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ABSTRACT

Feedback between ecological interaction and spatial pattern in a transitional
Michigan forest

by

David Nicoletti Allen

Chair: John H. Vandermeer

Ecology has traditionally thought of spatial patterns in one of two ways: (1) as a

consequence of some underlying environmental heterogeneity and (2) as something to

ignore in models to make them more tractable. But both of these views have changed,

and in the last 20 years ecologists have increasingly considered the joint feedback

that spatial pattern and ecological interactions can have on each other. Going in

one direction the spatial pattern of organisms can greatly affect how their ecological

interactions play out, and in the other direction local-scale ecological interactions can

give rise to emergent, self-organized spatial patterns of organisms. This dissertation

examines both directions of this feedback in the context of a mid-successional Michi-

gan forest. The three dominant species in the understory of the forest exhibit strong

nonrandom spatial patterning. Here we suggest that this spatial pattern emerges

from biotic interactions—the combined effect of local dispersal and Janzen-Connell,

density-dependent seed and seedling mortality of two of these three species—acting

on an initial distribution of trees determined by the fire history of the area. That is

ecological interactions give rise to spatial pattern, but this can only be understood
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in light of the history of the forest. We also suggest that this spatial pattern will

affect how the succession of the forest; if the species were completely well-mixed the

succession of the forest would take place differently. So we show that the spatial

arrangement of organisms affects ecological processes.
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CHAPTER I

Introduction

Recently there has been a growing appreciation of the joint feedback between eco-

logical interactions among organisms and the spatial arrangement of those organisms.

This feedback is known to go in either or both directions: (1) ecological interactions

can give rise to spatial patterns of organisms, and (2) the spatial pattern of organisms

can have a large effect on how ecological interactions play out.

The understanding of (1) in ecology is, largerly, rather recent—with some impor-

tant exceptions such as Janzen (1970) and Connell (1971). Historically spatial pat-

terns in ecological systems have been thought to be solely the result of environmental,

or exogenous, factors (e.g., soil, moisture, topography, . . . ), but we now appreciate

that ecological interactions can form self-organized, or endogenous, pattern. This

insight first discovered by Turing (1952) has been appreciated in chemistry (Castets

et al., 1990) and developmental biology (Murray, 1981) for some time, but has only

come to ecology in the past two decades (Solé and Manrubia, 1995; Klausmeier, 1999;

Pascual et al., 2002; Rietkerk et al., 2002).

The understanding of (2) is older. In a classic experiment, Huffaker (1958)

demonstrated that the spatial arrangement of habitats allowed an otherwise unstable

predator-prey system to persist. Still most ecological theory—with the important ex-

ceptions of island biogeography and metapopulation theory—assumed a homogenous
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arrangement of organisms, largely a contrivance for mathematical tractability. But

this assumption has been relaxed in some recent literature. With new mathematical

techniques and increased computing power, ecological theory increasingly considers

the effects of non-random spatial patterns. These effects can be dramatic, having

fundamental impacts on how competitive (Molofsky and Bever, 2002), predator-prey

(Pascual, 1999), and host-parasite (Rohani et al., 1994) interactions play out.

In this dissertation I examine the two directions of this feedback, first the gen-

eration of pattern through ecological processes, and second the consequences of this

pattern on ecological processes, using a mid-succession northeastern North Amer-

ican forest as a case study. This forest is of particular interest because it has a

strongly spatially structured understory and is undergoing a dramatic shift in species

composition—the same seen in many northeastern North American forests (Abrams,

1992, 1998; Zhang et al., 2000; McDonald et al., 2003; Heitzman et al., 2007; Dick-

mann and Leefers, 2006). These forests were originally dominated by Quercus spp.

and Carya spp., leading European botanical explorers to think that the Quercus–

Carya association was one of only a few climax types in Eastern North America.

Subsequent thinking and observations have led to a different picture. Apparently,

most of these forests were maintained by regular fires—either intentionally set by Na-

tive Americans for hunting or escaped from Native American agricultural activities—

repeatedly clearing any non-fire tolerant species and leaving the Quercus and Carya

species and the few other species that cohabited with them. Upon the establish-

ment of fire-control regimes in these forests, the Quercus and Carya were unable to

establish new recruits in the understory due, presumably, to the heavy competition

of the other species that were now prospering due to the control of fires. In this

case these species are Acer rubrum (Red Maple), Prunus serotina (Black Cherry),

and Hamamelis virginiana (Witch Hazel). Since the fires came under control only

approximately 100 years ago (Dickmann and Leefers, 2006), this new understory com-
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munity has had only a short period of time to establish itself. The pattern they form

in the understory is dramatically non-random, and is, largely, the subject of this

thesis.

The forest in question is located at the ES George Reserve near Pinckney, MI

Livingston County. The forest is in a section of the reserve that has had complete

forest cover since at least 1940 (from aerial photographic documentation see Figure

6.1). Within this forested area a permanent plot, called the Big Woods Plot, of 22ha

was established in 2003, all trees greater than 10cm girth at breast height (GBH)

were tagged, identified and georeferenced within the plot. With the exception of one

purely theoretical chapter, this thesis is based on empirical evidence from this plot.

I examine (1), how pattern is formed, in the first three chapters: In Chapter II

I provide evidence for a system in which biological interactions give rise to spatial

pattern in a homogenous environment. This theoretical result is a discrete-time and

discrete-space version of Turing’s diffusive instabilities. It is biologically motivated

by the idea of two different types of competition—reproductive and resource—and

these two acting at different scales.

For a specific example of ecological interactions causing spatial pattern I examine

Hamamelis virginiana, which exhibits a striking spatial pattern in the understory of

our plot (Figure 3.1). In chapter III I provide evidence that this pattern arises from

the interaction of dispersal limitation—H. virginiana disperses through short-distance

mechanical dehiscence—and Janzen–Connell, density-dependent seed mortality due

to a small curculionid seed predator, Pseudanthonomus helvolus. I propose that new

H. virginiana patches start from rare long-distance dispersal events; expand locally

from the typical short-distance dispersal; and then once the patches reach a certain

size they attract the seed predator, recruitment slows, and the patches thins or dies.

In the next Chapter, IV, I expand the ideas introduced in chapter III to the other

dominant understory species, P. serotina and A. rubrum. That is I demonstrate that

3



the spatial pattern observed in the understory of the Big Woods plot could arise

through the ecological interactions of these three main species—specifically through

the combination of the history of the forest, dispersal limitation, and Janzen–Connell

seed and seedling mortality. I then incorporate these ecological interactions into a

stage-structured, spatially explicit model which, upon instantiation from field data,

reproduces qualitatively similar patterns to those observed.

To examine (2) I run the model for chapter IV forward from the given current

spatial distribution. This gives some indication about what the forest will look like

in the future. We know that the current overstory species of Quercus and Carya will

be replaced, in the medium term, by P. serotina and A. rubrum. This model exam-

ines how the current spatial distribution of these species will affect the successional

pattern of the forest. Particularly how their jigsaw-like spatial pattern affects their

competition together, and whether this jigsaw pattern will persist into the overstory

as these species become the major component of it. This is also covered in Chapter

IV.

Exclusive of the relationship between ecological interactions and pattern forma-

tion, the Big Woods Plot gives insights into similar northeastern North American

forests that are undergoing such a dramatic shift in composition. The final two chap-

ters examine two such insights. Chapter V elaborates a method for determining

the successional state of a forest, using the popular metabolic theory of ecology. This

metabolic theory predicts a power-law distribution of trunk sizes within a forest stand

(West et al., 2009). In this forest I find a systematic deviation from this distribution,

with too many large trees and that all of these trees are Quercus and Carya.

In Chapter VI I examine whether some swamp hummocks next to the forest func-

tion, biologically, as islands in regard to the forest tree flora. The islands farthest

from the forest mainland have fewer species than patches of the forest of an equal

size, but this is true just of “new” species. That is species that we assume have re-

4



cently increased their number due to fire suppression are under-represented on those

hummocks farthest from the mainland. This supports our understanding of the suc-

cessional history of the forest, because these species would have had the shortest time

to emigrate to the farthest islands.
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CHAPTER II

Extensions in space destabilizes an otherwise

stable coupled-map lattice

2.1 Introduction

Turing (1952) devised a system of differential equations with a locally stable so-

lution, which when extended spatially with a reaction-diffusion equation formulation

became unstable, leading to characteristic spatial patterning. Turing’s insight pro-

vided a counter-intuitive mechanism by which non-random patterns can form in a

homogenous environment in which the interacting particles diffuse randomly. In-

creasingly ecologists are suggesting that this mechanism may play a role in pattern

formation in some ecological systems (Klausmeier, 1999; Rietkerk et al., 2004b; van

de Koppel et al., 2005). Concurrently there has been an increase in theoretical work

relating to the Turing mechanism, ultimately resulting in a complete analysis of the

mathematical conditions for an n-equation reaction diffusion system to have Turing

instability (Satnoianu et al., 2000).

All of these empirical and theoretical studies have continued Turing’s conven-

tion of looking at the problem in the reaction-diffusion (i.e., continuous-time and

continuous-space) context. But there is no inherent reason this process could not

take place in a discrete-space and discrete-time context. In fact Hastings (1992) and
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Doebeli and Killingback (2003) present coupled-map lattices (discrete-space discrete-

time analogues to reaction-diffusion equations) which do just that and connect their

work to Turing. But as of yet there has been no systematic attempt to find the math-

ematical conditions for coupled-map lattices to have Turing instability, as Satnoianu

et al. (2000) did for reaction-diffusion equations. There is no a priori reason to think

the conditions will be similar, since very simple models may have qualitatively dis-

tinct outcomes depending on whether they are formulated in a discrete or continuous

context (Durrett and Levin, 1994).

In this note we seek to begin this investigation. We present a model that is struc-

turally similar to that of Bascompte and Solé (1994) and Rohani et al. (1996), with

the exception that we distinguish migratory effects on reproduction from migratory

effects on intraspecific competition, or, equivalently, effects on reproduction and sur-

vivorship. Biologically our approach is similar to that of Doebeli and Killingback

(2003) and Hastings (1992), but with a mathematical form that is considerably less

complicated.

Suppose that lattice points are coupled with two distinct rules, associated with

two distinct population parameters, reproduction and intraspecific competition (or,

equivalently, density dependence). So, for example, the dispersion of seeds (reproduc-

tive coupling) may be distinct from root competition (density-dependent coupling),

wherein we imagine the overall population density at a neighbor lattice point con-

tributes some fraction of its biomass to reproduction, but only half (say) of that

population density has roots that grow to influence the process of below-ground com-

petition (Doebeli and Killingback, 2003). Or, early migrants of an annual species

contribute to reproduction, but later migrants arrive after the reproductive season

has ended. Or, different life stages migrate, only some of which have reached adult-

hood (and thus can reproduce) while all contribute to the utilization of resources

and thus contribute to the general density dependent effect (Hastings, 1992). Other
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biological configurations are easy to conger.

One way of conceptualizing this phenomenon is with dual, potentially incommen-

surate, coupling coefficients. Thus, if Ni,j(t) is the population size at lattice point i, j

at time t, we consider the following model:

Ni,j(t+1) = r(Ni,j(t)−m1Ni,j(t)+m1Ni,j(t))f(Ni,j(t)−m2Ni,j(t)+m2Ni,j(t)). (2.1)

Where r represents the maximum rate of population growth, m1 and m2 represent

the reproductive and intraspecific-competition migration, respectively. The function

f(N) represents the density dependence of population growth within each patch and

Ni,j(t) is the average population in the patches that disperse into the i, j patch. An

analysis of the spatially homogenous equilibrium solution is presented in Appendix

1. Here we proceed with a specific example.

2.2 An Example

We assume a one-dimensional circular (periodic boundary conditions) array of n

patches in which each population migrates into the two adjacent patches and the

density dependence is given by a simple linear function, f(N) = 1 − N . (These

assumptions simplify the analysis, but as shown in Appendix 1, the results are robust

for a two-dimensional array of patches and other forms of density dependence.) This

gives rise to the model:

Ni(t+1) = r(Ni(t)+m1(0.5(Ni+1(t)+Ni−1(t))−Ni(t))f(Ni(t)+m2(0.5(Ni+1(t)+Ni−1(t))−Ni(t))).

(2.2)

This set of n difference equations has an equilibrium solution of N∗i = 1 − 1
r
. This

corresponds to a spatially homogenous equilibrium where the population at each

patch is the same as it would be in the non-spatial logistic model.

8



Linearizing about this equilibrium solution yields the Jacobean matrix:

J =



a b 0 · · · 0 b

b a b 0 · · · 0

0 b a b 0 · · · 0

. . . . . . . . .

0 · · · 0 b a b

b 0 · · · 0 b a


. (2.3)

Where a = 2− r − (m1 + m2 − rm2) and b = 0.5(m1 + m2 − rm2). The eigenvalues

of matrices of this form are λk = a + 2b cos(2πk
n

) with k = 0, 1, · · · , n − 1 (May,

1974). The spatially homogenous equilibrium is unstable if any of these is greater

than one in absolute value. Notice that λ0 = 2 − r, so the equilibrium is unstable

if r > 3—just like in the non-spatial logistic model. So this model predicts, as have

others (Rohani et al., 1996), that metapopulation dynamics cannot stabilize systems

that would be unstable in non-spatial models. (Although increasing migration will

cause the absolute value of most of the eigenvalues to be less than one and when the

model is simulated oscillations are damped when compared to the non-spatial model

for a very long transient period before they reach non-spatial levels.)

On the other hand this equilibrium can be unstable for values of r which would

lead to stable behavior in the non-spatial model. Since only one eigenvalue must

be larger than one in absolute value for instability we consider the eigenvalue most

affected by migration. If n is even consider λn
2

= a − 2b and if n is odd consider

λn+1
2

= a − 2b cos(π
n
), which in the limit of large n is also a − 2b. In either case we

have an eigenvalue close to 2− r− 2(m1 +m2− rm2). So the equilibrium is unstable

if r + 2(m1 + m2 − rm2) > 3. Thus the spatially homogenous equilibrium can be

unstable for values of r which would predict stability in the non-spatial model.

The destabilization of the spatially homogenous equilibrium leads to interesting
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temporal and spatial dynamics. Simulations on a two-dimensional grid reveal that if

the conditions are met to destabilize the spatially homogenous equilibrium then indi-

vidual patches cycle out of phase with their neighbors. At any particular time the grid

has a checkerboard-like structure (Figure 2.1), and through time individual patches

exhibit a two-cycle. Also if we simulate this model with values of r that generate

two cycles in the non-spatial logistic model we find another interesting result. When

coupling patches with only intraspecific-competition migration, all patches reach the

same population value and cycle in phase. Contrarily, coupling the patches only by re-

productive migration, a rich spatial structure emerges in which a subset of the patches

cycle in phase with each other and out of phase with the remaining patches (Figure

2.2). Thus the frequently asserted assumption that oscillating patches in a metapop-

ulation become in phase with each other due to migration is an oversimplification

(Earn et al., 2000).

For this effective phase reversal it is necessary that m1 > m2, which is to say,

reproductive migration must be of more importance than intraspecific-competition

migration. When Vandermeer and Kaufmann (1998) coupled two logistic maps with

either reproductive or intraspecific-competition migration they found that increased

reproductive migration decreased the basin entrainment of the two maps while in-

creasing density migration increased the basin of entrainment. Our results can at

least partially be explained by this mechanism, since reproductive migration tends

to decrease the likelihood that two neighbors become entrained, thus disrupting any

tendency towards the spatially homogenous equilibrium. Intraspecific-competition

migration has the opposite effect.

Hastings (1992) observed this trend in a model in which he explicitly modeled

different migration rates for different age classes within a metapopulation setting. He

notes that when the strongly density-dependent age classes are stationary (m2 = 0

in our case) it is possible for the spatially homogenous equilibrium to be destabilized

10



Figure 2.1: Consecutive time steps from equation 2.1 iterated on a 9-by-9 grid with
f(N) = 1 − N , r = 2.9, and m1 = 0.1 and m2 = 0.01. The gray-
scale represents the population density at each site on the grid. A stable
equilibrium is not reached, as would be expected in a logistic equation
with this r value. Instead each site displays a two-cycle out of phase with
its neighbors.
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A.

B.

Figure 2.2: Consecutive time steps from equation 2.1 iterated on a 9-by-9 grid with
f(N) = 1 − N , r = 3.1 after transient behavior. A. Shows the array in
two consecutive time steps with m1 = 0 and m2 = 0.1. B. the array in
two consecutive time steps with m1 = 0.1 and m2 = 0. In each case the
gray-scale represents the population density at each site on the grid.
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when it would be stable in the non-spatial case. Interestingly our results are in

disagreement with the work of Doebeli and Killingback (2003) who find that in the

absence of dispersal, quasi-local competition, which is analogous to our intraspecific-

competition migration, destabilizes what would be a stable equilibrium in a non-

spatial setting. We show in Appendix 2 that contradiction results from a slight

difference in the way their model is constructed.

2.3 Appendix 1

Here we examine the stability of the homogenous equilibrium solution to equation

2.1. First consider the general non-spatial model. We have N(t+ 1) = rN(t)f(N(t))

where r is the maximum growth rate and f(N) describes the density dependence. If

we have an equilibrium, N∗, then it will satisfy f(N∗) = 1
r

. This equilibrium is stable

if and only if |1 + rN∗f ′(N∗)| < 1. Let rN∗f ′(N∗) = R. Note that since f ′(N∗) < 0

we will have R < 0. Thus instability can only occur if R < −2.

Now we can consider our general model (equation 2.1) on a two-dimensional grid

of n2 patches. We assume periodic-boundary conditions (torus) and that each patch

sends migrants into its Von Neumann neighborhood. Again we shall consider the

stability of the spatially homogenous equilibrium solution, where the population at

all patches is N∗ and f ′(N∗) = 1
r
.

Again in order to determine the stability of this equilibrium we linerarize about

this solution. This yields an n2-by-n2 matrix, J , of the same form described in Rohani

13



et al. (1996),

J =



J1 J2 J3 · · · J3 J2

J2 J1 J2 J3 · · · J3

J3 J2 J1 J2 J3 · · · J3

. . . . . . . . .

J3 · · · J3 J2 J1 J2

J2 J3 · · · J3 J2 J1


. (2.4)

Where J1, J2, and J3 are n-by-n matrices. With

J1 =



a b 0 · · · 0 b

b a b 0 · · · 0

0 b a b 0 · · · 0

. . . . . . . . .

0 · · · 0 b a b

b 0 · · · 0 b a


; (2.5)

J2 = bI (where I is the identity matrix); and J3 is a matrix of zeros. Here a =

1+R− (m1 +Rm2) and b = 0.25(m1 +Rm2). Again from May (1974) the eigenvalues

of this matrix are λk = a + 2b[cos(2πk
n

) + cos(2πk
n2 )] where k = 0, 1, · · · , n2 − 1. As in

Rohani et al. (1996) we can choose a k ≈ n2

2
, such that cos(2πk

n
) + cos(2πk

n2 ) = −2 in

the limit of large n. So we have an eigenvalue close to a− 4b = 1 +R− 2(m1 +Rm2).

As R is negative we have instability if −2 > R− 2(m1 +Rm2). Recall from above

the condition for instability in the non-spatial model −2 > R. Thus our conclusions

from the specific model—that spatial dynamics can destabilize systems which would

be stable in the non-spatial case and that m1 must be large compared to m2 for this to

happen—also hold for a two dimensional array of patches and for any from of density

dependence.
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2.4 Appendix 2

Consider Doebeli and Killingback’s (2003) model,

Nt+1 =
λ

1 + a[Ni(t) + α(Ni−1(t) +Ni+1(t))]
(2.6)

where α is the level of quasi-local competition, which is analogous to m2. As α in-

creases each site feels an increase in competitive effect from its neighbor’s populations

and its population increases its competitive effect on its neighbors, but this does not

result in a decrease in the competitive effect an individual site feels from its own

population. This is not the case in our model from equation 2.1. We show here this

difference is responsible for the different predictions of the two models.

Consider again a one-dimensional circular array of n populations. To simplify

analysis and for the ease of comparison, we connect these populations only with

quasi-local competition (or equivalently intraspecific-competition migration). This

gives rise to the model,

Ni(t+ 1) = rNi(t)f((1−m′2)Ni(t) +
m2

2
(Ni+1(t) +Ni−1(t))). (2.7)

Here m2 is the amount of intraspecific-competition migration and m′2 is the amount

this migration reduces the competitive effect of individuals on their original patch.

So if m′2 = m2 we recover our original model and if m′2 = 0 we have Doebeli and

Killingback’s (2003) formulation.

Performing the same stability analysis on a spatially homogenous equilibrium as

above we have eigenvalues, a + 2b cos(2πk
n

), where a = 1 + R − 2Rm′2, b = Rm2, and

k = 0, 1, · · · , n − 1. When k = 0 we have the eigenvalue 1 + R + 2R(m2 − m′2).

When m′2 = m2 as previously shown in our model the eigenvalue is just 1 + R as in

the non-spatial case and intraspecific competition migration cannot destabilize the

15



equilibrium. But if m′2 = 0 we have an eigenvalue of 1+R+2Rm2 which could be less

than −1, even if 1+R is not. Thus destabilizing the spatially homogenous equilibrium

as in Doebeli and Killingback (2003). This simple general model is able to recover

their prediction and illustrates the cause of the apparent contradiction between our

results.
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CHAPTER III

Dispersal limitation and Janzen–Connell effect

lead to spatial pattern in a Hamamelis virginiana

stand

3.1 Introduction

The spatial distribution of individuals within a population is of increasing inter-

est to ecologists. Historically it was assumed that observed nonrandom patterns in

these distributions were largely the result of underlying environmental heterogeneity.

However there has long been theoretical evidence of the possibility for endogenous

pattern formation in the absence of underlying exogenous spatial heterogeneity (Tur-

ing, 1952). Increasingly this idea has been applied in ecological systems (Bascompte

and Solé, 1994; Kéfi et al., 2007; Klausmeier, 1999; Pascual, 1999; Perfecto and Van-

dermeer, 2008; Rietkerk et al., 2002; Solé and Manrubia, 1995; van de Koppel et al.,

2005). The expanding series of 50ha forest plots offers a wealth of data to study spa-

tial patterns in ecological systems, and has made it clear that many species within the

plots are highly spatially aggregated (Condit et al., 2000). Although some species’

aggregation correlates with underlying environmental conditions (Engelbrecht et al.,

2007), many species show no evident correlations with any environmental variables.

This suggests that the aggregation may result from some endogenous process.
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Furthermore the level of aggregation is dependent on the mode of seed disper-

sal, with mechanically dispersed species the most aggregated, then wind-dispersed

species, and then animal-dispersed species (Seidler and Plotkin, 2006). This aggre-

gation persists in the face of, most likely, strong Janzen–Connell pressure, which was

initially assumed to lead to a non-aggregated, uniform distribution of trees (Janzen,

1970; Connell, 1971, 1978). In order to truly understand how these endogenously

generated distributions arise we must understand the seemingly counteractive forces

of dispersal limitation and Janzen–Connell recruitment limitation. Although much

of the literature examines these questions in the tropics, the problem may be more

tractable in the temperate region, where the much lower diversity of tree species may

make the patterns much more evident.

Hamamelis virginiana in the understory of the Big Woods plot at the E.S. George

Reserve in Pinckney, MI offers are particularly distinct spatial pattern (Figure 3.1).

In the understory of this forest H. virginiana, Prunus serotina, and Acer rubrum form

a tight mosaic (Figure 4.1). The pattern of the three species together is examined in

Chapter IV, but here I consider H. virginiana alone because its pattern is the tightest

and most clear.

H. virginiana has short-distance, mechanical dispersal—ejecting seeds as the fruits

dehisce . Anderson and Hill (2002) measured 45 dispersed seeds and found an average

distance of 3.45m and none of the seeds dispersed beyond 5m. Thus we would expect

that H. virginiana should be very aggregated. But, at the same time, H. virginiana

seeds are parasitized by an obligate seed parasite, Pseudanthonomus helvolus, which

can parasitize as many as 90% of the non-aborted fruits (De Steven, 1981, 1982, 1983b;

Clark, 1987) and could exert a strong density-dependent, Janzen–Connell recruitment

limitation. In fact De Steven (1983b) found that furits on small, isolated H. virginiana

individuals were slightly less likely to be parasitized by P. helvolus. But De Steven

(1983b) did not have a complete map of H. virginiana individuals in her study area—
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also the ES George Reserve—and thus could find few isolated individuals and used

nearest neighbor distance, not local density, to quantify isolation. With the complete

map of H. virginiana individuals we can better address this question. As such the

species offers a great opportunity to examine the counteractive forces of dispersal

limitation and Janzen–Connell recruitment limitation.

Here I examine the effect of these two forces on H. virginiana in an area where it

shows significant spatial aggregation. We find significant evidence of Janzen–Connell

seed parasitism, with large clumps of H. virginiana experiencing more parasitism

than isolated individuals or those in small clumps. From these two forces, dispersal

limitation and density-dependent recruitment limitation, we create a phenomenolog-

ical model of patch demography which is broadly consistent with the spatial pattern

observed. This model is made explicit and incorporated with the other understory

species in Chapter IV.

3.2 Methods

This study was conducted at the E.S. George Reserve in Pinckney, MI. This site

has a 22ha plot in which all stems larger than 10cm GBH are identified, measured

and spatially referenced. Twelve hectares were originally censused in 2003 and re-

censused in 2008. The other ten hectares have been added since then, though only

censused once. For more details on the site and census technique see Jedlicka and

Vandermeer (2004), and for a thorough discussion of the forest structure see Section

4.2.

To study the H. virginiana pattern we defined a number of H. virginiana “clumps.”

We say two individuals are in the same clump if they are within 10m of each other. The

plot has 3046 H. virginiana individuals larger than 10cm GBH distributed between 18

clumps and a handful of “isolated” individuals (Figure 3.1). H. virginiana has vegetive

reproduction through suckers. This forms multi-stem trees, which were counted as a
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Figure 3.1: Distribution of H. virgiana stems individuals within the Big Woods Plot.
The light gray dots are all trees—to show the extent of the plot—and
the black dots are the H. virgiana individuals. They are significantly
clustered at a range of scales (Figure 3.2).
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single individual in our surveys.

H. virginiana flowers and is pollinated in late fall, but the pollen tube grows only

halfway down the style and overwinters in that stage. The pollen tube grows the

rest of the way in April, followed by fertilization and fruit set (De Steven, 1983a).

The fruit, which contains two seeds, develops on the tree until late September–early

October when the fruit dehisces and disperses the seeds. During this long development

period the fruit are eaten by lepidopteran larvae and chipmunks (De Steven, 1982).

The fruit are also parasitized by an obligate seed parasite, P. helvolus (De Steven,

1982, 1983b; Clark, 1987).

In May of 2008, at the time of fruit set, we tagged twenty fruits on each of ten

H. virginiana trees (1) within each of eight clumps and (2) on ten isolated trees (for

a total of 1800 tagged fruits). P. helvolus oviposition marks are distinctive, and the

larvae can then eat one or both of the developing seeds or be parasitized by one of a

number of parasitic wasps (De Steven, 1981). Lepidopteran larvae and chipmunks also

feed on h. virginiana fruits, and their feedings is distinctive. Prior to seed dispersal,

in September, we removed and dissected the fruit to determine how many viable seeds

were left and the fate of the P. helvolus larvae. We also collected litter samples (1m2

samples) in the fall of 2009 in the various clusters of H. virginiana and paired these

with litter samples outside of those clusters. From these samples we extracted the

weevils using mini-Winkler extractors (Fisher, 1999; Besuchet et al., 1987).

3.3 Results

H. virginiana stems exhibit a strongly nonrandom aggregated spatial pattern (Fig-

ure 3.1). They are significantly more clustered than expected due to random at all

spatial scales from 0m to 25m (Figure 3.2). These clumps show a strong age structure,

with larger clumps having significantly larger, and presumably older, individuals then

smaller clumps (Figure 3.3). Over the five years between surveys there was a trend for
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Figure 3.2: Average number of H. virginiana found within 0.5-meter wide “donuts” a
given distance around other H. virginiana. The black line is the observed
value and the gray the expectation if the H. virginiana individuals were
distributed randomly and the dotted lines are the 95% confidence limits
around the expectation.

the larger clumps to decrease in number of stems, while the smaller clumps increased

in number of stems (Figure 3.4). All of these observations are more consistent with

the patches being endogenously formed and dynamic, rather than the result of some

underlying habitat heterogeneity.

There was significant variation in the number of fruits parasitized by P. helvolus.

After initial fruit set a large proportion of fruits are aborted, before the emergence

of the adult weevil. Thus we examined the proportion of non-aborted fruits that

are parasitized. Seeds in non-aborted fruits survived at a higher rate on isolated H.

virginiana and on those in smaller patches than in larger patches (Figure 3.5). There

was no such trend for chipmunk or lepidopteran damage, which were unaffected by

22



● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

1 10 100 1000

11
12

13
14

15

Stems in clump

M
ea

n 
st

em
 G

B
H

 (
cm

)

Figure 3.3: Average girth at breast height (GBH) of a stem in a clump versus the
number of stems in that clump. Standard errors indicated. There is a
clear relationship, with large clumps having larger trees and small clumps
smaller trees.
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Figure 3.4: Proportion change in the number of stems in a clump between 2003 and
2008 versus the number of stems in that clump. The larger clumps now
have fewer stems, while the smaller have more.
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Figure 3.5: Proporiton of nonaborted H. virginia seeds that survived versus number
of stems in clump. Standard errors indicated.

local H. virginiana density and accounted for very little seed mortality. Furthermore,

the litter samples revealed a higher population density of beetles within clusters of

H. virginiana (0.77 beetles per sample with ± 0.19 standard error) compared to zero

found in paired sites outside of clusters.

3.4 Discussion

Here we find evidence for the Janzen–Connell effect by seed predation by P. helvo-

lus on H.virginia. As H. virginia patches increase in size they experience increased

seed parasitism, consistent with the Janzen–Connell effect. This effect has generally

been assumed to be mostly a tropical phenomenon, but there is some evidence of
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its impact in the temperate region. Hille Ris Lambers et al. (2002) found density-

dependent seed and seedling mortality for a number of temperate tree species; Packer

and Clay (2000, 2003) found lower Prunus serotina recruitment and lower seedling

growth and survival around adult P. serotina; and De Steven (1983b) found an indi-

cation that isolated H. virginiana trees had a lower rate of fruit parasitism. Here we

were able to expand on De Steven (1983b) results because we had a complete spatial

census of the H. virginiana in the area. The Janzen–Connell effect in this case is not

entirely surprising because P. helvolus is an obligate predator, has limited mobility,

and H. virginiana builds up dense clumps of its hosts.

What is more surprising is that even in the face of strong Janzen–Connell pressure

the spatial distribution of plants can be highly aggregated. Further, these results

suggest that the role of the Janzen–Connell effect could be in constraining fecundity

of individuals in larger clumps—thereby limiting clump size—rather than preventing

clumps from forming in the first place. Thus aggregated distributions observed in

many plant communities may not be, in and of themselves, evidence of the absence

of the Janzen–Connell effect.

Further we propose that the spatial pattern of H. virginia is due to a self-organized

pattern of local expansion due to dispersal limitation, and then patches slowing

growth or contracting due to some regional density-dependent mechanism. We think

that this mechanism is density-dependent seed mortality effect of P. helvolus, but

we cannot distinguish it from self thinning independent of weevil seed predation.

Although we cannot resolve the mechanism completely we do have support for this

heuristic model of patch demography. The size of H. virginiana individuals—and

thus most likely age—within a patch correlated with the size of that patch, as would

be predicted if the patches arose through a self-organized process and not as a result

of underlying environmental heterogeneity. Further larger patches lost stems over the

five years, while smaller patches gained.
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Put together, these results suggest a mechanism for self-organized spatial pat-

tern formation that could be seen in many plant species; dispersal limitation causes

an initial aggregated distribution of plants, and then some density-dependent mor-

tality (like the Janzen–Connell effect) causes the growth of these clumps to slow or

stop. The mechanism is, phenomenologically, very similar to that proposed by Turing

(1952) of an activator and an inhibitor when he originally demonstrated the possi-

bility for self-organized pattern formation. Here the activator is seed dispersal itself

and the inhibitor is the predator/herbivore involved in the Janzen–Connell effect. It

is also phenomenologically similar to that described in other systems (Perfecto and

Vandermeer, 2008). Consequently, we might expect, in many systems the scale of

aggregation will be determined by the scale of dispersal (closely tied to the mode of

dispersal) coupled with the intensity and scale of the Janzen–Connell effect.
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CHAPTER IV

Janzen–Connell in the temperate zone:

contribution to pattern formation in a successional

forest

4.1 Introduction

Ecosystems rarely exhibit random spatial patterns. Acknowledging this fact ani-

mates a huge literature on the nature and causes of non-randomness (Solé and Man-

rubia, 1995; Klausmeier, 1999; Pascual et al., 2002; Rietkerk et al., 2002). An early

insight into what could be a major determinant of spatial pattern emerged from de-

tailed study of recruitment in tropical trees by Janzen, an effect subsequently known

throughout the literature as the Janzen–Connell effect (Janzen, 1970; Connell, 1971,

1978). A completely separate literature, mainly in theoretical ecology, has focused

on the idea that ecological rules operative at a local scale may translate into emer-

gent pattern at a regional scale, effectively a case of self-organized pattern (Solé and

Manrubia, 1995; Klausmeier, 1999; Pascual et al., 2002; Rietkerk et al., 2002). A mo-

ment’s reflection reveals the obvious fact that the Janzen–Connell effect could provide

a mechanism, operating at a local level, for the emergent pattern at a much larger

scale. Although some connections between the Janzen–Connell effect and spatial pat-

terns have been made (Augspurger, 1984; Clark and Clark, 1984; Howe, 1989; Wills
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et al., 2006), its general role in emergent pattern formation has largely escaped the at-

tention of ecologists. This is, perhaps, because consideration of the Janzen–Connell

effect has been almost exclusively in tropical regions, where high species diversity

renders the existence of large-scale pattern difficult to observe.

Temperate zone forests, with their relatively low species diversity, thus emerge

as ecosystems in which these dynamics might be more easily observed. Reports of

the Janzen–Connell effect in temperate forests (De Steven, 1983b, 1982; Packer and

Clay, 2000; Hille Ris Lambers et al., 2002) are rare compared to the tropical literature.

This may be because ecologists are less interested investigating the Janzen–Connell

effect there since explaining alpha diversity in temperate forests is not a major goal,

as it is in tropical forests. Here we report on two clear cases of its operation and

discuss how their operation at a local level creates a distinct pattern in three species

of subcanopy trees in a forest that is undergoing succession from Quercus-dominated

to Acer rubrum-dominated canopy.

Many forests in northeastern North America are undergoing a dramatic decline

in the proportion of Quercus and Carya species in the canopy(Zhang et al., 2000;

Heitzman et al., 2007; McDonald et al., 2003). Often concurrent is an increase in

the canopy proportion of Acer rubrum, this process is thus known as the “Red Maple

Paradox” (Abrams, 1998, 1992), and has been underway for perhaps as much as a

century. Given this relatively recent initiation of the process, it is possible to tease out

several dynamic aspects of the forest by looking at size and location variables. Here

we focus on a case of dramatic spatial structure, the causes of which are deducible if

we take into account the history of the forest coupled with two cases of the Janzen–

Connell effect.

The area in question is a transitional forest in which the Quercus–Carya overstory

is being slowly replaced by A. rubrum and Prunus serotina, both of which currently

share subcanopy dominance with Hamamelis virginiana. Ultimately these species will
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be replaced by others— Acer saccharum, Fagus grandifolia—but in the medium term

A. rubrum and Prunus serotina will dominate the canopy as the Quercus and Carya

die. The abundance and distribution of these three species are assumed to be the

result of fire suppression initiated by European settlers in the latter part of the nine-

teenth century (Dickmann and Leefers, 2006), which has resulted in a mosaic spatial

pattern in the forest’s understory (Figure 4.1). We propose this distinctive mosaic

structure results from 1) expansion from focal individuals extant before the fire sup-

pression transformation; 2) Janzen–Connell effect driven by a soil pathogen operating

on the P. serotina (Packer and Clay, 2000); and 3) Janzen–Connell effect driven by

a beetle seed predator operating on H. virginiana (De Steven, 1982, 1983b). Con-

structing a simple “toy” model that takes these three forces in combination produces

a spatial pattern that is qualitatively similar to the pattern we currently observe in

nature. From there we project the model in the “future” to see how long this spatial

structure persists, specifically we want to know whether distinct P. serotina and A.

rubrum patches remain when the two become the dominant overstory species.

4.2 Methods

The forest is located in the E. S. George Reserve, Livingston County in southeast

Michigan, which is operated by the department of Ecology and Evolutionary Biology

of the University of Michigan. In a permanently marked 22-ha plot, called the Big

Woods Plot, we have located, measured, and marked all individuals greater than 10cm

in girth at breast height (GBH). An original 12ha plot was set up in 2003 and in 2008

this plot was re-censused and the other 10 hectares were added. So for more than half

the plot we have five-year growth, mortality, and recruitment into the >10cm GBH

size class. In all there are over 25,000 individuals in the plot. Further details on the

site and census methodology can be found in Jedlicka and Vandermeer (2004).

The upper canopy (greater than 100cm GBH) of the forest is dominated (over
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Figure 4.1: The mosaic spatial pattern of the Big Woods understory (less than 50cm
GBH). P. serotina is gray, A. rubrum is red, and H. virginiana is green.
The southern (bottom) of the plot borders a large swamp. The two empty
areas right-center are ephemeral ponds, the plot abuts an old field on its
upper-left border, and the long empty spaces are roads.
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Figure 4.2: Frequency distribution of GBHs in the Big Woods Plot separated by
species for the major species in the plot. Dashed green is H. virginiana,
dashed red A. rubrum, dashed black P. serotina, solid blue Carya spp.,
solid gray Q. alba, solid black Q. velutina, and dashed blue all other
species.

85%) by Quercus alba; “black oak” a hybrid swarm of Q. velutina, Q. rubra, and

Q. coccinea (Voss, 1985), we shall just refer to these as Q. velutina; Carya glabra;

C. ovata; and C. cordiformis. On the other hand these five species make up under

5% of the subcanopy (less than 50cm GBH), instead the subcanopy is dominated by

(over 77%) Hamamelis virginiana, Acer rubrum, and Prunus serotina. A frequency

distribution of GBHs separated by species gives a picture of the current state of the

forest (Figure 4.2). The share of Carya and Quercus in both the upper canopy and the

subcanopy decreased between 2003 and 2008, since their mortality is high—8% over

the five-year period—and there is little recruitment. At the same time the fraction of

trees greater than 100cm GBH—presumably canopy trees—that are P. serotina and

A. rubrum increased, going from 13.8% in 2003 to 20.0% in 2008 and from 11.9% to

14.0% respectively.

As the current Carya and Quercus in the canopy die, they are increasingly be

replaced by Acer rubrum and Prunus serotina. The Carya–Quercus dominance is

thought to be a consequence of fires set by Native Americans, probably for hunting,
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or perhaps escaped from agriculture. Subsequent to the fire suppression brought

on by European colonists, fire-sensitive species have increased in number and their

shading has prevented the recruitment of Quercus and Carya. Abrams (1992, 1998)

developed this theory to explain Quercus declines and an increase in A. rubrum seen

in many northeastern North American forests. Others have reported similar changes

(Zhang et al., 2000; McDonald et al., 2003; Heitzman et al., 2007; Dickmann and

Leefers, 2006). This process is broadly consistent with even only casual observations

in the Big Woods forest.

If this is the case we would expect that the largest A. rubrum and P. serotina

would be found in fire refugia. To test this on October 2nd, 2011 we took 620 soil

moisture readings across the big woods plot. We fit a LOESS surface, with smoothing

parameter 0.175, to these readings to give us an estimate of the soil moisture at all

locations within the plot (Cleveland and Devlin, 1988). We then compared the average

soil moisture at the locations of the largest 1% of A. rubrum and P. serotina to the

soil moisture of 1000 random placements of that many “trees.”

To study potential a possible Janzen–Connell effect in H. virginiana we tagged

fruits on individuals within a range of clump sizes and followed their on-tree survival

over their development from fruit set in May to dispersal in September in the summer

of 2008. Cause of mortality was classified as chipmunk or Lepidopteran larva feeding

or Pseudanthonomus helvolus parasitization. We also collected litter samples (1m2

samples) in the fall of 2009 in the various clusters of H. virginiana and paired these

with litter samples outside of those clusters. From these samples we extracted the

weevils using mini-Winkler extractors. This part of the study is described fully in

Section 3.2.

The system was modeled on a 100-by-100 lattice with periodic boundaries. Each

cell (lattice point) can take on one of six states: empty (which could also be thought

of as a Quercus yet to fall), H. virginiana, small A. rubrum, large A. rubrum, small
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P. serotina or large P. serotina. The state of a cell depends on the state of that

cell and its neighbors at the previous time step. Empty cells receive propagules from

neighboring H. virginiana, large A. rubrum, and large P. serotina, and become a

H. virginiana, small A. rubrum, or small P. serotina with probability proportional

to the number of propagules received. The size of that neighborhood differs for the

three species to represent the differing dispersal abilities. The Janzen–Connell effect is

introduced into the model by the number of propagules created by a H. virginiana cell

decreasing with the number of other H. virginiana in its neighborhood, and empty

cells next to large P. serotina failing to become inhabited by small P. serotina.1

These rules correspond to what is known specifically about the spatially specific

natural enemy dynamics of those two species. H. virginiana, large A. rubrum, and

large P. serotina cells become empty (adult mortality) with a given probability or

stay the same at each time step. Small A. rubrum, and small P. serotina cells can

become large, stay the same, or die (become empty) with probabilities depending on

the number of neighboring large cells of either species. The model is initiated from

a lattice with 98% of the cells empty and the remaining 2% evenly divided between

H. virginiana, large A. rubrum, and large P. serotina. The location of these trees

corresponds to the location of the largest H. virginiana, A. rubrum, and P. serotina

in the actual plot, as an approximation for the distribution of these trees at the time

of European fire suppression. A complete description of the model and the R code to

run it can be found in the Appendix: Model Description.

4.3 Results

The three dominant subcanopy species form a tight jigsaw-puzzle-like mosaic (Fig-

ure 4.1). The largest 1% of P. serotina and A. rubrum correlate with the wettest

1That is not to say that we think there are no negative density-dependent mechanisms acting on
A. rubrum, but just that the ones acting on H. virginiana and P. serotina are most responsible for
the spatial pattern observed
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regions of the plot (Figure 4.3). The largest 1% of P. serotina individuals occur in

locations with an average soil moisture of 74.3%. Only 0.06% of random placements

of this many individuals occurred in locations with an average soil moisture of this

value or higher. The largest 1% of A. rubrum occur in locations with an average soil

moisture of 73.6%, and only 2.27% of random placements of this many individuals

occurred in locations with this soil moisture or higher. This is consistent with our hy-

pothesis that the largest, and thus oldest, of these trees occupy fire refugia, although

there are alternative explanations.

Since these largest trees are also presumably the oldest seed source for these

species in the area we expect that their conspecifics should be clustered around them.

This can be seen in Figure 4.4. Indeed for H. virginiana (Figure 4.4a) the largest

individuals form the ‘backbone’ of most clumps, and small stems are significantly

clumped around larger stems at a range of spatial scales (Figure 4.5). For a more

complete examination of this pattern see Chapter III.

The same pattern is seen, though not as tightly, with A. rubrum (Figure 4.4b).

The small stems cluster around larger stems at an intermediate scale, though, strangely,

not at a small scale (Figure 4.6). As we shall see below, this scale effect is proba-

bly due to a “release” effect provided by the action of a soil pathogen on the major

competitor of the A. rubrum.

This pattern of smaller (younger) trees clusterd around the older, presumably seed

sources, is definitely not seen with P. serotina: in fact it shows the opposite trend. P.

serotina individuals show striking evidence of a stand-level Janzen–Connell effect with

small- to mid-size trees most dense in areas farther away from large trees (Figure 4.4c).

This pattern is statistically significant, with fewer small- to mid-size trees between

0 and 25 meters from larger trees than predicted by a Poisson distribution of trees

(Figure 4.7). This is consistent with what is expected from the operation of a soil

pathogen, Pythium spp. (Oomycota), known to build up in the soil around larger
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Figure 4.3: The locations of the largest 1% of P. serotina (A) and A. rubrum (B)
plotted over the estimated soil moisture. The soil moisture is indicated
by color with blue the wettest 90% soil moisture and red the driest 40%
soil moisture. Both of these sets of trees occur in wetter regions than
random. We interpret this to be evidence that they are growing in areas
that used to be fire refugia.
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Figure 4.4: The distribution of large (black) and small (grey) individuals of the three
major understory species, illustrating three distinct patterns. A) H. vir-
giniana individuals with the largest (by GBH) 5% highlighted. Note the
clear clusters of smaller trees surrounding the larger, presumably seed
source, trees. B) A. rubrum individuals with the largest 5% highlighted,
illustrating a more continuous spread of smaller individuals from the pre-
sumed seed sources. C) P. serotina individuals with the largest 5% high-
lighted, showing the striking pattern of smaller individuals effectively ex-
cluded from large areas where the larger, and presumably seed source,
trees are located.
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Figure 4.5: Average number of small (<15 cm GBH) H. virginiana found within 0.5-
meter wide “donuts” a given distance around large (>20 cm GBH) H.
virginiana. The black line is the observed value and the gray the Poisson
expectation.
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Figure 4.6: Average number of small (<50 cm GBH) A. rubrum found within 0.5-
meter wide “donuts” a given distance around large (>100 cm GBH) A.
rubrum. The black line is the observed value and the gray the Poisson
expectation.
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Figure 4.7: Average number of small (<50 cm GBH) P. serotina found within 0.5-
meter wide “donuts” a given distance around large (>100 cm GBH) P.
serotina. The black line is the observed value and the gray the Poisson
expectation.

P. serotina individuals thus reducing recruitment, growth, and survival of conspecific

seedlings (Packer and Clay, 2000, 2003; Reinhart et al., 2003, 2005).

H. virginiana also shows evidence of Janzen–Connell effect. Non-aborted fruits

on trees in large patches had a lower survival rate than those in smaller patches or

isolated individuals (Figure 3.5). Most of this seed mortally was due to P. helvolus,

a H. virginiana-specific weevil seed parasite (De Steven, 1982, 1983b; Clark, 1987).

Furthermore, the litter samples revealed a higher population density of beetles within

clusters of H. virginiana (0.77 beetles per sample with ± 0.19 standard error) com-

pared to zero found in paired sites outside clusters, suggesting that local build-up of

the seed predator population is driving Janzen–Connell effect.

From these observations we propose a system of recruitment limitation coupled
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with interspecific competition and the Janzen–Connell effect that leads to the ob-

served pattern (Figure 4.1). With European fire suppression recruitment of H. virgini-

ana and A. rubrum was limited to areas around seed trees that had been concentrated

in fire refugia. As H. virginiana patches grew larger their fecundity decreased, due to

Janzen–Connell effect operating through the beetle seed predator. P. serotina, on the

other hand, has a larger dispersal potential from its bird dispersal syndrome which,

when combined with Janzen–Connell effect resulting from the soil pathogen, causes

young P. serotina trees to be concentrated in areas far from the larger P. serotina.

A. rubrum directly reflects the dispersal from fire refugia, constrained, at least tem-

porarily, from competition from the other two species, and is thus more concentrated

in those areas with larger individual P. serotina, being able to avoid competition from

seedlings of the latter because of the pattern induced by the Janzen–Connell effect.

These features motivate the simple discrete-time cellular automata model as de-

scribed in the Appendix: Model Description. The model is not meant to be carefully

fit and produce quantitative predictions, but rather to show that it is possible that

these processes could give rise to the pattern seen. One run of the model, after ten

iterations, is shown in Figure 4.8 (the parameters are shown in Table 4.1, it is run

one). It produces patterns qualitatively similar to those observed (compare with Fig-

ure 4.1). H. virginiana and A. rubrum patches grow around the initial trees while P.

serotina fill in the space farther away from large initial P. serotina and a tight spatial

mosaic emerges quickly.

To get a sense for the variation in pattern produced we ran the model with other

parameter sets (summarized in Table 4.1). After ten iterations most of these runs

look like the pattern we observed (Figure 4.9). To see what this model says about the

future of the forest we let it run into the “future.” These are also shown in Figure

4.9.
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Figure 4.8: Example output from the cellular-automata model that simulated Big
Woods understory-tree dynamics. Large P. serotina are black, small P.
serotina gray, large A. rubrum dark red, small A. rubrum light red and
H. virginiana green. Note the mosaic pattern, reflecting a similar pattern
to that observed in nature (Figure 4.1).
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Figure 4.9: Results from the cellular-automata model that simulates the Big Woods
understory-tree dynamics. Large P. serotina are black, small P. serotina
gray, large A. rubrum dark red, small A. rubrum light red and H. vir-
giniana green. The four rows are for parameter sets one through four
parameter sets (Table 4.1), and the three columns are for five, ten and 50
iterations.
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Name Run 1 Run 2 Run 3 Run 4
P. serotina large mortality 0.1 0.1 0.1 0.15
A. rubrum large mortality 0.1 0.1 0.1 0.15
H. virginiana mortality 0.05 0.1 0.33 0.33
P. serotina small-to-large intercept 0.03 0.03 0.25 0.15
P. serotina small-to-large slope -0.025 -0.025 -0.05 -0.05
A. rubrum small-to-large intercept 0.1 0.1 0.25 0.15
A. rubrum small-to-large slope -0.033 -0.033 -0.05 -0.05
P. serotina small mortality slope 0.25 0.25 0.2 0.2
P. serotina small mortality intercept 0.001 0.001 0.05 0.01
A. rubrum small mortality 0.05 0.05 0.1 0.2
H. virginiana Janzen–Connell parameter 0.025 0.05 1 0.5

Table 4.1: Parameters for the Big Woods simulation model.

4.4 Discussion

Here we have argued that the evident spatial pattern extant in the subcanopy

of a transitional forest in eastern Michigan can be understood by a combination of

historical forces, dispersal limitation, and Janzen–Connell effect operating on two

of the three species. Normal seed dispersal from remnant large trees establishes the

initial pattern which is then followed by adjustment from the action of Janzen–Connell

effect dynamics. The consequence is a jigsaw-like pattern that appears relatively

stable, at least for the medium term. Our simple model which incorporates our

understanding of the forest’s history and these dynamics reproduces these patterns.

It is clear that the formerly dominant Quercus and Carya species are not replacing

themselves as adults fall from the canopy. They are being replaced by A. rubrum and

P. serotina as is happening in many places in eastern North America (Abrams, 1998,

1992; Zhang et al., 2000; Heitzman et al., 2007; McDonald et al., 2003; Dickmann and

Leefers, 2006). This processes is playing out in a strongly spatially structured forest.

Projecting our simple model forward suggests that as A. rubrum and P. serotina

enter the canopy in large numbers their spatial structuring will begin to break down

and the forest will become more well-mixed. Under some scenarios (parameter sets)

other spatial patterns emerge and persist. For example with parameter sets one and
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two tighter, more regular patches of H. virginiana emerges, these resemble Turing-

instability patches often seen in patterned vegetation (van de Koppel et al., 2005;

Rietkerk et al., 2002; Klausmeier, 1999). The model here is not to predict exactly

how the forest structure will change, but to present a range of possibilities based on

the major forces we think are currently structuring the forest.

4.5 Appendix: Model Description

Our Big Woods simulation model was a cellular automata where each cell could

take one of six states: empty, large or small P. serotina, large or small A. rubrum, or

H. virginiana. The model takes place on a 100-by-100 grid.

We calibrated the dispersal potential of each species by considering neighborhoods

of varying sizes around the central cell. In particular, empty cells receive 1/120th of

a propagule from any large P. serotina in the 11-by-11 square of cells surrounding

it, 1/48th of a propagule from any large A. rubrum in the 7-by-7 square of cells

surrounding it, and propagules from any H. virginiana in the 3-by-3 square of cells

surrounding it. The number of propagules from each H. virginiana is 1/8
n1p1

where

n1 is the number of other H. virginiana in the 7-by-7 square of cells surrounding

the focal H. virginiana. If there are any large P. serotina in the 3-by-3 square of

cells surrounding it, it becomes a H. virginiana or small A. rubrum with probability

proportional to the number of H. virginiana propagules and A. rubrum propagules it

receives. Otherwise it becomes a H. virginiana, small A. rubrum or small P. serotina

with probability proportional to the number of propagules of each it receives.

Small P. serotina become large with probability (p2+p3)n2, where n2 is the number

of large trees (of both species) within the 3-by-3 square of cells surrounding it, and

die with probability (p4 + p5)n3, where n3 is the number of large P. serotina within

the 3-by-3 square of cells surrounding it otherwise they remain small. Similarly for

A. rubrum which become large with probability (p6 + p7)n2, die with probability p8,
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and stay small otherwise. Large P. serotina, large A. rubrum and H. virginiana cells

become empty with probability p9, p10 and p11 , respectively, and otherwise stay the

same. The R code to run the model follows.

# David Allen (dnallen@umich.edu) and John Vandermeer

# for the manuscript ’Dual Janzen--Connell

#effects create spatial pattern in a temperate successional forest’

# model to simulate interaction of Red Maple, Black Cherry and Witch Hazel

setwd(’’)

#starting from big tree locations

load(’big_tree_loc.RData’)

grid_len1 <- 125

grid_len2 <- 100

num_runs <- 7

par(bty=’n’)

################################################

################ demographic parameters ########

################################################

################ big to dead ##################

bc_m <- 0.1 # BC big mortality

rm_m <- 0.1 # RM big mortality

wh_m <- 0.1 # WH mortality

################ small to big ##################

bc_g_s <- -0.025

bc_g_i <- 0.03

rm_g_s <- -0.1/3

rm_g_i <- 0.1

################ small to dead ##################

bc_sm_s <- 0.25

bc_sm_i <- 0.001

rm_sm <- 0.05

################ J-C for WH ####################

wh_param<- 0.075
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#### Color map for display ##########

my_colors<-c(’white’,’gray’,rgb(0,0,0,1),rgb(1,0,0,0.5),’red’,’green3’)

dis_ind<-1

for (run in 1:num_runs)

{

N<-matrix(data=0,ncol=grid_len2,nrow=grid_len1)

R<-matrix(data=runif(grid_len1*grid_len2),ncol=grid_len2,nrow=grid_len1)

for (i in 1:grid_len1)

{

for (j in 1:grid_len2)

{

#empty cells

if (M[i,j] == 0)

{

i8m<-ifelse(i-8>0.5,i-8,1)

i7m<-ifelse(i-7>0.5,i-7,1)

i6m<-ifelse(i-6>0.5,i-6,1)

i5m<-ifelse(i-5>0.5,i-5,1)

i4m<-ifelse(i-4>0.5,i-4,1)

i3m<-ifelse(i-3>0.5,i-3,1)

i2m<-ifelse(i-2>0.5,i-2,1)

i1m<-ifelse(i-1>0.5,i-1,1)

i8p<-ifelse(i+8<grid_len1+0.5,i+8,grid_len1)

i7p<-ifelse(i+7<grid_len1+0.5,i+7,grid_len1)

i6p<-ifelse(i+6<grid_len1+0.5,i+6,grid_len1)

i5p<-ifelse(i+5<grid_len1+0.5,i+5,grid_len1)

i4p<-ifelse(i+4<grid_len1+0.5,i+4,grid_len1)

i3p<-ifelse(i+3<grid_len1+0.5,i+3,grid_len1)

i2p<-ifelse(i+2<grid_len1+0.5,i+2,grid_len1)

i1p<-ifelse(i+1<grid_len1+0.5,i+1,grid_len1)

j8m<-ifelse(j-8>0.5,j-8,1)

j7m<-ifelse(j-7>0.5,j-7,1)

j6m<-ifelse(j-6>0.5,j-6,1)

j5m<-ifelse(j-5>0.5,j-5,1)

j4m<-ifelse(j-4>0.5,j-4,1)

j3m<-ifelse(j-3>0.5,j-3,1)

j2m<-ifelse(j-2>0.5,j-2,1)

j1m<-ifelse(j-1>0.5,j-1,1)

j8p<-ifelse(j+8<grid_len2+0.5,j+8,grid_len2)

j7p<-ifelse(j+7<grid_len2+0.5,j+7,grid_len2)

j6p<-ifelse(j+6<grid_len2+0.5,j+6,grid_len2)

j5p<-ifelse(j+5<grid_len2+0.5,j+5,grid_len2)

j4p<-ifelse(j+4<grid_len2+0.5,j+4,grid_len2)
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j3p<-ifelse(j+3<grid_len2+0.5,j+3,grid_len2)

j2p<-ifelse(j+2<grid_len2+0.5,j+2,grid_len2)

j1p<-ifelse(j+1<grid_len2+0.5,j+1,grid_len2)

neigh_8<-c(M[i8m:i8p,j8p:j1p],M[i8m:i8p,j8m:j1m],M[i8p:i1p,j],M[i8m:i1m,j])

neigh_7<-c(M[i7m:i7p,j7p:j1p],M[i7m:i7p,j7m:j1m],M[i7p:i1p,j],M[i7m:i1m,j])

neigh_6<-c(M[i6m:i6p,j6p:j1p],M[i6m:i6p,j6m:j1m],M[i6p:i1p,j],M[i6m:i1m,j])

neigh_5<-c(M[i5m:i5p,j5p:j1p],M[i5m:i5p,j5m:j1m],M[i5p:i1p,j],M[i5m:i1m,j])

neigh_4<-c(M[i5m:i4p,j4p:j1p],M[i4m:i4p,j4m:j1m],M[i4p:i1p,j],M[i4m:i1m,j])

neigh_3<-c(M[i3m:i3p,j3p:j1p],M[i3m:i3p,j3m:j1m],M[i3p:i1p,j],M[i3m:i1m,j])

neigh_2<-c(M[i2m:i2p,j2p:j1p],M[i2m:i2p,j2m:j1m],M[i2p:i1p,j],M[i2m:i1m,j])

neigh_1<-c(M[i1m:i1p,j1p],M[i1m:i1p,j1m],M[i1p,j],M[i1m,j])

wh_weev<-length(neigh_4[neigh_4==5])

rm_seed<-length(neigh_3[neigh_3==4])/100

wh_seed<-ifelse(wh_weev>0.5,length(neigh_2[neigh_2==5])/(wh_weev^wh_param),0)

wh_seed<-ifelse(wh_weev>20,0,wh_seed)

bc_seed<-length(neigh_5[neigh_8==2])/40

bc_para<-length(neigh_3[neigh_3==2])

seeds<-wh_seed + rm_seed + ifelse(bc_para>0.5,0,bc_seed)

N[i,j]<-ifelse(seeds==0,0,

ifelse(R[i,j]*seeds<wh_seed,5,

ifelse(R[i,j]*seeds<wh_seed+rm_seed,3,1)))

}

#small black cherry

if (M[i,j] == 1)

{

i1m<-ifelse(i-1>0.5,i-1,1)

i1p<-ifelse(i+1<grid_len1+0.5,i+1,grid_len1)

j1m<-ifelse(j-1>0.5,j-1,1)

j1p<-ifelse(j+1<grid_len2+0.5,j+1,grid_len2)

i2m<-ifelse(i-2>0.5,i-2,1)

i2p<-ifelse(i+2<grid_len1+0.5,i+2,grid_len1)

j2m<-ifelse(j-2>0.5,j-2,1)

j2p<-ifelse(j+2<grid_len2+0.5,j+2,grid_len2)

neigh_1<-c(M[i1m:i1p,j1p],M[i1m:i1p,j1m],M[i1p,j],M[i1m,j])

neigh_2<-c(M[i2m:i2p,j2p:j1p],M[i2m:i2p,j2m:j1m],M[i2p:i1p,j],M[i2m:i1m,j])

big_neigh<-length(neigh_1[neigh_1==2 | neigh_1==4])

48



big_bc_neigh<-length(neigh_2[neigh_2==2])

small_to_big <- bc_g_i + bc_g_s*big_neigh

small_to_dead <- bc_sm_i + bc_sm_s * big_bc_neigh

N[i,j]<-ifelse(R[i,j]< small_to_big,2,ifelse(R[i,j] > 1- small_to_dead, 0,1))

}

#big black cherry

if (M[i,j] == 2)

{

N[i,j]<-ifelse(R[i,j]<bc_m,0,2)

}

#small red maple

if (M[i,j] == 3)

{

i1m<-ifelse(i-1>0.5,i-1,1)

i1p<-ifelse(i+1<grid_len1+0.5,i+1,grid_len1)

j1m<-ifelse(j-1>0.5,j-1,1)

j1p<-ifelse(j+1<grid_len2+0.5,j+1,grid_len2)

neigh_1<-c(M[i1m:i1p,j1p],M[i1m:i1p,j1m],M[i1p,j],M[i1m,j])

big_neigh<-length(neigh_1[neigh_1==2 | neigh_1==4])

small_to_big <- rm_g_i + rm_g_s*big_neigh

small_to_dead <- rm_sm

N[i,j]<-ifelse(R[i,j]< small_to_big,4,ifelse(R[i,j] > 1- small_to_dead, 0,3))

}

#big red maple

if (M[i,j] == 4)

{

N[i,j]<-ifelse(R[i,j]<rm_m,0,4)

}

#witch ahzel

if (M[i,j] == 5)

{

N[i,j]<-ifelse(R[i,j]<wh_m,0,5)

}
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} #j

} #i

M<-N

print(run)

if (run == num_runs)

{

image(M,col=my_colors,asp=1,xaxt=’n’,yaxt=’n’)

}

} #runs

dev.off()
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CHAPTER V

Deviation from a power law represents a signal of

regime change in Michigan deciduous forest

5.1 Introduction

Confronting uncertainty in the condition of environmental variables, a great deal

of attention has recently focused on the way in which ecosystems are likely to undergo

regime changes, large rapid shifts that can occur in ecosystems and that are often

attributed to alternative stable states (Scheffer and Carpenter, 2003). The search for

ways to identify when an ecosystem is on the precipice of a regime change has thus

become a major priority for ecological research (Scheffer and Carpenter, 2003; Kéfi

et al., 2007; Rietkerk et al., 2004a; Solé et al., 1999). The challenge is to link known

ecosystem principles with necessary changes, frequently done through complicated

analytical modeling, as, for example, in the case of water use of xerophyllic plants

(Kéfi et al., 2007). Empirical support for detection methods is frequently scant since

measurements before, during and after the regime change are rarely available.

Here we report on the application of recent theoretical understanding of forest

structure to the search for indications of regime change. From a theoretical point of

view we use a popular form of metabolic theory (West et al., 2009) to predict the

distribution of trunks in a forest and limbs on a tree. This theory has done a good
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job explaining patterns observed in long-term forest dynamics plots (Enquist et al.,

2009). We compare the predictions of this theory to the patterns observed in a forest

undergoing a major transition in species composition. We find major deviations

between the predictions of this theory and observed patterns in this transitioning

forest. We suggest this technique, testing simple predictions of metabolic theory, as

a tool to assess whether other forests are undergoing a regime shift.

5.2 Methods

The forest in question is located on the E.S. George Reserve near Ann Arbor,

Michigan, property of the University of Michigan. It is a transitional forest, with

an upper canopy dominated by Quercus spp. and Carya spp., and an understory

dominated by Prunus serotina and Acer rubrum. The transition obviously underway

is similar to many forests in Eastern North America, in which the so-called “Red

Maple Paradox” (Abrams, 1998, 1992). The regime change from an Quercus–Carya

forest to a A. rubrum–P. serotina forest is evident with not much more than a casual

walk through this forest—most of the very big trees are Quercus or Carya and the

smaller pole-size trees are usually A. rubrum or P. serotina. See Section 4.2 for a

more complete discussion of this transition. A 22ha plot was established on this site

and all trees greater than 10cm GBH were identified, measured and georeferenced—

over 25,000 stems (Jedlicka and Vandermeer, 2004). The number of individuals from

five species in each of 25 size classes is given in Table 5.1. Given its transitional state,

this forest offers an opportunity to test methods of detecting when a system is on the

border of regime change.

Following the metabolic theory (West et al., 2009) we assume that the “normal”

condition of an intact forest is that sizes of both branches on individual trees and

trunks in the forest follow a power-law distribution of the same scaling exponent.

This theory also predicts that the average nearest neighbor distance between two
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GBH (cm) P. serotina A. rubrum Q. velutina Q. alba C. ovata C. glabra
10 to 19 2751 2236 49 54 17 92
20 to 29 1825 1093 27 36 35 71
30 to 39 1032 541 18 44 21 94
40 to 49 479 278 19 34 22 90
50 to 59 263 133 25 46 14 73
60 to 69 171 85 19 46 9 53
70 to 79 85 55 34 61 6 43
80 to 89 78 48 60 51 3 22
90 to 99 44 36 92 49 3 22
100 to 109 35 18 119 47 3 28
110 to 119 20 25 134 53 7 32
120 to 129 11 12 157 66 2 31
130 to 139 23 9 132 54 4 34
140 to 149 21 8 122 58 6 32
150 to 159 18 7 115 50 2 25
160 to 169 6 10 90 33 0 21
170 to 179 15 2 65 37 0 12
180 to 189 11 2 54 21 0 4
190 to 199 7 2 32 21 0 5
200 to 209 1 1 16 16 0 1
210 to 219 4 2 18 7 0 1
220 to 229 1 2 7 3 0 0
230 to 239 2 3 9 4 0 0
240 to 249 1 3 1 2 0 0
250 to 259 0 0 0 0 0 0
260+ 0 0 3 0 0 0

Table 5.1: Basal stem size classes of five common species in the Big Woods plot.
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stems in a given size class scales linearly with the DBH of trees within that size

class on a log-log plot. To assess the first prediction we located individuals either

of smaller trees or naturally wind-thrown larger trees and measured the diameters

of every branch larger than 5cm in cirumference. From our Big Woods data set we

found the DBH of all trunks, and calculated the nearest neighbor distance by size

class.

Fitting power laws by least squares linear fit of log-log frequency distributions is

problematic (White et al., 2008; Clauset et al., 2009). Thus we use the maximum-

likelihood method of Clauset et al. (2009). We also use Clauset et al.’s (2009) good-of-

fit test. The data set is compared to a power-law model using a Kolmogorov–Smirnov

statistic. One thousand power-law distributed synthetic data sets with the same α

and same number of observations, n, are created. Each of the synthetic data sets is

compared to its own power-law model using the Kolmogorov–Smirnov statistic. The

fraction of these synthetic data sets with a larger Kolmogorov–Smirnov statistic than

the original data is the p-value. That is p is the fraction of the time that the observed

data looks more power-law distributed than synthetic data actually drawn from a

power-law distribution. Clauset et al. (2009) rule out the power-law distribution if

p ≤ 0.1.

5.3 Results

Fitting a power-law distribution to the branch circumferences gives a scaling ex-

ponent of 2.67 (Figure 5.1). This fit is better, has a lower Kolmogorov–Smirnov

statistic, than 25.1% of synthetic data sets drawn from the same power-law distribu-

tion. Thus there is relatively good support that these data are power-law distributed,

as is predicted by the metabolic theory of West et al. (2009).

Fitting a power-law distribution to the GBHs of all the trees in the Big Woods

gives a scaling exponent of 2.10 (Figure 5.2). But this is a poor fit, all of the synthetic
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Figure 5.1: Frequency distribution of branch circumferences of wind-thrown trees in
the Big Woods Plot on a log-log plot. The power law was fit with the
maximum-likelihood methods of Clauset et al. (2009), not by with a least
squares linear fit. The scaling exponent is 2.67, and Clauset et al.’s (2009)
bootstrapping goodness-of-fit test supports—or at least does not reject—
the power-law distribution.
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Figure 5.2: Frequency distribution of GBH of trees in the Big Woods Plot on a log-
log plot. The maximum-likelihood power-law fit has a scaling exponent of
2.10, but Clauset et al.’s (2009) bootstrapping goodness-of-fit test rejects
the power-law distribution.

data sets drawn from such a power-law distribution have a lower Kolmogorov–Smirnov

statistic (p = 0.000). Thus we can safely reject a power-law distribution, a deviation

from the predicts of West et al. (2009). From Figure 5.2 it is quite clear that this

deviation comes from the bulge in number of trees with a GBH between 81 and 200cm;

there are “too many” medium-to-large trees.

We know that the forest is undergoing a drastic change in species composition

as the Quercus and Carya in the canopy die out and are replaced by other species.

Also the size-distribution of these trees, especially the Q. velutina, in Table 5.1 shows

a similar bugle in the same size range. Thus we repeated the power-law analysis of

GBHs but with the Quercus and Carya removed. Now we get a scaling exponent

of 2.51, and support (p = 0.141) that these GBHs are power-law distributed (Figure
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Figure 5.3: Frequency distribution of GBH of trees in the Big Woods Plot with Quer-
cus and Carya removed on a log-log plot. he maximum-likelihood power-
law fit has a scaling exponent of 2.51. The power-law distribution is
supported by Clauset et al.’s (2009) goodness-of-fit test.

5.3). Additionally this scaling exponent is quite close to the scaling exponent fit for

the branches, as predicted by West et al.’s (2009) metabolic theory.

This forest deviates from other predictions of metabolic theory. Enquist et al.

(2009) predict that the average distance between individuals within the same size

class should scale linearly, on a log-log plot, with that size class’s trunk size. They

find close adherence to this prediction in Barro Colorado Island and San Emilio forest

plots. Here we find middle-to-large sized trees closer together than expected by this

prediction (Figure 5.4). Again if we remove the Quercus and Carya individuals the

data fit the prediction.
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Figure 5.4: Average nearest neighbor distance between trees in the trunk-diameter
size class. Each size class is 10 cm large. Standard error bars are in-
dicated and when they are too small just with dashes. Black is for all
trees and gray with the oaks and hickories removed. The metabolic the-
ory of Enquist et al. (2009) predicts as linear relationship, as seen in
the Quercus- and Carya-removed data. With those trees included the
medium-to-large trees are closer together than predicted by the theory.
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5.4 Dicussion

The Big Woods forest shows clear and systematic deviations for the predictions of

West et al.’s (2009) metabolic theory and from the patterns observed in other forests

(Enquist et al., 2009). At some level this is not surprising. That theory was developed

for equilibrium communities, which this forest definitely is not. We know that the

forest is undergoing a drastic change in species composition as the canopy Quercus

and Carya are replaced by P. serotina and A. rubrum (see Section 4.2). This dynamic

has been observed in other forests (Abrams, 1998; Zhang et al., 2000; Heitzman et al.,

2007; McDonald et al., 2003). But these deviations offer an important insight into the

structure of these changing forests. This forest is effectively a “normal” forest with

extra medium- and large-sized Quercus and Carya packed into it. When these trees

are removed we recover the patterns predicted by West et al. (2009). In fact although

West et al.’s (2009) theory predicts a scaling exponent of about two, Enquist et al.

(2009) found that in other mid-successional forests the exponent was much higher, as

high as three. So our value of approximately 2.5 when me remove the Quercus and

Carya is in line with other mid-successional forests.

Further this result shows that more generally deviation for the predictions of

metabolic theory may provide a signal for regime change. Finding such signals is of

great important (Scheffer and Carpenter, 2003; Kéfi et al., 2007). Here of course we

have a good understanding of how this change will happen (see Chapter IV), but in

other systems where the ecology is not as well understood a priori comparing against

the predictions of a simple metabolic theory may offer a relatively easy test.
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CHAPTER VI

When are habitat patches really islands?

6.1 Introduction

It is often the case that shabitats occur in a patchwork, vaguely suggestive of

“islands” of suitable habitat in a “sea” of unsuitable habitat, and bringing to mind

modern theoretical formulations, such as island biogeography. But is this framework

legitimate? That is, do we have reason to believe that the habitat patchwork so com-

mon in terrestrial systems do indeed accord with what has come to be understood

about “real” islands. The equilibrium theory of Island Biogeography (MacArthur

and Wilson, 1967) makes predictions about the number of species inhabiting an is-

land based on that island’s size and distance from the mainland. It has been successful

at explaining patterns of biodiversity on oceanic islands (Simberloff and Abele, 1976),

some habitat island situations (Brown and Kodric-Brown, 1977), and most recently

has provided a framework to think about biodiversity in fragmented landscapes (Sim-

berloff and Abele, 1976). Here we suggest another application—that the predicted

patterns of the theory could be used to infer whether the extinction/recolonization

process is operative in a given system. This would allow one to determine whether,

for a given set of species in a given landscape, a system of putative islands is really

one of biological islands. A similar conceptual framework was put forth by Bond

et al. (1988), but here we combine it with a modern resampling based statistical ap-
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proach. We use this application to determine whether a particular system of island

hummocks in a hardwood swamp in southern Michigan function as biological islands

with regards to the trees growing on them.

The equilibrium theory of island biogeography assumes that on a given island

extinctions are inevitable and take place at a rate inversely proportional to the size of

that island. These extinctions are countered by recolonization of the island from the

mainland, which happens at a rate inversely proportional to the distance from the

mainland. The best way to test whether putative islands are biological ones would

be to directly measure these extinction and colonization rates, but for long-lived

organisms these processes take place over a time scale too large to easily measure.

The theory of island biogeography provides predictions based on these assumptions of

extinction/colonization species turnover that allow us to infer this turnover without

directly measuring it. These predictions are: (1) larger islands have more species

and (2) islands closer to the mainland have more species. If we take an “island”

to be nothing more than a sample of a particular size embedded in the mainland,

recolonizations of the “island” will happen at the greatest possible rate. This gives

rise to a third prediction (3) islands should have fewer species than areas of equal size

sampled on the mainland.

Here we test these three predictions in a system of eight terrestrial hummocks

located in a swamp that abuts a Quercus–Carya forest. The tree flora on each island

is evidently a subset of the tree flora of the nearby Quercus–Carya forest. If the

above predictions are met for the pattern of tree diversity on the islands we can infer

the extinction/recolonization turnover and thus the island nature of the hummocks.

On the other hand if the predictions are not met, these hummocks are just extensions

or samples of the nearby forest and the application of island thinking is illegitimate.

We are additionally interested to see how these patterns differ if we look at trees of

different successional stages within the forest.
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6.2 Methods

The study site is part of the E.S. George Reserve, owned and operated by the

University of Michigan consisting of a mosaic of forests, old fields and aquatic habitats.

The terrestrial habitats have been strongly influenced by human activities, the old

fields a consequence of row crops and pasture in the earlier parts of the twentieth

century and the Quercus–Carya woodlots a likely consequence of fires resulting from

Native American agriculture and hunting prior to European colonization.

The canopy of the forest is dominated by Quercus alba and “black” oak, the

later being a hybrid swarm of Q. velutina, Q. rubra, and occasional Q. coccinea

(Voss, 1985), as well as Carya glabra, C. ovata, and C. cordiformis. The Quercus–

Carya dominance has been interpreted as a consequence of Native American hunting

and agriculture and the fires escaped therefrom. Subsequent to fire exclusion with

European colonization, the subcanopy and understory have been taken over by Acer

rubrum, Prunus serotina, and Hamamelis virginiana , plus 15 other less common

species, with very few Quercus in the subcanopy. This shift in species composition of

some northeastern North American forests since European colonization—marked by a

decrease in the number of Quercus and increase in the number of Acer rubrum—is well

described (Abrams, 1998; Zhang et al., 2000; Heitzman et al., 2007; McDonald et al.,

2003; Dickmann and Leefers, 2006). In an 12ha permanent plot on the “mainland” all

trees greater 10cm GBH have been marked, measured, and mapped. This permanent

plot will be referred to as the “mainland.” Further details on the site and census

methodology can be found in Jedlicka and Vandermeer (2004).

The hummocks are located in an extensive and diverse swampland, known locally

as Big Swamp (Figure 6.1). The forest on each of these hummocks is similar to the

mainland forest, with the tree flora on each a subset of the Big Wood tree flora.

On each hummock two to four (depending on its length) 5m belt transects were

conducted across the short dimension of the island and all trees with GBH greater
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than 10cm were recorded. We ignored any individuals that grew right along the

swamp-island border, as these were mostly swamp trees not colonists from the Big

Woods. The transects were spaced evenly along the long axis of the island. Afterwards

an observational sweep of the island was conducted to record any species that were

missed in the transect samples. The transects provided information on the relative

abundances of the species on the island, while the sweep gave the total species number

on the island. These data were collected in 2007 and 2008 and pooled to get a more

complete accounting for the species number of each island. The lists of species found

on each island is presented in Table 6.1.

Big Woods (Mainland) Big Island Little Big Island
Acer rubrum Acer rubrum Acer rubrum

Acer saccharum Ailanthus altissmia Amelanchier arborea
Ailanthus altissima Amelanchier arborea Carya cordiformis

Amelanchier arborea Carya cordiformis Carya glabra
Betula alleghaniensis Carya glabra Cornus florida

Carya cordiformis Carya ovata Elaeaguns umbellata
Carya glabra Cornus floria Hamamelis virginiana
Carya ovata Elaeagnus umbellata Populus grandidentata

Celtis occidentalis Hamamelis virginiana Prunus serotina
Cornus florida Lonicera tatarica Quercus alba

Elaeagnus umbellata Malus sp Quercus velutina
Fagus grandifolia Ostrya virginiana Sassafras albidum

Fraxinus americana Populus grandidentata Ulmus americana
Hamemelis virginiana Prunus serotina

Juglans nigra Prunus virginiana
Lonicera tatarica Quercus alba

Malus sp Quercus velutina
Ostrya virginiana Rhus sp

Populus grandidentata Sassafras albidum
Prunus serotina Ulmus americana

Prunus virginiana
Quercus alba

Quercus velutina
Rhus sp

Robinia pseudoacacia
Sassafras albidum
Thuja occidentalis
Tilia Americana
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Ulmus americana
Duloticus East Island Duloticus West Island Bee Island

Acer rubrum Acer rubrum Acer rubrum
Amelanchier arborea Amelanchier arborea Amelanchier arborea

Carya glabra Carya glabra Carya glabra
Cornus floria Carya ovata Carya ovata

Elaeagnus umbellata Cornus floria Elaeagnus umbellata
Fraxinus americana Elaeagnus umbellata Hamamelis virginiana

Hamamelis virginiana Hamamelis virginiana Ostrya virginiana
Populus grandidentata Ostrya virginiana Populus grandidentata

Prunus serotina Prunus serotina Prunus serotina
Quercus alba Quercus alba Quercus alba

Quercus velutina Quercus velutina Quercus alba
Sassafras albidum Ulmus americana Ulmus americana
Tilia Americana
Ulmus americana

Hourglass North Island Hourglass South Island Period Island
Amelanchier arborea Acer rubrum Carya glabra

Carya glabra Amelanchier arborea Elaeagnus umbellata
Elaeagnus umbellata Carya glabra Prunus serotina

Hamamelis virginiana Elaeagnus umbellata Quercus velutina
Quercus alba Hamamelis virginiana

Quercus velutina Prunus serotina
Sassafras albidum Quercus alba
Tilia Americana Quercus velutina
Ulmus americana

Table 6.1: Species lists for the Big Swamp hummocks—
our putative “islands.”

To resample the transects we randomly selected 100 individuals from the tran-

sect(s) on a given island and then 100 individuals from a randomly place “transect”

on the Big Woods mainland of the same size as the island transect(s). We repeated

this process 1000 times to find the difference in number of species for each island

samples compared to similar samples of the mainland. This difference was compared

to the distance between the island and mainland and the area of each island. The

distance to the mainland was taken as the distance from the northern edge of each

island to the northern edge of the swamp. The area to the south of the swamp has

only recently been reforested after a long history of grazing and agriculture, while the
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Name Area (m2) Distance (m) Number of Species
Big 80571 66 20
Little Big 15003 199 14
Bee 12780 464 12
Duloticus East 10558 84 12
Duloticus West 7224 164 14
Hourglass North 6665 371 10
Hourglass South 5560 454 8
Period 1575 769 4

Table 6.2: The area, distance to the mainland, and number of species for each of the
Big Swamp hummocks.

area to the north has been continuously forested at least since 1940 (see Figure 6.1)

and considered to be the main source area. The areas were estimated when we con-

ducted the transects in October 2008. The size of the islands is variable expanding in

dry times, during the driest Duloticus east and west and Hourglass south and north

each form single islands. The area and distance to the mainland for each island are

reported in Table 6.2.

This resampling was then redone separately with two subgroups of species. The

first, called the “old” species, included the five “canopy” species which have formed

canopy of the Big Woods forest currently and before European colonization: Q. alba,

Q. velutina, C. glabra, C. ovata and C. cordiformis. The second group, called the

“young” species included all others, which maybe have been present in the Big Woods

before European colonization but have most likely greatly increased their numbers

(Abrams, 1998; Zhang et al., 2000; Heitzman et al., 2007; McDonald et al., 2003;

Dickmann and Leefers, 2006). This will allow us to examine the temporal scale of

island colonization.

6.3 Results

Our results confirm the prediction of the theory of island biogeography; larger

island had more species and islands closer to the mainland had more species (Fig-
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ure 6.2). In addition resamples of the transects of the four islands closest to the

mainland—all less than 250m away—did not have a significantly different number of

species than Big Woods samples of the same size (Figure 6.3). On the other hand,

Big Woods resamples had significantly more species than resamples of the transects

of the four islands farther than 250m away from the mainland (Figure 6.3). The Big

Woods samples had between, on average, one to three-and-a-half more species than

the island samples.

This difference is species number was solely driven by the difference in the number

of “young” species. The Big Woods resamples had significantly more “young” species

than the island resamples for the four farthest islands (Figure 6.4). While, for all

islands, no matter their distance from the mainland, there was no statistical difference

between the number of “old” species in the island resamples and in the Big Woods

resamples (Figure 6.4).

6.4 Discussion

These results suggest that the hummocks located at a distance greater than about

250m function biologically as islands, while the closer islands, even though they are

not contiguous, are functioning biologically as extensions of the forest. Thus nearby

islands are recolonized at a rate not that much different than the mainland recolonizes

local extensions within itself, while the furthest island recolonization rates are much

lower resulting in the lower species numbers.

Since the long term history of the area is well-known, we are able to further tease

out some of the island-like patterns. Specifically, since the Quercus overstory has

been in existence for 150 years or more, and the distinct assemblage of understory

has much more recently been dispersing into the overall area (we estimate, from cores,

about 30–40 years in process), we can separate the large trees from the small ones

and redo the above analysis. These results show that for the more recent species the
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Figure 6.2: The total number of species on each island versus that island’s (A) dis-
tance to the mainland and (B) area.
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Figure 6.3: The relationship between island distance from mainland and the number
of species in Big Woods samples minus the number in island transect
resamples. Bars indicate the standard error.
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Figure 6.4: The relationship between island distance from the mainland and the num-
ber of species in the Big Woods samples minus the number in the island
transects resamples broken up by species type. Bars indicate the standard
error. (a) For “old” species and (b) for “young” species, see Methods for
description of “old” and “young” species.
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hummocks look even more like biological islands, but for the older species there is

no relationship between distance and proportion. This may suggest that the island

pattern may be a temporary phenomenon until the more recent species in the forest

have time to colonize the farther islands.

This could also be explained by a stepping-stone model in which are farthest

islands are colonized from other islands not the mainland. This process could take

many decades to complete, in which case species which have a long history on the

mainland have had time to ‘step’ out to the farthest island, while those whose numbers

have increased only recently have not had time.

The procedure of looking for pattern as a signal of the island biogeographic pro-

cess could be a useful way to assess the impact of habitat fragmentation in human-

impacted systems. It could be used to determine if a system of fragmented habitat

function as biological islands, and more specifically for which segment of the biota

they do. It may be possible to use such a technique to assess matrix quality generally,

or, if known, the effect of particular constructs of the matrix (row cropping versus

pastures, for example).
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