
Structure, Function and Metabolic Roles of IcmF-a Fusion 
Between the Radical B12 Enzyme and its G-protein Chaperone 

 
 
 

by 
 
 
 

Valentin F. Cracan 
 

A dissertation submitted in partial fulfillment  
of the requirements for the degree of  

Doctor of Philosophy 
(Biological Chemistry) 

in The University of Michigan 
2012 

 
 
 
 
 
 
 
 
Doctoral Committee: 
 
Professor Ruma V. Banerjee, Chair 
Professor Stephen W. Ragsdale 
Professor David H. Sherman 
Professor Janet L. Smith 
Associate Professor Bruce A. Palfey 
 



 i

 

 

© Valentin F Cracan 

2012 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ii

ACKNOWLEDGEMENTS 

I am very fortunate to receive my PhD in biochemistry under the guidance of Dr. Ruma 

Banerjee.  I would like to thank Dr. Banerjee for being my advisor and mentor for the 

lengthy duration of my graduate work and for her time and patience in helping me to 

complete my graduate studies. I am especially thankful to Dr. Banerjee for the gift of 

scientific freedom. My project took many unexpected turns over the years, and it was 

crucial that I was able to launch, with Dr. Banerjee’s permission, multiple collaborations 

to supplement my understanding of the project.  

 

When I joined the graduate program in biochemistry at the University of Nebraska-

Lincoln in summer 2005 I didn’t know that my graduate studies would have so many 

unexpected twists. After two years at Lincoln our laboratory was relocated to University 

of Michigan at Ann Arbor. This move resulted in the completion of a Masters Degree 

from University of Nebraska-Lincoln and my admittance to the PhD program at the 

University of Michigan.   

 I can say without a doubt that the educational atmosphere at the University of Michigan 

played a significant role in shaping me as a scientist. Ann Arbor is a town where every 

morning on the bus one is more likely to see people reading scientific articles than 

newspapers. I have found that different laboratories on campus are highly collaborative. 

 



People at the university are extremely friendly and quite eager to discuss research 

everywhere on campus from the recreation center to the Hospital cafeteria.  

I am also thankful to all members of our lab as well as Dr. Ragsdale’s laboratories, past 

and present. For all these years the input from Dr. Ragsdale at our joint group meetings 

was irreplaceable and his ideas frequently helped me move forward in my research. 

Especially, I am indebted to my colleagues who worked with me in the same sub-group 

on vitamin B12-dependent enzymes and trafficking. Particular thanks go to Dr. Carmen 

Gherasim and Mike Lofgren.  

I would like to separately mention Dr. Dominique Padovani who was a postdoctoral 

fellow when I joined the laboratory. Dr. Padovani’ influence was always important, not 

only to me, but to all the members of our laboratory. For all the years that I interacted 

with Dr. Padovani he established high standards of laboratory etiquette and scientific 

rigor. Most particularly, I learned a lot from Dr. Padovani during the brief time we 

worked together on my project. 

Another person from our laboratory whom I want to acknowledge separately is Dr. Victor 

Vitvitsky. Dr. Vitvitsky was very supportive in many aspects of my work. I learned much 

from Dr. Vitvitsky about laboratory equipment repairs.  I must say that Dr. Vitvitsky and 

his wife Tatiana were very kind to me for all these years of study. Their kindness 

exceeded my life in the laboratory. I was always welcomed at their house where I ate a 

lot of delicious food. 

I would also like to thank my committee members; Dr. Stephen Ragsdale, Dr. Janet 

Smith, Dr. David Sherman and Dr. Bruce Palfey for their advice and support over the 

course of the last four years. I am truly fortunate to have such an outstanding committee. 

 iii



 iv

Dr. Palfey teaches BIOLCHEM 673 transient & steady-state kinetics, a class that is truly 

legendary at the University of Michigan. One cannot be considered a real enzymologist 

without having taken that class.  

I would also like to thank the office personnel in the Department of Biological 

Chemistry, especially Beth, Julie and Prasanna for always being friendly and helpful. 

 

I am also grateful to my collaborators from MIT, Dr. Catherine Drennan and Marco Jost.  

Dr. Drennan enabled the exciting collaboration to solve the structure of my protein and 

has been most helpful during my search for a post-doctorate placement.   

I would like to mention another person who made my long stay in the US   very pleasant. 

Dr. Wade Nelson, whom I met in summer 2004 when he was visiting Moldova, became 

my close friend. For all my years of graduate studies, Dr. Nelson and his family were 

very supportive of me. 

 

Last but not least, I would like to express my heart felt thanks to my mother, Antonina 

Cracan, Aunt Alla Cracan and Uncle Pavel Epifanov. I thank my parents for their long 

distant but never wavering love, patience and faith in my ability to succeed in graduate 

education in the United States. 

 

 

 

 



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ............................................................................................. ii 

LIST OF FIGURES ......................................................................................................... xi 

LIST OF TABLES ...........................................................................................................xv 

LIST OF ABBREVIATIONS ....................................................................................... xvi 

ABSTRACT.................................................................................................................. xviii 

CHAPTER 1: Introduction...............................................................................................1 

1.1 Isobutyryl-CoA mutase (ICM)....................................................................................1 

1.2 Properties of ICM from S. cinnamonensis.................................................................3 

1.3. Organization of the icm genes ...................................................................................6 

1.4. Insertional inactivation studies on ICM: Influence on polyketide antibiotic 

biosynthesis and the role of ethylmalonyl-CoA mutase (ECM)……………………….7                         

1.5 Methylmalonyl-CoA mutase (MCM): Reaction and metabolic significance..........9 

1.6 Organization of the mcm genes ................................................................................11 

1.7  P-loop GTPases from the G3E family of metallochaperones  ..............................13 

1.8 Organization and common features of G proteins which belong to the G3E 

family…………………………………………………………………………………….15                         

1.9 MeaB is a chaperone for MCM ................................................................................19 

1.10 Biochemical properties of MMAA, a human ortholog of MeaB .........................23 

1.11 The Chaperoning role of MeaB: The interplay between three proteins.............24 

1.12 Fusion between MCM and MeaB is a misannotation...........................................28 

 v



1.13 References.................................................................................................................29 

CHAPTER 2: IcmF is a Fusion Between the Radical B12 Enzyme, Isobutyryl-CoA 

Mutase and its G-protein Chaperone………………………………………………….35                         

2.1 Abstract.......................................................................................................................35 

2.2. Introduction...............................................................................................................36 

2.3 Experimental procedures ..........................................................................................39 

2.3.1 Cloning and expression of IcmF ...............................................................................39 

2.3.2 Protein expression and purification ..........................................................................40 

2.3.3 GTPase activity of IcmF ...........................................................................................42 

2.3.4 Enzyme assays ..........................................................................................................42 

2.3.5 UV-visible spectroscopy ...........................................................................................44 

2.3.6 Isothermal titration calorimetry ................................................................................44 

2.3.7 EPR spectroscopy .....................................................................................................44 

2.3.8 Bioinformatics analysis.............................................................................................45 

2.4 Results and discussion ...............................................................................................46 

2.4.1 Bioinformatics analysis of IcmF ...............................................................................46 

2.4.2 Expression and initial activity analysis of IcmF .......................................................55 

2.4.4 Binding of AdoCbl to IcmF ± nucleotides................................................................56 

2.4.5 IcmF is an active Isobutyryl CoA mutase.................................................................59 

2.4.6 Absorption spectroscopy of IcmF under steady-state turnover conditions...............59 

2.4.7 EPR spectroscopy .....................................................................................................61 

2.4.8 GTPase activity of IcmF ...........................................................................................62 

2.4.9 The MeaI domain of IcmF is distinct from MeaB ....................................................62 

 vi



2.4.10 Identification of stand-alone ICMs that do not belong to the genus Streptomyces.63 

2.4.11 Implications of the presence of IcmF......................................................................67 

2.5 References...................................................................................................................73 

CHAPTER 3: A Novel IcmF Activity Interconverts Isovaleryl-CoA  

and Pivalyl-CoA ...............................................................................................................77 

3.1 Abstract.......................................................................................................................77 

3.2. Introduction...............................................................................................................78 

3.3 Experimental procedures ..........................................................................................82 

3.3.1 DNA manipulations ..................................................................................................82 

3.3.2 Protein expression and purification ..........................................................................83 

3.3.3 ATPase/GTPase assays .............................................................................................84 

3.3.4 IcmF assay ................................................................................................................85 

3.3.5 IcmF assays with alternative substrates ....................................................................85 

3.3.6 Enzyme-monitored turnover of IcmF .......................................................................86 

3.3.7 Enzyme-monitored turnover of Gk IcmF under anaerobic conditions .....................87 

3.3.8 HPLC characterization of inactivation products.......................................................87 

3.3.9 Bioinformatics analysis.............................................................................................88 

3.4. Results ........................................................................................................................89 

3.4.1 Gene neighborhood analysis for IcmF ......................................................................89 

3.4.2 Alternative substrates for IcmF.................................................................................89 

3.4.3 Absorption spectrum of Gk IcmF during steady-state turnover................................93 

3.4.4 Inactivation of IcmF and the effect of nucleotides ...................................................94 

3.4.5 Loss of 5´-deoxyadenosine leads to inactivation of IcmF ........................................96 

 vii



3.4.6 Characterization of inactivation products by HPLC .................................................97 

3.4.7 ATPase activity of IcmF ...........................................................................................99 

3.5 Discussion .................................................................................................................103 

3.6 References.................................................................................................................107 

CHAPTER 4: Adenosyltransferase Synthesizes and Delivers Coenzyme B12 to IcmF: 

Insights into the Function of the G-protein Domain………………………………..111  

4.1 Introduction..............................................................................................................111 

4.2 Experimental procedures .......................................................................................117 

4.2.1 DNA manipulations ................................................................................................117 

4.2.2 Enzyme expression and purification .......................................................................117 

4.2.3 Determination of molecular weights by gel-filtration ............................................119 

4.2.4 UV-visible spectroscopy .........................................................................................119 

4.2.5 ATR assay ...............................................................................................................120 

4.2.6 Determination of the NTPase activity.....................................................................121 

4.2.7 Fluorescence Stopped-flow Spectroscopy ..............................................................121 

4.2.8 Isothermal titration calorimetry ..............................................................................121 

4.2.9 Bioinformatics analysis...........................................................................................122 

4.3 Results .......................................................................................................................123 

4.3.1 PduO-type ATR gene from Geobacilus kaustophilus ............................................123 

4.3.2 Properties of recombinant Gk ATR ........................................................................123 

4.3.3 Effect of ATP on holo-ATR ...................................................................................125 

4.3.4 Transfer of AdoCbl between ATR and IcmF .........................................................125 

4.3.5 The effect of ATP on cofactor transfer ...................................................................127 

 viii



4.3.6 The effect of GTP and GMPPNP on cofactor transfer ...........................................127 

4.3.7 Analysis of nucleotide binding to IcmF..................................................................129 

4.3.8 Properties of Gk IcmF truncation constructs: the N-terminal  part of IcmF and the 

C-terminal part of IcmF………………………………………………………………...133 

4.3.9 NTPase activity of the truncated IcmF variants......................................................135 

4.3.10 Binding of AdoCbl to the N-terminal part of IcmF ..............................................136 

4.3.11 Cofactor transfer between ATR and the N-terminal part of IcmF........................137 

4.4 Discussion..................................................................................................................138 

4.5  References................................................................................................................141 

CHAPTER 5: Ongoing Work and Future Directions ................................................144 

5.1 Introduction .............................................................................................................144 

5.2 Experimental procedures  ......................................................................................145 

5.2.1 Construction of IcmF mutants ................................................................................145 

5.2.2 Protein expression and purification ........................................................................145 

5.2.3 GTPase activity of IcmF ........................................................................................145 

5.2.4 Mutase activity of IcmF ..........................................................................................145 

5.2.5 Analysis of myxochromides production in M. xanthus by HPLC ..........................146 

5.2.6 Sample preparation of Ralstonia eutropha H16 .....................................................147 

5.3. Results, discussion and future directions..............................................................148 

5.3.1 Distribution of stand-alone ICMs ...........................................................................148 

5.3.2 The role of IcmF in assimilation of pivalic acid. Characterization of IcmF from 

Thauera sp……….……………………………………………………………………..148 

5.3.3 Role of IcmF catalyzed reaction in the metabolism of M.xanthus ........................151 

 ix



 x

5.3.4 Role of the IcmF-catalyzed reaction in metabolism of R. eutropha .......................156 

 5.3.5 How do the mutase domains of IcmF signal to MeaI? ..........................................158 

5.3.6 IcmF structure determination ..................................................................................160 

5.3.7 Final remarks  ........................................................................................................161 

5.4 References.................................................................................................................163 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



LIST OF FIGURES 

Figure 1.1  Reactions catalyzed by MCM, ICM, IcmF and ECM. .....................................3 

Figure 1.2 Domain organization of the genes encoding ICM and MCM. ..........................4 

Figure 1.3 Generalized scheme for the 1,2-rearrangement catalyzed by AdoCbl-

dependent mutases………………………………………………………………………...9 

Figure 1.4 Summary of phylogenomic analysis of the G3E family..................................15 

Figure 1.5 Crystal structure of MeaB................................................................................18 

Figure 1.6 Dimmer assembly in the G3E family. .............................................................20 

Figure 1.7 Schematic model for the editing and gating (A), and rescue functions (B) of 

MeaB……………………………………………………………………………………..25 

Figure 2.1  Reactions catalyzed by MCM and ICM. ........................................................36 

Figure 2.2 Comparison of domain and gene organizations of bacterial IcmF, MCM and 

ICM………………………………………………………………………………………37 

Figure 2.3 Comparison of the active site residues in P. shermanii MCM with those 

predicted for S. cinnamonensis ICM……………………………………………………..49 

Figure 2.4 Multiple sequence alignment of the C-terminal sequences of IcmFs, the large 

subunit of ICM (IcmA) from S. cinnamonensis (AAC08713), MCM from M. extorquens 

(YP_001642233) and MCM from P. shermanii (CAA33090)…………………………..50 

Figure 2.5 Multiple sequence alignment of the N-terminal AdoCbl-binding domain of 

IcmFs, the small subunit of ICM (IcmB) from S. cinnamonensis (CAB59633) and MCM 

from M. extorquens (YP_001642233).………………………………………………...51 

 xi



Figure 2.6 Multiple sequence alignment of the MeaI domain in IcmF sequences and 

MeaB from M. extorquens (YP_001637793).………………………………………...... 53 

Figure 2.7 Gel-filtration of IcmF from G.kaustophilus ....................................................57 

Figure 2.8 Binding isotherms for AdoCbl binding to IcmF..............................................58 

Figure 2.9 Kinetic and spectroscopic characterization of IcmF........................................60 

Figure 2.10 Phylogenetic tree of MeaBs that are located in operons with MCM and 

MeaIs that are fused to ICM (IcmF)……………………………………………………..63   

Figure 2.11 ICM and MCM sequences in Archaea, which are predicted to have some or 

all the key enzymes in the 3-hydroxypropionate/4-hydroxybutyrate cycle……………...65 

Figure 2.12 Dendrogram showing the phylogenetic relationships between MeaB-like 

proteins…………………………………………………………………………………...68 

Figure 3.1 Reactions catalyzed by MCM, ICM, IcmF, HCM and ECM. .........................79 

Figure 3.2 Comparison of active site residues in related AdoCbl-dependent mutases.....80 

Figure 3.3 Multiple sequence alignment of the substrate-binding domain of different 

AdoCbl-dependent mutases……………………………………………………………...81 

Figure 3.4 Organization of genes in the mmgABC operon harboring the icmF gene. ....90 

Figure 3.5 Pivalyl-CoA mutase activity of IcmF. ............................................................91 

Figure 3.6 Gel-filtration of IcmF from C.metallidurans...................................................92 

Figure 3.7 Spectral changes in Gk holo-IcmF in the presence of isobutyryl-CoA and 

isovaleryl-CoA…………………………………………………………………………...93 

Figure 3.8 Inactivation of Gk IcmF during turnover with isobutyryl-CoA. .....................94 

Figure 3.9  Effect of nucleotides on the time course of reactions catalyzed by IcmF. .....95 

Figure 3.10 Inactivation of Gk IcmF under anaerobic conditions. ...................................97 

 xii



 

Figure 3.11 Formation of OH2Cbl and 5'-deoxyadenosine during enzyme-monitored 

turnover…………………………………………………………………………………..98 

Figure 3.12 Multiple sequence alignment of IcmFs  and MeaB from M. extorquens  

showing base specificity loop NKxD/E………………………………………………...101 

Figure 4.1  Cobalamin scavenging..................................................................................112 

Figure 4.2  Schematic representation of two modes of AdoCbl binding to proteins. ....114 

Figure 4.3 Properties of ATR from G.kaustophilus. ......................................................124 

Figure 4.4 Transfer of AdoCbl between ATR and IcmF. ..............................................126 

Figure 4.5 Gating by MeaI of AdoCbl transfer from ATR to IcmF. .............................128 

Figure 4.6 The effect of GMPPNP on the reverse transfer from holo-IcmF  

to apo-ATR. ....................................................................................................................129 

Figure 4.7  Binding isotherms for GDP and GMPPNP  binding to IcmF.......................130 

Figure 4.8  Binding of mant-GDP to IcmF. ....................................................................132 

Figure 4.9  Truncated IcmFs variants generated in this study. .......................................134 

Figure 4.10  Gel-filtration of full-length IcmF and the truncated constructs..................134 

Figure 4.11   Binding isotherms for AdoCbl binding to the N-terminal part of IcmF....136 

Figure 4.12  Transfer of AdoCbl between ATR and the N-terminal part of IcmF. .......137 

Figure 5.1   “Stand-alone” ICMs identified in this study................................................148 

Figure 5.2 Michaelis-Menten analysis of the reaction catalyzed by IcmF from Thauera 

sp. as determined by the GC-based assay………………………………………………150 

Figure 5.3 Effect of GTP on the time course of the pivalyl-CoA mutase reaction 

catalyzed by Th IcmF…………………………………………………………………...151  

 xiii



 xiv

Figure 5.4  “Brown” phenotype of  WT M. xanthus grown in the presence of CNCbl..152 

Figure 5.5  HPLC analysis of wild-type  and ΔicmF mutant of M. xanthus...................154 

Figure 5.6  Overall structures of myxochromides...........................................................155 

Figure 5.7 Overall structure of Aprtatoxin A..................................................................157 

Figure 5.8  Accumulation of dipeptides in ΔicmF strain of R. eutropha........................158 

Figure 5.9 Conserved arginine residues in the B12-binidng domain of IcmFs................159 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



LIST OF TABLES 

Table 2.1 List of all identified IcmFs. ...............................................................................47 

Table 2.2 Thermodynamic parameters for the binding of AdoCbl to IcmF. ....................58 

Table 2.3 Kinetic parameters for IcmF. ............................................................................61 

Table 2.4 List of identified “stand-alone” ICMs and MeaIs. ............................................66 

Table 3.1 Isobutyryl-CoA mutase and pivalyl-CoA mutase activities of recombinant 

IcmFs……………………………………………………………………………………..92 

Table 3.2 Kinetics of OH2Cbl and 5´-deoxyadenosine formation. .................................100 

Table 3.3 Comparison of the GTPase and ATPase Activities of Gk IcmF. ....................102 

Table 4.1 Thermodynamic parameters for the binding of nucleotides to apo-IcmF.......131 

Table 4.2 Kinetic parameters for binding of mant-GDP to apo-IcmF. ...........................133 

Table 4.3 GTPase and ATPase Activity of wild-type IcmF and the N-terminal part of 

IcmF…………………………………………………………………………………….135 

Table 5.1 List of bacteria known to convert isobutyrate to butyrate...............................149 

Table 5.2 Kinetic parameters of IcmF from Thauera sp.................................................150 

Table 5.3 GTPase activity of wild-type Gk IcmF and of the arginine mutants...............160 

 

 

 

 

 

 xv



LIST OF ABBREVIATIONS 

 
AdoCbi, 5'-deoxy-5'-adenosylcobinamide; 

AdoCbl, 5'-deoxy-5'-adenosylcobalamin, adenosylcobalamin;  

AMPPNP, adenosine 5'-(β, γ-imido)triphosphate;  

ATR, ATP:Cob(I)alamin adenosyltransferase;  

BDH, butyryl-CoA dehydrogenase;  

Bkd, branched-chain ketoacid dehydrogenase complex;  

Cbi, cobinamide; 

Cbl, cobalamin; 

CNCbl, cyanocobalamin;  

CoA, coenzymeA; 

CTT,  casitone based complex medium used for Myxococcus xanthus growth; 

DMB, dimethylbenzimidazole;  

DTT, dithiothreitol;   

ECM, ethylmalonyl-CoA mutase;  

GAP, GTPase activating protein; 

GC, gas chromatography;   

GEF, guanine nucleotide exchange factor; 

GMPPNP, guanosine 5'-(β,γ-imido)triphosphate; 

HCM, 2-hydroxyisobutyryl-CoA mutase;   

HPLC,  high performance liquid chromatography;   

ICM, isobutyryl-CoA mutase;   

IcmA, substrate-binding, large subunit of ICM; 

IcmB, B12-binding, small subunit of ICM; 

IcmF, isobutyryl-CoA mutase fused;   

IPTG, isopropyl-1-thio-β-D-galactopyranoside;   

ITC, Isothermal Titration Calorimetry;  

 xvi



LIC, ligase independent cloning;   

MCM,  methylmalonyl-CoA mutase;   

MMAA, for methymalonic aciduria linked to the cblA complementation group;  

OH2Cbl, aquacobalamin; 

OHCbl, hydroxocobalamin; 

PCM, pivalyl-CoA mutase; 

PCR, polymerase chain reaction; 

PKSs, polyketide synthases;  

SIMIBI, after signal recognition particle MinD and BioD;  

STRING, Search Tool for the Retrieval of Interacting Genes/Proteins;  

TCEP, Tris(2-carboxyethyl)phosphine hydrochloride;   

TIM, triosephosphate isomerase;   

UV-vis, ultraviolet visible. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 xvii



ASTRACT 

Coenzyme B12 is a biologically active form of vitamin B12 and used in Nature as a radical 

reservoir to catalyze chemically challenging transformations. The loading of B12-enzymes 

with the correct cofactor form is critically important for their function and is gated by 

chaperones that use the chemical energy of GTP hydrolysis to ensure the fidelity of the 

process. Two highly similar coenzyme B12-dependent enzymes that catalyze carbon 

skeleton rearrangements, methylmalonyl-CoA mutase (MCM) and isobutyryl-CoA 

mutase (ICM), are widely distributed in bacteria. MCM catalyzes the isomerization of 

methylmalonyl-CoA to succinyl-CoA while ICM catalyzes the reversible interconversion 

of isobutyryl-CoA and n-butyryl-CoA.  Curiously, a variant, IcmF, is found in >80 

bacterial species.  Although IcmF was misannotated as an MCM variant in the database, I 

have demonstrated by expressing four bacterial IcmFs that it is an active ICM, fused to its 

chaperone.  This discovery expands the known distribution of ICM activity well beyond 

the genus Streptomyces where it is involved in polyketide biosynthesis.  

Subsequently we have discovered that IcmF catalyzes a novel coenzyme B12-dependent 

1,2-rearrangement of isovaleryl-CoA and pivalyl-CoA (2,2-dimethylpropionyl-CoA). 

Biochemical experiments demonstrate that in an IcmF in which the base specificity loop 

motif, NKxD is modified to NKxE, catalyzes the hydrolysis of both GTP and ATP. IcmF 

is susceptible to rapid inactivation during turnover and GTP confers protection, but only 

during utilization of isovaleryl-CoA as substrate. 

 xviii



I have characterized the mutase and GTPase activities in intact and truncated versions of 

IcmF lacking the B12- or the substrate-binding domains to investigate interactions 

between the domains. I have demonstrated that adenosyltransferase (ATR), which 

synthesizes coenzyme B12, also transfers the cofactor to IcmF.  

To gain insights into the metabolic role of IcmF, we have disrupted the icmF gene in 

Myxococcus xanthus in collaboration with Dr. Montserrat Elias-Arnanz (Universidad de 

Murcia, Spain) and in Ralstonia eutropha H16 in collaboration with Dr. Antony Sinskey 

(MIT) and currently are testing the resulting phenotypes under different growth 

conditions.  
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CHAPTER 1 
 

Introduction 

The focus of this thesis is on the enzymology of a newly discovered protein, IcmF, which 

represents a fusion between a coenzyme B12-dependent isobutyryl-CoA mutase and a G 

protein. This fusion protein was incorrectly annotated in databases as a fusion between 

methylmalonyl-CoA mutase and its G protein chaperone. We have shown this annotation 

to be erroneous by demonstrating that this fusion protein does not catalyze the 

interconversion of methylmalonyl-CoA and succinyl-CoA but rather, the interconversion 

of isobutyryl-CoA and n-butyryl-CoA. Subsequently we have discovered that this protein 

catalyzes a novel coenzyme B12-dependent 1,2-rearrangement of isovaleryl-CoA and 

pivalyl-CoA (2,2-dimethylpropionyl-CoA). In this thesis, I present an in-depth study of 

the IcmF-catalyzed reactions as well as the effect of its G protein domain on the mutase 

activity.  

1.1 Isobutyryl-CoA mutase  
 

Isobutyryl-CoA mutase (ICM) (EC 5.4.99.13) is a coenzyme B12 or AdoCbl-dependent 

enzyme, which catalyses the reversible interconversion of isobutyryl-CoA and n-butyryl-

CoA (1-3) (Figure 1.1). ICM activity was discovered by John Robinson and colleagues in 

cell extracts of the gram-positive, filamentous soil bacterium, Streptomyces 

cinnamonensis, by monitoring the reaction using 1H NMR (4). The reaction catalyzed by 

ICM is very similar to that catalyzed by methylmalonyl-CoA mutase (MCM), which is 

better studied and more widely distributed (Figure 1.1) (3). In both reactions, a 1,2- 

 1



rearrangement of the carbon skeleton takes place where the –(CO)S-CoA substituent and  

a H atom exchange positions on vicinal carbons (Figure 1.1) (3, 5, 6). Interestingly in 

their first publication on ICM, Robinson and colleagues predicted that this activity is 

catalyzed by an enzyme which is very similar in primary sequence to MCM, but where a 

basic amino acid residue (for binding of the carboxyl group in the substrate for MCM) is 

substituted by a hydrophobic one (for binding of the methyl group in the substrate for 

ICM) (4). This occurrence of subtle changes at key active site residues to accommodate 

different substrate specificities is central to the discussion in this thesis on the differences 

and similarities between members of this subfamily of carbon-skeleton rearranging 

AdoCbl-dependent mutases. 

Besides several bacteria belonging to the Streptomyces genus, where the role of ICM in 

the synthesis of polyketides is well established (7), the presence of ICM-like proteins in 

other bacteria was neither biochemically nor genetically confirmed. Interestingly, ICM-

like activity appears to be involved in the conversion of isobutyrate to butyrate in 

numerous anaerobic bacteria and cultures enriched in methanogenic bacteria (8-11). 

Oude Elferink and colleagues have shown, using 13C-labelled butyrate, that several 

sulfate reducers (Desulforhabdus amnigenus, Desulfobacterium vacuolatum, 

Desulfoarculus baarsii, Desulfotomaculum sp.)  are capable of  isomerization of butyrate 

to isobutyrate (9).  Also isomerization of butyrate and isobutyrate was reported in the 

anaerobe, Pelospora glutarica WoG13 (12, 13), and in a thermophilic bacterium,  

Synthrophothermus lipocalidus (14). 
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Figure 1.1:  Reactions catalyzed by MCM, ICM, IcmF and ECM. 
 
Unfortunately, for most of these bacteria, full genomic sequences are not available and 

therefore it is not possible to assess whether or not they actually encode ICM (See also 

section 5.3.1).  

1.2 Properties of ICM from S. cinnamonensis  

The genes encoding ICM were first cloned and sequenced from S. cinnamonensis (1, 2). 

ICM is an α2β2-heterotetramer composed of two large subunits (IcmA) of 62.5 kDa and 

two small subunits (IcmB) of 14.3 kDa.  The apparent native molecular weight of the 

AdoCbl-bound holo-enzyme is 152 kDa as estimated by gel filtration chromatography 

(1). Remarkably, subunits of ICM have very low affinity to each other in the absence of 

AdoCbl. When a protein sample lacking cofactor (apo-enzyme) is subjected to gel 

filtration chromatography, formation of the α2β2-heterotetramer is not observed and the 

subunits elute separately (1).   
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The sequence of the large ICM subunit, IcmA from Streptomyces cinnamonensis, has 

43% identity and 61% similarity with the large subunit of MCM from the same organism, 

and 43% identity and 65% similarity with MCM from Propionibacterium shermanii (1). 

IcmA subunit can be viewed as a truncated form of the large subunit of MCM lacking the 

C-terminal AdoCbl-binding domain (Figure 1.2).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Domain organization of the genes encoding ICM and MCM. In ICMs the 
AdoCbl-binding and the substrate-binding domains are always found as two separate 
polypeptides (IcmB and IcmA). In vast majority of MCMs, the AdoCbl-binding and the 
substrate-binding domains are found on a single subunit (a). In several organisms, MCMs 
are organized similarly to ICM (b), where the AdoCbl-binding and the substrate-binding 
domains are found as two separate polypeptides and sometimes, the AdoCbl-binding 
domain is fused to methylmalonyl-CoA epimerase (Epm) (c).  For the accession numbers 
see section 1.6. 
 
The small subunit, IcmB has high sequence similarity to the AdoCbl-binding domains of 

the following coenzyme B12-dependent enzymes: MCM from P. shermanii (58%), 

IcmB                             IcmA 
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glutamate mutase from Clostridium cochlearum (49%) and 2-methyleneglutarate mutase 

from C. barkeri (57%) (1). A striking organizational difference between ICM and MCM 

is that the genes encoding the ICM subunits, icmA and icmB, are not adjacent to each 

other in the genome of S. cinnamonensis. In contrast, the genes encoding MCM in many 

bacteria are usually located within the same operon, and sometimes their reading frames 

even overlap, making identification of putative MCM-like proteins a relatively easy task 

(1).  

Initially, purification of ICM-like activity from S. cinnamonensis resulted in a partially 

purified protein with molecular weight of ~ 65 kDa (2). The specific activity of that 

preparation was very low (S.A.= 2.3 x 10-2 μmol min-1 mg-1 with n-butyryl-CoA as a 

substrate) (2). Authors used a GC-based assay to monitor the interconversion of n-

butyryl-CoA and isobutyryl-CoA. That assay involved saponification of the thioesters, 

extraction of the corresponding acids (isobutyric and n-butyric) into ethylacetate and 

separation of free acids by GC (2, 15).  

The ready loss of the small subunit of ICM during purification explained the low 

enzymatic activity. The initial study on ICM led to the cloning and purification of the 

large subunit (IcmA) (2).  Subsequently, Robinson and colleagues identified and isolated 

the small subunit (IcmB) by adding purified 6xHis-tagged IcmA to cell extracts of S. 

cinnamonensis or S. lividans supplemented with AdoCbl. After a two-step purification, 

using affinity chromatography on Ni-NTA and anion exchange chromatography on a 

MonoQ column, the small subunit of ICM was isolated. IcmB has a molecular mass of ~ 

17 kDa and, when mixed with recombinant IcmA and AdoCbl, yields active holo-protein 

(S.A.=1 μmol min-1 mg-1 with n-butyryl-CoA) (2). In subsequent studies, recombinant 
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IcmA and IcmB subunits were expressed in E. coli and purified separately (1). The 

activity of reconstituted protein was dependent on the ratio of IcmA:IcmB. The highest 

activity with n-butyryl-CoA (S.A.= 38 ± 3 μmol min-1 mg-1 of IcmA) was seen when 

IcmB was added in a 5-fold molar excess over IcmA. Assuming one active site per IcmA 

monomer, the kcat was determined to be 39 ± 3 s-1 (1).  

Reconstitution of active ICM made possible characterization of the other steady-state 

kinetic parameters for the enzyme. The KM values for isobutyryl-CoA and butyryl-CoA 

were reported to be 57 ± 13 μM and 54 ± 12 μM, respectively (1). The  equilibrium of 

this reaction is 1.7 in favor of isobutyryl-CoA. The  Kact for AdoCbl was 12 ± 2 μM (1).  

1.3. Organization of the icm genes  

As mentioned above, ICM is a heterotetramer, comprised of two types of subunits, a 

large IcmA subunit and a small IcmB subunit (1). The sequences of all known IcmAs are 

very similar to the sequences of the large subunit of MCM, with the exception of the 

AdoCbl-binding region, which is missing in IcmA. Since IcmA does not have a C-

terminal AdoCbl-binding domain with the canonical DxHxxG motif (16), this protein 

requires a separate small IcmB subunit to bind the cofactor (Figure 1.2). In this respect, 

ICM resembles other AdoCbl-dependent mutases that exhibit a similar organization. For 

example, glutamate mutase is also composed of two subunits: the large subunit MutE, 

which contains the substrate binding site and a small subunit MutS, with the AdoCbl-

binding site (17, 18).  
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1.4. Insertional inactivation studies on ICM: Influence on polyketide antibiotic 

biosynthesis and the role of ethylmalonyl-CoA mutase (ECM) 

Substantial effort has been dedicated to elucidation of the pathways involved in the 

biosynthesis of polyketides in the genus Streptomyces (7). These studies highlighted the 

importance of the ICM-catalyzed reaction for the supply of methylmalonyl-CoA to 

polyketide synthases (PKSs) in addition to its role in valine and fatty acid catabolism (7). 

PKSs, which catalyze polyketide biosynthesis, use several acyl thioesters as extender 

units, where the most abundant are malonyl-CoA, methylmalonyl-CoA and 

ethylmalonyl-CoA (19, 20). Ethylmalonyl-CoA and malonyl-CoA are products of 

carboxylation of butyryl-CoA and acetyl-CoA, whereas several routes for methymalonyl-

CoA production are possible (21), as discussed below. Gene disruption studies coupled 

with NMR identification of 13C-labeled precursors, have been widely used for the 

determination of the metabolic routes for biosynthesis of the polyketides monensin A and 

B in S. cinnamonensis (7). S. cinnamonensis is a useful bacterium for addressing the 

question about the preferred route for methylmalonyl-CoA formation, since both ICM 

and MCM in this organism were identified and cloned, and both mutases can be 

inactivated by inserting  a hydromycin resistance gene into the large subunits of ICM or 

MCM (ΔicmA::hygB, ΔmutB::hygB) (7). 

Until recently, three major pathways for the synthesis of methylmalonyl-CoA were 

known in S. cinnamonensis (21). In the first pathway, methylmalonyl-CoA is formed 

from succinyl-CoA in the isomerization reaction catalyzed by MCM (15). The second 

possibility is carboxylation of propionyl-CoA by propionyl-CoA carboxylase to (S)- 

methylmalonyl-CoA which in turn is converted to (R)-methylmalonyl-CoA by epimerase. 
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Methymalonyl-CoA has been shown to be formed in a multistep pathway, which involves 

interconversion of isobutyryl-CoA (21).  

After it was shown that both mutants (ΔmutB::hygB) and (ΔicmA::hygB) were able to 

incorporate butyrate and acetoacetate  into the propionate units in monensin A, it became 

evident  that  S. cinnamonensis possesses another route for forming methylmalonyl-CoA 

that is  independent of both ICM and MCM (7). MeaA, a protein of unknown function at 

that time, with high sequence similarity to MCM, was proposed as the enzyme that 

allowed the formation of methylmalonyl-CoA independently of ICM and MCM (7, 21). 

When both ICM and MeaA genes were deactivated in S. cinnamonensis, the mutant was 

unable to produce monensin A and B, whereas the single mutants (Δmut::hygB and 

ΔicmA::hygB) produced monensin at levels comparable to those in wild-type bacteria (7).  

It turned out that MeaA in S. cinnamonensis and M. extorquens is ethylmalonyl-CoA 

mutase (ECM), a recently discovered acyl-CoA mutase (Figure 1.1) (22, 23). 

Ethylmalonyl-CoA mutase catalyzes the interconversion of ethylmalonyl-CoA and 

methylsuccinyl-CoA and operates in a recently-discovered ethylmalonyl-CoA pathway 

for acetate assimilation (22). In this pathway, three molecules of acetyl-CoA, one 

molecule of CO2 and one molecule of bicarbonate form malate and succinyl-CoA (22).  

Since the ethylmalonyl-CoA pathway allows the formation of propionyl-CoA from 

acetoacetyl-CoA, previous findings from 13C-labeling experiments in S. cinnamonensis 

can now be elegantly explained. Moreover ECMs are found in other bacteria belonging to 

the genus Streptomyces: S. avermitilis and S. coelicolor (21, 22).  
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1.5 Methylmalonyl-CoA mutase: Reaction and metabolic significance 

MCM is an a coenzyme B12-dependent enzyme that catalyzes the reversible 

interconversion between (2R)-methylmalonyl-CoA and succinyl-CoA (3, 24-26) (Figure 

1.1). In fact, this is the only AdoCbl-dependent mutase that is found both in bacteria and 

animals, where this enzyme is located in the mitochondria.  

In numerous studies, different aspects of the reaction mechanism of MCM have been 

elucidated (3, 25). The catalytic cycle of MCM is a good model for ICM since both 

enzymes are expected to share a similar reaction mechanism (3, 5, 6) (Figure 1.3).   

 

 

 

 

 

 

Figure 1.3: Generalized scheme for the 1,2-rearrangement catalyzed by AdoCbl-
dependent mutases. The binding of substrate to the enzyme induces homolytic cleavage 
of the cobalt-carbon bond of AdoCbl which results in formation of a pair of radicals: 5'-
deoxyadenosyl and cob(II)alamin. The 5'-deoxyadenosyl radical abstracts a specific H-
atom from the substrate to form 5'-deoxyadenosine and a substrate radical, which 
subsequently undergoes isomerization to the product radical. The latter re-abstracts a H-
atom from the methyl group of 5'-deoxyadenosine to form the product and regenerates 
the 5'-deoxyadenosyl radical. Finally, cob(II)alamin and the 5'-deoxyadenosyl radicals 
reform AdoCbl.  
 

The reaction catalyzed by MCM starts with the homolytic cleavage of the cobalt-carbon 

bond in AdoCbl, which generates cob(II)alamin and a 5'-deoxyadenosyl radical. 

Following this, the highly reactive 5'-deoxyadenosyl radical abstracts a H atom from the 

substrate, which leads to the formation of a 5'-deoxyadenosine and a substrate radical. In 
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the last part of the reaction, rearrangement of a substrate radical via a cyclopropylcarbinyl 

intermediate leads to formation of a product radical, which after H atom re-abstraction 

from 5'-deoxyadenosine, gives product. Finally, the product is released and the two 

cofactor radicals, cob(II)alamin and 5'-deoxyadenosyl reform AdoCbl, completing the 

turnover cycle (3, 26) (Figure 1.3). The dramatic rate acceleration (~1012 -fold) of 

homolysis of the cobalt-carbon bond is induced upon substrate binding (27). During the 

reaction catalyzed by acyl-CoA mutases and other AdoCbl-dependent enzymes, like the 

aminomutases and diol dehydratase, the reactive radicals that are formed can undergo 

unproductive side reactions precluding the re-formation of AdoCbl and leading to 

enzyme inactivation (28-33).  

 MCM plays an indispensable role in the propionate pathway in mammals, where 

propionyl-CoA, derived from catabolism of branched-chain amino acids, odd-chain fatty 

acids and cholesterol, is converted to succinyl-CoA (3, 24, 34). In humans, genetic 

defects in MCM cause methylmalonic aciduria, an autosomal recessive metabolic 

disorder (35, 36). Methylmalonic aciduria also can result from mutations in genes that 

impair B12 trafficking, i.e. the assimilation and delivery of cofactor to its target enzymes, 

cytosolic methionine synthase and mitochondrial MCM (35, 37).  

In bacteria on the other hand, the reaction catalyzed by MCM is important in the reverse 

metabolic direction, linking production of propionate and succinate (38). In the genus 

Streptomyces, the MCM-catalyzed reaction is important in the formation of 

methylmalonyl-CoA, a building block for polyketide biosynthesis as mentioned above 

(7)( Section 1.4).  
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1.6 Organization of the mcm genes 

The vast majority of bacterial MCMs are αβ heterodimers, where the catalytic subunit 

binds the cofactor and the substrate (Figure 1.2).  The two subunits of bacterial MCM are 

related in sequence suggesting that they are products of a gene duplication event (25). 

The α subunit has a C-terminal AdoCbl binding domain with the canonical “DxHxxG” 

cofactor-binding motif (16). Based on the crystal structure of the αβ heterodimer of 

MCM from P. shermani (39), the inactive subunit appears to serve a structural role.  

Genomic analyses show that heterodimeric MCMs are found in the vast majority but not 

all bacteria and usually, both MCM subunits are found in the same operon. 

In E. coli, the sbm (sleeping beauty mutase) gene product was shown to encode MCM, 

which is a functional homodimeric enzyme (40, 41). Sbm is not the only example of a 

bacterial MCM with homodimeric organization. The enzyme from Sinorhizobium meliloti 

was shown to be a homodimer as well (42).  

Notably, in some Archaea (for example in Metallosphaera sedula (YP_001190737, 

YP_001192119), Sulfolobus solfataricus (NP_343779, NP_343640), S. tokodaii 

(NP_376440, NP_378091), S. islandicus (YP_002913536, YP_002828266)) and in some 

bacteria (for example in Petrotoga mobilis (YP_001567606, YP_001567607), 

Thermoanaerobacter sp. (YP_001663471, YP_001663470), Ilyobacter polytropus 

(YP_003968833, YP_003968832), Thermoanaerobacter tengcongensis (NP_622843, 

NP_622844 ), Clostridium sp. OhILAs (YP_001511994, YP_001511995), Veillonella 

parvula (YP_003312208, YP_003312207), Selenomonas sputigena (ZP_05899584, 

ZP_05899583), Desulfobacca acetoxidans (YP_004369635, YP_004369636), 

Aminobacterium colombiense (YP_003553744, YP_003553743), Thermanaerovibrio 
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acidaminovorans (YP_003316807, YP_003316808), Aminomonas paucivorans (VIMSS 

IDs 11093272, 11093273), Alkaliphilus metalliredigenes (VIMSS IDs 6859005, 

6859004), Cloacibacillus evryensis (VIMSS IDs 11182894, 11182893), Thermotogales 

bacterium (YP_002941070, YP_002941069)), the substrate-binding and the AdoCbl-

binding domains of MCM are not found in a single polypeptide, but rather reside on 

separate subunits  of ~63 kDa and ~15 kDa molecular mass (Figure 1.2). Sometimes, 

these two genes are not located close to each other (Figure 1.2). It is expected that the 

corresponding MCMs will be heterotetramers comprised of two substrate-binding 

subunits and two AdoCbl-binding subunits similarly to α2β2-heterotetrameric 

organization of ICM. MCMs with such organization were shown to catalyze the 

interconversion of methylmalonyl-CoA to succinyl-CoA as a part of  a 3-

hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway 

discovered in Metallosphaera sedula and  in a number of Sulfolobus species (43, 44). 

In addition to the arrangement of the small and large subunits of MCM described above, 

in several organisms the small B12-binding subunit of MCM is fused to methylmalonyl-

CoA epimerase, with a predicted molecular mass of ~30 kDa (Figure 1.2). The latter 

interconverts (2S)-methylmalonyl-CoA to (2R)-methylmalonyl-CoA. The latter is used as 

a substrate by MCM. This organization is found in Caldalkalibacillus thermarum 

(ZP_08532462, ZP_08532461),  Brevibacillus laterosporus (ZP_08642783, 

ZP_08642782, ZP_08642783), Bacillus tusciae (YP_003589180, YP_003589181), 

Ornithinibacillus sp. (ZP_08783339, ZP_08783338), and Bacillus selenitireducens 

(ZP_02170815, YP_003700315).  
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In the photosynthetic coccolithophorid alga Pleurochrysis carterae (45), in round worm 

Ascaris lumbricoides (46), and in mammals, MCM is an α2 homodimer,  comprised of 

two ~75 kDa subunits. The crystal structure of human MCM (hMCM), reported recently 

(47) shows  that each subunit houses an active site. Previously, based on genetic 

complementation studies, it was predicted that each active site of hMCM is formed by 

both subunits (“head-to-tail organization”)  (47, 48).  

1.7  P-loop GTPases from the G3E family of metallochaperones   

GTPases, proteins that bind and hydrolyze GTP, are crucial for many aspects of life (49-

51). The main feature of P-loop GTPases and related ATPases is the presence of the 

mononucleotide-binding fold (called the G or GTPase domain) that is found in an 

estimated 10-18% of all gene products in most organisms (50, 51). G domains can be 

found fused to numerous protein domains, which makes members of this diverse group of 

proteins key players in countless cellular processes (51). According to the classification 

developed by Koonin and colleagues, P-loop GTPases and related ATPases can be 

divided into two large classes: TRAFAC (named after translation factor-related) and 

SIMIBI (named after its 3 largest subgroups, the signal recognition particle, MinD and 

BioD superfamilies) (50).  

In the past few decades, a number of P-loop GTPases from the SIMIBI class were 

ascribed as chaperones involved in the assembly of target metalloenzymes. Most of these 

chaperones belong to two families within the SIMIBI class: the Mrp/MinD and the G3E. 

The Mrp/MinD family is characterized by the consensus GKGGxGK[ST] Walker A 

motif which is also known as G1 motif (50). Here, lysine in the KGG portion of the motif 

was shown to be crucial for catalysis (50). Interestingly, the base specificity NKxD motif 
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(or G4 motif), which is conserved in many GTPases, is never found in the intact form in 

members of Mrp/MinD family. The aspartate in the NKxD motif provides specificity for 

guanine binding and none of these proteins has been shown to have GTPase activity (51). 

The most studied chaperones from the Mrp/MinD family are NifH and CooC. NifH is 

involved in an ATP-dependent maturation of the iron-molybdenum cofactor (FeMo-Co) 

of dinitrogenase (52). CooC proteins are ATPases, which participate in the incorporation 

of nickel into the active site of Ni,Fe-carbon monoxide (CO) dehydrogenase (53-55).  

Phylogenetic analysis performed by Koonin and colleagues defined the G3E family, so 

termed because the members of this family have glutamic acid (E)  in the Walker B (G3) 

motif and the GxxGxGK[ST] variant in the Walker A motif. Most importantly, all 

members of the G3E family have an intact base specificity NKxD motif, which makes 

GTP a preferable substrate1. The G3E family contains four relatively well-studied 

subfamilies: ArgK, HypB, UreG and CobW (Figure 1.4). Recently, studies in our 

laboratory have demonstrated that MeaB, a GTPase which belongs to ArgK subfamily, is 

involved in cofactor docking and protection of MCM from inactivation (56, 57).  

HypB (hydrogenase pleiotropic B) is a metal-binding G protein that mediates and 

regulates, together with HypA and its homologue HybF, nickel incorporation into [NiFe]-

hydrogenase (58-60).  UreG is a metallochaperone which is highly homologous in 

sequence and function to HypB and is involved in nickel incorporation into urease (61, 

62).  

                                                 
1In the G-protein domain of many fusion proteins IcmFs, the base-specificity loop motif NKxD is modified 
to NKxE (See section 3.4.7). The substitution of aspartate by glutamate results in relaxed substrate 
specificity for these IcmFs, which exhibit not only GTPase but also ATPase activity. 
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Figure 1.4: Summary of phylogenomic analysis of the G3E family. Tree was 
constructed using sequences from diverse members of the G3E family. It can be seen that 
all  subfamilies are clearly defined: MeaB-like proteins are shown in red, MeaI-like 
domains extracted from  IcmFs fusion proteins are shown in green, CobW-like proteins 
are shown in black, UreG-like proteins are shown in purple and HypB-like proteins are 
shown in blue. 

 

1.8 Organization and common features of G proteins which belong to the G3E 

family 

In thinking about how G proteins perform their chaperone functions, one must keep in 

mind that some chaperones bind metals and deliver them to the active site of the target 

enzyme while other chaperones do not bind cofactors/metals but regulate holo-enzyme 

maturation and perform other auxiliary functions, e.g. protecting target enzymes from 

inactivation during catalysis. Along these lines, Crecy-Lagard and colleagues proposed 

two general roles for members of the G3E family: 1) facilitation of cofactor incorporation 
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in an energy-dependent manner into target active sites (the insertase role) and, 2) storage 

and delivery of a metal/cofactor to a target metalloprotein (the metallochaperone role). In 

the light of our findings on the G protein chaperone for MCM (57), it is necessary to 

expand the suggested categories  to include a third one: i.e. protection of the catalytically 

active form of the enzyme.   

While MeaB, HypB and UreG have target metalloenzymes for which they serve as 

chaperones, not much is known about a large group of proteins which are classified under 

the name of CobW or COG0523 (Figure 1.4) (63).  CobW from Pseudomonas 

denitrificans was the first member of this group to be described, and it was shown that 

disruption of the corresponding gene led to the inability to synthesize cobalamin (64). 

According to Crecy-Lagard and colleagues only 12.5% of COG0523 are orthologs of 

CobW from Pseudomonas denitrificans (63). Clearly, there is a substantial diversity 

among COG0523 members, which indicates that these chaperones support functions of 

several distinct metalloenzymes.  For example, a member of   CobW subfamily was 

shown to be a nitrile  hydratase activator for the Fe-type nitrile hydratase from 

Rhodococcus sp. N-771 (65). CobW-like proteins are found in all kingdoms of life (63).  

In humans, two copies of CobW-like proteins are found: CBDW1 and CBDW2 and their 

function is not unknown. Interestingly, proteins belonging to COG0523 were linked to 

pathogenicity and ability of pathogens to overcome zinc deficiency induced by the host 

organism (63) and (Dr. Heran Darwin, NYU, personal communication).  

Essentially, proteins from the G3E family can be seen as comprising a core G domain 

with the alpha-helical N- and C-terminal extensions. These extensions, which contain 

histidine-rich regions (or “histidine stretches”), are implicated in metal binding and are 
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found in different combinations together with the G domain in HypB, UreG and CobW 

proteins. Most HypB  have “histidine stretches” at the N terminus. On the other hand, 

HypB from E. coli and some other bacteria have no “histidine stretches” at the N 

terminus but still bind 2 nickel ions per monomer (58). That metal binding is achieved via 

a CxxCGC motif at the N terminus in addition to another metal binding site located 

within the G-domain (66).  

Interestingly, the absence of “histidine stretches” in UreGs in certain organisms is 

compensated by the presence of another protein UreE, which is capable of binding metals 

(63).  Indeed, Crecy-Lagard and associates note that in organisms where UreEs are absent 

(for example in Anaeromyxobacter sp., Frankia sp., Mycobacterium tuberculosis, 

Nocardia farcinica, Streptomyces coelicolor), UreG-like proteins contain “histidine 

stretches” of different length at the N terminus (63).  

 CobW-like proteins have  “histidine stretches” exclusively at the C termini, where   the 

minimal motif is HxHxHxH (where x represents 0-4 residues). However some CobW-

like proteins have many more histidines in this region, for example, a protein from 

Anabaena variabilis has a “histidine stretch” containing 29 histidines (63)! In summary, 

the variety in “histidine stretches” in HypB, UreG and CobW members of the G3E family 

of G proteins highlights the fact that these proteins are important in metal storage and 

transport to their target enzymes. 

MeaB-like proteins have alpha-helical extensions both at the N- and C- termini but 

without any metal or cofactor binding motifs (Figure 1.5 and Figure 1.6).  According to 

X-ray crystallographic studies, the C-terminal extension appears to be essential for 

dimerization of MeaB from M. extorquens (67) (Figure 1.5).   

 17



Figure 1.5: Crystal structure of MeaB. Homodimeric assembly of MeaB  (PDB: 
2QM7) with subunits shown in grey and yellow. The N- and C-terminal  extensions are 
indicated in red and blue or in pale colors for the second subunit.  The two GDP 
molecules are indicated as sticks representation.  Important regions of the G domain are 
indicated: P-loop (G62-S69) in green, switch II (E154-G157) in red and switch III (L177-
K188) in orange. Switch I (L103-M109) is not ordered in this structure and it is indicated 
as a black dotted line.  

 

Another interesting feature of the G3E family is the connection between their function 

and oligomerization (Figure 1.6). Recently, Alfred Wittinghofer and colleagues have 

proposed a new classification for specific P-loop NTPases which is based on their 
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dimerization mode in the presence of ligands (68). GADs (G-proteins activated by 

dimerization) are G proteins that have a relatively weak affinity for nucleotides and 

therefore do not require an external GEFs (guanine nucleotide exchange factors) (68). 

GADs dimerize only in a nucleotide-dependent manner following which, they can bind 

their corresponding GAPs (GTPase activating proteins) and perform their biological 

functions (68). In some cases, metalloenzymes function as GAPs for their corresponding 

chaperones.  It has been known for a while that CooC and HypB are monomers in 

solution, but that they undergo nucleotide-dependent dimerization (54, 55, 58). It was 

proposed that nucleotide-dependent dimerization is a common feature of the SIMIBI 

class of G proteins or at least, those that bind nucleotides at the dimer interface (51, 68).     

It has been reported recently that the E. coli HypB L242A/L246A mutant no longer 

dimerizes in the presence of nucleotides. On the other hand, the monomeric form of the 

mutant HypB has both GTPase and metal-binding behavior similar to the wild-type 

protein. Most importantly, the mutant protein can support maturation of [NiFe]-

hydrogenase both in vitro and in vivo albeit only half of the activity is reconstituted as 

compared to the wild-type control (59).  

MeaB from M. extorquens and the human ortholog MMAA or CblA are dimers in 

solution   regardless of the presence of nucleotides (47, 67) (Figure 1.5 and 1.6). This 

challenges the proposed concept that G proteins from SIMIBI class are all GADs (51, 

68).  

1.9 MeaB is a chaperone for MCM 

MeaB was recognized as an auxiliary protein for MCM by Mary Lidstrom and colleagues 

in their classical studies of glyoxylate regeneration pathway in M. extrorquens (69, 70). 
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Figure 1.6: Dimmer assembly in the G3E family. Crystal structures of MeaB (A) 
(2QM7A), MMAA (B) (2WWW) and HypB (C) (2HF8) in complex with nucleotides 
(MeaB and MMAA with GDP, HypB with GTPγS). Nucleotides molecules are indicated 
s sticks representation. Subunits are shown in grey and yellow. The N- and C-terminal 

extensions are indicated in red and blue or in pale colors for the second subunit. Zink 
und to HypB are shown as green spheres. All three G3E family GTPases exhibit 

a modified Rossmann fold with a central parallel β-sheet flanked by α-helices, but they 
differ significantly in the arrangement of the dimer interface. 
 

MCM activity was completely lost in M. extorquens when the meaB gene was disrupted 

(ΔmeaB::kan) and the bacterium was unable to grow on C1 and C2 compounds (69). 

Interestingly, in strains in which meaB and meaD (PduO-type adenosyltransferase or 

ATR) or epm (methylmalonyl-CoA epimerase) genes were inactivated 

a

atoms bo
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(ΔepmΔmeaB::kan, ΔmeaDΔmeaB::kan), MCM activity was restored by addition of 

exogenous AdoCbl to  cell extracts (70).  In cell extract of the strain where only the meaB 

gene (ΔmeaB::kan) was disrupted, MCM  activity could not be restored by addition of 

exogenous AdoCbl (70). While ATR catalyzes the formation of AdoCbl from 

cob(I)alamin and ATP, methylmalonyl-CoA epimerase catalyzes the conversion of S-

methylmalonyl-CoA to R-methylmalonyl-CoA, i.e. it provides  the correct stereoisomer 

of the substrate needed by MCM. The result from the ΔmeaB::kan strain is important, as 

it clearly suggests that MCM is inactivated during catalysis  and it cannot recover activity 

merely by addition of exogenous AdoCbl. Knowing the interplay between and functions 

of the MeaB, ATR and MCM trio of proteins, the results from the various gene disruption 

strains can be explained (57). 

Bioinformatics pattern searches reveal that MeaB-like proteins are strongly associated 

with AdoCbl-dependent mutases (63, 71). In fact 63% of all MeaB-like proteins found in 

prokaryotic genomes are adjacent to or reside within the same operon with MCMs or the 

B12-binding domains of other AdoCbl-dependent mutases (63). In fact, the analysis 

revealing a strong operonic association between MeaB and MCM, led to the 

identification of the corresponding human gene (MMAA) (71). MMAA (for 

methymalonic aciduria linked to the cblA complementation group), is a mammalian 

ortholog of MeaB that supports the reaction catalyzed by human MCM and its gene maps 

to human chromosome 4q31 (71).  

The crystal structures of MeaB (67) and MMAA (47) clearly show that their G domains 

are organized as in other members of the  G3E family (Figure 1.5 and Figure 1.6). MeaB 

possesses the signature G1-G4 motifs of the G3E family: it has the GxxGxGK[ST] 

 21



Walker A and the DxxxxExxG  Walker B motifs, a [V/I]xxD Mg2+-binding motif  and an 

NKxD GTP-binding motif. MeaB and MMAA are homodimers with a subunit molecular 

weight of ~34-46 kDa. The overall structure of the MeaB dimer is different from the 

structures of HypB and resembles a starfish, with a central G-domain comprised of 

parallel β-strands surrounded by α-helices (67) (Figure 1.6).  

Like other members of the G3E family, the core G-domain of MeaB is flanked by alpha-

helical extensions at the N- and C- termini. In both MeaB and MMAA, the C-terminal 

extension, which is called “dimerization arm” resembles a hook and is involved in 

dimerization (Figure 1.6). The dimer interface of MeaB is formed by the G domains in 

both  subunits and the dimerization arms. In contrast, the subunit interface in MMAA is 

formed by the dimerization arms causing the protein to adopt an open “U-shaped” 

configuration (Figure 1.6). MeaB and MMAA exist as dimers in solution, and their 

oligomeric state is not driven by nucleotide binding. This challenges the notion that all 

members of the G3E family undergo nucleotide-dependent dimerization, which is crucial 

for their function (58, 68). The N-terminal extensions in MeaB are proposed to be 

important for interacting MCM. Unfortunately, numerous attempts to co-crystallize 

MeaB and MCM so far have been unsuccessful. 

MeaB from M. extorquens possesses a low intrinsic GTPase activity (kcat ~0.04 min-1)  

that is enhanced ~ 100 fold in the presence of MCM.  Thus MCM acts as a GAP for 

MeaB (72). MeaB exhibits a weak affinity for GMPPNP and GDP (7.3 ± 1.9 μM and 6.2 

± 0.7 μM, respectively), which is in agreement with previous findings that G-proteins 

from the G3E family do not require GEF proteins to cycle between the GDP- and GTP-

bound forms (68).  Direct protein-protein interaction between MeaB and MCM can be 
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demonstrated by native-PAGE and ITC (72). Homodimeric MeaB and heterodimeric 

MCM from M. extorquens form a tight 1:1 complex. In contrast, homodimeric MMAA 

and the homodimeric human MCM form a 2:1 complex, which is in agreement with 

MCM having two active sites, each of which needs to be loaded with cofactor (47). 

Interestingly, the KD for binding of MCM and MeaB ranges from 34 ± 4  to 524 ± 66 nM  

depending on AdoCbl and the type of nucleotide  present. The tightest KD (34 ± 4 nM) 

was determined for binding of holo-MCM and MeaB/GMPPNP, whereas the weakest 

binding was demonstrated for holo-MCM and MeaB/GDP (524 ± 66 nM) (72).     

Immunoprecipitation was used to demonstrate that YgfD, an ortholog of MeaB in E. coli,  

interacts with the endogenous MCM in cell lysates (40). When both YgfD and 

homodimeric E. coli MCM were cloned and overexpressed, both proteins formed a 

complex, as shown by gel-filtration and Western-blot analysis (40).  

The presence of MeaB and nucleotides affects the activity of MCM. MeaB/GDP 

increased kcat for the mutase reaction 1.8-fold (from 132 ± 16 min-1 to 237 ± 12 min-1) 

while also increasing the KM for methylmalonyl-CoA by 1.7-fold (56). As a result, the 

MeaB/GDP complex did not increase the catalytic efficiency (kcat/KM) of the mutase. 

Notably, MeaB/GDP decreased the Kact for AdoCbl ~4.6-fold, and no AdoCbl binding to 

MCM was observed in the presence of MeaB/GMPPMP, indicating that cofactor binding 

requires GTP hydolysis (56). 

1.10 Biochemical properties of MMAA, a human ortholog of MeaB 

Until recently, most of the biochemical data on MCM and its G-protein chaperone was 

available only for bacterial duo of proteins from M. extorquens since the human proteins 

were difficult to work with due to poor yields and instability during expression and 
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purification.  More recently, the two human proteins were successfully overexpressed 

and purified in quantities sufficient both for crystallography and biochemical studies (47). 

Both proteins were overexpressed as N-terminally truncated variants (73-424 for MMAA 

and 12-750 for MCM). As with the bacterial proteins, the kinetic parameters of MMAA 

were modulated by the presence of MCM.  In the presence of apo-MCM, the GTPase 

activity of MMAA increased 5-fold, whereas KM for GTP decreased 16-fold (from 1210 

± 330 μM to 74  ± 8 μM). Consequently, the catalytic efficiency (kcat/KM) of the MMAA-

catalyzed reaction increased 82-fold (47). The presence of holo-MCM only decreased the 

KM for GTP and the catalytic efficiency of MMAA was increased only 8-fold (47). 

The recently obtained crystal structures of MMAA and MCM with different ligands 

along with the structures of their bacterial counterparts set an important framework for 

elucidation of the mechanism by which the mutase and its G-protein chaperone interact 

and modulate each other’s activities (Figure 1.6) (47).  

1.11 The Chaperoning role of MeaB: The interplay between three proteins 

According to the general classification of functions of metallochaperones in the G3E 

family, MeaB plays a role both as an insertase and as a chaperone (Section 1.8). The role 

of MeaB in the interplay between the three bacterial proteins MCM, its chaperone MeaB 

and ATR as been elucidated (57).  ATR catalyses the transfer of 5'-deoxyadenosyl moiety 

from ATP to the cobalt atom of cob(I)alamin to form AdoCbl (73). This reaction is 

important not only in the de novo biosynthesis of AdoCbl in bacteria but also in higher 

animals in the assimilation of coenzyme B12 precursors (See section 4.1)(73).  

It is interesting that there are three families of ATRs that are completely unrelated in their 

amino acid sequence: the PduO, CobA and EutT types. Human ATR belongs to the PduO 
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family (74). The PduO-type ATR from M. extorquens functions not just in the enzymatic 

synthesis of AdoCbl, but also as a chaperone for its direct delivery to MCM (75).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 1.7: Schematic model for the editing and gating (A), and rescue functions (B) 
of MeaB. Adapted from (57). 
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This strategy is similar to substrate channeling when one enzyme transfers product of the 

reaction to the next enzyme in the pathway or to another active site within the same 

multifunctional protein, without releasing the product into solution.   

The participation of these “molecular tunnels” helps to minimize unwanted side reactions 

of unstable intermediates and dilution of reactants in the cytosol. Substrate channeling is 

employed by several enzymes including pyruvate dehydrogenase complex (76), 

tryptophan synthase (77), dihydrofolate reductase-thymidylate synthase (76). Although 

coenzyme B12 can be synthesized only by some bacteria, many prokaryotes depend on 

cobalamin salvaging and transport to meet their needs for this rare cofactor. Thus, the 

strategy for sequestering AdoCbl following its synthesis by ATR and its direct transfer to 

MCM, ensures reconstitution of the active holo-enzyme (75). 

Once the role of the PduO-type ATR in cofactor transfer to MCM was established, it 

immediately raised questions about the role of MeaB in the transfer process (75).  

Interestingly, when apo-MCM is complexed with MeaB/GTP, cofactor transfer is not 

seen in the presence of AdoCbl-loaded ATR (Figure 1.7 A) (57). In the presence of ATP, 

transfer of a single equivalent of AdoCbl from ATR to apo-MCM is observed (Figure 1.7 

A) (57). 

Remarkably, an inactive cofactor form, cob(II)alamin, can be transferred from holo-ATR 

to apo-MCM if it is not complexed to MeaB. In other words, the presence of MeaB 

prevents loading of MCM with cob(II)alamin which would lead to reconstitution of 

inactive MCM (56, 57). This editing function of MeaB uses the energy of GTP binding 

rather than hydrolysis (Figure 1.7 A). 

 26



The first chemical step in the reaction catalyzed by AdoCbl-dependent mutases is Co-

carbon bond homolysis which results in the formation of two species: cob(II)alamin and 

5'-deoxyadenosyl pair of radicals (Figure 1.3)(3). Occasionally during catalysis the 5'-

deoxyadenosine moiety is lost from the active site. In this case AdoCbl can not be 

reformed and cob(II)alamin remaining in the active site is oxidized to OH2Cbl (56). 

MCM binds OH2Cbl tightly and renders the mutase inactive. Formation of OH2Cbl  can 

be monitored by UV-visible spectroscopy by following the increase in absorption at 350 

nm, which is characteristic of  OH2Cbl. With MCM from M. extroquens, the observed 

rate constant for inactivation is kobs= 0.0072 min-1, and it is decreased 12-fold in the 

presence of MeaB/GTP (56). However, it was puzzling that when OH2Cbl bound to 

MCM was mixed with MeaB/GTP, the damaged cofactor was not released, as it was 

shown with chaperones for other AdoCbl-dependent enzymes (29, 30). It turns out that 

during the reaction catalyzed by MCM, MeaB senses loss of the 5'-deoxyadenosine 

moiety and under these conditions, can expunge cob(II)alamin from the active site of 

MCM in a reaction that is dependent on its GTPase activity (Figure 1.7 B). If the 5'-

deoxyadenosine moiety is lost and cob(II)alamin is oxidized to OH2Cbl, it is “too late” 

for the chaperone to rescue the enzyme. 

Based on the available data for human proteins, we expect that in mammals MMAB (the 

ATR ortholog in humans), MMAA and MCM interact in a similar way as their bacterial 

counterparts (47). Accordingly, MMAB converts cobalamin entering the mitochondrion 

to AdoCbl and subsequently transfers the cofactor to MCM in a process that is gated and 

edited by the chaperone, MMAB in the presence of GTP.  
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1.12 Fusion between MCM and MeaB is a misannotation 

It was believed before that in addition to the strong operonic association between MeaB 

and MCM, in some bacteria MeaB is fused to the large subunit of MCM (70). Several 

genes with such an architecture were identified via BLAST: Ralstonia solanacearun 

(NP_518358), R. metallidurans (YP_582365), Burkholderia xenovorans (YP_556774), 

Thermobifida fusca (YP_290867), Geobacter metallireducens (YP_384678), Leptospira 

interrogans serovar lai (NP_713136), Bacillus halodurans (NP_244663) and the name 

McmC was designated to this fusion protein (70). Indeed, a B. xenovorans mutant, 

ΔmcmC::kan, was shown to lack MCM-like activity (70). The McmC protein from B. 

xenovorans is 1272 amino acids in length and can be divided into three domains: the N-

terminal region (from residues 22-145) has very high sequence similarity to the AdoCbl-

binding region of MCM, the middle region (extending from residues 293-607) aligns 

with MeaB, and the C-terminal domain (residues 691-1195) aligns with the large subunit 

of MCM. McmC was reported to be involved in propionate metabolism in B. xenovorans, 

since slow growth of the ΔmcmC::kan mutant was observed on propionate compared to 

the wild-type strain (70).   

Our results however revealed that none of the identified McmC proteins represent fusions 

of MCM and MeaB (78). Using a combination of bioinformatics and biochemical 

approaches, we have demonstrated that the fused proteins in bacteria represent a fusion 

between ICM and MeaB. We propose a new name for this fusion, IcmF (isobutyryl-CoA 

mutase fused (Figure 1.1). 
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CHAPTER 2 
 

IcmF Is a Fusion Between the Radical B12 Enzyme, Isobutyryl-CoA Mutase and its 
G-protein Chaperone2,3 

 
2.1 Abstract 
 
Coenzyme B12 is used by two highly similar radical enzymes, which catalyze carbon 

skeleton rearrangements: methylmalonyl-CoA mutase and isobutyryl-CoA mutase (ICM). 

ICM catalyzes the reversible interconversion of isobutyryl-CoA and n-butyryl-CoA and 

exists as a heterotetramer. In the present study, we have identified >70 bacterial proteins, 

which represent fusions between the subunits of ICM and a P-loop GTPase and are 

currently misannotated as methylmalonyl-CoA mutases. We designate this fusion protein 

as IcmF (isobutyryl-CoA mutase fused). All IcmFs are comprised of three domains:  the 

N-terminal AdoCbl binding region that is homologous to the small subunit of ICM 

(IcmB), a middle P-loop GTPase domain and a C-terminal part that is homologous to the 

large subunit of ICM (IcmA). The P-loop GTPase domain has very high sequence 

similarity to the Methylobacterium extorquens MeaB, which is a chaperone for 

methylmalonyl-CoA mutase. We have demonstrated that IcmF is an active ICM by 

cloning, expressing, and purifying the IcmFs from Geobacillus kaustophilus,

                                                 
2 The content of this chapter has been published in J Biol Chem. 2010 Jan 1;285(1):655-66: Cracan V, 
Padovani D and Banerjee R. “IcmF is a Fusion Between the Radical B12 Enzyme, Isobutyryl-CoA Mutase 
and its G-protein Chaperone”. 
 
3 ITC and EPR experiments described in this work were performed by Dr. Dominique Padovani.We thank 
Dr. Bruce Palfey for providing purified porcine liver butyryl-CoA dehydrogenase and for help in the 
developing of coupled assay and Dr. Donald Becker (University of Nebraska-Lincoln) for providing the M. 
elsdenii BDH expression construct. This work was supported in part by a grant from the National Institutes 
of Health (DK45776). 
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Nocardia farcinica and Burkholderia xenovorans. This finding expands the known 

distribution of ICM activity well beyond the genus Streptomyces where it is involved in 

polyketides biosynthesis and suggests a role for this enzyme in novel bacterial pathways 

for amino acid degradation, myxalamid biosynthesis and acetyl-CoA assimilation. 

2.2. Introduction 

Isobutyryl-CoA mutase (ICM) (EC 5.4.99.13) is a coenzyme B12 (or 5´-

deoxyadenosylcobalamin or AdoCbl)-dependent enzyme, which catalyses the 

rearrangement of isobutyryl-CoA to n-butyryl-CoA (1-3).  This reaction is very similar to 

that catalyzed by methylmalonyl-CoA mutase (MCM), which is better studied and more 

widely distributed in Nature (4). In both reactions, carbon skeleton rearrangements take 

place where the carbonyl-CoA substituent and a hydrogen atom on neighboring carbon 

atoms exchange positions (2, 3) (Figure 2.1).  

 

 

 

 

Figure 2.1:  Reactions catalyzed by MCM and ICM. 

The genes encoding ICM were first cloned and sequenced from the Gram-positive, 

filamentous soil bacterium Streptomyces cinnamonensis. ICM is an α2β2-heterotetramer 

composed of two large subunits (IcmA) of 62.5 kDa and two small subunits (IcmB) of 

14.3 kDa. The genes encoding the subunits of MCM, an  heterodimer in some 
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bacteria, are usually located in a single operon (Figure 2.2). In contrast, the icmA and 

icmB genes are distant from each other in the genome of S. cinnamonensis (2).  

The sequence of IcmA is very similar to the sequences of the large subunit of MCM, with 

the exception of the AdoCbl-binding region, which is missing. Thus, IcmA lacks a C-

terminal AdoCbl-binding domain containing the signature DxHxxG motif that is present 

instead in the small IcmB subunit, which binds the cofactor (5). In this respect, ICM 

resembles some other AdoCbl-dependent mutases that exhibit a similar organization 

(Figure 2.2).  

 

 
Figure 2.2: Comparison of domain and gene organizations of bacterial IcmF, MCM 
and ICM. MeaB and MeaI represent the P-loop GTPase chaperones for MCM and ICM 
respectively. 
 

For example, glutamate mutase is also composed of two subunits of very different sizes: 

the large subunit MutE, which binds substrate and the small subunit MutS, which binds 

AdoCbl (6).  

The ICM-catalyzed reaction plays an important role in polyketide biosynthesis in 

Streptomyces. In studies with 13C-labeled isobutyrate, it was shown that this compound 

efficiently incorporates into monensin A, tylosin and leucomycin at positions derived 

from n-butyrate (1). While ICM was believed to have a rather limited distribution, its 

close sequence relative, MCM, is present in organisms ranging from bacteria to man (7). 
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 A G-protein chaperone, MeaB, shows strong operonic association with MCM and 

mutations in the human ortholog, the product of the cblA locus, result in methylmalonic 

aciduria due to dysfunctional MCM activity (8). MeaB from Methylobacterium 

extorquens has been characterized most extensively and is a P-loop GTPase (9, 10). 

Other members of this group of proteins include HypB, UreG which are important in the 

assembly of the metalloenzymes: nickel hydrogenases (11) and urease (12). MeaB has 

been proposed to function in the GTP-dependent assembly of holo-MCM and shown to 

protect the radical intermediates formed during MCM catalysis from oxidative 

interception (14). MCM in turn, influences the GTPase activity of MeaB increasing it by 

>100–fold. Hence, MCM exhibits GAP (GTPase activating protein) activity for MeaB 

(14, 15). In addition, MCM modulates the affinity of MeaB for nucleotides. The crystal 

structure of MeaB in the presence of GDP has been solved and confirms that it is a 

member of the G3E family of GTPases but differs from other family members in 

possessing N- and C-terminal extensions of unknown function (9). Structural insights into 

the interaction between MeaB and MCM are lacking. 

In the present study, we show that in >70 bacteria ICM is fused to a P-loop GTPase, 

which is a paralog of MeaB.  This fusion protein that we have named IcmF (for ICM-

fused) is described as a putative MCM-like protein in the databases. The misannotation 

has led to the ascription of this gene product as representing a fusion between MCM and 

MeaB (16) and to its function in pathways that are unlikely to be correct (17). Using 

bioinformatics and biochemical approaches, we demonstrate that IcmF is an ICM with 

ICM and GTPase activities. IcmF represents an important paradigm for elucidating the 

crosstalk between a mutase and its auxiliary protein during the catalytic cycle.   
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2.3 Experimental procedures 

2.3.1 Cloning and Expression of IcmF. IcmF from three organisms was cloned into the 

pET-30 Ek/LIC expression vector (Novagen, CA). The genomic DNA of Geobacillus 

kaustophilus and Burkholderia xenovorans (formerly known as Burkholderia fungorum) 

were generous gifts from Hideto Takami (Japan Agency for Marine-Earth Science and 

Technology, Kanagawa, Japan) (18). The genomic DNA clone KNL023_G20 in the 

pTS1 plasmid containing the Nocardia facinica IcmF gene was obtained from Jun 

Ishikawa (National Institute of Infectious Diseases, Tokyo, Japan) (19). (i) IcmF from G. 

kaustophilus. The IcmF gene from G. kaustophilus was amplified from genomic DNA 

using nested-primer PCR as attempts to amplify the full-length gene in a single PCR 

reaction were unsuccessful. The first round of PCR was performed with the following 

primers: Forward5´-TCTACCGATCTGCTAAAGTTCAACG-3´ and reverse 5´-  

GGATTATGGAGAAACAGCGAGTC-3´. The second round of amplification was 

performed with the following primers containing NheI and BamHI restriction sites 

(underlined): Forward 5´-TAGGCTAGCATGGCGCACATTTACCGTCCG-3´ and 

reverse 5´-TAGGGATCCTTACATATTCCGCCGGTATTGTCC-3´.  The resulting 

fragment was cloned into pGEM-T easy (Promega, WI) and subsequently used as a 

template for ligase-independent cloning (LIC). The insert was amplified with the 

following primers for LIC cloning (forward 5´- 

GACGACGACAAGATGGCGCACATTTACCGTCCGAAG-3´ and reverse 5´-

GAGGAGAAGCCCGGTTTACATATTCCGCCGGTATTG-3´) and inserted in the 

pET30 Ek/LIC vector according to the manufacturer’s protocol. (ii) IcmF from B. 

xenovorans. The first round of nested-primer PCR was performed on genomic DNA of B. 
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xenovorans with the following primers: forward 5´-

TGTCGACTTCCTCGCTGAGCGGTT-3´ and reverse 5´-CGCGACGCGTTGTGGT 

TGTGCGTT-3´. The second round of nested PCRs was performed with primers for LIC: 

forward 5´-GACGACGACAAGATGACCGATCTGTCCACGCCG-3´ and reverse 5´-

GAGGAGAAGCCCGGTTTACATATTGCGGCGGTACTG-3´. (iii) IcmF from N. 

farcinica. The IcmF gene was amplified from the pTS1 plasmid (genomic DNA clone 

KNL023_G20) with the following primers containing NdeI and HindIII restriction sites 

that are underlined: forward 5´-ATATATCATATGGCCGACAGTACGCTCCACCAA-

3´ and reverse 5´-ATATCTAAGCTT TCACACGTTGCGCCGGTACTG-3´. The 

resulting PCR product was subcloned into the pGEM-T vector (Promega, WI) and used 

for LIC cloning with the following primers. Forward: 

5´GACGACGACAAGATGGCCGACAGTACGCTCCAC-3´ and Reverse: 5´- GAGG 

AGAAGCCCGGTTCACACGTTGCGCCGGTA-3´. The sequences of all the resulting 

constructs were verified by nucleotide sequence determination at the University of 

Nebraska’s Genomics Facility.  

2.3.2 Protein Expression and Purification. Recombinant M. elsdenii butyryl-CoA 

dehydrogenase expressed in Escherichia coli BL21 (DE3) was purified as previously 

described (20). The pET-30 Ek/LIC vector with the G. kaustophilus IcmF gene was 

transformed into E. coli BL21 (DE3) cells, which were grown at 37˚C in Luria Bertani 

(LB) medium containing 50 μg/mL kanamycin to an optical density at 600 nm of 0.6. 

Cells were grown for 14-16 h after induction with 0.5 mM isopropyl-1-thio-β-D-

galactopyranoside (IPTG) at 15˚C.  The cells were resuspended in ~150 mL lysis buffer 

(50 mM sodium phosphate buffer (NaPi), pH 8.0, 500 mM NaCl and 8 mM imidazole) 
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containing three protease inhibitor cocktail tablets (Roche) and disrupted by sonication 

on ice (output setting of 5.5 for 10 min with 30 sec bursts and 3 min breaks). Following 

centrifugation, the cell lysate was subjected to dilution to a final concentration of 3-5 

mg/mL and loaded onto a 50 mL Ni-NTA Sepharose column. After washing with 10-20 

column volumes of lysis buffer, the protein was eluted with a gradient of 8 to 250 mM 

imidazole in lysis buffer. Fractions containing IcmF were pooled, concentrated and 

dialyzed against 50 mM NaPi, pH 7.5 and applied to a 2.5 x 7.5 cm Source 15Q column 

equilibrated at a flow rate of 10 mL/min with Buffer A (50 mM NaPi, pH 7.5, 50 mM 

NaCl). The column was then washed at the same flow rate with 100 ml of Buffer A and 

eluted with a 500 mL gradient from 50 to 250 mM NaCl in 50 mM NaPi, pH 7.5 over 50 

min at the same flow rate. The purified IcmF was concentrated and loaded on a 160 mL 

Superdex-200 column (GE Healthcare) equilibrated at a flow rate of 0.75 mL/min with 

50 mM NaPi, pH 7.5, 250 mM NaCl. Under these conditions, IcmF eluted with a 

retention volume of ~82 mL. Fractions containing active IcmF were pooled, 

concentrated, flash-frozen in liquid nitrogen and stored at -80˚C until further use. 

Approximately 25-35 mg of recombinant G. kaustophilus IcmF was obtained from a 6L 

culture.  

E. coli BL21 (DE3) cells transformed with recombinant N. farcinica or B. fungorum 

IcmF was grown and the cell extracts were prepared as described above for the G. 

kaustophilus enzyme using potassium phosphate (KPi) buffer. The cell extracts were 

loaded onto a 4 mL Ni-NTA column, washed with 50 mM KPi, pH 8, containing 50 mM 

imidazole and eluted with the same buffer containing 250 mM imidazole. IcmF-
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containing fractions were pooled and the protein was obtained in ~40% purity from this 

one-step purification procedure. 

2.3.3 GTPase activity of IcmF. The GTPase activity of IcmF (5 µM) was determined in 

the presence of varying concentrations of GTP (50–5000 µM) at 37°C in 0.4 mL of 50 

mM KPi buffer, pH 7.5, 100 mM KCl and 5 mM MgCl2. For each GTP concentration, 

aliquots (50 µl) were removed at varying time points (2-60 min), quenched with 2 M 

trichloroacetic acid (10% v/v), centrifuged and filtered through a 0.1 µm Ultrafree-MC 

filter (Millipore) to remove the precipitated protein.   

The nucleotides were analyzed by ion exchange chromatography on a μBondapak NH2 

300 x 3.9 mm HPLC column (Waters, MA). Initial conditions were 100% Buffer B (50 

mM monobasic KPi, pH 4.5) and 0% Buffer C (800 mM monobasic KPi, pH 4.5) and a 

flow rate of 1.0 mL/min. Between 5 and 20 min, Buffer C was increased to 80% and held 

at that concentration for 5 min. Between 25-26 min, Buffer C was decreased to 0% and 

held for 10 min at that composition to equilibrate the column between injections.  Under 

these conditions, the retention time for GDP was 9.5 min and for GTP was 13.1 min 

respectively. 

2.3.4 Enzyme assays. Initially, recombinant IcmF was assayed for MCM activity as 

previously described using the radioactive assay (21). To monitor IcmF activity, one of 

two assay methods was used. First, a fixed-time GC/MS-based assay was employed by a 

modification of a previously described method (1, 22). In this assay, normal- and 

isobutyryl-CoA thioesters were saponified, and the resulting free acids were extracted 

into ethylacetate. Product formation was followed in a 200 μl assay mixture containing 

50 mM KPi pH 7.5, 100 mM KCl, n-butyryl-CoA or isobutyryl-CoA (0.1 to 1 mM), 50 

 42



µM AdoCbl and 0.5-5 µg of IcmF. The reaction was stopped by the addition of 100 μL of 

2N KOH containing 0.18 mM valeric acid as an internal standard followed by addition of 

100 μL of H2SO4 (15%, v/v). In the last step of sample preparation, the reaction mixture 

was saturated with NaCl and extracted with ethylacetate (250 μL). An aliquot of the 

extract (5 μL) was subjected to analysis by GC/MS using a DB-FFAP 30 m x 0.25 mm 

I.D., 0.25 μm capillary column (Agilent, CA). This column is especially designed for the 

separation of organic acids without derivatization. 

A continuous assay was developed to determine the kinetic parameters for IcmF. In this 

assay, n-butyryl-CoA, which is produced from isobutyryl-CoA by IcmF is converted to 

crotonyl-CoA by butyryl-CoA dehydrogenase (BDH). BDH activity was followed by the 

decrease in absorbance at 300 nm over 1-2 min upon reduction of ferricenium 

hexafluorophosphate (Fc+PF6
-) (Δε=4.3 mM-1cm-1) (23). BDH is able to use both 

isobutyryl-CoA and n-butyryl-CoA as substrates but with a preference for the latter. We 

found that with isobutyryl-CoA, KM = 311  26 M and Vmax = 1.66  0.06  

µmol/min/mg and with n-butyryl-CoA, KM  = 68  4 M and Vmax = 33  1 µmol/min/mg 

/mg. The reaction mixture for the coupled assay contained in a final volume of 200 µL:  

2-4 g IcmF, 50 μM AdoCbl, 0.2 g BDH, varying concentrations of isobutyryl-CoA (10 

to 1000 µM), 250 µM (Fc+PF6
-)  1-2 mM GDP, GTP or GMPPNP in 50 mM NaPi, pH 

7.5, 250 mM NaCl. Under these conditions, the consumption of isobutyryl-CoA by BDH 

is negligible and similar to the background rate observed in the absence of BDH. The dye 

was preincubated for 3 min at 37°C before adding the substrate. After 1 min incubation, 

BDH was added and the reaction was started 1 min later by the addition of holo-IcmF.  
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2.3.5 UV-visible spectroscopy. UV-visible spectra were recorded on a Cary100 

spectrophotometer (Agilent, formely Varian, CA). Holo-IcmF (10-12 M) in 50 mM 

NaPi, pH 7.5, 0.25 M NaCl  5 mM MgCl2 and 1-2 mM GDP, GTP or GMPPNP was 

incubated in the presence of 3-5 mM isobutyryl-CoA at 20°C. The spectra were acquired 

after 2-5 min incubation. 

2.3.6 Isothermal Titration Calorimetry. The isothermal titration calorimetric 

experiments were performed as described previously (14, 15). Each experiment was 

performed in triplicate. IcmF was dialyzed for 10-12 h against 50 mM NaPi, pH 7.5, 0.25 

M NaCl containing 1-2 mM TCEP (Buffer D) before use. The protein (8-24 M)  1-2 

mM GDP or GMPPNP in Buffer D was titrated with thirty to forty two 7-9.7 L aliquots 

of a 15-20-molar excess solution of AdoCbl at 20°C. The calorimetric signals were 

integrated and the data were analyzed with Microcal ORIGIN software using a two-sites 

binding model to determine the thermodynamic parameters associated with AdoCbl 

binding to IcmF. 

2.3.7 EPR Spectroscopy. EPR spectra were recorded on a Bruker EMX spectrometer 

(Bruker Biospin Corp., Billerica, MA), equipped with an Oxford ITC4 temperature 

controller, a Hewlett-Packard model 5340 automatic frequency counter, and a Bruker 

gaussmeter. Unless otherwise noted, the following parameters were used:  temperature, 

100 K; microwave power, 25 mW; microwave frequency, 9.38 GHz; receiver gain, 

2105; modulation amplitude, 10 G; modulation frequency, 100 kHz. Cob(II)alamin was 

generated by treating a solution of hydroxocobalamin (OHCbl) with 4-7 molar excess of  

TCEP. Formation of cob(II)alamin was followed by UV-visible spectroscopy and the 

concentration of the solution was estimated using473nm = 9.2 mM-1cm-1. 
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2.3.8 Bioinformatics analysis. STRING was used to find functional linkages for proteins 

of interest, as well as gene fusions and gene neighborhoods (string.embl.de) (24). A 

protein-protein blast search (www.ncbi.nlm.nih.gov/BLAST) was used to perform distant 

homologs searching. A multiple sequence alignment and phylogenetic tree were 

constructed using a stand-alone version of ClustalX v.1.8.  Figures with multiple 

sequence alignments were generated using BOXSHADE 3.21 

(http://www.ch.embnet.org/software/BOX_form.html). Phylogenetic analysis was carried 

out using default parameters in ClustalX. The trees were visualized using TreeView 

1.6.6.  Operon and regulon browsers on the Microbes Online web site were used for the 

elucidation of functional predictions for the genes of interest 

(http://www.microbesonline.org, 

http://www.microbesonline.org/operons/OperonList.html) (25). 
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2.4 Results and Discussion 

2.4.1 Bioinformatics analysis of IcmF. (i) Analysis of the mutase domains. Based on 

bioinformatics analysis, it was previously concluded that MCM either colocalizes in the 

same operon with its chaperone, MeaB, or that MeaB is fused to the large subunit of 

MCM in some bacteria (16). Indeed, the putative fusion protein between MCM and 

MeaB in B. xenovorans was reported to possess MCM activity (16). Our laboratory has 

been elucidating the influence of MeaB and MCM on the substrate binding and catalytic 

activities of each other (14). Since the kinetics of a fusion protein are easier to 

characterize than the stand-alone versions of the component proteins, which interact with 

varying affinities depending on the ligand, we chose to focus on the putative MCM-

MeaB fusion protein. A BLAST search using the fusion protein from B. xenovorans 

(YP_556774) as a query sequence resulted in the identification of >70 proteins in 

bacteria, including the seven proteins that were previously identified as examples of 

fusions between MCM and MeaB (Table 2.1) (16). In the databases, homologs of this 

fused protein are annotated as putative MCM-like proteins. However, a careful 

examination of the domain organization and sequence analysis of the substrate-binding 

site in the B12-dependent isomerase component (Figure 2.2-2.4), suggested that this group 

of fusion proteins might in fact be misannotated.  

Based on the high sequence similarity between MCM and ICM, Robinson and colleagues 

used the crystal structure of MCM from P. shermanii to identify residues which might be 

involved in specific substrate binding in ICM from S. cinnamonensis (2). They identified 

two key substitutions in the large subunit of MCM, Tyr89 and Arg207, which are 

replaced by Phe80 and Gln198 in the large subunit of ICM (Figure 2.3).  
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Table 2.1: List of all identified IcmFs. 
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These differences in active site residues can be rationalized based on the structural 

difference between the respective substrates despite the very similar reactions catalyzed  

by the two enzymes (Figure 2.1). 

 

 

Table 2.1: (Continued): List of all identified IcmFs. 
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In MCM, the carboxylate group of methylmalonyl-CoA is engaged in electrostatic 

interactions with the guanidinium group of Arg207 and the phenolic group of Tyr89 

(Figure 2.3). The presence of a methyl group in the ICM substrates instead of the 

carboxylate is reflected in the loss of the hydrogen bond donating arginine and tyrosine 

residues. Instead, a glutamine and phenylalanine in ICM substitute for the arginine and 

tyrosine residues respectively in MCM (Figure 2.3). Apart from these two differences, 

the remaining residues in the active sites of both mutases are highly conserved. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3: Comparison of the active site residues in P. shermanii MCM with those 
predicted for S. cinnamonensis ICM. The MCM structure was obtained from the pdb 
file, 4REQ. The two striking differences in the active site residues are the substitutions of 
Tyr89 and Arg207 in MCM to Phe80 and Gln198 in ICM. 
 
Multiple sequence alignment of the predicted substrate-binding site in the C-termini of all 

the identified fusion proteins clearly reveals conservation of the Phe and Gln residues 

(Figure 2.4 and Figure S1 in (26)). This analysis strongly suggests that the substrate for 

the fusion protein is n-butyryl-CoA/isobutyryl-CoA and hence the fusion protein is 

predicted to be an ICM not an MCM. We thus designate this fusion protein as IcmF, for 

i

MCM 
(ICM) 

MCM 
(ICM) 

sobutyryl-CoA mutase fused. The IcmF designation for this group of fusion proteins 

also distinguishes it from the “stand-alone” ICM described for the genus Streptomyces. 
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All IcmFs are predicted to be comprised of three domains: the N-terminal AdoCbl- 

binding region that is homologous to the small subunit of ICM, a middle P-loop GTPase 

domain and a C-terminal region that is homologous to the large substrate-binding subunit 

of ICM (Figure 2.2).  

Clear sequence similarities are seen between the AdoCbl-binding regions of the large 

subunit of MCM, the small subunit of ICM (IcmB) and the N-terminal portion of IcmF 

(Figure 2.5). 

The signature DxHxxG… SxL…GG motif (where x is any amino acid) used for binding 

of B12 in the “base-off/His-on” conformation is observed in all three proteins (5). 

However, in IcmF, this motif is similar but not identical to that seen in ICM and MCM. 

First, a GA/S change is found in IcmFs in the conserved sequence: DxHxxA/S… 

SxY..GGGG. This substitution is not surprising since glycine is often replaced by alanine 

or serine and vice versa in sequences of orthologous proteins from different organisms.  

Figure 2.4: Multiple sequence alignment of the C-terminal sequences of IcmFs, the 
large subunit of ICM (IcmA) from S. cinnamonensis (AAC08713), MCM from M. 
extorquens (YP_001642233) and MCM from P. shermanii (CAA33090).  The C-
terminal region of the IcmFs is homologous to IcmA and MCM. The two conserved 
residues in IcmF (Phe and Gln in IcmA) that are important for substrate binding are 
highlighted in grey and indicated with asterisks. In MCM, these residues are substituted 
by Tyr and Arg respectively.   
 



 

Figure 2.5: Multiple sequence alignment of the N-terminal AdoCbl-binding domain 
of IcmFs, the small subunit of ICM (IcmB) from S. cinnamonensis (CAB59633) and 
MCM from M. extorquens (YP_001642233). In B12 proteins that bind the cofactor in a 
“base-off/His-on” conformation, a signature DxHxxG… SxL…GG motif is found 
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(highlighted in blue). In IcmF, this motif is similar but not identical: DxHxxA/S… 
S/TxY…GGGG (highlighted in red). In Leptospira borgpetersenii the histidine which is 
predicted to coordinate to AdoCbl appears to be substituted by arginine. The Salinibacter 
ruber sequence is not included in the alignment since the AdoCbl region is truncated at 
the N-terminus  (DxHxxG motif is missing). IcmFs, which were previously annotated as 
MCM-like enzymes are indicated in bold. For accession numbers see Table 2.1. 

 

Second, an SxLSxY substitution is seen in IcmF. The rationale for the leucine to 

tyrosine substitution and the insertion of two glycines at the end of the motif are not 

clear. Thus, it appears that the sequence of the AdoCbl-binding domain of IcmF has 

diverged from the corresponding sequences in IcmB and MCM.  

(ii) Analysis of the G-protein domains. The P-loop GTPase domain has very high 

sequence similarity to MeaB from M. extorquens that was shown to be a chaperone for 

MCM (14, 15). We designated it as MeaI to distinguish it from the MeaB-like chaperone. 

The sequence encoding the MeaI domain of IcmF comprises ~250-300 amino acids in the 

middle of the protein (Figure. 2.6).   

Sequence analysis strongly suggests that this domain belongs to the G3E family of P-loop 

GTPases (10). All four GTPase sequence fingerprints, the so-called G-domains, which 

define this family, are present in the MeaI domain of IcmF.  These include: (i) the Walker 

A motif (G1), which binds the triphosphate moiety of GTP (as is typical for the G3E 

subfamily a slight modification of the GxxGxGK[ST] sequence to  GxxGxGK[SS] is 

seen); (ii) the Mg2+ binding motif (G2) (LxxD in all IcmF sequences); (iii) the 

DxxxxExxG Walker B motif (G3) and (iv) the nucleotide specificity NKxD motif (G4). 

The replacement of Asp by Glu in NKxD motif in some proteins (Figure 2.6) might not 

affect the specificity for the guanine nucleotide and is also seen in other G proteins (27) 

(See also section 3.4.7).  
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Figure 2.6: Multiple sequence alignment of the MeaI domain in IcmF sequences and 
MeaB from M. extorquens (YP_001637793). The MeaI domain of IcmF comprises 
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~250-300 amino acids in the middle of the protein. Sequence analysis strongly suggests 
that this domain belongs to the G3E family of P-loop GTPases.  The G-domains, which 
defines this family, are present in the MeaI domain of IcmF and are highlighted in red. 
These include: (i) the Walker A GxxGxGK[SS] motif; (ii) the Mg2+ binding motif,  
which is typically V/IxxD in proteins in the G3E family  and is LxxD in all IcmF 
sequences (iii) the DxxxxExG Walker B motif and (iv) the nucleotide specificity 
NKxD/E motif. IcmFs, which were previously annotated as MCM-like enzymes, are 
indicated in bold. For accession numbers see Table 2.1. 

 

Based on this analysis, we conclude that the MeaI domain of IcmF, like MeaB, belongs to 

the SIMIBI subclass of G proteins since two key aspartate residues at the N-terminus of 

the Walker B motif and in the Mg2+-binding motif are present (Figure 2.6). Within the 

SIMIBI subclass, the MeaI domain of IcmF belongs to the G3E family (the conserved 

glutamate residue in the Walker B motif is a signature of this family) as well as the intact 

nucleotide specificity motif (10). We predicted that the MeaI domain of IcmF functions 

like its paralog MeaB, i.e. as a chaperone for ICM in the fusion protein (14).  

2.4.2 Expression and initial activity analysis of IcmF. In order to test the prediction 

from bioinformatics analysis that IcmF harbors ICM rather than MCM activity, IcmFs 

from three organisms, G. kaustophilus, B. xenovorans and N. farcinica were cloned into 

the expression vector pET30 Ek/LIC. Multiple IcmF encoding genes were subcloned and 

purified so that the enzymatic activity of the fusion protein from more than one organism 

could be assessed. Since the fusion protein from B. xenovorans was reported to have 

MCM activity (16), we initially tested the activity of all three IcmF proteins in the 

standard radiolabeled assay for MCM (21). However, none of the three IcmFs exhibited 

detectable MCM activity. On the other hand, all three IcmFs exhibited ICM activity. Two 

assays have been described for monitoring ICM activity and are based on either gas 

chromatography (GC) or NMR-based detection of the reactant and product (28). Since 
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the NMR-based method is not amenable for routine enzymatic assays, we used a 

modification of the previously described GC assay (1, 22) using mass spectrometry (MS) 

for detection of the reaction components. A specific activity of 0.6 ± 0.04 µmol min-1mg-1 

protein at 37oC was obtained for the G. kaustophilus IcmF.  

As an alternative to the GC-MS assay that depends on access to specialized 

instrumentation, a coupled spectrophotometric assay was developed to measure IcmF 

activity as described (Section 2.3.4). The specific activity determined in the coupled 

assay for the N. farcinica IcmF was 1.1±0.1 µmol min-1mg-1 and for the B. xenovorans 

IcmF was 0.34 ± 0.04 µmol min-1mg-1 at 37oC. A specific activity of 0.75 ± 0.01 mol 

min-1 mg-1 protein at 37oC was measured for G. kaustophilus IcmF, which is comparable 

to the value from the GC-MS assay. In comparison, a Vmax of 38 ± 3 µmol min-1mg-1 at 

37˚C has been reported for purified stand-alone ICM from S. cinnamonensis (2).   

The recombinant G. kaustophilus IcmF was the most stable and soluble of the three 

proteins and was further purified to ~95% purity as described (Section 2.3.2) to perform 

biochemical and biophysical characterizations. Based on its elution from a calibrated gel-

filtration column, the G. kaustophilus IcmF appears to be a dimer with a native molecular 

mass of ~286 kDa (Figure 2.7).  

2.4.4 Binding of AdoCbl to IcmF  nucleotides. We investigated the energetics of 

AdoCbl binding to G. kaustophilus IcmF  nucleotides by ITC (Figure 2.8, Table 2.2). 

These experiments revealed the presence of two non equivalent binding sites with an ~9-

25-fold difference in affinity for AdoCbl that was influenced by the presence and identity 

of the guanine nucleotide (Table 2.2). Binding of AdoCbl to the high affinity site in the 

absence of nucleotides (KD=81  14 nM) is accompanied by a ΔG1° of -9.5 ± 0.1 
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kcal/mol that is enthalpically favored whereas binding to the low affinity site (KD=2.0  

0.4 M) is entropically driven (Table 2.2). 

 

 

 

 

 
 
 
 
 
 
Figure 2.7: illiabsorbance units. 
Inset: The S μg load; lane #2, 
30 μg load). 
 

These data suggest a possible difference in the flexibility of the two AdoCbl binding sites 

in IcmF. A Kact of 12 ± 2 μM for AdoCbl for ICM from S. cinnamonensis has been 

reported (2). 

We next analyzed the influence of nucleotides on cofactor binding. The affinity for 

AdoCbl for the high affinity site was slightly increased in the presence of GDP (132 ± 9 

nM), which resulted from changes in both enthalpic and entropic contributions 

(H1~2.5 kcal/mol and TS1~2.8 kcal/mol). GDP did not substantially influence 

binding of AdoCbl to the second site. Binding of AdoCbl in the presence of GMPPNP, a 

nonhydrolyzable analogue of GTP (Figure 2.8, Table 2.2) indicates that GTP hydrolysis 

is not required for binding of AdoCbl to IcmF•GTP. GMPPNP decreased by ~2-fold the 

affinity for AdoCbl to site 1 (KD1=154  71 nM) and slightly increased the affinity at site 

2 (KD2=1.3  0.5 M). 

Gel-filtration of IcmF from G.kaustophilus. mAU, m
DS-PAGE analysis of IcmF after gel-filtration (lane #1, 15 
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Figure 2.8: Binding isotherms for AdoCbl binding to IcmF. (A). Representative ITC 
data set for the binding of AdoCbl (250 μM stock solution) to 15.4 μM apo-IcmF in 50 
mM sodium phosphate buffer, pH 7.5, 250 mM NaCl, 2 mM TCEP at 20 °C. (B). 
Titration curves for the binding of AdoCbl to apo-IcmF alone (), in the presence of 1 
mM GDP () or 1 mM GMPPNP (). Data were fitted to a two-site model and yielded 
the parameters reported in Table 2.2. 
 
 
 

ligand site N Kd, M H,  
kcal/mol 

TS, kcal/mol G, 
kcal/mol 

1 0.9  0.1 0.081  0.014 -6.2  0.2 +3.4  0.3 -9.5  0.1 none 

2 1.0  0.2 1.98  0.42 -2.0  0.9 +5.6  1.0 -7.7  0.1 

1 0.9  0.1 0.132  0.009 -8.7  0.7 +0.6  0.8 -9.2  0.1 GDP 

2 1.2  0.1 2.77  1.27 -2.4  0.3 +5.1  0.4 -7.5  0.2 

1 1.0  0.1 0.154  0.071 -9.6  0.1 -0.4  0.4 -9.2  0.3 GMPPNP 

2 1.0  0.1 1.30  0.51 -0.5  0.7 +7.4  0.5 -7.9  0.2 

 
 
Table 2.2: Thermodynamic parameters for the binding of AdoCbl to IcmF. 
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Changes in both the enthalpic and entropic terms contributed to this change. While 

cofactor binding to site 1 is enthalpically driven, it is almost entirely entropically driven 

at site 2. 

2.4.5 IcmF is an active isobutyryl CoA mutase. Using the coupled assay, we further 

characterized the kinetic parameters for IcmF from G. kaustophilus (Figure 2.9 A, Table 

2.3). The KM for isobutyryl-CoA was determined to be 20  1 µM and the kcat 3.1  0.1 s-

1 in the absence of nucleotides. In comparison, a KM for isobutyryl-CoA of 57 ± 13 µM 

has been reported for ICM from S. cinnamonensis (2). Thus the kcat/KM values for the 

stand-alone S. cinnamonensis ICM and G. kaustophilus IcmF are 6.8  ± 2.7 x105 M-1s-1 

(2) and 1.5 ± 0.1 x105 M-1s-1 respectively. We note that the activity of the G. kaustophilus 

was measured at 37˚C in the coupled enzyme assay, which is significantly lower than the 

optimal growth temperature (60˚C) for the organism (29). Since purified recombinant 

IcmF was found to be unstable at higher temperatures, its activity at 60˚C could not be 

measured. Based on a coefficient of 2 for every 10˚C rise in temperature, we estimate that 

the kcat for this enzyme might be ~4 fold higher at 60˚C. 

Surprisingly, the presence of GDP or GTP affected both the kcat and KM values (Figure 

2.9 A, Table 2.3). Thus, the presence of nucleotides decreased kcat ~1.6-1.7-fold while 

increasing the KM ~2-fold. Consequently, the catalytic efficiency kcat/KM, of IcmF 

decreased 3.5- and 4-fold respectively in the presence of GDP and GTP.  

2.4.6 Absorption spectroscopy of IcmF under steady-state turnover conditions. As 

IcmF like ICM, is expected to deploy radical chemistry with AdoCbl (Figure 2.1), we 

analyzed whether the presence of nucleotides affected the cob(II)alamin levels under 
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steady-state turnover conditions (Figure 2.9 B). In the presence of isobutyryl-CoA, the 

spectrum of holo-IcmF was an ~1:2 mixture of cob(II)alamin:AdoCbl.  

 

Figure 2.9: Kinetic and spectroscopic characterization of IcmF. (A). Michaelis-
Menten analysis of the IcmF reaction as determined in the coupled enzyme assay. The 
specific activity of IcmF, analyzed alone () or in the presence of GDP () or GTP (), 
yielded the kinetic parameters reported in Table 2. (B). UV-visible spectra of holo-IcmF 
under steady-state turnover conditions. Holo-IcmF (10.3 �M, solid line) was incubated at 
20°C for 2 min with 3.4 mM isobutyryl-CoA (dotted line) in the presence of 2 mM GDP 
(dashed line) or GMPPNP (dashed-dotted line). (C). EPR spectra of IcmF (28 �M) 
reconstituted with 20 �M cob(II)alamin (spectrum 1) in the presence of 10 mM 5´-
deoxyadenosine (spectrum 2) and 8 mM isobutyryl-CoA (spectrum 3). An EPR spectrum 
of free “base-on” cob(II)alamin (spectrum 4) is shown for comparison. (D). Michaelis-
Menten analysis of the GTPase activity of IcmF determined as described under 
Experimental Procedures (section 2.3.3). 
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In the presence of nucleotides, accumulation of cob(II)alamin was diminished to ~1:4 

(GDP) and ~1:9 (GMPPNP) (Figure 2.9 B). These results indicate that the nucleotides 

influence the steady-state distribution of intermediates, which might be related to their 

effects on kcat. 

 

Nucleotide None GDP GTP 

KM(iBu-CoA), M 20.1  1.3 45.3  4.0 50.8  2.6 

kcat, s
-1 3.10  0.05 1.96  0.04 1.88  0.08 

kcat/KM, M-1s-1 (1.5  0.1)105 (4.3 0.5)104 (3.7  0.4)104 

Table 2.3: Kinetic parameters for IcmF. All experiments were performed in 50 mM 
NaPi, pH 7.5, 250 mM NaCl at 37°C as described under Experimental Procedures. The 
data represent the mean  S.D. of three independent experiments. 
 

2.4.7 EPR spectroscopy. The existence of a biradical intermediate has been 

demonstrated by EPR spectroscopy for MCM from P. shermanii with cob(II)alamin 

coupled to the product radical (30). However, an EPR spectrum was not observed when 

40 M holo-IcmF was mixed with 7 mM isobutyryl-CoA and frozen rapidly. Since the 

cob(II)alamin intermediate is observed by UV-visible spectroscopy (Figure 2.9 C), the 

lack of a paramagnetic signal suggests strong coupling between it and the organic radical 

species in the IcmF active site. This has also been observed with MCM from M. 

extorquens (Dominique Padovani and Ruma Banerjee, unpublished results).  

The EPR spectrum of cob(II)alamin bound to IcmF was recorded (Figure 2.9 B). Binding 

of cob(II)alamin by IcmF yields an EPR spectrum that is diagnostic for the presence of an 

axial nitrogen ligand. Hyperfine coupling between the unpaired electron and the S=7/8 
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cobalt nucleus results in an eight line spectrum, which is further split into triplets due to 

superhyperfine coupling to the I=1 axial nitrogen ligand (spectrum 1). The spectrum of 

cob(II)alamin bound to IcmF differs from that of free cob(II)alamin (spectrum 4) 

particularly in the S-shaped absorption feature at g≈2.3 and probably results from 

immobilization of the cofactor in the active site. When IcmF was reconstituted with 

cob(II)alamin and 5´-deoxyadenosine in the presence or absence of isobutyryl-CoA 

(spectra 2 and 3), the spectra showed sharpening and resolution of additional hyperfine 

structure in the S-shaped feature was observed. These spectral differences suggest 

conformational changes that influence the electronic properties of the cob(II)alamin 

radical. 

2.4.8 GTPase activity of IcmF. Since IcmF possesses a MeaI-like domain it was 

expected that this protein, like MeaB, can hydrolyze GTP. Hence, the kinetics of GTP 

hydrolysis catalyzed by apo-IcmF was characterized. A Michaelis-Menten analysis of the 

data yielded the following parameters: Km(GTP)=51 ± 3 µM and kcat = 1.8 ± 0.05 min-1 

(Figure 2.9 D). In comparison, MeaB alone exhibits a lower intrinsic GTPase activity 

(kcat=0.039 ± 0.003min-1), which is increased ~100-fold in the presence of MCM (15).  

2.4.9 The MeaI domain of IcmF is distinct from MeaB. The phylogenetic relationship 

between MeaB, the chaperone for MCM, and the MeaI domain of IcmF was evaluated. A 

dendrogram constructed from the analysis of MeaB and MeaI sequences found in the 

same organisms reveal that the two gene groups cluster separately (Figure 2.10). MeaB 

and MeaI are thus paralogs that have evolved to serve specific partner proteins, i.e. MCM 

and ICM. 
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Figure 2.10: Phylogenetic tree of MeaBs that are located in operons with MCM and 
MeaIs that are fused to ICM (IcmF). MeaB-like sequences in the same operon with 
MCM: MeaB(AAL86727), Bacillus halodurans (NP_243820), Frankia alini 
(YP_715132), Geobacillus kaustophilus (YP_148222), Geobacter metallireducens 
(YP_385162), Leptospira borgpetersenii (YP_799393), Myxococcus xanthus 
(YP_630483), Nocardia farcinica (YP_119677). MeaI sequences which are part of IcmF: 
Bacillus halodurans (NP_244663), Frankia alini (YP_716016), Geobacillus kaustophilus 
(YP_149244 ), Geobacter metallireducens (YP_384678 ), Leptospira borgpetersenii 
(YP_801321 ), Myxococcus xanthus (YP_630482), Nocardia farcinica (YP_117245).  
 

The observation of a MeaI domain in IcmF raises the obvious question of whether MeaI 

chaperones also exists for “stand-alone” ICMs. Indeed, as discussed below, analysis of 

genomic sequence reveals that two MeaB-like proteins are found in bacterial genomes, 

one associated with MCM (MeaB) and the other with ICM (MeaI). The diversification of 

the G-domain sequences within each subgroup strongly suggests that the MeaI-like 

domain of IcmF is evolutionary distinct from MeaB related to MCM.  

2.4.10 Identification of stand-alone ICMs that do not belong to the genus 

Streptomyces. To investigate the relationships between the chaperones for ICM versus 

 63



 64

IcmF, we analyzed other bacterial genomes for the presence of “stand-alone” ICMs and 

MeaIs. In our search we assumed that (i) the icmA and icmB genes are not necessarily 

located close to each other and that (ii) the amino acid substitutions corresponding to 

Phe80 and Gln198 in the S. cinnamonensis sequence are always found in the large 

subunit of ICM. A BLAST search using both subunits of the “stand-alone” ICM from S. 

cinnamonensis as the query sequence identified several “stand-alone” ICM sequences, 

primarily in thermophilic archaea but also in halophilic Archaea and in a limited number 

of bacteria (Figure 2.11 and Table 2.4). Furthermore, using the MeaI domain of IcmF as a 

query sequence revealed that genes encoding “stand-alone” MeaIs can be associated with 

either the large or the small subunit of ICM (Table 2.4). Interestingly, in several 

organisms, both ICM subunits are localized in the same operon or are in close proximity, 

e.g. in Desulfibacterium hafniense, Archaeoglobus fulidus, Symbiobacterium 

thermophilum. However, in other organisms, the two subunits are not close to each other 

in the genome e.g., in Haloacrula marismortui, Halobacterium sp., and in Natronomonas 

pharaonis (Table 2.4).  

In some organisms, the gene order in an ICM-encoding operon is the following: MeaI, 

small subunit of ICM, large subunit of ICM whereas in others, the small subunit and 

MeaI co-localize in an operon while the large subunit is independently transcribed. A 

phylogenetic tree based on the alignment of “stand-alone” MeaIs, the MeaI domain of 

IcmF and the MeaBs associated with MCM reveals significant overall similarity between 

these proteins (Figure 2.12).

 

 



 

Figure 2.11: ICM and MCM sequences in Archaea, which are predicted to have 
some or all the key enzymes in the 3-hydroxypropionate/4-hydroxybutyrate cycle. 
“Stand-alone” ICMs identified in this study are indicated in bold (for the accession 
numbers see Table S2). Accession numbers for the rest of the organisms are as follows: 
Halorubrum lacusprofundi (ICM) (YP_002565846), Halorubrum lacusprofundi
MCM)(YP_002565683), Haloquadratum walsbyi (YP_658133), Metallosphaera sedula 
(YP_001190737), Sulfolobus acidocaldarius (YP_255580), Sulfolobus solfataricus 
(NP_343779), Pyrococcus abyssi (NP_126525), Pyrococcus horikoshii (NP_143191), 
Pyrococcus furiosus (NP_579206), Thermococcus kodakarensis (YP_183562), 
Archaeoglobus fulgidus (MCM) (NP_071040). 
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However, a careful examination of all available MeaI sequences reveals that this group is 

evolutionarily distinct from MeaB since they form two separate clusters in the 

dendrogram.  In contrast, MeaIs associated with stand-alone ICMs are closely related to 

the corresponding domain in IcmF. Hence, the MeaI and MeaB are paralogs that 

probably evolved from a common ancestor and have diverged to support specific B12-

dependent isomerases.  

2.4.11 Implications of the presence of IcmF. Gene fusion events occur during evolution 

resulting in the physical coupling of functionally coupled proteins. It is speculated that 

gene fusions that facilitate functional interactions between and/or co-regulation of 

proteins, might be maintained by selective pressure and are more common than gene 

fissions (31, 32). In the present study, we have characterized IcmF, a protein that likely 

arose by fusion of three genes encoding the large and small subunits of ICM and the 

chaperone, MeaI. Bioinformatics analysis has allowed identification of >70 IcmFs in 

bacterial and archaeal genomes. However, as noted earlier, all these proteins are 

incorrectly assigned as representing fusions between MCM and MeaB.   There are several 

reasons that could have led to misannotation of IcmF in the databases. First, ICM activity 

was believed to be restricted to the genus Streptomyces, whereas the MCM-catalyzed 

reaction is important in secondary metabolism and widely distributed in bacteria.  

Second, the two signature active site substitutions in the S. cinnamonensis ICM was 

missed in the IcmF sequence (16). 

The importance of these residues in substrate selectivity was previously demonstrated by 

mutagenesis studies in which the MCM double mutant, Tyr89Phe/Arg207Gln, was 

designed to mimic the active site residues in ICM (33).  
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Figure 2.12: Dendrogram showing the phylogenetic relationships between MeaB-
like proteins. MeaB-like sequences in the same operon with MCM: MeaB (AAL86727), 
Bacillus halodurans (NP_243820), Frankia alini (YP_715132), Geobacillus kaustophilus 
(YP_148222), Geobacter metallireducens(YP_385162), Leptospira borgpetersenii 
(YP_799393), Myxococcus xanthus (YP_630483), Nocardia farcinica (YP_119677). 
MeaB-like sequences part of IcmF: Bacillus halodurans (NP_244663 ), Frankia 
alini (YP_716016), Geobacillus kaustophilus (YP_149244 ), Geobacter metallireducens 
(YP_384678), Leptospira borgpetersenii (YP_801321 ), Myxococcus xanthus 
(YP_630482), Nocardia farcinica (YP_117245). MeaB-like proteins in the same operon 
with newly identified ICMs: Desulfitobacterium hafniense (YP_517795), Archaeoglobus 
fulgidus (NP_070118), Symbiobacterium thermophilum (YP_076293), Thermoplasma 
volcanium (NP_111293), Thermoplasma acidophilum (NP_393942), Picrophilus 
torridus(YP_023049), Aeropyrum pernix (NP_148094). For IcmFs accession numbers 
see Table 2.1  
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In contrast to wild-type MCM, the double mutant bound the ICM substrates, n-butyryl-

CoA or isobutyryl-CoA, but instead of catalyzing an isomerization, led to inactivation via 

an internal electron transfer.  

Third, the role for a MeaB like chaperone protein has only been described so far for 

MCM and could have contributed to the erroneous assignment. IcmF (previously 

described as McmC) was reported to have very low MCM activity (10-12x10-3 µmol min-

1mg-1) in crude extracts of B. xenovorans, an organism that lacks the gene encoding a 

“stand-alone” MCM (16). However, when we cloned and purified B. xenovorans IcmF, 

we found it to be devoid of MCM activity, which in fact, prompted a closer inspection of 

the protein sequence and therefore its predicted activity.  

Our findings expand our view of the distribution of B12 dependent mutases. We find that 

ICM activity is much more widely distributed in Nature than previously suspected and 

raises questions about the metabolic pathways in which this activity is involved.  

In certain bacteria (e.g. Butyrivibrio fibrisolvens, Streptomyces collinus), acetyl-CoA is 

converted to butyryl-CoA via four reactions, involving acetyl-CoA acetyltransferase 

(thiolase), 3-hydroxybutyryl-CoA dehydrogenase, 3-hydroxybutyryl-CoA dehydratase 

(crotonase) and butyryl-CoA dehydrogenase (34-36).   

Subjecting the IcmF sequences to operon analysis reveals that in eight bacterial genomes 

(Lysinibacillus sphaericus, Bacillus sp., Bacillus halodurans, Bacillus coagulans, 

Bacillus selenitireducens, Bdellovibrio bacteriovorus, Geobacillus sp., Anoxybacillus 

flavithermus), IcmF is located in the same operon with enzymes involved   in formation 

of butyryl-CoA from acetyl-CoA. Based on this analysis, we posit that IcmF is involved 

in butyryl-CoA, rather than methylmalonyl-CoA metabolism in these bacteria.  
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Myxalamids are inhibitors of the eukaryotic electron transfer chain that are produced by 

the myxobacteria, Myxococcus xanthus and Stigmatella aurantiaca (37). In studies on M. 

xanthus and S. aurantiaca mutants in which the branched-chain ketoacid dehydrogenase 

was disrupted (bkd mutants), it was shown that isobutyryl-CoA is incorporated into the 

final product (38). These results were unexpected since the bkd mutants are unable to 

form isobutyryl-CoA starter units from valine. The authors suggested that fatty acid 

degradation by α- and β-oxidation of iso-odd fatty acid could be responsible for 

isobutyryl-CoA synthesis (38). We speculate that the ICM activity of IcmF found in both 

these bacteria might play a role in this process instead.  

Another interesting implication of our study stems from the identification of “stand-

alone” ICMs in a number of Archaea and bacteria (Figure 2.11 and Table 2.4). Recently, 

Fuchs and colleagues have reported the discovery of a novel CO2-fixation pathway in 

several Archaea (17, 39). They have characterized the sixteen enzymes in the 3-

hydroxypropionate/4-hydroxybutyrate pathway in Metallosphaera sedula. In this 

pathway, two CO2 molecules are fixed with acetyl-CoA and reductively converted to 

succinyl-CoA. An intermediate step in this pathway is the conversion of methylmalonyl-

CoA to succinyl-CoA, which is catalyzed by MCM.  The majority of MCMs in bacteria 

are heterodimers, in which one of the subunit binds the substrate and the cofactor. 

Although M. sedula clearly encodes MCM in its genome, some of the putative mutases in 

other organisms that were identified as MCMs (Table S1 in (17)) are predicted to be 

“stand-alone” ICMs based on the Tyr→Phe/Arg→Gln substitutions in their active sites. 

Thus, in Haloarcula marismortui, Halobacterium sp. and Natronomonas pharaonis 

“stand-alone” ICMs rather than MCMs are predicted to exist, raising questions about the 
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presence of an intact 3-hydroxypropionate/4-hydroxybutyrate pathway in these organisms 

(Figure 2.11). In contrast, in Archaeglobus fulgidus and Halorubrum lacusprofundi both 

copies of the mcm and icm genes are present. In M. sedula only one copy of MCM is 

present (Figure 2.11). Fuchs and colleagues noted that in some organisms the enzymes 

from the first half of the cycle are missing and proposed that in this situation reversal of 

the second half of the pathway might be important for acetyl-CoA assimilation into 

succinyl-CoA (17). Interestingly, the first three reactions of this reverse sequence 

(acetoacetyl-CoA -ketothiolase, 3-hydroxybutyryl-CoA dehydrogenase, and crotonyl-

CoA hydratase) are identical to those in the acetyl-CoA assimilation pathway described 

for Streptomyces collinus, which converts acetyl-CoA to crotonyl-CoA (34). The latter, 

via the action of crotonyl-CoA reductase is converted to butyryl-CoA, which is 

isomerized to isobutyryl-CoA by the action of a “stand-alone” ICM. Isobutyryl-CoA can 

be converted to succinyl-CoA. Thus in organisms lacking enzymes in the first half of the 

3-hydroxypropionate/4-hydroxybutyrate pathway, ICM may afford an alternative route 

for assimilation of acetyl-CoA. 

It is interesting how MCM-like enzymes have evolved distinct substrate specificities by 

virtue of very limited changes in their active site residues. Muller and colleagues 

described a  B12-dependent enzyme which is involved in the pathway of degradation of 

fuel oxygenates (40, 41). This enzyme in Methylibium petroleiphilum PM1 was shown to 

convert 2-hydroxyisobutyryl-CoA into 3-hydroxybutyryl-CoA. The remarkable feature of 

this enzyme is that it resembles ICM and has two subunits, IcmA and IcmB. However in 

the active site of IcmA, Phe is substituted by Ile, whereas Gln is conserved (Figure 5 in 

(40)) (See also section 3.2). It is interesting that M. petroleiphilum also has a copy of the 
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icmF and mcm genes (based on amino acid substitutions in the active site sequences). 

Another example of subtle alterations in substrate specificity is seen in ethylmalonyl-

CoA mutase (ECM) from Rhodobacter sphaeroides (42). This enzyme interconverts 

ethylmalonyl-CoA and methylsuccinyl-CoA. Like MCM, ECM is predicted to have Tyr 

and Arg residues in the active site. However in order to utilize the larger ethylmalonyl-

CoA/methylsuccinyl-CoA substrates, it is speculated that a conserved His and Asn in 

MCM are substituted by Gly255 and Pro296 respectively in the R. sphaeroides ECM 

(Supplementary Figure S4 in (42)) (See also section 3.2). 

The identification of ICM- and IcmF-encoding genes in a number of bacteria and 

Archaea should fuel studies aimed at identifying the metabolic contributions of the ICM 

activity in these organisms.  
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CHAPTER 3 

A Novel IcmF Activity Interconverts Isovaleryl-CoA and Pivalyl-CoA4,5 
 
3.1 Abstract 
 
Adenosylcobalamin (AdoCbl)-dependent isomerases catalyze carbon skeleton 

rearrangements using radical chemistry.  We have recently characterized a fusion protein 

IcmF, which is comprised of the two subunits of the AdoCbl-dependent isobutyryl-CoA 

mutase flanking a G-protein chaperone. IcmF catalyzes the interconverion of isobutyryl-

CoA and n-butyryl-CoA while the GTPase activity is associated with its G-protein 

domain. In this study, we report a novel activity associated with IcmF, i.e. the 

interconversion of isovaleryl-CoA and pivalyl-CoA. Kinetic characterization of IcmF 

yielded the following values: KM for isovaleryl-CoA = 62 ± 8 μM and Vmax = 0.021 ± 

0.004 μmol/min/mg at 37 ˚C. Biochemical experiments show that in an IcmF in which 

the base specificity loop motif, NKxD is modified to NKxE, catalyzes the hydrolysis of 

both GTP and ATP. IcmF is susceptible to rapid inactivation during turnover and GTP 

conferred modest protection during utilization of isovaleryl-CoA as substrate. 

Interestingly, there was no protection from inactivation when either isobutyryl-CoA or n-

butyryl-CoA was used as substrate. Detailed kinetic analysis indicated that inactivation is 

                                                 
4 The content of this chapter has been published in J Biol Chem. 2011 Dec 13: Cracan V and Banerjee R. 
“A novel coenzyme B12 –dependent interconversion of isovaleryl-CoA and pivalyl-CoA”. 
 
5 We gratefully acknowledge Dr. Thore Rohwerder (Helmholtz Center for Environmental Research-UFZ) 
for helpful discussions on the distribution of acyl-CoA mutases in Nature and their potential roles in 
microbial metabolism. A pET28a vector expressing IcmF from Cupriavidus metallidurans was a generous 
gift from the laboratory of Dr. Catherine Drennan (MIT). This work was supported by a grant from the 
National Institutes of Health (DK45776). 
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associated with loss of the 5´-deoxyadenosine moiety from the active site, precluding re-

formation of AdoCbl at the end of the turnover cycle. Under aerobic conditions, 

oxidation of the cob(II)alamin radical in the inactive enzyme results in accumulation of 

aquacobalamin. Since pivalic acid found in sludge can be used as a carbon source by 

some bacteria and isovaleryl-CoA is an intermediate in leucine catabolism, our discovery 

of a new isomerase activity associated with IcmF, expands its metabolic potential.  

 
3.2. Introduction 
 
Methylmalonyl-CoA mutase (MCM) and Isobutyryl-CoA mutase (ICM) are two closely 

related 5´-deoxyadenosylcobalamin (AdoCbl)-dependent isomerases, which catalyze 1,2-

rearrangements of methylmalonyl-CoA to succinyl-CoA and isobutyryl-CoA to n-

butyryl-CoA, respectively (Figure 3.1) (1,2). MCMs are widely distributed in Nature, 

ranging from bacteria and Archaea to animals, including humans. ICMs were initially 

believed to be restricted to the genus Streptomyces, which belongs to the Actinobacteria 

phylum (1,2). With our discovery of IcmF, the fusion protein between ICM and its G-

protein chaperone, the known distribution of ICM has expanded to include four more 

phyla: Proteobacteria, Bacteroidetes, Firmicutes and Spirochaetes (3). The only known 

function of ICM in the genus Streptomyces is its participation in polyketide biosynthesis 

(4). In contrast the relatively wide distribution of IcmF in diverse organisms points to a 

broader range of roles in bacterial metabolism, which remain to be elucidated.  

A family of enzymes that are similar in their primary sequence to MCM catalyze 

AdoCbl-dependent carbon-skeleton rearrangements and include, in addition to ICM, 2-

hydroxyisobutyryl-CoA mutase (HCM) (5) and ethylmalonyl-CoA mutase (ECM) (6) 

(Figure 3.1). The three-dimensional structure of these proteins is expected to resemble the 
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overall structure of MCM (7,8). The B12-binding domain of MCM exhibits a typical 

Rossmann-like fold and the AdoCbl cofactor is bound in a “base-off/His-on” 

conformation (9). The substrate-binding domain is a TIM barrel comprised of a core of 

eight (αβ)-repeats (8).  

 

Figure 3.1: Reactions catalyzed by MCM, ICM, IcmF, HCM and ECM. 
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A limited number of key amino acid substitutions in the active site distinguish these 

closely related enzymes and accommodate chemical differences in the substrate (6,10).  

Previous studies from our laboratory had pointed out that the two key substitutions that 

accommodate the switch from a carboxylate to a methyl group in the substrates of MCM 

versus ICM are TyrPhe and ArgGln respectively (Figure 3.2 and Figure 3.3) (3). The 

Phe and Arg substitutions are conserved in all ICM/IcmFs (Figure 3.2 and Figure 3.3).  

In contrast, in HCM, the corresponding amino acids that interact with substrate are Ile 

and Gln, respectively. Thus while the Gln residue is conserved in both ICM/IcmF and in 

HCM, the Phe is substituted by Ile to accommodate the bulkier 2-hydroxyisobutyryl-CoA 

substrate (Figure 3.2 and Figure 3.3).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Comparison of active site residues in related AdoCbl-dependent 
mutases.  The MCM structure from P. shermanii (4REQ) was used as a template to show 
that Tyr and Arg in MCM/ECM correspond to Phe and Gln in ICM/IcmF. In HCM, this 
pair of residues is Ile and Gln. 
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In contrast to ICM, ECM, which catalyzes the interconversion of ethylmalonyl-CoA and 

methylsuccinyl-CoA is very similar to MCM (6). It has been proposed that two key 

substitutions in the active site of ECM dictate specificity for the bulkier ethylmalonyl-

CoA substrate: a His and an Asn residue in MCM are replaced by Gly and Pro, 

respectively (6) (Figure 3.3). Notably, the Tyr and Arg residues in the active site of MCM 

that interact with the carboxylate moiety of the substrate are also conserved in ECM 

(Figure 3.3). In B12-dependent isomerases, AdoCbl serves as a radical reservoir and a 

common first step that initiates the isomerization reactions is homolytic cleavage of the 

cobalt-carbon bond leading to formation of the 5´-deoxyadenosyl radical and a 

paramagnetic cob(II)alamin species (1,11). 

 

  

Figure 3.3: Multiple sequence alignment of the substrate-binding domain of 
different AdoCbl-dependent mutases. IcmF from G.kaustophilus (YP_149244), ICM 
from S. cinnamonensis (AAC08713), MCM from M. extorquens (YP_001642233), MeaA 
from M. extorquens (YP_002961419), ECM from R. sphaeroides (YP_354045) and 
HCM from M. petroleiphilum (YP_001023546). Four residues, which were recognized to 
be important for a substrate binding are highlighted in gray and indicated with asterisks. 
Two residues Phe and Gln,  found in ICM and IcmF, are substituted by Tyr and Arg in 
MCM and ECM or Ile and Gln in HCM. ECM is different from other acyl-CoA mutases 
by the substitution of His and Asp to Gly and Pro, respectively. ECM was previously 
known as MeaA in  M.extorquens (Section 1.4). 
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Inadvertent side reactions of the reactive radical intermediates render AdoCbl-dependent 

enzymes susceptible to inactivation (12).  Alternatively, inactivation can result from 

escape of the 5´-deoxyadenosine intermediate during the catalytic cycle (13).  In both 

cases, inactivation results from the inability to re-form AdoCbl from the 5´-

deoxyadenosyl and cob(II)alamin radicals, at the end of the turnover cycle. MeaB, the G-

protein chaperone of MCM, protects against inactivation in the presence of GTP (13,14). 

A similar role for the homologous G protein chaperone of ICM, MeaI has not been 

studied. In IcmF, the MeaI domain is sandwiched between the AdoCbl- and substrate-

binding domains (3). In this study, we report a novel AdoCbl-dependent 1,2-

rearrangement reaction catalyzed by IcmF and demonstrate that in the presence of GTP, 

the isovaleryl-CoA mutase activity of IcmF is partially protected from the inactivation.  
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3.3 Experimental procedures 

3.3.1 DNA manipulations (i) Cloning of IcmF. In a previous study, we used IcmF from 

G. kaustophilus cloned into pET30 Ek/LIC expression vector (3). The S-tag which is 

located just downstream of the N-terminal His-tag in pET30 Ek/LIC was removed by 

subcloning the full-length IcmF DNA into the ligation independent cloning vector, 

pMCSG7(15). The insert was amplified with the following primers: (forward: 5´-

TACTTCCAATCCAATGCCATGGCGCACATTTACCGTCC-3´ and reverse: 5´-

TTATCCACTTCCAATGCTATTACATATTCGCCGGTATTGTCC-3´). In pMCSG7, 

which is a derivative of the pET21 vector, the N-terminal His-tag can be cleaved using 

TEV protease.  (ii) Construction of the K213A mutant of IcmF from G. kaustophilus (Gk). 

The K213A mutation was created using the QuikChange XL Site-Directed Mutagenesis 

Kit (Agilent, CA) and the following sense primer:  

5´-CCGGCACAGGCGGAGCTGGGGCAAGCTCGCTCACCGATG-3´. The sequence 

of the reverse primer was complementary to the sequence of the forward primer. The Gk 

IcmF cloned in pMCSG7 was used as a template. All constructs were confirmed by 

nucleotide sequence determination at The University of Michigan DNA sequencing Core.  

3.3.2 Protein expression and purification. (i) Purification of Gk wild-type and K213A 

IcmF. Escherichia coli BL21 (DE3) cells containing plasmids expressing the IcmF 

constructs were grown at 37 ˚C in Luria-Bertani (LB) media supplemented with 100 

μg/ml ampicillin to an absorbance at 600 nm of 0.5-0.6. Cells were grown for 12-14 h at 

15 ˚C after induction with 0.5 mM isopropyl-1-thio-β-D-galactopyranoside (IPTG). 

Proteins were purified as previously described for wild-type IcmF (3) with the following 

difference. Gel-filtration chromatography was performed with 50 mM HEPES pH 7.5, 
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containing 100 mM NaCl (Buffer A).  (ii) Purification of Cupriavidus metallidurans 

(Cm) IcmF.  E. coli BL21 (DE3) cells containing plasmid expressing IcmF were grown in 

LB media supplemented with 50 μg/mL kanamycin and induced at 15˚ C with 0.1 mM 

IPTG. Cells were harvested 12-14 h after induction. Cm IcmF was purified as previously 

described for Gk IcmF (3).  Gel-filtration chromatography was also performed on this 

enzyme using Buffer A. 

3.3.3 ATPase/GTPase assays. NTPase activity of IcmF was measured by HPLC as 

previously described (3) or by a modification of the malachite green assay, involving 

inclusion of citrate in the reaction mixture (16). Briefly, the color reagent was prepared 

by mixing 4.2 % ammonium molybdate in 4 N HCl with 0.045 % malachite green 

hydrochloride (1:3 v/v). The resulting solution was shaken for 30 min at 250 RPM in a 

falcon tube and filtered through a 0.2 μm Millipore filter. After that, 10% Tween 20 

solution was added (200 μL for every 100 mL of color reagent). This solution was stable 

for a week at 4 ºC, with only a minor increase in the background absorbance at 650 nm. 

The reaction was performed in Buffer A in a total volume of 0.6-1 ml containing: 0.5-2.5 

μM IcmF, 10 mM MgCl2 and nucleotides (0.02-1.2 mM GTP or 0.02-6 mM ATP). At the 

desired time points, 200 μL aliquots were removed and the reaction was quenched with 

20 μL of 2 N trichloroacetic acid (TCA). After centrifugation, 150 μL of supernatant was 

added to 750 μL of color reagent. After 3 min, 100 μL of 34% sodium citrate was added 

to the sample. The color was allowed to develop for 30 min at room temperature and the 

absorbance was measured at 650 nm. The calibration curve for phosphate was prepared 

using 5-200 μM solution of monobasic potassium phosphate, which was dried in an oven 

(to remove traces of moisture) for 4 h at 120 ºC. 
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3.3.4 IcmF assay. A GC-based assay was used to measure both ICM activity and the 

new, isovaleryl-CoA/pivalyl-CoA mutase activity (3). In all assays, apo-enzyme was 

preincubated with AdoCbl ± nucleotides, and the reaction was started by addition of 

substrate. (i) Pivalyl-CoA mutase activity. The reaction was performed in Buffer A in a 

total volume of 0.8-1.4 ml containing: 600-2500 μg of Gk IcmF or Cm IcmF, 100 μM 

AdoCbl, 20-2000 μM isovaleryl-CoA, 15 mM MgCl2 ± 5 mM GTP. For every 

concentration of substrate, 2-6 aliquots (200 µl each) were removed and treated as 

described below. (ii) Isobutyryl-CoA mutase activity. The reaction was performed in 

Buffer A in a total volume of 0.8-1.4 ml containing: 10-60 μg of Gk IcmF or Cm IcmF, 

100 μM AdoCbl, saturating concentration of substrates (600-2000 μM isobutyryl-CoA or 

n-bytyryl-CoA), 10 mM MgCl2 ± 3-6 mM GTP or ATP. At various time points (0.5-30 

min), 200 μL aliquots were removed and quenched with 100 μL of 2 N KOH containing 

0.18 mM valeric acid used as an internal standard. Following addition of 100 μL of 

H2SO4 (15%, v/v), the reaction mixture was saturated with NaCl and extracted with ethyl 

acetate (250 μL). The extract was analyzed directly by GC using a DB-FFAP (30 m x 

0.25 mm I.D., 0.25 μm) capillary column (Agilent, CA). A 5 μl sample was injected in 

the pulsed split-less mode. The oven temperature was initially at 80 ºC. Following sample 

injection, the temperature was raised to 150 ºC at a rate of 10 ºC/min and maintained at 

150 ºC for 2 min. Retention times for the compounds of interest was as follows: 

isobutyric acid 5.85 min, pivalic acid: 5.99 min, n-butyric acid: 6.5 min, isovaleric acid: 

6.96 min, valeric acid: 7.78 min. 

3.3.5 IcmF assays with alternative substrates. We used an HPLC-based assay to 

evaluate whether 3-hydroxybutyryl-CoA can be converted by IcmF to 2-
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hydroxyisobutyryl-CoA. The assay mixture contained in a total volume of 0.5 mL: Buffer 

A, 10 mM MgCl2, 100 μM AdoCbl, 2 mM GTP, 0.4-1 mM D,L-β-hydroxybutyryl-CoA 

and 0.2-0.4 mg Gk IcmF. The reaction was initiated by addition of enzyme and the 

reaction mixture was incubated at 37 ºC. At different time points (0.5-10 min), 60 µL 

aliquots were removed, quenched with 2N TCA (10% v/v), centrifuged and subjected to 

HPLC analysis.    

 The acyl-CoA esters were separated using an HPLC system equipped with an Alltima 

HP 5 μm C18 (250 x 4.6 mm) column (Grace, IL). The detector was set at 254 nm. 

Solvent A was 50 mM monobasic potassium phosphate, pH 5.4. Solvent B was prepared 

as follows: 500 mL of MeOH was added to 500 mL of 100 mM monobasic potassium 

phosphate, pH 5.4 (to give a final concentration of 50 mM potassium phosphate and 50% 

MeOH). Initial conditions used for separation were: 10% solvent B; a flow rate of 1.0 

mL/min. Between 5 and 30 min, solvent B was increased to 100% and then held at 100% 

solvent B for 5 min. At 36 min, solvent B was decreased to 10% and held for 10 min at 

that composition to equilibrate the column between injections. Under these conditions, 

the retention time for 3-hydroxybutyryl-CoA was 20.1 min. An authentic standard of 2-

hydroxyisobutyryl-CoA was not available, but based on the known performance of the 

C18 column, branched acyl-CoAs elute earlier than linear isomers.   

3.3.6 Enzyme-monitored turnover of IcmF. Changes in the spectra of Gk IcmF-bound 

AdoCbl were monitored by UV-visible spectroscopy at 24 °C in Buffer A containing 5-

15 mM MgCl2. Substrates (final concentration of 0.5-4 mM) were added to 20-65 μM 

apo-IcmF loaded with one or two equivalents of AdoCbl. To check the influence of the 

MeaI domain on catalytic turnover, the reaction was also supplemented with 1-5 mM 
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GTP or ATP. The amount of cob(II)alamin formed under steady-state turnover conditions 

was calculated from the decrease in absorbance at 525 nm upon substrate addition using a 

value of Δε525nm= -4.8 mM-1 cm-1 (14). During the course of the reaction, AdoCbl was 

gradually converted to enzyme-bound aquacobalamin (OH2Cbl), as indicated by the 

appearance of a 350 nm absorption peak. The increase at 350 nm was fitted to a single-

exponential function: A= A0+A1(1-e-bt), where A is the absorbance at 350 nm, b is the 

observed rate constant for inactivation, A0 is the initial absorbance at 350 nm, t is time in 

minutes and A1 is the amplitude.  

3.3.7 Enzyme-monitored turnover of Gk IcmF under anaerobic conditions. To assess 

the effect of oxygen on enzyme inactivation, enzyme-monitored turnover experiments 

were performed under anaerobic conditions. For this, Buffer A containing 10 mM MgCl2 

was bubbled with N2 for 3 h before use and introduced into an anaerobic chamber 

(containing <0.3 ppm O2). Stock solutions of AdoCbl, n-butyryl-CoA, isobutyryl-CoA 

and isovaleryl-CoA were prepared in the chamber using anaerobic buffer. The enzyme 

solution was deoxygenated by blowing a stream of N2 over its surface at 4 ºC for 40 min. 

UV-visible spectra were collected using Mikropack DH-2000 UV-visible light source 

connected with fiber optics to a cuvette holder inside the glove box.  

3.3.8 HPLC characterization of inactivation products. A solution containing 64 μM 

Gk holo-IcmF (containing two equivalents of AdoCbl) in Buffer A and 10 mM MgCl2 ± 

5 mM GTP was incubated with 1 mM isobutyryl-CoA at 37 °C in the dark. At various 

times (0 to 60 min), 15 μL aliquots were removed and immediately quenched with 60 μL 

of 0.5% trifluoroacetic acid (TFA). The aerobic inactivation products of AdoCbl, 5´-

deoxyadenosine and OH2Cbl, were monitored by HPLC using an Alltima HP 5 μm C18 
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(250 x 4.6mm) column (Grace, IL). All steps of sample preparation and HPLC analysis 

were performed in the dark. Initial buffer conditions were 92% Solvent C (0.1%TFA in 

water) and 8% Solvent D (0.1%TFA in acetonitrile) at a flow rate of 1.0 mL/min. 

Between 10 and 35 min, Solvent D was increased to 32%. Between 35 and 36 min, 

Buffer D was decreased to 8 % and held for 5 min at that composition to equilibrate the 

column between injections. 50 μL of the sample was injected and elution was monitored 

at 254 nm and 350 nm. Under these conditions, the following retention times were 

obtained: 6.92 min for 5´-deoxyadenosine, 22.77 min for OH2Cbl and 29.27 min for 

AdoCbl. The control reaction was performed in the absence of isobutyryl-CoA. 

Calibration curves were generated for all three compounds prepared and treated similarly 

as the assay samples. An extinction coefficient of ε260nm= 15 mM-1 cm-1 was used to 

estimate the concentration of 5´-deoxyadenosine (17). The data were well fitted by a 

single exponential function for the disappearance of AdoCbl and appearance of 5´-

deoxyadenosine and OH2Cbl. To improve recovery of OH2Cbl, proteinase K (Roche) was 

used to digest the protein sample for 1-2 h at 37 ºC before precipitation with acid. 

3.3.9 Bioinformatics analysis. Operon and regulon browsers on the Microbes Online 

web site were used for the elucidation of functional predictions for the genes of interest 

(18).  
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3.4. Results 

3.4.1 Gene Neighborhood Analysis for icmF. In several bacteria, the icmF gene is 

located in the same operon or in close proximity to genes encoding enzymes involved in 

fatty acid metabolism (3). For example, enzymes found in the operon with icmF in 

several bacteria (Bacillus selenitireducens, Lysinibacillus sphaericus, Anoxybacillus 

flavithermus, B.megaterium, B.halodurans, B.pseudofirmus, B.coagulans and Bacillus sp. 

NRRL B-14911, Geobacillus sp. WCH70 and Brevibacillus brevis) are annotated as 

enzymes in the mother cell metabolic gene (mmg) operon, which has been described in 

B.subtilis (19) (Figure 3.4). Three genes in this operon are annotated as: mmgA (acetyl-

CoA transferase), mmgB (3-OH-butyryl-CoA dehydrogenase) and mmgC (acetyl-CoA 

dehydrogenase) (19). A similar set of enzymes in Ralstonia eutropha encoded by the 

H16_A0459-H16_A0464 operon, allows growth on long chain fatty acids. The absence 

of this operon together with the H16_A1526-H16_A1532 operon, renders R. eutropha 

unable to grow on plant oils or long chain fatty acids as a carbon source (20). The gene 

acdH from Streptomyces coelicolor and Streptomyces avermitilis, which is homologous 

to mmgC, is an acyl-CoA dehydrogenase and plays a role in the catabolism of branched-

chain amino acids (21). Finally, the presence of the rpoE gene just down stream of icmF, 

which encodes the sigma subunit of RNA polymerase, strongly suggests that IcmF is 

linked to fatty acid metabolism (22) (Figure 3.4). 

3.4.2 Alternative substrates for IcmF. Based on the above gene neighborhood analysis, 

we sought to assess whether IcmF plays a role in the metabolism of branched fatty acids 

and can catalyze the isomerization of substrates other than isobutyryl-CoA and n-butyryl-

CoA. We decided to use isovaleryl-CoA, a building block for iso-odd branched fatty 
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acids, and 2-methylbutyryl-CoA, a building block for anteiso branched fatty acids as 

potential substrates for IcmF. Isovaleryl-CoA and 2-methylbutyryl-CoA are synthesized 

from the branched-chain amino acids, leucine and isoleucine, respectively in reactions 

catalyzed by the branched-chain ketoacid dehydrogenase complex (21).  

 

Figure 3.4. Organization of genes in the mmgABC operon harboring the icmF gene. 
(A) Anoxybacillus flavithermus,  (B) Bacillus megaterium and (C)  Brevibacillus brevis. 
The following genes are found in the same operon with icmF: tetR (TetR/Acr-like family 
transcriptional regulator), acdA (acyl-CoA dehydrogenase), mmgA (acetyl-CoA 
transferase), mmgB (3-OH-butyryl-CoA dehydrogenase), mmgC (acetyl-CoA 
dehydrogenase) and fadF (medium-/long-chain fatty acyl-CoA dehydrogenase). rpoE 
gene which encodes the sigma subunit of RNA polymerase, is found just downstream of 
icmF. The numbers below the genes indicate the distance in nucleotides between two 
adjacent genes. Negative numbers indicate overlapping genes. For a complete list of 
bacteria showing similar operonic organization see the text (Section 3.4.1).  

 
 Gk IcmF was mixed with isovaleryl-CoA in the presence of AdoCbl and GTP/MgCl2 and 

the products were hydrolyzed and analyzed by GC. A time-dependent decrease in the 

isovaleric acid peak at 6.96 min was accompanied by the appearance of a peak at 5.99 

min, suggesting conversion of isovaleryl-CoA to a new compound (Figure 3.5).  The 

expected product of AdoCbl-dependent 1,2-rearrangement of isovaleryl-CoA (or 3-

methyl-butyryl-CoA) is pivalyl-CoA (or 2,2-dimethylpropionyl-CoA) (Figure 3.1) (1). 
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The retention time of a standard pivalic acid sample (5.99 min) exactly coincided with 

that of the product formed from isovaleryl-CoA (Figure 3.5). To confirm our findings we 

also purified IcmF from C.metallidurans as described under Experimental Procedures 

(section 3.3.2) and (Figure 3.6). The isomerization of isovaleryl-CoA to pivalyl-CoA by 

both Gk IcmF and Cm IcmF is slow in comparison to the isomerization of n-butyryl-CoA 

to isobutyryl-CoA (Table 3.1). The KM value for isovaleryl-CoA for Gk IcmF is 62 ± 8 

μM and the specific activity of the Gk IcmF with isovaleryl-CoA is 0.021 ± 0.004 μmol 

min-1 mg-1, which is ~150-fold lower than the activity with n-butyryl-CoA (3.25 ± 0.35 

μmol min-1 mg-1). With the Cm IcmF, an ~2200 fold difference in the specific activities 

was obtained with the two substrates (Table 3.1). 

 

Figure 3.5 Pivalyl-CoA mutase activity of IcmF. A representative GC chromatogram 
showing separation of isovaleric and pivalic acids following enzymatic conversion of 
isovaleryl-CoA to pivalyl-CoA. The reaction mixture contained in Buffer A, 15 mM 
MgCl2, 2000 µg Gk IcmF, 100 μM AdoCbl, 5 mM GTP and 1.56 mM isovaleryl-CoA. At 
different time points, aliquots were removed, the esters hydrolyzed and the corresponding 
acids separated by GC as described under Experimental Procedures.  The traces 
represent: black line  (1 min), light gray line (5 min), dark gray line (25 min), dashed line  
(pivalic acid standard). Valeric acid was used as an internal standard. 
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Figure 3.6: Gel-filtration of IcmF from C.metallidurans. mAU, milliabsorbance units. 
Inset: The SDS-PAGE analysis of IcmF after gel-filtration (lane #1, 10 μg load; lane #2, 
30 μg load). 
 

Isomerization of valeryl-CoA is expected to produce 2-methylbutyryl-CoA. However, 

consumption of valeryl-CoA was not observed in the presence of IcmF, AdoCbl and 

GTP/MgCl2 in the GC-based assay (data not shown).  

Gk IcmF Cm IcmF  
Substrate 

S.A., μmol min-1 mg-1 S.A., μmol min-1 mg-1 

isovaleryl-CoA 0.021 ± 0.004 0.015 ± 0.004 

isobutyryl-CoA 1.2 ± 0.1 13.8 ± 1.1 

n-butyryl-CoA 3.3 ± 0.4 33.0 ± 1.4 

 
Table 3.1: Isobutyryl-CoA mutase and pivalyl-CoA mutase activities of recombinant 
IcmFs. Values represent the average of at least 3 independent experiments. In all 
experiments, saturating concentration of substrate was used. 
 

Since HCM (5,23) from M. petroleiphilum, is very similar to the stand-alone ICM from S. 

cinnamonensis and catalyses the interconversion of 3-hydroxybutyryl-CoA and 2-

hydroxyisobutyryl-CoA (5,24), we decided to examine their substrate specificities 
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overlap. However, conversion of D,L-3-hydroxybutyryl-CoA to 2-hydroxyisobutyryl-

CoA was not observed as judged by an HPLC-based assay (data not shown). 

3.4.3 Absorption spectrum of Gk IcmF during steady-state turnover. The binding-

sites for AdoCbl in the Gk IcmF dimer are nonidentical and exhibit an ~25-fold 

difference in affinities (KD1=0.08±0.01 μM, KD2=1.98 ± 0.4 μM) (3). For enzyme-

monitored turnover experiments, Gk IcmF was reconstituted with one equivalent of 

AdoCbl to avoid the presence of free cofactor. The absence of free AdoCbl was 

confirmed by analyzing the spectrum of the flow-through obtained upon concentrating 

the reaction mixture using a Microcon 30K concentrator.  Addition of substrate 

(isobutyryl-CoA or n-butyryl-CoA) to holo-IcmF resulted in cob(II)alamin formation as 

evidenced by the decrease in absorbance at 525 nm and increase at 480 nm (Figure 3.7 

A). Using Δε525nm= -4.8 mM-1 cm-1 (14), the ratio of AdoCbl:cob(II)alamin under steady-

state turnover conditions was estimated to be  ~2:1 when isobutyryl-CoA was used as a 

substrate.  With isovaleryl-CoA, the ratio of AdoCbl:cob(II)alamin under steady-state 

turnover conditions was 9:1 (Figure 3.7 B). 

 

Figure 3.7: Spectral changes in Gk holo-IcmF in the presence of isobutyryl-CoA and 
isovaleryl-CoA. (A) Spectra of holo-IcmF (40 µM) in buffer A at 24 ˚C (solid line) and 
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after addition of 4.1 mM isobutyryl-CoA which resulted in formation of cob(II)alamin 
(dotted line). (B) Spectra of holo-IcmF (31 μM) in Buffer A with 10 mM MgCl2 at 24 ˚C 
(solid line) and after addition of 1.5 mM isovaleryl-CoA (dotted line).  

 
3.4.4 Inactivation of IcmF and the effect of nucleotides. Cobalamin spectra under 

turnover conditions were used for monitoring the effect of nucleotides on the IcmF-

catalyzed reaction (Figure 3.8). Addition of isobutyryl-CoA results in formation of 

cob(II)alamin, which is converted over time to OH2Cbl (Figure 3.8). The increase in 

absorption at 350 nm (kobs=0.1 ± 0.01 min-1, (Figure 3.8, inset)) and the distinctive double 

peaks at 505 and 540 nm indicated formation of OH2Cbl, a hallmark of inactivation for 

AdoCbl-dependent enzymes (12,25,26). The amplitude but not the rate of OH2Cbl 

formation was diminished in the presence of GTP (kobs= 0.063 ± 0.002 min-1) and ATP 

(kobs= 0.10 ± 0.01 min-1) (Figure 3.8, inset).  

no nucleotides 
GTP 
ATP 

 

Figure 3.8: Inactivation of Gk IcmF during turnover with isobutyryl-CoA. Rapid 
oxidation of cob(II)alamin to OH2Cbl was observed during reaction of holo-IcmF (with 
one equivalent, 41 µM AdoCbl, bound)  with 1.4 mM isobutyryl-CoA in Buffer A with 5 
mM MgCl2 at 24 ºC in the dark.  The spectra were recorded between 0 and 60 min. Inset: 
The time-dependent increase at 350 nm was fitted to a single exponential function in the 
absence of nucleotides (filled circles) (kobs=0.096 ± 0.008min-1), or in the presence of 5 
mM GTP (open circles) (kobs=0.062 ± 0.002 min-1) or 5 mM ATP (triangles) (kobs=0.10 ± 
0.006 min-1). 
 



Under standard in vitro assay conditions, Gk IcmF exhibits a linear reaction time course 

for only 40-60 s before the activity plateaus off (Figure 3.9 A). The specific activity with 

isobutyryl-CoA (1.1 ± 0.1 μmol min-1mg-1) was calculated using the linear portion of the 

curve and was comparable to values obtained previously in the coupled enzyme assay (3). 

When n-butyryl-CoA was used as a substrate, a specific activity of 3.25 ± 0.35 μmol min-

1mg-1 was obtained. With both isobutyryl-CoA and n-butyryl-CoA, inactivation of Gk 

IcmF resulted in termination of the reaction in ~6-10 min, during which time, only ~7% 

of substrate was consumed (Figure 3.9 A). Very similar behavior was also observed with 

Cm IcmF (data not shown). Protein stability, the presence of metal ions (K+, Ca2+), 

reductants (DTT or TCEP) and different buffers (50 mM sodium phosphate pH 7.5/100 

mM NaCl; 50 mM potassium phosphate pH 7.5/100mM KCl and 50 mM HEPES pH 

7.5/100mM NaCl) were assessed, and ruled out as contributors to the observed 

inactivation (data not shown). Nucleotides (ATP and GTP) decreased the activity of Gk 

IcmF (Figure 3.9 A) as reported previously with GDP and GTP (3).   

 

Figure 3.9:  Effect of nucleotides on the time course of reactions catalyzed by IcmF. 
(A) Time course of the isobutyryl-CoA mutase reaction catalyzed by Gk IcmF at 37 ˚C. 
The assay mixture in Buffer A with 10 mM MgCl2 contained 40 μg of holo-IcmF, 100 
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μM AdoCbl, 1.5 mM isobutyryl-CoA and either no nucleotides (black circles), 6 mM 
ATP (triangles), or 3 mM GTP (open circles). (B) Time course of the isovaleryl-CoA 
mutase reaction catalyzed by Gk IcmF. The reaction mixture in Buffer A with 15 mM 
MgCl2 contained 2500 μg of IcmF, 100 μM AdoCbl, 1.5 mM isovaleryl-CoA with (white 
circles) or without 5 mM GTP (black circles) at 37 °C. Aliquots of the reactions were 
removed at different time points and analyzed by GC as described under Experimental 
Procedures.  Data represent the average of three independent experiments.  
 

With isovaleryl-CoA, the Gk IcmF reaction was almost completely inhibited after 25-30 

min (Figure 3.9 B). However, in the presence of GTP, the enzyme was inactivated to a 

lesser extent in comparison to the reaction without GTP (Figure 3.9 B). Similar behavior 

was seen for Cm IcmF (data not shown). Interestingly, for the first 2 min, no difference 

was seen in the isovaleryl-CoA/pivalyl-CoA mutase activity ± GTP (Figure  3.9 B).  

3.4.5 Loss of 5´-deoxyadenosine leads to inactivation of IcmF. The steady formation of 

OH2Cbl during IcmF turnover under aerobic conditions suggests that inactivation might 

result from oxidative interception of cob(II)alamin (27). An alternative possibility is that 

inactivation is associated with loss of 5´-deoxyadenosine from the active site and the 

uncoupled cob(II)alamin subsequently oxidizes to OH2Cbl. To distinguish between these 

possibilities, enzyme-monitored turnover experiments were conducted under anaerobic 

conditions (Figure 3.10 A). Addition of n-butyryl-CoA to holo-IcmF resulted in 

formation of cob(II)alamin, which  was not further converted to OH2Cbl even after 60 

min (Figure 3.10 A).  

Next, we compared the time courses of the reaction catalyzed by Gk IcmF with n-butyryl-

CoA under aerobic and anaerobic conditions (Figure 3.10 B). Under anaerobic 

conditions, the reaction exhibited a linear dependence for a longer time period (2 versus 1 

min), but eventually ceased after 10 min. Since spectroscopic analysis of the reaction 
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time course shows that OH2Cbl is not formed under these conditions, it demonstrates that 

inactivation is not directly correlated with OH2Cbl formation. 

 

Figure 3.10: Inactivation of Gk IcmF under anaerobic conditions. (A) Spectral 
changes upon incubation of 33 μM holo-IcmF (containing one equivalent of bound 
AdoCbl) with 4.8 mM n-butyryl-CoA in Buffer A with 5 mM MgCl2 under anaerobic 
conditions at 24 ºC in the dark. Spectra were recorded at time = 0 (black), immediately 
after addition of substrate (light gray) and 60 min after addition of substrate (dark grey). 
Formation of cob(II)alamin (480 nm peak) without further conversion to OH2Cbl was 
observed. (B) Comparison of time courses for the reaction catalyzed by Gk IcmF at 37 °C 
under aerobic (circles) and anaerobic (triangles) conditions in the presence of GTP. The 
aerobic and anaerobic assay mixtures in Buffer A with 15 mM MgCl2 contained 40 μg of 
IcmF and 2 mM n-butyryl-CoA and either no nucleotides (solid symbols) or 4.3 mM 
GTP (open symbols).  
 

As seen under aerobic conditions, GTP also led to decreased OH2Cbl formation under 

anaerobic conditions (Figure 3.10 B).  

3.4.6 Characterization of inactivation products by HPLC. The reaction of 64 µM Gk 

holo-IcmF (containing two equivalents of AdoCbl) with 4 mM isobutyryl-CoA was 

monitored as described under Experimental Procedures  (Figure 3.11). Under these 

conditions, AdoCbl disappeared with a kobs = 0.40 ± 0.04min-1 (Table 3.2). The rate of 

appearance of 5´-deoxyadenosine (kobs=0.32 ± 0.01 min-1) corresponded to the rate of 

AdoCbl disappearance. The concentration of 5´-deoxyadenosine recovered (20.6 ± 0.8 
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μM) was equal to the concentration of AdoCbl consumed (23 ± 1 μM). In contrast, the 

rate of OH2Cbl formation (kobs= 0.23 ± 0.02 min-1) was slower and only 4.34 ± 0.01 μM 

OH2Cbl was recovered (Table 3.2). Treatment of inactivated enzyme with proteinase K 

increased OH2Cbl recovery only marginally (6.3 ± 0.2 µM). The reason for the low yield 

of OH2Cbl is presently not clear. To ensure that AdoCbl is not cleaved non-enzymatically 

to 5´-deoxyadenosine during sample preparation and/or chromatographic separation, a 

control reaction was performed in which substrate was omitted from the reaction mixture 

(Figure 3.11).  

IcmF appears to show half of sites activity since reconstitution with 1 versus 2 

equivalents of AdoCbl resulted in the same steady-state concentration of cob(II)alamin 

(data not shown). Surprisingly, in the inactivation experiments, not all the AdoCbl bound 

to Gk IcmF was converted to OH2Cbl and 5´-deoxyadenosine.  

 

Figure 3.11: Formation of OH2Cbl and 5'-deoxyadenosine during enzyme-
monitored turnover. Holo-IcmF (64 μM IcmF active site concentration containing two 
equivalents of AdoCbl) was mixed with 1.5 mM isobutyryl-CoA in Buffer A at 37 ºC. 
All manipulations with the samples and HPLC were performed in the dark. The decay of 
AdoCbl (open triangles), appearance of OH2Cbl (solid triangles) and of 5'-
deoxyadenosine (open circles) was monitored over 50 min. As a control for AdoCbl 
stability during  samples handling, the analysis was repeated without addition of 
isobutyryl-CoA (open squares).  
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Instead, ~ 66 % of the AdoCbl at one site (i.e. 32 µM) was converted to 5´-

deoxyadenosine, which corresponded to the concentration of cob(II)alamin (~21 μM) 

under steady-state turnover conditions. This provides further evidence for half-of-sites 

activity in Gk IcmF. It is unclear why complete inactivation at one of the two active sites 

was not observed.  

3.4.7 ATPase activity of IcmF. In the MeaI domains of many IcmFs, the base-specificity 

loop motif NKxD, is modified to NKxE (3). In the Gk IcmF, the NKxE sequence is 

present whereas in the Cm IcmF, the sequence is NKxD (Figure 3.12). The Lys residue in 

the NKxD motif interacts via hydrophobic interactions with the plane of the guanine ring 

while the Asp coordinates two nitrogen atoms in the purine ring. Gk IcmF catalyses the 

hydrolysis of both GTP and ATP (Table 3.3). The kinetic parameters for IcmF measured 

in the presence of various nucleotides are comparable: kcat with ATP is 19 ± 1 min-1 and 

kcat with GTP is 10 ± 1 min-1. Although the KM for ATP is high (1290 ± 300 μM) relative 

to that for GTP (51 ± 3 μM), the concentration of ATP (3-5 mM) is higher than of GTP 

(1 mM) in bacterial cells (28). 
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To rule out the possibility that the ATPase activity of Gk IcmF is due to a contaminant 

that co-purifies with the mutase, first, we tested the effect of introducing the K213A 

mutation in the GtgGaGKSS sequence of the P-loop motif, which is important for 

phosphate-binding (29). The K213A Gk IcmF mutant was devoid of both GTPase and 

ATPase activities. Notably, the mutase activity of the K213A mutant was similar to wild-

type protein (0.6 μmol min-1 mg-1 with isobutyryl-CoA). Furthermore, in the presence of 

3 mM AMPPNP, the kcat for the GTPase activity was inhibited ~3.6-fold to 2.7 ± 0.14 

min-1. Taken together, the above results are consistent with the ATPase and GTPase 

activities being intrinsic to Gk IcmF. 

 

Figure 3.12: Multiple sequence alignment of IcmFs  and MeaB from M. extorquens  
showing base specificity loop NKxD/E. Accession numbers are: Gebacillus 
kaustophilus (YP_149244), Cupriavidus metallidurans CH34 (YP_582365),  Ralstonia 
eutropha H16  (YP_724799), Frankia alni (YP_716016), Nocardia farcinica  
(YP_117245), Bacillus coagulans  (ZP_01696637), Thauera sp. (ZP_02841697), 
Rubrivivax gelatinosus (ZP_00242991) and MeaB (AAL86727). 
 

Although it has been suggested that replacement of Asp by Glu in the NKxD motif has no 

effect on nucleotide specificity (30), our results suggest the contrary. Thus, in Cm IcmF, 

the base specificity loop sequence is NKFD and while this protein does not exhibit 

ATPase activity, it is an active GTPase (kcat = 18 ± 1.3 min-1, KGTP = 40 ± 8 μM). These 
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results provide  an interesting illustration of a G-protein losing its specificity due to a 

single substitution in the NKxD motif.  

    GTPa ATPb     

enzyme 
kcat, 

min-1 

KGTP, 

μM 

kcat/KGTP , M
-1 

min-1 

kcat, 

min-1 

KATP, 

μM 
kcat/KATP , M

-1 min-1

wild 

type 

10 ± 2 51 ± 3 (1.96 ± 0.37)x105 19 ± 1 1290 ± 

300 

(1.47 ± 0.03)x104 

K213A N.D. - - N.D. - - 

 
Table 3.3: Comparison of the GTPase and ATPase Activities of Gk IcmF. a,bAll 
experiments were performed in Buffer A with  20 mM MgCl2 at 37 °C as described under 
Experimental Procedures. Values represent the average of at least five independent 
experiments. N.D. is not detected. 
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3.5 Discussion  

Previously, it was believed that ICM-like activity was restricted to the Streptomyces 

genus where it is involved in monensin A and B production (4).  Our discovery of ICM 

activity in the IcmF fusion protein, which is widely distributed in bacteria, suggests its 

involvement in metabolic processes beyond polyketide synthesis (3).  In our efforts to 

elucidate the possible roles of IcmF in bacterial metabolism, we noticed that icmF genes 

co-localize with genes encoding enzymes involved in β-oxidation of fatty acids. 

Subsequently, we probed branched organic acids, which are synthesized from the 

branched amino acids, valine, leucine and isoleucine, as substrates for IcmF. This in turn, 

led to the discovery of a new IcmF activity, i.e. isomerization of isovaleryl-CoA/pivalyl-

CoA (Figure 3.1).    

Although AdoCbl-dependent pivalyl-CoA mutase activity has been predicted to exist 

(10,31), an enzyme with this catalytic activity has not been previously identified. In this 

study, we report that IcmFs from G. kaustophilus and C. metallidurans can convert 

isovaleryl-CoA to pivalyl-CoA (Figure 3.1). Depending on the organism, the isovaleryl-

CoA/pivalyl-CoA mutase activity of IcmF was ~150-2,200 fold lower than the 

conversion of n-butyryl-CoA to isobutyryl-CoA (Table 3.1). Recently it was shown that 

pivalic acid can be incorporated as a starter unit in fatty acids in several bacteria (32). 

Thus, the production of pivalyl-CoA catalyzed by IcmF might be important in bacteria 

which use this starter unit for the biosynthesis of branched fatty acids containing a 

quaternary carbon. Our discovery of the isovaleryl-CoA/pivalyl-CoA mutase activity 

adds to the growing list of carbon-skeleton rearrangements catalyzed by AdoCbl-

dependent isomerases (Figure 3.1). Thus, it appears that the “mutase core”, is quite 
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versatile for two reasons.  First, substitutions of a limited number of key active site 

residues alter substrate specificity and second, relaxed substrate specificity allows 

alternative reactions to be catalyzed by the same active site as exemplified by IcmF. 

We also report relaxed substrate specificity in the MeaI domain of Gk IcmF. It has been 

reported that some G proteins have either lost or switched nucleotide specificity (33). For 

example in centaurin gamma-1 GTPase, where the sequence of the base specificity loop 

NKxD, is modified to GTQD(R) (34), nucleotide specificity is lacking and it is described  

as a general NTPase (34). Proteins belonging to the YchF subfamily of the Obg family of 

G proteins harbor the NxxE motif instead of the NKxD (35). For example human OLA1, 

which belongs to the Obg family, hydrolyzes ATP more efficiently than GTP. 

In our study, we show that in a subset of the MeaI chaperone domains of IcmF, the 

NKxD motif is modified to NKxE (Figure 3.12). This constitutes an interesting example 

where only some members of a protein family have lost specificity for GTP.  We note 

that while the MeaI domain of Gk IcmF exhibits ATPase activity, it is functionally 

distinct from the ATP-dependent chaperones for AdoCbl-dependent eliminases e.g. diol 

dehydratases (36,37). 

A remarkable feature of AdoCbl-dependent enzymes is that they catalyze reactions 

involving radical intermediates under aerobic conditions. This however, comes with a 

price, i.e. their susceptibility to inactivation (12). Under standard in vitro assay 

conditions, IcmF inactivates quite rapidly with either isobutyryl-CoA or isolvaleryl-CoA 

as substrate (Figure 3.9). In a subclass of AdoCbl-dependent enzymes, reactivating 

factors mediate an ATP-dependent exchange of enzyme-bound OH2Cbl with free AdoCbl 

(36-39). These reactivases have sequence similarity to DnaK and to other members of the 
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Hsp70 family of molecular chaperones and lower sequence similarity to the large 

subunits of corresponding mutases (37). In contrast, the G-protein chaperones associated 

with AdoCbl-dependent mutases belong to the SIMIBI subclass of the G3E family of P-

loop metallochaperones (3,13,29). In MCM, where the role of the G-protein chaperone, 

MeaB, is best characterized (14), the chaperone uses GTP hydrolysis to power the 

expulsion of cob(II)alamin when 5'-deoxyadenosine is lost from the active site (13). 

Unlike the ATP-dependent reactivases, MeaB is unable to release OH2Cbl bound to 

MCM (13,14). Instead, MeaB exerts a protective effect on the MCM reaction, by 

reducing the inactivation rate in the presence of nucleotides. In numerous bacterial 

genomes MeaB-like proteins are found in the same operon as the mutases (40).  

Mutations in the MeaB ortholog in humans results in methylmalonic aciduria, an inborn 

error of metabolism (41,42), pointing to the important role of this auxillary protein in 

maintaining MCM function. 

The presence of nucleotides has virtually no effect on the inactivation kinetics of IcmF 

with either isobutyryl-CoA or n-butyryl-CoA as substrate (Figure 3.9 A). In contrast, 

when isovaleryl-CoA is employed as substrate, protection, albeit modest, was seen in the 

presence of GTP (Figure 3.9 B). The activity of Gk IcmF with isobutyryl-CoA is reduced 

in the presence of nucleotides (3). This is unexpected since MeaB, increases the kcat of 

MCM 1.8-fold in addition to protecting it from inactivation (14). The rate of IcmF 

inactivation (0.1 ± 0.01 min-1) in the presence of isobutyryl-CoA, is ~14-fold higher than 

inactivation of MCM in the presence of methylmalonyl-CoA (0.0072 min-1) (14).   

Under anaerobic conditions, the IcmF reaction with n-butyryl-CoA was linear for a 

longer duration than in the presence of oxygen (Figure 3.10 B). Since OH2Cbl formation 
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is observed only under aerobic conditions, it argues against an internal electron transfer 

from cob(II)alamin to the substrate being responsible for inactivation, as described for 

lysine 5,6-aminomutase (26). Since IcmF is also inactivated under anaerobic conditions 

where OH2Cbl is not formed, we conclude that inactivation is primarily signaled by the 

loss of 5´-deoxyadenosine from the active site.  

In conclusion, we report that IcmF catalyzes the formation pivalyl-CoA from isovaleryl-

CoA. There is virtually no information on bacterial metabolism of pivalic acid, which has 

a mostly anthropogenic origin (10). We suggest that pivalyl-CoA mutase activity of IcmF 

might be important for biodegradation of branched compounds, where pivalic acid is a 

central intermediate (10,43). The activity of IcmF would reduce branching of compounds 

with a quaternary carbon. It will be important to follow the fate of pivalyl-CoA in IcmF-

containing bacteria and test whether this compound is incorporated in fatty acids and/or 

other compounds.   
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CHAPTER 4 
 
Adenosyltransferase Synthesizes and Delivers Coenzyme B12 to IcmF: Insights into 

the Function of the G-protein Domain  
 

4.1 Introduction 

Cobalamin is an important cofactor in bacteria, Archaea and eukaryotes. Since cobalamin 

is biosynthesized only by some bacteria and Archaea, organisms that require this cofactor 

must rely on B12 uptake from the environment or their diet (1-3). AdoCbl or coenzyme 

B12, is a derivative of cobalamin in which a 5'-deoxyadenosyl ligand is bound at the 

“upper” axial coordination site of the corrin ring. Six carbon skeleton isomerases are 

known to use AdoCbl as a cofactor (4-6). Most of AdoCbl-dependent carbon skeleton 

isomerases are disproportionally distributed in bacteria and Archaea. The only AdoCbl-

dependent enzyme which distribution ranges from bacteria to mammals is 

methylmalonyl-CoA mutase (MCM). MCM catalyzes the interconversion of (2R)- 

methylmalonyl-CoA and succinyl-CoA (6).  

ATR or ATP:Cob(I)alamin Adenosyltransferase (ATR) is needed for formation of the 

AdoCbl form of the cofactor. ATR catalyses the transfer of a 5'-deoxyadenosyl moiety 

from ATP to the cobalt atom of cob(I)alamin to form AdoCbl. Notably, this reaction is 

important not only in the de novo biosynthesis of AdoCbl in bacteria but also in the 

assimilation of vitamin B12 precursors (Figure 4.1 A).  
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Figure 4.1:  Cobalamin scavenging. (A) Schematic representation of reactions catalyzed 
by enzymes involved in cobalamin scavenging. a,b-reaction is catalyzed by CobA-like 
ATRs. b,c- reaction is catalyzed by PduO-like and EutT-like ATRs. Cobyrinic acid and its 
derivatives, which are part of de novo cobalamin synthesis are designated by purple 
boxes. Cobinamide and cobalamin and their derivatives, which can be imported in the 
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cell by the BtuCD-BtuF transport system are designated as light blue boxes. 
Dimethylbenzimidazole (DMB) is designated as a dark blue box and 5'-deoxyadenosyl as 
Ado. (B) Organization of genes in the operon harboring the atr gene  in G.kaustophilus. 
Proteins and accession numbers: PurM-like, protein of unknown function which contains 
ATP-binding site (YP_148108), protein of unknown function (YP_148109), PduO-type 
ATR (YP_148110), CobP (YP_148111), CobC (YP_148112), CobS (YP_148113), CobU 
(YP_148114), CobD (YP_148115), CbiB (YP_148116), fusion between BtuC and 
CbiZ(YP_148117), BtuD (YP_148118), BtuF (YP_148119).  BtuCD-BtuF is a putative 
cobalamin transporter. The numbers below the genes indicate the distance in nucleotides 
between two adjacent genes. Negative numbers indicate overlapping genes. Genes and 
regulatory elements are not drawn to scale. Immediately upstream of BtuF, four motifs 
that comprise the cobalamin riboswitch (red boxes) can be seen, together with a 
transcriptional attenuator (black lollipop).  
 
There are three families of ATRs that are completely unrelated in their amino acid 

sequence: CobA-type, PduO-type, and EutT-type (7-10). On the surface, CobA (in some 

organisms designated as BtuR or CobO) is involved in de novo cobalamin biosynthesis 

where in both aerobic and anaerobic pathways it catalyzes preferentially the 

adenosylation of cobyrinic acid a,c-diamide (Figure 4.1 A).  

In contrast, PduO-like and EutT-like ATRs are associated with assimilation of corrinoids 

and adenosylate both cobinamide (Cbi) and cobalamin (Cbl) (7,11) (Figure 4.1 A). 

Similarly, the PduO-type ATR from Lactobacillus reuteri adenosylates both Cbi (kcat= 

(2.4 ± 0.1) x 10-2 min-1)) and Cbl (kcat = (2.0 ± 0.2) x 10-2  min-1)) (Figure 4.1 A) (11).  

Since the KM values for both substrates are very similar KCbl= (13 ± 1) x 10-2 μM and 

KCbi= (9.6 ± 1.4) x 10-2 μM, the catalytic efficiencies are comparable. EutT-like ATR 

from Salmonella enterica adenosylates Cbi with only 21% of the activity reported for Cbl 

(12).  

As noted by Bobik and colleagues, in bacterial operons, PduO-type ATRs are often 

associated with AdoCbl-dependent mutases (7). ATR binds AdoCbl in a “base-off” state 

where the lower axial ligand, dimethylbenzimidazole (DMB) is swung away from the 
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cobalt (Figure 4.2 A) (5). On the other hand, MCM and other similar mutases bind 

cofactor in “base-off/His-on” state, where a histidine in the canonical DxHxxG motif, 

coordinates the cobalt atom (Figure 4.2 B) (13). The “base-off” mode of binding of 

AdoCbl in ATR, an enzyme which synthesizes the cofactor, is mirrored in the mutase, 

which utilizes the cofactor and  is unlikely to be coincidental. It was therefore proposed 

that this similarity in “base-off” binding mode but the difference in the coordination 

environment (i.e. 5-coordinate in ATR versus 6-coordinate in MCM) is exploited for 

direct delivery of AdoCbl from ATR to MCM (14,15).  

  

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2: Schematic representation of two modes of AdoCbl binding to proteins. 
ATR is a trimer which binds AdoCbl in the “base-off” state (A), IcmF is a homodimer 
which binds AdoCbl in a “base-off/His-on” state (B) where a histidine residue from the 
DXHXXG motif   replaces the endogenous DMB ligand. Distinguishing spectral features 
are indicated.  
 

               ATR                                               IcmF 
           “base-off”                                 “base-off/His-on” 
    (α-band, λ=458nm)                        (α-band, λ=525nm)                      

A                                         B 



Indeed, it was recently shown that the PduO-type ATR from Methylobacterium 

extorquens not only synthesizes AdoCbl, but also delivers the active form of the cofactor 

to its target enzyme, MCM, without releasing it into solution (16). 

Importantly, direct transfer of AdoCbl from ATR to MCM in which the histidine in the 

DxHxxG motif is mutated to alanine, was impaired (16). This result is consistent with the 

proposed role of the histidine residue in cofactor transfer to the mutase active site (14,15). 

Isobutyryl-CoA mutase (ICM), another AdoCbl-dependent enzyme is very similar to 

MCM both at the primary sequence level and catalytic mechanism (5,17-19).The recently 

discovered AdoCbl-dependent enzyme, IcmF is a fusion between the two subunits of 

ICM and its G-protein chaperone (20). IcmF like MCM, binds AdoCbl in “base-off/His-

on” state (Figure 4.2 B).  Since many IcmF-containing bacteria also contain a copy of 

MCM, it raised the intriguing question as to whether the PduO-type ATR delivers 

AdoCbl not only to MCM but also to IcmF.  

MeaB, a G-protein chaperone for MCM, was shown to play a key role in ensuring the 

fidelity of the cofactor-docking process. It was demonstrated that ATR can transfer 

cob(II)alamin, the cofactor precursor, to MCM (21). Subsequent oxidation of 

cob(II)alamin in the MCM active site leads to formation  of aquacobalamin (OH2Cbl) 

(22). Remarkably, complexation of MeaB and MCM allows discrimination between 

cob(II)alamin and AdoCbl and permits transfer only of the active form of the cofactor 

(21).  

Since IcmF is a fusion between the two subunits of ICM and MeaI, a G-protein similar to 

MeaB, we were interested in the investigating the possible gating function of the MeaI 

domain. Given that ATR can catalyze adenosylation of both Cbi and Cbl, it is also 
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possible that AdoCbi or other incomplete cofactors can be transferred to the target 

mutase. Previously, it was demonstrated that MCM is completely inactive when AdoCbi 

is used as a cofactor and kcat for the enzyme is reduced 4-fold when AdoCbi-GDP is used 

instead of AdoCbl (23). Thus, we hypothesize that G-protein chaperone protects IcmF 

from binding not only of cob(II)alamin but other incomplete forms of the cofactor. In this 

study, we show that ATR from G.kaustophilus directly transfers AdoCbl to IcmF. We 

also provide evidence that the MeaI domain possesses a “gating” function, which is 

similar to the corresponding function described for MeaB (21). 
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4.2 Experimental procedures  
 
4.2.1 DNA manipulations. (i) Cloning of ATR from G.kaustophilus. ATR was amplified 

from the genomic DNA obtained from the Bacillus Genetic Stock Center, The Ohio State 

University (Columbus, OH) using the following primers for LIC cloning in pMCSG7 

vector (forward 5’-TACTTCCAATCCAATGCCGTGAAATTGTATACGCGAACAGG 

-3’ and the reverse 5’- TTATCCACTTCCAATGCTATCATTGTTTCTCCTCCTTGT 

CGCGG -3’). (ii) Cloning of ATR from Cupriavidus metallidurans. ATR was amplified 

from the genomic DNA obtained from the ATCC biological resource center using the 

following primers for LIC cloning in pMCSG7 vector (forward 5’- TACTTCCAATCC 

AATGCCATGGGTAATCGCCTGTCCAAAATTGC -3’ and the reverse 5’- TTATCC 

ACTTCCAATGCTATCAGGACTCCCGCTCACGCTGCCAG -3’). (iii) Cloning of the 

N-terminal part of IcmF. The N-terminal part of IcmF was amplified from vector pET30 

Ek/LIC containing icmF from G.kaustophilus  using the following primers for LIC 

cloning in pMCSG7 vector (forward 5´-TACTTCCAATCCAATGCCATGGCGCAC 

ATTTACCGTCC-3´ and reverse 5’-TTATCCACTTCCAATGCTACTAACCGGACA 

ACGTT-3´).(iv) Cloning of the C-terminal part of IcmF. The C-terminal part of IcmF 

was amplified from  vector pET30 Ek/LIC containing icmF from G.kaustophilus  using 

the following primers for LIC cloning in pMCSG7 vector (forward 5' - 

TACTTCCAATCC AATGCCACCGTGACGGTGGTGACCGATG -3' and reverse 5’-

TTATCCACTTCC AATGCTACTAACCGGACAACGTT-3´). 

4.2.2 Enzyme expression and purification. (i) Recombinant IcmFs from G.kaustophilus 

(Gk) and Cupriavidus metallidurans (Cm) expression and purification. Both proteins  

were expressed in Escherichia coli BL21 (DE3) cells (Invitrogen) and were purified as 
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previously described (20). (ii) Gk ATR expression and purification. The pMCSG7 vector 

with the Gk ATR gene was transformed into E. coli BL21 (DE3) cells (Invitrogen), which 

were grown at 37˚C in Luria Bertani (LB) medium containing 100 μg/ml ampicilin to an 

absorbance at 600 nm of 0.5-0.6. Cells were grown for 12h after induction with 0.5mM 

isopropyl-1-thio-β-D-galactopyranoside (IPTG) at 15˚C.  E.coli cells (~25 g wet weight 

obtained from 6 L of culture) were lysed in lysis buffer (50 mM NaPi, pH 8.0, 500 mM 

NaCl, 30 mM Imidazole) supplemented with  protease inhibitor cocktail (Roche Applied 

Science), lysozyme (Sigma) and benzonase (Novagen)  using a sonicator (Ultrasonic XL 

Misonix). The resulted cell homogenate after centrifugation   was subjected to dilution to 

a final concentration of 3-5 mg/ml and loaded onto a 30 ml Ni-Sepharose column (GE 

Life Sciences).  After washing with 10-20 column volumes of  lysis buffer, the protein 

was eluted with a gradient of 30 to 300 mM imidazole in 50 mM NaPi, pH 8.0, 500 mM 

NaCl buffer. Fractions containing ATR were pooled, concentrated and applied to a 160 

ml Superdex 200 column connected to the AKTApurifier and equilibrated with 50 mM 

HEPES pH 7.5, 100 mM NaCl buffer (buffer A). Under these conditions, ATR eluted 

with a retention volume of ~114 ml, which corresponds to an apparent molecular weight 

of 75 kDa. This is in good agreement with the expected molecular weight of a trimer of 

ATR. Fractions containing ATR were pooled, concentrated, flash-frozen in liquid 

nitrogen and stored at -80°C until further use. Approximately 80-100 mg of recombinant 

ATR was obtained from a 6 L culture.  (iii) Cm ATR expression and purification. Cm 

ATR was expressed and purified similarly to Gk ATR. (iv) The N-terminal part  and the 

C-terminal parts of Gk IcmF expression and purification. Both truncated proteins  were 

overexpressed in E. coli BL21 (DE3) cells (Invitrogen), which were grown at 37˚C in LB 
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medium containing 100 μg/ml ampicilin to an absorbance at 600 nm of 0.5-0.6. Cells 

were usually grown for 10-14 h after induction with 0.5 mM isopropyl-1-thio-β-D-

galactopyranoside (IPTG) at 15˚C. Proteins were purified similarly to Gk full length 

IcmF where gel-filtration was performed in buffer A (20).  

4.2.3 Determination of molecular weights by gel-filtration.  To determine the 

oligomeric state of the N-terminal part of IcmF, the C-terminal part of IcmF and  Gk 

ATR in  solution, protein samples were  loaded on a 160 ml  Superdex 200 column in 

buffer A at  a flow rate of 0.75 ml/min. Prior to loading, the protein sample was filtered 

through a 0.2 μm syringe filter (Fisherbrand). The column was calibrated using gel-

filtration standards from Sigma. The molecular weights of the standards were: β-amylase 

(200 kDa), alcohol dehydrogenase (150 kDa), albumin (66 kDa), carbonic anhydrase (29 

kDa) and cytochrome c (12.4 kDa). 

4.2.4 UV-Visible Spectroscopy. (i) AdoCbl binding to ATR. AdoCbl solution was 

titrated with ATR to determine cofactor binding. Apo-ATR (0-80 μM)  was added to  a 

solution of AdoCbl (50-60 μM) in 50 mM NaPi pH 7.5, 150 mM NaCl, 10 mM MgCl2  at 

25 °C. After each addition of ATR solution was allowed to equilibrate for 2-3 min. The 

binding of the cofactor to ATR was readily visible by the increase at 458 nm and 

decrease at 525 nm, which corresponds to “base-on” to “base-off” shift (Figure 4.2). (ii) 

Effect of ATP on holo-ATR.  A solution of ATP (0.125-8.6 mM) was added to 8-30 μM 

ATR reconstituted with two equivalents of AdoCbl (holo-ATR) in 50 mM NaPi pH 7.5, 

150 mM NaCl, 10 mM MgCl2  at 25 °C. The data were  acquired at 2-3 min after mixing, 

and the concentration of AdoCbl released after each ATP additions was estimated  from 

the increase in absorbance at 525nm, using Δε525nm=6.69 mM-1 cm-1 (24). Spectra of the 
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filtrate obtained by centrifuging the mixture using a Microcon 30K concentrator 

(Millipore) were obtained to confirm the release of AdoCbl. (iii) AdoCbl transfer 

between ATR and IcmF. The transfer of AdoCbl between the two proteins was monitored 

by UV-Visible spectroscopy at 25 °C in buffer A with 10mM MgCl2 as it was previously 

described for MCM and ATR (16).  Briefly, for the forward transfer, 4-8 μM holo-ATR 

(8-16 μM bound AdoCbl) was added to a final concentration of 2-200 μM apo-IcmF. For 

the reverse transfer, 30-40 μM holo-IcmF (30-80 μM bound AdoCbl) was added to a final 

concentration of 2-210 μM apo-ATR. In all experiments, the solution containing  IcmF 

was blanked first, before cofactor or ATR was added. Each reaction was given 3 min to 

equilibrate and absorption spectra were recorded. Holo-ATR concentration was measured 

using the extinction coefficient   Δε458nm= 8 mM-1 cm-1. The amount of AdoCbl 

transferred was estimated from the increase (for the forward transfer) or decrease (for the 

reverse transfer) in absorbance at 525 nm (Δε525nm = 7.75 mM−1 cm−1) (16). Nucleotides 

(GDP/GTP/GMPPNP/ATP or AMPPNP) were added usually to a final concentration of 

2-3 mM. (iv) AdoCbl transfer between ATR and the N-terminal part of IcmF. The transfer 

of AdoCbl between two proteins was monitored by UV-Visible spectroscopy at 25 °C in 

buffer A supplemented with 10 mM MgCl2 similarly to transfer experiments between 

ATR and full length IcmF. Briefly, for the forward transfer, 50-60 μM apo-N-terminal 

part of IcmF was blanked first before holo-ATR (10-15 μM AdoCbl bound) was added ± 

2 mM ATP. In the reverse transfer experiment,    apo-ATR was added to 20-30 μM holo-

N-terminal part of IcmF (one equivalent of AdoCbl bound) ± 2mM GMPPNP.  

4.2.5 ATR assay. The specific activity of ATR activity was monitored as described 

previously under saturating concentrations of hydroxycobalamin (OHCbl) and ATP (7). 
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4.2.6 Determination of the NTPase activity. The ATPase and GTPase activities of 

IcmF were determined using HPLC and Malachite-Green assays as previously described 

(20) (See also section 2.3.3). 

4.2.7 Fluorescence Stopped-flow Spectroscopy. N-methylanthraniloyl (mant)-labeled 

nucleotides are widely used as probes for stopped-flow analysis of nucleotide-protein 

interactions (25). The mant moiety is an environmentally-sensitive fluorophore whose 

fluorescence intensity increases with increasing hydrophobicity of its environment (25-

27). Our rapid reaction kinetics studies were performed using a Hi-Tech Scientific SF-

61DX2 stopped-flow spectrophotometer. All solutions were filtered through a 0.2 μm 

syringe filter (Fisherbrand) and transferred to loading syringes. All experiments were 

performed at 22 ºC. The excitation wavelength for mant-GDP was 355 nm and the 

emission was recorded using a 408 nm cut-off-filter. Binding experiments were 

performed in 50 mM NaPi pH 7.5, 150 mM NaCl supplemented with 5 mM MgCl2 with a 

final concentration of 0.25 μM mant-GDP and increasing concentrations of IcmF (0.6-5.8 

μM) (after mixing). Kinetic traces of binding of mant-GDP to IcmF were fit to a two 

phase exponential function, where the observed rate constants from each phase (kon1, kon2) 

had a liner dependence on protein concentration. The dissociation rates were obtained 

from a ligand displacement experiment. Addition of a large excess of GDP (200-350 μM) 

to a pre-formed complex of 0.25 μM mant-GDP•5μM IcmF, led to a decrease in signal 

intensity that was fit to a biphasic exponential function to obtain the dissociation rate 

constants, koff1_dis. and koff2_dis. for mant-GDP release from the two binding sites of IcmF.  

4.2.8 Isothermal Titration Calorimetry. (i) Nucleotide binding was determined by 

MicroCal isothermal titration calorimeter. ITC experiments were performed as described 
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previously (20,28).  IcmF was dialyzed for 10–12 h against 50 mM HEPES pH 7.5, 50 

mM NaCl, 5 mM MgCl2 and 1–2 mM TCEP (Buffer B) before use. Gk apo-IcmF (18-25 

μM) in Buffer B was titrated with 30–42 7–9.7-μl injections of a 10-15 molar  excess of 

GDP/GMPPNP at 20 °C. The calorimetric signals were integrated, and the data were 

analyzed with Microcal ORIGIN software using a single-site binding model to obtain the 

thermodynamic parameters associated with binding of nucleotides to IcmF. (ii) The N-

terminal part of IcmF was dialyzed for 10-12 h against buffer B before use. The protein 

(25-30 μM)  in Buffer B was titrated with 35-38   8 μL injections of a 10-15 molar excess 

of AdoCbl at 20°C. The calorimetric signals were integrated and the data were analyzed 

with Microcal ORIGIN software using a two-sites binding model to determine the 

thermodynamic parameters associated with AdoCbl binding to protein. 

4.2.9 Bioinformatics analysis. Operon and regulon browsers on the Microbes Online 

web site were used for the elucidation of functional predictions for the genes of interest 

(29) (Section 2.3.8). RibEx (riboswitch explorer) server was used for searching for 

potential cobalamin riboswitches (30).  
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4.3 Results 
 
4.3.1 PduO-type ATR gene from Geobacilus kaustophilus.  In the genome of 

G.kaustophilus the gene encoding the PduO-type ATR is localized within an operon 

harboring 8 genes that are involved in the late stages of cobalamin biosynthesis (CobP, 

CobC, CobS, CobU, CobD, CbiB and others) and 3 genes which encode the BtuCD-BtuF 

cobalamin transporter system (Figure 4.1B). In the genome of G. kaustophilus, this 

cobalamin transporter is missannotated as a three subunit ATP-binding cassette 

transporter (fepBCD) which allows enterobactin, a high affinity iron siderophore, to cross 

the inner membrane (31-33). Interestingly in this operon, BtuC is fused with CbiZ 

(Figure 4.1B). It was recognized previously that CbiZ is fused with BtuD in Bacillus 

halodurans and Bacillus subtilis. However, the exact role of this fusion remains obscure 

(34).  

Additionally, we have identified a cobalamin riboswitch (35,36) immediately upstream of 

the ORF encoding for BtuF (Figure 4.1B). Not all bacteria possess the complete set of 

enzymes that are necessary for de novo synthesis of cobalamin. Instead, they assimilate 

cobalamin into the biologically active cofactor forms. This process is called  “cobalamin 

salvaging” (Figure 4.1A). Clustering of genes encoding enzymes involved in cobalamin 

salvage and transport is not surprising.  It is interesting that a PduO-type and not a CobA-

type ATR is a part of the above mentioned  operon since it was shown in Ralstonia 

metallidurans (37), Methylobium petroleophilum (38) and other bacteria (38)   CobA-

type ATRs are found in similar operons.  

4.3.2 Properties of recombinant Gk ATR. The recombinant Gk ATR was purified using 

a combination of affinity and size-exclusion chromatography as described under 
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Experimental Procedures. As seen by SDS-PAGE analysis, the gel-filtration step 

separates an active trimer of ATR (elution volume ~ 114 ml corresponding to an apparent 

molecular mass of 75 kDa) from an aggregated protein, which elutes in the void volume 

of the column (~71 ml) (Figure 4.3A). The expected molecular mass of the Gk ATR 

trimer of is 72 kDa.  

 
 
Figure 4.3: Properties of ATR from G.kaustophilus. (
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A) Gel-filtration chromatography 
of ATR. Inset: The SDS-PAGE analysis of both peaks. (B) ATR binds two equivalents of 
AdoCbl per trimer. Apo-ATR (0-45 μM) was added to 53 μM AdoCbl in 50 mM NaPi 
pH 7.5, 150 mM NaCl, 10 mM MgCl2 and transition from “base-on” to “base-off” state 
was followed. Inset: Dependence of decrease at 525 nm on ATR concentration. (C) 
Addition of ATP (0.125-8.6 mM) to holo-ATR (15 μM bound AdoCbl) led to the partial 
conversion of AdoCbl from the “base-off” to “base-on” state. Inset: Dependence of 
AdoCbl release on ATP concentration. Only one of the two equivalents of AdoCbl bound 
per ATR trimer is released into solution. 



The specific activity of Gk ATR was 0.38 μmol min-1 mg-1, which is very similar to the 

value reported for ATR from M. extorquens (0.74 ± 0.01 μmol min-1 mg-1 ), when both 

activities measured at 22 ºC (39). 

ATR binds AdoCbl in a “base-off” state (Figure 4.2A and Figure 4.3B). In solution at 

physiological pH, AdoCbl exists in the “base-on” state. Upon addition of increasing 

concentrations of Gk ATR to a solution of AdoCbl, apo-ATR is converted from the 

“base-on” to “base-off” state as evidenced by its characteristic decrease in absorbance at 

525 nm and  the concomitant increase at 458 nm (Figure 4.2A and Figure 4.3B).  

4.3.3 Effect of ATP on holo-ATR. Partial conversion of the cofactor from the “base-off” 

to “base-on” state is seen when holo-ATR reconstituted with two equivalents of AdoCbl 

is mixed with ATP (Figure 4.3C). The “base-on” species represent free AdoCbl released 

into solution as judged by analysis of the filtrate following concentration of the reaction 

mixture in a Microcon 30K concentrator (Millipore). The UV-visible spectrum of the 

filtrate corresponds to ~50% of AdoCbl originally bound to ATR being released into 

solution (Figure 4.3C). This result is consistent with the rotary mechanism proposed for 

ATR from M. extorquens, where at any given time, only two of the three active sites can 

be occupied by AdoCbl. In the proposed rotary mechanism, binding of ATP to the vacant 

active site induces the release of one equivalent of AdoCbl (24) and is proposed as a 

mechanism for powering transfer of the cofactor from the active site of ATR to MCM. 

4.3.4 Transfer of AdoCbl between ATR and IcmF. Reversible transfer of AdoCbl 

between the active sites of ATR and MCM from M. extorquens has been demonstrated 

(16). We examined whether ATR can also deliver AdoCbl to IcmF. Indeed, when holo-

ATR was mixed with  increasing concentrations of apo-IcmF, the characteristic spectral 
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change for conversion of AdoCbl from the “base-off “ to the  “base-off/His-on” state was 

observed with isosbestic points at 340, 390 and 485 nm (Figure 4.4A). Addition of either 

substrate, isobutyryl-CoA or n-butyryl-CoA, to the transfer mixture led to  a formation of 

cob(II)alamin  indicating that IcmF was productively loaded with AdoCbl (data not 

shown) (See also section 3.4.3). The possible release of AdoCbl into solution during the 

transfer between ATR and IcmF was monitored by analysis of the filtrate obtained from 

concentrating the reaction mixture using a Microcon 30K concentrator (Millipore). Free 

AdoCbl was not detected in the filtrate in the absence of nucleotides, indicating a direct 

transfer. 

Figure 4.4: Transfer of AdoCbl between ATR and IcmF. (A) Dependence of AdoCbl 
transfer from holo-ATR (9 μM bound AdoCbl) on the concentration of apo-IcmF (2–160 
μM) in buffer A supplemented with 5 mM MgCl2. at 24 °C.  (B) Dependence of cofactor 
transfer efficiency between holo-ATR and apo-IcmF (filled circles), holo-ATR and apo-
IcmF with ATP (filled triangles), holo-IcmF and apo-ATR (open circles) and holo-IcmF 
and apo-ATR with ATP (open triangles). E1 and E2 are defined as the enzymes donating 
and accepting the cofactor, respectively. 
 

Organizationally, IcmF is different from heterodimeric MCM from M. extorquens since 

IcmF contains two AdoCbl-binding sites (20). Nevertheless, in the absence of nucleotides 

almost complete cofactor transfer was achieved only at a very high excess of the 

 

 

 

 

 

 

 

A                                                                B  



acceptor, apo-IcmF, over the donor, holo-ATR (Figure 4.4B). Under these conditions, an 

IcmF:ATR ratio of 6:1 or higher is needed to achieve ~80% transfer from ATR (Figure 4. 

4B).  

The absence of the complete transfer is explained by the reversibility of the process and 

the reverse transfer being favored at high IcmF concentrations. Remarkably, the reverse 

transfer from holo-IcmF to apo-ATR is favored over the forward transfer and ~90% 

transfer is achieved when the ATR:IcmF ratio is 1:1. These results are very similar to the 

equilibrium for AdoCbl transfer between ATR and MCM favoring the reverse transfer in 

the absence of nucleotides (16).  

Cm holo-ATR also directly transfers AdoCbl to Cm apo-IcmF as demonstrated by the 

characteristic spectral shift from the “base-off” to “base-off/His-on” form when both 

proteins are mixed (data not shown).     

4.3.5 The effect of ATP on cofactor transfer. Next, we studied how ATP affects the 

AdoCbl transfer reaction. When the reaction was supplemented with 3 mM ATP, the 

forward transfer was favored over the reverse (Figure 4.4B), even when the 

donor:acceptor ratio was 1:1 (Figure 4.4B). In contrast, the reverse transfer goes to 

completion in the presence of ATP at a donor:acceptor ratio of 5:1 (where IcmF is loaded 

with 2 equivalents of AdoCbl). Thus, in the presence of ATP, the equilibrium favors the 

forward transfer, i.e. from ATR to IcmF. These data suggest that under physiological 

conditions i.e. in the presence of high concentrations of ATP, the cofactor is transferred 

from ATR to IcmF.  

4.3.6 The effect of GTP and GMPPNP on cofactor transfer. To establish how the 

MeaI domain of IcmF affects transfer, we performed the transfer experiments in the 
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presence of GTP and GMPPNP (a non-hydrolyzable analog of GTP). Remarkably, when 

holo-ATR was added to apo-IcmF (donor:acceptor ratio of 7:1) preincubated with 

GMPPNP, no cofactor transfer was detected (Figure 4.5). When the same experiment was 

repeated in the presence of GTP, the absorption spectrum showed a partial (~45%) 

transfer of AdoCbl immediately after addition of holo-ATR to IcmF•GTP (Figure 4.5, 

brown spectrum). After 10 min, almost complete transfer was seen (Figure 4.5, blue line). 

Taking into account that the experiment had 80 μM IcmF and that the kcat for GTP 

hydrolysis by the MeaI domain is ≈ 6 ± 0.7 min-1 at 22 ˚C, 14% of GTP was converted to 

GDP in one min. Subsequently all GTP was hydrolyzed to GDP within 8 min. Since no 

gating of transfer was seen with GDP (data not shown) it explains why full transfer was 

observed after 10 min (Figure 4.5, blue spectrum). 

Interestingly, the reverse transfer from holo-IcmF to apo-ATR was virtually unaffected 

by the presence of GMPPNP (Figure 4.6), and >90% of transfer was observed ± 

GMPPNP.  

Figure 4.5: Gating by MeaI of AdoCbl transfer from ATR to IcmF. Addition of holo-
ATR (11 μM) to apo-IcmF (80 μM) in buffer A supplemented with 10 mM MgCl2 at 24 
°C without nucleotides (green line), with 3 mM GMPPNP (red line), with 3 mM GTP 
immediately after addition (brown line) and 10 min after addition (blue line) of 
nucleotide. Holo-ATR (11 μM) alone (black line). The negative drift in the spectra 
(brown and blue lines) is always seen when GTP is present in the reaction mixture. 

 

 

 

 

 

 



 

Since ATP is also a substrate for the MeaI domain of the Gk IcmF (Table 4.3), we studied 

the forward transfer in the presence of AMPPNP (a non-hydrolyzable ATP analog). We 

observed that cofactor transfer was not inhibited in the presence of AMPPNP. Essentially 

there was no difference between transfer with ATP or AMPPNP i.e. 100% of forward 

transfer was observed. AMPPNP, like ATP, triggers release of one equivalent of AdoCbl 

from fully loaded holo-ATR (data not shown). 

 

 

 

 

 

 

Figure 4.6: The effect of GMPPNP on the reverse transfer from holo-IcmF to apo-
ATR. Apo-ATR was added to holo-IcmF (59 μM bound AdoCbl, two equivalents of 
AdoCbl) in Buffer A supplemented with 5 mM MgCl2 at 24 °C with 2 mM GMPPNP 
(open circles) or without GMPPNP (filled circles). 
 

4.3.7 Analysis of nucleotide binding to IcmF. To further study the role of the MeaI 

domain, we measured the affinities of nucleotide to IcmF using both ITC and stopped-

flow fluorescence spectroscopy and compared our results with data described for other G-

proteins. Chaperones from the G3E family of SIMIBI class bind nucleotides with KD in 

low μM range (28,40,41). 

Based on the ITC results, IcmF binds one mole of nucleotide per dimer (N = 0.89 ± 0.11 

for GDP and 0.78 ± 0.01 for GMPPNP, respectively) (Table 4.1). The binding isotherms 
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for GDP and GMMPPNP were best fit to a one-site binding model (Figure 4.7). IcmF 

binds GMPPNP with a ~3-fold higher affinity (KD=0.95 ± 0.07 μM) than GDP (KD= 3.3 

± 0.5 μM) (Table 4.1). Binding of GDP is accompanied by a ΔGº of -7.3 ± 0.4 kcal/mol 

with comparable enthalpic and entropic contributions. Binding of GMPPNP is mostly 

enthalpically driven with a ΔGº of  -8.07 ± 0.1 kcal/mol (Table 4.1).  

Figure 4.7: Binding isotherms for GDP and GMPPNP  binding to IcmF. (A) 
Representative ITC data set for the binding of GDP  (255 μM stock solution) to 22.2 μM 
IcmF in Buffer B at 20 °C. (B) Representative ITC data set for the binding of GMPPNP 
(366 μM stock solution) to 18 μM IcmF in Buffer B at 20 °C. The top panel shows the 
raw data versus time. The bottom panel shows the integrated areas normalized to the 
moles of nucleotides added with each injection. Data were fitted to a one-site binding 
model and yielded the parameters reported in Table 4.1. 
 

Stopped-flow fluorescence spectroscopy was used as an independent method for 

monitoring binding of fluorescently labeled GDP (mant-GDP) to IcmF (Figure 4.8). 

Stopped-flow experiments were carried out under pseudo-first order conditions:  0.25 μM 
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mant-GDP (after mixing) was mixed with increasing concentrations of apo-IcmF (0.6-5.8 

μM after mixing) (Figure 4.8A). Stopped-flow fluorescence traces were fit to a double-

exponential function to obtain the observed rate constants, kobs1 and kobs2, for mant-GDP 

binding to subunits 1 and 2, respectively (Figure 4.8B, Table 4.2). The amplitudes 

associated with the two phases (ΔA1=2ΔA2) were unequal. The two rate constants 

exhibited a linear dependence on protein concentration consistent with a simple binding 

mechanism (Figure 4.8 B).  

Thermodynamic parameters GDPa GMPPNPb 

KD, μM 3.28 ± 0.5 0.95 ± 0.07 

ΔH, kcal/mol -3.7 ± 0.4 -7.02 ± 0.09 

TΔS, kcal/mol +3.6 ± 0.3 +1.05 ± 0.1 

ΔGº, kcal/mol -7.3 ± 0.4 -8.07 ± 0.10 

N 0.89 ± 0.11 0.78 ± 0.01 

 
Table 4.1: Thermodynamic parameters for the binding of nucleotides to apo-IcmF. 
a,b The isotherms for binding of GDP and GMPPNP to IcmF were best fit to a one-site 
binding model. All experiments were performed in buffer B at 20ºC described under 
Experimental Procedures. The data represent the mean ± S.D. of two independent 
experiments. 
 
To obtain the dissociation rate constant, GDP (200-300 µM, after mixing) was mixed 

with 0.25 µM mant-GDP•5 µM IcmF (after mixing)  and traces from the displacement 

experiment were fitted to a double exponential function. Values of koff1-dis.=0.85 ± 0.09 s-1 

and koff2-dis.=0.11 ± 0.01 s-1 were obtained (Figure 4.8C, Table 4.2). In our calculations, 

we used koff1-dis. and koff2-dis. determined from the displacement experiment, to calculate 

KD1=1.57 ± 0.08 μM and KD2=6.55 ± 0.39 μM (Table 4.2).  The IcmF dimer contains two 

MeaI domains, and hence, two sites for nucleotide binding. In all our stopped-flow 
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experiments, the fluorescence traces were clearly biphasic and fits were not of acceptable 

quality when a single exponential function was used for fitting.  This is in a good 

agreement with the two binding sites for nucleotides being unequal in IcmF dimmer. Like 

the nucleotide binding in the MeaI domain, the two binding sites for AdoCbl in IcmF also 

exhibit different affinities (20). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.8: Binding of mant-GDP to IcmF. (A) Representative fluorescent traces 
observed by mixing 0.25 μM mant-GDP and 0.6-5.8 μM IcmF in buffer 50 mM NaPi pH 
7.5, 150 mM NaCl supplemented with 5 mM MgCl2 at 20°C. Black lines represent the fit 
with a double exponential function. (B) Dependence of two sets of observed rate 
constants (kobs1,●  , and kobs2, ○ ) on protein concentration. Black lines represent the liner 
fit (Table 3). (C) Dissociation of 0.25 μM  mant-GDP from  5 μM  IcmF was monitored 
in a displacement experiment using 250 μM GDP. The kinetic trace is best fit to a double 
exponential function (black line) with kobs1-diss.=0.85 ± 0.09 s-1 and kobs2-diss.=0.11 ± 0.01 s-

1 (Table 4.2). 
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                                                                                     mant-GDPa 

Kinetic parameter Site 1 Site 2 

kon, μM-1s-1
   0.54 ± 0.03 0.0168 ± 0.0025 

koff, s
-1

         1.03 ± 0.09 0.087 ± 0.007 

bkoff-dis., s
-1 0.85 ± 0.09 0.11 ± 0.01 

KD, μM 1.57 ± 0.08 6.55 ± 0.39 

 
Table 4.2: Kinetic Parameters for binding of mant-GDP to apo-IcmF. aStopped-flow 
traces were fit to double exponential function. bDissociation constants determined in 
displacement experiment. All stopped-flow experiments were performed in buffer A with 
5 mM MgCl2 as described under Experimental Procedures. 
 
4.3.8 Properties of Gk IcmF truncation constructs: the N-terminal part of IcmF and 

the C-terminal part of IcmF. The results described above suggested that MeaI domain 

of IcmF modulates AdoCbl transfer from ATR to IcmF. To further study the role of 

MeaI, we created two truncated IcmF variants: the N-terminal part containing the B12-

binding and MeaI domains and the C-terminal part containing the MeaI and the substrate-

binding domains (Figure 4.9). When the N-terminal part of IcmF was subjected to gel-

filtration chromatography, it eluted as a symmetric peak with an apparent molecular mass 

of ~158 kDa (Figure 4.10, red trace). The C-terminal part of IcmF truncation variant 

eluted as a peak with an apparent molecular mass of 251 kDa (Figure 4.10, green trace).  

Based on this analysis, both truncated variants behave as dimers in solution. The 

predicted monomeric molecular mass of the N-terminal part is 60 kDa and for the C-

terminal part is 106 kDa (Figure 4.10). Since full-length IcmF is a dimer (Figure 4.10, 

black trace), the simplest interpretation of the oligomeric state of the two truncated 
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variants is that the MeaI domain is involved in dimerization6. This seemed like a 

reasonable conclusion since MeaB, the stand-alone chaperone for MCM, is a dimer (42).  

 

 
Figure 4.9: Truncated IcmFs variants generated in this study: The N-terminal part 
containing the B12-binding and the MeaI domains and the C-terminal part containing the 
MeaI and the substrate-binding domains. 
 

 

 

 

 

 

 
Figure 4.10: Gel-filtration of full-length IcmF and the truncated constructs. Full-
length IcmF, (molecular mass = 240 kDa, black trace), the N-terminal part of IcmF 
(molecular mass =120 kDa, red trace) and the C-terminal part of IcmF (molecular mass = 
212 kDa, green trace). mAU, milli absorbance units. The N- and C-terminal parts of IcmF 
migrated during size-exclusion chromatography on Superdex 200 with apparent 
molecular masses of ~158 kDa and ~251 kDa, respectively, consistent with homodimeric 
assembly in each case. The SDS-PAGE analysis of the N-terminal part of IcmF (lane #1) 
and of the C-terminal part of IcmF (lane #2).  

                                                 
6 We now know from the crystal structure of full-length IcmF that dimerization does not involve the MeaI 
domain and hence, a different domain interface is involved in dimerization of the N-terminal part of IcmF.  
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4.3.9 NTPase activity of the truncated IcmF variants.  We have shown recently that 

the G4 signature motif NKxD, which is responsible for the specificity for guanine in the 

MeaI domain, is modified to NKxE in Gk IcmF (20) (See also section 3.4.7). As a result, 

Gk IcmF has relaxed substrate specificity and can accept both GTP and ATP (Table 4.3). 

For the N-terminal part of Gk IcmF, the following kinetic parameters were obtained: kcat 

with ATP = 12 ± 1 min-1 and kcat with GTP = 23 ± 2 min-1 (Table 4.3). Since the KM for 

ATP is (910 ± 310 μM) relative to that for GTP (130 ± 56 μM) enzyme is more efficient 

with GTP as a substrate based on the kcat/KM value (Table 4.3).  

 

Kinetic parameter Wild-type IcmF 
The N-terminal part 

of IcmF 

kcat with GTP,  min-1 10 ± 2 23 ± 2 

KGTP, μM 51 ± 3 130 ± 56 

kcat with GTP/KGTP , M
-1 min-1 (1.96 ± 0.37)x105 (1.77 ± 0.88)x105 

kcat with ATP, min-1 19 ± 1 12 ± 1 

KATP, μM 1290 ± 300 910 ± 310 

kcat with ATP/KATP , M
-1 min-1 (1.47 ± 0.03)x104 (1.32 ± 0.34)x104 

 
Table 4.3. GTPase and ATPase Activity of wild-type IcmF and the N-terminal part  
of IcmF. All experiments were performed in buffer A with  20mM MgCl2 at 37°C as 
described under Experimental Procedures. Values represent the results of at least five 
independent experiments. 
 

In the presence of 0.1 mM GMPPNP, the ATPase activity of the N-terminal part of IcmF 

was inhibited ~60% (higher concentrations of GMPPNP could not be employed in the 

malachite-green assay due to the high background). In contrast, very low GTPase activity 
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(0.034 ± 0.005 min-1) was detected with the C-terminal part of IcmF, despite the presence 

of the MeaI domain.   

4.3.10 Binding of AdoCbl to the N-terminal part of IcmF. We investigated AdoCbl 

binding to the N-terminal variant of IcmF by ITC (Figure 4.11). These experiments 

revealed the presence of two non equivalent binding sites with an ~44-fold difference in 

affinity for AdoCbl (KD1= 4 ± 0.2 μM and KD2 =  176 ± 4 μM). These dissociation 

constants are considerably higher than for the full-length IcmF (KD1=0.081 ± 0.014 μM 

and KD2=  1.98 ± 0.42 μM) (20).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11.  Binding isotherms for AdoCbl binding to the N-terminal part of IcmF. 
Representative ITC data for the binding of AdoCbl (273 μM stock solution) to 30 μM 
protein in 50 mM HEPES pH 7.5, 50 mM NaCl, 2 mM TCEP and 5 mM MgCl2 at 20 °C. 
The top panel shows the raw data versus time and the bottom panel shows the integrated 
areas normalized  to the moles of nucleotides added with each injection. Data were fitted 
to a two-site binding model. 
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4.3.11 Cofactor transfer between ATR and the N-terminal part of IcmF. Next, we 

examined whether AdoCbl could be transferred from ATR to the N-terminal part of 

IcmF. However, cofactor transfer was not observed even at a 1:8 ratio of holo-ATR: the 

N-terminal part of IcmF (Figure 4.12A, dotted red line). Addition of ATP to the same 

reaction mixture caused transfer of ~50 % of AdoCbl (Figure 4.12 A, dashed green line).  

Next we investigated the reverse transfer from the holo-N-terminal part of IcmF  to apo-

ATR (Figure 4.12B). We used < one equivalent of cofactor in our experiment  because of 

the low affinity of the N-terminal part of IcmF for AdoCbl. The reverse transfer goes to 

completion when ATR: N-terminal part of IcmF  ratio is ~2:0 (Figure 4.12 B, inset). Our 

result suggest the possibility that the organization of  the N-terminal part of IcmF variant 

might be significantly different than of the parent protein although both exist as dimers in 

Figure 4.12:  Transfer of AdoCbl between ATR and the N-terminal part of IcmF.  
(A) Forward transfer from holo-ATR to apo-N-terminal part of IcmF. In this experiment 
10 μM AdoCbl-loaded ATR was added to 50 μM  apo-N-terminal part of IcmF (dotted 
red line). The same reaction mixture after addition of 2 mM ATP (dashed green line). 
Holo-ATR (11 μM) alone (solid black line). Cofactor transfer was not observed without 
ATP. In the presence of ATP, only ~ 50% of the cofactor was transferred, whereas for 
ATR and WT IcmF with ATP the forward transfer goes to full completion. (B) Reverse 
transfer between the holo-N-terminal part of IcmF and apo-ATR. The reaction mixture 
contained 27 μM of the N-terminal part of IcmF (16 μM bound AdoCbl)  and 0-60 μM 
apo-ATR. 

solution.  

 

 

 

 

 

 
 

A                                                             B



4.4 Discussion 

Characterization of ATR and IcmF from G. kaustophilus reveals that the PduO-type ATR 

can transfer AdoCbl directly to IcmF (Figure 4.4). This transfer resembles the process 

described for ATR and MCM from M. extorquens (16). We speculate that transfer of 

AdoCbl by ATR to the target AdoCbl-dependent isomerase might represent a general 

strategy for ensuring cofactor delivery, particularly in organisms where cobalamin is a 

rare cofactor. 

The difference in the coordination state of AdoCbl bound to the active sites of ATR and 

IcmF allows for ready monitoring of AdoCbl transfer by UV-visible absorption 

spectroscopy (Figure 4.2, Figure 4.3B and Figure 4.4A).  

AdoCbl transfer is affected by the presence of nucleotides in the reaction mixture. In the 

absence of ATP, the reverse transfer, i.e., the transfer from holo-IcmF to apo-ATR, is 

favored (Figure 4.4 B). Notably in the presence of ATP, which is present at high 

concentrations inside cells, the forward transfer is greatly favored and ~ 90% transfer is 

achieved at a 1:1 ratio of ATR: IcmF (Figure 4.4 B).  

In the presence of GMPPNP, the forward transfer is inhibited, which indicates that 

hydrolysis of GTP is required and when hydrolysis is blocked, the transfer is precluded 

(Figure 4.5). Hence, GTP hydrolysis is required for facilitating transfer as it was reported 

previously for transfer of AdoCbl from ATR to MCM in the presence of MeaB (21) (See 

also section 1.11). In contrast, binding of free AdoCbl by IcmF is practically unaffected 

by the presence or absence of GMPPNP (20). In contrast, complexation of  MeaB  and 

MCM in the presence of GMPPNP prevents MCM from  AdoCbl binding (22). 
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To obtain more insight into the mode of transfer between ATR and IcmF, we created two 

truncated variants of IcmF protein lacking either the B12-binding or the substrate-binding 

domains but retaining MeaI domains (Figure 4.9). Characterization of the N-terminal part 

of IcmF confirmed our previous findings that the NKxE sequence in the nucleotide 

specificity loop relaxes nucleotide specificity and allows the MeaI domain to accept both 

GTP and ATP (Table 4.3). Since the C-terminal part of IcmF containing the substrate-

binding domain has very low intrinsic GTPase activity (0.034 ± 0.005 min-1), it suggests 

that that the  B12-domain stimulates the NTPase activity of the MeaI domain, i.e. the B12 

domain functions as a GAP domain (See section 5.3.5). 

Interestingly, no forward transfer of AdoCbl was detected from ATR to the N–terminal 

part of IcmF (Figure 4.12A). In the presence of ATP, which triggers the release of one 

equivalent of AdoCbl, transfer was only 50% (Figure 4.12A).  

A hallmark of the G3E family metallochaperones is their relatively weak affinity for 

nucleotides (in low μM range), which allows for facile release of GDP without the need 

for GEFs (41,43).  IcmF also binds nucleotides with similar affinity (Table 4.1 and Table 

4.2). Stopped-flow fluorescence studies with mant-GDP revealed that MeaI domains in 

IcmF dimer bind mant-GDP with  non-equivalent affinities (Figure 4.8, Table 4.2).   

Since the bacterial PduO-type and EutT-type ATRs can adenosylate Cbi in addition to 

Cbl (Figure 4.1A) (11,12), it would be interesting to evaluate whether a truncated 

cofactor, i.e.  5'-deoxyadenosyl cobinamide, can be transferred to the mutase or whether 

the G-protein chaperone exerts an “editing” function, preventing this from happening.  

In summary, we have demonstrated that ATR transfers AdoCbl to IcmF in a process that 

is gated by GTP hydrolysis. ATP also shifts the equilibrium of the transfer process in the 
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forward direction, i.e. from ATR to IcmF. Since there is only one copy of PduO-type 

ATR in the G. kaustophilus genome, it appears that this ATR serves two client mutases, 

MCM and IcmF. In fact PduO-type ATR was originally discovered in 1,2-propanediol 

utilization (pdu) operon where it is found together with AdoCbl-dependent diol 

dehydratase (PduCDE) in Salmonella enterica (7). Most probably ATR is also involved 

in AdoCbl delivery to diol dehydratase. 
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CHAPTER 5 
 

Ongoing Work and Future Directions7 
 

5.1 Introduction  

The main goal of my dissertation was to dissect, using various biophysical and 

biochemical methods, the mechanism of cross-talk between the MeaI domain and the two 

isobutyryl-CoA mutase domains (IcmA and IcmB) in the fusion protein, IcmF (See 

Chapter 2). Additionally, I examined whether ATR delivers the active form of the 

cofactor to IcmF as is the case for the ATR/MCM duo of proteins (1). To this end, I 

developed robust expression systems for both IcmF (see Chapter 1) and ATR from 

Geobacillus kaustophilus. Our working hypothesis implies that conformational changes 

in MeaI induced by nucleotide binding, regulate access of AdoCbl to the IcmF active site 

(See Chapter 4).  

We also discovered a novel pivalyl-CoA mutase activity of IcmF and demonstrated that 

only this activity is protected from inactivation in a GTP-dependent manner (See Chapter 

3).  

Many aspects of IcmF fusion protein remain to be elucidated. My current studies are 

focused on elucidation of   the role of the reaction catalyzed by IcmF in vivo. 

 

                                                 
7 We are extremely indebted to Dr. Greg Stephanopoulos and Deepak Dugar (MIT) for providing pivalyl-
CoA and a pET30Ek/LIC vector expressing IcmF from Thauera sp. Also we are very thankful to Dr. 
Antony Sinskey and Dr. Chris Brigham for metabolome analysis of Ralstonia eutropha H16 
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5.2 Experimental procedures   

5.2.1 Construction of IcmF mutants. All mutants were created using the QuikChange 

XL Site-Directed Mutagenesis Kit (Agilent) and the following sense primers: 5'-CCG 

AAGCATCACGTCTGCTTTGTGACTGCATCGAGC-3' for R12C; 5'- ATCAACATT 

ATGGCCCGCATTTTGCAGGCG -3' for R31A;  5'- ATCAACATTATGCGCGCC 

ATTTTGCAGGCG -3' for R32A;  5'- CCATTTAGGCCATAACGCATCGGTGGA 

GGAAATCG -3' for R48A.The sequences of the reverse primers were complementary to 

the corresponding sequences of the forward primers. IcmF from G. kaustophilus cloned 

into pET30 Ek/LIC vector was used as a template. All constructs and mutations were 

confirmed by nucleotide sequence determination at the University of Michigan DNA 

sequencing Core.  

5.2.2 Protein expression and purification. (i) Purification of G. kaustophilus (Gk) IcmF 

mutants. Proteins were purified as previously described for wild-type Gk IcmF (2). (ii) 

Purification of IcmF from Thauera sp. (Th).  E. coli BL21 (DE3) cells containing plasmid 

expressing Th IcmF were grown in LB media supplemented with 50 μg/mL kanamycin to 

an absorbance at 600 nm of 0.5-0.6 and induced at 15˚ C with 0.1 mM IPTG. Cells were 

harvested 12-14 h after the induction. Protein was purified as previously described (2).  

Gel-filtration chromatography was performed in 50 mM HEPES pH 7.5 containing 100 

mM NaCl (Buffer A). 

5.2.3 GTPase activity of IcmF. GTPase activity of Gk IcmF mutants was measured 

using an HPLC-based assay as previously described (2).  

5.2.4 Mutase activity of IcmF. A GC-based assay was used to measure both the 

isobutyryl-CoA mutase and a novel pivalyl-CoA mutase activities of Th IcmF (2).  

 145



(i) Determination of KM values for isovaleryl-CoA and pivalyl-CoA. The reaction was 

performed in Buffer A in a total volume of 0.8-1.4 ml containing: 2.2 mg of Th IcmF, 

100 μM AdoCbl, 25-2000 μM isovaleryl-CoA or pivalyl-CoA, 15 mM MgCl2 and 3 mM 

GTP. At various time points, 200 μL aliquots were removed and subjected to GC analysis 

as previously described (2). (ii) Isobutyryl-CoA mutase activity. The reaction was 

performed in Buffer A in a total volume of 0.8-1.4 ml containing: 15 μg of Th IcmF,  100 

μM AdoCbl, 1.4-2.5 mM isobutyryl-CoA or n-bytyryl-CoA, 10 mM MgCl2 ± 1-3 mM 

GTP. At various time points, 200 μL aliquots were removed and subjected to GC analysis 

as previously described (2). 

5.2.5 Analysis of myxochromides production in M. xanthus by HPLC.  M. xanthus 

DK1622 (WT),  DK1878 (ΔicmF) and Δbkd strains (a strain in which the branched-chain 

ketoacid dehydrogenase complex is disrupted)  were grown in CTT medium (casitone 10 

g/L, 1 M Tris pH 7.6 10 ml/L, 1 M K2HPO4 pH 7.6 1 ml/L, 0.8 M MgSO4 10 ml/L ± 10 

μM CNCbl) supplemented  with the adsorber resin XAD-16 (1%). The culture was 

inoculated with preculture and incubated for 3-5 days at 30°C on a rotary shaker (160 

rpm). Cells and XAD-16 resin were harvested by centrifugation and stored at -80 ºC. 

Usually, 0.1-0.05 g of frozen sample (cell pellet and XAD resin) was extracted with 0.8-1 

ml of methanol. The extract was filtered through 0.2 μm filter and analyzed directly by 

HPLC. Extracts (100-150 μL injected sample) were separated using an HPLC system 

equipped with an Alltima HP 5 μm C18 (250 x 4.6 mm) column (Grace, IL). The UV-vis. 

detector was set up to monitor multiple wavelengths simultaneously (254, 337, 363, 381, 

400 and 422 nm). Solvent A was 0.1 % formic acid in water. Solvent B was 0.1 % formic 

acid in acetonitrile. Initial conditions used for separation were: 5% solvent B; at flow rate 
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of 1.0 mL/min. Between 5 and 14 min, solvent B was increased to 40 %, and then was 

held at 40 % for 10 min. Between 24 and 35 min, solvent B was increased to 100 % and 

held there after for 5 min. At 41 min, solvent B was decreased to 5% and held for 10 min 

at that composition to equilibrate the column between injections. Under these conditions, 

the retention time of myxochromides was ~17-19 min and myxalamids A-C was ~36-38 

min. Myxochromides were identified by comparison of UV-visible spectra of collected 

fractions (0.2 mL) with published spectra of myxochromides (3-5). Samples under 

investigation were diluted as required to be have an optical density of  <1.0. Myxalamids 

A-C were identified by comparing published spectra (3, 7) and the LC-MS analysis 

performed in the laboratory of Dr. Rolf Muller (Department of Pharmaceutical 

Biotechnology, Saarland University, Germany). 

5.2.6 Sample preparation of Ralstonia eutropha H16.  R. eutropha Re2302 (WT) and 

Re2303 (ΔicmF) strains were grown on acetate and bicarbonate ± OHCbl. Samples were 

submitted to Metabolon Inc. (Durham, NC) for metabolic profiling.  
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5.3. Results, discussion and future directions 
 
5.3.1 Distribution of stand-alone ICMs. As mentioned previously, a number of bacteria 

from the Firmicutes and Proteobacteria phyla were shown to assimilate isobutyrate 

(Section 1.1). We examined available bacterial genomic sequences for MCM-like 

proteins where the interconversion of isobutyrate to butyrate has been documented. We 

have found “stand-alone” ICMs in several bacteria (Figure 5.1 and Table 5.1). Our 

findings expand the known distribution of “stand-alone” ICMs beyond the genus 

Streptomyces. In D. baarsii, IcmF, but not the “stand-alone” ICM, is present and suggests 

that in this bacterium, IcmF is the only isobutyryl-CoA mutase.  

ment 
of Ic

 

 

bacterial strains that can use pivalic acid as the sole carbon source (personal 

communication). Subsequently, our laboratories have worked collaboratively to establish 

Figure 5.1:  “Stand-alone” ICMs identified in this study. Multiple sequence align
mF from G. kaustophilus (YP_149244),  MCMs from Desulfarculus baarsii 

(YP_003806846), Desulfotomaculum kuznetsovii (YP_004516746) and  “stand-alone” 
ICMs from Syntrophothermus lipocalidus (YP_003702103), D. acetoxidans
(YP_003191373), D. kuznetsovii (YP_004516591) and D. reducens (YP_001113118). 
Two residues in ICM and IcmF, Phe and Gln are substituted to Tyr and Arg in MCM.  

5.3.2 The role of IcmF in assimilation of pivalic acid. Characterization of IcmF from 

Thauera sp.  Dr. Greg Stephanopoulos and colleagues from MIT indentified a couple of 
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that the pivalyl-CoA mutase activity of IcmF allows Thauera sp. to grow on pivalic acid. 

To this end, we have characterized recombinant IcmF from Thauera sp. The kinetic 

parameters for Th IcmF with pivalyl-CoA and isovaleryl-CoA are summarized in Table 

5.2 and Figure 5.2. This enzyme is more active with isovaleryl-CoA (S.A. = 0.036 ± 

0.0007 μmol/min/mg) compared to pivalyl-CoA (S.A. = 0.0111 ± 0.0008 μmol/min/mg). 

However, since the KM for isovaleryl-CoA is 2.8-fold higher than for pivalyl-CoA, the 

catalytic efficiency of IcmF with both substrates is similar (Table 5.2). Th IcmF is much 

more active with n-butyryl-CoA (S.A. = 42 ± 0.9 μmol/min/mg) and isobutyryl-CoA 

(S.A. = 24 ± 0.3 μmol/min/mg). In other words, the kinetic parameters of Th IcmF are 

very similar to the parameters measured for other IcmFs (See Section 3.4.2 and Table 

2.1). 

 

 

 

Table 5.1: List of bacteria known to convert isobutyrate to butyrate. a-IcmF but not 
the “stand-alone” ICM is present. 
 

Organism ICM MCM conversion of isobutyrate to 

butyrate was detected 

Syntrophothermus lipocalidus + - + 

Desulfarculus baarsii  +a + + 

Desulfotomaculum acetoxidans + - + 

Desulfotomaculum kuznetsovii + + + 

Desulfotomaculum reducens + - + 
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Figure 5.2:Michaelis-Menten analysis of the reaction catalyzed by IcmF from 
Thauera sp. as determined by the GC-based assay. Reaction mixture in Buffer A 
contained: 10 mM MgCl2, 2.27 mg Th IcmF, 100 μM AdoCbl, 2 mM GTP and 20-2000 
μM isovaleryl-CoA.  The kinetic parameters are reported in Table 5.2. 
 
 

 
Table 5.2: Kinetic parameters of IcmF from Thauera sp. Measured in the presence of 
GTP.Values represent the average of at least 3 independent experiments. S.A. with n-
butyryl-CoA is 42 ± 0.9 U/mg and with isovaleryl-CoA is 24 ± 0.3 U/mg. 
 
When isovaleryl-CoA was used as a substrate, the reaction catalyzed by Th IcmF was 

linear only for the first 2 min and a complete cessation of the reaction was observed after 

5 min (Figure 5.3). In contrast, when the reaction mixture was supplemented with GTP, 

the enzyme was still active even after 15 min (Figure 5.3). When isobutyryl-CoA/n-

butyryl-CoA, were employed as substrates, no protective effect was seen. The same 

                                           Substrate 

 Isovaleryl-CoA Pivalyl-CoA 

KM, μM               396 ± 13 139 ± 32 

S.A., μmol/min/mg 0.036 ± 0.0007    0.0111 ± 0.0008 

kcat, s
-1            0.144 ± 0.003     0.044 ± 0.003 

kcat/ KM, M-1 s-1    (3.64 ± 0.04)x102        (3.17 ± 0.51)x102 
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effect of nucleotides on the enzyme activity was seen for IcmF from G. kaustophilus and 

C. metallidurans (Section 3.4.4). 

Dr. Stephanopoulos’ group at MIT is currently working on a reconstructing a pathway in 

E. coli, which will allow IcmF-dependent mineralization of pivalic acid. Pivalic acid, 

which is found in sludge, is mostly of anthropogenic origin and its clearance is an 

important target of bioremediation. Previously MCM was successfully integrated in an 

engineered pathway in E.coli  (6). We are planning to use the same strategy to have 

functional AdoCbl-loaded IcmF in the pathway (6). 

 

 
Figure 5.3: Effect of GTP on the time course of the pivalyl-CoA mutase reaction 
catalyzed by Th IcmF. The reaction mixture in Buffer A contained: 10 mM MgCl2, 4 mg 
Th IcmF, 100 μM AdoCbl, 1.6 mM isovaleryl-CoA without GTP (black circles) and with 
5 mM GTP (white circles) at 37 °C. Aliquots of the reaction were removed at:  0.5, 1, 2, 
5, 15 and 25 min and analyzed by GC as described under Methods.  Error bars represent 
the mean  ± SD of three independent experiments.  

 

5.3.3 Role of IcmF catalyzed reaction in the metabolism of M.xanthus. The role of the 

ICM catalyzed reaction in the biosynthesis of polyketides is well documented (Section 

1.4). However, the only IcmF-containing organism that is known to produce polyketides 

 
5mM GTP 
 
 
 
no GTP 
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is myxobacterium Myxococcus xanthus8. The latter produces myxalamids A-D, which are 

inhibitors of the eukaryotic electron transport chain (3, 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
8 Stigmatella aurantiaca, another bacterium which contains IcmF, is almost identical to M. xanthus from a 
genetic point of view. 

B 

A 
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Figure 5.4: “Brown” phenotype of WT M. xanthus grown in the presence of CNCbl. 
(A) CTT plates ± CNCbl with WT M. xathus DK1622, ΔicmF and Δbkd. (B) WT M. 
xanthus DK1622 and mutants (ΔicmF and Δbkd) grown in liquid CTT medium ± CNCbl. 
Supernatant and cell pellets with XAD resin are shown after centrifugation. These data 
were generated in the laboratory of Dr. Montserrat Elias-Arnanz (Universidad de Murcia, 
Spain). 
 

In collaboration with Dr. Montserrat Elias-Arnanz (Universidad de Murcia, Spain), the 

icmF gene in M. xanthus DK1622 has been deleted, as previously described (8). Briefly, 

~1 Kb of genomic DNA upstream and downsream of icmF was cloned. Then, the 

construct was introduced into M. xanthus DK1622 and  haploid colonies lacking  the 

icmF allele were identified by PCR. M. xanthus DK1878 designation was given to the 

strain with the deleted icmF gene.  

We noticed that when M. xanthus DK1622 age on plates (CTT rich medium in the 

presence of CNCbl), cells and the medium around them become brownish (Figure 5.4A). 

The appearance of the brownish color was not seen in either DK1878 and Δbkd strains 

grown in the presence of CNCbl (Figure 5.4 A). When CNCbl was omitted from the 

medium, the brown color was not seen.  

Next, we confirmed our results in liquid culture in CTT medium containing the XAD 

resin (which is routinely added to M. xanthus cultures to bind various polyketides which 

are secreted by bacteria) (Figure 5.4B). Finally, we note that in DK1050 (an M. xanthus 

strain widely used in many laboratories) the brownish phenotype seen with DK1622 is 

not so obvious (data not shown).  

HPLC was used to fractionate a methanol extract of the XAD resin (DK1622 cultures 

were grown + CNCbl for 3 days) into two major fractions, one eluted at 17-19 min and 

the other eluted at 36-38 min (Figure 5.5). Interestingly, the peaks that eluted at 17-19 
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min are decreased in intensity in DK1878 (~8-fold reduction in absorbance at 400 nm, 

data not shown). We collected 0.15 mL fractions in this region and analyzed them by 

UV-visible spectroscopy (Figure 5.5, inset). Analysis of individual fractions clearly 

shows spectra with maxima at 405 and 420 nm, which provides an explanation for the 

brownish color of the observed phenotype. Similar spectra were attributed to 

myxochromides isolated from M. xanthus DK1050 and Stigmatella aurantiaca (4, 5, 9, 

10). Myxochromides are compounds that are comprised of a peptidic core (usually 5-6 

amino acids) and polyunsaturated side chains (Figure 5.6) Myxochromides differ in the 

composition and order of amino acids in the peptidic core and both the length and the 

number of double bonds in the polyunsaturated tail (Figure 5.6).   

 

Figure 5.5: HPLC analysis of wild-type  and ΔicmF mutant of M. xanthus. HPLC 
traces depict separation of methanol extracts of cell pellets/XAD resin monitored at 360 

 

 

 

 

 

 

 

 

 

 

 

myxochromides 

myxalamids A-C 



nm (absorbance maximum of myxalamids A-C) and 400 nm (absorbance maximum of 
myxochromides). Inset: UV-visible spectra of individual fractions collected at 17-19 min. 

 

Currently, in collaboration with Dr. Rolf Muller (Department of Pharmaceutical 

Biotechnology, Saarland University, Germany), we are using LC-MS/HPLC analysis for 

further characterization of the partially purified compounds that we believe belong to 

myxochromides.  

Figure 5.6: Overall structures of myxochromides. Myxochromides are comprised of a 
peptidic core (A, B, or S) and a polyunsaturated side chain (R). Adapted from (4).  
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We are also considering using the reported strategy (10) of feeding experiments 

employing [13C4, 
15N1] threonine to determine the structure of myxochromides. Since 

production of myxochromides in the Δbkd strain is also diminished, it supports our 

hypothesis that IcmF is involved in metabolism of branched-chain amino acids.  

We initially proposed that the isobutyryl-CoA starter unit for myxalamide B is 

synthesized from n-butyryl-CoA in a reaction catalyzed by IcmF. In studies on the M. 

xanthus Δbkd strain (DK1878), isobutyryl-CoA was found to be incorporated into 

myxalamide B (7). These results were surprising since inactivation of branched-chain 

ketoacid dehydrogenase complex was expected to preclude formation of the isobutyryl-

CoA starter unit (from valine). When we compared production of myxalamide B by 

HPLC in DK1622 and DK1878 grown in the presence of CNCbl, almost no difference 

was seen (data not shown). This indicated that the primary role of IcmF in DK1622 is not 

the production of isobutyryl-CoA for myxalamide B synthesis. 

Interestingly, tert-butyl group found in pivalic acid is a part of apratoxins  (Figure 5.7) 

and laingolides isolated from different strains of cyanobacterium Lyngbya bouillonii (12-

14). Although it was suggested that tert-butyl thioester (pivalyl-CoA) is coming from 

decarboxylation of malonyl-CoA where three methyl groups are donated by S-adenosyl-

L-methionine (SAM) (13), it is also possible that in complex microbial assemblage 

pivalyl-CoA is a direct product of pivalyl-CoA mutase activity (see Chapter 3). 

5.3.4 Role of the IcmF-catalyzed reaction in metabolism of R. eutropha. In 

collaboration with the group of Dr. Antony Sinskey (MIT), we are using Ralstonia 

eutropha as a model organism, to test the hypothesis that IcmF is involved in fatty acid 

metabolism. Currently, icmF has been knocked out and initial feeding studies are being 
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performed. Samples containing WT Ralstonia eutropha (Re2302) and icmF knockout 

strain (Re2303) were subjected to metabolome analysis in which  >300 compounds are 

detected using LC-MS/MS and GC-MS platforms. Preliminary results show that when 

the Re2303 strain is compared to the WT strain, significant accumulation of different 

dipeptides containing leucine, isolucine and valine is detected (~1.8-7.7 fold of change) 

(Figure 5.8). 

 

Figure 5.7: Tert-butyl group is marked with a red 

oval.Taken from

 

line) are converted by 

the action o hydrogenase complex to isovaleryl-CoA, 2-

methylbutyryl-CoA and isobutyryl-CoA, which are precursors of branched chain fatty 

acids (7). Isovaleryl-CoA is also a substrate for IcmF, which converts it to pivalyl-CoA 

(Section 3.4.2). Thus, it is tempting to speculate that IcmF is involved in the metabolism 

of branched fatty acids. We are planning to perform fatty acid profiling both in WT and 

 Overall structure of Aprtatoxin A. 

 (13). 

In bacteria, branched-chain amino acids (leucine, isoleucine and va

f the branched-chain ketoacid de
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the Re2303 mutant strain and hope that this analysis will shed more light on the function 

of IcmF in the bacterial cell. 

 

Figure 5.8: Accumulation of dipeptides in ΔicmF strain of R. eutropha. Statistical 
analysis of the data represents the fold change in each dipeptide in the ΔicmF strain 
compared to the wild-type strain (0.001<p< 0.0285). It can be seen that in the ΔicmF 
strain, dipeptides containing branched chain amino acids (leucine, isoleucine and valine) 
accumulate several fold. These data were generated in the laboratory of Dr. Antony 
Sinskey by Dr. Chris Brigham (MIT). 
 
 5.3.5 How do the mutase domains of IcmF signal to MeaI? Prior to obtaining 

structural insights into the surface of the two mutase domains (IcmA and IcmB) that 

interact with MeaI in the IcmF fusion, we used the published data on MCM and MeaB 

from M. extorquens to guide our studies (11). The R585C mutation impairs the GAP 

activity of MCM and leads to loss of the proofreading activity of MeaB  (11). Based on 

these effects, it was speculated that R585 might function as an arginine finger residue to 

“complete” the MeaB active site (11). R585 resides in a cluster of four solvent exposed 
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arginines at the tip of the B12-binding domain of MCM with the others being R582, R583 

and R663 (Figure 5.9).  

Figure 5.9: Conserved arginine residues in the B12-binidng domain of IcmFs. 
Multiple sequence alignment of IcmFs, MCMs from M. extorquens (YP_001642233), 
Streptomyces avermitilis (NP_823216), Myxococcus xanthus (YP_630484), Nocardia 
farcinica  (YP_119678 ) and ICM from Streptomyces coelicolor. For accession number 
of IcmFs see Table 2.1. 
 

This tetra-arginine cluster is highly conserved in MCMs but does not align well when the 

MCM sequence is compared to the B12-binding domain of different IcmFs (Figure 5.9). 

Nevertheless, the B12-binding domain of IcmF also has a cluster of four conserved 

arginines (R12, R31, R32 and R48, numbering of Gk IcmF). To test our hypothesis that 

an arginine residue in the B12-binding domain activates the G-protein domain, all four 

arginine residues were mutated. Surprisingly, the GTPase activities of all four mutants 

 

 

 

 

 

 

 

 

 

 

 

 



were almost identical to that of WT Gk IcmF (Table 5.3). With the availability of the 

IcmF structures, the mutagenesis results can be explained. All four  arginine residues are 

distant from the MeaI active site and are unlikely to participate in communication 

between domains9.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5.3: GTPase activity of wild-type Gk IcmF and of the arginine mutants.  
All experiments were performed in Buffer A with 10 mM MgCl2 at 37 °C as described 
under Experimental Procedures. Values represent the average of at least three 
independent experiments.  
 
 

5.3.6 IcmF structure determination. In collaboration with Dr. Catherine Drennan’s 

laboratory at MIT, we recently obtained the first crystal structure of IcmF from C. 

metallidurans, which provides unprecedented insights into how the MeaI and the ICM 

domains interact. Currently, we have a structure of holo-IcmF with bound GDP at 3.5 Å 

resolution. Additionally, we have crystals of apo-IcmF and holo-IcmF with isobutyryl-

CoA/n-butyryl-CoA and isovaleryl-CoA bound. These structures will provide a useful 

framework for interpreting biochemical studies designed to probe conformational 

                                                 
9 Currently we are using the structure of full length IcmF to guide our studies. 

protein kcat, min-1 

WT 10 ± 2 

R12C 11.6 ± 3 

R31A 12 ± 1 

R32A 9.9 ± 1 

R48A 11 ± 3 
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dynamics and the structural basis for the cross-talk between the mutase and GTPase 

domains of IcmF. 

We plan to analyze in more detail the structure of IcmF with different substrates bound 

(pivalyl-CoA, isovaleryl-CoA, n-butyryl-CoA and isobutyryl-CoA). Differences between  

structures  of holo-IcmF with substrates could provide information on the inactivation 

observed with the butyrate thioesters (Section 3.4.4 and Section 5.3.2). Unfortunately, up 

to date, apo-IcmF/apo-IcmF with nucleotides crystals diffract very badly >20Å so we are 

planning to further optimize the conditions.  

We recently succeeded in cloning ATR from C. metallidurans (Section 4.2.1), which 

delivers AdoCbl to IcmF. We will therefore attempt to co-crystallize ATR and IcmF to 

generate a complex that contains all proteins necessary for AdoCbl delivery to a B12-

dependent mutase.  

5.3.7 Final remarks.  My thesis research significantly contributed to broadening our 

understanding of vitamin B12-dependent enzymes that support bacterial metabolism in 

specific niches and natural products synthesis. Our studies provided insights into the 

complex structures of a cobalamin-dependent mutase and its G protein chaperone that is 

pertinent to other B12-mutase/chaperone duos including those found in humans and 

associated with disease. The G protein chaperone in IcmF is a member of a larger family 

of proteins involved in the assembly of several important metalloenzymes such as nickel 

hydrogenases and urease. However, the mechanisms of metal delivery and cluster 

assembly are largely unknown. Our studies on IcmF, which are simplified by the fusion 

between the G-protein domain and the client enzyme, serve as a paradigm for 

understanding intracellular metal trafficking and chaperone function. Since dysfunction 
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of these processes is involved in a number of diseases, a deeper understanding of IcmF 

function has the potential to lead to therapeutic strategies. To our knowledge the IcmF 

structure we obtained is the first example of a crystal structure of a fusion between an 

enzyme and its chaperone.   
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