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ABSTRACT

This report is concerned with the theoretical wave resis-
tance of an air-cushion vehicle (ACV) traveling over water of
uniform finite or infinite depth, in steady or unsteady motion.
Referring first to steady motion, it is shown that the un-
realistic oscillations in the wave resistance curve at low
Froude numbers found by previous workers can be eliminated
by using a smoothed out pressure distribution rather than one
with sharp edges studied exclusively in the past. The main
result of unsteady motion calculations is that the peak wave
resistance in shallow water, even in moderately accelerated
motion, is appreciably less than the corresponding steady-
state wvalue. In fact, cases have been found where an ACV
starting from rest under the action of a constant thrust would
seem to be unable to cross the critical depth Froude number
on the basis of quasi-steady estimates of wave resistance,
while the more elaborate unsteady calculations show that it
has sufficient power to reach its final supercritical cruis-
ing speed. An interesting feature of unsteady motion is that
besides wave resistance there is another mechanism transfer-
ring energy to the free surface which is here called the dy-
namic sustention power. Contrary to intuition, the wave re-
sistance in unsteady motion over finite depth sometimes be-
comes negative at supercritical Froude numbers before finally

approaching zero at infinite speed.
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SUMMARY

This report is concerned with the theoretical wave re-
sistance of an air-cushion vehicle (ACV) traveling over
water of uniform finite or infinite depth, in steady or un-
steady rectilinear motion.

It is conventional in such an analysis to model the
ACV with a given pressure distribution applied to the free
surface of an inviscid incompressible fluid and to use lin-
earized boundary conditions on the free surface.

The results obtained by this approach in the past,
while in good agreement with measurements at high Froude
numbers, have raised two questions of practical signifi-
cance. First, at low Froude numbers the theory predicts
an infinite number of unrealistic humps and hollows in the
wave resistance curve. Second, when the depth of water is
small compared to the length of the ACV, the steady-state
peak wave resistance at the critical depth Froude number
becomes relatively high compared to the wave resistance at
the cruising speed, which is typically supercritical.

It is shown that the unrealistic oscillations at low
Froude numbers can be essentially eliminated by using a
smoothed out pressure distribution in contrast to the sharp
edged distribution used by previous workers. Moreover,

for a rectangular distribution, this effect is mainly pro-
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duced by the smoothing at the forward and after edges.

In resolving the second question, the primary consider-
ation was that such peak resistance can only represent a
transient phase in the practical operation of any ACV.
This naturally suggests tackling the unsteady motion prob-
lem, also in the hope that in accelerated motion the ex-
tremely long shallow water waves may never have enough time
to build up to their peak values.

The unsteady theory indeed shows that at reasonable
accelerations, an ACV can pass the critical depth Froude
number without encountering unreasonably high wave resis-
tance.

It is seen that in unsteady motion, besides wave re-
sistance, there is another mechanism transferring energy to
the free surface. This is the dynamic sustention powér
and represents the work done by the pressure against the
relative vertical motion of the free surface in order to
maintain the altitude of the ACV. This is quite indepen-
dent of the static 1ift power required to support the air-
cushion vehicle - even at zero speed.

Results of several sample calculations are presented,
including many for a two-dimensional pressure band which is
relatively easy to compute, and exhibits the phenomena of
interest in a very accentuated manner. Contrary to intu-
ition, in two-dimensional unsteady motion, the wave resis-
tance, and even the total rate of work done on the free

surface (including sustention power) become negative at

xXiv



some supercritical speed, before finally approaching zero
at infinite speed. However, there should be no fundamental
objection to this phenomenon, as the ACV is merely recover-
ing some of the energy previously expended on the free sur-
face.

It is found that the Froude number at which the maximum
negative wave resistance occurs can be predicted by an ap-
plication of the simpler shallow water theory - in which the
phenomenon is further accentuated. No region of negative
wave resistance was encountered for a three~dimensional
pressure distribution.

Finally, several cases of the inverse problem have been
calculated, which is aimed at determining the velocity pat-
tern for an ACV starting from rest under the action of a
propulsor of given thrust-speed characteristics. This 1is
treated in two different ways: calculating the wave resis-
tance in a truly unsteady manner, and on the simplified
quasi-steady basis. All other components of drag are as-
sumed to be strictly quasi-steady. The results show that
the shape of the propeller thrust and torque coefficient
curves has only a minor effect on the velocity pattern. On
the other hand, the effect of overloading the ACV is found
to have crucial effects on its ability to surpass the criti-
cal depth hump.

In this respect, the simpler quasi-steady calculations
lead to unnecessarily pessimistic estimates of the velocity

pattern. Under certain circumstances in relatively shallow
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water, the quasi-steady analysis would suggest that the ACV
could not overcome the critical hump with the available pow-
er, while the more elaborate unsteady calculations show that
it has indeed adequate power to reach its final cruising

speed.
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1 - INTRODUCTION

l.1 - PREVIOUS WORK:-

The hydrodynamic aspects of an air-cushion vehicle (ACV)
can be studied by assuming its action to be equivalent to that
of a pressure distribution acting on the free surface of the
water. This idealization neglects any physical contact of
the lower edge of the craft with the water. It also assumes
that the flow of air escaping under the periphery is inviscid,
and therefore produces no spray.

Havelock, in some of his early papers (1909, 1914 & 1926)
was the first to treat the theoretical problem of the wave
resistance of a pressure distribution. His interest in pres-
sure disturbances lay in a desire to represent the motion of
a ship. As a results, most of the distributions that he chose
to analyse were very smooth and were not typical of the ACV.

However, later on, Havelock (1932) derived the general
expression for a pressure distribution traveling at a constant
speed. In this paper, he also found the relationship between
the pressure acting on the free surface, and the equivalent
source distribution.

Lunde (1951a) extended the theoretical treatment to cover
the case of an arbitrary distribution moving over finite depth.
Other workers have obtained numerical results for pressure

distributions which are directly applicable to the ACV. These



include Newman and Poole (1962) who considered the case of
motion in a restricted waterway such as a canal. They cal-
culated the two cases of a constant pressure acting over a
rectangular area, and over an elliptical area. The most
striking feature of their results is the very strong inter-
action between the bow and stern portions of the distribut-
ion. Particularly for the rectangular distribution (where
the interaction would be greater), there are displayed a
series of humps and hollows in the resistance curve. A
hump occurs when the bow and stern wave systems are in phase
and combine to give a trailing wave of a maximum height. A
hollow occurs when the two wave systems are out of phase by
half a wavelength giving a combined amplitude of a minimum
height.

The interference effects are found to be stronger for
large beam to length ratios, as would be expected from the
above argument, since the wave motion becomes more nearly
two-dimensional for a wide craft.

Barratt (1965) also computed the wave resistance of rec-
tangular and elliptical pressure distributions, but for the
case of unrestricted water. His results are to some extent
similar to those for the canal. In deep water, the main (or
"last") hump occurs at a Froude number given by F = 1//7w.

In water of finite depth this hump is shifted to a lower
Froude number, and for sufficiently shallow water occurs at a
depth Froude number, F i, equal to unity (i.e., at the critical

speed) . One difference between these two sets of results is



pointed out by Newman and Poole. For a canal of finite
width, the theory predicts a discontinuity in the wave re-
sistance at the critical depth Froude number. The resistance
is higher just below the critical speed than just above it.
However, for an infinitely wide canal, there is no discon-
tinuity, but there is a sudden change in slope at the critical
speed,

Havelock (1922) also presented some results for a very
smooth pressure distribution over water of finite depth.
These, too, clearly show the shift of the main hump and the
increase in its magnitude in shallower water. Havelock's
curves display only the main hump. The secondary and other
humps do not occur because of his choice of pressure distri-
bution.

Recently a number of experimental programs have been
carried out in order to check the above-mentioned theoretical
results. Chief workers in this field are Everest (1966a,
1966b & 1967) and Hogben (1966a). The main question pointed
out in these papers is the resolution of the total drag on the
ACV into its components. These components are often consider-
ed to be: Wave Resistance, Aerodynamic Drag, Momentum Drag
and Water Contact Drag.

The aerodynamic drag (or profile drag) is assumed to be
that resistance acting on the model if it were tested in a
wind tunnel with the engines not running.

The momentum drag is that due to the change in direction

of the air supplying the cushion as it enters the fan intakes.



In fact, we should consider two components here: Inlet Mo-
mentum Drag, and Outlet Momentum Drag. The outlet moment-
um drag is associated with the changes in direction and ve-
locity of the air as it escapes from the cushion, and can be
either positive or negative, depending on the trim of the
craft.

The water contact drag is due to any touching of the
lower edge of the craft, or of the skirts, with the water.
Due to the extremely non-linear nature of this effect, the
drag (or possibly thrust) due to spray from the cushion hit-
ting the craft is usually included with it.

While the first three resistance components defined
above may be studied from a theoretical approach, the water
contact drag only lends itself to an experimental study. To
this end, Everest (1966a) estimated the water-wetting resis-
tance by eliminating it - using a thin polythene sheet floa-
ting on the water surface. This technique, however, intro-
duces the question about the tensile forces in the sheet.

The resistance breakdown is further discussed by Hogben (1966a)
where he provides a careful definition of each component.

These experimental results were generally obtained by a
dynamometer measuring the total drag. Then the aerodynamic,
momentum and water contact drag components were estimated
and subtracted in order to make a comparison with the theore-
tical wave resistance. The agreement appears to be quite
good in regard to the range in values of the wave resistance.

However, the large scatter in the data makes it difficult to



draw precise conclusions. The authors suggest that, in
addition to the main hump, they can detect a secondary and
possibly a third one, and that these are out of phase with
the theoretical humps by no more than 0.05 on the Froude num-
ber scale.

An explanation given for the non-appearance of more humps
is based on the fact that the lower speed humps predicted by
the linearized theory correspond to a wave pattern whose max-
imum slope is too large from physical considerations. Hogben
gave a two-dimensional argument (1965) showing that the max-
imum ratio of wave height to length is about 1/7. This would
preclude the development of any humps above the third or
fourth (depending on the cushion pressure).

Further experimental work by Everest, Willis and Hogben
(1968 & 1969) dealt with the wave resistance of an ACV at an
arbitrary angle of yaw. This problem was also studied theore-
tically by Murthy (1970). In these experiments, the wave
resistance was measured directly from the wave pattern. As
a result there is less scatter in the data since the rather
doubtful technique of estimating the wetting drag is elimin-
ated. The experimental results here are generally low com-
pared with the theory, the difference being usually limited
to about 10% but is occasionally as much as 50% at certain
Froude numbers.

The outcome of these investigations is that the main
hump drag is relatively large in relation to the installed

propulsive power of typical ACVs. In addition, the prob-



lem is more acute in shallow water where the thrust margin of
some craft has been found insufficient to surpass the hump.

It has been found necessary from speed and economic considera-
tions to operate in the cruising condition at a Froude number
of at least 1l.5. This is well above the hump speed and the
wave resistance is accordingly smaller.

However, in a real situation, the craft does not operate
steadily at the hump speed. In fact, the procedure is to ac-
celerate through it as quickly as possible. Under a non-
steady condition it appears quite reasonable to anticipate
that the large amplitude wave pattern at the hump speed will
not have time to establish itself - thus leading to a less
aggravated problem in shallow water. Some experiments on a
rectangular model by Everest (1966b) confirm this. Under
certain conditions in finite depth he has found a reduced

resistance peak.

1.2 -~ PRESENT STUDY:-

These considerations point towards a theoretical inves-
tigation of the wave resistance during accelerated motion.
Already, the problem for a ship has been treated by Sretensky
(1939), Lunde (1951b, 1953a & 1953b) and Shebalov (1966).
These workers have derived the linearized result for the re-
sistance, but produced no computed values. Wehausen (1964)
computed the resistance of a ship model with a constant ac-

celeration from rest up to a speed which was then held fixed.



His results, however, consist of asymptotic expressions for
large values of the time, and there are no data for the re-
sistance during the acceleration phase of the motion. Wehau-
sen's interest stemmed from a desire to know the required
length of a model ship test before the steady state resistance
is achieved.

With regard to the unsteady motion of a surface pres-
sure distribution, Havelock (1916) has computed the resistance
of two particular distributions whose motion is suddenly es-
tablished from rest, and then continued at a constant speed.
On the other hand, Djachenko (1966) has derived an expression
for the resistance of an arbitrary pressure distribution for
a general acceleration pattern. He also presented some re-
sults for a two-dimensional distribution.

The transient problem is of interest mainly for two rea-
sons. First, since a numerical solution to this problem will
make it possible to calculate the resistance history as a func-
tion of the acceleration pattern, one could expect to find op-
timum acceleration programs that would reduce the peak wave
resistance, or the peak total resistance.

Second, it is of interest to examine the inverse prob-
lem: the resulting motion under the action of a propulsive
device of given thrust-speed characteristics. This is, of
course, the more natural problem and any theoretical results
could also be checked by experiment.

It is believed that there is more justification for ap-

plying the linearized theory to the transient, rather than



the steady, problem because of the diminished likelihood of

an excessively steep wave system building up.



2 - THE POTENTIAL FUNCTION

2.1 - PROBLEM STATEMENT:-

The air-cushion vehicle will be represented by a pres-
sure distribution p(x,y) acting on the free surface, and
traveling with the speed of the craft. Two right-handed
coordinate systems will be used, as shown in Fig. 1. The
system Xxyz moves with the craft, z being vertically up-
wards and x being in the direction of the rectilinear mo-
tion. The second axis system x*yz is fixed in space.

The relationship between the coordinates is then given by

*
X=X - s(t)
t
*
=x - I c(t) dr, (2.1)
(1]

where ¢ and s are the velocity of the model, and its dis-

tance traveled, respectively.

The velocity potential satisfies the Laplace equation:
v $¢ =0, (2.2)

*
where ¢ is the velocity potential in the stationary frame
(such that the velocity is the positive gradient of the po-
*
tential), and V also implies differentiation in this frame.

If ¢ 1is the perturbation potential in the moving frame, we

9
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may say that

* *
o (x,y,2z,t) = ¢ (x ,¥,2,t), (2.3)
*
if x and x correspond to the same point in space. From
Eg. (2.1) we have
9 d
—_— e— ’ (2.4)
Bx; X

so that Eq. (2.2) may be written as

V3¢ = 0 . (2.5)

The kinematic boundary condition on the free surface re-

guires that a particle on it remains there. That is,
D 1z - z(x,y,t) =0 (2.6)
Dt 1Yo z= ' *

where ¢ is the elevation of the surface. In terms of the

moving coordinates we have

D__ 23 - o) I 4 Wi
pE =3 T (WOt Vay t Waz v
where u, v and w are the perturbation velocities. Com-

bining this with the exact kinematic condition, Eq. (2.6),

and substituting for u, v and w:
[¢z-ct-(¢x e c)cx-¢ycy] g 0.

At this stage the second order terms may be dropped, and the

remaining terms written as a Taylor expansion about the
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point z = O0:

Finally, the linearized kinematic condition on the free sur-
face may be obtained by dropping the higher order quantities

again:

The dynamic condition on the surface - the Bernoulli equa-

tion - in terms of the stationary coordinates is
* 1, * p *
[¢ it 7(¢ x° + ¢ + 6, )] Ll + 3 +gr = £, (2.8))

where p is the water density and g 1is the acceleration due
to gravity, while f is an arbitrary function of time.

Again, we may drop the squared terms as these are of higher
order. In addition, f may be put identically to zero with-
out loss of generality. Alsc, from Egs. (2.1) and (2.3) we

have

¢ = b - C by -
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Thus Eq. (2.8) reduces to

- B =
[¢t c ¢x]z=c + 5 + gz 0 .
As before we may expand the first term in a Taylor series

about z = 0 , and then drop the higher order terms to ob-

tain the linearized dynamic condition:

[¢t - c ¢x]z=0 +Brgr=o. (2.9)

The combined free surface condition is obtained from

Egs. (2.7) and (2.9) after eliminating ¢ :

[¢tt + c2¢xx - 2c St ~ c o, * 9 ¢z]z=0 = c px/p . (2.10)

The last boundary condition to be satisfied is that

there is no flow through the water bed:

[¢Z]Z=—d =0, (2.11)

where d 1is the depth of the water.
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2.2 - SOLUTION FOR THE POTENTIAL:-

The solution of this set of equations can be obtained by

an application of the double Fourier transform pair:

£ (w,u) = %F [ dax ’ dy £(x,y) exp(-i(wx + uy))
(2.12)
and f(x,y) = %F [ aw J du f(w,u) exp (i(wx + uy)) ,
and the Laplace transform pair:
flq) = [ f(t) exp(-qt) dt
0

§+ic
and f(t) = f%f [ f(g) exp(qgt) dq, (2.13)

=i

§ being a positive constant.
Using the rules for transforming a derivative, the La-
place equation (2.5), under the transformation (2.12), be-

comes:
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(iw) 26 + (i) 2 + ¢__ =0,

where ; = ;(w,u;Z.t) .
Hence ;zz - kZ; =0 ,
where k2 = w2 + u? . (2.14)
A solution for ; is

5 = R(w,u;t) cosh(kz + g(w,u;t)) ' (2.15)
where ; and E are, at the moment, arbitrary. ﬁ may be

found by transforming the bed condition, Eq. (2.11), giving
[;z]z=—d =0
and substituting Egq. (2.15). Thus
[i-k-sinh(kz + E)]z=_d =0,

giving B = kd

and ; =2 cosh(k(z + d)) . (2.16)
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Applying now the Fourier transform to the combined free
surface condition, Eq. (2.10), and using ¢ given by Eq.

(2.16), we obtain

[itt-cosh(k(z + d)) + c2(iw)2A-cosh (k(z + d))

- 2ceiwA -cosh(k(z + d)) - Cc+iw*A-cosh(k(z + 4))

+ gkesinh(k(z + d))] 2=0 = ceiwep/p .

Or, more simply,

~

A, - 2icwer + A(y?2 - c?w? - icw) = icw-sech(kd)-% , (2.17)

in which y? = gk tanh(kd) . (2.18)

A substitution that makes the coefficients in Eq. (2.17)

constant has been found by Lunde (1951b). It is
A(w,u;t) = x(w,u;t) exp(iwes(t)) . (2.19)

After putting this in Eq. (2.17), and some simplification,

one obtains

~

+ vy = icw-sech(kd)-%-exp(-iw-s(t)) :
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We now take the Laplace transform, Eq. (2.13), of the

previous equation to get

~
~

(q%2 + y?) x = iw-sech(kd)-%-L(c-exp(—iw-s(t))) i
where [ is the Laplace transform operator. Thus
; = i-%%~sech(kd)-L(sin yt)+L(ceexp(-iwes(t))) .
Using the convolution theorem to perform the inverse
Laplace transform of this, we obtain

; = i-%%-sech(kd) c(t) *sin(y(t - 1)) +exp(-iw-s (7)) dt .

Egs. (2.19) and (2.16) are now used, together with the

above equation, to yield

c(t)esin(y(t - 1))°

t
~ . wp. cosh(k(z + d))
<2 %% cosh (kd) J

0

cexp(iw(s(t) - s((t))) dr . (2.20)

The double Fourier transform, Eq. (2.12), can be used

to express 5 in Eq. (2.20) in terms of p, and then the
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inverse transform is taken to give the disturbance potential,

¢ , in terms of the moving coordinate system, xyz :

du

8§ -———3

t o
i
¢(X,Y,z,t)=m Ip' das' J c(t) dr [ dw
St 0 oo

wecosh(k(z + d))
Ygk+ tanh (kd) * cosh (k4)

-sin[/gk-tanh(kd)-(t - T)]‘

-exp[i(w(x - x'" + s(t) - s(1)) + uly - y'))] . (2.21)

Here k? = w2 + u? as before, and p' = p'(x',y') , defined
over the area S' , while x' and y' are dummy coordinates

in the moving reference frame.



3 - THE WAVE RESISTANCE AND SUSTENTION POWER

3.1 - DEFINITIONS:-

In this section expressions for the wave resistance will
be derived. Also the computer studies showed that under cer-
tain circumstances this resistance could become negative.
Hence it is of interest to examine the total rate of energy
input to the water, as well.

Using the stationary frame of reference, the wave resis-
tance may be defined as the horizontal component of the cush-

ion pressure force acting on the free surface. Thus

* * * *
R = p (x ,v,t) ¢ <* dx dy ,
*

S

*
where the superscript indicates that the variable is
given in terms of the fixed frame. This formula may be ex-

pressed in the moving frame as

R = {J p(x,y) Ly dx dy . (3.1)
S

18
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Now the power input to the water (in the fixed frame)

is

. * * * * *
o = p (x ,vy,t) n-.w ds , (3.2)
*

S

where n 1is the unit normal vector at the free surface and
directed inwardly, and v is the velocity of the particles

of water on the surface. By definition

L % x X /i * 2 x 5 3

Q—(r,x*{.+cy2—~)/ + (g %) +(r,y) (3.3)
kK * *

and Y—¢X*£+¢y2+¢215. (3.4)

In the stationary reference frame, the kinematic con-

dition on the free surface is
D X %
'ﬁE‘ (Z - C (X ,Y,t)) * =0 14

* *
or [¢z—cx*¢x*-c ¢ -ct]zzc*=0. (3.5)

In addition, we have



20

%* * *
ds’ = dx dy A+ (;"‘x,,t)2 + (z 2. (3.6)

If we now combine Egs. (3.2) to (3.6), we obtain

* * * *
o =T p (x ,vy,t) T £ dx dy . (3.7)

*
S

A transformation to the moving frame is now in order,

and using the relation
L g = CTg = C Ly s (3.8)

the final expression for the total rate of work done on the

water results:

Wy = [J p(x,y) [c Ly Ct] dx dy . (3.9)
S

Note that the expressions for the resistance and total
power (Egs. (3.1) and (3.9)) are exact - they have not been
linearized. The total power contains the power required to

overcome the wave resistance:



21

W.=cR . (3.10)

The other part of the total power we shall call the sus-

tention power:

J p(x,y) ¢, dx dy . (3.11)

ﬁs'
Il
|
n—

Thus the sustention power represents the rate at which
work is done by the cushion pressure against any vertical
motion of the free surface, and is positive for an average
downward movement. This power term should not be confused
with the power required to provide the air cushion. The
sustention power would come from changes in gravitational
potential energy of the ACV, as it heaves and trims during
the unsteady motion. During steady motion, the position of
the free surface does not move relative to the craft. In

this case the sustention power is zero.
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3.2 - WAVE RESISTANCE:-

We use Eg. (3.1) defining the resistance, and the dy-

namic condition on the free surface, Eq. (2.9).

1
R = -g— JJ P [[C d)xx - q)tX] 2=0 - Px/p] ax dY .
S

After integrating with respect to x , the last term in

the integrand gives

I S "
2pg J [p (XpY)] - dy ,

which is zero for any typical distribution. We may now sub-
stitute the expression for ¢ given by Eq. (2.21), and af-

ter some reduction, obtain

dw du

§—8
§—s

t
R = Z?%BE [J p ds JJ p' ds’ J c(t) drt
0

w2°cos[/gk-tanh(kd)°(t - T)]‘

-exp[i(w(x - x'" + s(t) - s(t)) + uly - y'))] . (3.12)
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Since we only require the real part of this equation, we

rewrite the exponent factor as

p—

factor = cos|w(x - x' + s(t) - s(1)) + uly - y')]

oo —

= cos|w(x - x') + u(y - y')J-cos w(s(t) - S(T))]

- sin|w(x - x') + u(y - y')]-sin w(s(t) - s(r))] .

The second term on the right hand side is odd with respect
to the pair x - x' and y - y' , and therefore contributes

nothing to the integral. Expanding the first term, now,

factor = [cos(w(x - x'))ecos(u(y - y"))
- sin(w(x - x'"))esin(u(y - y'))]—cos[w(s(t) - s(r))] .

This time the second term is odd with respect to w and u ,
and therefore gives no contribution. We may expand the fac-

tor a third time to yield

factor = [cos(wx)-cos(wx') + sin(wx)-sin(wx')Jx

(continued over)
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x[cos(uy)-cos(uy') + sin(uy)-sin(uy')]x
xcos[w(s(t) - S(T))] .

If we place this factor back into Eq. (3.12), the de-

sired expression for the resistance is obtained:

=}

t ©
_ 1 2 2 2 2 2
R = e [ c(t) dt ldw J du w [Pe + Po + Qe + Qo ]x
0 0 0

xcos[/ék-tanh(kd)-(t - T)]'COS[W(S(t) - s(r))] , (3.13)

P
where Pe = J[ p(x,y) ggi(wx) gii(uy) dx dy
°© s
(3.14)
Qe sin cos
and o = ” P(X,y) Log(WX) oinluy) dx dy .
°© s

It is interesting to compare Eg. (3.13) with the ex-
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pression obtained by Lunde (1951b) for a ship. An addi-
tional term consisting of a fourfold integral, and being sim-
ply proportional to the instantaneous acceleration, occurs

in his formula. It represents a type of added mass, and is
zero if the singularity distribution lies on the free sur-

face. This is the case of a pressure distribution.

3.3 - TOTAL POWER:-

The total power is defined by Eqg. (3.9). Using the

kinematic condition, Eq. (2.7), the power may be written as

Wy = - Jj p [ 6, po ax av .

S

The equation for ¢ , Eq. (2.21), is now substituted to

give

t o0
Wy, = 4;tpg [[ p ds JJ p' ds' I c(t) dt J dw
0 =)

S S' -

du

§+———38

w-/bk-tanh(kd)-sin[/bk-tanh(kd)-(t - T)]'

-exp[i(w(x - x' + s(t) - s(1)) + uly - y'))] .
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This expression may now be simplified in a manner iden-
tical to that used on Eq. (3.12) for the resistance. We
then obtain for the total rate of work done on the water by

the pressure:

[ee}

t o

U |

T  T2pg J c(t) dr [ dw [ du we/gketanh (kd) x
0 0

0

2 2 2 2
x[Pe + Po + Qe + Qo ]x

xsin[/@k-tanh(kd)-(t - T)]-sin[w(s(t) - s(r))] . (3.15)

3.4 - STEADY STATE WAVE RESISTANCE:-

The steady state resistance may be obtained from
Eg. (3.13) by letting the velocity of the model be constant
for a long time. For example, if we take the velocity of
the craft to be suddenly established, and then fixed at a
value ¢ , the time integral in Egq. (3.13) may be carried

out analytically to give
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x[51n(y + we)t + sin(y - wc)t] , (3.16)
Y + wc Y - we
with y? = gke«tanh (kd)

g/u? + w2.tanh(vu? + w2.d) ,

as before.

We want to know the value of R for very large time.
As t » o , the oscillations (about zero) due to the sine
terms increase, so that there is no contribution to the in-

tegral except when

Yy -wec=20, (3.17)
Eg. (3.17) gives the relationship between the trans-
verse and longitudinal wave numbers for waves which travel
at the speed of the model. We may now quote the following
result from Wehausen (1964) or Wehausen and Laitone (1960,

p. 477):
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b
lim sin(x - x,)t _ .
£ > o [ f (%) % = X dx = 1 f(xo) 1if a < x9 <Db .
a

It is required here that f is smooth in the neighborhood

of x = x, , and that £(x)/x 1is absolutely integrable in

the range. The theorem below may then be derived from this
result:
b
lim sin g(x)t _ '
£ 5w J £ (x) =) dx = 7 Z f(xi)/|g (xi)|,(3.l8)
i
a

where x, are the zeros of g(x) , assuming that a < X, < b
and g'(x;) # 0 .
First we rewrite Eq. (3.16) in terms of polar coor-

dinates:

w k cos 86 ,

u k sin 6 , (3.19)

d(w,u) _ o
3 (k,0) !

and then apply the second theorem to the k integral. It

is seen that if

g(k,8) =y -wc,
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or g(k,8) = Ygk-tanh(kd) - ckecos 6 ,

then l%— g(k,e)l = %c-cos 0 [1 - kod-secze-sechz(kd)] ’

where k 1is the solution of
k - ky sec?6-tanh(kd) = 0 , (3.20)
with ko = g/c? . (3.21)
If we now make the necessary substitutions detailed

above, Eq. (3.16) reduces to the following single integral

for the resistance of an ACV during steady motion:

/2
R = 1L k?® cos 8 N
Tpg 1l - kydesec2g+.sech? (kd)
61
2 2 2 2
X[Pe + P %+ Q.2+ Q) ] ds . (3.22)

Here the lower limit for ¢ is taken as 6, , the
smallest positive value of ¢ which can satisfy Eqg. (3.20)

for a real k . It is given by
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6 = 0 for ke¢d > 1 (subcritical speed)
(3.23)
arccos vkod for ko,d < 1 (supercritical speed)

Eg. (3.22) is the same as that given by Barratt (1965).
It may also be reexpressed as an integral with respect to the
wave number k , through the connecting relationship given by

Egq. (3.20). The result is

k tanh (kd)

Y1 - k, tanh(kd)/k
1

— 2 2 2 2
T [P + Po + Qe + Qo ] dk .

|

W

o
A— 3

(3.24)

Here k; 1is given by the solution of

k, = k, tanh(k,d) if k,d > 1 ,
(3.25)
or k, =0 if kod < 1 .

It may be noted in passing, that we could obtain the
steady state value of the total power, Eq. (3.15), in a sim-
ilar manner. In that case, after integrating Eq. (3.15)
with respect to time, we would get the following expression,

instead of Eq. (3.16):
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; = c s 2 2 2 2
T T7Zog 1 w dw { du v [Pe + Po%+ Q%+ Q ]x
0 0

o] - 8in(y + we)t + sin(y - wc)t
Y + wc Y - wcC :

As in the case for R , the only contribution to WT ’
as t » o , is given by the second sine term. And this

occurs when vy = wc . It is clear then, as the steady-

state condition is achieved, that

as required.

3.5 - TWO-DIMENSIONAL WAVE RESISTANCE:-

It is of interest to study the wave resistance of a two-
dimensional band of pressure since this shows up clearly the
interference effects of the transverse wave system.

A possible method of solving this problem would be to

set up a two-dimensional analog of Sec.(2) - for the potential,
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¢ , — and then solve this. However, it is simpler to con-
sider a pressure distribution independent of y , and then

let the beam approach infinity. Thus we assume that
plx,y) = pZD(X) for -b <y <b . (3.26)

The Kochin functions (see also the Nomenclature),

Eg. (3.14), become

_ 2 sin(bu)

Po = u Pop ¢
Po =0,
_ 2 sin(bu)
Qe = u 0
and Qo =0,

where the two-dimensional Kochin functions are given by

Pob

_ Ccos
- J pZD(X) Sin(WX) dx ’ (3.28)

b
L

L being the length of the distribution.
Let us now consider the u integral in Egq. (3.13) for
the wave resistance. We have, for the wave resistance per

unit width,
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o
Il

2D R/2b

t oo

= 2, 2 2

= Ti55 J c(t) dz I dw w [PZD + Qyn ]x
0 0

xcos[w(s(t) - s(r))]X

1//b6 o
X l + J cos[/@k-tanh(kd).(t L T)] 2 sin? (bu) du
1/v/b

bu 2 ’

in which we have broken the u integral into two subranges
as indicated. After a change of variable, the first of

these u integrals becomes

/b

I, =2 cos[/@/%z + ¢2/b%.tanh(/w? + ¢2/b2.d) . (t - T)Jx

in%;Q d¢

As b » » , this simplifies to

I, =2 cos[/@w-tanh(wd)o(t - T)] I §i%;$ d¢
0
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This integral is given, for example, in Gradshteyn and Ryzhik

(1965, p. 414, 3.741, Formula 3). Thus

I,=m cos[/&w-tanh(wd)-(t - T)] .

We shall now examine the second of the u integrals,

I, . It is easily seen that
|I,] < 22 du = 2/V/b .
bu
1/vb

Thus, as b > , I, =0 .
The formula for the two-dimensional wave resistance may

now be written as the following double integral:

t )
R,. = = c(t) dr dw w2+ P, %2 + Q.2 |x
2D yiffolef 2D 2D
0 0

xcos[/@w-tanh(wd)-(t - T)]'COS[W(S(t) B s(r))]. (3.29)
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3.6 - TWO-DIMENSIONAL TOTAL POWER:-

The procedure for finding the limiting expression for
the total power, Eg. (3.15), in the case of two-dimensional
flow, is identical to that given in Sec. (3.5). The result

is

t o3}

y 1

Wrop = 705 J c(t) drt J dw w/gw'tanh(wd)°[P2D2 + QZDz]X
0 0

xsin[/éw-tanh(wd)-(t - T)]-sin[w(s(t) - S(T))] .

(3.30)

3.7 - TWO-DIMENSIONAL STEADY-STATE WAVE RESISTANCE:-

We now derive the two-dimensional limit of Eg. (3.22).
The procedure followed is similar to that in Sec. (3.5) and

the result is

- k2 \ ,
Rop = 59 TT — K,d-sechZ(ka)] [sz + Qop :] » (3.31)

k being the solution of k = k, tanh(kd) . (3.32)
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If kod < 1 (the supercritical speed condition), then
there is no real solution of Eq. (3.32), and the wave resis-

tance is zero.



4 - STEADY-STATE RESULTS

4.1 - PRESSURE DISTRIBUTION USED:-

As mentioned in Sec. (1), it was felt that it would be
necessary to allow the cushion pressure to drop to zero wi-
thin a finite distance at the periphery of the craft. The
actual details of this fall-off are discussed by Hogben (1966Db)
and Alexander (1967) for a periperal jet ACV, and by Jones
(1966) for a plenum chamber machine.

However, it is unlikely that the precise way the pres-
sure drops to zero is crucial. Rather, the essential para-
meter is a measure of the fall-off distance. The restric-
tion of planform shape to a rectangular one was made, since
the smoothing effects of an elliptical design were studied
by Barratt and Newman. The general pressure distribution
given below allows the fall-off distances to be individually

varied:

p(x,y) = % pe | tanh a(x + a) - tanh a(x - a)]x

x{ tanh B(y + b) - tanh B(y - b)] . (4.1)

Here po is the nominal pressure, a is the half-length

and b is the half-beam. The smoothness of the cushion

37
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pressure fall-off at the edges is a function of the fall-off
parameters o and B8 . A large value of o implies a
rapid drop at the bow and stern edges. On the other hand,
if B 4is large, then the cushion pressure decays rapidly at
the sides. This function is shown in Fig. 2.

As a particular case, we may consider the limit as

B > o, Then the pressure is given by
1
P = 35 Po [tanh o(x + a) - tanh a(x - a)]

for -b < x < Db (4.2)

=0 otherwise.

This could represent a so-called sidewall air-cushion vehicle
or captured air bubble (CAB). In these craft, the cushion
is physically restrained at the sides so that the pressure
falls abruptly.

Another particular case occurs when both a + « and

B + o , Then

p =po for -a <x <a

and -b <y < b (4.3)

=0 otherwise.

This case of a constant pressure acting over a rectangular

area is one commonly used by previous workers.
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It is advantageous to obtain analytic expressions for
the Kochin functions, Eq. (3.14). Due to symmetry in the

chosen expression for p , it is clear that
P =0, =Q =0. (4.4)

Furthermore, Eq. (4.1) allows us to compute Pe as the pro-
duct of two separate, but similar, integrals over x and YV,
respectively. The contour used for evaluating the integral

is shown in Fig. 3. We write the x integral as

I_ = Real [ [tanh o(x + a) - tanh o(x - a)J eiwx dx . (4.5)

Because of the finite lengths of the paths of integration
for I, and I; in Fig. 3, it is clear that as M - ,
I, =I3=20. Also, along C, , points corresponding to x
on C are given by x + in/a . It can then be shown from

Eqg. (4.5) that

I. (4.6)

There are two simple poles lying inside the contour,
and after applying the usual residue theorem, and some sim-

plification, it is found that



40

_ m sin(aw)
Iy = o sinh(mw/2a) (4.7)

The y integral in Pe may be written down by inspec-

tion, so that the final result for the Kochin function is

C T sin (aw) m sin (bu)
Fe = Po G Sinh (mw/20) B sinh(mu/28) (4.8)

Pe has well defined limits for the cases specified by
Egs. (4.2) and (4.3).
Finally, by integrating the pressure distribution, one

obtains the weight of the ACV:

W=4p, ab . (4.9)

4.2 - NONDIMENSIONAL COEFFICIENTS:-

The wave resistance coefficient used is defined by

R = %.Lga (4.10)

(4.11)
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4.3 - RESULTS:-

The programs used for computing the steady-state resis-
tance are documented by Doctors (1970, Sec. (10.1)).

Some curves for the wave resistance are shown in Figs. 4
to 7 inclusive. in these diagrams, the variable used for the
abscissa is A = 1/(2F2) . This results in the low speed
interference oscillations having a period approaching a con-
stant value of 27 .

With regard to the ordinate, an arcsinh scale is oc-
casionally used to improve the presentation of the results.

This transformation is defined by
yp = C1 arsinh(C,y) , (4.12)

where y is the number to be plotted and Yp is the distance
on the figure. C, and C, are constants,

In Fig. 4a, the effect of smoothing on a two-dimensional
pressure band, that is, reducing the value of the parameter
oa , is illustrated. For oa = « , we have a sharp pressure
distribution and the amplitude of the oscillations of the
wave resistance remains unchanged with increasing A (de-
creasing speed). The theory predicts an infinite number of
these oscillations between zero speed and any finite velocity.
The curve is a sine wave and this result was obtained by Lamb
(1932, p. 403).

For finite values of the pressure fall-off parameter,

aa , the oscillations die out with decreasing speed. If
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aa = 5 , then there are only three major humps. The humps
and hollows are caused by the interference of the bow and
stern wave systems, which are purely transverse in this ex-
ample. The interference is not affected by the smoothing.
However, the smoothing reduces the amplitude of the waves
generated by the bow and stern.

Fig. 4b shows the effect of smoothing a two-dimensional
pressure band for a finite depth. The resistance is zero
for supercritical speeds (when Fq > 1 ) because free waves
cannot travel faster than the critical speed.

Three cases are illustrated in Fig. 5a. Case 1, with
@da = ga = » , represents a sharp pressure distribution with
a beam to length ratio of 0.5 traveling over deep water.
The unrealistic oscillations obtained by previous workers are
confirmed. It should be noted that for low speeds the amp-
litude of the oscillations asymptotically approaches unity -
the same as for the two-dimensional case. Thus the trans-
verse waves become relatively more important in this speed
range. Case 3, with oa = Ba = 5 , has smoothing applied
on all four edges, and once again, only about three or four
humps occur. While typical values of oa and Ba would
have to be found from measured pressure distributions, this
curve could represent an actual ACV. Finally, Case 2 only
has smoothing at the bow and stern - equivalent to a side-
wall ACV, The result is almost the same as for Case 3,
showing that the wave pattern is essentially produced by the

fore and aft portions of the cushion - and not the sides.
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The effect of smoothing equally on all four edges is al-
so displayed in Fig. 5b. The sharply edged case is compared
with those of three different amounts of smoothing. The dia-
gram shows that for aoa = Ba > 5 an unnaturally large num-
ber of low speed humps and hollows occur.

Fig. 5c shows the same three cases of Fig. 5a, but for
a finite depth. The chief difference now is that the main
hump is pushed to the right and occurs near the critical depth
Froude number. The low speed humps are only marginally af-
fected.

The effect of varying the beam to length ratio is de-
picted in Fig. 6. Fig. 6a is for deep water. The general
effect is an increase in the maxima of the resistance coef-
ficient for increasing beam, since the transverse waves as-
sume greater importance as the two-dimensional case is ap-

proached. At the same time, the minima are reduced for the

same reason. A secondary effect is a shift in the location
of the oscillations. As the beam increases, this shift is
to the right (i.e., to lower Froude numbers). In the two-

dimensional limit the hollows occur precisely at values of
A = nm , where n is an integer.

The result of varying the beam is again shown in Fig. 6b,
but now for a finite depth. Similar effects are shown in
the low speed range, away from the neighborhood of the cri-
tical speed. However, the position of the critical speed
hump is hardly affected. For finite beams it occurs at a

slightly lower speed than for the two-dimensional case.



44

Fig. 7 illustrates the result of varying the depth of
water. Each of the five diagrams is for a different beam
to length ratio. They show how the critical depth hump
resistance increases with decreasing depth. For the two-
dimensional case, this peak resistance varies as the inverse
square of the depth. However, for finite beam to length
ratios, this maximum drag does not increase nearly as rapidly
in shallow water.

Another aspect brought out by these diagrams is the rate
at which the resistance curves for different depths, but the
same beam, converge at large values of A . Thus, for
values of A greater than 3 , the case of d/a = 1 1is in-
distinguishable from the deep water case. And at d/a = 0.5,
the resistance curve is essentially the same as that for any

greater depth, provided that A is greater than 6.



5 - CALCULATIONS FOR ACCELERATED MOTION

5.1 - TWO-DIMENSIONAL RESULTS:-

Sample results for accelerated motion are shown in
Figs. 8 to 18. All but Fig. 9 were computed by programs lis-
ted by Doctors (1970, Sec. (10.2)). Although these programs
can handle general acceleration patterns, only calculations
corresponding to a constant acceleration are presented here.

Various two-dimensional results are given in Figs. 8
to 12, Fig. 8 shows the effect of varying the level of ac-
celeration for a smooth pressure band over deep water:

There are only two humps displayed when the acceleration is
non-zero. The third and higher order humps have been smooth-
ed out by the unsteady motion. Furthermore, with increased
acceleration up to 0.2g , the second last hump is also prac-
tically lost. The last or major hump is also somewhat re-
duced, but evidently any significant reduction can only be
achieved by an application of an unnaturally high accelera-
tion.

The location of the humps is also affected by the ac-
celeration. With increasing acceleration, the oscillations
are delayed to higher Froude numbers.

The case of a sharp two-dimensional pressure band is
shown in Fig. 9. A complete curve could not be computed be-

cause of the (apparently) infinitely many oscillations that
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occur in the region where A 1is just less than 5 (for the
case of ¢/g = 0.05). The last two humps, and the last
hollow, correspond in position with those displayed for a
smooth pressure band in Fig. 8. Thus, the smoothing does
not affect the positions of the oscillations - as was also
evident for steady motion.

The resistance coefficient is constant and equal to
unity for A > 5 ., The significance of this point lies in
the fact that the ACV has traveled one craft length when
A =5, at an acceleration of 0.05g .

From geometrical considerations, it is clear that there
can be no interference effects between the bow and stern
transverse waves until the craft has moved this distance.
Up.to this point in time, the bow and stern individually pro-
duce a wave train of varying wavelength (depending on the in-
stantaneous velocity), but of constant amplitude. Let us
call this amplitude ¢, . Then, before the band has moved
one length, there are two wave trains produced, each con-
taining energy per unit area proportional to g,? . The
wave resistance of the two waves in this speed range is then
proportional to 27,2 , and is constant.

When the band has traveled one length, the stern waves
of finite wavelength start to run into the bow system that
was produced at the start of the motion. These latter waves
have a vanishingly small length. As a result, there is an

infinite accumulation of the interference oscillations in

the resistance curve just to the left of A =5 .
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However, later on in the motion, the two wave systems
have a relatively more similar wavelength, or frequency, and
then have a capability of combining to give a maximum amp-
litude of almost 2zq , Oor a minimum amplitude near zero.
Hence, the wave resistance can fluctuate between (.0)? and
(~2z4) 2% at the higher speeds. So the peak interference
resistance is almost twice as high as the constant value oc-
curing before the band has traveled one length.

For a general acceleration level, the point where the

oscillations start is given by

A; = g/4¢ . (5.1)

Hence, for higher accelerations, A, is smaller and the os-
cillations are displaced further to the left, This explains
the general effect of acceleration on the location of the
humps and hollows in Fig. 8.

Resistance curves for a smooth distribution appear again
in Fig. 10, but the water now has a finite depth. The re-
duction in magnitude of the peaks is even more marked. In-
deed, while the maximum steady-state resistance increases
without limit in shallower water, the peak resistance coef-
ficient for accelerated motion is more nearly fixed. Thus
the relative reduction during unsteady motion is accentuated.

The location of the unsteady finite depth humps is af-
fected in the same way as in deep water, being delayed to a

higher speed.
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The most striking phenomenon, however, is that for all
the finite depth cases studied, the wave resistance becomes
negative beyond a certain velocity. The resistance then
asymptotically approaches zero from below.

Other interesting features of the two-dimensional case
are presented in Figs. 11 and 12. These show the total
power, resistance power and sustention power - which were
discussed in Secs.(3.1) and (3.3). The total power, being
the sum of the other two, represents the total rate at which
work is being done on the water. It was computed in order
to see if it remained positive when the resistance became
negative. Fig. 11 shows these three powers as a function of
time, for different acceleration levels over deep water. It
is seen that a hump in the resistance power or total power
curves generally corresponds to a hollow in the sustention
power curve. It may also be noted that the sustention
power is relatively small compared with the two other gquan-
tities.

Passing now to the case of finite depth, Fig. 12, we
notice that the total power also becomes negative, and at
approximately the same point in time as the resistance chan-
ges sign. In shallower water, these two points approach
each other. At a depth to half-length ratio of 0.25, the
points where the total power and resistance power become
negative are indistinguishable.

In interpreting the occurrence of negative total power,

it should be borne in mind that the total energy input to the



49

water, integrated from zero time, is always positive. How-
ever, at very high speeds the ACV begins to recover from the
wave pattern some of the energy previously expended in form-
ing it. The location of the negative hump in the resistance

curve is further discussed in Sec. (6.6).

5.2 - THREE-DIMENSIONAL RESULTS:-

Some computed cases for a three-dimensional pressure
distribution are shown in Figs. 13 to 18.

The resistance over deep water is shown in Fig. 13.

The similarity tothe two-~dimensional analog in Fig. 8 is to
be noted. The three-dimensional resistance is generally
about half that of the two-dimensional case (for this beam
to length ratio). Also the oscillations occur at slightly
higher Froude numbers, due to the additional effect of the
diverging waves. These same two differences display them-
selves in the steady-state results in Fig. 6.

The influence of acceleration on the resistance of a
three-~dimensional ACV over finite depth (Fig. 14) is seen to
be remarkably less than for the corresponding two-dimensional
situation. Again, it must be remembered that the steady-
state two-dimensional results showed stronger phenomena than
the three-dimensional ones. Principally, these were stronger

interference oscillations, and zero resistance beyond the
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critical speed.
is the lack of any speed range in which the resistance is

Of chief interest in Fig. 14, compared with Fig. 10,
This indicates that the transverse component of

negative.
the wave pattern is less important than the previous steady-

state results implied.

The three-dimensional results, nevertheless, show a
substantial reduction in the peak resistance during acceler-

ated motion, particularly for the shallower situations.

Beyond the last hump, the curves of resistance for dif-
ferent levels of acceleration converge rapidly, as the speed
0.5 (F = 1.0) the acceleration has

Beyond A

little effect.
resistance power and sustention power are given in Figs. 15
The finite depth

increases.
For the sake of completeness, curves of total power,
The deep water case (Fig. 15), again, is similar

results in Fig.

and 16.
to the two-dimensional case in Fig. 1l.
16 do not differ considerably from the deep
water results of the previous figure - in contrast to the
In finite depth

two-dimensional results discussed before.
the three-dimensional sustention power approaches zero some-

what faster that in infinitely deep water.
A comparison of the resistance power for different rates

of acceleration is made in Fig. 17 (deep water) and Fig. 18
For accelerated motion over deep water,

(finite depth).
there is a slight increase in peak power to overcome resis-

This is because the resistance peaks remain essenti-

tance.
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ally the same in magnitude, but are shifted to a higher speed.

At a depth to half-length ratio of 1.0, the resistance
power peaks are also higher in accelerated motion. A sig-
nificant reduction in the maximum resistance power occurs
only at a depth to half-length ratio of 0.25,

Thus we have a situation in which the resistance hump is
considerably diminished in water of finite depth. However,
the new location of the hump greatly reduces any saving in

the power needed to overcome it.



6 - APPLICATION OF SHALLOW WATER THEORY

6.1 - PREAMBLE:-

It is well known that the first-order shallow water
theory produces less realistic results for ship wave resis-
tance than the linearized theory for finite depth. Thus
Michell (1898) and Tuck (1966) showed that it predicted zero
resistance for a body traveling at less than the critical
speed. The advantage in shallow water theory lies in the
possibility of extending it to obtain higher order approxi-
mations to the flow, where the complexity of the finite depth
results would preclude this.

The theory was employed in this case to predict the
location of the negative resistance hump displayed in the un-

steady two-dimensional results.

6.2 - DERIVATION OF POTENTIAL:-

The procedure is essentially the same as for the case of
finite depth, since the same set of equations, namely Egs.
(2.5), (2.7), (2.9) and (2.11), are to be satisfied.

In the spirit of the shallow water approximation, we

shall assume an asymptotic expansion for the disturbance
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potential, viz:

[+

¢ = o™ (6.1)

n=1

(n+1)

where ) = o(¢(n)

) B (6.2)

Furthermore, we shall follow Tuck and simply take

o™ = o(e?) . (6.3)

Here ¢ 1is the parameter denoting the shallowness of the

water so that its definition could be
X, Yy =0(1) ; 2z =o0() , (6.4)

X, Y, 2z being inside the fluid region.

It follows from Eq. (6.4) that differentiation can

change the order of magnitude of a quantity. Thus
) a_ _
ax' Jy 0(1)
(6.5)
and 2_ = O(e~1)
2z ’

We may now substitute the expansion, Eg. (6.1), into the

Laplace equation, Eg. (2.5). Due to the assumptions of
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Egs. (6.3) and (6.5), we may separate the lowest order term

in Eq. (2.5). Thus

1 _ 9, (6.6)

Similarly, the bed condition, Egq. (2.11), yields

(1) =
[¢ z] seeg = 0 - (6.7)

(1)

From Egs. (6.6) and (6.7) we see that ¢ is not a

function of z , i.e.

(1) _ A1)

) 1Y) . (6.8)

The series, Eg. (6.1), is now substituted in the kine-

matic condition, Eg. (2.7). Also, the Laplace equation gives

¢(l)z = ¢(2)z =0 (6.9)
and 63 = -z + @ ve, alt (6.10)
where v22D = %;? + g;z .

So the condition becomes
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(3) (1) (1. _
[¢ z] g=0 & gteocriiy= o, (6.11)

where c(l) is the first approximation to the value of ¢ .
The last boundary condition needed is the dynamic con-

dition on the free surface; Eq. (2.9). This results in
|:¢( )t - ¢ ¢( )x:l 2=0 +p/p+g C( ) =0 . (6.12)

The last three equations are utilized to produce the

equation to be solved for A(l):

' c? (1) (1) (1)
-gd [(1 - 33) AT gt A yy] +A T

(1) « A(1) _ ¢
- 2c A <t ~ © A x= 3 Py - (6.13)

(1)

The method of solution for A is similar to that
used in Sec. (2.2) for ¢ . A double Fourier transform
(Eq. (2.12)) with respect to x and y is made, and this is
followed by the substitution given by Eg. (2.19). The result
of these two operations is

icw

Xep + 9d(w? + uh)} = Z=epeexp(-iwes(t)) . (6.14)
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The similarity between the previous equation and the
corresponding one for finite depth should be observed. The
Laplace transform (Eq. (2.13)) of Eq; (6.14) is taken, and
the convolution theorem applied: Then the double inverse
Fourier transform is used to give the first approximation to

the shallow water potential:

t oo o
¢(l) (x,y,2,t) = —t p' ds' c(t) dr dw | du
4m2p/gd
S' 0 - OO - 00

Zesinlv/gdeke (£ - 7)1
xexp[i(w(x - x' + s(t) - s(1)) + uly - y"))1, (6.15)

with k2 = w2 + u? .
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6.3 — WAVE RESISTANCE:-

The first approximation to the resistance is just

R(l) = [J P C(l)x ds .

S

The dynamic condition on the free surface, Eq. (6.12), is now

employed, as detailed in Sec. (3.2). The final result, after

simplification is

[o0]

t o
R(l) — l c(t) dr [ dw du w2-|:Pe2 + PO2 + Qe2 + QOZJ
0

T2pg

xcos[/gd+ks+ (t - 1)]ecos[w(s(t) - s(t))] . (6.16)

It is interesting to compare this result with that for
finite depth, namely Eg. (3.13). The shallow water result
can be obtained simply by letting d - 0 in the latter to
the extent that tanh(kd) is replaced by kd4d .

The steady state resistance can be obtained either as

the limit of Eq. (6.16) as t > «» (if the velocity is held
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constant), or by allowing d to approach zero in Eqg. (3.24).

The result follows:

F.2
(1) 1 d 2 2 2 2 2
R = . W'(P + P +Q +Q)dW,
2mp9 o2 _ e o e o
Fd 1 !
where Pe = Pe(w,u) , etc., (6.17)
and u = we Fd2 - 1. (6.18)

The relation between the transverse and longitudinal
wave numbers, Eg. (6.18), shows that there is a fixed angle
between the wavefronts and the y axis. This angle is

given by

g = arccos(l/Fd) . (6.19)

If Fd < 1 there are no free waves satisfying Eg. (6.19)

and the wave resistance is zero.
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6.4 - ELEVATION OF THE FREE SURFACE:-

The free surface elevation may be found from substitut-
ing the potential, Eg. (6.15), into the dynamic condition,
Eq. (6.12). Employing the standard rules for differentiating

an integral expression, it is found that

t o w
1 1 ' '
;()_-%4,4“20(; p' ds' | c(1) dr[dw[du
S —oo —c
wecos[/gd k- (t - 1)1x
xsin[w(x - x' + s(t) - s(1)) + u(ly - y")1 . (6.20)

On the other hand, if we restrict our attention to
pressure distributions which are symmetric about the x and

y axes, such that

then Eg. (6.20) may be simplified to
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oo oo t
1 1
0 0 0
xcos[/gdske+(t = 1)]+sin[w(x + s(t) - s(1))]-.cos(uy) drt

(6.21)

6.5 - STEADY-STATE RESULTS:-

A comparison of shallow water and finite depth theorv
is made in Fig. 19. The case of a smooth three-dimensional
pressure distribution is depicted in Fig. 19a. It is seen
that a depth to half-length ratio of 0.25 is essentially

shallow if 1/F.2 < 0.5 .

d
The wave resistance of a sharp three-dimensional dis-
tribution is shown in Fig. 19b. The convergence of the
finite depth resistance to the shallow water one is per-
havs not so rapid here. An interesting feature of the

shallow water result is the knuckle in the resistance curve

at F.? =5, (The other sudden changes in slope in the
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curve are due to the fact that a finite number of points have
been computed to define it.) For this pressure distribution,
it is possible to perform the integration in Eq. (6.17) analyt-
ically. Using Gradshteyn and Ryzhik (1965, p. 451, 3.828,

Formula 9), the result may be written down as

F 2
R = %'2(Fdzd— T if Fgq > Fg
(6.22)
_ Fa® .
= 2(Fd2 — l) if Fd < Fdl r

Ya?/b? + 1 .

where Fdl

Thus, the resistance is continuous at a depth Froude
number equal to Fdl but the slope is not. It is easily
verified that when Fd = Fdl , the wave pattern appears as in
Fig. 20. Apparently there is a reinforcement between the
bow and stern wave systems at this particular speed, causing
the observed knuckle.

In Fig. 19a a slight hump is also discernible at this
depth Froude number, but due to the finite values of the

pressure fall-off parameters the slope of the resistance

curve is continuous.
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6.6 — ACCELERATED MOTION:-

In order to examine the phenomena exhibited in the two-
dimensional wave resistance curves of Sec. (5.1), we shall
consider the free surface elevation due to the motion of a
pressure band given by Eq. (4.2). The Kochin function, Py
given by Eq. (4.8) is then substituted into Eg. (6.21).

The two-dimensional limit as b > «» 1is obtained, by use of

Eg. (3.18) to evaluate the u integral and the result is

oo t
g(l) = - %5 + Egé J aw [ c(t) wecos[/gdew. (t - 1)]x
0 0
xsin[w(x + s(t) - s(r))] —=snfaw) 4. (6.23)

sinh (rw/2a)

We now apply the formulas for the products of sines and

cosines, twice, to give

ol t
(1) P i o _Po
G FiTigged Z Z 1 dw c(T) swx
°9 i,j=#1 4pga
0 0
cos[w(v/gd: (t - 1) + j(x + s(t) - s(1) - ia))]
g STnh (nw/20) dr . (6.24)
In Eg. (6.24), i and Jj are the signs of the appropriate

factors and there are a total of four terms in the double

14
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summation.

The w

integral may now be done using Gradshteyn and
Ryzhik (1965, p. 511, 4.111, Formula 2):

xsech?[a(/gd-(t - 1) + j(x + s(t) - s(7) - ia))] dr .

(6.25)

Further restricting our interest to a sharp pressure

band, so that

o > o , it is seen that the integrand is zero
except when

Ygde(t - 1) + j(x + s(t) - s(1) - ia) = 0

(6.26)
Let us say that this occurs when 1 = t; and the velocitv of
the band is c(t;) = c; , while the distance traveled is
s(ty1) = s, .

In the neighborhood of

T =t%t; , we put

T=t1+T'

where t1' is small as ¢ » o .

The argument of the hvoer-
bolic secant in

Eg. (6.25) mav then be reexpressed in the
region where 1 = t . It is just
T" o

- o(/gd + jei)t!
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This substitution is now made in Eg. (6.25) to give

C(l) _ _p_ _ R PoCa «
Pg i,j=%*1 4pg (Ygd + jci)
~wesgn (/gd+jc,)
X { sech?t" dt" . (6.27)

©+sgn{/gd+jc,)

In this integral, the upper limit should be replaced bv zero
if t; =t , and similarly for the lower limit, if t; = 0

We then obtain

ieg*F
L T NI L | . .20
09 i/3=+1 |1 + j-Fq |
1
Here e =1 1if 0 < t; < t
1 . _
= —2— if t]_ = 0 or tl = t (6-29)

=0 if t; <0 or t; > t ,

and H 1is the Heaviside step function.
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The wave resistance of this sharp pressure band may be

derived from the formula:

The resistance coefficient then follows:

) i, (6.30)

and t; 1s now the solution of

Ygde(t - t;) + J(s(t) - s(t,) + (& - i)a) = 0. (6.31)

The shallow water resistance is plotted as a function
of time in Fig. 21. This is for a constant acceleration.
At one point the resistance becomes infinite, and at another
it becomes negatively infinite. This second peak corres-
ponds closely with the negative hump predicted by the finite
depth theory for the same depth and acceleration (Fig. 12e).

Apparently the positive hump does not show up in finite depth
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theory. Tt should be noted that the positive hump in the
shallow water theory is smoother than the negative one in

the sense that the latter has an infinite discontinuity in
function value.

Fig. 22 shows the shape of the water surface at dif-
ferent stages of the motion of Fig. 21. Initially, the de-
pression is due only to the static pressure under the pres-
sure band. As time progresses a pile of water builds up

ahead of the bow and this develops into an infinite peak at

1l

the critical depth Froude number (Fd 1). At the same time,
a negative peak develops just inside the stern. The pair of
peaks causes the positive hump shown in Fig. 21.

Beyond the critical speed these peaks cannot keep up
with the ACV, and are seen to move back relative to it. At
a second critical point in time, the bow peak passes under
the stern of the pressure band and the resistance suddenly
drops to minus infinity. Thereafter, the water surface in
the vicinity of the ACV levels out, and the wave resistance
approaches zero.

An inspection of Eg. (6.30) shows that the peaks in the

resistance curve occur when Jj = -1 and Fd = 1. Look-
1
ing now at Eq. (6.31), this can happen when:
g =1 t =t; , Fd =1
This is the case of the positive peak. The other pogsibility

is:
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2= -i vgde(t - ti1) - (s - s;1 *# 2a) =0 .
This case corresponds to the negative peak. 0Of the two con-

ditions represented by the latter equation, the only one that

satisfies the relationship 0 < t; < t is

ygde(t - £,) - (s - s; - 2a) =0 . (6.32)

Eg. (6.32) gives the value of t when the spike of
water generated at the bow passes under the stern of the
pressure band.

If we now return to the special case of a constant ac-
celeration ¢ » Eg. (6.32) becomes a quadratic in t . The
depth Froude number which locates the negative hump is then

given by the formula:

1 + 2 Yac/qgd . (6.33)

|
il
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Eq. (6.33) is plotted in Fig. 23, together with some
points representing the location of the negative hump for a
finite depth. As expected, the agreement is better for

shallower depths and sharper pressure distributions.



7 — THE INVERSE PROBLEM

7.1 - PROBLEM STATEMENT:-

An object of interest in the design of an ACV is to
know the attainable acceleration pattern as a function of the
characteristics of the propulsor. Hence, other items of
concern, such as the acceleration margin at the hump speed,
may be deduced.

In order to make the study realistic, one must include

all the components of resistance. These were described in
Sec. (1.1). We use Newton's law to obtain

T - - - = .

T Dy Dy R = mc , (7.1)

where T 1is the thrust available, DA is the aerodvnamic or
profile drag, DM is the momentum drag and m is the mass
of the craft. The problem definition could be made more
elaborate by including, for example, an estimate of the water
contact resistance. It is emphasized here that this break-
down into drag components is only an idealization of the true
situation in which there are interactions among them.

In Eg. (7.1), the terms on the left-hand side are func-
tions of speed, or acceleration pattern - which are unknown.

We shall assume the following forms of these resistance com-

ponents:

69
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D. =Lfc_a c? (7.2)

and D, =m, C , (7.3)

where C is the aerodynamic drag coefficient of the craft

D
based on AF , the frontal area, while Pa is the air den-
sity and ﬁA is the mass flow rate into the air cushion.

The program used to solve Eg. (7.1) is described by Doctors
(1970, Sec. (10.3)).

Let us now limit the numerical investigation to a single
craft. The data are given meaning by relating them to a
particular (dimensional) machine, below. The results will

also apply to any scale model of this craft.

DIMENSIONAL VARIABLE DIMENSIONLESS VARIABLE
e = 1.94 slugs/ft.? (base unit)
g = 32.2 ft./sec.? (base unit)
a = 20 ft. (base unit)
b = 10 ft. b/a = 0.5
a = 0.25 ft.7? aa = 5
B = 0.25 ft. "2 ga = 5
W = 25,000 1bf. pga/po = 40
Pp = 0.002425 slugs/ft.° 0,8’ /m = 0.025
CLAp = 160 £i,2 ChApra/2m = 0.005
ﬁA = 7.384 slugs/sec. ﬁAJEVm/E = 0.0075
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7.2 - RESULTS FOR UNSTEADY MOTION:-

Fig. 24 shows the effect of applying three different
constant thrust levels to the ACV. At the hump speed the
wave resistance is of the same order as the two other drag
components combined. Only one other minor hump is dis-
played, as was also the case for a constant acceleration
level. Thus the character of the wave resistance curve is
not grossly affected by the nature of the acceleration pat-
tern - provided it is reasonably smooth. At the lowest
thrust level (0.06 of the craft weight) the acceleration mar-
gin at the hump is only about 0.02g which could be inade-
quate for a practical machine.

The same craft running over finite deoth is presented
in Fig. 25. Similar general trends are displayed. However,
the thrust margin at the hump speed is slightlv reduced, but
thereafter the wave resistance drops somewhat faster than in
deep water,

The corresponding velocity patterns are shown in Figs.
26 and 27. The curves are quite smooth despite the humps
in the wave resistance. The effect of depth is seen to be
small for this case - the drop in velocity in the region of
the hump due to finite depth is less than 10%.

Some calculations were also performed using an enaine-
driven airscrew to push the craft rather than a constant-
thrust device. The propeller used was a four-bladed Clark Y
Section screw (Propeller Reference Number 5868-9). The

characteristics of this propeller were measured by Hartman
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and Biermann (1937). The diameter, D , was 10 ft. and the

blades had a nominal angle of 20° at the three-quarter radial

point. The table below lists the thrust and torgue coeffici-
ents, KT and KQ , as a function of the advance ratio, J ,
where
= 27y 4
KT T/pAN D) (7.4)
o= 25
KQ Q/pAN D (7.5)
and J = ¢/ND . {7.6)

Here Q 1is the propeller torque and N its speed in revo-

lutions per unit time.

J KT KQ J KT o
0 0.187 0.0189 0.6 0.120 0.01F58
0.1 0.185 0.0188 0.7 0.097 0.0158
0.2 0.181 0.0186 0.8 0.072 0-0114
0.3 0.175 0.0185 0.9 0.045 0.00764
0.4 0.161 0.0180 1.0 0.016 0.0036¢6
0.5 0.140 0.0170

et - e e SR
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Fig. 28 shows the variation of drag components with time,

assuming that the propeller absorbs a power, P , given by

P = 3.804x10° ft.1lbf./sec. (692 H.P.) ,

or P/ma2g¥2 = 0.6 .

The results are very similar to those in Fig. 24 for a cons-
tant thrust. This is because the propeller advance ratio is
still small at the hump speed - and up to this speed KT

and K are almost constant.

Q

The case of a constant propeller speed of revolution is
treated in Fig. 29. Fig. 29a shows the resistance components

when the propeller runs at a speed given by

N = 25.38 r.p.s. ,

or Nva/g = 20 .

Again, the thrust drops only slightlv in the speed range in-
volved, so the results are similar to those for a constant
thrust, or a constant engine power. In Figs. 29b and 29c
the craft is overloaded bv 50% and 100%, respectively. Onlv
the weight (and cushion pressure) were increased, and all the
other dimensional data were held fixed. Since the wave

drag is proportional to the square of the cushion pressure,

this component becomes relatively more important in cases of
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overload. For the 100% overload situation, the machine bare-
ly surpasses the hump.

The case of the same propeller speed of revolution, but
over finite depth, is handled in Fig. 30. For a normal load
(Fig. 30a), or a 50% overload (Fig. 30b), the drag components
follow guite closely the corresponding curves for deep water
given in Figs. 29a and 29b, respectively. However, for a
100% overload (Fig. 30c) the situation is quite different in
finite depth.

Here the craft apparently does not overcome the resis-
tance hump in the time shown. At first, it seems to only
just cross the (unsteady) hump. Then the wave resistance
rises - probably because the almost zero acceleration at this
time allows the shallow water wave pattern to build up, thus
approaching a nearly steady state. The total drag (being
essentially the same as the wave resistance now) 1is areater
than the thrust so that the craft decelerates to below the
hump speed. Without extending the calculation to a aoreat-
er time limit, it is difficult to predict whether the ACY
would cross the hump, approach a steady-state sub-hump speed,
or settle down into a repetitive cycle.

The velocity pattern for the above-mentioned three load-
ings is shown in Figs. 31 and 32. In deep water (Fig. 31)
it is seen that while a 50% overload is tolerable for this
craft, a 100% overload could prevent hump spead beinu achiev-
ed in practice. In finite depth (Fig. 32) the region of de-

celeration for a 100% overlcad is now more clearly revealed.
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The main assumption here is that the propeller and en-
gine characteristics at any instant of an unsteady motion can
be estimated on a quasi-steady basis using only the instan-
taneous craft speed, thus ignoring inertia and time history
effects. (In fact, the only quantity treated in a truly un-
steady fashion here is the wave resistance.) The calculated
results, retrospectively, seem to confirm the validity of this
assumption. The required changes in propeller speed of ro-
tation (under the constraint of constant power) and thrust
(under the constraint of constant propeller speed) are indeed
quite small. Thus the system of the propeller and engine is

effectively operating at a nearly steady state.

7.3 - QUASI-STEADY RESULTS:-

One might now consider the effect of a further simpli-
fication, namely the assumption that the wave resistance can
also be treated on a quasi-steady basis. In other words,
the wave resistance (as well as the other drag componants)
at any instant of the unsteady motion is assumed to be in-
dependent of acceleration and time history - and just equal
to the steady-state value at the instantaneous velocity.
This technique could make use of the steady-state results

previously calculated in Sec. (4.3), which incidentally
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require much less computational effort.

Fig. 33 is the quasi-steady analog of Fig. 24 and shows
the drag components over deep water for three different
thrust levels. There is generally little difference in the
resultant motion because, as was seen in Sec. (5.2), the mag-
nitude of the hump resistance in deep water is only slightly
affected by this range of acceleration. Moreover, the low
speed unsteady resistance curve tended to pass through the
average value of the oscillating steady-state resistance
curve, and the effect of small local oscillations in resis-
tance tends to be averaged out in the resultant velocity pat-
tern.

The effect of finite depth is shown in Fig. 34. The
difference compared with the truly unsteady calculation
(Fig. 25) is more discernible now - because of the higher
steady-state hump encountered in the quasi-steady calcula-
tions. This aspect is more clearly seen in Figs. 35 and 36
which display the velocity patterns for deep water and finite
depth, respectively. For comparison, the unsteady curves
are also shown. In deep water there is little difference,
but for d/a = 0.5 , the patterns separate slightly more at
the hump speed for the reasons cited above.

The result of employing the propeller previously des-
cribed (with a constant speed of revolution) is shown in
Fig. 37 (deep water) and Fig. 38 (d/a = 0.25). As was noted
in Sec. (7.2), there is no new effect displayed when compared

to a constant thrust device. Below the hump speed, the
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propeller produces an almost constant thrust. In deep water
the quasi-steady and unsteady results (Fig. 29) are again
similar.

For d/a = 0.25 , the motion of a normally loaded craft
compares with that for the unsteady calculation (Fig. 30a).
However, for a 50% overload, the quasi-steady calculation
predicts that the ACV can only achieve a sub~hump speed while
the unsteady theory (Fig. 30b) shows that the ACV, in fact,
has a practical thrust margin to surpass the hump resistance.
In the case of 100% overload the unsteady result (Fig. 30c)
shows that the machine is in a marginal position regarding its
ability to achieve a practical cruising speed. The quasi-
steady calculation, on the other hand, would indicate that
the craft considerably lacks the ability to cross the hump -
it would seem to have only about half of the thrust required.

The velocity patterns for a constant propeller speed of
revolution are shown in Fig. 39 (deep water) and Fig. 40
(d/a = 0.25). These clearly indicate the marked difference
between the predictions of the quasi-steady and unsteady cal-

culations - particularly for finite depth.



8 - CONCLUDING REMARKS

8.1 - CONCLUSIONS:-

A large number of results have been presented, and the
reader is referred to the appropriate section for the de-
tails. However, some general remarks should now be made,
and the first of these concerns the degree of smoothing re-
quired to eliminate the low speed oscillations in the steadv-
state wave resistance curves.

Reference is now made to Fig. 2 showing the pressure
distribution. We shall take pBa = o since this parameter
hardly affects the resistance. The slope of the free sur-
face at the center of the bow (x = a, vy = 0), at zero speed,

is then given by

~ 0Po _ 2
gy = 253 [l sech (Zaa)]

For ga > 2 the second term may be dropped to give

[o4
e

offe

(8.1)

°x

\)
e}
Q

Some calculations by Jones (1966), for example, indic-
ate that this slope is of the order of unityv. Farthermore,

for typical ACVs, the ratio pga/p, is about 40. Hence

78
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Eg. (8.1) would yield oa = 80 as a general value. The con-
clusion in this regard then, is that a reasonable amount of
smoothing is not sufficient by itself to eliminate the low
speed humps and hollows. Other effects, such as nonlinearitv
and real fluid properties, mav have to be invoked to exnlain
the discrepancy.

It is evident, however, that the use of low values of
ca and Ba (about 5) does improve the agreement between cal-
culated and observed steady-state wave resistance curves, es-
pecially at lower speeds. Thus the use of such values, even
if unnecessary from the point of view of accurate pressure
modelling, could still be justified if ga and Ba are re-
garded as semi-empirical factors introduced to effectively
eliminate the unrealistic linear effects at low Froude num-
bers. Two advantages will accrue.

First, the inverse problem can be treated with more con-
fidence since it requires a continuous calculation of wave
resistance for the entire speed range beginning from zero and
one can avoid the unrealistic phenomena which would occur for
a sharp pressure distribution.

Second, the computational effort involved in evaluating
the various integrals is considerably reduced due to the ex-
ponential decay of the integrands at infinity if oqa and Ra
are finite and small. In fact the corresponding calculations
for a sharp pressure distribution would be formidable, as dis-
cussed in Sec., (8.2). Thus there is also a practical and

economical advantage in the use of these adjustable constants.
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Most of the figures show a marked similarity between the
two- and three-dimensional results. Thus the transverse wave
system plays a large role in contributing to the energy radi-
ation for the usual beam to length ratios of ACVs. Cn the
other hand, the diverging waves are sufficiently important to
prevent the occurrence of negative wave resistance during ac-
celerated motion of the craft from rest in finite depth.

The effect of acceleration level on the wave resistance
is quite marked. Normal accelerations of up to 0.lg are
sufficient to eliminate most of the low speed humps. Also,
the high resistance peak at the critical depth Froude number
is limited to a much smaller value in accelerated motion.

However the resistance peak is displaced to a higher
speed so that the power needed to overcome it is hardly
diminished, except in very shallow water.

On the other hand, the practical design of an ACV results

in the propulsive efficiencv being a maximum near the design

speed. At low speeds, up to the hump, the thrust is essenti-
ally constant. Hence the critical thing is the peak wave
resistance - and not the peak power to overcome it. This was

borne out by a comparison of the unsteady and quasi-steady
theories for the solution of the inverse problem in finite
depth. Under certain circumstances the ACV could easily
cross the hump, even though the quasi-steadv theory predicted

otherwise.
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8.2 - FUTURE WORK:-

It would be worthwhile to run some experiments to veri-
fy the calculations for accelerated motion. Either the
direct or inverse case could be tested since the theory is
equally valid for both. Correction for the additional drag
components is one of the problems to be contended with.

A particular case that should be examined is the two-
dimensional one. It should be interesting to see how ac-
curately the theory predicts the phenomenon of negative wave
resistance.

A few comments should also be addressed to the problem
of computing the integral in Egq. (3.13). The convergence of
this integral deteriorates for large values of t , o and
B . This is because of the exponential decays in the Kochin
function, Eq. (4.8). The Gauss-Laguerre quadrature rules
used are based on these decays. Thus the majority of the
resistance curves for accelerated motion, given in the figures,
employed a rule of order 2048 for the w integral, and a rule
of order 16 for the u integral. However, an estimation of
the truncation error showed that, in fact, only the first 102
and 9 points, respectively, were needed for a three-figure
accuracy. Generally, a 129-point trapezoidal rule was used
in the 1 integral.

This combination of rules was found to be the best, al-
though it would be useful to investigate other numerical quad-
rature schemes.

Because of the limitations of the numerical method -
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specially for large t - an alternative technique of evalu-
ating the integral should be considered. For values of the
velocity somewhat greater than the main hump speed, it should
be possible to construct an asymptotic expression for the
wave resistance (for large t). For the inverse problem,
the asymptotic formula would have to be based on an extra-
polated velocity pattern (which could be corrected iterat-
ively).

Finally, it may be remarked, that a nonlinear theoretical
treatment of the problem would reveal more about the low speed
oscillations in the resistance curve predicted by the linear
theory.

Following Wehausen (1963), one could assume the poten-
tial to be a power series in terms of a perturbation para-
meter such as po/pga or po/pc? . It should then be fair-
ly straightforward to construct a linear scheme of success-
ively higher approximations as has already been done for thé
case of a ship in steady motion. In fact, there is good
reason to believe that due to the absence of the hull bound-
ary condition, the numerical evaluation of the resulting in-

tegrals here would be somewhat simpler than for a ship.
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Fig. 19 shallow Water Wave Resistance, (a) aa
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Fig. 19 (cont.) (b) ca = Ba = o
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Fig. 22 shallow Water Unsteady Free Surface Elevation (2D)

for Fig. 21, (a) For tvg/a = 0(2)18
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Fig. 24 Drag Components in Deep Water (Constant Thrust)
(a) T/W = 0.06 '

40



=3

149

U & w DD+

e

Momentum Drag
Profile Drag
Wave Resistance

Craft Inertia

Propulsive Thrust

T |
10 15

Fig. 24 (cont.)

|

20
tvg/a

(b) T/W = 0.08

30



150

0.12
5
0.10 ‘
0.08 — l: Momentum Drag
"2: Profile Drag
3: Wave Resistance
% 4: Craft Inertia
5:. Propulsive Thrust 4
0.06 = d/a = oo
0.04
0.02
0

tvg/a

Fig. 24 (cont.) (¢) T/W = 0.1
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Fig. 25 (cont.) (c) T/w = 0.1
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Fig. 28 Drag Components in Deep Water (Constant Prop. Power)

20



=3

157

0.12
5
0.10 -~
l: Momentum Drag
2: Profile Drag
3: Wave Resistance
Craft Inertia
0.08 = 5: Propulsive Thrust
4
d/a = o
0.06 —
0.04 —
3
0.02 4 2
%
0
- T | I
0 5 10 15 20
tvg/a
Fig. 29 Drag Components in Deep Water (Constant. Prop. Revs.)

(a) Normal Load
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Fig. 29 (cont.)

(b) 50% Overload
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Fig. 29 (cont.) (c) 100% Overload
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Fig. 30
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Drag Components in Finite Dept" (Constant Prop. Revs.)
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Fig. 30 (cont.)

(b) 50% Overload
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. Fig. 30 (cont.)

(c) 100% Overload
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Fig. 33 (cont.) (b) T/W = 0.08
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Fig. 33 (cont.) (¢) T/W = 0.1
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Fig. 34 QS Drag Components in Finite Depth (Constant Thrust)

(a)

T/W = 0.06
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Fig. 34 (cont.) (b) T/W = 0.8
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Fig. 37
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d/a = «

1 |
5 10
tvg/a

I
15

20

QS Drag Components in Deep Water (Const. Prop. Revs.)

(a) Normal Load
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Fig. 37 (cont.) (b) 50% Overload
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Fig. 37 (cont.) (c) 100% Overload
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Fig. 38 QS Drag Components in Finite Depth (Const. Prop. Revs.)

(a) Normal Load
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Fig. 38 (cont.) (b) 50% Overload
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Fig. 38 (cont.) (c) 100% Overload
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13. ABSTRACT

This report is concerned with the theoretical wave resistance of an
air-cushion vehicle (ACV) traveling over water of uniform finite or in-
finite depth, in steady or unsteady motion. Referring first to steady
motion, it is shown that the unrealistic oscillations in the wave resis-
tance curve at low Froude numbers found by previous workers can be elim-
inated by using a smoothed out pressure distribution rather than one
with sharp edges studied exclusively in the past. The main result of
unsteady motion calculations is that the peak wave resistance in shal-
low water, even in moderately accelerated motion, is appreciably 1less
than the corresponding steady-state value. In fact, cases have been
found where an ACV starting from rest under the action of a constant
thrust would seem to be unable to cross the critical depth Froude number
on the basis of quasi-steady estimates of wave resistance, while the
more elaborate unsteady calculations show that it has sufficient power
to reach its final supercritical cruising speed. An interesting fea-
ture of unsteady motion is that besides wave resistance there is an-
other mechanism transferring energy to the free surface which is here
called the dynamic sustention power. Contrary to intuition, the wave
resistance in unsteady motion over finite depth sometimes becomes nega-
tive at supercritical Froude numbers before finally approaching zero
at infinite speed.
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