positive post-transplant thymocytes.  Lethally irradiated (1100 cGy) 

B6-Ly5.2 mice were transplanted with B6 bone marrow cells (5 x 106) and 

thymocytes were analyzed 20-21 d post-transplant.  CD4+ CD8+ thymocytes 

were identified as shown in Figure 4.10.  A-D are as in Figure 4.11 
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The lack of Bz-423-induced apoptosis in post-transplant bone marrow 

cells or thymocytes suggested that treatment would not inhibit reconstitution of 

the host immune system following BMT.  Such selectivity would distinguish Bz-

423 from immunosuppressive agents such as glucocorticoids, which inhibit 

reconstitution of natural killer cells (255) and dendritic cells (596) following 

transplant.  To examine the effects of Bz-423 on immune-system reconstitution, 

syngeneic transplants were performed and mice were treated with Bz-423 or 

vehicle from d 7 to d 21 post-transplant.  Analysis of donor reconstitution in the 

spleen showed no significant differences between Bz-423 and vehicle-treated 

mice with regards to the number of donor CD4 or CD8 T cells, B cells (CD19+), 

neutrophils (CD11b+Gr-1+), or NK cells (CD11b+Ly49d+).  Bz-423 treatment also 

did not decrease the numbers of CD4 single positive, CD8 single positive or 

double positive thymocytes (Table 4.2).  These results show that Bz-423 does 

not deplete cells in any of several lineages of the repopulating immune system 

(713).  Together, these results suggest that Bz-423 selectively induces ROS 

production and apoptosis in proliferating alloreactive donor T cells but not in 

unstimulated T cells or proliferating post-transplant bone marrow cells or 

thymocytes.     
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Table 4.2.  Effect of Bz-423 treatment on hematopoietic reconstitution after 

transplant.  B6-Ly5.2 mice were lethally irradiated (900 cGy), injected i.v. with 

B6 bone marrow and T cells (5 x 106 BM cells, 4 x 106 T cells) and treated with 

Bz-423 (60 mg/kg, i.p.) or vehicle 3 x weekly from d 7 to d 21 post-transplant.  

Splenocytes and thymocytes were counted and stained for donor and lineage 

markers and analyzed by flow cytometry.  Numbers in the table are means and 

nubers in parentheses indicate standard error from six individual animals per 

group. p> 0.05 for each comparison. 

 

 Vehicle Bz-423 

Thymocytes   

Total 69.2 (4.7) 66.3 (1.2) 

CD4+CD8- 3.3 (0.6) 2.7 (0.8) 

CD4-CD8+ 0.4 (0.1) 0.6 (0.3) 

CD4+CD8+ 65.7 (6.3) 62.8 (1.1) 

Splenocytes   

Total 89.6 (22.0) 82.9 (19.0) 

CD4+ 5.0 (1.0) 4.4 (0.6) 

CD8+ 4.6 (0.8) 3.6 (0.8) 

CD19+ 38.8 (10.0) 33.8 (10.9) 

CD11b+Gr-1+ 12.2 (3.8) 16.4 (4.6) 

CD11b+Ly49d+ 6.2 (1.7) 9.8 (2.9) 
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Discussion 

Cellular bioenergetics and Bz-423 sensitivity.  Bz-423 exerts its apoptotic 

effects by slowing H+ flow through the F1Fo-ATPase, thereby leading to m 

hyperpolarization, O2
- production and apoptosis (169-172).  Our results suggest 

that the sensitivity of a T cell to Bz-423 is related to its respiratory activity.  

Stimulated T cells respire 2-fold faster than unstimulated T cells, and Bz-423 

treatment causes 3-4-fold more TMRM staining in stimulated T cells than in 

unstimulated T cells.  In isolation, these results suggest that T cell activation 

sensitizes cells to Bz-423-induced m hyperpolarization, but they do not 

specifically implicate respiratory activity.  However, culturing stimulated T cells in 

media with low (0.5 mM) glucose further doubles their respiration rate and 

increases Bz-423-induced TMRM staining by 20-30% (Figure 4.6).  Together, 

these results show that as a T cell increases its respiratory activity, it becomes 

more sensitive to Bz-423-induced m hyperpolarization. 

 These results are consistent with studies showing that, as the respiratory 

activity of isolated mitochondria increases, inhibition of the F1Fo-ATPase causes 

increased hyperpolarization of m (707).  In these experiments, respiration in 

isolated mitochondria was stimulated by succinate and ADP, and the rate of O2 

consumption was modulated by the addition of malonate, which inhibits succinate 

metabolism at complex II (714).  When respiration rates were highest (i.e., no 

malonate present), oligomycin caused the greatest increase in m (707).  

Similarly, when respiration was inhibited by 80% through the addition of 

malonate, oligomycin had no effect on m (Figure 4.15).  This study suggests 
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that inhibiting the flow of a system with a large amount of flux (i.e., high levels of 

H+ flow through the ATPase) will cause a greater back-up (i.e., increased m) 

than will the same amount of inhibition in a system with low flux (Figure 4.15). 

 

 

 

 

Figure 4.15.  Effects of ATPase inhibition on m at high and low 

respiratory activity.  A.  When malonate is present, mitochondria respire at 20% 

of their maximal rate and the rate of H+ flow through the ATPase is low (left).  

When oligomycin is added to the system (right), H+ does not accumulate in the 

intermembrane space, and m does not hyperpolarize.  B.  When malonate is 

absent, mitochondria respire at their maximal rate, and the rate of H+ flow 

through the ATPase is high (left).  When oligomycin is added to the system 

(right), H+ accumates in the intermembrane space (in red) and m 

hyperpolarizes (707). 
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In isolated mitochondria, ROS production increases as m increases 

(167, 168).  In the experiments demonstrating this phenomenon, respiratory 

substrate (either succinate, malate and glutamate, or -ketoglutarate) is added to 

isolated mitochondria in buffer containing only inorganic phosphate (Pi).  The 

presence of respiratory substrate causes the electron transport chain (ETC) to 

pump H+ into the intermembrane space (715). However, the lack of ADP limits H+ 

flow through the F1Fo-ATPase and causes H+ accumulation in the intermembrane 

space, leading to m values of 180 mV in rat brain mitochondria, which is 30 mV 

greater than the m of normally respiring mitochondria (168, 715).  H2O2 

production was measured by monitoring the fluorescence of a horseradish 

peroxidase substrate (167, 168, 716), and was maximal at this high m.  Three 

techniques were then used to lower m:  ADP was added to the system to allow 

H+ to flow through the F1Fo-ATPase, chemical uncouplers such as 

carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP) were added to 

allow non-specific H+ leak through the mitochondrial membrane, or malonate was 

added to decrease succinate-stimulated H+ pumping into the intermembrane 

space.  Each of these manipulations lowered m and subsequently lowered 

H2O2 production by the mitochondria (167, 168).  Small changes in m caused 

large changes in ROS production. For example, decreasing m from 180 to 150 

mV decreased H2O2 production 4-fold in rat brain mitochondria (168). 

 Increasing m by inhibiting the F1Fo-ATPase also increases ROS 

production both in isolated mitochondria and in intact cells.  The addition of 

oligomycin to isolated mitochondria respiring on succinate increases O2
- 
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production 4-fold as measured by EPR spectroscopy (174).  Similarly, treating 

actively respiring mitochondria with other inhibitors of the F1Fo-ATPase, such as 

diindoylmethane (DIM) and Bz-423, leads to increased ROS production as 

measured by the fluorescent dyes DCF and DHE (169, 717).  These effects also 

occur in intact cells.  Bz-423 induces m hyperpolarization and O2
- production in 

Ramos B cells (169, 170), while DIM induces m hyperpolarization and H2O2 

production in MCF-7 mammary carcinoma cells (717).   

Together, these studies demonstrate the relationship between m and 

mitochondrial ROS production.  Consistent with this relationship, the ability of Bz-

423 to produce O2
- coincided with its ability to hyperpolarize m.  Unstimulated 

T cells treated with Bz-423 in vitro produce nearly undetectable levels of O2
-, 

consistent with the lack of Bz-423-induced m hyperpolarization (Figure 4.6) in 

these cells.  Bz-423 produces 2-4-fold more DHE staining in control stimulated T 

cells than in unstimulated cells, which is consistent with the increased m 

hyperpolarization seen in these cells (Figure 4.6).  Bz-423 produced the most 

DHE fluorescence (10-15-fold over unstimulated) in stimulated T cells cultured in 

low glucose media (Figure 4.6).  As expected, these changes mirror Bz-423’s 

effects on m. The relationship between Bz-423-induced m hyperpolarization 

and O2
- production could be confirmed by incubating cells with an uncoupler such 

as FCCP, which collapses m at low micromolar concentrations (519, 718).  If 

the ability of Bz-423 to form O2
- depends on its ability to increase m, 

uncouplers such as FCCP should significantly reduce the amount of DHE 

oxidized by Bz-423 treatment (176). 
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 Adding Bz-423 to activated T cells cultured in low rather than high 

glucose leads to a greater increase in DHE fluorescence (3-4-fold) than in TMRM 

fluorescence (20-30%).  This disproportionate change may occur because small 

changes in m can cause large changes in ROS production (167, 168).  For 

example, a 20% increase in m
  increases H2O2 production by 10-fold in 

isolated mitochondria (167).  Another factor that may contribute to increased Bz-

423-induced O2
- in activated T cells cultured in low rather than high glucose is 

the relative intracellular antioxidant levels under these two conditions.  As 

discussed in Chapter 3, glucose metabolism is a crucial aspect of both pyruvate 

and glutathione generation (252, 343, 535).  Indeed, astrocytes cultured in media 

lacking glucose lose 75% of their reduced glutathione within 12 h, while 

astrocytes cultured in media with 5.5 mM glucose lose only 10-20% (343).  

Similarly, decreasing the glucose concentration of cell culture media from 12 mM 

to 2.5 mM reduces the intracellular pyruvate levels of a pancreatic b-cell line by 

12-fold (535).  Together, these results suggest that glutathione and pyruvate may 

be depleted in activated T cells cultured in media with low glucose.   

Differences in endogenous antioxidant levels can alter the amount of ROS 

observed following treatment with pro-oxidants (489).  For example, depleting 

endogenous glutathione levels in U937 lymphoma cells with BSO causes a 10-

fold increase in H2O2 production following treatment with arsenic trioxide, a pro-

oxidant used clinically to treat acute promyelocytic leukemia (APL) (489, 607).  

This observation suggests that the increased Bz-423-induced O2
- in activated T 
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cells cultured in low glucose could partially be due to depleted antioxidants in 

these cells, in addition to Bz-423’s greater ability to hyperpolarize m. 

The importance of endogenous antioxidants in determining sensitivity to 

pro-oxidant drugs is well documented.  The ability of arsenic trioxide to induce 

apoptosis in leukemia cell lines in vitro is inversely related to intracellular 

glutathione content (488).  Increasing glutathione levels ~2-fold by pretreating 

cells with NAC decreases arsenic trioxide-induced apoptosis by 4-fold.  Similarly, 

depleting glutathione levels with BSO increases arsenic trioxide-induced 

apoptosis up to 10-fold (488, 489, 719, 720).  N-(4-hydroxyphenyl) retinamide (4-

HPR) is a synthetic retinoid that induces apoptosis in leukemia cells by producing 

ROS (721).  In a manner similar to arsenic trioxide, endogenous intracellular 

glutathione content is inversely related to sensitivity to 4-HPR-mediated 

apoptosis across numerous cell lines (722). Furthermore, depleting intracellular 

glutathione levels with BSO increases 4-HPR apoptosis approximately 2-fold in 

MOLT-4 leukemia cells (721).  ROS production also plays a role in cell death 

induced by paclitaxel, a common chemotherapeutic agent (723).  In a screen of 

16 different cell lines, the total antioxidant capacity of a cell line correlated with its 

sensitivity to growth inhibition by paclitaxel (606).  The importance of 

endogenous antioxidants for paclitaxel sensitivity was confirmed by experiments 

showing that increasing antioxidant levels with NAC or glutathione treatment 

reduced the sensitivity of lung cancer cells to paclitaxel 4-fold, while depleting 

endogenous glutathione levels with BSO sensitized these cells to paclitaxel-

induced apoptosis (723).     
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Several studies provide direct and indirect evidence regarding the 

importance of endogenous antioxidants in determining sensitivity to Bz-423.  

MEFs have 2-fold more cytosolic and mitochondrial glutathione than Ramos B 

cells and require nearly 2-fold greater [Bz-423] for the induction of apoptosis 

(172, 683).  Decreasing MEF glutathione levels by 99% using BSO increases the 

sensitivity of these cells to Bz-423-induced apoptosis by approximately 3-fold 

(172).  Indirect evidence for the effect of endogenous antioxidants on sensitivity 

to Bz-423 comes from the analysis of non-lymphoid tissue.  The molecular target 

of Bz-423, the OSCP, is a mitochondrial protein expressed in all nucleated cells 

(170).  If cellular sensitivity to Bz-423 were solely determined by respiratory 

activity, tissues engaging in high rates of oxidative phosphorylation, such as the 

heart and liver (724), might be susceptible to the pro-apoptotic effects of Bz-423.  

However, neither hepatic nor cardiac toxicity has ever been observed following in 

vivo administration of Bz-423 (169, 395).  This lack of toxicity could be due to 

increased endogenous antioxidants in hepatic and cardiac tissue as compared to 

lymphatic tissue.  One important set of antioxidant enzymes are the SODs, which 

catalyze the conversion of O2
- into H2O2 (177). The activities of Cu/Zn-SOD and 

Mn-SOD are 10-15-fold greater in mouse liver and heart as compared to mouse 

spleen (725).  Because the SOD-mimetic MnTBAP decreases Bz-423-induced 

apoptosis in B cells, T cells and fibroblasts, it is likely that cardiac and hepatic 

tissue will be relatively resistant to Bz-423-induced apoptosis as compared to 

lymphocytes (169, 172, 173, 683).  Similarly, the activity of glutathione 

peroxidase, which catalyzes the GSH-dependent conversion of H2O2 to H2O 
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(196), is 10-15-times higher in heart and liver tissue than in spleen (725).  

Because glutathione levels are important in determining cellular sensitivity to Bz-

423 (172), increased glutathione peroxidase could provide protection against Bz-

423-mediated apoptosis in heart and liver tissue.             

Together, these observations suggest a 2-part bioenergetic model that 

defines cellular sensitivity to Bz-423 (Figure 4.16).  The first element of this 

model is cellular respiratory activity.  If cells respire at a low rate (i.e., 

unstimulated T cells), Bz-423 will not hyperpolarize m, will not form O2
- and will 

not induce apoptosis.  However, if cells respire at a high rate (i.e., stimulated T 

cells), Bz-423 will hyperpolarize m and will, to some extent, generate O2
-.  The 

second factor of the model is cellular antioxidant status.  If cells with high rates of 

respiration have high levels of antioxidants (i.e., heart and liver tissue, MEFs, 

activated T cells in high glucose, cells treated with MnTBAP), Bz-423-mediated 

O2
- will be detoxified and cells will be relatively resistant to apoptosis.  However, 

if cells with high rates of respiration also have low levels of antioxidants (i.e. 

BSO-treated MEFs, Ramos B cells, T cells stimulated in low-glucose media), Bz-

423-mediated O2
- production will be increased and cells will undergo apoptosis. 
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Figure 4.16. Bioenergetic model for Bz-423 

sensitivity.  A. In cells with low respiratory 

activity, Bz-423 does not hyperpolarize m and 

does not produce significant O2
-.  Because O2

- 

production is low, antioxidants are not needed to 

prevent apoptosis.  B and C.  In cells with high 

respiratory activity, Bz-423 hyperpolarizes m 

and produces O2
-.  If antioxidants are present in 

high amounts (B), O2
- is detoxified to water and 

apoptosis is prevented.  If antioxidants are 

depleted (C), cells undergo apoptosis. 

 



  

275 

 

Selective killing of pathogenic T cells by Bz-423.  The model described 

above has important implications that help explain Bz-423’s effects in the B6F1 

model of GVHD.  Alloreactive donor T cells consume oxygen 2.5-fold faster than 

unstimulated T cells (Figure 3.16).  This observation suggests that alloreactive 

donor T cells will be more sensitive to m hyperpolarization mediated by 

inhibition of the F1Fo-ATPase than will unstimulated cells.  Indeed, a single i.p. 

injection of Bz-423 causes a 50% increase in TMRM staining in divided 

alloreactive donor T cells (Figure 4.7), but does not alter TMRM staining in 

unactivated cells.  These results support our in vitro studies that demonstrate the 

relationship between T cell respiration rate and Bz-423-induced m 

hyperpolarization. 

Bz-423 also selectively produces O2
- in alloreactive donor T cells, but not 

in unactivated cells.  While this increased O2
- production in pathogenic T cells is 

likely due to the ability of Bz-423 to induce m hyperpolarization in these cells 

(167, 168), it may be accentuated by pyruvate and glutathione depletion (Chapter 

3, (488)).  Finally, Bz-423 selectively induced apoptosis in alloreactive donor T 

cells, which is consistent with the previously established link between Bz-423-

induced O2
- production and apoptosis (169, 170, 172, 173, 683).  This increased 

apoptosis was associated with decreased donor T cell infiltration into the liver 

and bone marrow, decreased bone marrow loss, and improved survival in the 

nonirradiated model of GVHD (Figure 4.8).  These beneficial effects are 

consistent with a mechanism in which Bz-423 hyperpolarizes m, produces O2
- 
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and induces apoptosis in alloreactive donor T cells, thereby preventing them from 

migrating into target tissues and mediating lethal GVHD.   

Several alternative explanations exist that could also explain the efficacy 

of Bz-423 in the treatment of GVHD.  Bz-423 could induce apoptosis and disease 

improvement through an ROS-independent mechanism.  While the inhibition of 

Bz-423-mediated apoptosis by antioxidants such as MnTBAP and vitamin E 

makes the link between O2
- and apoptosis clear in vitro (169, 172, 173, 683), this 

hypothesis has not yet been tested in vivo.  Concurrently treating mice with 

antioxidants such as NAC (478) or ethyl pyruvate (493, 495, 496) and Bz-423 

could reverse Bz-423’s ability to induce apoptosis in alloreactive donor T cells 

and its subsequent ability to improve GVHD.   

The beneficial effects of Bz-423 on GVHD could also be explained by 

inhibition of T cell trafficking to target tissues, independent of its ability to induce 

apoptosis.  Such a situation is seen in the nonirradiated B6F1 model when 

donor T cells lack the chemokine receptor CXCR6 (464).  In this model, WT 

alloreactive donor T cells increase their expression of CXCR6 3-4 fold 7 d after 

infusion into allogeneic recipients(464).  However, donor T cells lacking CXCR6 

show a 2-fold reduction in liver infiltration compared to WT T cells, despite an 

identical rates of proliferation and apoptosis (464).  Similarly, FTY720, a 

sphingosine-1-phosphate agonist, improves GVHD by directly inhibiting T cell 

migration into target tissues (726, 727).  While Bz-423 has not been shown to 

affect T cell migration, it does have anti-proliferative effects which are 

independent of apoptosis (695, 699, 700).  To exclude Bz-423 effects that are 
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independent of apoptosis, donor T cells should be used that are resistant to Bz-

423-mediated apoptosis.  T cells lacking Bax and Bak would be an obvious 

choice, however these cells do not proliferate in response to antigen (254) and 

would be unlikely to mediate GVHD.  Because Jurkat T cells lacking Bak alone 

are resistant to Bz-423-mediated apoptosis (173), Bak-deficient T cells would be 

of potential use (254).  Alternatively, Bz-423-mediated apoptosis could be 

blocked with a caspase inhibitor such as quinolyl-valyl-O-methylaspartyl-[-2, 6-

difluorophenoxy]-methyl ketone  (QVD-OPh) (728).  Regardless of the strategy 

used, if Bz-423-mediated apoptosis is important for its ability to treat GVHD, 

these beneficial effects should be abrogated if donor T cells are insensitive to Bz-

423-mediated apoptosis.     

This bioenergetic model suggests that Bz-423 may have efficacy in other 

diseases where pathogenic cells have increased oxidative metabolism and 

depleted antioxidants.  Several lines of evidence suggest that autoreactive 

lymphocytes from patients with SLE or mouse models of lupus exhibit increased 

oxidative metabolism and depleted antioxidants.  T cells from patients with SLE 

have 2-3-fold more mitochondria and show a 50% increase in mitotracker green 

staining compared to cells from healthy volunteers (302).  This finding shows that 

autoreactive lymphocytes have increased mitochondrial mass and suggests that 

they may have increased mitochondrial metabolism (302).  Similarly, PBMCs 

from patients with active rheumatic diseases (including lupus, rheumatoid 

arthritis, arteritis and others) consume 25% more O2 than cells from healthy 

controls (335).  Furthermore, splenocytes from NZB/W mice with active lupus 
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convert 40% more glucose into CO2 than do healthy Balb/c controls, which is 

suggestive of increased oxidative ATP production (Chapter 2).  While these 

studies do not distinguish between autoreactive and non-autoreactive 

lymphocytes, these results are consistent with the interpretation that lymphocytes 

from patients or animals with autoimmune diseases have increased oxidative 

metabolism compared to healthy controls, possibly due to increased respiration 

in autoreactive lymphocytes. 

Antioxidant levels are also abnormal in lymphocytes from autoimmune 

patients and animals.  PBMCs from patients with lupus have 30% less 

glutathione than cells from healthy controls based on direct HPLC measurements 

from cellular lysates (339).  Similarly, splenocytes from MRL-lpr mice with active 

lupus-like disease have 4-5-fold decreased glutathione levels compared to 

control mice as measured by fluorescence of the thiol-reactive probe CMFDA 

(380).   

  Together, increased oxidative metabolism and depleted antioxidants in 

autoreactive lymphocytes suggests that they will be sensitive to Bz-423-mediated 

apoptosis (Figure 4.17).  Consistent with this hypothesis, a single dose of Bz-423 

increased apoptosis in germinal centers in NZB/W mice with active lupus as 

measured by terminal deoxynucleotidyl transferase nick end labeling (TUNEL) 

staining (169).  Additionally, a 12 week treatment with Bz-423 reduces germinal 

center hyperplasia and glomerulonephritis in NZB/W mice and decreases the 

percentage of disease-causing splenic B cells by 18% (169).  Similarly, Bz-423 

treatment reduces by 13% the percentage of pathologic splenic CD4+ cells in 
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MRL-lpr mice and significantly reduces proteinuria, nephritis and arthritis (395).  

These results suggest that, as in the B6F1 model of GVHD, treatment with Bz-

423 can reduce disease in models of lupus, likely by inducing apoptosis in 

pathogenic lymphocytes with high rates of OXPHOS and low levels of 

antioxidants.   
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Figure 4.17.  Bz-423-induced apoptosis in disease causing lymphocytes.  

Disease-causing lymphocytes have increased OXPHOS, thus inhibition of the 

F1Fo ATPase will likely induce m hyperpolarization and O2
- production in these 

cells.  Because these cells also have depleted levels of pyruvate and glutathione, 

any O2
- formed is likely to induce apoptosis. 

 

In both the NZB/W and MRL-lpr models of lupus, Bz-423 selectively 

depletes disease-causing lymphocytes (B cells in NZB/W, CD4+ T cells in MRL-

lpr) without broad depletion of other lymphoid subsets (169, 395).  Similarly, Bz-

423 induces apoptosis in dividing donor T cells during GVHD, but spares 

unactivated T cells and proliferating bone marrow cells.  These results suggest 
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that the metabolic characteristics of unstimulated lymphocytes and proliferating 

cells in the bone marrow (i.e., low OXPHOS, intact antioxidants), may protect 

these cells from Bz-423-mediated apoptosis (Figure 4.18). This selectivity 

distinguishes Bz-423 from most current GVHD treatments, which broadly deplete 

T cells regardless of their activation status (441, 598, 625).  ATG (670), OKT3 

(669), and visilizumab (668) deplete T cells nonspecifically, while glucocorticoids 

(594, 654-656)  and alemtuzumab (666, 667) are broadly leukotoxic.  For 

example, a single dose of methylprednisone (25 mg/kg) reduces peripheral blood 

lymphocyte counts in healthy guinea pigs by 50% after 4 h (656).  This lack of 

specificity is associated with high rates of infectious complications during 

treatment with such agents (417, 598, 662, 664, 666, 667).  Unlike these agents, 

Bz-423 induces apoptosis only in alloreactive donor T cells.  Similarly, healthy 

Balb/c mice treated for 7 d with Bz-423 maintain B and T cell numbers, which 

further supports the specificity of Bz-423 for activated, disease causing 

lymphocytes.  This selectivity may account for the absence of any association 

between opportunistic infection and Bz-423 treatment (169, 395).   
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Figure 4.18.  Lack of Bz-423-mediated apoptosis in unstimulated 

lymphocytes and proliferating bone marrow cells.  Unstimulated lymphocytes 

respire at a low rate (dotted lines), thus inhibition of the F1Fo ATPase does not 

induce large m hyperpolarization or O2
- in these cells.  Because these cells 

have intact levels of antioxidants, any O2
- formed is likely detoxified before 

inducing apoptosis. 

 

Interestingly, continuous treatment with Bz-423 does not inhibit cell 

mediated inflammation in response to a delayed type hypersensitivity (DTH) test 

or antibody production following immunization with keyhole limpet hemocyanin 

(KLH) (395).  The metabolic parameters of the lymphocytes mediating these KLH 

and DTH responses are unknown.  However, our studies suggest that both 

acutely activated T cells (i.e., T cells stimulated for 48 h with anti-CD3/28 

antibodies) and disease causing T cells (i.e., donor T cells from mice with GVHD) 

increase OXPHOS compared to unstimulated cells (Chapter 3).  Furthermore, 
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CD8 T cells responding to LCMV infection in vivo increase TMRM staining 5-fold 

compared to unstimulated cells, which suggests increased OXPHOS in these 

cells (471).  If the lymphocytes mediating KLH and DTH responses have similarly 

increased rates of OXPHOS, they would be expected to undergo m 

hyperpolarization in response to Bz-423, and to some extent, produce O2
- (Figure 

4.16).  However, if these lymphocytes maintain their antioxidant capacity, they 

may be relatively resistant to O2
- generated by Bz-423 (Figure 4.19) (172, 173, 

683).  Acutely activated T cells in vitro have rates of glycolysis 7-fold greater than 

those seen in alloreactive donor T cells.  As discussed in Chapter 3, high rates of 

glycolysis can help maintain both cellular glutathione and pyruvate levels (50, 

343, 376, 491, 535).  Hence, it is possible that acutely activated lymphocytes 

mediating KLH and DTH responses maintain their levels of antioxidants, and are 

therefore resistant to the proapoptotic effects of Bz-423.  In support of this 

hypothesis, human PBMCs activated with conA in vitro increase glutathione 

levels by as much as 2-fold over 2-4 d (344).  Further investigations that directly 

measure the cellular metabolism and antioxidant status of activated T cells in 

DTH and KLH responses are needed to fully understand their insensitivity to 

inhibition by Bz-423. 
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Figure 4.19.  Potential model explaining lack of Bz-423 effect on DTH and 

KLH responses.  Activated lymphocytes may have increased OXPHOS, thus 

inhibition of the F1Fo ATPase will likely induce m hyperpolarization and O2
- 

production in these cells.  However, because these cells may have intact levels 

of pyruvate and glutathione, any O2
- formed is likely detoxified before inducing 

apoptosis. 

 

Comparison of Bz-423 to standard GVHD therapies.  Following 

myeloablative conditioning, the host immune system disappears and donor stem 

cells and progenitor cells proliferate in the bone marrow to repopulate the 

immune system (408, 411, 591, 592).  Dendritic cells, B cells, granulocytes and 

NK cells are produced from progenitors in the bone marrow and released into the 

periphery, while immature T cells must migrate to the thymus for full maturation 

(408, 531).   
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As mentioned previously, glucocorticoid (GC) treatment is the current 

standard therapy for GVHD (441, 473).  However, GCs inhibit reconstitution of 

NK cells and interferon /b-producing plasmacytoid dendritic cells following 

transplant (596, 597).  This inhibition of reconstitution is an undesired side effect 

of GG, as delayed reconstitution is associated with an increased frequency of 

cytomegalovirus (CMV), adenovirus and herpes zoster virus in the post-

transplant period (596).  GC treatment can also affect the the generation of T 

cells in the thymus.  A single injection of cortisone into healthy mice reduces by 

10-fold the percentage of CD4+ CD8+ cells present in the thymus (729).  Similarly, 

an injection of cortisone into mice suffering from GVHD reduced CD4 single 

positive cells in the thymus by 4-fold (729).  Like GCs, cyclosporine A, an agent 

used for GVHD prophylaxis, has negative effects on thymus reconstitution in 

mice.  Mice undergoing lethal irradiation, syngeneic transplantation, and a 3-

week treatment with CsA  had 50% fewer thymocytes than transplanted animals 

treated with control injections (730).   

Unlike GCs and CsA, Bz-423 selectively affects cells with increased 

oxidative metabolism and depleted antioxidants.  As shown in Chapter 3, bone 

marrow cells increase glycolysis 3-fold as they proliferate post-transplant, but 

their rate of OXPHOS remain low.  Based on our observations in T cells, low 

rates of OXPHOS in post-transplant bone marrow cells suggests that these cells 

will be insensitive to Bz-423-mediated m hyperpolarization and O2
- production.  

Furthermore, bone marrow cells maintain their intracellular pyruvate as they 

proliferate (Figure 3.32), suggesting that any O2
- generated by Bz-423 will be 
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detoxified before activating pro-apoptotic proteins.  Indeed, a single dose of Bz-

423 failed to hyperpolarize m, generate O2
- or induce apoptosis in proliferating 

bone marrow cells following syngeneic transplant.  Consistent with these results, 

6 doses of Bz-423 did not decrease the number of splenic B cells, neutrophils or 

NK cells following syngeneic transplant. 

Similarly, a single dose of Bz-423 did not induce m hyperpolarization, 

O2
- production, or apoptosis in thymocytes following syngeneic transplantation.  

While we did not measure metabolic parameters or antioxidant status of these 

cells, literature reports indicate that actively cycling thymocytes increase GLUT1 

expression and therefore may preferentially utilize glycolysis.  Indeed, CD4+CD8+ 

thymocytes that express the transferrin receptor, a marker of active metabolism 

and cell division (731), also express increased levels of surface GLUT1 (732).  

Consistent with its inability to induce apoptosis in thymocytes, treatment with 6 

doses of Bz-423 did not decrease the number of any thymocyte populations or 

mature splenic T cells 21 d after syngeneic transplant.  

 Together, these results suggest that Bz-423 selectively induces apoptosis 

in alloreactive donor T cells during GVHD, but spares nonreactive T cells and 

proliferating cells in the bone marrow and thymus.  This selectivity may be due to 

a combination of high rates of oxidative phosphorylation and depleted 

antioxidants, which is present in alloreactive donor T cells and autoreactive 

lymphocytes, but not in unstimulated cells or proliferating cells in the bone 

marrow or thymus.  These studies suggest that, unlike many of the current 
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treatments for GVHD, Bz-423 may be able to reverse GVHD without 

predisposing patients to opportunistic infections. 
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Materials and Methods 

  

 Reagents. Bz-423 was stored as a solid at -20 C and dissolved in DMSO 

prior to injections.  Dihydroethidium (DHE), 5-(and-6)-chloromethyl-

2’,7’dichlorodihydrofluorescein diacetate, acetyl ester (DCFDA) and 

tetramethylrhodamine methyl ester (TMRM) were purchased from Invitrogen.  

DMEM media was purchased from Gibco and contained 10% heat-inactivated 

fetal bovine serum (FBS: Gibco), glucose (25 mM), glutamine (4 mM), HEPES (1 

mM), penicillin (100 units/ml), streptomycin (100 g/ml), minimal non-essential 

amino acids (1x), sodium pyruvate (1 mM) and 2-mercaptoethanol (0.05 mM).   

Unless indicated, all other reagents were purchased from Sigma. 

Mice. Female C57Bl/6 (B6; H-2b, CD45.2+Thy1.2+) and B6.Ly-5a (B6-

Ly5.2; H-2b, CD45.1+Thy1.2+) were purchased from Charles River Laboratories 

or Jackson Laboraties.  Female B6.PL-Thy1a (B6-Thy1.1; H-2b, CD45.2+Thy1.1+) 

and C3H.SW (H-2b, CD45.2+) were purchased from the Jackson Laboratory (Bar 

Harbor, ME).  B6D2F1 (F1) mice were purchased from Charles River 

Laboratories or Taconic Laboratories.  Mice were housed in specific pathogen 

free conditions and cared for according to the Guidelines for Laboratory Animal 

Medicine at the University of Michigan.  All mice were at least seven weeks old 

prior to use. 

T cell purification.  T cells were purified from the spleens of B6 or B6-Ly5.2 

mice by CD90+ positive selection according to the manufacturer’s protocol. Mice 

were anesthetized with isoflurane and euthanized by CO2 asphyxiation.  Spleens 
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were harvested and placed into sterile MACS running buffer (PBS, 0.5% BSA 

(w/v, Fischer), 2 mM EDTA).  Spleens were dissociated using sterile frosted 

microscope slides and strained over a 40 M filter (BD Falcon) into 50 ml conical 

vials.  Dishes and filters were then rinsed once with MACS running buffer.  Cells 

were pelleted at 1400 RPM and resuspended in 50 l anti-CD90 microbeads and 

950 l MACS running buffer per spleen and placed on ice for 15 min.  Greater 

than 10x excess MACS running buffer was added and cells were pelleted at 

1400 RPM and resuspended in MACS running buffer (500 l) and up to 3 

spleens were applied to a single LS magnetic column in a MidiMACS magnetic.  

After three rinses with MACS running buffer, the column was removed from the 

magnetic field and the positively labeled cells were flushed out using 5 ml of 

buffer.  Cells were washed once with DMEM media, counted, stained for purity 

and placed on ice until use.  T cells were typically >85% TCR-b positive. 

In vitro T cell stimulation, Bz-423 treatment and DHE and TMRM staining.  

For antibody stimulation, T cells from B6-Ly5.2 mice were resuspended at 1 x 106 

TCR-b+ cells/ml in DMEM media containing 25 or 0.5 mM glucose.  Functional 

grade anti-CD3 (clone 145-2C11; eBioscience) and anti-CD28 (clone 37.51; 

eBioscience) were added to cells at a final concentration of 0.5 g/ml.  200 L of 

cells (0.2 x 106 cells) were cultured in flat-bottomed 96 well plates at 37 C.   

After 48 h, these cells were washed and resuspended in fresh DMEM 

media containing either 0.5 or 25 mM glucose and 2% FBS at a concentration of 

1 x 106 cells/ml .  Freshly purified unstimulated T cells were also suspended in 

media with 25 mM glucose and 2% FBS. T cells were treated with the indicated 
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concentrations of Bz-423 for 1 h at 37 C. Intracellular superoxide was measured 

by adding freshly prepared DHE (4 M final concentration) directly to cell cultures 

and incubating for 30 min at 37 C.  Cells were then immediately analyzed using 

the FL-2 channel of a FACSCalibur flow cytometer (BD Biosciences) or an Accuri 

C6 flow cytometer to assess ethidium fluorescence.  The mitochondrial 

membrane potential (m) was measured by incubating cells with TMRM (50 nM) 

for 30 min at 37 C.  Cells were immediately analyzed using the FL-2 channel of 

a FACSCalibur flow cytometer (BD Biosciences)  

CFSE labeling. Vybrant CFDA SE Cell Tracer Kit was purchased from 

Invitrogen.  Cells were suspended in L-15 media or MACS running buffer 

consisting of PBS, 0.5% BSA (w/v, Fischer) and 2 mM EDTA at a concentration < 

20 x 106 cells/ml.  5(6)-carboxyfluorescein diacetate, succinimidyl ester (CFSE) 

was dissolved in DMSO and added to cells at a final concentration of 5 M and 

cells were incubated at 37 C for 15-30 minutes.  After two washes with DMEM 

media, cells were placed on ice until use.  

Bone marrow transplantation. To induce GVHD in non-irradiated 

recipients, syngeneic (B6) and allogeneic (F1) recipient mice were infused 

through the tail vein with 50.0x106 bulk splenocytes from B6-Ly5.2 or B6-Thy1.1 

donor mice in L-15 media (250 l, Cellgro).  In irradiated models, B6-Ly5.2 mice 

were conditioned with a single dose of  900 or 1100 cGy TBI (137Cs source), 

followed by tail vein infusion of 5.0 x 106 bone marrow (BM) cells in L-15 media 

(250 L).  In some cases, mice also received 4.0 x 106 positively-selected CD90+ 

syngeneic (B6) T cells.  After transplant, animals were kept in specific pathogen 
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free housing and given hyperchlorinated (pH=3.0) drinking water for 3 weeks.  

Survival after BMT was monitored daily. 

In vivo treatment with Bz-423.  Solid Bz-423 was dissolved in DMSO and 

then a mixture of 0.51% carboxymethylcellulose (w/v, Hercules) in L-15 media 

was added to the Bz-423 such that the final composition of the vehicle was 2% 

DMSO (v/v) and 0.5% CMC (w/v) in L-15.  Before injection, tubes containing Bz-

423 in vehicle or vehicle alone were sonicated in a water bath sonicator (Fisher) 

for 20 min.   For survival experiments, mice were injected i.p. with Bz-423 (60 

mg/kg) or vehicle (250 l) every other day from d 7 to d 21 after transplant using 

a 23 gauge needle.  A single dose of Bz-423 was administered 4 or 7 d following 

BMT to measure apoptosis, ROS levels and m of donor T cells.     

Flow cytometry. Cells (1 x 106) in single cell suspension were 

resuspended in Fc Block buffer composed of PBS, FBS (2% v/v) and anti-mouse 

CD16/CD32 Fc III/II receptor (1:250 dilution; BD Biosciences) for 10 min at 4 C 

to minimize non-specific binding.  Cells were spun (1400 RPM, 5 min) and 

resuspended in PBS containing 2 % fetal bovine serum (FACS wash, 100 l) with 

antibodies against cell surface antigens (1:200 dilution) for 20 min at 4 C.  Cells 

were then washed twice with FACS wash and either analyzed immediately or 

fixed and analyzed 1-2 days later. The mitochondrial membrane potential (m) 

was measured by labeling cells with TMRM (50nM; Invitrogen) and antibodies to 

cell surface antigens for 30 minutes at 37C in pre-warmed FACS wash. Stained 

cells were washed once prior to analysis. Carbonyl cyanide 4-(trifluoromethoxy) 

phenylhydrazone (FCCP; 30M; Sigma-Aldrich) was used as a positive control 



  

291 

 

for disruption of m. To detect O2
-, cells were stained for cell surface markers 

for 15 min at 37C in pre-warmed FACS wash followed by incubation with DHE 

(4M; Invitrogen) for 30 min at 37C. Annexin-V staining was performed in 1x 

Annexin Binding Buffer (BD Biosciences) containing cell surface antibodies and 

1l/sample Annexin-V for 30 minutes on ice. The cells were washed and were 

either resuspended in Annexin Binding Buffer for immediate analysis or fixed in 

PBS containing 4% Paraformaldehyde for 20 min on ice for later analysis.  The 

following antibodies and their isotype controls were used: anti-mouse CD4 (FITC, 

PerCP-Cy5.5, APC, PE, Pacific Blue, Pacific Orange clone RM4-5, Rat IgG2a), 

CD8a (FITC, APC, PerCP-Cy5.5, APC-Cy7 and Pacific Blue, clone 53-6.7, Rat 

IgG2a), CD45.1 (FITC, PE, APC, PerCP-Cy5.5, APC-Alexa750 clone A20, Ms 

IgG2a), CD45.2 (FITC, PE, PerCP-Cy5.5 and APC-eFluor780 clone 104, Ms 

IgG2a), CD90.1 (FITC and PE, clone HIS51, Rat IgG2a), Gr-1 (eFluor450, clone 

RB6-8C5, Rat IgG2b), CD19 (FITC, PE, APC, clone 1D3, Rat IgG2a), and B220 

(APC, clone RA3-6B2, Rat IgG2a)  (BD Biosciences and eBioscience).  

Bone marrow and liver analysis.  Femurs were harvested from animals 14-

18 d after nonirradiated GVHD induction.  Tissue was cleaned off of the bones 

with a  scalpel and the epiphysis were cut to expose the marrow cavity.  Marrow 

was flushed with DMEM media using a 10 ml syringe and a 27 gauge needle.  

Cells were passed through a 40 M filter and then stained for flow cytometry 

analysis as indicated.  Livers were harvested from animals 14-18 d after 

nonirradiated GVHD induction.  Livers were homogenized in DMEM media with 

razorblades and, disrupted using frosted glass slides and strained over 40 M 
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filters.  Cells were layered over 50% Percoll and spun for 20 min at 2200 RPM 

and lymphocytes were collected from the bottom of the tube.  Liver infiltrating 

lymphocytes were then stained for flow cytometry as indicated. 
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