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ABSTRACT 

 

Human Exposure to Brominated Flame Retardants and Reproductive Health 

 

by  

 

Paula Ingrid Johnson 

 

 

 

Chair: John D. Meeker 

 

 

Brominated flame retardants (BFRs) such as polybrominated diphenyl ethers 

(PBDEs) and other compounds are used in the manufacture of a variety of materials and 

consumer products to meet fire safety standards. BFRs persist in the environment and 

have been detected in wildlife, humans and indoor dust and air. Some BFRs have 

demonstrated adverse endocrine and reproductive effects, but human studies are limited. 

We investigated markers of exposure to BFRs using serum, ovarian follicular fluid and 

house dust collected from men and women attending infertility clinics. House dust 

concentrations of the major pentaBDE commercial formulation congeners (BDE 47, 99 

and 100) were highly correlated (r=0.65-0.89) to serum concentrations of the same 

congeners, suggesting that dust is a major exposure source of these PBDEs. Serum 

concentrations of these congeners were also strongly correlated (r=0.85) between males 

and females, indicating that adults living in the same household have similar exposures. 

PBDE congeners in dust were grouped into penta-, octa- and deca-BDEs, resembling 

commercial mixtures, and alterations in hormone levels in men were modeled in relation 



 

viii 

 

to PBDE exposure. Significant positive associations (p<0.05) were found between dust 

concentrations of pentaBDEs and serum levels of thyroid hormones T4 and T3, estradiol, 

sex hormone binding globulin (SHBG) and prolactin, along with an inverse association 

with follicle stimulating hormone. Positive associations between octaBDE concentrations 

and serum T4, thyroid stimulating hormone, luteinizing hormone and testosterone, and an 

inverse association between decaBDE concentrations and testosterone, were also found. 

Relationships between alternate BFRs and hormone levels were examined. 

Hexabromocyclododecane was associated with decreased SHBG and increased free 

androgen index. The association between serum and follicular fluid concentrations of 

PBDEs and failed embryo implantation was investigated. Women with detectable levels 

of BDE 153 in follicular fluid had elevated odds (adjusted OR=10.0, 95%CI: 1.9-52) of 

failed embryo implantation following in vitro fertilization (IVF), compared with women 

who had non-detectable concentrations. There was only a moderate correlation (T<0.4) 

between serum and follicular fluid concentrations of PBDEs; therefore follicular fluid 

PBDEs, which may be a more biologically relevant measure of exposure when studying 

IVF endpoints, may not be well-estimated by serum concentrations of PBDEs.
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CHAPTER I 

Introduction 

 

Endocrine disrupting chemicals, substances that impede normal hormone 

synthesis, metabolism or action, have been implicated by a growing amount of animal 

and human evidence as a significant public health concern. Temporal and geographical 

disease trends point to environmental factors associated with endocrine disruption. For 

instance, male testosterone levels and semen quality have declined over the past several 

decades without a known cause (Swan et al. 2000; Travison et al. 2007), and rates of 

hypospadias and crytorchidism (abnormal reproductive tract development) (Paulozzi 

1999) and testicular cancer (Huyghe et al. 2003) have increased, particularly in 

industrialized nations. Rates of congenital hypothyroidism and thyroid cancers in the US 

have been rising and cannot be explained simply by increased medical diagnoses 

(Enewold et al. 2009). Additionally, rates of impaired fecundity are on the rise according 

to US national statistics and reduced fertility remains a challenge worldwide (Chandra et 

al. 2005). Brominated flame retardants (BFRs) have been implicated as endocrine 

disruptors in a limited but growing body of scientific studies. 

BFRs are a group of chemicals added to many types of consumer products (e.g. 

furniture, carpet padding, draperies, and electronics) and other applications (e.g. 

automobile seats and aircraft) to increase their fire resistance. BFRs release bromine 

atoms at high temperatures, capturing free radicals and halting the chemical reactions of 
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fires. In response to increasing fire safety regulations, the global use of BFRs has 

increased exponentially since the 1970s, to about 410,000 metric tons annually (Shaw et 

al. 2010). There are numerous types of flame retardants, and BFRs are one subset, with 

several different types comprising this subset. Most BFRs are additive, or mixed into, 

rather than chemically bound to the polymer material of the end product. BFRs 

commonly comprise up to 5% of the weight of the polyurethane foam in furniture or 

padded baby products, and 20% or more of the weight of plastics in electronic devices 

(Allen et al. 2008). BFRs can leach into the environment from the products or the 

material containing the BFR may physically degrade into dust particles. 

BFRs are persistent bioaccumulative compounds that have become ubiquitous in 

the environment, in wildlife and in people, particularly in North America where their use 

is greatest and fire safety standards are strict. Some BFRs, such as certain 

polybrominated biphenyl ethers (PBDEs) have been banned or voluntarily phased out by 

manufacturers because of their toxicity and environmental persistence. Despite 

restrictions, older products, both still in use and in waste or recycling streams, continue to 

be a source of exposure.  Several decades of high-volume use has resulted in pound levels 

of PBDEs in indoor and transportation environments (Shaw et al. 2010). This level of 

indoor contamination makes PBDEs unique among toxic chemicals. Additionally, as 

PBDEs are phasing out, they are being replaced by alternative chemicals with similar 

structure and little or no information on health or environmental impacts. Moreover, the 

public and scientific communities have begun to question the use of flame retardants, 

with respect to their benefits versus risks (DiGangi et al. 2010). 
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PBDEs share a similar structure to polychlorinated biphenyls (PCBs) which were 

banned from production in the US in 1979. Epidemiological studies provided evidence 

that PCBs impair thyroid homeostasis, cognitive function and sexually dimorphic 

behavior (as reviewed by Talsness 2008). Most of the available BFR monitoring and 

toxicity data is for PBDEs. PBDEs have demonstrated neurotoxic and adverse endocrine 

and reproductive effects in animal studies, but human health studies are limited despite 

evidence of exposure through dietary intake and contact with or inhalation of indoor dust 

(as reviewed by Costa and Giordano 2007; Darnerud 2008; Talsness 2008). 

Because PBDEs have been measured in various foods, intake of contaminated 

food had been assumed to be the primary source of human exposure (Bocio et al. 2003; 

Ohta et al. 2002; Schecter et al. 2008), similar to the exposure scenario for PCBs. 

However, additional studies acknowledged that because US body burdens of PBDEs 

were so high compared to other countries with a similar degree of food contamination, 

food could not be the main source, and the indoor environment must play a major role in 

the exposure of Americans to PBDEs (Johnson-Restrepo and Kannan 2009; Lorber 2008; 

Schecter et al. 2006). It was estimated that 91% of a breast-fed infant's body burden is 

acquired via breast milk, but by the age of 1 to 5 years, 77% of the body burden is a result 

of increased hand-to-mouth contact with indoor dust (Johnson-Restrepo and Kannan 

2009). Exposure to PBDEs in house dust was estimated, using pharmacokinetic 

modeling, to account for 82% of the body burden of American adults (Lorber 2008). 

Body burdens of young children are typically higher than those of adults in the same 

household (Lunder et al. 2010). Concentrations of PBDEs measured in people in the US 

and Canada are generally an order of magnitude higher than those from Europe or Asia, 
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which follows commercial use patterns for those countries (Hites 2004; Schecter et al. 

2003). Occupational exposures are also of concern, particularly in electronic dismantling 

environments where workers have elevated levels of specific PBDE congeners associated 

with the types of materials in those environments (Qu et al. 2007; Sjödin et al. 1999). 

The majority of the toxicological studies on BFRs have focused on effects on the 

thyroid system. In particular, several rodent studies demonstrated lower levels of the 

thyroid hormone thyroxine (T4), some with a measurable corresponding increase in 

thyroid stimulating hormone (TSH), in response to administration of PBDEs (Ellis-

Hutchings 2006; Fowles 1994; Hallgren 2001; Kuriyama 2007; Skarman et al. 2005; 

Stoker et al. 2005; Zhou 2001, 2002). PBDEs are thought to disrupt thyroid homeostasis 

mainly by competing with T4 for binding to transthyretin (TTR) (Meerts et al. 2000), or 

possibly by binding directly to thyroid hormone receptors (Marsh et al. 1998). Human 

epidemiological studies do not seem to be consistent with animal models, as most studies 

found positive associations between PBDE exposure and T4 levels (Bloom et al. 2008; 

Dallaire et al. 2009; Gascon et al. 2011; Meeker et al. 2009a; Turyk et al. 2008; Wang et 

al. 2010). However, the mechanism of thyroid hormone disruption in rodents may differ 

from humans due to differences in thyroid hormone transport proteins. In humans, 

thyroxine-binding globulin (TBG) is the major protein that binds circulating T4 

(Klaassen, ed. 2001). TBG has approximately a thousand times the binding affinity for 

T4 than does TTR. While TTR is also present in humans at a lesser percent, it is less 

important to the transport of T4 as compared to rodents which do not have TBG. This 

difference may be one reason why rodents may be more sensitive to thyroid perturbations 

by the stimulation of TSH. Nevertheless, alterations in thyroid hormone levels in humans 
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may be an important indicator of potential disease, and rodent studies may still be 

informative, particularly if performed using exposure concentrations relevant to humans. 

Thyroid hormone homeostasis is very important to physiological processes such as 

normal brain development, metabolism and reproductive function, and the alteration of 

this homeostasis is one possible mechanism by which PBDEs may affect the health of 

humans and other animals. 

Animal studies have shown that BFRs can also alter reproductive hormone 

homeostasis. Specifically, several studies demonstrate anti-androgenic activity of BFRs 

both in vitro and in-vivo, including alterations of hormone levels, delayed puberty, and 

decreased growth of androgen-dependent tissues (Hamers et al. 2006; Kuriyama 2005; 

Stoker et al. 2005; Stoker 2004; Ven et al. 2008). The endocrine disrupting properties 

may be dependent on the specific structure of the compound or its metabolites. For 

instance, depending on the degree of bromination, PBDEs may have either estrogenic or 

antiestrogenic effects (Hamers et al. 2006; Meerts et al. 2001). Because different PBDE 

congeners may have different effects, studying PBDE exposure becomes complicated by 

the numerous congeners that are measurable in environmental and biological samples. 

Comparing between studies is difficult, especially when experimental studies expose 

animals to a congener mixture or when epidemiological studies only report analyses 

using summed PBDE congeners. 

The present research utilizes data and environmental and biological samples from 

two large ongoing studies of environmental exposures among couples undergoing 

assisted reproductive technologies. Serum, follicular fluid and house dust are examined 

as markers of exposure to BFRs for environmental epidemiology studies. Alterations in 
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serum thyroid and reproductive hormones in men and early pregnancy loss (failed 

implantation) in women undergoing in vitro fertilization (IVF) are the health outcomes 

investigated in relation to BFR exposure. The validity of using house dust as an exposure 

marker is examined in Chapter 2, where house dust concentrations of PBDEs are 

compared to serum concentrations in male-female couples residing in the homes. 

Correlations are examined in detail on a congener by congener basis, as well as 

correlations within couples. The relative importance of house dust to body burdens of 

PBDEs and different dust collection methods are discussed. The findings on dust and 

serum correlations in Chapter 2 are used to inform the methods of data analysis in 

Chapter 3, in terms of synthesizing PBDE congener groupings for the statistical modeling 

of the relationships between PBDE exposure and hormone levels in men. Several 

methods were employed to analyze these relationships, including a factor analysis of all 

congeners detected in dust. Additionally, concentrations of alternate BFRs that are 

replacing PBDEs and their relationships to hormone levels are investigated, which has 

not previously been studied. Chapter 4 explores the relationship between serum and 

ovarian follicular fluid concentrations of PBDEs, which is a novel measurement in 

humans. Finally, the association between PBDE concentrations in both matrices and 

failed embryo implantation is investigated. 

This research is important to improve our understanding of the exposure routes 

and health risks associated with BFRs and to provide guidance on the use of 

environmental and biological markers of exposure in environmental epidemiology 

studies. The use of BFRs is a current topic widely under debate, and this research adds to 

the growing evidence that BFR exposure may have adverse implications for humans. The 
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use of infertility clinic cohorts provides a unique perspective from which to study human 

exposure to environmental contaminants relevant to reproductive function. 
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CHAPTER II 

Relationships between Polybrominated Diphenyl Ether Concentrations in House Dust 

and Serum 

 

 

Abstract 

Polybrominated diphenyl ethers (PBDEs) have been measured in the home 

environment and in humans, but studies linking environmental levels to body burdens are 

limited. This study examines the relationship between PBDE concentrations in house dust 

and serum from adults residing in these homes. We measured PBDE concentrations in 

serum and in house dust from 12 male-female couples enrolled in an ongoing study of 

male reproductive health. Detection rates, dust-serum and within-matrix correlations 

varied by PBDE congener. There was a strong correlation (r = 0.65-0.89, p < 0.05) 

between dust and serum concentrations of several predominant PBDE congeners (BDE 

47, 99 and 100). Dust and serum levels of BDE 153 were not correlated (r < 0.01). Serum 

concentrations of the sum of BDE 47, 99, and 100 were also strongly correlated within 

couples (r = 0.85, p = 0.0005). This study provides evidence that house dust is a primary 

exposure pathway of PBDEs and validates the use of dust PBDE concentrations as a 

marker for exposure to PBDEs.
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1. Introduction 

Polybrominated biphenyl ethers (PBDEs) are a group of flame retardant 

chemicals that have been added to numerous consumer products, such as home 

electronics (e.g. televisions, computers), textiles (e.g. carpeting, drapery) and items 

containing polyurethane foam (e.g. mattresses, upholstered furniture) to meet fire safety 

standards and to slow burning in case of fire. There are 10 different homologue groups of 

PBDEs (mono- to deca-), that consist of 209 possible congeners, or combinations of the 

number and position of bromine atoms on the diphenyl ether backbone. These different 

compounds have different chemical, exposure and toxicological properties (1). 

Commercial formulations of PBDEs consist of a mixture of congeners and are mainly 

described as Penta-, Octa- and Deca- BDE. 

Due to concerns over the persistence of PBDEs in the environment and 

bioaccumulation in wildlife and particularly in human milk, the European Union banned 

the use of Penta- and Octa-BDEs in 2004 (2). The sole U.S. manufacturer phased out 

production of Penta- and Octa-BDEs in 2004. There is currently no U.S. federal 

regulation on the use of PBDEs, but several states have issued their own restrictions (3). 

DecaBDE has been the least studied formulation, in terms of exposure and health effects 

in humans, and it is still widely in use. BDE 209, which is the major component of the 

Deca commercial mixture, has the shortest half-life in the body (approximately 2 weeks), 

and it is more readily transformed or eliminated than the lower-brominated congeners (4). 

However, BDE 209 is found in the environment and can break down into the lower-

brominated congeners that are more bioaccumulative (5, 6). Although Penta- and Octa-

BDEs once in mass production are now banned in Europe and discontinued in the United 
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States, the general population continues to be exposed to these compounds due to their 

persistence and continued release into home environments from older products. 

Importation of products from countries that continue to use certain PBDEs is another 

potential exposure source (7). 

PBDEs are additive, or not chemically bound, and can leach out or physically 

degrade into particles and thus may end up in indoor air and house dust. Potential routes 

of exposure to these compounds include ingestion, inhalation and dermal uptake. 

Ingestion may include dietary exposure, particularly meats and dairy products that have 

accumulated PBDEs, but PBDE exposure has been estimated to be primarily from 

inhaling and ingesting dust (8, 9, 10, 11). In support of these assessments, a recent U.S. 

study found a stronger association of PBDE concentrations in house dust with PBDE 

levels in human breast milk than with reported consumption of meat or dairy products 

(12). However, that study's analysis did not include BDE 209 due to low detection rates 

in milk and dust. 

PBDEs have been shown to disrupt endocrine functions (13, 14), but human 

studies are limited. The few human studies that have been conducted to date have 

reported associations between PBDE exposure and altered hormone levels (15, 16, 17, 

18). Specifically, we recently reported that PBDE concentrations in dust from participant-

collected vacuum bags were associated with altered serum hormone levels in 24 men 

(18). In the present study, we measured PBDE concentrations in serum and in participant 

vacuum bag dust from couples (male and female partners living in same household) 

participating in the same ongoing study. The objective was to examine the relationship 

between dust and serum PBDE concentrations, as well as explore whether serum PBDE 
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concentrations were strongly correlated within-couple. Strong relationships between dust 

and serum PBDE concentrations may help identify dust as a primary exposure pathway 

and provide validation for the use of dust PBDE concentrations as estimates of exposure 

in epidemiological studies. 

 

2. Methods 

Couples living in the same household who were seeking fertility treatment were 

recruited from the Massachusetts General Hospital Fertility Center as part of an ongoing 

study of environmental exposures and reproductive health (18). Participants included 

men and women from infertile couples due to a male factor, a female factor, or a 

combination of both male and female factors. The study protocols were approved by the 

committees on research ethics at all participating institutions, and all participants signed 

an informed consent. 

2.1 House dust PBDEs 

Participants donated the current-use vacuum bags from their home between 2002 

and 2008. Participants wrapped the vacuum bags in aluminum foil and then sealed them 

in labeled plastic bags. In the one case where a bagless vacuum was used, the participant 

emptied vacuum dust directly into the plastic bag. Dust samples were stored at -20C until 

analysis. Dust was sieved using a 150 mesh sieve to obtain the fine fraction and analyzed 

for PBDEs using the method by Stapleton et al. (19, 20). Samples were spiked with 

internal and recovery standards, and four laboratory blanks were also spiked and 

analyzed alongside samples. PBDEs were quantified using an Agilent 6890 gas 

chromatograph coupled to an Agilent 5975 mass spectrometer (Agilent Technologies, 
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Santa Clara, CA, USA) operated in negative chemical ionization mode (GC/ECNI-MS). 

Laboratory blanks were low enough (<1%) that blank correction was not needed. 

Surrogate recoveries averaged 135%. 

2.2 Serum PBDEs 

 Serum samples (5 mL) collected from 12 male/female partners recruited into the 

ongoing study in 2007-2008 were sent on dry ice to the CDC Combustion Products and 

Persistent Pollutants Biomonitoring Laboratory in Atlanta, GA. The methodology for the 

analysis of PBDEs in serum has been published by Sjodin et al. (21). Briefly, samples 

were denatured with formic acid, diluted with water and fortified with internal standards 

prior to solid phase extraction (SPE) using a Rapid Trace modular SPE system (Caliper 

Life Sciences; Hopkinton, MA, USA). Determination of the target analytes was 

performed by gas chromatography isotope dilution high resolution mass spectrometry 

(GC-IDHRMS) employing a MAT95XP instrument (ThermoFinnigan MAT; Bremen, 

Germany). The serum lipid concentrations were determined using test kits from Roche 

Diagnostics (Indianapolis, IN) for total triglycerides and total cholesterol. Final 

determinations were made on a Hitachi 912 Chemistry Analyzer (Hitachi; Tokyo, Japan). 

All concentrations of PBDEs are reported as background subtracted. 

2.3 Data analysis 

Descriptive statistics were calculated for all PBDE congeners with at least 50% 

detection rates to examine the distributions by congener in house dust and serum. One 

half the detection limit was assigned to non-detect levels for the calculation of geometric 

means. Spearman's correlation coefficients were calculated to assess bivariate 

relationships between PBDE concentrations in house dust and serum, and between 
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different PBDE congeners within the same matrix. Spearman's correlation coefficients 

were also calculated to assess within-couple (female-male) correlations of serum PBDE 

concentrations.  

 

3. Results 

Table 2.1 presents the distribution and detection rates of PBDE congeners 

measured in house dust. Results are presented for 50 dust samples, although only the 12 

most recently collected dust samples were from couples who also provided serum 

samples for PBDE analysis. The distribution of PBDE concentrations of the 12 matched 

dust samples is similar to the distribution of the entire 50 samples analyzed. 

Concentrations of PBDEs (sum of all congeners) ranged from 980 to 44,546 ng/g dust. 

The geometric mean of summed PBDEs was 4,742 ng/g. All of the PBDE congeners 

detected were log-normally distributed.  BDE 209, the major congener in DecaBDE 

commercial mixtures, was the dominant PBDE congener, accounting for 43% on average 

of total PBDEs by weight in the dust samples. BDE 47 and 99, the two major constituents 

of the PentaBDE commercial mixture, made up 16% and 22% respectively, of total 

PBDEs on average. There were strong correlations (Spearman r ≥ 0.80, p < 0.05) among 

dust concentrations of PBDE congener groups with the same or close degree of 

bromination. A complete table of correlation coefficients for all detectable congeners in 

dust can be found in the Supporting Information (Table S1). 

Table 2.2 presents the distribution and detection rates of PBDEs measured in 

serum, shown as both total serum and lipid-adjusted values. BDE 47 was found at the 

highest median concentration in serum, followed by BDE 153 at the next to highest 



 

18 

 

median concentration. Several congeners, including BDE 209, had low detection rates 

(less than 30%). BDE 209 had the highest detection limit and was only detected in 2 of 

24 serum samples. The congeners with high detection rates in serum (BDE 28, 47, 99, 

100 and 153), components of the PentaBDE commercial mixture, were correlated with 

one another (r = 0.70-0.96, p < 0.05), with the exception of BDE 153, which is also a 

component of the OctaBDE mixture. A complete table of correlation coefficients for all 

detectable congeners in serum can be found in the Supporting Information (Table S2). 

Figure 2.1 compares the overall PBDE congener composition profiles of dust and 

serum samples. The compositions are represented as percent, by mass, of combined dust 

and serum samples. The dust and serum samples followed the same pattern with some 

exceptions. BDE 209 was the dominant congener in the majority of dust samples, 

although 11 of 50 samples had levels of BDE 99 higher than the other congeners, and 7 

of these samples also had levels of other congeners higher than BDE 209. In serum, BDE 

47 was found at the highest concentration in 17 out of 24 samples, while in 4 females and 

3 males, BDE-153 was found at a higher concentration than other congeners. 

Table 2.3 shows Spearman's correlations between dust and serum concentrations 

of PBDEs. Several congeners (BDE 17, 66, 85, 154, 183 and 209) had low detection rates 

(see Table 2.2) and were therefore not included in correlation matrices with dust 

concentrations. There was a strong correlation (r = 0.65-0.89, p < 0.05) between dust and 

serum concentrations for most BDE congeners with high detection rates (BDE 47, 99 and 

100). However, dust and serum levels of BDE 153 were not correlated (r < 0.01). There 

were strong correlations between several BDE congeners measured in dust and lower-
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brominated congeners measured in serum. For example, BDE 100 in dust was correlated 

with BDE 28 in serum (r = 0.79, p = 0.002). 

There was a strong correlation (r = 0.85, p = 0.0005) for serum concentrations of the 

major Penta formulation BDEs (sum of BDE 47, 99 and 100) between males and females 

of couples residing in the same household (Figure 2.2). However, serum levels of BDE 

153 were not significantly correlated within couples (r = 0.40, p = 0.19). A complete 

table of correlations between PBDE concentrations in male and female serum which 

includes all detectable congeners (BDE 28, 47, 99, 100, and 153) can be found in the 

Supporting Information (Figure S3). 

 

4. Discussion 

PBDE concentration ranges in dust and serum in the present study were similar to 

concentrations found in other studies conducted among North Americans (22, 23, 19, 36), 

and therefore the PBDE exposures among individuals in this study are likely 

representative of exposures of the general US population. There were strong correlations 

between dust concentrations of PBDE congener groups with the same or close degree of 

bromination. These relationships resemble the congener mixtures (PentaBDE, OctaBDE, 

or DecaBDE) in commercial products and suggest that the congeners originated from the 

same sources within the home. Because BDE 202 is not present at detectable levels in 

commercial formulations, its detection in dust samples may be indicative of 

environmental debromination of BDE 209 (24). BDE 209 was measured at the highest 

concentrations in dust, followed by BDE 99 and BDE 47. In contrast, BDE 47 and BDE 

153 were measured at the highest concentrations in serum. BDE 47 may dominate serum 
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samples due to dietary intake, as it was often found as the dominant congener in food 

items analyzed as part of a market basket survey (25). The predominance of BDE 47 in 

serum samples may also be due in part to gaseous inhalation, as BDE 47 has been found 

to be a dominant congener in indoor air (11, 26). However, it is not possible to evaluate 

possible contributions to exposure from diet or inhalation of volatile gases in the present 

study. 

Several congeners, including BDE 209, had low detection rates in serum and 

therefore conclusions regarding dust-serum or within-couple relationships for these 

congeners were not possible. Several congeners (BDE 28, 47, 99, 100, 153) had high 

detection rates, and therefore associations with PBDE concentrations in dust could be 

evaluated. There were strong correlations between dust and serum concentrations of the 

major Penta formulation BDE congeners 47, 99 and 100, which suggests that dust is a 

good measure of exposure to these congeners. Serum concentrations of these congeners 

were also strongly correlated between males and females of couples (Figure 2.2), which 

supports the use of a serum or dust measurement from one member of a couple living 

together to represent their partner's exposure to these congeners. This estimate of 

exposure may not apply to children living in the same household, as a child's exposure to 

dust is expected to be greater. Dust and serum levels of BDE 153 were not correlated, 

which may be due to differences in exposure sources (e.g. diet or exposures outside the 

home), transformation, distribution or metabolism of this congener. BDE 153 has a long 

half-life (approximately 2 years) as compared to the other congeners (27). Serum 

concentrations of BDE 153 were also not correlated between males and females within 

couples. Conversely, BDE 153 in dust was correlated to lower brominated congeners in 
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serum, which may support the argument that transformation is occurring. As observed by 

Qiu, et al. (28), different PBDE congeners may have different rates of hydroxylation, and 

this may be an explanation why human serum may exhibit different congener profiles 

than dust or commercial product mixtures. Huwe et al. (29) demonstrated that PBDE 

congeners have different degrees of bioconcentration in rats, possibly due to metabolism 

differences between congeners. The lack of BDE 209 measured in serum may be due to 

higher detection limits and/or to its short biological half-life. Stapleton et al. (5) 

demonstrated that when carp were fed BDE 209, only lower-brominated congeners, and 

not BDE 209, bioaccumulated in the fish. Further research into the transformation 

processes of individual PBDE congeners is needed to understand patterns in the 

biomarker profiles of these compounds. 

A recent study utilizing NHANES dietary questionnaire responses and serum 

PBDE data concluded that intake of poultry and red meat is a source of PBDE exposure 

in the US population (30). In particular, BDE 153 was the only congener associated with 

total fat intake, and although vegetarians had lower total PBDE serum levels, they did not 

have significantly reduced levels of BDE 153. Higher levels of dietary exposure to BDE 

153 may explain higher BDE 153 levels in serum in the present study population. 

However, US market basket surveys (25, 31) do not indicate that certain foods are higher 

in BDE 153. Fraser et al. (30) also found similar results to the present study in terms of 

serum congener correlations, with the Penta formulation congeners (BDE 28, 47, 99, 100 

and 153) being strongly correlated with one another.  However, the authors reported that 

BDE 153 had a weaker association than the other congeners. In the present study, the 
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Penta formulation congeners were also strongly correlated, but BDE 153 was not 

associated with the other congeners in serum. 

Limited studies have assessed relationships between dust and serum 

concentrations of PBDEs. A study of only five Swedish homes reported a correlation 

between researcher-collected house dust and plasma levels of PBDEs, although the 

association was dependent on one of the five households (32). A recent study conducted 

in Germany found no significant correlation between dust and serum concentrations of 

PBDEs, and the authors concluded that diet is the main exposure pathway (33). However, 

although European food samples were reported to have the same level of PBDE 

contamination as US samples, (8, 25), dust levels in European countries are orders of 

magnitude lower than US levels (22), and therefore these data may not be comparable to 

the data in the present study. Based on pharmacokinetic modeling, Lorber (8) concluded 

that dietary and inhalation exposures could not explain US body burdens of PBDEs, and 

that exposure to indoor dust is the primary pathway. 

Various studies on indoor environmental contaminants employ different methods 

in the collection of house dust as a measure of exposure. Specifically, researcher-

collected dust has been compared to vacuum bag dust (34, 35, 36). The studies by Colt et 

al. concluded that there was a high level of agreement between researcher-collected dust 

(high-volume surface sampler, HVS3) and vacuum bag dust for pesticides and other 

organic contaminants, including polychlorinated biphenyls (PCBs). The study by Allen et 

al. found that researcher-collected dust had varying degrees of correlation with vacuum 

bag dust concentrations of PBDEs (r = 0.39-0.77), depending on the room in the home 

and the sampling round. Furthermore, PBDE concentrations in researcher-collected dust 
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were significantly different between rooms of the same home. Future studies on dust 

collection methods should focus on the validation of these methods and include 

biomarkers as evidence of biological relevance. It is possible that the use of vacuum bag 

dust in exposure assessment may be a superior method of dust collection, provided that 

the dust collected is a measure of longer term integrative exposure representative of the 

total home environment, and thus total exposure, and not limited to a specific area or 

time. The use of vacuum bags may also provide a much more time- and cost-efficient 

method for measuring dust contamination in large-scale epidemiological studies. 

This study is the first to provide empirical evidence of the association between 

house dust and serum concentrations of PBDEs in the US. For PBDE congeners that do 

not show strong correlation between dust and serum, such as BDE 153, dust may not be a 

good indicator of body burden. However, for other PBDE congeners such as the major 

Penta formulation BDEs, which were strongly correlated between dust and serum 

concentrations, house dust may be a good measure of exposure. This observation serves 

to further validate our recent finding of significant relationships between dust 

concentrations of PentaBDEs and circulating hormone levels in men (18). Furthermore, 

house dust may provide a satisfactory estimate of human exposure to BDE 209 due to its 

high concentrations in dust and current limitations of measuring BDE 209 in serum. The 

relatively short biological half-life of BDE 209 may prevent reliable measurement in 

serum, but because BDE 209 concentrations in dust are high, people are likely 

continuously exposed. Thus, dust concentrations may currently be the best marker of 

exposure to BDE 209 in the absence of other biomarkers. 
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Table 2.1. Distribution of PBDE Congeners in House Dust 

ng/g (n=50) 
  Selected Percentiles   
Congener Geometric Mean 25th 50th 75th 90th Maximum DL Detection rate 
30 NC <DL <DL <DL <DL 5.20 0.06 4% 
17 2.62 1.57 2.67 5.49 8.86 486 0.10 94% 
25 NC <DL <DL <DL <DL 3.95 0.20 24% 
28/33a 13.0 6.8 11.7 21.1 35.2 84.0 0.10 100% 
75 7.5 5.9 14.6 24.6 51.3 100 0.70 76% 
49 21.4 12.8 19.6 41.5 74.7 195 0.80 98% 
71 NC <DL <DL <DL <DL <DL 0.30 0% 
47 543 288 390 1122 2299 8627 4.17 100% 
66 9.76 5.79 7.94 20.6 35.4 134 0.05 98% 
100 135 63.3 99.9 228 608 2164 0.19 100% 
119 NC <DL <DL <DL <DL 77.3 0.05 2% 
99 643 260 427 1140 3241 12967 0.47 100% 
116 NC <DL <DL <DL <DL <DL 0.10 0% 
85/155 a 33.6 14.4 24.6 54.2 169 544 0.10 100% 
154 63.2 25.4 51.3 131 359 1093 0.10 100% 
153 78.6 31.2 55.9 188 380 1352 0.10 100% 
138 4.28 3.10 5.45 13.0 32.7 81.5 0.10 86% 
156 NC <DL <DL <DL <DL <DL 0.10 0% 
183 20.0 11.3 17.4 33.9 61.8 688 0.10 100% 
190 NC <DL <DL <DL <DL <DL 0.10 0% 
202 0.86 0.05 3.40 6.29 10.3 33.6 0.10 58% 
201 12.6 7.37 12.6 22.8 39.6 494 0.10 98% 
197 NC <DL <DL <DL <DL <DL 0.20 0% 
203/200 a 12.1 5.90 11.2 27.5 36.4 243 0.25 100% 
196 NC <DL <DL <DL <DL <DL 0.20 0% 
205 NC <DL <DL <DL <DL 64.1 0.20 10% 
208 35.3 18.5 30.1 49.9 93.0 853 0.89 100% 
207 63.1 31.9 54.9 97.3 242 1492 1.06 100% 
206 163 85.5 156 250 505 3772 0.50 100% 
209 1906 1146 1482 2840 5816 32366 14.1 100% 
Total PBDEs 4742 2651 4458 7879 15360 44546   

a Congeners are listed together due to coelution in GC/MS analysis. 

DL =  Detection limit. One-half the DL was used for measurements below the DL. 

NC = Not calculated. Geometric means and percentiles were not calculated for congeners with detection rates 

below 50%.
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Table 2.2. Distribution of PBDE Congeners in Serum 

(n=24) 

 

   Selected Percentiles    

  Congener 

Geometric 

Mean 25th 50th 75th 90th Max DL 

Detection 

rate 

Serum 

(pg/g) 

17 NC <DL <DL <DL <DL 4.1 2.5 8% 

28 6.7 4.1 7.6 11 17 39 2.5 88% 

47 95 50 96 187 245 511 10.9 100% 

66 NC <DL <DL <DL <DL 5.8 2.5 17% 

100 18 11 19 22 49 176 2.5 100% 

99 16 8.9 15 34 41 72 9.8 75% 

85 NC <DL <DL <DL <DL 6.1 2.5 25% 

154 NC <DL <DL <DL <DL 8.6 2.5 29% 

153 43 24 36 74 137 1151 2.5 100% 

183 NC <DL <DL <DL <DL 4.8 2.5 13% 

209 NC <DL <DL <DL <DL 25.1  25.0 8% 

Total PBDEs 255 157 219 341 523 1691   

Serum, 

Lipid-

adjusted 

(ng/g) 

17 NC <DL <DL <DL <DL 0.7 0.3-0.6   

28 1.1 0.7 1.3 1.8 2.8 6.4 0.3-0.6   

47 16 8.7 17 34 41 83 1.4-2.5   

66 NC <DL <DL <DL <DL 0.9 0.3-0.6   

100 3.0 2.1 3.0 4.3 8.1 24 0.3-0.6   

99 2.6 1.4 2.4 5.0 6.9 12 1.3-2.3   

85 NC <DL <DL <DL <DL 0.9 0.3-0.6   

154 NC <DL <DL <DL <DL 1.2 0.3-0.6   

153 7.1 4.3 7.0 11 20 154 0.3-0.6   

183 NC <DL <DL <DL <DL 0.6 0.3-0.6   

209 NC <DL <DL <DL <DL 6.0 3.3-5.8   

Total PBDEs 40 28 39 61 76 225   

 
DL = Detection limit. One-half the DL was used for measurements below the DL. 

NC = Not calculated. Geometric means and percentiles were not calculated for congeners with detection 

rates below 50%. 

Lipid-adjusted serum detection limits are ranges due to varying sample volumes. 
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Figure 2.1. PBDE Congener by proportion in dust and serum 
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Dust: n = 50, except those congeners with <100% detection (some of "other tri-nona congeners"). See 

Table 2.1 for detection rates. 

Serum: n = 24, except those congeners with <100% detection (BDE 28, 99, 154, 209 and "other tri-nona 

congeners"). See Table 2.2 for detection rates. 

Other tri-hexa and hepta-nona congeners are those listed in Tables 2.1 and 2.2. 

BDE 206 and 207 were not measured in serum. 
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Table 2.3. Spearman correlation coefficients for selected PBDE concentrations in dust and serum 

(n=12) 

 

     Dust PBDE Congener 

 
    BDE 17 BDE 28 BDE 75 BDE 49 BDE 47 BDE 66 BDE 99 BDE 100 BDE 154 BDE 153 BDE 138 

BDE 

183 
BDE 209 

Male 

Serum 

(lipid-

adjusted) 

PBDE 

Congener 

BDE 28 
r 0.81 0.49 0.83 0.77 0.82 0.75 0.89 0.79 0.87 0.87 0.79 0.55 0.04 

p-value 0.001 0.10 0.0008 0.004 0.001 0.005 0.0001 0.002 0.0002 0.0002 0.002 0.06 0.91 

BDE 47 
r 0.84 0.53 0.79 0.71 0.81 0.70 0.85 0.69 0.81 0.82 0.69 0.54 -0.004 

p-value 0.0006 0.08 0.002 0.009 0.002 0.01 0.0004 0.01 0.001 0.001 0.01 0.07 0.99 

BDE 99 
r 0.87 0.60 0.76 0.75 0.84 0.73 0.89 0.72 0.85 0.83 0.73 0.36 0.07 

p-value 0.0003 0.04 0.004 0.005 0.0007 0.007 0.0001 0.008 0.0004 0.0008 0.008 0.25 0.84 

BDE 100 
r 0.78 0.64 0.88 0.82 0.72 0.70 0.81 0.65 0.71 0.72 0.58 0.55 0.16 

p-value 0.003 0.02 0.0002 0.001 0.008 0.01 0.001 0.02 0.01 0.008 0.05 0.07 0.61 

BDE 153 
r 0.02 0.05 0.25 -0.01 0.02 -0.14 -0.04 -0.24 -0.05 0.00 -0.15 0.01 0.33 

p-value 0.96 0.87 0.44 0.97 0.97 0.66 0.91 0.46 0.87 1.00 0.65 0.97 0.29 

                

 
    BDE 17 BDE 28 BDE 75 BDE 49 BDE 47 BDE 66 BDE 99 BDE 100 BDE 154 BDE 153 BDE 138 

BDE 

183 
BDE 209 

Female 

Serum 

(lipid-

adjusted) 

PBDE 

Congener 

BDE 28 
r 0.82 0.51 0.70 0.73 0.85 0.82 0.90 0.84 0.94 0.84 0.85 0.40 0.01 

p-value 0.001 0.09 0.01 0.007 0.0004 0.001 0.0001 0.0007 0.0001 0.0007 0.0005 0.20 0.97 

BDE 47 
r 0.78 0.45 0.62 0.64 0.80 0.76 0.87 0.80 0.90 0.80 0.85 0.34 0.24 

p-value 0.003 0.14 0.03 0.03 0.002 0.005 0.0002 0.002 0.0001 0.002 0.0004 0.30 0.46 

BDE 99 
r 0.56 0.32 0.34 0.31 0.64 0.50 0.69 0.55 0.67 0.62 0.71 0.13 0.45 

p-value 0.06 0.32 0.28 0.33 0.03 0.10 0.01 0.06 0.02 0.03 0.01 0.69 0.14 

BDE 100 
r 0.57 0.31 0.51 0.47 0.70 0.66 0.78 0.71 0.80 0.71 0.78 0.29 0.16 

p-value 0.05 0.33 0.09 0.12 0.01 0.02 0.003 0.01 0.002 0.01 0.003 0.35 0.62 

BDE 153 
r 0.05 0.22 0.10 0.07 0.13 0.03 0.08 0.03 -0.11 0.02 0.06 0.03 0.16 

p-value 0.88 0.48 0.76 0.83 0.68 0.91 0.80 0.91 0.73 0.95 0.86 0.91 0.62 
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Figure 2.2. Within-couple serum PBDE correlation (sum of BDE 47, 99, 100) 
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Values in graph are transformed to the natural log. Spearman correlation coefficient, n = 12 couples. 
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Table S1. Spearman correlation coefficients for PBDE concentrations in dust 

(n = 50) 

 

 

 

BDE 17 BDE 28/33 BDE 75 BDE 49 BDE47 BDE66 BDE99 BDE100 BDE85/155 BDE154 BDE153 BDE138 BDE183 BDE202 BDE201 BDE200 BDE208 BDE207 BDE206 BDE209

r 1.00 0.85 0.38 0.76 0.85 0.79 0.76 0.75 0.70 0.63 0.65 0.51 0.28 0.06 0.14 -0.04 -0.05 -0.05 -0.07 -0.08

p-value <0.0001 0.007 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0002 0.05 0.70 0.35 0.80 0.74 0.72 0.65 0.60

r 0.85 1.00 0.40 0.73 0.86 0.81 0.73 0.76 0.68 0.65 0.64 0.50 0.32 0.00 0.16 -0.16 -0.09 -0.09 -0.07 -0.08

p-value <0.0001 0.004 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0002 0.02 1.00 0.27 0.28 0.51 0.56 0.61 0.57

r 0.38 0.40 1.00 0.29 0.38 0.36 0.27 0.24 0.26 0.21 0.27 0.29 0.25 0.03 0.22 0.07 -0.14 -0.13 -0.18 -0.11

p-value 0.007 0.004 0.04 0.006 0.01 0.06 0.09 0.07 0.15 0.06 0.04 0.09 0.86 0.13 0.61 0.33 0.39 0.20 0.47

r 0.76 0.73 0.29 1.00 0.76 0.77 0.70 0.70 0.68 0.61 0.65 0.50 0.36 0.09 0.24 0.13 0.16 0.14 0.13 0.16

p-value <0.0001 <0.0001 0.04 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0002 0.009 0.52 0.10 0.38 0.27 0.33 0.38 0.27

r 0.85 0.86 0.38 0.76 1.00 0.91 0.93 0.93 0.89 0.80 0.87 0.63 0.46 0.17 0.29 0.00 0.06 0.09 0.04 0.01

p-value <0.0001 <0.0001 0.006 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0009 0.24 0.04 1.00 0.67 0.52 0.76 0.93

r 0.79 0.81 0.36 0.77 0.91 1.00 0.87 0.87 0.84 0.74 0.80 0.57 0.46 0.18 0.33 0.01 0.14 0.17 0.11 0.09

p-value <0.0001 <0.0001 0.01 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0007 0.22 0.02 0.96 0.35 0.24 0.45 0.55

r 0.76 0.73 0.27 0.70 0.93 0.87 1.00 0.96 0.96 0.86 0.95 0.72 0.43 0.23 0.26 0.01 0.17 0.17 0.10 0.08

p-value <0.0001 <0.0001 0.06 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.002 0.11 0.06 0.95 0.25 0.23 0.49 0.56

r 0.75 0.76 0.24 0.70 0.93 0.87 0.96 1.00 0.96 0.93 0.94 0.73 0.48 0.28 0.30 0.02 0.18 0.20 0.12 0.11

p-value <0.0001 <0.0001 0.09 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0005 0.05 0.04 0.90 0.20 0.16 0.40 0.46

r 0.70 0.68 0.26 0.68 0.89 0.84 0.96 0.96 1.00 0.92 0.98 0.75 0.50 0.26 0.32 0.00 0.22 0.23 0.14 0.11

p-value <0.0001 <0.0001 0.07 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0002 0.07 0.02 0.98 0.13 0.11 0.34 0.43

r 0.63 0.65 0.21 0.61 0.80 0.74 0.86 0.93 0.92 1.00 0.92 0.70 0.54 0.36 0.38 0.04 0.29 0.30 0.23 0.22

p-value <0.0001 <0.0001 0.15 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.01 0.006 0.77 0.04 0.03 0.12 0.12

r 0.65 0.64 0.27 0.65 0.87 0.80 0.95 0.94 0.98 0.92 1.00 0.72 0.54 0.30 0.38 0.01 0.26 0.27 0.18 0.15

p-value <0.0001 <0.0001 0.06 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.03 0.006 0.95 0.07 0.05 0.20 0.29

r 0.51 0.50 0.29 0.50 0.63 0.57 0.72 0.73 0.75 0.70 0.72 1.00 0.16 0.09 0.00 -0.10 0.12 0.07 0.05 0.19

p-value 0.0002 0.0002 0.04 0.0002 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.27 0.51 0.99 0.47 0.40 0.61 0.73 0.19

r 0.28 0.32 0.25 0.36 0.46 0.46 0.43 0.48 0.50 0.54 0.54 0.16 1.00 0.32 0.88 0.28 0.23 0.36 0.24 0.13

p-value 0.05 0.02 0.09 0.009 0.0009 0.0007 0.002 0.0005 0.0002 <0.0001 <0.0001 0.27 0.02 <0.0001 0.05 0.11 0.01 0.09 0.36

r 0.06 0.00 0.03 0.09 0.17 0.18 0.23 0.28 0.26 0.36 0.30 0.09 0.32 1.00 0.48 0.37 0.77 0.80 0.70 0.61

p-value 0.70 1.00 0.86 0.52 0.24 0.22 0.11 0.05 0.07 0.01 0.03 0.51 0.02 0.0004 0.008 <0.0001 <0.0001 <0.0001 <0.0001

r 0.14 0.16 0.22 0.24 0.29 0.33 0.26 0.30 0.32 0.38 0.38 0.00 0.88 0.48 1.00 0.38 0.41 0.55 0.44 0.30

p-value 0.35 0.27 0.13 0.10 0.04 0.02 0.06 0.04 0.02 0.01 0.01 0.99 <0.0001 0.0004 0.007 0.003 <0.0001 0.002 0.03

r -0.04 -0.16 0.07 0.13 0.00 0.01 0.01 0.02 0.00 0.04 0.01 -0.10 0.28 0.37 0.38 1.00 0.45 0.49 0.40 0.43

p-value 0.80 0.28 0.61 0.38 1.00 0.96 0.95 0.90 0.98 0.77 0.95 0.47 0.05 0.008 0.007 0.001 0.0003 0.004 0.002

r -0.05 -0.09 -0.14 0.16 0.06 0.14 0.17 0.18 0.22 0.29 0.26 0.12 0.23 0.77 0.41 0.45 1.00 0.97 0.93 0.85

p-value 0.74 0.51 0.33 0.27 0.67 0.35 0.25 0.20 0.13 0.04 0.07 0.40 0.11 <0.0001 0.003 0.001 <0.0001 <0.0001 <0.0001

r -0.05 -0.09 -0.13 0.14 0.09 0.17 0.17 0.20 0.23 0.30 0.27 0.07 0.36 0.80 0.55 0.49 0.97 1.00 0.93 0.83

p-value 0.72 0.56 0.39 0.33 0.52 0.24 0.23 0.16 0.11 0.03 0.05 0.61 0.01 <0.0001 <0.0001 0.0003 <0.0001 <0.0001 <0.0001

r -0.07 -0.07 -0.18 0.13 0.04 0.11 0.10 0.12 0.14 0.23 0.18 0.05 0.24 0.70 0.44 0.40 0.93 0.93 1.00 0.88

p-value 0.65 0.61 0.20 0.38 0.76 0.45 0.49 0.40 0.34 0.12 0.20 0.73 0.09 <0.0001 0.002 0.004 <0.0001 <0.0001 <0.0001

r -0.08 -0.08 -0.11 0.16 0.01 0.09 0.08 0.11 0.11 0.22 0.15 0.19 0.13 0.61 0.30 0.43 0.85 0.83 0.88 1.00

p-value 0.60 0.57 0.47 0.27 0.93 0.55 0.56 0.46 0.43 0.12 0.29 0.19 0.36 <0.0001 0.03 0.002 <0.0001 <0.0001 <0.0001

BDE 99

BDE 100

BDE 17

BDE 28/33

BDE 75

BDE 49

BDE 209

BDE 183

BDE 202

BDE 201

BDE 200/203

BDE 208

BDE 207

BDE 206

BDE 85/155

BDE 154

BDE 153

BDE 138

BDE 47

BDE 66
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Table S2. Spearman correlation coefficients for PBDE concentrations in serum 

(n = 24) 

   Serum PBDE congener Lipid adjusted serum PBDE congener 

    BDE 28 BDE 47 BDE 99 BDE 100 BDE 153 BDE 28 BDE 47 BDE 99 BDE 100 BDE 153 

Serum 

PBDE 

congener 

BDE 28 
r 1 0.96 0.83 0.88 0.05 0.96 0.93 0.80 0.86 0.06 

p-value   <0.0001 <0.0001 <0.0001 0.83 <0.0001 <0.0001 <0.0001 <0.0001 0.79 

BDE 47 
r 0.96 1 0.92 0.92 0.15 0.95 0.97 0.90 0.90 0.16 

p-value <0.0001   <0.0001 <0.0001 0.49 <0.0001 <0.0001 <0.0001 <0.0001 0.46 

BDE 99 
r 0.83 0.92 1 0.85 0.18 0.80 0.88 0.97 0.81 0.19 

p-value <0.0001 <0.0001   <0.0001 0.40 <0.0001 <0.0001 <0.0001 <0.0001 0.37 

BDE 100 
r 0.88 0.92 0.85 1 0.29 0.88 0.89 0.83 0.96 0.32 

p-value <0.0001 <0.0001 <0.0001   0.18 <0.0001 <0.0001 <0.0001 <0.0001 0.13 

BDE 153 
r 0.05 0.15 0.18 0.29 1 0.11 0.07 0.13 0.25 0.98 

p-value 0.83 0.49 0.40 0.18   0.62 0.74 0.55 0.24 <0.0001 

Lipid 

adjusted 

serum 

PBDE 

congener 

BDE 28 
r 0.96 0.95 0.80 0.88 0.11 1 0.96 0.81 0.91 0.14 

p-value <0.0001 <0.0001 <0.0001 <0.0001 0.62   <0.0001 <0.0001 <0.0001 0.50 

BDE 47 
r 0.93 0.97 0.88 0.89 0.07 0.96 1 0.90 0.91 0.11 

p-value <0.0001 <0.0001 <0.0001 <0.0001 0.74 <0.0001   <0.0001 <0.0001 0.62 

BDE 99 
r 0.80 0.90 0.97 0.83 0.13 0.81 0.90 1 0.83 0.16 

p-value <0.0001 <0.0001 <0.0001 <0.0001 0.55 <0.0001 <0.0001   <0.0001 0.45 

BDE 100 
r 0.86 0.90 0.81 0.96 0.25 0.91 0.91 0.83 1 0.30 

p-value <0.0001 <0.0001 <0.0001 <0.0001 0.24 <0.0001 <0.0001 <0.0001   0.16 

BDE 153 
r 0.06 0.16 0.19 0.32 0.98 0.14 0.11 0.16 0.30 1 

p-value 0.79 0.46 0.37 0.13 <0.0001 0.50 0.62 0.45 0.16   
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Table S3. Spearman correlation coefficients for PBDE concentrations in lipid adjusted 

serum of males and females 

(n = 12 couples) 

 
   Males 

    BDE 28 BDE 47 BDE 99 
BDE 
100 

BDE 
153 

Females 

BDE 28 
r 0.93 0.90 0.92 0.76 0.07 

p-value <0.0001 <0.0001 <0.0001 0.004 0.83 

BDE 47 
r 0.81 0.81 0.83 0.64 -0.06 

p-value 0.001 0.001 0.0008 0.02 0.86 

BDE 99 
r 0.54 0.65 0.70 0.44 -0.08 

p-value 0.07 0.02 0.01 0.15 0.81 

BDE 100 
r 0.76 0.75 0.76 0.63 0.08 

p-value 0.004 0.005 0.004 0.03 0.80 

BDE 153 
r 0.10 0.14 0.09 0.33 0.40 

p-value 0.76 0.66 0.78 0.29 0.19 
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CHAPTER III 

 

Brominated Flame Retardants in House Dust are Related to Hormone Levels in Men 

 

 

 

 

Abstract 

Brominated flame retardants (BFRs) are used in the manufacture of a variety of materials 

and consumer products in order to meet fire safety standards. BFRs may persistent in the 

environment and have been detected in wildlife, humans and indoor dust and air. Some 

BFRs have demonstrated endocrine and reproductive effects in animals, but human 

studies are limited. We measured serum hormone levels and flame retardant 

concentrations [31 polybrominated diphenyl ether (PBDE) congeners and 6 other flame 

retardants that are replacing PBDEs in some applications] in house dust from 38 men 

recruited through a US infertility clinic. PBDE congeners in dust were modeled as 1) 

individual congeners, 2) grouped into penta-, octa- and deca-BDEs, and 3) independent 

variables generated by a factor analysis representing 90 percent of the variability of all 

congeners detected in dust. In multivariable linear regression models adjusted by age and 

body mass index (BMI), significant positive associations were found between house dust 

concentrations of pentaBDEs and serum levels of free T4, total T3, estradiol, sex 

hormone binding globulin (SHBG) and prolactin, along with an inverse association with 

follicle stimulating hormone (FSH). Positive associations between octaBDE 

concentrations and serum free T4, thyroid stimulating hormone (TSH), luteinizing 
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hormone (LH) and testosterone and an inverse association between decaBDE 

concentrations and testosterone were also found. Hexabromocyclododecane (HBCD) was 

associated with decreased SHBG and increased free androgen index. Dust concentrations 

of bis-tribromophenoxyethane (BTBPE) and tetrabromo-diethylhexylphthalate (TBPH) 

were positively associated with total T3. These findings are consistent with our previous 

report of associations between PBDEs (BDE 47, 99 and 100) in house dust and hormone 

levels in men, and further support the consensus that indoor dust is an important source of 

exposure to BFRs. 

 

1. Introduction 

1.1 Background 

Brominated flame retardants (BFRs) are a group of chemicals that are used in the 

production of consumer goods, such as home electronics and numerous items containing 

polyurethane foam padding and other thermoplastics, in order to meet fire safety 

standards. Polybrominated diphenyl ethers (PBDEs) have been one of the most widely 

used groups of BFRs. Commercial formulations of PBDEs consist of a mixture of 

congeners and are described as penta-, octa- and deca- brominated diphenyl ethers 

(BDEs). The European Union banned the use of penta- and octa-BDEs in 2004 due to 

their persistence and bioaccumulation. These formulations were voluntarily phased out of 

production in the United States in 2004. The U.S. has no federal regulation on the use of 

PBDEs, but several states have issued their own restrictions (BSEF.com, accessed Nov.3, 

2011). DecaBDE is currently still in use, although there are plans to begin phasing out in 

December, 2012 (EPA 2009). BDE 209, the major component of the decaBDE 
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formulation, has the shortest half-life (approximately 15 days, as estimated by Thuresson 

et al. 2006) in the body, but it is widely found in the environment and can break down 

into the more bioaccumulative lower-brominated congeners commonly found in wildlife 

and humans (Noyes et al. 2011; Söderstrom et al. 2004; Stapleton et al. 2004).  

Despite use restrictions, the general population continues to be exposed to PBDEs 

due to their persistence and through the continued use of existing products containing 

PBDEs. Few studies on the human health effects of PBDEs exist, despite evidence of 

widespread exposure through contact or inhalation of house dust or from dietary sources. 

Additionally, there are alternate flame retardants entering the marketplace or increasing 

in use as others are phased out. As alternative flame retardants replace discontinued 

compounds and production volumes increase, concern over potential exposure to these 

alternates and possible health effects is rising (DiGangi et al. 2010; Shaw et al. 2010).

  

Hexabromocyclododecane (HBCD) is another large volume BFR used primarily in 

polystyrene insulation foam, but also in certain textiles and electronics (EPA 2008). 

HBCD is also an alternative to decaBDE in some plastics applications (BSEF 2009). 

Other alternatives such as 1,2- bis (2,4,6-tribromophenoxy)ethane (BTBPE) is in the 

formulation that replaced Octa-BDE, while 2,3,4,5-ethylhexyltetrabromobenzoate (TBB) 

and 2,3,4,5-tetrabromo di (2-ethylhexyl) phthalate (TBPH) are in the replacement 

formulation for pentaBDE (manufacturer announcement, available online at 

http://www.pu2pu.com/htdocs/customers/greatlakes/Firemaster.htm – accessed July, 

2009). These BFRs can leach into the environment in the same manner as PBDEs and 

have also been measured in house dust (Stapleton et al. 2008; Zhu et al. 2007). However, 
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few or no studies exist on the toxicity and potential human health effects of these 

replacement compounds. The use of TBPH is a concern because it is a brominated 

analogue of di(ethylhexyl)phthalate (DEHP), which is listed under California's 

Proposition 65 as a chemical known to cause cancer and reproductive and developmental 

toxicity (OEHHA 2008). Dechlorane Plus (DP) 

(bis(hexachlorocyclopentadieno)cyclooctane) is a large volume highly chlorinated flame 

retardant recently identified in lake sediments (Hoh et al. 2006), house dust (Zhu et al. 

2007), and humans (Ren et al. 2009; Siddique et al. 2012) with growing concern for 

human exposure. 

1.2 Evidence for endocrine disruption 

Animal studies have established that PBDEs are endocrine disruptors, altering 

reproductive and thyroid hormone homeostasis. A number of animal studies report 

reduced thyroxine (T4) levels after administration of pentaBDE mixtures (Ellis-

Hutchings et al. 2006; Fernie et al. 2005; Fowles et al. 1994; Hallgren et al. 2001; 

Skarman et al. 2005; Stoker et al. 2004; Zhou et al. 2001, 2002). Some of these studies 

also found decreases in triiodothyronine (T3) and increases in thyroid stimulating 

hormone (TSH), which is consistent with the biological feedback relationship of these 

hormones, but others found no effects on these hormones. Displacement of thyroid 

hormones from the hormone receptor or the transport protein, which was shown in vitro 

(Meerts et al. 2000), has been postulated as a possible mechanism by which thyroid 

hormone homeostasis is disrupted (reviewed by (Darnerud 2008). 

There may be a number of different mechanisms involved in the endocrine disrupting 

activity of PBDEs. Experimental studies have demonstrated that the endocrine disrupting 
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properties of PBDEs are congener dependent. For example, several lesser brominated 

congeners, such as the tetra- and penta-brominated compounds, acted as estrogen 

receptor agonists, while some hexa- and hepta-brominated congeners had antiestrogenic 

effects in vitro (Meerts et al. 2001). Tetra-, penta- and hexa-brominated congeners had 

estrogenic activity, while hepta-brominated congeners and a metabolite of BDE 47 had 

anti-estrogenic activity in another in vitro study by (Hamers et al. 2006). Most of the 

congeners tested in that study displayed anti-androgenic activity. Gregoraszczuk et al. 

(2008) demonstrated that steroid hormone secretion was either induced or suppressed 

depending on whether an individual congener or mixture of congeners was tested in vitro. 

There is also evidence that PBDE metabolites cause induction of steroidogenic gene 

expression (Song et al. 2008). 

The commercial pentaBDE mixture and individual congener constituents BDE 47 and 

100 inhibited binding of androgen receptors in vitro (Stoker et al. 2005). This same study 

found a significant increase in luteinizing hormone (LH) and a non-significant increase in 

testosterone after exposing adult male rats to the same congeners. Exposure of male rats 

to a pentaBDE mixture also resulted in delayed puberty, decreased growth of androgen-

dependent tissues such as the prostate (Stoker et al. 2004), and a dose-dependent increase 

in organ weights and sperm head deformities (Van der Ven et al. 2008). Exposure to 

BDE 99 specifically resulted in other reproductive effects such as reduced sperm counts 

(Kuriyama et al. 2005) and a decrease in sexual behavior (Lichtensteiger et al. 2004). 

Exposure to BDE 209 decreased epididymal sperm functions but sperm count and other 

parameters were not affected (Tseng et al. 2006). Finally, several avian studies have 

reported reduced reproductive success after exposure to PBDEs, which may be a 



 

41 

 

consequence of endocrine disruption (Fernie et al. 2009; Henny et al. 2009; Johansson et 

al. 2009; Van den Steen et al. 2009).  

HBCD has been much less studied in relation to altered endocrine function. HBCD 

has displayed estrogenic (Dorosh et al. 2011) as well as anti-estrogenic and anti-

androgenic (Hamers et al. 2006) activity in different in vitro experiments. Similar to 

PBDEs, exposure of rats to HBCD resulted in decreased T4 and increased TSH levels in 

serum (Ema et al. 2008). To our knowledge, there are no studies to date on endocrine 

function in relation to exposure to other flame retardants measured in the present study. 

1.3 Human exposure 

Studies of potential human health effects of BFRs are limited and focus primarily on 

thyroid hormone disruption in relation to PBDE exposure. Contrary to most of the animal 

experiments, several human epidemiological studies reported increases in T4 and T3 

levels associated with exposure to PBDEs (Bloom et al. 2008; Dallaire et al. 2009; 

Gascon et al. 2011; Meeker et al. 2009a; Turyk et al. 2008; Wang et al. 2010). Others 

have reported both increases and declines in TSH levels in relation to PBDE exposure, 

which may be dependent on exposure level, population, or specific congener measured 

(Chevrier et al. 2010; Hagmar et al. 2001; Yuan et al. 2008; Zota et al. 2011). 

 Although consumption of contaminated foods is an important exposure route for 

PBDEs (Fraser et al. 2009), PBDE exposure in North America is estimated to be mainly 

from the inhalation and ingestion of indoor dust (Johnson-Restrepo and Kannan 2009; 

Jones-Otazo et al. 2005; Lorber 2008; Webster et al. 2005). These estimates are 

supported by studies that link body burdens to indoor dust concentrations. Wu et al. 

(2007) found that indoor dust PBDE concentrations were more strongly correlated with 
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breastmilk PBDE concentrations than with estimated dietary intake of PBDEs. Similarly, 

Roosens et al. (2009) found that serum concentrations of HBCD were correlated with 

indoor dust concentrations but not dietary HBCD. Additionally, concentrations of DP in 

dust and hair have been strongly correlated (Zheng et al. 2010). We recently reported a 

strong correlation between several BDE congeners in serum and vacuum bag dust 

(Johnson et al. 2010), supporting the use of dust as a marker of exposure. We found that 

the major Penta formulation BDE congeners (BDE 47, 99, and 100) were strongly 

correlated between dust and serum, but that low detection rates of other congeners in 

serum (such as BDE 209) prevented reliance on serum measurements as a marker of 

exposure. The objective of the present study was to explore concentrations of a variety of 

BFRs in house dust and whether BFR exposure is associated with serum hormone levels 

in men. 

We recently reported that dust concentrations of BDE 47, 99, and 100 were positively 

associated with serum levels of free T4 in 24 men. These congeners were also associated 

with alterations in levels of luteinizing hormone (LH), follicle stimulating hormone 

(FSH), Inhibin B, sex hormone binding globulin (SHBG) and free androgen index (FAI) 

(Meeker et al. 2009a). The present study aims to expand our previous work to additional 

samples and analytes, including 31 BDE congeners and 6 alternate flame retardants.  

 

2. Methods 

2.1 Subject Recruitment 

The present study utilizes serum hormone data collected from participants in a 

study on environmental exposures and male reproductive health. Men between 18 and 54 
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years of age were recruited from the Vincent Memorial Andrology lab at Massachusetts 

General Hospital. Male participants were from couples seeking infertility treatment due 

to a male factor, a female factor, or a combination of both male and female factors. 

Exclusionary criteria included prior vasectomy or current use of exogenous hormones. 

Research ethics committees at participating institutions approved the study protocols, and 

all participants signed an informed consent. 

2.2 Dust sample collection and analysis 

Participants donated existing vacuum bags in the home between years 2002 and 

2003. Participants wrapped the used vacuum bag in aluminum foil and sealed it in a 

labeled plastic bag. Dust samples were stored at -20C until analysis. Dust was sieved 

using a 150 m mesh sieve to obtain the fine fraction. Determination of the target 

analytes was performed by a gas chromatograph (Agilent 6890) coupled to an Agilent 

5975 mass spectrometer (Agilent Technologies, Santa Clara, CA) operated in negative 

chemical ionization mode (GC/ECNI-MS) using the method by Stapleton et al. (2005, 

2006). Laboratory blanks were low enough (<1%) for most analytes that blank correction 

was not needed except as follows. The average concentration of four blanks was 

subtracted from each sample for TBB and TBPH. The separate stereoisomers of HBCD 

were not distinguished. The two stereoisomers of Dechlorane Plus, syn-DP (sDP) and 

anti-DP (aDP) were quantified. 

2.3 Serum hormones 

One non-fasting blood sample was drawn and centrifuged, and the serum was 

stored at -80C until analysis. The hormone analytical methods were described previously 

(Meeker et al. 2008). The methods employed were as follows: Follicle stimulating 
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hormone (FSH), serum luteinizing hormone (LH), estradiol, prolactin, free T4, total T3, 

and thyrotropin (TSH) concentrations were determined by microparticle enzyme 

immunoassay using an automated Abbott AxSYM system (Abbott Laboratories, Chicago, 

IL,USA); inhibin B was measured using a double-antibody, enzyme-linked 

immunosorbent assay (Oxford Bioinnovation, Oxford, UK); a Coat-A-Count RIA kit 

(Diagnostics Products, Los Angeles, CA, USA) was used to measure testosterone; sex 

hormone binding globulin (SHBG) was measured using an Immulite fully automated 

chemiluminescent immunometric assay (DPC, Inc., Los Angeles, CA, USA). The free 

androgen index (FAI) was calculated as the ratio of testosterone to SHBG. Additionally, 

free unbound testosterone was estimated using the equation by Vermeulen et al. (1999). 

2.4 Data analysis 

Descriptive statistics were calculated for dust concentrations of BFRs. One half 

the limit of detection (LOD) was assigned to non-detect levels. Further statistical analysis 

was conducted for the alternate flame retardants and for PBDE congeners that were 

detected in over 85% of the dust samples. Spearman's correlation coefficients were 

calculated, using SAS version 9.2 (SAS Institute, Inc., Cary, NC, USA), to assess 

bivariate relationships between different BFRs and between BFR concentrations in house 

dust and serum hormone levels. These relationships were assessed using multivariable 

linear regression to control for potential confounding variables in R version 2.8.1 (R 

Foundation for Statistical Computing, Vienna, Austria). A description of how the data 

was examined prior to arriving upon the final models is provided in the Appendix 

following this chapter. Regression models for PBDEs were run several ways: 1) using 

individual PBDE congener concentrations, 2) using summed concentrations of 
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PentaBDEs (BDE 47, 99, 100), OctaBDEs (BDE 183 and 201), and DecaBDEs (BDE 

206, 207, 208 and 209), and 3) using independent factor variables generated by a factor 

analysis of all detectable congeners performed using SAS. The factor analysis utilized 

data on all congeners detected in dust and eliminated the potential for collinearity arising 

from any correlation between variables in the same model. The congener grouping in 

method 2) was based on three factors: the congener prevalence in commercial mixtures 

(ATSDR 2004; La Guardia et al. 2006), the Spearman’s correlation coefficients between 

congeners within group in dust (r > 0.80, p < 0.05) and the Spearmans' correlation 

coefficients between congeners we detected in serum and matched dust samples (r > 0.60, 

p < 0.05; Johnson et al. 2010). Note that because fewer congeners were detected in 

serum, these data could only inform the pentaBDE congener grouping. All variables were 

analyzed as continuous variables. The distributions of several hormone levels (estradiol, 

testosterone, inhibin B, free T4 and total T3) approximated normality and were not 

transformed in statistical models. Several other hormones (prolactin, FSH, LH, SHBG, 

FAI, and TSH) were skewed right and were transformed to the natural log (ln) for 

statistical analyses. BFR concentrations in house dust were also transformed to the 

natural log. All multivariable models were adjusted for age and body mass index (BMI) 

because these parameters are known to be associated with changes in hormone levels. 

Age and BMI may also be associated with differences in BFR levels, although the ranges 

of these parameters were not large in this cohort of men.Dust concentrations of BDE 47, 

99 and 100 were combined with concentrations from a previous analysis of 24 men from 

the same study cohort (Meeker et al. 2009a) and models were additionally computed for 
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the pooled total of 62 men. The previous study measured dust concentrations of only 

these three congeners. 

 

3. Results 

3.1 Distributions and bivariate relationships 

Table 3.1 presents the distribution of selected PBDE groupings and alternate 

BFRs measured in house dust. The distribution and detection limits of all individual 

PBDE congeners measured were previously reported (Johnson et al. 2010). There were a 

total of 18 PBDE congeners that were detected in over 85% of the dust samples and thus 

were included in further analyses. BTBPE was detected in 100% of the dust samples, 

while HBCD, TBPH and TBB were detected in 92, 64 and 48% of samples, respectively. 

All samples contained aDP and 96% contained sDP, although concentrations of these 

chlorinated flame retardants were relatively lower than the alternate BFRs. All analyte 

concentrations were highly skewed (log-normal distribution). 

Concentrations of PBDE congeners with similar degrees of bromination were 

strongly correlated (Spearman r>0.80, p<0.05) (Johnson et al. 2010). The correlation 

coefficients for the PBDE congeners included in the congener groupings for data analysis 

are shown in Table 3.2, along with coefficients for the alternate BFRs. Concentrations of 

tetrabromobenzoate (TBB) and tetrabromo phthalate (TBPH), which are both found in 

the same commercial products that replaced pentaBDE, were also strongly correlated 

with one another (Spearman r = 0.79, p<0.0001). As expected, there were also strong 

correlations between concentrations of the two stereoisomers of Dechlorane Plus, sDP 

and aDP (Spearman r = 0.83, p<0.0001). There was also some degree of correlation 
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among alternate BFRs (r = 0.32-0.47) and between alternate BFRs and lower-brominated 

PBDEs (r = 0.31–0.49), octaBDE formulation congeners (r = 0.34–0.60), and decaBDE 

formulation congeners (r = 0.31-0.43). 

In preliminary analyses, positive correlations were found (p-values < 0.05) 

between concentrations of pentaBDE congeners and serum levels of prolactin and total 

T3. OctaBDE congeners were positively correlated with free T4 (r = 0.36, p = 0.03), 

luteinizing hormone (r = 0.36, p = 0.03) and prolactin (p = 0.01). Several bivariate 

relationships between alternate BFRs and hormone levels are presented in scatterplots 

(Figures 3.1 through 3.3). There was a positive correlation between BTBPE and total T3 

(r = 0.33, p = 0.04). TBPH, which was only detected in 64% percent of the samples, was 

also positively associated with total T3 (r = 0.30, p = 0.07). HBCD was positively 

correlated with free androgen index (FAI) (r = 0.46, p = 0.004) and inversely correlated 

with sex hormone binding globulin (SHBG) (r = -0.35, p = 0.03). 

3.2 Multivariable linear regression 

Table 3.3 presents results from multivariable linear regression models, as percent 

change in hormone level associated with an interquartile range (IQR) increase in BFR 

dust concentration adjusted for age and BMI. The age and BMI adjusted results were 

similar to the bivariate relationships between single BFR compounds and serum hormone 

levels. An IQR increase in pentaBDEs (n=38) was associated with (p<0.05) a 22% 

increase in prolactin and a 7% increase in total T3. Additonally, there were statistically 

significant positive associations with T3, T4, estradiol and SHBG, and a suggestive 

(p=0.13) relationship with inhibin B in the pooled total pentaBDE samples (n=62). 

Inverse associations between the pentaBDE congeners and FSH (p < 0.05) and FAI (p = 
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0.13) were also found. The association with prolactin was weakened in the pooled 

analysis. These relationships were consistent with our earlier report among the original 

24 samples
 
(Meeker et al. 2009a). 

There were significant positive associations between dust concentrations of 

octaBDEs and serum T4, TSH, LH and testosterone and a significant inverse association 

between dust concentrations of decaBDEs and testosterone (Table 3.3). There were also 

suggestive positive relationships between OctaBDEs and estradiol, prolactin, and total 

T3. 

Associations between dust concentrations of several alternative BFRs (BTBPE, 

TBPH and HBCD) and hormone levels were observed. An IQR increase in BTBPE was 

associated with a statistically significant 6% increase in total T3. After adjusting for age 

and BMI, the positive relationship between BTBPE and prolactin became statistically 

suggestive (p=0.09). An IQR increase in TBPH was associated with a statistically 

significant 9% increase in total T3. An IQR increase in HBCD was associated (p<0.05) 

with decreased SHBG (15%) and increased FAI (19%). 

When analyzed as individual congeners (data not shown) in multivariate linear 

regression models adjusted for age and BMI, IQR increases in BDE 153 and 154 were 

associated with statistically significant 24% and 22% increases, respectively in SHBG, 

and with 31% and 38% increases in prolactin. There were also several other PBDE 

congeners that were positively associated, when modeled individually, with total T3: 

BDE 28/33, 47, 49, 66, 85/155, 99, 100 and 153. The sum of all congeners was also 

associated with a 6% increase in total T3. 
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Table 3.4 describes the factor pattern of 8 independent variables generated by the 

factor analysis. The cumulative proportions of the variability explained by each factor, as 

determined by eigenvalues of the correlation matrix from the factor analysis, were used in 

our decision to choose 8 factors to use in the regression models. These eight factors 

account for 90 percent of the variability of all the detectable congeners. Table 3.4 

indicates that most of the variability of the congeners is accounted for in the first 2 factors 

(high number of weightings >0.75 under Factor 1 and 2 in the first two columns), and 

factor 1 is most heavily weighted by pentaBDE congeners and factor 2 is heavily 

weighted by decaBDE congeners. The congeners that we grouped into our octaBDE 

group (BDE 183 and BDE 201) were not as clearly delineated by the factor pattern. 

Linear regression models were run for each hormone outcome with all 8 factors in the 

models. Results from these models, which are not easily interpreted and are thus not 

shown, were compared to the results of the other two methods of analysis (individual 

congeners and congener groupings). The regression model results using the 8 factors 

corroborate the findings from models using our congener groupings. For example, factors 

2 and 3, which are mainly weighted by decaBDE congeners, were inversely and 

significantly associated with testosterone levels. Factor 1, which is heavily weighted by 

pentaBDE congeners, had a significant positive association with prolactin and total T3. 

These results are consistent with the associations shown for the congener groupings 

presented in Table 3.3. 

 

4. Discussion 

4.1 Concentrations of BFRs in dust 
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The BFR concentrations in house dust in the present study were similar to those 

found in other studies in the United States (Allen et al. 2008; Sjödin et al. 2008; Stapleton 

et al. 2005, 2008). Similar to other studies, DecaBDE was the dominant mixture found in 

house dust, followed by pentaBDEs. Due to the decline in use of penta- and octaBDE 

mixtures since 2002-2003 when the dust samples were collected, it is reasonable to 

expect that indoor levels of these congeners may have declined. However, because of 

continued use of older products, it is uncertain. It is also possible that concentrations of 

alternate BFRs may be increasing due to the increased use of alternate BFRs as 

substitutes for PBDEs. As expected, there were strong correlations found among BFRs 

that comprise the same commercial formulations. There was also some degree of 

correlation between different formulations, suggesting that these BFRs may have 

originated from the same sources within the home. 

4.3 Thyroid hormone effects 

Although several animal studies show decreased T3 and T4 levels following 

dosing with PBDEs, our findings of increased T4 levels associated with PBDE exposure 

are consistent with most other human epidemiological studies (Bloom et al. 2008; Turyk 

et al. 2008; Wang et al. 2010). A more recent study, however, found that lower levels of a 

pentaBDE mixture increased T4 levels in perinatally exposed rats (Blake et al. 2011), 

which is consistent with the human studies to date. The authors note that the relatively 

higher doses of PBDEs that decrease T4 levels in animal studies are also associated with 

increased liver weights (Stoker et al. 2004; Zhou et al. 2001, 2002) and may be the result 

of a different mechanism of action. However, Kuriyama et al. (2007) reported decreased 

T4 in rats exposed to BDE 99 at levels similar to those used by Blake et al. (2011). It is 
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difficult to draw conclusions about potential animal and human differences in thyroid 

hormone effects based on a few studies, particularly due to differences in study design 

such as specific congener or congener mixture tested, time of dosing, and timing of 

effects measurement. 

The positive association between many of the penta formulation PBDEs and T3 

levels we found is consistent with a study by Dallaire et al. (2009) which found higher T3 

levels associated with serum BDE 47 among a population of 623 Inuit adults. However, 

another large study of 308 men found lower T3 and TSH levels associated with serum 

PBDEs (sum of BDE 47, 99, 100 and 153) (Turyk et al. 2008). The associations between 

PBDE exposure and thyroid hormones in humans are not consistent across studies, which 

may be due to inherent differences in population, exposure levels or other study 

characteristics. While Chevrier et al. (2010) found lower TSH levels associated with 

serum concentrations of pentaBDE formulation congeners, Zota et al. (2011) found that 

the same congeners in a different population were associated with higher TSH levels. 

Zota et al. (2011) also reported lower TSH levels associated with BDE 207, a congener in 

the decaBDE mixture. These two studies were of populations of pregnant women, and as 

Zota et al. (2011) point out, thyroid hormones fluctuate in women over the course of 

pregnancy, and therefore the two studies may not be comparable. Additionally, because 

our study population was male, it may not be meaningful to compare our results to those 

of studies of pregnant women. We observed higher TSH levels with increased exposure 

to PBDEs, and this association was statistically significant for the octaBDE group. 

Because TSH regulates the production of T3 and T4 through negative feedback, an 

inverse relationship between TSH and both T3 and T4 is expected. However, we did not 
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observe this inverse relationship, and the present study is not the first to observe 

unexpected thyroid hormone level alterations in relation to PBDE exposure (Gascon et al. 

2011; Chevier et al. 2010; Zota et al. 2011). This could mean that thyroid hormones are 

being affected at the hypothalamus or pituitary gland, rather than responding to 

fluctuations in T4. Thyroid hormone homeostasis is critical to numerous physiologic 

processes including metabolism, neurodevelopment, cardiovascular health and 

reproduction. Further study of the implications of subclinical alterations in thyroid 

hormone levels is needed to better understand the effects of BFRs on human health. 

A Norwegian study did not find an association between PBDE or HBCD 

concentrations in human breast milk and serum TSH levels in newborns (Eggesbø et al. 

2011). However, as the authors point out, most European environmental concentrations 

of these compounds are orders of magnitude lower than levels in the United States. We 

also did not find a significant association between HBCD exposure and thyroid hormone 

levels in the present study. 

4.4 Reproductive hormone effects 

There are very few human studies of BFR exposure and reproductive hormones, 

and only one other study among adult men. Meijer et al. (2008) reported an inverse 

association between prenatal BDE 99 exposure and testosterone and SHBG measured in 

male infants at 3 months of age and positive associations between BDE 154 and 

testosterone, SHBG, inhibin B and estradiol. The authors also reported anti-androgenic or 

androgenic effects which were congener-dependent. BDE 47 was associated with lower 

testis volume and penile length, while BDE 154 was associated with higher volume and 

length. We also found positive associations between the pentaBDEs and inhibin B, 
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SHBG and estradiol, with statistical significance for SHBG and estradiol when pooling 

all 62 samples. We also observed a significant positive association between the individual 

congener BDE154 and SHBG. Main et al. (2007) reported a positive association between 

the sum of 14 PBDE congeners in breastmilk and serum LH among newborn males, 

along with an association with congenital cryptorchidism. We also observed a significant 

positive association between octaBDE exposure and LH. However, our findings do not 

appear consistent for pentaBDEs. We previously found a negative association in our 

preliminary analysis of only 24 men (Meeker et al. 2009a). In the present study, there was 

an inverse relationship when all 62 samples were pooled, although this association was 

not statistically significant. The findings of Turyk et al. (2008) included a positive 

association between BDE 47 and testosterone in men. We also found a positive 

relationship between the pentaBDEs and testosterone, but the association was statistically 

significant for octaBDEs only. There was a negative association between decaBDEs and 

testosterone in the present study. Testosterone is important to several physiologic 

functions in adult men, including sex drive and spermatogenesis. A reduction in LH is 

expected in relation to increases in testosterone. However, we observed changes in the 

same direction for LH and testosterone. 

The pentaBDE group and several individual congeners, including BDE 153 and 

BDE 154, were positively associated with prolactin. Prolactin is involved in reproductive, 

metabolic and other functions, and may be used as a measure of neuroendocrine/ 

dopaminergic function (Meeker et al. 2009b). 

Animal studies on BFRs that measured reproductive hormone responses are 

limited. Lilienthal et al. (2006) reported reduced levels of estradiol and testosterone in 
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male rats in response to in utero BDE 99 exposure. Gestational exposure to BDE 47 

resulted in reduced estradiol in females (Talsness et al. 2006, 2008) and reduced FSH in 

males (Andrade et al. 2004). Our findings are consistent with the Andrade et al. findings 

of reduced FSH related to pentaBDE exposure. As FSH has a negative feedback 

relationship with inhibin B, our observation of increased inhibin B in relation to 

pentaBDE exposure, although not statistically significant (p=0.13), is expected. Our 

findings do not appear to be consistent with the directions of alterations in estradiol and 

testosterone levels in these animal studies, as we did not find reductions in testosterone 

levels and found significantly increased estradiol levels associated with pentaBDE 

exposure in men. Unlike our finding of lower testosterone levels associated with 

exposure to BDE 209, Kim et al. (2009) did not observe any effect on testosterone levels 

of male rats after gestational exposure to BDE 209. It is again difficult to compare results 

between studies, however. For example, many animal studies measured effects of 

gestational exposure while the present study estimates current exposure to adult men. Our 

findings appear consistent with the direction of testosterone level alterations found by 

Stoker et al. (2005) in adult male rats, although both studies found non-significant 

increases in testosterone levels in relation to pentaBDE exposure.  

 Marteinson et al. (2011) found higher testosterone levels associated with HBCD 

exposure in American kestrels. We did not find significantly higher testosterone levels in 

relation to HBCD exposure; rather, we found higher free androgen index (FAI), an 

estimation of free testosterone, which is influenced by levels of SHBG. We observed 

reduced SHBG levels in relation to HBCD exposure. 
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Because the endocrine system is complex, and there are relatively few studies 

examining the endocrine effects of BFRs, it is difficult to speculate on the mechanisms or 

clinical significance of the hormone alterations in the present study. Further research on 

these topics is needed, particularly if subclinical hormone alterations may have an impact 

on health at the population level. 

4.5 Limitations and considerations 

There may be certain limitations when comparing our findings to other studies 

using biomarkers of BFR exposure, considering we estimated exposure to BFRs by 

measuring concentrations in dust. However, we expect good agreement between serum 

and dust concentrations for at least the pentaBDE congener grouping, as we previously 

demonstrated (Johnson et al. 2010). Additionally, our previous report also showed that 

dust concentrations of higher-brominated congeners tended to be correlated to serum 

concentrations of lower-brominated congeners, which may have implications for 

exposure assessment in terms of debromination and congener-specific body burdens. 

Because PBDEs can debrominate within an organism (Noyes et al. 2011; Stapleton et al. 

2004), it is reasonable to predict that exposure to higher-brominated congeners in dust 

may result in body burdens of lower-brominated congeners. Because there was some 

degree of correlation between some PBDEs and BTBPE and TBPH, and these BFRs were 

associated with the same hormone effects, further study is needed to confirm the 

associations involving these two alternate BFRs. 

The present study is the first to explore human exposure and associated effects of 

some of these compounds. It is also the first study to relate dust concentrations of 

decaBDEs and other alternate BFRs to hormone levels. This work expands upon our 
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previous study where we found hormone level alterations associated with exposure to 

BDE 47, 99 and 100 as measured in house dust (Meeker et al. 2009a). The use of vacuum 

bag dust as a marker of exposure had the advantages of low cost and efficiency. 

Furthermore, as compared to spot sampling, vacuum bag dust may be a measure of longer 

term integrative exposure representing the total home environment. 

Future study should address the validation of house dust as a marker of exposure 

for flame retardants other than PBDEs. Although we previously found a strong 

correlation between concentrations of the major penta formulation congeners in dust and 

serum (Johnson et al. 2010), BDE 153 was not correlated. Other flame retardants may 

have characteristics similar to BDE 153, such as longer biological half-lives, which could 

affect the relationship between body burdens and environmental measures such as dust. 

BTBPE has a relatively higher vapor pressure than the other compounds measured, and 

therefore inhalation may also be an important exposure route. However, in the absence of 

biomarkers of exposure for these compounds, dust may be an adequate surrogate estimate 

of exposure that likely underestimates body burden to some degree. 

This study had a relatively small sample size, and a large number of relationships 

were investigated due to its exploratory nature. Further studies of these exposures and 

outcomes should be larger to increase confidence and reduce the possibility that some of 

the findings are due to chance. We used a factor analysis to generate independent 

exposure variables and eliminate the potential problem of collinearity when including 

multiple variables in the same regression model. These results supported those of our a-

priori congener groupings, suggesting that it was appropriate to group the congeners 

using our criterion for at least the pentaBDEs and decaBDEs. Additionally, because 
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house dust may contain a variety of chemical compounds to which people are potentially 

exposed, we cannot rule out the possibility that our reported findings may be due to 

unmeasured coexposures or confounders. Furthermore, the present study has a cross-

sectional perspective in terms of environmental exposure and hormone levels. However, 

because exposure to these compounds is expected to be relatively constant if they 

originate from consumer products present in the home, our exposure estimates are likely 

representative of longer term exposure. 

 

5. Conclusion 

In conclusion, the present study provides further evidence of altered hormone 

levels in relation to BFR exposure, and that house dust is an important source of human 

BFR exposure. Further research is needed to confirm these findings and to determine 

sources of human exposure. More reliable biomarkers are needed for some BFRs. 

Research is also needed to determine the public health implications of alterations in 

hormone levels by environmental exposures. 
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Table 3.1. Distribution of brominated flame retardants in house dust 
ng/g (n = 50) 

  Percentiles 

 Mean
a
 25th 50th 75th 90th Maximum 

PentaBDEs 1337 667 862 2,385 5,431 22,300 

OctaBDEs 34.1 21.2 28.8 60.4 103 1,181 

DecaBDEs 2,192 1,352 1,681 3,228 6,669 38,483 

TBB 464 68.4 68.4 2,714 23,934 72,460 

HBCD 136 96.9 242 396 1,045 2,213 

BTBPE 21.2 9.05 19.9 41.4 110 953 

TBPH 426 47 416 1,532 10,944 47,110 

sDP 2.82 2.47 4.26 8.22 14.2 43.1 

aDP 9.29 5.64 8.85 15.8 29.2 68.4 
a
Geometric Mean       

 

 

 



 

 

6
6
 

 
Table 3.2. Spearman correlation coefficients among select BFRs in house dust 
(n=38) 

  BDE 47 99 100 183 201 206 207 208 209 TBB TBPH BTBPE HBCD aDP sDP 

BDE 
47 

r 1.00 0.93 0.94 0.52 0.40 0.17 0.22 0.14 0.13 0.31 0.38 0.37 0.27 0.11 0.18 

p-value   <0.0001 <0.0001 0.0009 0.01 0.30 0.19 0.40 0.44 0.06 0.02 0.02 0.11 0.5 0.28 

BDE 
99 

r   1.00 0.97 0.49 0.36 0.19 0.26 0.21 0.17 0.26 0.31 0.35 0.19 0.10 0.12 

p-value     <0.0001 0.002 0.03 0.27 0.11 0.21 0.29 0.12 0.06 0.03 0.26 0.57 0.47 

BDE 
100 

r     1.00 0.54 0.41 0.22 0.29 0.23 0.22 0.31 0.37 0.39 0.17 0.13 0.15 

p-value       0.0004 0.01 0.19 0.08 0.16 0.19 0.05 0.02 0.01 0.3 0.45 0.36 

BDE 
183 

r       1.00 0.87 0.21 0.36 0.18 0.16 0.50 0.44 0.47 0.05 0.29 0.34 

p-value         <0.0001 0.20 0.02 0.28 0.33 0.002 0.006 0.003 0.75 0.08 0.03 

BDE 
201 

r         1.00 0.39 0.53 0.37 0.30 0.60 0.55 0.43 0.12 0.40 0.52 

p-value           0.02 0.0005 0.020 0.07 <0.0001 0.0003 0.007 0.49 0.01 0.0008 

BDE 
206 

r           1.00 0.93 0.94 0.84 0.28 0.28 0.28 -0.24 0.22 0.37 

p-value             <0.0001 <0.0001 <0.0001 0.09 0.09 0.09 0.14 0.19 0.02 

BDE 
207 

r             1.00 0.96 0.83 0.40 0.35 0.32 -0.16 0.24 0.43 

p-value               <0.0001 <0.0001 0.01 0.03 0.05 0.33 0.15 0.008 

BDE 
208 

r               1.00 0.85 0.31 0.30 0.28 -0.20 0.23 0.36 

p-value                 <0.0001 0.05 0.07 0.09 0.23 0.16 0.02 

BDE 
209 

r                 1.00 0.29 0.19 0.27 -0.16 0.22 0.36 

p-value                   0.08 0.26 0.11 0.33 0.19 0.03 

TBB 
r                   1.00 0.79 0.31 0.04 0.30 0.39 

p-value                     <0.0001 0.06 0.80 0.07 0.01 

TBPH 
r                     1.00 0.43 0.16 0.32 0.46 

p-value                       0.01 0.35 0.05 0.004 

BTBPE 
r                       1.00 -0.09 0.45 0.47 

p-value                         0.59 0.004 0.003 

HBCD 
r                         1.00 0.20 0.15 

p-value                           0.23 0.36 

aDP 
r                           1.00 0.83 

p-value                             <0.0001 

sDP 
r                             1.00 

p-value                               
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Table 3.3. Percent change
a
 in hormone level (95% confidence intervals), relative to population median, 

  associated with an interquartile range (IQR) increase in house dust BFR concentration  

               

 PentaBDE
c 
(n=38) OctaBDE

d
 (n=38) DecaBDE

e 
(n=38) PentaBDE

c
 (n=62)

f
 

    p-value    p-value    p-value    p-value 

FSH -10.4 (-3.6, 10.7) 0.31 4.4 (-13.2, 25.6) 0.65 1.8 (-15.5, 22.7) 0.85 -20.2 (-34.7, -2.5) 0.03 

LH 7.4 (-9.2, 26.9) 0.41 15.5 (0.6, 32.6) 0.05 -6.6 (-19.2, 8.1) 0.37 -9.4 (-24.1, 8.2) 0.28 

Inhibin B 6.8 (-20.4, 33.9) 0.63 -5.8 (-29.4, 17.7) 0.63 -6.2 (-29.9, 17.5) 0.61 18.2 (-4.8, 41.3) 0.13 

Testosterone
b
 5.2 (-5.2, 15.6) 0.33 9.0 (0.8, 17.2) 0.03 -9.4 (-17.6, -1.2) 0.02 3.6 (-7.4, 14.7) 0.52 

SHBG 14.3 (-3.8, 35.8) 0.13 9.2 (-6.1, 27.0) 0.26 -10.2 (-22.8, 4.4) 0.17 16.8 (0.7, 35.4) 0.05 

FAI -7.3 (-21.2, 9.1) 0.36 -0.7 (-13.9, 14.5) 0.92 0.4 (-13.0, 16.0) 0.95 -10.6 (-22.5, 3.2) 0.13 

Estradiol 16.1 (-3.9, 36.2) 0.12 14.4 (-2.8, 31.7) 0.11 -8.5 (-26.3, 9.3) 0.36 17.1 (0.0, 34.2) 0.05 

Prolactin 21.6 (1.6, 45.5) 0.03 13.8 (-2.9, 33.4) 0.12 4.5 (-11.4, 23.3) 0.60 10.8 (-6.0, 30.7) 0.23 

Free T4 1.4 (-1.5, 4.3) 0.36 3.3 (1.0, 5.6) 0.01 -1.7 (-4.2, 0.9) 0.20 3.6 (0.6, 6.5) 0.02 

Total T3 6.9 (1.9, 12.0) 0.01 4.3 (-0.2, 8.8) 0.07 1.7 (-3.1, 6.4) 0.50 5.4 (0.0, 10.7) 0.05 

TSH 16.3 (-6.7, 45.0) 0.18 21.2 (0.8, 45.8) 0.05 11.1 (-8.5, 34.9) 0.29 14.1 (-4.7, 36.7) 0.16 

 
a 
Adjusted for age and BMI.   

 b 
Free testosterone estimated using equation by Vermeulen et al. 1999.    

 
c
 PentaBDE is sum of BDE 47, 99 and 100. IQR = 2268 ng/g for n=38 and 2985 ng/g for n=60.    

 
d
 OctaBDE is sum of BDE 183 and 201. IQR = 39 ng/g.         

 
e 
DecaBDE is sum of BDE 206, 207, 208 and 209. IQR = 1876 ng/g.       

 

f 
Includes additional samples from prior preliminary analysis, and models are also adjusted for 

difference in dust analytical method.         
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Figure 3.1. Scatterplot of HBCD in house dust and ln-transformed free androgen index 

(FAI) 

(n = 38, r = 0.46, p = 0.004) 

One outlier with a concentration of HBCD less than the detection limit was removed and 

did not affect the positive association. 
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Figure 3.2. Scatterplot of BTBPE in house dust and serum total T3 

(n = 38, r = 0.33, p = 0.04) 

 

0.6

0.8

1

1.2

1.4

1 10 100 1,000

BTBPE  (ng/g dust)

T
o

ta
l 

T
3

 (
n

g
/m

l)

 
 



 

70 

 

Figure 3.3. Scatterplot of TBPH in house dust and serum total T3 

(n = 38, r = 0.30, p = 0.07) 

 

 

0.6

0.8

1

1.2

1.4

10 100 1,000 10,000 100,000

TBPH  (ng/g dust)

T
o

ta
l 

T
3
 (

n
g

/m
l)

 
 

 

 

 

 

 



 

71 

 

Table 3.4. Factor pattern for 8 independent variables, representing weightings of each 

congener, for all PBDE congeners detected in house dust. 

 

 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 

BDE 17 0.61921 -0.27052 0.19168 0.17357 -0.41984 -0.04351 0.33098 -0.07932 

BDE 25 0.19201 -0.36883 -0.12747 0.39082 -0.30498 -0.46457 -0.01396 0.49010 

BDE 28/33 0.81550 -0.38798 0.06208 0.07015 -0.03569 0.07351 -0.06067 -0.07033 

BDE 30 -0.13225 -0.02905 0.20550 -0.53665 0.12428 -0.28102 0.68385 0.01557 

BDE 47 0.95770 -0.21810 0.02513 0.01519 -0.00523 0.04297 -0.00737 -0.08296 

BDE 49 0.42602 -0.00713 0.15241 -0.25128 -0.50311 0.52132 0.07574 0.15202 

BDE 66 0.73432 -0.32019 0.08162 0.18837 -0.29711 0.08202 0.20863 -0.16743 

BDE 75 0.23279 -0.28282 0.03633 0.49519 0.36456 0.55011 0.15913 -0.17713 

BDE 85/155 0.96164 -0.17075 0.02102 -0.06266 0.03537 -0.10549 -0.07274 -0.01817 

BDE 99 0.96213 -0.21373 0.04277 -0.03854 -0.00481 -0.08907 -0.02396 -0.03014 

BDE 100 0.97057 -0.17617 0.00468 -0.06570 0.04365 -0.07927 -0.07759 -0.02223 

BDE 138 0.38529 -0.17239 0.54641 -0.17250 0.36090 0.23085 -0.26340 0.15432 

BDE 153 0.95584 -0.14743 -0.06018 -0.08995 0.03895 -0.11845 -0.05213 0.02262 

BDE 154 0.84431 -0.01778 -0.07175 -0.22286 0.24656 -0.19706 -0.22573 0.13240 

BDE 183 0.53488 0.19800 -0.77153 -0.11729 0.11291 0.00159 -0.03000 -0.03953 

BDE 201 0.43644 0.42526 -0.73047 -0.00085 0.09663 -0.00121 -0.00375 -0.10207 

BDE 202 0.40385 0.63789 -0.02366 -0.06827 0.06280 -0.17517 0.17920 -0.29929 

BDE 203/200 0.06711 0.61525 -0.46298 0.28807 -0.22872 0.26425 0.08367 0.23107 

BDE 205 0.13333 -0.01979 0.18782 0.66479 0.46476 -0.23387 0.27388 0.09357 

BDE 206 0.30397 0.85720 0.31233 0.08345 -0.05574 -0.05673 -0.03512 -0.00946 

BDE 207 0.40369 0.87831 0.12270 0.10306 -0.05670 -0.06045 0.02305 -0.06370 

BDE 208 0.35133 0.84867 0.31784 0.10512 -0.07158 -0.04356 0.02223 -0.04902 

BDE 209 0.31736 0.76528 0.42895 0.02329 -0.00433 0.02991 -0.17121 0.20390 

Variability
a
 0.3631 0.5547 0.6483 0.7123 0.7695 0.8234 0.8691 0.9025 

Color coding: > 0.75 0.50-0.74 0.25-0.49      
a 
Cumulative proportions of the variability explained by each factor, as determined by eigenvalues of the 

correlation matrix from the factor analysis. Eight factors account for 90 percent of the variability of all 

congeners. 
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Appendix 

 

The following information is to show how data was examined and transformed 

prior to analyses. Several examples are provided, but not all data is shown. 

Hormones with distributions that approximated normality were left 

untransformed, as in the case of free T4 (Figure A-1). Several hormones had skewed 

distributions and were transformed to the natural log (ln) to satisfy the normality 

assumptions of the regression models, as in the case of FSH (Figure A-2). All BFR 

distributions were skewed and were also ln-transformed (Figure A-3). 

Bivariate relationships were examined prior to running models with additional 

variables (Figure A-4). Plots of residuals were examined to ensure that the points were 

randomly dispersed and therefore linear regression models were appropriate for the data. 

Figure A-5 is the residual plot for model 4: FreeT4 = ln(sum of pentaBDEs) + age + bmi. 

Figure A-6 is the residual plot for model 1: ln(FSH) = ln(sum of pentaBDEs) + age + 

bmi. Because the data appear randomly dispersed about the horizontal axis, these plots 

indicate that linear models are appropriate. 

The use of splines in the regression models was investigated as a means to 

improve model fit by smoothing the exposure variable. Models were built using GAM in 

R with penalized splines. Smoothing of the exposure variable was examined, allowing 

mgcv to choose the number of knots. Figure A-7 is the plot of the smoothing of the 

variable (sum of pentaBDEs) for the model: FreeT4 = (sum of pentaBDEs) + age + bmi. 

Because the relationship between (sum of pentaBDEs) and free T4 was linear (estimated 

degrees of freedom = 1), smoothing was not used in the final model. Likewise, the 
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relationship between (sum of pentaBDEs) and FSH was linear (estimated degrees of 

freedom = 1.28), and smoothing was not necessary in the final model (Figure A-8). 

 

Figure A-1. Example histogram of dependent variable 

 
 

 

Figure A-2. Example histograms of transformed dependent variable 
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Figure A-3. Example histograms of independent variable 

 
 

 

 

Figure A-4. Bivariate relationships. 
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Figure A-5. Residual plot for model 4: FreeT4 = ln(sum of pentaBDEs) + age + bmi. 

 
 

 

 

 

 

Figure A-6. Residual plot for model 1: ln(FSH) = ln(sum of pentaBDEs) + age + bmi. 
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Figure A-7. Smoothing plot for FreeT4 = s(sum of pentaBDEs) + age + bmi. 

  
 

 

 

 

Figure A-8. Smoothing plot for ln(FSH) = s(sum of pentaBDEs) + age + bmi. 
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CHAPTER IV 

 

Serum and Follicular Fluid Concentrations of Polybrominated Diphenyl Ethers and In vitro 

Fertilization Outcome 
 

 

 

 

 

Abstract 

There is evidence of endocrine disruption and reproductive effects in animals following exposure 

to certain PBDEs, but human studies are limited. The goal of this study was to investigate the use 

of serum and follicular fluid as biomarkers of exposure to PBDEs and to explore whether a 

relationship between PBDE exposure and early pregnancy loss exists. We measured 8 PBDE 

congeners in archived serum and ovarian follicular fluid samples from 65 women undergoing in 

vitro fertilization (IVF). Logistic regression models were used to predict the odds of failed 

embryo implantation associated with higher levels of PBDEs among the women in the study. 

There were moderate Kendall’s Tau-beta correlations between serum and follicular fluid 

concentrations of BDE 28, 47, 100 and 154 (T=0.29-0.38, all p-values<0.005), but BDE 99 and 

153 were not correlated between the two matrices (T<0.2, p-values>0.05). Women with 

detectable concentrations of BDE 153 (39% had detectable levels) in follicular fluid had elevated 

odds of failed implantation compared with women who had non-detectable concentrations 

(adjusted OR=10.0; 95%CI: 1.9 to 52; p=0.006; adjusted by age and body mass index). These 

findings suggest that exposure to BDE 153 may be associated with failed embryo implantation. 

Due to our observation of only moderate correlations between matrices, serum PBDE 
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concentrations may not be a good indicator of follicular fluid concentrations when studying early 

pregnancy endpoints in women undergoing IVF. 

 

1. Introduction 

Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants used in the 

manufacture of a variety of consumer products, including home electronics, upholstered 

furniture, carpeting, and other items containing polyurethane foam or plastics. Flame retardants 

are added to these products with the intention to slow the rate of burning in case of fire and meet 

fire safety standards such as Technical Bulletin 117 which requires that certain articles do not 

ignite when exposed to 12 seconds of open flame (CA Dept. of Consumer Affairs, 2000). PBDEs 

are not chemically bound, and thus may leach out or physically degrade and end up in indoor air 

and house dust. PBDEs have been measured in the indoor environment (Sjodin et al., 2008a; 

Stapleton et al., 2005), and house dust is expected to be a primary exposure pathway (Johnson et 

al., 2010; Johnson-Restrepo and Kannan, 2009; Lorber, 2008; Wu et al., 2007). Human exposure 

to PBDEs is widespread and body burdens in North Americans are orders of magnitude higher 

(around 35 ng/g lipid) than those in European countries where most PBDEs have been banned 

(Hites, 2004; Sjodin et al., 2008b). 

Three commercial formulations of PBDEs have been produced, designated as penta-, 

octa-, and deca- BDE. These formulations consist of mixtures of specific PBDE congeners, and 

are named according to their degree of bromination. Penta- and octa-BDEs have been banned in 

Europe and phased out of production in the United States, and deca-BDE will begin phasing out 

in 2012 (EPA, 2009). However, the general population continues to be exposed to all of these 
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compounds due to their persistence in the environment and continued release from older 

products. 

PBDEs are established endocrine disruptors. PBDEs have been shown to alter 

reproductive and thyroid hormone homeostasis in animal studies, even at environmentally 

relevant levels to which humans may be exposed. Fernie et al. (2005) found inverse associations 

between exposure to BDE 47, 99 and 100, but not 153, and plasma thyroxine (T4) in captive 

American kestrels. Exposure to pentaBDE commercial mixtures decreased T4 levels in rodent 

studies, possibly by inducing hepatic enzymes that increase thyroid hormone clearance (Ellis-

Hutchings et al., 2006; Fowles et al., 1994; Hallgren et al., 2001; Skarman et al., 2005; Stoker et 

al., 2004; Zhou et al., 2001, 2002). Zhou et al. (2001) also tested a decaBDE mixture and did not 

find the same effects on the measured outcome parameters. However, thyroid and liver tumors 

have resulted from chronic exposure to decaBDE (NTP, 1986). Although Zhou et al. (2002) 

found decreased T4 levels and increased liver weights and hepatic enzyme activity in dams and 

fetuses in response to gestational pentaBDE exposure, maternal weight gain, litter size and sex 

ratio, and offspring viability or growth were not significantly affected. Studies of the 

reproductive system have revealed adverse effects in both male and female rats after exposure to 

PBDEs. For instance, Talsness et al. (2006, 2008) found that gestational exposure to BDE 47 

decreased circulating levels of estradiol and the number of ovarian follicles in offspring. 

Lilienthal et al. (2006) reported effects on the number of ovarian follicles resulting from 

exposure to BDE 99. A recent in vitro study suggested that PBDEs may disrupt ovulation by 

stimulating progesterone secretion by ovarian follicles (Karpeta et al., 2010). Talsness et al. 

(2005) found that a single dose gestational exposure to BDE 99 resulted in structural 

abnormalities of ovaries and greater fetal resorption rates among female offspring. Their results 



 

80 

 

were suggestive of a dose-dependent effect on resorption, but the differences in resorption rates 

between exposure groups were not statistically significant. On the other hand, Hardy et al. (2002) 

did not find differences in rates of pregnancy or uterine implantation in rats after 20 days of 

gestational exposure to a decaBDE mixture. 

Studies of potential human health effects of PBDEs are limited. A few human studies 

have reported associations between PBDE exposure and altered levels of the thyroid hormones 

thyroxine (T4), triiodothyronine (T3) or thyroid stimulating hormone (TSH) (Bloom et al., 2008; 

Chevrier et al., 2010; Dallaire et al., 2009; Hagmar et al., 2001; Turyk et al., 2008; Wang et al., 

2010; Yuan et al., 2008). Thyroid hormone homeostasis is important for regular ovulation, 

fertilization and maintaining pregnancy (Cramer et al., 2003; Krassas et al., 2010; Zoeller and 

Meeker, 2010). We recently reported that concentrations of BDE 47, 99 and 100 in house dust 

were associated with increased levels of serum T4 in 24 men (Meeker et al., 2009a). PBDEs in 

house dust were also inversely associated with luteinizing hormone and follicle stimulating 

hormone in these men. Human studies involving PBDE exposure and female reproductive 

function are even more limited, but two studies suggest PBDEs may adversely impact fertility. 

Chao et al. (2007) found evidence of shorter menstrual cycle length in relation to elevated levels 

of PBDEs in breast milk, although this association was not statistically significant in their small 

sample size. Harley et al. (2010) recently reported significantly reduced fecundability, in terms 

of time to pregnancy, associated with elevated serum levels of PBDEs in a group of Californian 

women. 

Assisted reproduction technologies such as in vitro fertilization (IVF) provide the 

opportunity to study stages of reproduction that are otherwise not observable in the general 

population, such as oocyte quality, fertilization, embryo quality, and implantation. In addition, 
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biomarkers of environmental exposures, such as PBDEs, may be measured in follicular fluid that 

is usually collected during IVF and discarded. Previous measurements of contaminants in 

follicular fluid include PCBs, pesticides, cotinine and cadmium (Younglai et al. 2002). Follicular 

fluid surrounds the preovulatory oocyte and provides an important microenvironment in which 

the oocyte develops. Depending on the health endpoint of interest and biological mechanisms 

involved, the concentration of PBDEs in follicular fluid may be a more biologically relevant 

measure of exposure to the oocyte than serum. However, serum is the most common matrix in 

which to measure PBDE concentrations, and it remains unknown if serum PBDE concentrations 

serve as an adequate estimate of concentrations closer to the target tissue in the case of female 

reproduction. 

In the present study, we measured PBDEs in archived serum and follicular fluid 

samples from 65 women who participated in a large study of predictors of in vitro fertilization 

(IVF) success, where we found that PCBs and cigarette smoking were associated with IVF 

implantation success rates (Meeker et al., 2007a, 2011). The objective was to first attempt to 

quantify PBDE concentrations in follicular fluid, which to our knowledge has not been done 

previously, then investigate the use of serum as a biomarker of exposure to PBDEs as compared 

to the potentially more biologically relevant biomarker of follicular fluid (in the case of IVF 

outcomes). Finally, we conducted an exploratory analysis to investigate the relationship between 

PBDE exposure and failed embryo implantation. Failed implantation was chosen as the outcome 

to explore because we had a limited sample size and it is the most common point of failure in 

IVF cycles. 

 

2. Methods 
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2.1 Study population 

The main study, within which the present sub-study took place, was conducted in two 

funding phases (1994 - 1998 and 1999 – 2003), and details have been previously described 

(Meeker et al., 2007a, 2007b). Briefly, women undergoing IVF or intracytoplasmic sperm 

injection (ICSI) were recruited through three clinics in the Boston area to participate in a study of 

IVF outcome predictors. Women requiring either donor oocytes or donor semen were excluded. 

Study protocols were approved by the Human Research Committees at Brigham and Women's 

Hospital, Harvard School of Public Health, and the University of Michigan. Approximately 65% 

of those approached agreed to participate in the study. 

2.2 Serum and follicular fluid collection 

Serum samples were collected within 36 hours of each IVF/ICSI cycle, during the 

follicular phase immediately prior to human chorionic gonadotropin (HCG) administration. The 

samples were separated by centrifugation for 5 minutes, aliquoted and stored at -80C until 

analysis. Oocyte retrieval was performed approximately 36 hours after HCG administration. The 

follicular fluid was obtained from the largest follicle visualized by ultrasound, and each sample 

consisted of fluid from only one follicle. After the oocytes were removed, the follicular fluid was 

centrifuged for 15 minutes, and the supernatant was placed into a clean storage tube, aliquoted 

and stored at -80C until analysis.  

2.3 Measurement of PBDEs 

Paired serum and follicular fluid samples from a total of 65 randomly selected 

women within the larger study were analyzed for PBDEs by the Organic Chemistry 

Analytical Laboratory, Harvard School of Public Health (Boston, MA). The samples 

underwent liquid-liquid extraction and silica-gel column chromatography clean up, and the 
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extracts were analyzed by gas chromatography-mass spectrometry (GC-MS) operated in 

negative chemical ionization (NCI) mode. Final concentrations were reported after 

subtracting the concentrations of the analyte measured in the procedural blank associated 

with the analytic batch. Target analytes were PBDE congeners 28, 47, 99, 100, 153, 154, 183 

and 209. Method detection limits (MDL) were determined as three times the standard 

deviation obtained from the measurement of eight aliquots of bovine serum fortified with 

target PBDE congeners (spiked at 0.05 ng/g of each analyte, except for BDE 209, which was 

spiked at 0.5 ng/g). The recoveries of all PBDE congeners ranged from 81% to 105%.  The 

lab has been successfully participating in International Intel-calibration sponsored by AMAP 

(Arctic Monitoring and Assessment Program), organized by Quebec National Institute of 

Public Health, Canada (AMAP Ring Test for PCBs, Organochlorine Pesticides and PBDEs in 

Plasma).  The relative percent difference (%RPD) between the laboratory results and the 

assigned values were <20% for all PBDE congeners, except PBDE 209, which was higher 

(36%).  

Serum total cholesterol and triglycerides were measured enzymatically by the Clinical 

Laboratory at Children's Hospital (Boston, MA), and total lipids were calculated by Phillips 

formula (Phillips et al., 1989). It is important to note that the original larger study was designed 

for analysis of PCBs and IVF outcomes, and therefore there were no precautions taken to 

prevent PBDE contamination. As a result, there were background concentrations of PBDEs in 

procedural blanks associated with the samples.  

2.4 Data analysis 

Data analysis was conducted using SAS software version 9.1 (SAS Institute Inc., 

Cary, NC). In samples where PBDE concentrations were below the detection limit but a signal 
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was detected, the concentration estimated by the GC-MS was used in the data analysis. If no 

signal was detected for a given sample, then a zero concentration was assigned. Calculations 

involving serum are based on wet weights for consistency with the follicular fluid measurements, 

although models of failed implantation were also calculated using lipid-adjusted serum. Selected 

percentiles of PBDE congeners in serum and follicular fluid were tabulated. Kendall's Tau-beta 

correlation coefficients were calculated to assess the level of agreement between paired serum 

and follicular fluid PBDE concentrations, and between different PBDE congeners within the 

same matrix. The ratio of PBDE concentrations in follicular fluid to serum was calculated for 

each congener in all women who had detectable concentrations in both specimens. Logistic 

regression, adjusted for age and body mass index (BMI), was used to model the odds of failed 

embryo implantation associated with concentrations of PBDEs. Other variables that were tested 

in models for potential confounding include race, cigarette smoking and serum levels of PCBs. 

This analysis restricted the comparison group to live births, and excluded cases of biochemical 

pregnancies (positive human chorionic gonadotropin test that did not result in a clinical 

pregnancy), miscarriages, and ectopic pregnancies to provide a purer comparison and due to low 

numbers of these endpoints. 

 

3. Results 

Table 4.1 provides details of the study population, including IVF outcomes. The 

mean (SD) age among the women was 36 (3.8) years, and ranged from 27 to 44 years. The mean 

(SD) BMI was 24(4.4), and ranged from 17 to 43. Most women were Caucasian (84%) and never 

smoked (53%), and very few women were current smokers (6%). There were 35 (55%) 
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implantation failures and 18 (28%) live births, for a total sample size of 53 for the logistic 

regression models for failed implantation. 

Table 4.2 presents the distributions and detection rates of PBDE congeners measured 

in serum and follicular fluid. Lipid-adjusted serum PBDE concentrations are also presented for 

comparison. In both serum and follicular fluid, BDE 47 had the highest detection rate and mean 

concentration. Due to relatively high background contamination levels of some PBDE 

congeners, detection limits are high (0.007-0.112 ng/g), particularly for BDE 209. Because all 

serum and follicular fluid samples contained levels of BDE 209 below the detection limit, BDE 

209 concentrations were not included in statistical analyses. PBDE congeners 47, 99 and 100, 

main components of the pentaBDE commercial formulation, were correlated with each other 

within both matrices (Kendall's TB =0.51-0.69, p<0.0001, data not shown). BDE 28, which is 

present in small amounts in the pentaBDE formulation, showed inconsistent rank correlations 

with the main pentaBDE congeners in serum (TB =0.02-0.27, p=0.004-0.8), but were more 

strongly correlated with the main pentaBDE congeners in follicular fluid (TB =0.48-0.57, 

p<0.0001, data not shown). BDE 153, which is present in both the pentaBDE and octaBDE 

formulations, was also moderately correlated with the main pentaBDE congeners in both 

matrices (TB =0.26-0.35, p<0.01, data not shown). BDE 154, also present in both commercial 

formulations, was moderately correlated with BDE 100 in serum (TB =0.21, p=0.02), but more 

strongly correlated with the main pentaBDE congeners in follicular fluid (TB =0.35-0.52, 

p<0.001, data not shown). Table 4.3 presents the Kendall's Tau-beta correlations between PBDE 

concentrations in serum and follicular fluid. There were moderate rank correlations between 

serum and follicular fluid concentrations of BDE 28, 47, 100 and 154 (TB =0.29-0.38, p<0.005), 

but BDE 99 and 153 were not correlated between the two matrices (TB <0.2, p>0.05). 
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Relationships with BDE 183 and BDE 209 were not evaluated due to lower detection rates 

(serum or follicular fluid detection rate below 25%). 

The distributions of the ratios of follicular fluid to serum PBDE concentrations are 

presented in Table 4.4. Concentrations of PBDEs in follicular fluid were usually lower than 

PBDE concentrations in serum, although there were several exceptions for all congeners. 

Additionally, there were notably two outliers where the follicular fluid PBDE concentrations 

were much higher than the serum concentration for all congeners. There was also a high level of 

inter-person variability in the ratios for most of the congeners. 

Odds ratios calculated from logistic regression models of failed embryo implantation 

corresponding to all PBDE congeners in follicular fluid and serum are presented in Table 4.5. 

Women with detectable concentrations of BDE 153 in follicular fluid (39% of samples) had 

significantly elevated odds of failed implantation compared with women who had non-detectable 

BDE 153 concentrations in crude models and when adjusting for age and body mass index 

(adjusted OR = 10.0; 95%CI: 1.9 to 52; p=0.006). There was also evidence for a dose-response 

trend when women with detectable BDE 153 concentrations in follicular fluid were divided into 

equal groups (adjusted OR for non-detect, medium, and high BDE 153 groups = 1.0 [reference], 

6.7, and 18.7, respectively; p-value for trend = 0.008). Age and BMI were included in the models 

because both variables may be associated with both PBDE exposure and fertility outcomes. 

Models used wet weight serum and follicular fluid concentrations of PBDEs, and similar results 

were found when using lipid-adjusted serum (not shown). The inclusion of ethnicity or smoking 

status (having ever been a smoker) did not change the model estimates by more than 10 percent 

and were not included in the final models. Because serum concentrations of polychlorinated 

biphenyls (PCBs) were found to affect implantation in the main study of IVF outcome predictors 
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(Meeker et al., 2011), we also tested models when additionally adjusting for PCB concentrations. 

The inclusion of PCB concentrations did not change the model estimates by more than 10 

percent. Additionally, there was no correlation found between PCB and PBDE concentrations in 

serum or follicular fluid. Therefore, PCB concentrations were not included in the final models. 

 

4. Discussion 

To our knowledge this is the first report of PBDE measurement in human follicular 

fluid. We found increased odds (10-fold) of failed embryo implantation associated with elevated 

levels of BDE 153 in follicular fluid in a group of women undergoing IVF. Our ability to detect 

statistically significant associations between other PBDE congeners, in follicular fluid or serum, 

and failed implantation was limited by relatively high detection limits and a small sample size. 

Our finding of BDE 153 as the congener with the most influence over implantation may be 

consistent with the findings in the study by Harley et al. (2010), where BDE 153 was associated 

with the largest decrease in fecundability odds ratios as compared to BDE 47, 99 and 100. The 

Harley et al. study (2010) reported that all four of these PBDE congeners were associated with 

longer time to pregnancy, as assessed by serum PBDE concentrations and interviews of 223 

pregnant women. 

The PBDE congeners found at the highest concentrations in serum and follicular fluid 

were BDE 47, 99, 100, 153 and 154. Similarly, in a large US study of human serum, BDE 47, 

99, 100 and 153, main components of the pentaBDE commercial mixture, were the congeners 

found at the highest concentrations (Sjodin et al., 2008b). Because only moderate correlations 

were observed between PBDE concentrations in serum and follicular fluid, serum concentrations 

may not be a good indicator of follicular fluid concentrations when studying fertility and early 
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pregnancy loss in women undergoing IVF. However, our ability to determine a relationship 

between serum and follicular fluid PBDEs may be hindered by our low detection rates of 

PBDEs. 

The ratios of follicular fluid to serum PBDE concentrations were highly variable 

between participants. This finding suggests inter-individual differences in exposure or 

distribution among the women, and that some women may be potentially more susceptible to 

PBDEs reaching developing follicles. In a previous study (Meeker et al., 2009b) of PCBs in this 

same population, ratios of follicular fluid PCB concentrations to serum PCB concentrations were 

less variable (10
th

 percentile=0.2; 90
th

 percentile=0.4) than the PBDE ratios in the present study, 

which led the authors to conclude that serum measurements of PCBs were reliable measures of 

exposure to the oocyte. In the present study there were two individual women whose follicular 

fluid to serum PBDE ratios were high outliers because their follicular fluid PBDE concentrations 

were consistently higher than their serum concentrations for all the congeners measured. It is 

possible that these two follicular fluid samples were contaminated. However,  relationships 

between serum and follicular fluid PBDE concentrations did not improve (correlation 

coefficients changed by less than 5% for most congeners and less than 10% for all congeners) 

when omitting these outliers. Additionally, the odds ratio of failed implantation for BDE 153 in 

follicular fluid slightly increased when omitting the two outliers. 

The disruption of thyroid hormone homeostasis is a possible mechanism by which 

PBDEs may influence implantation and fertility. For example, experimental studies have shown 

that PBDEs may bind to thyroid hormone receptors (Marsh et al., 1998) and PBDE metabolites 

may displace T4 from binding to transthyretin, the thyroid transport protein (Meerts et al., 2000). 

Thyroid hormone disruption may play a role in altered follicle formation, as could disruption 
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along the hypothalamic-pituitary-ovarian axis (Talsness, 2008). For example, several PBDE 

congeners were found to activate estrogen receptors in vitro, and PBDE metabolites were 

especially potent (Meerts et al., 2001). This same study found that several PBDE congeners, 

including BDE 153, had antiestrogenic effects. Uterine levels of estrogen and progesterone 

receptor mRNA were also affected by PBDE exposure, although only BDE 99 was tested 

(Ceccatelli et al., 2006). Talsness et al. (2005) suggested that disrupted mitochondrial regulation 

by PBDEs may result in the uncontrolled synthesis of steroid products, subsequent vaginal and 

uterine abnormalities, and increased resorption rates they reported in rats exposed to PBDEs. 

Past studies have assessed PBDE exposure to the developing fetus by measuring 

PBDE concentrations in human placental tissue (Doucet et al., 2009; Main et al., 2007; Miller et 

al., 2009). However, to our knowledge, this is the first study to report PBDE concentrations in 

human follicular fluid and to examine the effects of preconception PBDE exposures on early 

pregnancy. This study was conducted among a group of women undergoing IVF and may be part 

of a population more sensitive to factors affecting infertility. Thus, the generalizability of our 

findings remains unclear. However, PBDE exposures as measured in serum in this group of 

women are representative of the general population (Sjodin A et al., 2008b), and no evidence 

exists to date to suggest that these women are more susceptible to potential toxic effects of 

PBDE exposure than women conceiving naturally. Additionally, an advantage of studying IVF 

populations is the ability to examine sensitive endpoints that would be very difficult or 

impossible to study in the general population. In their study on PBDE exposure and reduced 

fecundability, Harley et al. (2010) point out that, because they studied women who successfully 

conceived a child naturally, infertile and subfertile women were underrepresented in their study, 

and PBDE exposure may have an even stronger effect on fertility than they reported. 
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Implantation failure, which is a common occurrence even among women conceiving naturally 

(Chard, 1991; Norwitz et al., 2001), occurs prior to the detection of pregnancy, and therefore was 

not measurable in the pregnant population of women studied by Harley et al. (2010). However, 

implantation failure may be related to the decreased fecundability found in this population. For 

this reason, we expect that the study of early pregnancy outcomes, such as the present study of 

this IVF population, will be useful in elucidating relationships between environmental exposures 

and fertility for all couples, including those attempting to conceive naturally. 

 

5. Conclusion 

We found that PBDEs are detectable in follicular fluid and that levels of BDE 153 in 

follicular fluid may be associated with failed embryo implantation. Our findings may help 

explain the previous report of a relationship between PBDE exposure and time to pregnancy, as 

failed implantation may manifest as reduced fertility and increased time to pregnancy among 

women attempting to conceive naturally. Further research with a larger sample size is needed to 

confirm the findings of this pilot study and to explore potential inter-individual differences in 

PBDE toxicokinetics and susceptibility. Research is also needed to determine the biological 

mechanisms involved in these relationships. 
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Table 4.1. Characteristics of study population 

Age, yrs. [median (min,max)]  38 (27,44) 

Body mass index [median (min,max)] 23 (17,43) 

     

   n (%) 

 Caucasian 54 84 

 Other/unspecified  11 16 

Smoking status    

 never smoked 34 53 

 past smoker 30 47 

 current smoker 4 6.3 

IVF Outcomes    

Implantation failure  35 55 

Live birth   18 28 

Chemical pregnancy only 6 9.4 

Miscarriage  3 4.7 

Ectopic pregnancy  2 3.1 
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Table 4.2. Distribution of PBDEs (ng/g wet weight) in serum (n=63) and follicular fluid 

(n=64) 

 

 
Detection 

Limit 

Detection 

Rate Mean 

Selected Percentiles 

Maximum Serum 25th 50th 75th 90th 

BDE28 0.007 43% 0.002 ND ND 0.003 0.005 0.019 

BDE47 0.044 90% 0.037 0.013 0.025 0.043 0.081 0.237 

BDE100 0.015 83% 0.008 0.002 0.005 0.009 0.017 0.048 

BDE99 0.042 70% 0.010 ND 0.006 0.014 0.029 0.072 

BDE154 0.009 86% 0.011 0.005 0.011 0.015 0.023 0.037 

BDE153 0.009 44% 0.013 ND ND 0.007 0.012 0.342 

BDE183 0.011 19% 0.002 ND ND ND 0.002 0.086 

Total PBDEs     0.092 0.038 0.071 0.109 0.189 0.682 

Follicular fluid               

BDE28 0.007 39% 0.001 ND ND 0.001 0.002 0.017 

BDE47 0.044 70% 0.026 ND 0.004 0.012 0.054 0.667 

BDE100 0.015 38% 0.006 ND ND 0.002 0.006 0.192 

BDE99 0.042 47% 0.014 ND ND 0.003 0.015 0.248 

BDE154 0.009 44% 0.003 ND ND 0.002 0.004 0.048 

BDE153 0.009 39% 0.007 ND ND 0.002 0.017 0.175 

BDE183 0.011 3% 0.000 ND ND ND ND 0.002 

Total PBDEs     0.058 0.002 0.008 0.027 0.082 1.186 

Lipid-adjusted Serum (ng/g lipid)             

BDE28    0.34 ND ND 0.55 0.93 3.19 

BDE47    7.14 2.27 5.22 9.73 14.53 39.3 

BDE100    1.41 0.27 1.00 1.96 3.20 6.80 

BDE99    2.10 ND 1.06 3.33 5.17 13.0 

BDE154    2.08 0.84 2.21 2.89 4.00 7.11 

BDE153    1.88 ND ND 1.16 2.40 56.8 

BDE183    0.37 ND ND ND 0.46 15.2 

Total PBDEs     15.8 5.50 12.6 20.8 34.1 113 

ND = Not detected 
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Table 4.3. Kendall's Tau-beta correlation coefficients for PBDE concentrations in serum 

and follicular fluid 

(n=62) 

 

 TB p-value 

BDE 28 0.33 0.002 

BDE 47 0.38 <0.0001 

BDE 100 0.36 0.0003 

BDE 99 0.11 0.26 

BDE 154 0.29 0.003 

BDE 153 0.15 0.16 
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Table 4.4. Distribution of follicular fluid:serum ratios 

 

    Selected Percentiles  

  na Mean Min 25th 50th 75th 90th Max 

BDE28 14 0.3 0.09 0.2 0.3 0.4 0.4 0.6 

BDE47 40 0.8 0.03 0.2 0.3 0.4 0.9 16 

BDE100 22 4.0 0.03 0.1 0.3 0.4 1.1 64 

BDE99 21 31 0.03 0.2 0.3 0.6 1.6 620 

BDE154 25 0.3 0.04 0.1 0.2 0.3 0.6 2.3 

BDE153 10 0.6 0.05 0.2 0.2 0.2 0.7 4.6 

Total PBDEs 49 0.8 0.01 0.1 0.2 0.3 0.6 18 
a
Ratios only include those for which both serum and follicular fluid had detectable levels 

of PBDEs.
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Table 4.5. Odds ratios for implantation failure associated with elevated (above median, 

or, if <50% detected, detectable) levels in serum or follicular fluid 

(n=53) 

 

Serum 

Crude OR       

(95% CI) 

Adjusted
a
 OR 

(95% CI) 

BDE 28 1.2 (0.4, 3.8) 1.2 (0.4, 3.9) 

BDE 47 1.5 (0.5, 4.7) 1.6 (0.5, 5.4) 

BDE 100 1.5 (0.5, 4.7) 1.5 (0.5, 4.9) 

BDE 99 1.5 (0.5, 4.7) 1.7 (0.5, 5.6) 

BDE 154 2.8 (0.8, 9.4) 3.0 (0.8, 10) 

BDE 153 1.0 (0.3, 3.4) 1.2 (0.3, 4.4) 

Total PBDEs 1.2 (0.4, 3.7) 1.2 (0.4, 4.0) 

Follicular Fluid 

BDE 28 1.2 (0.4, 3.8) 1.2 (0.4, 4.0) 

BDE 47 0.8 (0.3, 2.7) 0.9 (0.3, 2.7) 

BDE 100 0.7 (0.2, 2.3) 0.7 (0.2, 2.5) 

BDE 99 0.4 (0.1, 1.4) 0.4 (0.1, 1.4) 

BDE 154 1.9 (0.6, 6.2) 2.1 (0.6, 7.4) 

BDE 153 5.9 (1.5, 24) 10 (1.9, 51) 

Total PBDEs 1.7 (0.5, 5.2) 1.8 (0.5, 6.0) 
a
Adjusted by age and BMI 
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CHAPTER V 

 

Conclusion 

 

Summary of the research 

The present research investigated exposures and body burdens of BFRs 

commonly found in the indoor home environment. Serum, follicular fluid and house dust 

were examined as markers of exposure to BFRs for environmental epidemiology studies. 

Alterations in serum thyroid and reproductive hormones in men and early pregnancy loss 

(failed implantation) in women undergoing in vitro fertilization (IVF) were investigated 

in relation to BFR exposure. 

The validity of using house dust as an exposure marker was examined in Chapter 

2, where house dust concentrations of the major pentaBDE formulation congeners were 

found to be highly correlated to serum concentrations of the same congeners. This 

observation supports the argument that dust is a major exposure pathway for PBDEs, and 

for BDE 47 in particular, which typically represents the majority of the body burden 

measured in serum. Male and female serum levels of these congeners were also strongly 

correlated, indicating that adults living in the same household have similar exposures. 

Because concentrations of the longer half-life congener, BDE 153, were not correlated 

either between dust and serum or between males and females, it was concluded that there 

is some other factor (e.g. dietary exposure, individual metabolism or distribution 

differences) contributing to this discrepancy. This study is the first to provide empirical 

evidence of the correlation between house dust and serum concentrations of PBDEs. The 
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three previous studies, which were unable to demonstrate significant correlation, relied 

on data from European countries where dust concentrations are substantially lower than 

the US (Fromme et al. 2009; Karlsson et al. 2007; Roosens et al. 2009), indicating that 

diet is likely the main exposure pathway in Europe. 

Chapter 3 utilized the findings of Chapter 2 to inform the methods of PBDE 

congener groupings for the statistical modeling of PBDE exposure effects on hormone 

levels in men. Strong correlations between congeners within dust and between certain 

congeners in dust and serum provided logical evidence for grouping congeners according 

to the most prevalent congeners in commercial mixtures. The individual congeners were 

also modeled for comparison, as well as models using data generated from a factor 

analysis of all congeners detected in dust. Using the factor analysis to generate 

independent variables representing different weightings of PBDE congeners, effects on 

each hormone were modeled with all of the factor variables in the same model without 

the problem of collinearity. This method of data analysis represents a novel look at PBDE 

congener groupings and how they relate to human health effects. Significant positive 

associations were found between house dust concentrations of pentaBDEs and serum 

levels of T4, T3, estradiol, SHBG and prolactin, along with an inverse association with 

FSH. Positive associations between octaBDE concentrations and serum T4, TSH, LH and 

testosterone and an inverse association between decaBDE concentrations and testosterone 

were also found. Additionally, several significant relationships between dust 

concentrations of alternate BFRs that are replacing PBDEs and hormone levels were 

found. Despite the limitations in comparing these findings to those of animal or other 

epidemiological studies that had differences in study design such as specific exposure 
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(PBDE congener), exposure levels, or exposure timing (e.g. prenatal versus adult), 

several findings were consistent with the current literature, as discussed in Chapter 3. 

Finally, Chapter 4 explored the relationship between serum and ovarian follicular 

fluid concentrations of PBDEs, a novel human measurement. Because no strong 

relationship was found between serum and follicular fluid concentrations of PBDEs, it 

was concluded that serum PBDE concentrations may not be a good estimate of follicular 

fluid concentrations. The association between PBDE concentrations in each matrix and 

failed embryo implantation was investigated. Women with detectable levels of BDE 153 

in follicular fluid were more likely than those with undetectable levels to have failed 

embryo implantation following IVF.  

 

Research limitations and further research needs 

The present work may be limited in its ability to be generalized beyond the 

subjects seeking reproductive assistance from an infertility clinic. However, the strength 

of examining couples attending infertility clinics is the ability to measure fertility markers 

and early pregnancy outcomes that would not be observable in the general population. 

The use of pregnancy outcome data from women undergoing IVF was critical in 

ascertaining sensitive health endpoints such as implantation failure that cannot be 

assessed in other human populations (i.e. in couples conceiving naturally). This 

population is also representative of the general US population in terms of BFR exposure. 

Additionally, there is no reason to suspect that these subjects are more or less susceptible 

to BFR exposure. Even if this population was somehow more susceptible, the study 
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would still be of high significance because sensitive populations are often the primary 

focus of exposure reduction and governmental regulation efforts.  

Another limitation is the relatively small number of subjects in each study. 

However, significant associations between BFR concentrations in house dust and serum, 

and between BFR exposure and the outcome measures of hormone level alteration and 

embryo implantation failure were found. Nevertheless, further research with larger 

sample sizes is warranted to replicate these findings. Another limitation is the large 

number of exposures, in terms of number of PBDE congeners, which are examined in 

relation to the large number of hormonal outcomes. As with any small study on multiple 

relationships, it is possible that some of the associations found are due to chance. 

Furthermore, endocrine disruption is a complex issue, and more research into the health 

implications of hormone level alteration is necessary to assess the risks of exposure to 

endocrine disrupting chemicals such as BFRs. Although there is potential for larger scale 

investigations on BFR exposure and endocrine disruption, data from the National Health 

and Nutrition Examination Survey (NHANES) has been limited in the number of 

hormones that are measured. The year that NHANES began providing serum data on 

PBDEs (2003) was the same year hormone measurements such as LH and FSH were 

ceased. Thyroid hormone measurements were also ceased, but have recently been added 

back into the laboratory profile. 

The environmental measures of the present research were limited to dust BFR 

concentrations. Without other environmental monitoring, such as air sampling, the 

exposure scenario is incomplete. However, dust is expected to be one of the most, if not 

the most, important human exposure pathways for BFRs. (Johnson-Restrepo and Kannan 
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2009; Lorber 2008; Wu et al. 2007). Another potential limitation of the dust measure is 

that it provides only a cross-sectional view of exposure. Multiple measurements over 

time for each of the matrices under study would be ideal for a more complete exposure 

assessment. However, using vacuum bag dust is expected to be a long-term integrative 

measure of exposure representative of the total or near-total home environment. Thus, for 

the less persistent PBDE congeners, such as BDE 209 (as well as for alternate BFRs for 

which biomarkers do not yet exist), dust may in fact be a superior measure of long-term 

exposure potential in epidemiological studies. 

Along with additional studies with larger samples sizes, further research on the 

transformation of PBDE congeners is needed to better understand the congener patterns 

in biomarker profiles. Additional studies on dust and biomarker correlations for alternate 

BFRs are also needed, as well as more research on developing reliable biomarkers of 

exposure to these compounds with more cost-effective quantification methods. Utilizing 

techniques that are minimally invasive is one reason to rely on dust as an exposure 

marker when conducting research, but the cost of analytical procedures is another reason 

that may prohibit using biomarkers. 

There exists some debate in the current literature over which method of dust 

collection for PBDE measurement is superior for use in exposure assessment and 

epidemiological studies. There are several different methods of researcher-collected dust 

collection that occurs at a specific home visit, and vacuum bag dust collection like that 

which was used in the present research is a participant-collected method. Existing 

comparisons of these methods did not include biomarkers (Allen et al. 2008), but future 
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research on dust collection methods of PBDEs should use biomarkers to assess the 

biological relevance of these measurements. 

Because the research presented in Chapter 4 was limited by low detection rates 

for PBDEs among the samples, it is worth revisiting the hypothesis that serum and 

follicular fluid concentrations of PBDEs may have a stronger correlation than was 

observed. A future study designed specifically for PBDE analysis with enhanced 

sensitivity would potentially allow for a more detailed examination of the effects of 

various exposure levels and not be limited to a dichotomous view of exposure. 

 

Impact/ Innovation 

 Because the number of studies on human BFR exposure and health effects is very 

limited, due primarily to being an emerging research topic, the present research is novel 

in its scope (number of BFRs investigated, including PBDEs and alternative BFRs) and 

approach (human health endpoints). This research is the first to study human exposure to 

several of these compounds. The present work impacts the field of environmental health 

by improving our understanding of the exposure routes and health risks associated with 

BFRs and by providing guidance on the use of environmental and biological markers of 

exposure to environmental epidemiologists. Additionally, because the risks associated 

with certain BFRs are widely under debate, with legislation under ongoing review, this 

work will also provide scientific basis for future decisions on the use and limitations of 

BFRs. 

 

Moving forward 
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 Although certain PBDEs have been banned or discontinued, human exposure may 

continue for years to come due to their persistence in the environment and the continued 

use of older products containing PBDEs. Additionally, recycling of materials containing 

PBDEs may result in continued exposure via new products. For example, polyurethane 

foam containing PBDEs can be recycled into new carpet padding (Shaw et al. 2010). 

Electronic waste exported to developing countries has resulted in high body burdens of 

recycling workers and environmental contamination by BFRs (Wong et al. 2007). We 

potentially face similar problems from the compounds that are replacing PBDEs in flame 

resistant products. The overall production of halogenated flame retardants is rapidly 

increasing in response to increased fire safety legislation (Brown and Cordner 2011; 

Shaw et al. 2010). However, the public and scientific communities are beginning to 

question the increased use of flame retardants. A recent report on the identification of 

various flame retardants in baby products aroused additional public interest (Cressey 

2011; Stapleton et al. 2011). Some have pointed out that there are no data to support that 

flame retardants actually have benefits in some common applications such as furniture 

and televisions, and suggest that we can reduce the use of toxic or untested flame 

retardants without compromising fire safety (Shaw et al. 2010). Research by the 

Consumer Product Safety Commission demonstrated that the addition of flame retardant 

chemicals to furniture foam did not ensure a reduction in the risk of ignition from small 

flame sources such as cigarettes, for which the furniture standard TB117 is intended 

(Medford and Ray 1997). The most effective fire safety strategy has been the reduction of 

smoking rates (Shaw et al. 2010). Furthermore, the use of fire-safe cigarettes, fire-safe 

candles, child-resistant lighters, smoke detectors and water sprinkler systems can help 
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prevent fires regardless of the chemical make-up of indoor furnishings. Additionally, 

alternative designs that use less flammable materials or green chemistry alternate flame 

retardants can reduce reliance on halogenated compounds with adverse health and 

environmental impacts. 
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